1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4 *
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 *
8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9 *
10 * Basic principles:
11 *
12 * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13 * the kernel to set one of a handful of 'caching type' attributes for physical
14 * memory ranges: uncached, write-combining, write-through, write-protected,
15 * and the most commonly used and default attribute: write-back caching.
16 *
17 * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18 * a hardware interface to enumerate a limited number of physical memory ranges
19 * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20 * Even modern CPUs have MTRRs enabled - but these are typically not touched
21 * by the kernel or by user-space (such as the X server), we rely on PAT for any
22 * additional cache attribute logic.
23 *
24 * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25 * cache attribute information to the mapped memory range: there's 3 bits used,
26 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27 * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28 *
29 * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30 * that only support 4 types of PAT entries, and interaction with MTRRs, see
31 * below for details. )
32 */
33
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44
45 #include <asm/cacheflush.h>
46 #include <asm/processor.h>
47 #include <asm/tlbflush.h>
48 #include <asm/x86_init.h>
49 #include <asm/fcntl.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/page.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55 #include <asm/io.h>
56
57 #include "memtype.h"
58 #include "../mm_internal.h"
59
60 #undef pr_fmt
61 #define pr_fmt(fmt) "" fmt
62
63 static bool __read_mostly pat_bp_initialized;
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static bool __read_mostly pat_bp_enabled;
66 static bool __read_mostly pat_cm_initialized;
67
68 /*
69 * PAT support is enabled by default, but can be disabled for
70 * various user-requested or hardware-forced reasons:
71 */
pat_disable(const char * msg_reason)72 void pat_disable(const char *msg_reason)
73 {
74 if (pat_disabled)
75 return;
76
77 if (pat_bp_initialized) {
78 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
79 return;
80 }
81
82 pat_disabled = true;
83 pr_info("x86/PAT: %s\n", msg_reason);
84 }
85
nopat(char * str)86 static int __init nopat(char *str)
87 {
88 pat_disable("PAT support disabled via boot option.");
89 return 0;
90 }
91 early_param("nopat", nopat);
92
pat_enabled(void)93 bool pat_enabled(void)
94 {
95 return pat_bp_enabled;
96 }
97 EXPORT_SYMBOL_GPL(pat_enabled);
98
99 int pat_debug_enable;
100
pat_debug_setup(char * str)101 static int __init pat_debug_setup(char *str)
102 {
103 pat_debug_enable = 1;
104 return 1;
105 }
106 __setup("debugpat", pat_debug_setup);
107
108 #ifdef CONFIG_X86_PAT
109 /*
110 * X86 PAT uses page flags arch_1 and uncached together to keep track of
111 * memory type of pages that have backing page struct.
112 *
113 * X86 PAT supports 4 different memory types:
114 * - _PAGE_CACHE_MODE_WB
115 * - _PAGE_CACHE_MODE_WC
116 * - _PAGE_CACHE_MODE_UC_MINUS
117 * - _PAGE_CACHE_MODE_WT
118 *
119 * _PAGE_CACHE_MODE_WB is the default type.
120 */
121
122 #define _PGMT_WB 0
123 #define _PGMT_WC (1UL << PG_arch_1)
124 #define _PGMT_UC_MINUS (1UL << PG_uncached)
125 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
126 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
127 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
128
get_page_memtype(struct page * pg)129 static inline enum page_cache_mode get_page_memtype(struct page *pg)
130 {
131 unsigned long pg_flags = pg->flags & _PGMT_MASK;
132
133 if (pg_flags == _PGMT_WB)
134 return _PAGE_CACHE_MODE_WB;
135 else if (pg_flags == _PGMT_WC)
136 return _PAGE_CACHE_MODE_WC;
137 else if (pg_flags == _PGMT_UC_MINUS)
138 return _PAGE_CACHE_MODE_UC_MINUS;
139 else
140 return _PAGE_CACHE_MODE_WT;
141 }
142
set_page_memtype(struct page * pg,enum page_cache_mode memtype)143 static inline void set_page_memtype(struct page *pg,
144 enum page_cache_mode memtype)
145 {
146 unsigned long memtype_flags;
147 unsigned long old_flags;
148 unsigned long new_flags;
149
150 switch (memtype) {
151 case _PAGE_CACHE_MODE_WC:
152 memtype_flags = _PGMT_WC;
153 break;
154 case _PAGE_CACHE_MODE_UC_MINUS:
