• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2019 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include <uapi/misc/habanalabs.h>
14 
15 #include <linux/cdev.h>
16 #include <linux/iopoll.h>
17 #include <linux/irqreturn.h>
18 #include <linux/dma-direction.h>
19 #include <linux/scatterlist.h>
20 #include <linux/hashtable.h>
21 #include <linux/bitfield.h>
22 
23 #define HL_NAME				"habanalabs"
24 
25 /* Use upper bits of mmap offset to store habana driver specific information.
26  * bits[63:62] - Encode mmap type
27  * bits[45:0]  - mmap offset value
28  *
29  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
30  *  defines are w.r.t to PAGE_SIZE
31  */
32 #define HL_MMAP_TYPE_SHIFT		(62 - PAGE_SHIFT)
33 #define HL_MMAP_TYPE_MASK		(0x3ull << HL_MMAP_TYPE_SHIFT)
34 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
35 
36 #define HL_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFull >> PAGE_SHIFT)
37 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
38 
39 #define HL_PENDING_RESET_PER_SEC	30
40 
41 #define HL_HARD_RESET_MAX_TIMEOUT	120
42 
43 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
44 
45 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
46 
47 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
48 
49 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
50 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
51 
52 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
53 
54 #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
55 
56 #define HL_IDLE_BUSY_TS_ARR_SIZE	4096
57 
58 /* Memory */
59 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
60 
61 /* MMU */
62 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
63 
64 /*
65  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
66  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
67  */
68 #define HL_RSVD_SOBS			4
69 #define HL_RSVD_MONS			2
70 
71 #define HL_RSVD_SOBS_IN_USE		2
72 #define HL_RSVD_MONS_IN_USE		1
73 
74 #define HL_MAX_SOB_VAL			(1 << 15)
75 
76 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
77 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
78 
79 #define HL_PCI_NUM_BARS			6
80 
81 #define HL_MAX_DCORES			4
82 
83 /**
84  * struct pgt_info - MMU hop page info.
85  * @node: hash linked-list node for the pgts shadow hash of pgts.
86  * @phys_addr: physical address of the pgt.
87  * @shadow_addr: shadow hop in the host.
88  * @ctx: pointer to the owner ctx.
89  * @num_of_ptes: indicates how many ptes are used in the pgt.
90  *
91  * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
92  * is needed during mapping, a new page is allocated and this structure holds
93  * its essential information. During unmapping, if no valid PTEs remained in the
94  * page, it is freed with its pgt_info structure.
95  */
96 struct pgt_info {
97 	struct hlist_node	node;
98 	u64			phys_addr;
99 	u64			shadow_addr;
100 	struct hl_ctx		*ctx;
101 	int			num_of_ptes;
102 };
103 
104 struct hl_device;
105 struct hl_fpriv;
106 
107 /**
108  * enum hl_pci_match_mode - pci match mode per region
109  * @PCI_ADDRESS_MATCH_MODE: address match mode
110  * @PCI_BAR_MATCH_MODE: bar match mode
111  */
112 enum hl_pci_match_mode {
113 	PCI_ADDRESS_MATCH_MODE,
114 	PCI_BAR_MATCH_MODE
115 };
116 
117 /**
118  * enum hl_fw_component - F/W components to read version through registers.
119  * @FW_COMP_UBOOT: u-boot.
120  * @FW_COMP_PREBOOT: preboot.
121  */
122 enum hl_fw_component {
123 	FW_COMP_UBOOT,
124 	FW_COMP_PREBOOT
125 };
126 
127 /**
128  * enum hl_queue_type - Supported QUEUE types.
129  * @QUEUE_TYPE_NA: queue is not available.
130  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
131  *                  host.
132  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
133  *			memories and/or operates the compute engines.
134  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
135  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
136  *                 notifications are sent by H/W.
137  */
138 enum hl_queue_type {
139 	QUEUE_TYPE_NA,
140 	QUEUE_TYPE_EXT,
141 	QUEUE_TYPE_INT,
142 	QUEUE_TYPE_CPU,
143 	QUEUE_TYPE_HW
144 };
145 
146 enum hl_cs_type {
147 	CS_TYPE_DEFAULT,
148 	CS_TYPE_SIGNAL,
149 	CS_TYPE_WAIT
150 };
151 
152 /*
153  * struct hl_inbound_pci_region - inbound region descriptor
154  * @mode: pci match mode for this region
155  * @addr: region target address
156  * @size: region size in bytes
157  * @offset_in_bar: offset within bar (address match mode)
158  * @bar: bar id
159  */
160 struct hl_inbound_pci_region {
161 	enum hl_pci_match_mode	mode;
162 	u64			addr;
163 	u64			size;
164 	u64			offset_in_bar;
165 	u8			bar;
166 };
167 
168 /*
169  * struct hl_outbound_pci_region - outbound region descriptor
170  * @addr: region target address
171  * @size: region size in bytes
172  */
173 struct hl_outbound_pci_region {
174 	u64	addr;
175 	u64	size;
176 };
177 
178 /*
179  * struct hl_hw_sob - H/W SOB info.
180  * @hdev: habanalabs device structure.
181  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
182  * @sob_id: id of this SOB.
183  * @q_idx: the H/W queue that uses this SOB.
184  */
185 struct hl_hw_sob {
186 	struct hl_device	*hdev;
187 	struct kref		kref;
188 	u32			sob_id;
189 	u32			q_idx;
190 };
191 
192 /**
193  * struct hw_queue_properties - queue information.
194  * @type: queue type.
195  * @driver_only: true if only the driver is allowed to send a job to this queue,
196  *               false otherwise.
197  * @requires_kernel_cb: true if a CB handle must be provided for jobs on this
198  *                      queue, false otherwise (a CB address must be provided).
199  * @supports_sync_stream: True if queue supports sync stream
200  */
201 struct hw_queue_properties {
202 	enum hl_queue_type	type;
203 	u8			driver_only;
204 	u8			requires_kernel_cb;
205 	u8			supports_sync_stream;
206 };
207 
208 /**
209  * enum vm_type_t - virtual memory mapping request information.
210  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
211  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
212  */
213 enum vm_type_t {
214 	VM_TYPE_USERPTR = 0x1,
215 	VM_TYPE_PHYS_PACK = 0x2
216 };
217 
218 /**
219  * enum hl_device_hw_state - H/W device state. use this to understand whether
220  *                           to do reset before hw_init or not
221  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
222  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
223  *                            hw_init
224  */
225 enum hl_device_hw_state {
226 	HL_DEVICE_HW_STATE_CLEAN = 0,
227 	HL_DEVICE_HW_STATE_DIRTY
228 };
229 
230 /**
231  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
232  * @start_addr: virtual start address of the memory region.
233  * @end_addr: virtual end address of the memory region.
234  * @hop0_shift: shift of hop 0 mask.
235  * @hop1_shift: shift of hop 1 mask.
236  * @hop2_shift: shift of hop 2 mask.
237  * @hop3_shift: shift of hop 3 mask.
238  * @hop4_shift: shift of hop 4 mask.
239  * @hop5_shift: shift of hop 5 mask.
240  * @hop0_mask: mask to get the PTE address in hop 0.
241  * @hop1_mask: mask to get the PTE address in hop 1.
242  * @hop2_mask: mask to get the PTE address in hop 2.
243  * @hop3_mask: mask to get the PTE address in hop 3.
244  * @hop4_mask: mask to get the PTE address in hop 4.
245  * @hop5_mask: mask to get the PTE address in hop 5.
246  * @page_size: default page size used to allocate memory.
247  * @num_hops: The amount of hops supported by the translation table.
248  */
249 struct hl_mmu_properties {
250 	u64	start_addr;
251 	u64	end_addr;
252 	u64	hop0_shift;
253 	u64	hop1_shift;
254 	u64	hop2_shift;
255 	u64	hop3_shift;
256 	u64	hop4_shift;
257 	u64	hop5_shift;
258 	u64	hop0_mask;
259 	u64	hop1_mask;
260 	u64	hop2_mask;
261 	u64	hop3_mask;
262 	u64	hop4_mask;
263 	u64	hop5_mask;
264 	u32	page_size;
265 	u32	num_hops;
266 };
267 
268 /**
269  * struct asic_fixed_properties - ASIC specific immutable properties.
270  * @hw_queues_props: H/W queues properties.
271  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
272  *		available sensors.
273  * @uboot_ver: F/W U-boot version.
274  * @preboot_ver: F/W Preboot version.
275  * @dmmu: DRAM MMU address translation properties.
276  * @pmmu: PCI (host) MMU address translation properties.
277  * @pmmu_huge: PCI (host) MMU address translation properties for memory
278  *              allocated with huge pages.
279  * @sram_base_address: SRAM physical start address.
280  * @sram_end_address: SRAM physical end address.
281  * @sram_user_base_address - SRAM physical start address for user access.
282  * @dram_base_address: DRAM physical start address.
283  * @dram_end_address: DRAM physical end address.
284  * @dram_user_base_address: DRAM physical start address for user access.
285  * @dram_size: DRAM total size.
286  * @dram_pci_bar_size: size of PCI bar towards DRAM.
287  * @max_power_default: max power of the device after reset
288  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
289  *                                      fault.
290  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
291  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
292  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
293  * @mmu_dram_default_page_addr: DRAM default page physical address.
294  * @cb_va_start_addr: virtual start address of command buffers which are mapped
295  *                    to the device's MMU.
296  * @cb_va_end_addr: virtual end address of command buffers which are mapped to
297  *                  the device's MMU.
298  * @mmu_pgt_size: MMU page tables total size.
