1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10 #ifndef __ASM_MEMORY_H
11 #define __ASM_MEMORY_H
12
13 #include <linux/const.h>
14 #include <linux/sizes.h>
15 #include <asm/page-def.h>
16
17 /*
18 * Size of the PCI I/O space. This must remain a power of two so that
19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20 */
21 #define PCI_IO_SIZE SZ_16M
22
23 /*
24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
25 * a struct page array
26 *
27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28 * needs to cover the memory region from the beginning of the 52-bit
29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31 * of the VMEMMAP where 52-bit support is not available in hardware.
32 */
33 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
34 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
35
36 /*
37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38 * start of the TTBR1 address space.
39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41 * VA_BITS - the maximum number of bits for virtual addresses.
42 */
43 #define VA_BITS (CONFIG_ARM64_VA_BITS)
44 #define _PAGE_OFFSET(va) (-(UL(1) << (va)))
45 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
46 #define KIMAGE_VADDR (MODULES_END)
47 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
48 #define MODULES_VADDR (KASAN_SHADOW_END)
49 #define MODULES_VSIZE (SZ_128M)
50 #define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
51 #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
52 #define PCI_IO_END (VMEMMAP_START - SZ_2M)
53 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
54 #define FIXADDR_TOP (PCI_IO_START - SZ_2M)
55
56 #if VA_BITS > 48
57 #define VA_BITS_MIN (48)
58 #else
59 #define VA_BITS_MIN (VA_BITS)
60 #endif
61
62 #define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
63
64 #define KERNEL_START _text
65 #define KERNEL_END _end
66
67 /*
68 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
69 * address space for the shadow region respectively. They can bloat the stack
70 * significantly, so double the (minimum) stack size when they are in use.
71 */
72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
73 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
74 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
75 + KASAN_SHADOW_OFFSET)
76 #define KASAN_THREAD_SHIFT 1
77 #else
78 #define KASAN_THREAD_SHIFT 0
79 #define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN))
80 #endif /* CONFIG_KASAN */
81
82 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
83
84 /*
85 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
86 * stacks are a multiple of page size.
87 */
88 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
89 #define THREAD_SHIFT PAGE_SHIFT
90 #else
91 #define THREAD_SHIFT MIN_THREAD_SHIFT
92 #endif
93
94 #if THREAD_SHIFT >= PAGE_SHIFT
95 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
96 #endif
97
98 #define THREAD_SIZE (UL(1) << THREAD_SHIFT)
99
100 /*
101 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
102 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
103 * assembly.
104 */
105 #ifdef CONFIG_VMAP_STACK
106 #define THREAD_ALIGN (2 * THREAD_SIZE)
107 #else
108 #define THREAD_ALIGN THREAD_SIZE
109 #endif
110
111 #define IRQ_STACK_SIZE THREAD_SIZE
112
113 #define OVERFLOW_STACK_SIZE SZ_4K
114
115 /*
116 * Alignment of kernel segments (e.g. .text, .data).
117 *
118 * 4 KB granule: 16 level 3 entries, with contiguous bit
119 * 16 KB granule: 4 level 3 entries, without contiguous bit
120 * 64 KB granule: 1 level 3 entry
121 */
122 #define SEGMENT_ALIGN SZ_64K
123
124 /*
125 * Memory types available.
126 *
127 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
128 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
129 * that protection_map[] only contains MT_NORMAL attributes.