155 memtype_flags = _PGMT_UC_MINUS;
156 break;
157 case _PAGE_CACHE_MODE_WT:
158 memtype_flags = _PGMT_WT;
159 break;
160 case _PAGE_CACHE_MODE_WB:
161 default:
162 memtype_flags = _PGMT_WB;
163 break;
164 }
165
166 do {
167 old_flags = pg->flags;
168 new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
169 } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
170 }
171 #else
get_page_memtype(struct page * pg)172 static inline enum page_cache_mode get_page_memtype(struct page *pg)
173 {
174 return -1;
175 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)176 static inline void set_page_memtype(struct page *pg,
177 enum page_cache_mode memtype)
178 {
179 }
180 #endif
181
182 enum {
183 PAT_UC = 0, /* uncached */
184 PAT_WC = 1, /* Write combining */
185 PAT_WT = 4, /* Write Through */
186 PAT_WP = 5, /* Write Protected */
187 PAT_WB = 6, /* Write Back (default) */
188 PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
189 };
190
191 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
192
pat_get_cache_mode(unsigned pat_val,char * msg)193 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
194 {
195 enum page_cache_mode cache;
196 char *cache_mode;
197
198 switch (pat_val) {
199 case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
200 case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
201 case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
202 case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
203 case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
204 case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
205 default: cache = CM(WB); cache_mode = "WB "; break;
206 }
207
208 memcpy(msg, cache_mode, 4);
209
210 return cache;
211 }
212
213 #undef CM
214
215 /*
216 * Update the cache mode to pgprot translation tables according to PAT
217 * configuration.
218 * Using lower indices is preferred, so we start with highest index.
219 */
__init_cache_modes(u64 pat)220 static void __init_cache_modes(u64 pat)
221 {
222 enum page_cache_mode cache;
223 char pat_msg[33];
224 int i;
225
226 WARN_ON_ONCE(pat_cm_initialized);
227
228 pat_msg[32] = 0;
229 for (i = 7; i >= 0; i--) {
230 cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
231 pat_msg + 4 * i);
232 update_cache_mode_entry(i, cache);
233 }
234 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
235
236 pat_cm_initialized = true;
237 }
238
239 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
240
pat_bp_init(u64 pat)241 static void pat_bp_init(u64 pat)
242 {
243 u64 tmp_pat;
244
245 if (!boot_cpu_has(X86_FEATURE_PAT)) {
246 pat_disable("PAT not supported by the CPU.");
247 return;
248 }
249
250 rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
251 if (!tmp_pat) {
252 pat_disable("PAT support disabled by the firmware.");
253 return;
254 }
255
256 wrmsrl(MSR_IA32_CR_PAT, pat);
257 pat_bp_enabled = true;
258
259 __init_cache_modes(pat);
260 }
261
pat_ap_init(u64 pat)262 static void pat_ap_init(u64 pat)
263 {
264 if (!boot_cpu_has(X86_FEATURE_PAT)) {
265 /*
266 * If this happens we are on a secondary CPU, but switched to
267 * PAT on the boot CPU. We have no way to undo PAT.
268 */
269 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
270 }
271
272 wrmsrl(MSR_IA32_CR_PAT, pat);
273 }
274
init_cache_modes(void)275 void init_cache_modes(void)
276 {
277 u64 pat = 0;
278
279 if (pat_cm_initialized)
280 return;
281
282 if (boot_cpu_has(X86_FEATURE_PAT)) {
283 /*
284 * CPU supports PAT. Set PAT table to be consistent with
285 * PAT MSR. This case supports "nopat" boot option, and
286 * virtual machine environments which support PAT without
287 * MTRRs. In specific, Xen has unique setup to PAT MSR.
288 *
289 * If PAT MSR returns 0, it is considered invalid and emulates
290 * as No PAT.
291 */
292 rdmsrl(MSR_IA32_CR_PAT, pat);
293 }
294
295 if (!pat) {
296 /*
297 * No PAT. Emulate the PAT table that corresponds to the two
298 * cache bits, PWT (Write Through) and PCD (Cache Disable).
299 * This setup is also the same as the BIOS default setup.
300 *
301 * PTE encoding:
302 *
303 * PCD
304 * |PWT PAT
305 * || slot
306 * 00 0 WB : _PAGE_CACHE_MODE_WB
307 * 01 1 WT : _PAGE_CACHE_MODE_WT
308 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
309 * 11 3 UC : _PAGE_CACHE_MODE_UC
310 *
311 * NOTE: When WC or WP is used, it is redirected to UC- per
312 * the default setup in __cachemode2pte_tbl[].