299  * @mmu_pte_size: PTE size in MMU page tables.
300  * @mmu_hop_table_size: MMU hop table size.
301  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
302  * @dram_page_size: page size for MMU DRAM allocation.
303  * @cfg_size: configuration space size on SRAM.
304  * @sram_size: total size of SRAM.
305  * @max_asid: maximum number of open contexts (ASIDs).
306  * @num_of_events: number of possible internal H/W IRQs.
307  * @psoc_pci_pll_nr: PCI PLL NR value.
308  * @psoc_pci_pll_nf: PCI PLL NF value.
309  * @psoc_pci_pll_od: PCI PLL OD value.
310  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
311  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
312  * @high_pll: high PLL frequency used by the device.
313  * @cb_pool_cb_cnt: number of CBs in the CB pool.
314  * @cb_pool_cb_size: size of each CB in the CB pool.
315  * @max_pending_cs: maximum of concurrent pending command submissions
316  * @max_queues: maximum amount of queues in the system
317  * @sync_stream_first_sob: first sync object available for sync stream use
318  * @sync_stream_first_mon: first monitor available for sync stream use
319  * @first_available_user_sob: first sob available for the user
320  * @first_available_user_mon: first monitor available for the user
321  * @tpc_enabled_mask: which TPCs are enabled.
322  * @completion_queues_count: number of completion queues.
323  * @fw_security_disabled: true if security measures are disabled in firmware,
324  *                        false otherwise
325  */
326 struct asic_fixed_properties {
327 	struct hw_queue_properties	*hw_queues_props;
328 	struct cpucp_info		cpucp_info;
329 	char				uboot_ver[VERSION_MAX_LEN];
330 	char				preboot_ver[VERSION_MAX_LEN];
331 	struct hl_mmu_properties	dmmu;
332 	struct hl_mmu_properties	pmmu;
333 	struct hl_mmu_properties	pmmu_huge;
334 	u64				sram_base_address;
335 	u64				sram_end_address;
336 	u64				sram_user_base_address;
337 	u64				dram_base_address;
338 	u64				dram_end_address;
339 	u64				dram_user_base_address;
340 	u64				dram_size;
341 	u64				dram_pci_bar_size;
342 	u64				max_power_default;
343 	u64				dram_size_for_default_page_mapping;
344 	u64				pcie_dbi_base_address;
345 	u64				pcie_aux_dbi_reg_addr;
346 	u64				mmu_pgt_addr;
347 	u64				mmu_dram_default_page_addr;
348 	u64				cb_va_start_addr;
349 	u64				cb_va_end_addr;
350 	u32				mmu_pgt_size;
351 	u32				mmu_pte_size;
352 	u32				mmu_hop_table_size;
353 	u32				mmu_hop0_tables_total_size;
354 	u32				dram_page_size;
355 	u32				cfg_size;
356 	u32				sram_size;
357 	u32				max_asid;
358 	u32				num_of_events;
359 	u32				psoc_pci_pll_nr;
360 	u32				psoc_pci_pll_nf;
361 	u32				psoc_pci_pll_od;
362 	u32				psoc_pci_pll_div_factor;
363 	u32				psoc_timestamp_frequency;
364 	u32				high_pll;
365 	u32				cb_pool_cb_cnt;
366 	u32				cb_pool_cb_size;
367 	u32				max_pending_cs;
368 	u32				max_queues;
369 	u16				sync_stream_first_sob;
370 	u16				sync_stream_first_mon;
371 	u16				first_available_user_sob[HL_MAX_DCORES];
372 	u16				first_available_user_mon[HL_MAX_DCORES];
373 	u8				tpc_enabled_mask;
374 	u8				completion_queues_count;
375 	u8				fw_security_disabled;
376 };
377 
378 /**
379  * struct hl_fence - software synchronization primitive
380  * @completion: fence is implemented using completion
381  * @refcount: refcount for this fence
382  * @error: mark this fence with error
383  *
384  */
385 struct hl_fence {
386 	struct completion	completion;
387 	struct kref		refcount;
388 	int			error;
389 };
390 
391 /**
392  * struct hl_cs_compl - command submission completion object.
393  * @base_fence: hl fence object.
394  * @lock: spinlock to protect fence.
395  * @hdev: habanalabs device structure.
396  * @hw_sob: the H/W SOB used in this signal/wait CS.
397  * @cs_seq: command submission sequence number.
398  * @type: type of the CS - signal/wait.
399  * @sob_val: the SOB value that is used in this signal/wait CS.
400  */
401 struct hl_cs_compl {
402 	struct hl_fence		base_fence;
403 	spinlock_t		lock;
404 	struct hl_device	*hdev;
405 	struct hl_hw_sob	*hw_sob;
406 	u64			cs_seq;
407 	enum hl_cs_type		type;
408 	u16			sob_val;
409 };
410 
411 /*
412  * Command Buffers
413  */
414 
415 /**
416  * struct hl_cb_mgr - describes a Command Buffer Manager.
417  * @cb_lock: protects cb_handles.
418  * @cb_handles: an idr to hold all command buffer handles.
419  */
420 struct hl_cb_mgr {
421 	spinlock_t		cb_lock;
422 	struct idr		cb_handles; /* protected by cb_lock */
423 };
424 
425 /**
426  * struct hl_cb - describes a Command Buffer.
427  * @refcount: reference counter for usage of the CB.
428  * @hdev: pointer to device this CB belongs to.
429  * @ctx: pointer to the CB owner's context.
430  * @lock: spinlock to protect mmap/cs flows.
431  * @debugfs_list: node in debugfs list of command buffers.
432  * @pool_list: node in pool list of command buffers.
433  * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
434  *                 the device's MMU.
435  * @id: the CB's ID.
436  * @kernel_address: Holds the CB's kernel virtual address.
437  * @bus_address: Holds the CB's DMA address.
438  * @mmap_size: Holds the CB's size that was mmaped.
439  * @size: holds the CB's size.
440  * @cs_cnt: holds number of CS that this CB participates in.
441  * @mmap: true if the CB is currently mmaped to user.
442  * @is_pool: true if CB was acquired from the pool, false otherwise.
443  * @is_internal: internaly allocated
444  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
445  */
446 struct hl_cb {
447 	struct kref		refcount;
448 	struct hl_device	*hdev;
449 	struct hl_ctx		*ctx;
450 	spinlock_t		lock;
451 	struct list_head	debugfs_list;
452 	struct list_head	pool_list;
453 	struct list_head	va_block_list;
454 	u64			id;
455 	void			*kernel_address;
456 	dma_addr_t		bus_address;
457 	u32			mmap_size;
458 	u32			size;
459 	u32			cs_cnt;
460 	u8			mmap;
461 	u8			is_pool;
462 	u8			is_internal;
463 	u8			is_mmu_mapped;
464 };
465 
466 
467 /*
468  * QUEUES
469  */
470 
471 struct hl_cs_job;
472 
473 /* Queue length of external and HW queues */
474 #define HL_QUEUE_LENGTH			4096
475 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
476 
477 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
478 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
479 #endif
480 
481 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
482 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
483 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
484 
485 /* Must be power of 2 */
486 #define HL_EQ_LENGTH			64
487 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
488 
489 /* Host <-> CPU-CP shared memory size */
490 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
491 
492 /**
493  * struct hl_hw_queue - describes a H/W transport queue.
494  * @hw_sob: array of the used H/W SOBs by this H/W queue.
495  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
496  * @queue_type: type of queue.
497  * @kernel_address: holds the queue's kernel virtual address.
498  * @bus_address: holds the queue's DMA address.
499  * @pi: holds the queue's pi value.
500  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
501  * @hw_queue_id: the id of the H/W queue.
502  * @cq_id: the id for the corresponding CQ for this H/W queue.
503  * @msi_vec: the IRQ number of the H/W queue.
504  * @int_queue_len: length of internal queue (number of entries).
505  * @next_sob_val: the next value to use for the currently used SOB.
506  * @base_sob_id: the base SOB id of the SOBs used by this queue.
507  * @base_mon_id: the base MON id of the MONs used by this queue.
508  * @valid: is the queue valid (we have array of 32 queues, not all of them
509  *         exist).
510  * @curr_sob_offset: the id offset to the currently used SOB from the
511  *                   HL_RSVD_SOBS that are being used by this queue.
512  * @supports_sync_stream: True if queue supports sync stream
513  */
514 struct hl_hw_queue {
515 	struct hl_hw_sob	hw_sob[HL_RSVD_SOBS];
516 	struct hl_cs_job	**shadow_queue;
517 	enum hl_queue_type	queue_type;
518 	void			*kernel_address;
519 	dma_addr_t		bus_address;
520 	u32			pi;
521 	atomic_t		ci;
522 	u32			hw_queue_id;
523 	u32			cq_id;
524 	u32			msi_vec;
525 	u16			int_queue_len;
526 	u16			next_sob_val;
527 	u16			base_sob_id;
528 	u16			base_mon_id;
529 	u8			valid;
530 	u8			curr_sob_offset;
531 	u8			supports_sync_stream;
532 };
533 
534 /**
535  * struct hl_cq - describes a completion queue
536  * @hdev: pointer to the device structure
537  * @kernel_address: holds the queue's kernel virtual address
538  * @bus_address: holds the queue's DMA address
539  * @cq_idx: completion queue index in array
540  * @hw_queue_id: the id of the matching H/W queue
541  * @ci: ci inside the queue
542  * @pi: pi inside the queue
543  * @free_slots_cnt: counter of free slots in queue
544  */
545 struct hl_cq {
546 	struct hl_device	*hdev;
547 	void			*kernel_address;
548 	dma_addr_t		bus_address;
549 	u32			cq_idx;
550 	u32			hw_queue_id;
551 	u32			ci;
552 	u32			pi;
553 	atomic_t		free_slots_cnt;
554 };
555 
556 /**
557  * struct hl_eq - describes the event queue (single one per device)
558  * @hdev: pointer to the device structure
559  * @kernel_address: holds the queue's kernel virtual address
560  * @bus_address: holds the queue's DMA address
561  * @ci: ci inside the queue
562  */
563 struct hl_eq {
564 	struct hl_device	*hdev;
565 	void			*kernel_address;
566 	dma_addr_t		bus_address;
567 	u32			ci;
568 };
569 
570 
571 /*
572  * ASICs
573  */
574 
575 /**
576  * enum hl_asic_type - supported ASIC types.