130 */
131 #define MT_NORMAL 0
132 #define MT_NORMAL_TAGGED 1
133 #define MT_NORMAL_NC 2
134 #define MT_NORMAL_WT 3
135 #define MT_DEVICE_nGnRnE 4
136 #define MT_DEVICE_nGnRE 5
137 #define MT_DEVICE_GRE 6
138 #define MT_NORMAL_iNC_oWB 7
139
140 /*
141 * Memory types for Stage-2 translation
142 */
143 #define MT_S2_NORMAL 0xf
144 #define MT_S2_DEVICE_nGnRE 0x1
145
146 /*
147 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
148 * Stage-2 enforces Normal-WB and Device-nGnRE
149 */
150 #define MT_S2_FWB_NORMAL 6
151 #define MT_S2_FWB_DEVICE_nGnRE 1
152
153 #ifdef CONFIG_ARM64_4K_PAGES
154 #define IOREMAP_MAX_ORDER (PUD_SHIFT)
155 #else
156 #define IOREMAP_MAX_ORDER (PMD_SHIFT)
157 #endif
158
159 #ifndef __ASSEMBLY__
160
161 #include <linux/bitops.h>
162 #include <linux/compiler.h>
163 #include <linux/mmdebug.h>
164 #include <linux/types.h>
165 #include <asm/bug.h>
166
167 extern u64 vabits_actual;
168 #define PAGE_END (_PAGE_END(vabits_actual))
169
170 extern s64 memstart_addr;
171 /* PHYS_OFFSET - the physical address of the start of memory. */
172 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
173
174 /* the virtual base of the kernel image */
175 extern u64 kimage_vaddr;
176
177 /* the offset between the kernel virtual and physical mappings */
178 extern u64 kimage_voffset;
179
kaslr_offset(void)180 static inline unsigned long kaslr_offset(void)
181 {
182 return kimage_vaddr - KIMAGE_VADDR;
183 }
184
185 /*
186 * Allow all memory at the discovery stage. We will clip it later.
187 */
188 #define MIN_MEMBLOCK_ADDR 0
189 #define MAX_MEMBLOCK_ADDR U64_MAX
190
191 /*
192 * PFNs are used to describe any physical page; this means
193 * PFN 0 == physical address 0.
194 *
195 * This is the PFN of the first RAM page in the kernel
196 * direct-mapped view. We assume this is the first page
197 * of RAM in the mem_map as well.
198 */
199 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
200
201 /*
202 * When dealing with data aborts, watchpoints, or instruction traps we may end
203 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
204 * pass on to access_ok(), for instance.
205 */
206 #define __untagged_addr(addr) \
207 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
208
209 #define untagged_addr(addr) ({ \
210 u64 __addr = (__force u64)(addr); \
211 __addr &= __untagged_addr(__addr); \
212 (__force __typeof__(addr))__addr; \
213 })
214
215 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
216 #define __tag_shifted(tag) ((u64)(tag) << 56)
217 #define __tag_reset(addr) __untagged_addr(addr)
218 #define __tag_get(addr) (__u8)((u64)(addr) >> 56)
219 #else
220 #define __tag_shifted(tag) 0UL
221 #define __tag_reset(addr) (addr)
222 #define __tag_get(addr) 0
223 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
224
__tag_set(const void * addr,u8 tag)225 static inline const void *__tag_set(const void *addr, u8 tag)
226 {
227 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
228 return (const void *)(__addr | __tag_shifted(tag));
229 }
230
231 #ifdef CONFIG_KASAN_HW_TAGS
232 #define arch_enable_tagging_sync() mte_enable_kernel_sync()
233 #define arch_enable_tagging_async() mte_enable_kernel_async()
234 #define arch_set_tagging_report_once(state) mte_set_report_once(state)
235 #define arch_force_async_tag_fault() mte_check_tfsr_exit()
236 #define arch_get_random_tag() mte_get_random_tag()
237 #define arch_get_mem_tag(addr) mte_get_mem_tag(addr)
238 #define arch_set_mem_tag_range(addr, size, tag, init) \
239 mte_set_mem_tag_range((addr), (size), (tag), (init))
240 #endif /* CONFIG_KASAN_HW_TAGS */
241
242 /*
243 * Physical vs virtual RAM address space conversion. These are
244 * private definitions which should NOT be used outside memory.h
245 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
246 */
247
248
249 /*
250 * Check whether an arbitrary address is within the linear map, which
251 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
252 * kernel's TTBR1 address range.