313 */
314 pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
315 PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
316 }
317
318 __init_cache_modes(pat);
319 }
320
321 /**
322 * pat_init - Initialize the PAT MSR and PAT table on the current CPU
323 *
324 * This function initializes PAT MSR and PAT table with an OS-defined value
325 * to enable additional cache attributes, WC, WT and WP.
326 *
327 * This function must be called on all CPUs using the specific sequence of
328 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
329 * procedure for PAT.
330 */
pat_init(void)331 void pat_init(void)
332 {
333 u64 pat;
334 struct cpuinfo_x86 *c = &boot_cpu_data;
335
336 #ifndef CONFIG_X86_PAT
337 pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
338 #endif
339
340 if (pat_disabled)
341 return;
342
343 if ((c->x86_vendor == X86_VENDOR_INTEL) &&
344 (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
345 ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
346 /*
347 * PAT support with the lower four entries. Intel Pentium 2,
348 * 3, M, and 4 are affected by PAT errata, which makes the
349 * upper four entries unusable. To be on the safe side, we don't
350 * use those.
351 *
352 * PTE encoding:
353 * PAT
354 * |PCD
355 * ||PWT PAT
356 * ||| slot
357 * 000 0 WB : _PAGE_CACHE_MODE_WB
358 * 001 1 WC : _PAGE_CACHE_MODE_WC
359 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
360 * 011 3 UC : _PAGE_CACHE_MODE_UC
361 * PAT bit unused
362 *
363 * NOTE: When WT or WP is used, it is redirected to UC- per
364 * the default setup in __cachemode2pte_tbl[].
365 */
366 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
367 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
368 } else {
369 /*
370 * Full PAT support. We put WT in slot 7 to improve
371 * robustness in the presence of errata that might cause
372 * the high PAT bit to be ignored. This way, a buggy slot 7
373 * access will hit slot 3, and slot 3 is UC, so at worst
374 * we lose performance without causing a correctness issue.
375 * Pentium 4 erratum N46 is an example for such an erratum,
376 * although we try not to use PAT at all on affected CPUs.
377 *
378 * PTE encoding:
379 * PAT
380 * |PCD
381 * ||PWT PAT
382 * ||| slot
383 * 000 0 WB : _PAGE_CACHE_MODE_WB
384 * 001 1 WC : _PAGE_CACHE_MODE_WC
385 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
386 * 011 3 UC : _PAGE_CACHE_MODE_UC
387 * 100 4 WB : Reserved
388 * 101 5 WP : _PAGE_CACHE_MODE_WP
389 * 110 6 UC-: Reserved
390 * 111 7 WT : _PAGE_CACHE_MODE_WT
391 *
392 * The reserved slots are unused, but mapped to their
393 * corresponding types in the presence of PAT errata.
394 */
395 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
396 PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
397 }
398
399 if (!pat_bp_initialized) {
400 pat_bp_init(pat);
401 pat_bp_initialized = true;
402 } else {
403 pat_ap_init(pat);
404 }
405 }
406
407 #undef PAT
408
409 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
410
411 /*
412 * Does intersection of PAT memory type and MTRR memory type and returns
413 * the resulting memory type as PAT understands it.
414 * (Type in pat and mtrr will not have same value)
415 * The intersection is based on "Effective Memory Type" tables in IA-32
416 * SDM vol 3a
417 */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)418 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
419 enum page_cache_mode req_type)
420 {
421 /*
422 * Look for MTRR hint to get the effective type in case where PAT
423 * request is for WB.
424 */
425 if (req_type == _PAGE_CACHE_MODE_WB) {
426 u8 mtrr_type, uniform;
427
428 mtrr_type = mtrr_type_lookup(start, end, &uniform);
429 if (mtrr_type != MTRR_TYPE_WRBACK)
430 return _PAGE_CACHE_MODE_UC_MINUS;
431
432 return _PAGE_CACHE_MODE_WB;
433 }
434
435 return req_type;
436 }
437
438 struct pagerange_state {
439 unsigned long cur_pfn;
440 int ram;
441 int not_ram;
442 };
443
444 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)445 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
446 {
447 struct pagerange_state *state = arg;
448
449 state->not_ram |= initial_pfn > state->cur_pfn;
450 state->ram |= total_nr_pages > 0;
451 state->cur_pfn = initial_pfn + total_nr_pages;
452
453 return state->ram && state->not_ram;
454 }
455
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)456 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
457 {
458 int ret = 0;
459 unsigned long start_pfn = start >> PAGE_SHIFT;
460 unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
461 struct pagerange_state state = {start_pfn, 0, 0};
462
463 /*
464 * For legacy reasons, physical address range in the legacy ISA
465 * region is tracked as non-RAM. This will allow users of
466 * /dev/mem to map portions of legacy ISA region, even when
467 * some of those portions are listed(or not even listed) with
468 * different e820 types(RAM/reserved/..)