577  * @ASIC_INVALID: Invalid ASIC type.
578  * @ASIC_GOYA: Goya device.
579  * @ASIC_GAUDI: Gaudi device.
580  */
581 enum hl_asic_type {
582 	ASIC_INVALID,
583 	ASIC_GOYA,
584 	ASIC_GAUDI
585 };
586 
587 struct hl_cs_parser;
588 
589 /**
590  * enum hl_pm_mng_profile - power management profile.
591  * @PM_AUTO: internal clock is set by the Linux driver.
592  * @PM_MANUAL: internal clock is set by the user.
593  * @PM_LAST: last power management type.
594  */
595 enum hl_pm_mng_profile {
596 	PM_AUTO = 1,
597 	PM_MANUAL,
598 	PM_LAST
599 };
600 
601 /**
602  * enum hl_pll_frequency - PLL frequency.
603  * @PLL_HIGH: high frequency.
604  * @PLL_LOW: low frequency.
605  * @PLL_LAST: last frequency values that were configured by the user.
606  */
607 enum hl_pll_frequency {
608 	PLL_HIGH = 1,
609 	PLL_LOW,
610 	PLL_LAST
611 };
612 
613 #define PLL_REF_CLK 50
614 
615 enum div_select_defs {
616 	DIV_SEL_REF_CLK = 0,
617 	DIV_SEL_PLL_CLK = 1,
618 	DIV_SEL_DIVIDED_REF = 2,
619 	DIV_SEL_DIVIDED_PLL = 3,
620 };
621 
622 /**
623  * struct hl_asic_funcs - ASIC specific functions that are can be called from
624  *                        common code.
625  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
626  * @early_fini: tears down what was done in early_init.
627  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
628  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
629  * @sw_init: sets up driver state, does not configure H/W.
630  * @sw_fini: tears down driver state, does not configure H/W.
631  * @hw_init: sets up the H/W state.
632  * @hw_fini: tears down the H/W state.
633  * @halt_engines: halt engines, needed for reset sequence. This also disables
634  *                interrupts from the device. Should be called before
635  *                hw_fini and before CS rollback.
636  * @suspend: handles IP specific H/W or SW changes for suspend.
637  * @resume: handles IP specific H/W or SW changes for resume.
638  * @cb_mmap: maps a CB.
639  * @ring_doorbell: increment PI on a given QMAN.
640  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
641  *             function because the PQs are located in different memory areas
642  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
643  *             writing the PQE must match the destination memory area
644  *             properties.
645  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
646  *                           dma_alloc_coherent(). This is ASIC function because
647  *                           its implementation is not trivial when the driver
648  *                           is loaded in simulation mode (not upstreamed).
649  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
650  *                           dma_free_coherent(). This is ASIC function because
651  *                           its implementation is not trivial when the driver
652  *                           is loaded in simulation mode (not upstreamed).
653  * @get_int_queue_base: get the internal queue base address.
654  * @test_queues: run simple test on all queues for sanity check.
655  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
656  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
657  * @asic_dma_pool_free: free small DMA allocation from pool.
658  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
659  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
660  * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
661  * @cs_parser: parse Command Submission.
662  * @asic_dma_map_sg: DMA map scatter-gather list.
663  * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
664  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
665  * @update_eq_ci: update event queue CI.
666  * @context_switch: called upon ASID context switch.
667  * @restore_phase_topology: clear all SOBs amd MONs.
668  * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
669  * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
670  * @add_device_attr: add ASIC specific device attributes.
671  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
672  * @set_pll_profile: change PLL profile (manual/automatic).
673  * @get_events_stat: retrieve event queue entries histogram.
674  * @read_pte: read MMU page table entry from DRAM.
675  * @write_pte: write MMU page table entry to DRAM.
676  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
677  *                        (L1 only) or hard (L0 & L1) flush.
678  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
679  *                              ASID-VA-size mask.
680  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
681  * @set_clock_gating: enable/disable clock gating per engine according to
682  *                    clock gating mask in hdev
683  * @disable_clock_gating: disable clock gating completely
684  * @debug_coresight: perform certain actions on Coresight for debugging.
685  * @is_device_idle: return true if device is idle, false otherwise.
686  * @soft_reset_late_init: perform certain actions needed after soft reset.
687  * @hw_queues_lock: acquire H/W queues lock.
688  * @hw_queues_unlock: release H/W queues lock.
689  * @get_pci_id: retrieve PCI ID.
690  * @get_eeprom_data: retrieve EEPROM data from F/W.
691  * @send_cpu_message: send message to F/W. If the message is timedout, the
692  *                    driver will eventually reset the device. The timeout can
693  *                    be determined by the calling function or it can be 0 and
694  *                    then the timeout is the default timeout for the specific
695  *                    ASIC
696  * @get_hw_state: retrieve the H/W state
697  * @pci_bars_map: Map PCI BARs.
698  * @init_iatu: Initialize the iATU unit inside the PCI controller.
699  * @rreg: Read a register. Needed for simulator support.
700  * @wreg: Write a register. Needed for simulator support.
701  * @halt_coresight: stop the ETF and ETR traces.
702  * @ctx_init: context dependent initialization.
703  * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
704  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
705  * @read_device_fw_version: read the device's firmware versions that are
706  *                          contained in registers
707  * @load_firmware_to_device: load the firmware to the device's memory
708  * @load_boot_fit_to_device: load boot fit to device's memory
709  * @get_signal_cb_size: Get signal CB size.
710  * @get_wait_cb_size: Get wait CB size.
711  * @gen_signal_cb: Generate a signal CB.
712  * @gen_wait_cb: Generate a wait CB.
713  * @reset_sob: Reset a SOB.
714  * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
715  *                        firmware configuration
716  * @get_device_time: Get the device time.
717  */
718 struct hl_asic_funcs {
719 	int (*early_init)(struct hl_device *hdev);
720 	int (*early_fini)(struct hl_device *hdev);
721 	int (*late_init)(struct hl_device *hdev);
722 	void (*late_fini)(struct hl_device *hdev);
723 	int (*sw_init)(struct hl_device *hdev);
724 	int (*sw_fini)(struct hl_device *hdev);
725 	int (*hw_init)(struct hl_device *hdev);
726 	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
727 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
728 	int (*suspend)(struct hl_device *hdev);
729 	int (*resume)(struct hl_device *hdev);
730 	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
731 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
732 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
733 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
734 			struct hl_bd *bd);
735 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
736 					dma_addr_t *dma_handle, gfp_t flag);
737 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
738 					void *cpu_addr, dma_addr_t dma_handle);
739 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
740 				dma_addr_t *dma_handle, u16 *queue_len);
741 	int (*test_queues)(struct hl_device *hdev);
742 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
743 				gfp_t mem_flags, dma_addr_t *dma_handle);
744 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
745 				dma_addr_t dma_addr);
746 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
747 				size_t size, dma_addr_t *dma_handle);
748 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
749 				size_t size, void *vaddr);
750 	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
751 				struct scatterlist *sgl, int nents,
752 				enum dma_data_direction dir);
753 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
754 	int (*asic_dma_map_sg)(struct hl_device *hdev,
755 				struct scatterlist *sgl, int nents,
756 				enum dma_data_direction dir);
757 	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
758 					struct sg_table *sgt);
759 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
760 					void *kernel_address, u32 len,
761 					u64 cq_addr, u32 cq_val, u32 msix_num,
762 					bool eb);
763 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
764 	int (*context_switch)(struct hl_device *hdev, u32 asid);
765 	void (*restore_phase_topology)(struct hl_device *hdev);
766 	int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
767 	int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
768 	int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val);
769 	int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val);
770 	void (*add_device_attr)(struct hl_device *hdev,
771 				struct attribute_group *dev_attr_grp);
772 	void (*handle_eqe)(struct hl_device *hdev,
773 				struct hl_eq_entry *eq_entry);
774 	void (*set_pll_profile)(struct hl_device *hdev,
775 			enum hl_pll_frequency freq);
776 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
777 				u32 *size);
778 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
779 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
780 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
781 					u32 flags);
782 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
783 			u32 asid, u64 va, u64 size);
784 	int (*send_heartbeat)(struct hl_device *hdev);
785 	void (*set_clock_gating)(struct hl_device *hdev);
786 	void (*disable_clock_gating)(struct hl_device *hdev);
787 	int (*debug_coresight)(struct hl_device *hdev, void *data);
788 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask,
789 				struct seq_file *s);
790 	int (*soft_reset_late_init)(struct hl_device *hdev);
791 	void (*hw_queues_lock)(struct hl_device *hdev);
792 	void (*hw_queues_unlock)(struct hl_device *hdev);
793 	u32 (*get_pci_id)(struct hl_device *hdev);
794 	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
795 				size_t max_size);
796 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
797 				u16 len, u32 timeout, long *result);
798 	enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
799 	int (*pci_bars_map)(struct hl_device *hdev);
800 	int (*init_iatu)(struct hl_device *hdev);
801 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
802 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
803 	void (*halt_coresight)(struct hl_device *hdev);
804 	int (*ctx_init)(struct hl_ctx *ctx);
805 	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
806 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
807 	void (*read_device_fw_version)(struct hl_device *hdev,
808 					enum hl_fw_component fwc);
809 	int (*load_firmware_to_device)(struct hl_device *hdev);
810 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
811 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
812 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
813 	void (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id);
814 	void (*gen_wait_cb)(struct hl_device *hdev, void *data, u16 sob_id,
815 				u16 sob_val, u16 mon_id, u32 q_idx);
816 	void (*reset_sob)(struct hl_device *hdev, void *data);
817 	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
818 	u64 (*get_device_time)(struct hl_device *hdev);
819 };
820 
821 
822 /*
823  * CONTEXTS
824  */
825 
826 #define HL_KERNEL_ASID_ID	0
827 
828 /**
829  * struct hl_va_range - virtual addresses range.