253 */
254 #define __is_lm_address(addr) (((u64)(addr) ^ PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
255
256 #define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET)
257 #define __kimg_to_phys(addr) ((addr) - kimage_voffset)
258
259 #define __virt_to_phys_nodebug(x) ({ \
260 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
261 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
262 })
263
264 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
265
266 #ifdef CONFIG_DEBUG_VIRTUAL
267 extern phys_addr_t __virt_to_phys(unsigned long x);
268 extern phys_addr_t __phys_addr_symbol(unsigned long x);
269 #else
270 #define __virt_to_phys(x) __virt_to_phys_nodebug(x)
271 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
272 #endif /* CONFIG_DEBUG_VIRTUAL */
273
274 #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
275 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
276
277 /*
278 * Convert a page to/from a physical address
279 */
280 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
281 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
282
283 /*
284 * Note: Drivers should NOT use these. They are the wrong
285 * translation for translating DMA addresses. Use the driver
286 * DMA support - see dma-mapping.h.
287 */
288 #define virt_to_phys virt_to_phys
virt_to_phys(const volatile void * x)289 static inline phys_addr_t virt_to_phys(const volatile void *x)
290 {
291 return __virt_to_phys((unsigned long)(x));
292 }
293
294 #define phys_to_virt phys_to_virt
phys_to_virt(phys_addr_t x)295 static inline void *phys_to_virt(phys_addr_t x)
296 {
297 return (void *)(__phys_to_virt(x));
298 }
299
300 /*
301 * Drivers should NOT use these either.
302 */
303 #define __pa(x) __virt_to_phys((unsigned long)(x))
304 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
305 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
306 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
307 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
308 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
309 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
310
311 /*
312 * With non-canonical CFI jump tables, the compiler replaces function
313 * address references with the address of the function's CFI jump
314 * table entry. This results in __pa_symbol(function) returning the
315 * physical address of the jump table entry, which can lead to address
316 * space confusion since the jump table points to the function's
317 * virtual address. Therefore, use inline assembly to ensure we are
318 * always taking the address of the actual function.
319 */
320 #define __va_function(x) ({ \
321 void *addr; \
322 asm("adrp %0, " __stringify(x) "\n\t" \
323 "add %0, %0, :lo12:" __stringify(x) : "=r" (addr)); \
324 addr; \
325 })
326
327 #define __pa_function(x) __pa_symbol(__va_function(x))
328
329 /*
330 * virt_to_page(x) convert a _valid_ virtual address to struct page *
331 * virt_addr_valid(x) indicates whether a virtual address is valid
332 */
333 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
334
335 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
336 #define page_to_virt(x) ({ \
337 __typeof__(x) __page = x; \
338 void *__addr = __va(page_to_phys(__page)); \
339 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
340 })
341 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
342 #else
343 #define page_to_virt(x) ({ \
344 __typeof__(x) __page = x; \
345 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
346 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
347 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
348 })
349
350 #define virt_to_page(x) ({ \
351 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
352 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
353 (struct page *)__addr; \
354 })
355 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
356
357 #define virt_addr_valid(addr) ({ \
358 __typeof__(addr) __addr = __tag_reset(addr); \
359 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
360 })
361
362 void dump_mem_limit(void);
363 #endif /* !ASSEMBLY */
364
365 /*
366 * Given that the GIC architecture permits ITS implementations that can only be
367 * configured with a LPI table address once, GICv3 systems with many CPUs may
368 * end up reserving a lot of different regions after a kexec for their LPI
369 * tables (one per CPU), as we are forced to reuse the same memory after kexec
370 * (and thus reserve it persistently with EFI beforehand)
371 */
372 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
373 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
374 #endif
375
376 #include <asm-generic/memory_model.h>
377
378 #endif /* __ASM_MEMORY_H */
379