469 */
470 if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
471 start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
472
473 if (start_pfn < end_pfn) {
474 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
475 &state, pagerange_is_ram_callback);
476 }
477
478 return (ret > 0) ? -1 : (state.ram ? 1 : 0);
479 }
480
481 /*
482 * For RAM pages, we use page flags to mark the pages with appropriate type.
483 * The page flags are limited to four types, WB (default), WC, WT and UC-.
484 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
485 * a new memory type is only allowed for a page mapped with the default WB
486 * type.
487 *
488 * Here we do two passes:
489 * - Find the memtype of all the pages in the range, look for any conflicts.
490 * - In case of no conflicts, set the new memtype for pages in the range.
491 */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)492 static int reserve_ram_pages_type(u64 start, u64 end,
493 enum page_cache_mode req_type,
494 enum page_cache_mode *new_type)
495 {
496 struct page *page;
497 u64 pfn;
498
499 if (req_type == _PAGE_CACHE_MODE_WP) {
500 if (new_type)
501 *new_type = _PAGE_CACHE_MODE_UC_MINUS;
502 return -EINVAL;
503 }
504
505 if (req_type == _PAGE_CACHE_MODE_UC) {
506 /* We do not support strong UC */
507 WARN_ON_ONCE(1);
508 req_type = _PAGE_CACHE_MODE_UC_MINUS;
509 }
510
511 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
512 enum page_cache_mode type;
513
514 page = pfn_to_page(pfn);
515 type = get_page_memtype(page);
516 if (type != _PAGE_CACHE_MODE_WB) {
517 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
518 start, end - 1, type, req_type);
519 if (new_type)
520 *new_type = type;
521
522 return -EBUSY;
523 }
524 }
525
526 if (new_type)
527 *new_type = req_type;
528
529 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
530 page = pfn_to_page(pfn);
531 set_page_memtype(page, req_type);
532 }
533 return 0;
534 }
535
free_ram_pages_type(u64 start,u64 end)536 static int free_ram_pages_type(u64 start, u64 end)
537 {
538 struct page *page;
539 u64 pfn;
540
541 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
542 page = pfn_to_page(pfn);
543 set_page_memtype(page, _PAGE_CACHE_MODE_WB);
544 }
545 return 0;
546 }
547
sanitize_phys(u64 address)548 static u64 sanitize_phys(u64 address)
549 {
550 /*
551 * When changing the memtype for pages containing poison allow
552 * for a "decoy" virtual address (bit 63 clear) passed to
553 * set_memory_X(). __pa() on a "decoy" address results in a
554 * physical address with bit 63 set.
555 *
556 * Decoy addresses are not present for 32-bit builds, see
557 * set_mce_nospec().
558 */
559 if (IS_ENABLED(CONFIG_X86_64))
560 return address & __PHYSICAL_MASK;
561 return address;
562 }
563
564 /*
565 * req_type typically has one of the:
566 * - _PAGE_CACHE_MODE_WB
567 * - _PAGE_CACHE_MODE_WC
568 * - _PAGE_CACHE_MODE_UC_MINUS
569 * - _PAGE_CACHE_MODE_UC
570 * - _PAGE_CACHE_MODE_WT
571 *
572 * If new_type is NULL, function will return an error if it cannot reserve the
573 * region with req_type. If new_type is non-NULL, function will return
574 * available type in new_type in case of no error. In case of any error
575 * it will return a negative return value.
576 */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)577 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
578 enum page_cache_mode *new_type)
579 {
580 struct memtype *entry_new;
581 enum page_cache_mode actual_type;
582 int is_range_ram;
583 int err = 0;
584
585 start = sanitize_phys(start);
586
587 /*
588 * The end address passed into this function is exclusive, but
589 * sanitize_phys() expects an inclusive address.