830  * @lock: protects the virtual addresses list.
831  * @list: list of virtual addresses blocks available for mappings.
832  * @start_addr: range start address.
833  * @end_addr: range end address.
834  */
835 struct hl_va_range {
836 	struct mutex		lock;
837 	struct list_head	list;
838 	u64			start_addr;
839 	u64			end_addr;
840 };
841 
842 /**
843  * struct hl_ctx - user/kernel context.
844  * @mem_hash: holds mapping from virtual address to virtual memory area
845  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
846  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
847  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
848  * @hdev: pointer to the device structure.
849  * @refcount: reference counter for the context. Context is released only when
850  *		this hits 0l. It is incremented on CS and CS_WAIT.
851  * @cs_pending: array of hl fence objects representing pending CS.
852  * @host_va_range: holds available virtual addresses for host mappings.
853  * @host_huge_va_range: holds available virtual addresses for host mappings
854  *                      with huge pages.
855  * @dram_va_range: holds available virtual addresses for DRAM mappings.
856  * @mem_hash_lock: protects the mem_hash.
857  * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
858  *            MMU hash or walking the PGT requires talking this lock.
859  * @debugfs_list: node in debugfs list of contexts.
860  * @cb_va_pool: device VA pool for command buffers which are mapped to the
861  *              device's MMU.
862  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
863  *			to user so user could inquire about CS. It is used as
864  *			index to cs_pending array.
865  * @dram_default_hops: array that holds all hops addresses needed for default
866  *                     DRAM mapping.
867  * @cs_lock: spinlock to protect cs_sequence.
868  * @dram_phys_mem: amount of used physical DRAM memory by this context.
869  * @thread_ctx_switch_token: token to prevent multiple threads of the same
870  *				context	from running the context switch phase.
871  *				Only a single thread should run it.
872  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
873  *				the context switch phase from moving to their
874  *				execution phase before the context switch phase
875  *				has finished.
876  * @asid: context's unique address space ID in the device's MMU.
877  * @handle: context's opaque handle for user
878  */
879 struct hl_ctx {
880 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
881 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
882 	struct hl_fpriv		*hpriv;
883 	struct hl_device	*hdev;
884 	struct kref		refcount;
885 	struct hl_fence		**cs_pending;
886 	struct hl_va_range	*host_va_range;
887 	struct hl_va_range	*host_huge_va_range;
888 	struct hl_va_range	*dram_va_range;
889 	struct mutex		mem_hash_lock;
890 	struct mutex		mmu_lock;
891 	struct list_head	debugfs_list;
892 	struct hl_cs_counters	cs_counters;
893 	struct gen_pool		*cb_va_pool;
894 	u64			cs_sequence;
895 	u64			*dram_default_hops;
896 	spinlock_t		cs_lock;
897 	atomic64_t		dram_phys_mem;
898 	atomic_t		thread_ctx_switch_token;
899 	u32			thread_ctx_switch_wait_token;
900 	u32			asid;
901 	u32			handle;
902 };
903 
904 /**
905  * struct hl_ctx_mgr - for handling multiple contexts.
906  * @ctx_lock: protects ctx_handles.
907  * @ctx_handles: idr to hold all ctx handles.
908  */
909 struct hl_ctx_mgr {
910 	struct mutex		ctx_lock;
911 	struct idr		ctx_handles;
912 };
913 
914 
915 
916 /*
917  * COMMAND SUBMISSIONS
918  */
919 
920 /**
921  * struct hl_userptr - memory mapping chunk information
922  * @vm_type: type of the VM.
923  * @job_node: linked-list node for hanging the object on the Job's list.
924  * @vec: pointer to the frame vector.
925  * @sgt: pointer to the scatter-gather table that holds the pages.
926  * @dir: for DMA unmapping, the direction must be supplied, so save it.
927  * @debugfs_list: node in debugfs list of command submissions.
928  * @addr: user-space virtual address of the start of the memory area.
929  * @size: size of the memory area to pin & map.
930  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
931  */
932 struct hl_userptr {
933 	enum vm_type_t		vm_type; /* must be first */
934 	struct list_head	job_node;
935 	struct frame_vector	*vec;
936 	struct sg_table		*sgt;
937 	enum dma_data_direction dir;
938 	struct list_head	debugfs_list;
939 	u64			addr;
940 	u32			size;
941 	u8			dma_mapped;
942 };
943 
944 /**
945  * struct hl_cs - command submission.
946  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
947  * @ctx: the context this CS belongs to.
948  * @job_list: list of the CS's jobs in the various queues.
949  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
950  * @refcount: reference counter for usage of the CS.
951  * @fence: pointer to the fence object of this CS.
952  * @signal_fence: pointer to the fence object of the signal CS (used by wait
953  *                CS only).
954  * @finish_work: workqueue object to run when CS is completed by H/W.
955  * @work_tdr: delayed work node for TDR.
956  * @mirror_node : node in device mirror list of command submissions.
957  * @debugfs_list: node in debugfs list of command submissions.
958  * @sequence: the sequence number of this CS.
959  * @type: CS_TYPE_*.
960  * @submitted: true if CS was submitted to H/W.
961  * @completed: true if CS was completed by device.
962  * @timedout : true if CS was timedout.
963  * @tdr_active: true if TDR was activated for this CS (to prevent
964  *		double TDR activation).
965  * @aborted: true if CS was aborted due to some device error.
966  */
967 struct hl_cs {
968 	u16			*jobs_in_queue_cnt;
969 	struct hl_ctx		*ctx;
970 	struct list_head	job_list;
971 	spinlock_t		job_lock;
972 	struct kref		refcount;
973 	struct hl_fence		*fence;
974 	struct hl_fence		*signal_fence;
975 	struct work_struct	finish_work;
976 	struct delayed_work	work_tdr;
977 	struct list_head	mirror_node;
978 	struct list_head	debugfs_list;
979 	u64			sequence;
980 	enum hl_cs_type		type;
981 	u8			submitted;
982 	u8			completed;
983 	u8			timedout;
984 	u8			tdr_active;
985 	u8			aborted;
986 };
987 
988 /**
989  * struct hl_cs_job - command submission job.
990  * @cs_node: the node to hang on the CS jobs list.
991  * @cs: the CS this job belongs to.
992  * @user_cb: the CB we got from the user.
993  * @patched_cb: in case of patching, this is internal CB which is submitted on
994  *		the queue instead of the CB we got from the IOCTL.
995  * @finish_work: workqueue object to run when job is completed.
996  * @userptr_list: linked-list of userptr mappings that belong to this job and
997  *			wait for completion.
998  * @debugfs_list: node in debugfs list of command submission jobs.
999  * @queue_type: the type of the H/W queue this job is submitted to.
1000  * @id: the id of this job inside a CS.
1001  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1002  * @user_cb_size: the actual size of the CB we got from the user.
1003  * @job_cb_size: the actual size of the CB that we put on the queue.
1004  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1005  *                          handle to a kernel-allocated CB object, false
1006  *                          otherwise (SRAM/DRAM/host address).
1007  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1008  *                    info is needed later, when adding the 2xMSG_PROT at the
1009  *                    end of the JOB, to know which barriers to put in the
1010  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1011  *                    have streams so the engine can't be busy by another
1012  *                    stream.
1013  */
1014 struct hl_cs_job {
1015 	struct list_head	cs_node;
1016 	struct hl_cs		*cs;
1017 	struct hl_cb		*user_cb;
1018 	struct hl_cb		*patched_cb;
1019 	struct work_struct	finish_work;
1020 	struct list_head	userptr_list;
1021 	struct list_head	debugfs_list;
1022 	enum hl_queue_type	queue_type;
1023 	u32			id;
1024 	u32			hw_queue_id;
1025 	u32			user_cb_size;
1026 	u32			job_cb_size;
1027 	u8			is_kernel_allocated_cb;
1028 	u8			contains_dma_pkt;
1029 };
1030 
1031 /**
1032  * struct hl_cs_parser - command submission parser properties.
1033  * @user_cb: the CB we got from the user.
1034  * @patched_cb: in case of patching, this is internal CB which is submitted on
1035  *		the queue instead of the CB we got from the IOCTL.
1036  * @job_userptr_list: linked-list of userptr mappings that belong to the related
1037  *			job and wait for completion.
1038  * @cs_sequence: the sequence number of the related CS.
1039  * @queue_type: the type of the H/W queue this job is submitted to.
1040  * @ctx_id: the ID of the context the related CS belongs to.
1041  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1042  * @user_cb_size: the actual size of the CB we got from the user.
1043  * @patched_cb_size: the size of the CB after parsing.
1044  * @job_id: the id of the related job inside the related CS.
1045  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1046  *                          handle to a kernel-allocated CB object, false
1047  *                          otherwise (SRAM/DRAM/host address).
1048  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1049  *                    info is needed later, when adding the 2xMSG_PROT at the
1050  *                    end of the JOB, to know which barriers to put in the
1051  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1052  *                    have streams so the engine can't be busy by another
1053  *                    stream.
1054  */
1055 struct hl_cs_parser {
1056 	struct hl_cb		*user_cb;
1057 	struct hl_cb		*patched_cb;
1058 	struct list_head	*job_userptr_list;
1059 	u64			cs_sequence;
1060 	enum hl_queue_type	queue_type;
1061 	u32			ctx_id;
1062 	u32			hw_queue_id;
1063 	u32			user_cb_size;
1064 	u32			patched_cb_size;
1065 	u8			job_id;
1066 	u8			is_kernel_allocated_cb;
1067 	u8			contains_dma_pkt;
1068 };
1069 
1070 
1071 /*
1072  * MEMORY STRUCTURE
1073  */
1074 
1075 /**
1076  * struct hl_vm_hash_node - hash element from virtual address to virtual
1077  *				memory area descriptor (hl_vm_phys_pg_list or
1078  *				hl_userptr).
1079  * @node: node to hang on the hash table in context object.
1080  * @vaddr: key virtual address.
1081  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1082  */
1083 struct hl_vm_hash_node {
1084 	struct hlist_node	node;
1085 	u64			vaddr;
1086 	void			*ptr;
1087 };
1088 
1089 /**
1090  * struct hl_vm_phys_pg_pack - physical page pack.
1091  * @vm_type: describes the type of the virtual area descriptor.
1092  * @pages: the physical page array.
1093  * @npages: num physical pages in the pack.
1094  * @total_size: total size of all the pages in this list.
1095  * @mapping_cnt: number of shared mappings.
1096  * @asid: the context related to this list.
1097  * @page_size: size of each page in the pack.
1098  * @flags: HL_MEM_* flags related to this list.
1099  * @handle: the provided handle related to this list.
1100  * @offset: offset from the first page.
1101  * @contiguous: is contiguous physical memory.
1102  * @created_from_userptr: is product of host virtual address.
1103  */
1104 struct hl_vm_phys_pg_pack {
1105 	enum vm_type_t		vm_type; /* must be first */
1106 	u64			*pages;
1107 	u64			npages;
1108 	u64			total_size;
1109 	atomic_t		mapping_cnt;
1110 	u32			asid;
1111 	u32			page_size;
1112 	u32			flags;
1113 	u32			handle;
1114 	u32			offset;
1115 	u8			contiguous;
1116 	u8			created_from_userptr;
1117 };
1118 
1119 /**
1120  * struct hl_vm_va_block - virtual range block information.
1121  * @node: node to hang on the virtual range list in context object.
1122  * @start: virtual range start address.
1123  * @end: virtual range end address.
1124  * @size: virtual range size.
1125  */
1126 struct hl_vm_va_block {
1127 	struct list_head	node;
1128 	u64			start;
1129 	u64			end;
1130 	u64			size;
1131 };
1132 
1133 /**
1134  * struct hl_vm - virtual memory manager for MMU.
1135  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1136  * @dram_pg_pool_refcount: reference counter for the pool usage.
1137  * @idr_lock: protects the phys_pg_list_handles.
1138  * @phys_pg_pack_handles: idr to hold all device allocations handles.
1139  * @init_done: whether initialization was done. We need this because VM
1140  *		initialization might be skipped during device initialization.
1141  */
1142 struct hl_vm {
1143 	struct gen_pool		*dram_pg_pool;
1144 	struct kref		dram_pg_pool_refcount;
1145 	spinlock_t		idr_lock;
1146 	struct idr		phys_pg_pack_handles;
1147 	u8			init_done;
1148 };
1149 
1150 
1151 /*
1152  * DEBUG, PROFILING STRUCTURE
1153  */
1154 
1155 /**
1156  * struct hl_debug_params - Coresight debug parameters.
1157  * @input: pointer to component specific input parameters.
1158  * @output: pointer to component specific output parameters.
1159  * @output_size: size of output buffer.
1160  * @reg_idx: relevant register ID.
1161  * @op: component operation to execute.
1162  * @enable: true if to enable component debugging, false otherwise.
1163  */
1164 struct hl_debug_params {
1165 	void *input;
1166 	void *output;
1167 	u32 output_size;
1168 	u32 reg_idx;
1169 	u32 op;
1170 	bool enable;
1171 };
1172 
1173 /*
1174  * FILE PRIVATE STRUCTURE
1175  */
1176 
1177 /**
1178  * struct hl_fpriv - process information stored in FD private data.
1179  * @hdev: habanalabs device structure.
1180  * @filp: pointer to the given file structure.
1181  * @taskpid: current process ID.
1182  * @ctx: current executing context. TODO: remove for multiple ctx per process
1183  * @ctx_mgr: context manager to handle multiple context for this FD.
1184  * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1185  * @debugfs_list: list of relevant ASIC debugfs.
1186  * @dev_node: node in the device list of file private data
1187  * @refcount: number of related contexts.
1188  * @restore_phase_mutex: lock for context switch and restore phase.
1189  * @is_control: true for control device, false otherwise
1190  */
1191 struct hl_fpriv {
1192 	struct hl_device	*hdev;
1193 	struct file		*filp;
1194 	struct pid		*taskpid;
1195 	struct hl_ctx		*ctx;
1196 	struct hl_ctx_mgr	ctx_mgr;
1197 	struct hl_cb_mgr	cb_mgr;
1198 	struct list_head	debugfs_list;
1199 	struct list_head	dev_node;
1200 	struct kref		refcount;
1201 	struct mutex		restore_phase_mutex;
1202 	u8			is_control;
1203 };
1204 
1205 
1206 /*
1207  * DebugFS
1208  */
1209 
1210 /**
1211  * struct hl_info_list - debugfs file ops.
1212  * @name: file name.
1213  * @show: function to output information.
1214  * @write: function to write to the file.
1215  */
1216 struct hl_info_list {
1217 	const char	*name;
1218 	int		(*show)(struct seq_file *s, void *data);
1219 	ssize_t		(*write)(struct file *file, const char __user *buf,
1220 				size_t count, loff_t *f_pos);
1221 };
1222 
1223 /**
1224  * struct hl_debugfs_entry - debugfs dentry wrapper.
1225  * @dent: base debugfs entry structure.
1226  * @info_ent: dentry realted ops.
1227  * @dev_entry: ASIC specific debugfs manager.
1228  */
1229 struct hl_debugfs_entry {
1230 	struct dentry			*dent;
1231 	const struct hl_info_list	*info_ent;
1232 	struct hl_dbg_device_entry	*dev_entry;
1233 };
1234 
1235 /**
1236  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1237  * @root: root dentry.
1238  * @hdev: habanalabs device structure.
1239  * @entry_arr: array of available hl_debugfs_entry.
1240  * @file_list: list of available debugfs files.
1241  * @file_mutex: protects file_list.
1242  * @cb_list: list of available CBs.
1243  * @cb_spinlock: protects cb_list.
1244  * @cs_list: list of available CSs.
1245  * @cs_spinlock: protects cs_list.
1246  * @cs_job_list: list of available CB jobs.
1247  * @cs_job_spinlock: protects cs_job_list.
1248  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1249  * @userptr_spinlock: protects userptr_list.
1250  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1251  * @ctx_mem_hash_spinlock: protects cb_list.
1252  * @addr: next address to read/write from/to in read/write32.
1253  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1254  * @mmu_asid: ASID to use while translating in mmu_show.
1255  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1256  * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
1257  * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
1258  */
1259 struct hl_dbg_device_entry {
1260 	struct dentry			*root;
1261 	struct hl_device		*hdev;
1262 	struct hl_debugfs_entry		*entry_arr;
1263 	struct list_head		file_list;
1264 	struct mutex			file_mutex;
1265 	struct list_head		cb_list;
1266 	spinlock_t			cb_spinlock;
1267 	struct list_head		cs_list;
1268 	spinlock_t			cs_spinlock;
1269 	struct list_head		cs_job_list;
1270 	spinlock_t			cs_job_spinlock;
1271 	struct list_head		userptr_list;
1272 	spinlock_t			userptr_spinlock;
1273 	struct list_head		ctx_mem_hash_list;
1274 	spinlock_t			ctx_mem_hash_spinlock;
1275 	u64				addr;
1276 	u64				mmu_addr;
1277 	u32				mmu_asid;
1278 	u8				i2c_bus;
1279 	u8				i2c_addr;
1280 	u8				i2c_reg;
1281 };
1282 
1283 
1284 /*
1285  * DEVICES
1286  */
1287 
1288 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
1289  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
1290  */
1291 #define HL_MAX_MINORS	256
1292 
1293 /*
1294  * Registers read & write functions.