590 */
591 end = sanitize_phys(end - 1) + 1;
592 if (start >= end) {
593 WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
594 start, end - 1, cattr_name(req_type));
595 return -EINVAL;
596 }
597
598 if (!pat_enabled()) {
599 /* This is identical to page table setting without PAT */
600 if (new_type)
601 *new_type = req_type;
602 return 0;
603 }
604
605 /* Low ISA region is always mapped WB in page table. No need to track */
606 if (x86_platform.is_untracked_pat_range(start, end)) {
607 if (new_type)
608 *new_type = _PAGE_CACHE_MODE_WB;
609 return 0;
610 }
611
612 /*
613 * Call mtrr_lookup to get the type hint. This is an
614 * optimization for /dev/mem mmap'ers into WB memory (BIOS
615 * tools and ACPI tools). Use WB request for WB memory and use
616 * UC_MINUS otherwise.
617 */
618 actual_type = pat_x_mtrr_type(start, end, req_type);
619
620 if (new_type)
621 *new_type = actual_type;
622
623 is_range_ram = pat_pagerange_is_ram(start, end);
624 if (is_range_ram == 1) {
625
626 err = reserve_ram_pages_type(start, end, req_type, new_type);
627
628 return err;
629 } else if (is_range_ram < 0) {
630 return -EINVAL;
631 }
632
633 entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
634 if (!entry_new)
635 return -ENOMEM;
636
637 entry_new->start = start;
638 entry_new->end = end;
639 entry_new->type = actual_type;
640
641 spin_lock(&memtype_lock);
642
643 err = memtype_check_insert(entry_new, new_type);
644 if (err) {
645 pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
646 start, end - 1,
647 cattr_name(entry_new->type), cattr_name(req_type));
648 kfree(entry_new);
649 spin_unlock(&memtype_lock);
650
651 return err;
652 }
653
654 spin_unlock(&memtype_lock);
655
656 dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
657 start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
658 new_type ? cattr_name(*new_type) : "-");
659
660 return err;
661 }
662
memtype_free(u64 start,u64 end)663 int memtype_free(u64 start, u64 end)
664 {
665 int is_range_ram;
666 struct memtype *entry_old;
667
668 if (!pat_enabled())
669 return 0;
670
671 start = sanitize_phys(start);
672 end = sanitize_phys(end);
673
674 /* Low ISA region is always mapped WB. No need to track */
675 if (x86_platform.is_untracked_pat_range(start, end))
676 return 0;
677
678 is_range_ram = pat_pagerange_is_ram(start, end);
679 if (is_range_ram == 1)
680 return free_ram_pages_type(start, end);
681 if (is_range_ram < 0)
682 return -EINVAL;
683
684 spin_lock(&memtype_lock);
685 entry_old = memtype_erase(start, end);
686 spin_unlock(&memtype_lock);
687
688 if (IS_ERR(entry_old)) {
689 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
690 current->comm, current->pid, start, end - 1);
691 return -EINVAL;
692 }
693
694 kfree(entry_old);
695
696 dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
697
698 return 0;
699 }
700
701
702 /**
703 * lookup_memtype - Looksup the memory type for a physical address
704 * @paddr: physical address of which memory type needs to be looked up
705 *
706 * Only to be called when PAT is enabled
707 *
708 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
709 * or _PAGE_CACHE_MODE_WT.
710 */
lookup_memtype(u64 paddr)711 static enum page_cache_mode lookup_memtype(u64 paddr)
712 {
713 enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
714 struct memtype *entry;
715
716 if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
717 return rettype;
718
719 if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
720 struct page *page;
721
722 page = pfn_to_page(paddr >> PAGE_SHIFT);
723 return get_page_memtype(page);
724 }
725
726 spin_lock(&memtype_lock);
727
728 entry = memtype_lookup(paddr);
729 if (entry != NULL)
730 rettype = entry->type;
731 else
732 rettype = _PAGE_CACHE_MODE_UC_MINUS;
733
734 spin_unlock(&memtype_lock);
735
736 return rettype;
737 }
738
739 /**
740 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
741 * of @pfn cannot be overridden by UC MTRR memory type.
742 *
743 * Only to be called when PAT is enabled.
744 *
745 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
746 * Returns false in other cases.