1295  */
1296 
1297 u32 hl_rreg(struct hl_device *hdev, u32 reg);
1298 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
1299 
1300 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
1301 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
1302 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
1303 			hdev->asic_funcs->rreg(hdev, (reg)))
1304 
1305 #define WREG32_P(reg, val, mask)				\
1306 	do {							\
1307 		u32 tmp_ = RREG32(reg);				\
1308 		tmp_ &= (mask);					\
1309 		tmp_ |= ((val) & ~(mask));			\
1310 		WREG32(reg, tmp_);				\
1311 	} while (0)
1312 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
1313 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
1314 
1315 #define RMWREG32(reg, val, mask)				\
1316 	do {							\
1317 		u32 tmp_ = RREG32(reg);				\
1318 		tmp_ &= ~(mask);				\
1319 		tmp_ |= ((val) << __ffs(mask));			\
1320 		WREG32(reg, tmp_);				\
1321 	} while (0)
1322 
1323 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
1324 
1325 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
1326 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
1327 #define WREG32_FIELD(reg, offset, field, val)	\
1328 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
1329 				~REG_FIELD_MASK(reg, field)) | \
1330 				(val) << REG_FIELD_SHIFT(reg, field))
1331 
1332 /* Timeout should be longer when working with simulator but cap the
1333  * increased timeout to some maximum
1334  */
1335 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
1336 ({ \
1337 	ktime_t __timeout; \
1338 	if (hdev->pdev) \
1339 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1340 	else \
1341 		__timeout = ktime_add_us(ktime_get(),\
1342 				min((u64)(timeout_us * 10), \
1343 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1344 	might_sleep_if(sleep_us); \
1345 	for (;;) { \
1346 		(val) = RREG32(addr); \
1347 		if (cond) \
1348 			break; \
1349 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1350 			(val) = RREG32(addr); \
1351 			break; \
1352 		} \
1353 		if (sleep_us) \
1354 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1355 	} \
1356 	(cond) ? 0 : -ETIMEDOUT; \
1357 })
1358 
1359 /*
1360  * address in this macro points always to a memory location in the
1361  * host's (server's) memory. That location is updated asynchronously
1362  * either by the direct access of the device or by another core.
1363  *
1364  * To work both in LE and BE architectures, we need to distinguish between the
1365  * two states (device or another core updates the memory location). Therefore,
1366  * if mem_written_by_device is true, the host memory being polled will be
1367  * updated directly by the device. If false, the host memory being polled will
1368  * be updated by host CPU. Required so host knows whether or not the memory
1369  * might need to be byte-swapped before returning value to caller.
1370  */
1371 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
1372 				mem_written_by_device) \
1373 ({ \
1374 	ktime_t __timeout; \
1375 	if (hdev->pdev) \
1376 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1377 	else \
1378 		__timeout = ktime_add_us(ktime_get(),\
1379 				min((u64)(timeout_us * 10), \
1380 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1381 	might_sleep_if(sleep_us); \
1382 	for (;;) { \
1383 		/* Verify we read updates done by other cores or by device */ \
1384 		mb(); \
1385 		(val) = *((u32 *)(addr)); \
1386 		if (mem_written_by_device) \
1387 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
1388 		if (cond) \
1389 			break; \
1390 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1391 			(val) = *((u32 *)(addr)); \
1392 			if (mem_written_by_device) \
1393 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
1394 			break; \
1395 		} \
1396 		if (sleep_us) \
1397 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1398 	} \
1399 	(cond) ? 0 : -ETIMEDOUT; \
1400 })
1401 
1402 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
1403 					timeout_us) \
1404 ({ \
1405 	ktime_t __timeout; \
1406 	if (hdev->pdev) \
1407 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
1408 	else \
1409 		__timeout = ktime_add_us(ktime_get(),\
1410 				min((u64)(timeout_us * 10), \
1411 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
1412 	might_sleep_if(sleep_us); \
1413 	for (;;) { \
1414 		(val) = readl(addr); \
1415 		if (cond) \
1416 			break; \
1417 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
1418 			(val) = readl(addr); \
1419 			break; \
1420 		} \
1421 		if (sleep_us) \
1422 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
1423 	} \
1424 	(cond) ? 0 : -ETIMEDOUT; \
1425 })
1426 
1427 struct hwmon_chip_info;
1428 
1429 /**
1430  * struct hl_device_reset_work - reset workqueue task wrapper.
1431  * @reset_work: reset work to be done.
1432  * @hdev: habanalabs device structure.
1433  */
1434 struct hl_device_reset_work {
1435 	struct work_struct		reset_work;
1436 	struct hl_device		*hdev;
1437 };
1438 
1439 /**
1440  * struct hl_device_idle_busy_ts - used for calculating device utilization rate.
1441  * @idle_to_busy_ts: timestamp where device changed from idle to busy.
1442  * @busy_to_idle_ts: timestamp where device changed from busy to idle.
1443  */
1444 struct hl_device_idle_busy_ts {
1445 	ktime_t				idle_to_busy_ts;
1446 	ktime_t				busy_to_idle_ts;
1447 };
1448 
1449 
1450 /**
1451  * struct hl_mmu_priv - used for holding per-device mmu internal information.
1452  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
1453  * @mmu_shadow_hop0: shadow array of hop0 tables.
1454  */
1455 struct hl_mmu_priv {
1456 	struct gen_pool *mmu_pgt_pool;
1457 	void *mmu_shadow_hop0;
1458 };
1459 
1460 /**
1461  * struct hl_mmu_funcs - Device related MMU functions.
1462  * @init: initialize the MMU module.
1463  * @fini: release the MMU module.
1464  * @ctx_init: Initialize a context for using the MMU module.
1465  * @ctx_fini: disable a ctx from using the mmu module.
1466  * @map: maps a virtual address to physical address for a context.
1467  * @unmap: unmap a virtual address of a context.
1468  * @flush: flush all writes from all cores to reach device MMU.
1469  * @swap_out: marks all mapping of the given context as swapped out.
1470  * @swap_in: marks all mapping of the given context as swapped in.
1471  */
1472 struct hl_mmu_funcs {
1473 	int (*init)(struct hl_device *hdev);
1474 	void (*fini)(struct hl_device *hdev);
1475 	int (*ctx_init)(struct hl_ctx *ctx);
1476 	void (*ctx_fini)(struct hl_ctx *ctx);
1477 	int (*map)(struct hl_ctx *ctx,
1478 			u64 virt_addr, u64 phys_addr, u32 page_size,
1479 			bool is_dram_addr);
1480 	int (*unmap)(struct hl_ctx *ctx,
1481 			u64 virt_addr, bool is_dram_addr);
1482 	void (*flush)(struct hl_ctx *ctx);
1483 	void (*swap_out)(struct hl_ctx *ctx);
1484 	void (*swap_in)(struct hl_ctx *ctx);
1485 };
1486 
1487 /**
1488  * struct hl_device - habanalabs device structure.
1489  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
1490  * @pcie_bar_phys: array of available PCIe bars physical addresses.
1491  *		   (required only for PCI address match mode)
1492  * @pcie_bar: array of available PCIe bars virtual addresses.
1493  * @rmmio: configuration area address on SRAM.
1494  * @cdev: related char device.
1495  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
1496  * @dev: related kernel basic device structure.
1497  * @dev_ctrl: related kernel device structure for the control device
1498  * @work_freq: delayed work to lower device frequency if possible.
1499  * @work_heartbeat: delayed work for CPU-CP is-alive check.
1500  * @asic_name: ASIC specific name.
1501  * @asic_type: ASIC specific type.
1502  * @completion_queue: array of hl_cq.
1503  * @cq_wq: work queues of completion queues for executing work in process
1504  *         context.
1505  * @eq_wq: work queue of event queue for executing work in process context.
1506  * @kernel_ctx: Kernel driver context structure.
1507  * @kernel_queues: array of hl_hw_queue.
1508  * @hw_queues_mirror_list: CS mirror list for TDR.
1509  * @hw_queues_mirror_lock: protects hw_queues_mirror_list.
1510  * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
1511  * @event_queue: event queue for IRQ from CPU-CP.
1512  * @dma_pool: DMA pool for small allocations.
1513  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
1514  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
1515  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
1516  * @asid_bitmap: holds used/available ASIDs.
1517  * @asid_mutex: protects asid_bitmap.
1518  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
1519  * @debug_lock: protects critical section of setting debug mode for device
1520  * @asic_prop: ASIC specific immutable properties.
1521  * @asic_funcs: ASIC specific functions.
1522  * @asic_specific: ASIC specific information to use only from ASIC files.
1523  * @vm: virtual memory manager for MMU.
1524  * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
1525  * @hwmon_dev: H/W monitor device.
1526  * @pm_mng_profile: current power management profile.
1527  * @hl_chip_info: ASIC's sensors information.
1528  * @hl_debugfs: device's debugfs manager.
1529  * @cb_pool: list of preallocated CBs.
1530  * @cb_pool_lock: protects the CB pool.
1531  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
1532  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
1533  * @internal_cb_pool: internal command buffer memory pool.
1534  * @internal_cb_va_base: internal cb pool mmu virtual address base
1535  * @fpriv_list: list of file private data structures. Each structure is created
1536  *              when a user opens the device
1537  * @fpriv_list_lock: protects the fpriv_list
1538  * @compute_ctx: current compute context executing.
1539  * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
1540  *                    and vice-versa
1541  * @aggregated_cs_counters: aggregated cs counters among all contexts
1542  * @mmu_priv: device-specific MMU data.
1543  * @mmu_func: device-related MMU functions.
1544  * @dram_used_mem: current DRAM memory consumption.
1545  * @timeout_jiffies: device CS timeout value.
1546  * @max_power: the max power of the device, as configured by the sysadmin. This
1547  *             value is saved so in case of hard-reset, the driver will restore
1548  *             this value and update the F/W after the re-initialization
1549  * @clock_gating_mask: is clock gating enabled. bitmask that represents the
1550  *                     different engines. See debugfs-driver-habanalabs for
1551  *                     details.
1552  * @in_reset: is device in reset flow.
1553  * @curr_pll_profile: current PLL profile.
1554  * @card_type: Various ASICs have several card types. This indicates the card
1555  *             type of the current device.
1556  * @cs_active_cnt: number of active command submissions on this device (active
1557  *                 means already in H/W queues)
1558  * @major: habanalabs kernel driver major.
1559  * @high_pll: high PLL profile frequency.
1560  * @soft_reset_cnt: number of soft reset since the driver was loaded.
1561  * @hard_reset_cnt: number of hard reset since the driver was loaded.
1562  * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
1563  * @clk_throttling_reason: bitmask represents the current clk throttling reasons
1564  * @id: device minor.
1565  * @id_control: minor of the control device
1566  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
1567  *                    addresses.
1568  * @disabled: is device disabled.
1569  * @late_init_done: is late init stage was done during initialization.
1570  * @hwmon_initialized: is H/W monitor sensors was initialized.
1571  * @hard_reset_pending: is there a hard reset work pending.
1572  * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
1573  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
1574  *                   otherwise.
1575  * @dram_supports_virtual_memory: is MMU enabled towards DRAM.
1576  * @dram_default_page_mapping: is DRAM default page mapping enabled.
1577  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
1578  *                   huge pages.
1579  * @init_done: is the initialization of the device done.
1580  * @mmu_enable: is MMU enabled.
1581  * @mmu_huge_page_opt: is MMU huge pages optimization enabled.
1582  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
1583  * @dma_mask: the dma mask that was set for this device
1584  * @in_debug: is device under debug. This, together with fpriv_list, enforces
1585  *            that only a single user is configuring the debug infrastructure.
1586  * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
1587  *                           only to POWER9 machines.
1588  * @cdev_sysfs_created: were char devices and sysfs nodes created.
1589  * @stop_on_err: true if engines should stop on error.
1590  * @supports_sync_stream: is sync stream supported.
1591  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
1592  * @supports_coresight: is CoreSight supported.
1593  * @supports_soft_reset: is soft reset supported.
1594  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
1595  */
1596 struct hl_device {
1597 	struct pci_dev			*pdev;
1598 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
1599 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
1600 	void __iomem			*rmmio;
1601 	struct cdev			cdev;
1602 	struct cdev			cdev_ctrl;
1603 	struct device			*dev;
1604 	struct device			*dev_ctrl;
1605 	struct delayed_work		work_freq;
1606 	struct delayed_work		work_heartbeat;
1607 	char				asic_name[32];
1608 	enum hl_asic_type		asic_type;
1609 	struct hl_cq			*completion_queue;
1610 	struct workqueue_struct		**cq_wq;
1611 	struct workqueue_struct		*eq_wq;
1612 	struct hl_ctx			*kernel_ctx;
1613 	struct hl_hw_queue		*kernel_queues;
1614 	struct list_head		hw_queues_mirror_list;
1615 	spinlock_t			hw_queues_mirror_lock;
1616 	struct hl_cb_mgr		kernel_cb_mgr;
1617 	struct hl_eq			event_queue;
1618 	struct dma_pool			*dma_pool;
1619 	void				*cpu_accessible_dma_mem;
1620 	dma_addr_t			cpu_accessible_dma_address;
1621 	struct gen_pool			*cpu_accessible_dma_pool;
1622 	unsigned long			*asid_bitmap;
1623 	struct mutex			asid_mutex;
1624 	struct mutex			send_cpu_message_lock;
1625 	struct mutex			debug_lock;
1626 	struct asic_fixed_properties	asic_prop;
1627 	const struct hl_asic_funcs	*asic_funcs;
1628 	void				*asic_specific;
1629 	struct hl_vm			vm;
1630 	struct mutex			mmu_cache_lock;
1631 	struct device			*hwmon_dev;
1632 	enum hl_pm_mng_profile		pm_mng_profile;
1633 	struct hwmon_chip_info		*hl_chip_info;
1634 
1635 	struct hl_dbg_device_entry	hl_debugfs;
1636 
1637 	struct list_head		cb_pool;
1638 	spinlock_t			cb_pool_lock;
1639 
1640 	void				*internal_cb_pool_virt_addr;
1641 	dma_addr_t			internal_cb_pool_dma_addr;
1642 	struct gen_pool			*internal_cb_pool;
1643 	u64				internal_cb_va_base;
1644 
1645 	struct list_head		fpriv_list;
1646 	struct mutex			fpriv_list_lock;
1647 
1648 	struct hl_ctx			*compute_ctx;
1649 
1650 	struct hl_device_idle_busy_ts	*idle_busy_ts_arr;
1651 
1652 	struct hl_cs_counters		aggregated_cs_counters;
1653 
1654 	struct hl_mmu_priv		mmu_priv;
1655 	struct hl_mmu_funcs		mmu_func;
1656 
1657 	atomic64_t			dram_used_mem;
1658 	u64				timeout_jiffies;
1659 	u64				max_power;
1660 	u64				clock_gating_mask;
1661 	atomic_t			in_reset;
1662 	enum hl_pll_frequency		curr_pll_profile;
1663 	enum cpucp_card_types		card_type;
1664 	int				cs_active_cnt;
1665 	u32				major;
1666 	u32				high_pll;
1667 	u32				soft_reset_cnt;
1668 	u32				hard_reset_cnt;
1669 	u32				idle_busy_ts_idx;
1670 	u32				clk_throttling_reason;
1671 	u16				id;
1672 	u16				id_control;
1673 	u16				cpu_pci_msb_addr;
1674 	u8				disabled;
1675 	u8				late_init_done;
1676 	u8				hwmon_initialized;
1677 	u8				hard_reset_pending;
1678 	u8				heartbeat;
1679 	u8				reset_on_lockup;
1680 	u8				dram_supports_virtual_memory;
1681 	u8				dram_default_page_mapping;
1682 	u8				pmmu_huge_range;
1683 	u8				init_done;
1684 	u8				device_cpu_disabled;
1685 	u8				dma_mask;
1686 	u8				in_debug;
1687 	u8				power9_64bit_dma_enable;
1688 	u8				cdev_sysfs_created;
1689 	u8				stop_on_err;
1690 	u8				supports_sync_stream;
1691 	u8				sync_stream_queue_idx;
1692 	u8				supports_coresight;
1693 	u8				supports_soft_reset;
1694 	u8				supports_cb_mapping;
1695 
1696 	/* Parameters for bring-up */
1697 	u8				mmu_enable;
1698 	u8				mmu_huge_page_opt;
1699 	u8				cpu_enable;
1700 	u8				reset_pcilink;
1701 	u8				cpu_queues_enable;
1702 	u8				fw_loading;
1703 	u8				pldm;
1704 	u8				axi_drain;
1705 	u8				sram_scrambler_enable;
1706 	u8				dram_scrambler_enable;
1707 	u8				hard_reset_on_fw_events;
1708 	u8				bmc_enable;
1709 	u8				rl_enable;
1710 };
1711 
1712 
1713 /*
1714  * IOCTLs
1715  */
1716 
1717 /**
1718  * typedef hl_ioctl_t - typedef for ioctl function in the driver
1719  * @hpriv: pointer to the FD's private data, which contains state of
1720  *		user process
1721  * @data: pointer to the input/output arguments structure of the IOCTL
1722  *
1723  * Return: 0 for success, negative value for error
1724  */
1725 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
1726 
1727 /**
1728  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
1729  * @cmd: the IOCTL code as created by the kernel macros.
1730  * @func: pointer to the driver's function that should be called for this IOCTL.
1731  */
1732 struct hl_ioctl_desc {
1733 	unsigned int cmd;
1734 	hl_ioctl_t *func;
1735 };
1736 
1737 
1738 /*
1739  * Kernel module functions that can be accessed by entire module
1740  */
1741 
1742 /**
1743  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
1744  * @address: The start address of the area we want to validate.
1745  * @size: The size in bytes of the area we want to validate.
1746  * @range_start_address: The start address of the valid range.
1747  * @range_end_address: The end address of the valid range.
1748  *
1749  * Return: true if the area is inside the valid range, false otherwise.
1750  */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)1751 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
1752 				u64 range_start_address, u64 range_end_address)
1753 {
1754 	u64 end_address = address + size;
1755 
1756 	if ((address >= range_start_address) &&
1757 			(end_address <= range_end_address) &&
1758 			(end_address > address))
1759 		return true;
1760 
1761 	return false;
1762 }
1763 
1764 /**
1765  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
1766  * @address: The start address of the area we want to validate.
1767  * @size: The size in bytes of the area we want to validate.
1768  * @range_start_address: The start address of the valid range.
1769  * @range_end_address: The end address of the valid range.
1770  *
1771  * Return: true if the area overlaps part or all of the valid range,
1772  *		false otherwise.