747 */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)748 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
749 {
750 enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
751
752 return cm == _PAGE_CACHE_MODE_UC ||
753 cm == _PAGE_CACHE_MODE_UC_MINUS ||
754 cm == _PAGE_CACHE_MODE_WC;
755 }
756 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
757
758 /**
759 * memtype_reserve_io - Request a memory type mapping for a region of memory
760 * @start: start (physical address) of the region
761 * @end: end (physical address) of the region
762 * @type: A pointer to memtype, with requested type. On success, requested
763 * or any other compatible type that was available for the region is returned
764 *
765 * On success, returns 0
766 * On failure, returns non-zero
767 */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)768 int memtype_reserve_io(resource_size_t start, resource_size_t end,
769 enum page_cache_mode *type)
770 {
771 resource_size_t size = end - start;
772 enum page_cache_mode req_type = *type;
773 enum page_cache_mode new_type;
774 int ret;
775
776 WARN_ON_ONCE(iomem_map_sanity_check(start, size));
777
778 ret = memtype_reserve(start, end, req_type, &new_type);
779 if (ret)
780 goto out_err;
781
782 if (!is_new_memtype_allowed(start, size, req_type, new_type))
783 goto out_free;
784
785 if (memtype_kernel_map_sync(start, size, new_type) < 0)
786 goto out_free;
787
788 *type = new_type;
789 return 0;
790
791 out_free:
792 memtype_free(start, end);
793 ret = -EBUSY;
794 out_err:
795 return ret;
796 }
797
798 /**
799 * memtype_free_io - Release a memory type mapping for a region of memory
800 * @start: start (physical address) of the region
801 * @end: end (physical address) of the region
802 */
memtype_free_io(resource_size_t start,resource_size_t end)803 void memtype_free_io(resource_size_t start, resource_size_t end)
804 {
805 memtype_free(start, end);
806 }
807
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)808 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
809 {
810 enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
811
812 return memtype_reserve_io(start, start + size, &type);
813 }
814 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
815
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)816 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
817 {
818 memtype_free_io(start, start + size);
819 }
820 EXPORT_SYMBOL(arch_io_free_memtype_wc);
821
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)822 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
823 unsigned long size, pgprot_t vma_prot)
824 {
825 if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
826 vma_prot = pgprot_decrypted(vma_prot);
827
828 return vma_prot;
829 }
830
831 #ifdef CONFIG_STRICT_DEVMEM
832 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)833 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
834 {
835 return 1;
836 }
837 #else
838 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)839 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
840 {
841 u64 from = ((u64)pfn) << PAGE_SHIFT;
842 u64 to = from + size;
843 u64 cursor = from;
844
845 if (!pat_enabled())
846 return 1;
847
848 while (cursor < to) {
849 if (!devmem_is_allowed(pfn))
850 return 0;
851 cursor += PAGE_SIZE;
852 pfn++;
853 }
854 return 1;
855 }
856 #endif /* CONFIG_STRICT_DEVMEM */
857
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)858 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
859 unsigned long size, pgprot_t *vma_prot)
860 {
861 enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
862
863 if (!range_is_allowed(pfn, size))
864 return 0;
865
866 if (file->f_flags & O_DSYNC)
867 pcm = _PAGE_CACHE_MODE_UC_MINUS;
868
869 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
870 cachemode2protval(pcm));
871 return 1;
872 }
873
874 /*
875 * Change the memory type for the physical address range in kernel identity
876 * mapping space if that range is a part of identity map.
877 */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)878 int memtype_kernel_map_sync(u64 base, unsigned long size,
879 enum page_cache_mode pcm)
880 {
881 unsigned long id_sz;
882
883 if (base > __pa(high_memory-1))
884 return 0;
885
886 /*
887 * Some areas in the middle of the kernel identity range
888 * are not mapped, for example the PCI space.
889 */
890 if (!page_is_ram(base >> PAGE_SHIFT))
891 return 0;
892
893 id_sz = (__pa(high_memory-1) <= base + size) ?
894 __pa(high_memory) - base : size;
895
896 if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
897 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
898 current->comm, current->pid,
899 cattr_name(pcm),
900 base, (unsigned long long)(base + size-1));
901 return -EINVAL;
902 }
903 return 0;
904 }
905
906 /*
907 * Internal interface to reserve a range of physical memory with prot.
908 * Reserved non RAM regions only and after successful memtype_reserve,
909 * this func also keeps identity mapping (if any) in sync with this new prot.
910 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)911 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
912 int strict_prot)
913 {
914 int is_ram = 0;
915 int ret;
916 enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
917 enum page_cache_mode pcm = want_pcm;
918
919 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
920
921 /*
922 * reserve_pfn_range() for RAM pages. We do not refcount to keep
923 * track of number of mappings of RAM pages. We can assert that
924 * the type requested matches the type of first page in the range.