1773  */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)1774 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
1775 				u64 range_start_address, u64 range_end_address)
1776 {
1777 	u64 end_address = address + size;
1778 
1779 	if ((address >= range_start_address) &&
1780 			(address < range_end_address))
1781 		return true;
1782 
1783 	if ((end_address >= range_start_address) &&
1784 			(end_address < range_end_address))
1785 		return true;
1786 
1787 	if ((address < range_start_address) &&
1788 			(end_address >= range_end_address))
1789 		return true;
1790 
1791 	return false;
1792 }
1793 
1794 int hl_device_open(struct inode *inode, struct file *filp);
1795 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
1796 bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
1797 enum hl_device_status hl_device_status(struct hl_device *hdev);
1798 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
1799 int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
1800 		enum hl_asic_type asic_type, int minor);
1801 void destroy_hdev(struct hl_device *hdev);
1802 int hl_hw_queues_create(struct hl_device *hdev);
1803 void hl_hw_queues_destroy(struct hl_device *hdev);
1804 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
1805 				u32 cb_size, u64 cb_ptr);
1806 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
1807 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
1808 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
1809 void hl_int_hw_queue_update_ci(struct hl_cs *cs);
1810 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
1811 
1812 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
1813 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
1814 
1815 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
1816 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
1817 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
1818 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
1819 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
1820 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
1821 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
1822 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
1823 u32 hl_cq_inc_ptr(u32 ptr);
1824 
1825 int hl_asid_init(struct hl_device *hdev);
1826 void hl_asid_fini(struct hl_device *hdev);
1827 unsigned long hl_asid_alloc(struct hl_device *hdev);
1828 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
1829 
1830 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
1831 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
1832 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
1833 void hl_ctx_do_release(struct kref *ref);
1834 void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
1835 int hl_ctx_put(struct hl_ctx *ctx);
1836 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
1837 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
1838 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
1839 
1840 int hl_device_init(struct hl_device *hdev, struct class *hclass);
1841 void hl_device_fini(struct hl_device *hdev);
1842 int hl_device_suspend(struct hl_device *hdev);
1843 int hl_device_resume(struct hl_device *hdev);
1844 int hl_device_reset(struct hl_device *hdev, bool hard_reset,
1845 			bool from_hard_reset_thread);
1846 void hl_hpriv_get(struct hl_fpriv *hpriv);
1847 void hl_hpriv_put(struct hl_fpriv *hpriv);
1848 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
1849 uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
1850 
1851 int hl_build_hwmon_channel_info(struct hl_device *hdev,
1852 		struct cpucp_sensor *sensors_arr);
1853 
1854 int hl_sysfs_init(struct hl_device *hdev);
1855 void hl_sysfs_fini(struct hl_device *hdev);
1856 
1857 int hl_hwmon_init(struct hl_device *hdev);
1858 void hl_hwmon_fini(struct hl_device *hdev);
1859 
1860 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
1861 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
1862 			bool map_cb, u64 *handle);
1863 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
1864 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
1865 struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
1866 			u32 handle);
1867 void hl_cb_put(struct hl_cb *cb);
1868 void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
1869 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
1870 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
1871 					bool internal_cb);
1872 int hl_cb_pool_init(struct hl_device *hdev);
1873 int hl_cb_pool_fini(struct hl_device *hdev);
1874 int hl_cb_va_pool_init(struct hl_ctx *ctx);
1875 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
1876 
1877 void hl_cs_rollback_all(struct hl_device *hdev);
1878 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1879 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
1880 void hl_sob_reset_error(struct kref *ref);
1881 void hl_fence_put(struct hl_fence *fence);
1882 void hl_fence_get(struct hl_fence *fence);
1883 
1884 void goya_set_asic_funcs(struct hl_device *hdev);
1885 void gaudi_set_asic_funcs(struct hl_device *hdev);
1886 
1887 int hl_vm_ctx_init(struct hl_ctx *ctx);
1888 void hl_vm_ctx_fini(struct hl_ctx *ctx);
1889 
1890 int hl_vm_init(struct hl_device *hdev);
1891 void hl_vm_fini(struct hl_device *hdev);
1892 
1893 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1894 			struct hl_userptr *userptr);
1895 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
1896 void hl_userptr_delete_list(struct hl_device *hdev,
1897 				struct list_head *userptr_list);
1898 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
1899 				struct list_head *userptr_list,
1900 				struct hl_userptr **userptr);
1901 
1902 int hl_mmu_init(struct hl_device *hdev);
1903 void hl_mmu_fini(struct hl_device *hdev);
1904 int hl_mmu_ctx_init(struct hl_ctx *ctx);
1905 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
1906 int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
1907 		u32 page_size, bool flush_pte);
1908 int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
1909 		bool flush_pte);
1910 void hl_mmu_swap_out(struct hl_ctx *ctx);
1911 void hl_mmu_swap_in(struct hl_ctx *ctx);
1912 int hl_mmu_if_set_funcs(struct hl_device *hdev);
1913 void hl_mmu_v1_set_funcs(struct hl_device *hdev);
1914 
1915 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
1916 				void __iomem *dst);
1917 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
1918 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
1919 				u16 len, u32 timeout, long *result);
1920 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
1921 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
1922 		size_t irq_arr_size);
1923 int hl_fw_test_cpu_queue(struct hl_device *hdev);
1924 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
1925 						dma_addr_t *dma_handle);
1926 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
1927 					void *vaddr);
1928 int hl_fw_send_heartbeat(struct hl_device *hdev);
1929 int hl_fw_cpucp_info_get(struct hl_device *hdev);
1930 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
1931 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
1932 		struct hl_info_pci_counters *counters);
1933 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
1934 			u64 *total_energy);
1935 int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
1936 			u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
1937 			u32 boot_err0_reg, bool skip_bmc,
1938 			u32 cpu_timeout, u32 boot_fit_timeout);
1939 int hl_fw_read_preboot_ver(struct hl_device *hdev, u32 cpu_boot_status_reg,
1940 				u32 boot_err0_reg, u32 timeout);
1941 
1942 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
1943 			bool is_wc[3]);
1944 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
1945 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
1946 		struct hl_inbound_pci_region *pci_region);
1947 int hl_pci_set_outbound_region(struct hl_device *hdev,
1948 		struct hl_outbound_pci_region *pci_region);
1949 int hl_pci_init(struct hl_device *hdev, u32 cpu_boot_status_reg,
1950 		u32 boot_err0_reg, u32 preboot_ver_timeout);
1951 void hl_pci_fini(struct hl_device *hdev);
1952 
1953 long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
1954 void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
1955 int hl_get_temperature(struct hl_device *hdev,
1956 		       int sensor_index, u32 attr, long *value);
1957 int hl_set_temperature(struct hl_device *hdev,
1958 		       int sensor_index, u32 attr, long value);
1959 int hl_get_voltage(struct hl_device *hdev,
1960 		   int sensor_index, u32 attr, long *value);
1961 int hl_get_current(struct hl_device *hdev,
1962 		   int sensor_index, u32 attr, long *value);
1963 int hl_get_fan_speed(struct hl_device *hdev,
1964 		     int sensor_index, u32 attr, long *value);
1965 int hl_get_pwm_info(struct hl_device *hdev,
1966 		    int sensor_index, u32 attr, long *value);
1967 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
1968 			long value);
1969 u64 hl_get_max_power(struct hl_device *hdev);
1970 void hl_set_max_power(struct hl_device *hdev);
1971 int hl_set_voltage(struct hl_device *hdev,
1972 			int sensor_index, u32 attr, long value);
1973 int hl_set_current(struct hl_device *hdev,
1974 			int sensor_index, u32 attr, long value);
1975 
1976 #ifdef CONFIG_DEBUG_FS
1977 
1978 void hl_debugfs_init(void);
1979 void hl_debugfs_fini(void);
1980 void hl_debugfs_add_device(struct hl_device *hdev);
1981 void hl_debugfs_remove_device(struct hl_device *hdev);
1982 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
1983 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
1984 void hl_debugfs_add_cb(struct hl_cb *cb);
1985 void hl_debugfs_remove_cb(struct hl_cb *cb);
1986 void hl_debugfs_add_cs(struct hl_cs *cs);
1987 void hl_debugfs_remove_cs(struct hl_cs *cs);
1988 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
1989 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
1990 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
1991 void hl_debugfs_remove_userptr(struct hl_device *hdev,
1992 				struct hl_userptr *userptr);
1993 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1994 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
1995 
1996 #else
1997 
hl_debugfs_init(void)1998 static inline void __init hl_debugfs_init(void)
1999 {
2000 }
2001 
hl_debugfs_fini(void)2002 static inline void hl_debugfs_fini(void)
2003 {
2004 }
2005 
hl_debugfs_add_device(struct hl_device * hdev)2006 static inline void hl_debugfs_add_device(struct hl_device *hdev)
2007 {
2008 }
2009 
hl_debugfs_remove_device(struct hl_device * hdev)2010 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
2011 {
2012 }
2013 
hl_debugfs_add_file(struct hl_fpriv * hpriv)2014 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
2015 {
2016 }
2017 
hl_debugfs_remove_file(struct hl_fpriv * hpriv)2018 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
2019 {
2020 }
2021 
hl_debugfs_add_cb(struct hl_cb * cb)2022 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
2023 {
2024 }
2025 
hl_debugfs_remove_cb(struct hl_cb * cb)2026 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
2027 {
2028 }
2029 
hl_debugfs_add_cs(struct hl_cs * cs)2030 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
2031 {
2032 }
2033 
hl_debugfs_remove_cs(struct hl_cs * cs)2034 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
2035 {
2036 }
2037 
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)2038 static inline void hl_debugfs_add_job(struct hl_device *hdev,
2039 					struct hl_cs_job *job)
2040 {
2041 }
2042 
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)2043 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
2044 					struct hl_cs_job *job)
2045 {
2046 }
2047 
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)2048 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
2049 					struct hl_userptr *userptr)
2050 {
2051 }
2052 
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)2053 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
2054 					struct hl_userptr *userptr)
2055 {
2056 }
2057 
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)2058 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
2059 					struct hl_ctx *ctx)
2060 {
2061 }
2062 
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)2063 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
2064 					struct hl_ctx *ctx)
2065 {
2066 }
2067 
2068 #endif
2069 
2070 /* IOCTLs */
2071 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
2072 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
2073 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
2074 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
2075 int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
2076 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
2077 
2078 #endif /* HABANALABSP_H_ */
2079