925 */
926 if (is_ram) {
927 if (!pat_enabled())
928 return 0;
929
930 pcm = lookup_memtype(paddr);
931 if (want_pcm != pcm) {
932 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
933 current->comm, current->pid,
934 cattr_name(want_pcm),
935 (unsigned long long)paddr,
936 (unsigned long long)(paddr + size - 1),
937 cattr_name(pcm));
938 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
939 (~_PAGE_CACHE_MASK)) |
940 cachemode2protval(pcm));
941 }
942 return 0;
943 }
944
945 ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
946 if (ret)
947 return ret;
948
949 if (pcm != want_pcm) {
950 if (strict_prot ||
951 !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
952 memtype_free(paddr, paddr + size);
953 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
954 current->comm, current->pid,
955 cattr_name(want_pcm),
956 (unsigned long long)paddr,
957 (unsigned long long)(paddr + size - 1),
958 cattr_name(pcm));
959 return -EINVAL;
960 }
961 /*
962 * We allow returning different type than the one requested in
963 * non strict case.
964 */
965 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
966 (~_PAGE_CACHE_MASK)) |
967 cachemode2protval(pcm));
968 }
969
970 if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
971 memtype_free(paddr, paddr + size);
972 return -EINVAL;
973 }
974 return 0;
975 }
976
977 /*
978 * Internal interface to free a range of physical memory.
979 * Frees non RAM regions only.
980 */
free_pfn_range(u64 paddr,unsigned long size)981 static void free_pfn_range(u64 paddr, unsigned long size)
982 {
983 int is_ram;
984
985 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
986 if (is_ram == 0)
987 memtype_free(paddr, paddr + size);
988 }
989
990 /*
991 * track_pfn_copy is called when vma that is covering the pfnmap gets
992 * copied through copy_page_range().
993 *
994 * If the vma has a linear pfn mapping for the entire range, we get the prot
995 * from pte and reserve the entire vma range with single reserve_pfn_range call.
996 */
track_pfn_copy(struct vm_area_struct * vma)997 int track_pfn_copy(struct vm_area_struct *vma)
998 {
999 resource_size_t paddr;
1000 unsigned long prot;
1001 unsigned long vma_size = vma->vm_end - vma->vm_start;
1002 pgprot_t pgprot;
1003
1004 if (vma->vm_flags & VM_PAT) {
1005 /*
1006 * reserve the whole chunk covered by vma. We need the
1007 * starting address and protection from pte.
1008 */
1009 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1010 WARN_ON_ONCE(1);
1011 return -EINVAL;
1012 }
1013 pgprot = __pgprot(prot);
1014 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1015 }
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * prot is passed in as a parameter for the new mapping. If the vma has
1022 * a linear pfn mapping for the entire range, or no vma is provided,
1023 * reserve the entire pfn + size range with single reserve_pfn_range
1024 * call.
1025 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1026 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1027 unsigned long pfn, unsigned long addr, unsigned long size)
1028 {
1029 resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1030 enum page_cache_mode pcm;
1031
1032 /* reserve the whole chunk starting from paddr */
1033 if (!vma || (addr == vma->vm_start
1034 && size == (vma->vm_end - vma->vm_start))) {
1035 int ret;
1036
1037 ret = reserve_pfn_range(paddr, size, prot, 0);
1038 if (ret == 0 && vma)
1039 vma->vm_flags |= VM_PAT;
1040 return ret;
1041 }
1042
1043 if (!pat_enabled())
1044 return 0;
1045
1046 /*
1047 * For anything smaller than the vma size we set prot based on the
1048 * lookup.
1049 */
1050 pcm = lookup_memtype(paddr);
1051
1052 /* Check memtype for the remaining pages */
1053 while (size > PAGE_SIZE) {
1054 size -= PAGE_SIZE;
1055 paddr += PAGE_SIZE;
1056 if (pcm != lookup_memtype(paddr))
1057 return -EINVAL;
1058 }
1059
1060 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1061 cachemode2protval(pcm));
1062
1063 return 0;
1064 }
1065
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1066 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1067 {
1068 enum page_cache_mode pcm;
1069
1070 if (!pat_enabled())
1071 return;
1072
1073 /* Set prot based on lookup */
1074 pcm = lookup_memtype(pfn_t_to_phys(pfn));
1075 *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1076 cachemode2protval(pcm));
1077 }
1078
1079 /*
1080 * untrack_pfn is called while unmapping a pfnmap for a region.
1081 * untrack can be called for a specific region indicated by pfn and size or
1082 * can be for the entire vma (in which case pfn, size are zero).
1083 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1084 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1085 unsigned long size)
1086 {
1087 resource_size_t paddr;
1088 unsigned long prot;
1089
1090 if (vma && !(vma->vm_flags & VM_PAT))
1091 return;
1092
1093 /* free the chunk starting from pfn or the whole chunk */
1094 paddr = (resource_size_t)pfn << PAGE_SHIFT;
1095 if (!paddr && !size) {
1096 if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1097 WARN_ON_ONCE(1);
1098 return;
1099 }
1100
1101 size = vma->vm_end - vma->vm_start;
1102 }
1103 free_pfn_range(paddr, size);
1104 if (vma)
1105 vma->vm_flags &= ~VM_PAT;
1106 }
1107
1108 /*
1109 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1110 * with the old vma after its pfnmap page table has been removed. The new
1111 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1112 */
untrack_pfn_moved(struct vm_area_struct * vma)1113 void untrack_pfn_moved(struct vm_area_struct *vma)
1114 {
1115 vma->vm_flags &= ~VM_PAT;
1116 }
1117
pgprot_writecombine(pgprot_t prot)1118 pgprot_t pgprot_writecombine(pgprot_t prot)
1119 {
1120 return __pgprot(pgprot_val(prot) |
1121 cachemode2protval(_PAGE_CACHE_MODE_WC));
1122 }
1123 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1124
pgprot_writethrough(pgprot_t prot)1125 pgprot_t pgprot_writethrough(pgprot_t prot)
1126 {
1127 return __pgprot(pgprot_val(prot) |
1128 cachemode2protval(_PAGE_CACHE_MODE_WT));
1129 }
1130 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1131
1132 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1133
1134 /*
1135 * We are allocating a temporary printout-entry to be passed
1136 * between seq_start()/next() and seq_show():
1137 */
memtype_get_idx(loff_t pos)1138 static struct memtype *memtype_get_idx(loff_t pos)
1139 {
1140 struct memtype *entry_print;
1141 int ret;
1142
1143 entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1144 if (!entry_print)
1145 return NULL;
1146
1147 spin_lock(&memtype_lock);
1148 ret = memtype_copy_nth_element(entry_print, pos);
1149 spin_unlock(&memtype_lock);
1150
1151 /* Free it on error: */
1152 if (ret) {
1153 kfree(entry_print);
1154 return NULL;
1155 }
1156
1157 return entry_print;
1158 }
1159
memtype_seq_start(struct seq_file * seq,loff_t * pos)1160 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1161 {
1162 if (*pos == 0) {
1163 ++*pos;
1164 seq_puts(seq, "PAT memtype list:\n");
1165 }
1166
1167 return memtype_get_idx(*pos);
1168 }
1169
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1170 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1171 {
1172 kfree(v);
1173 ++*pos;
1174 return memtype_get_idx(*pos);
1175 }
1176
memtype_seq_stop(struct seq_file * seq,void * v)1177 static void memtype_seq_stop(struct seq_file *seq, void *v)
1178 {
1179 kfree(v);
1180 }
1181
memtype_seq_show(struct seq_file * seq,void * v)1182 static int memtype_seq_show(struct seq_file *seq, void *v)
1183 {
1184 struct memtype *entry_print = (struct memtype *)v;
1185
1186 seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1187 entry_print->start,
1188 entry_print->end,
1189 cattr_name(entry_print->type));
1190
1191 return 0;
1192 }
1193
1194 static const struct seq_operations memtype_seq_ops = {
1195 .start = memtype_seq_start,
1196 .next = memtype_seq_next,
1197 .stop = memtype_seq_stop,
1198 .show = memtype_seq_show,
1199 };
1200
memtype_seq_open(struct inode * inode,struct file * file)1201 static int memtype_seq_open(struct inode *inode, struct file *file)
1202 {
1203 return seq_open(file, &memtype_seq_ops);
1204 }
1205
1206 static const struct file_operations memtype_fops = {
1207 .open = memtype_seq_open,
1208 .read = seq_read,
1209 .llseek = seq_lseek,
1210 .release = seq_release,
1211 };
1212
pat_memtype_list_init(void)1213 static int __init pat_memtype_list_init(void)
1214 {
1215 if (pat_enabled()) {
1216 debugfs_create_file("pat_memtype_list", S_IRUSR,
1217 arch_debugfs_dir, NULL, &memtype_fops);
1218 }
1219 return 0;
1220 }
1221 late_initcall(pat_memtype_list_init);
1222
1223 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1224