• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 
78 #define FW_FILE_VERSION_V15				\
79 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
80 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
81 	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
82 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
83 
84 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90 
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT		(5*HZ)
93 
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 		   "BCM57710/57711/57711E/"
97 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 		   "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106 
107 int bnx2x_num_queues;
108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109 MODULE_PARM_DESC(num_queues,
110 		 " Set number of queues (default is as a number of CPUs)");
111 
112 static int disable_tpa;
113 module_param(disable_tpa, int, 0444);
114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115 
116 static int int_mode;
117 module_param(int_mode, int, 0444);
118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119 				"(1 INT#x; 2 MSI)");
120 
121 static int dropless_fc;
122 module_param(dropless_fc, int, 0444);
123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124 
125 static int mrrs = -1;
126 module_param(mrrs, int, 0444);
127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128 
129 static int debug;
130 module_param(debug, int, 0444);
131 MODULE_PARM_DESC(debug, " Default debug msglevel");
132 
133 static struct workqueue_struct *bnx2x_wq;
134 struct workqueue_struct *bnx2x_iov_wq;
135 
136 struct bnx2x_mac_vals {
137 	u32 xmac_addr;
138 	u32 xmac_val;
139 	u32 emac_addr;
140 	u32 emac_val;
141 	u32 umac_addr[2];
142 	u32 umac_val[2];
143 	u32 bmac_addr;
144 	u32 bmac_val[2];
145 };
146 
147 enum bnx2x_board_type {
148 	BCM57710 = 0,
149 	BCM57711,
150 	BCM57711E,
151 	BCM57712,
152 	BCM57712_MF,
153 	BCM57712_VF,
154 	BCM57800,
155 	BCM57800_MF,
156 	BCM57800_VF,
157 	BCM57810,
158 	BCM57810_MF,
159 	BCM57810_VF,
160 	BCM57840_4_10,
161 	BCM57840_2_20,
162 	BCM57840_MF,
163 	BCM57840_VF,
164 	BCM57811,
165 	BCM57811_MF,
166 	BCM57840_O,
167 	BCM57840_MFO,
168 	BCM57811_VF
169 };
170 
171 /* indexed by board_type, above */
172 static struct {
173 	char *name;
174 } board_info[] = {
175 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
177 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
178 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
179 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
182 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
185 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
188 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
189 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
192 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196 };
197 
198 #ifndef PCI_DEVICE_ID_NX2_57710
199 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711
202 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57711E
205 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712
208 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
211 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
214 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800
217 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
220 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
223 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810
226 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
229 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_O
232 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
235 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
238 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
241 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
244 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
247 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
250 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811
253 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
256 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
257 #endif
258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
259 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
260 #endif
261 
262 static const struct pci_device_id bnx2x_pci_tbl[] = {
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287 	{ 0 }
288 };
289 
290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291 
292 const u32 dmae_reg_go_c[] = {
293 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297 };
298 
299 /* Global resources for unloading a previously loaded device */
300 #define BNX2X_PREV_WAIT_NEEDED 1
301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302 static LIST_HEAD(bnx2x_prev_list);
303 
304 /* Forward declaration */
305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308 
309 /****************************************************************************
310 * General service functions
311 ****************************************************************************/
312 
313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314 
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
316 				       u32 addr, dma_addr_t mapping)
317 {
318 	REG_WR(bp,  addr, U64_LO(mapping));
319 	REG_WR(bp,  addr + 4, U64_HI(mapping));
320 }
321 
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)322 static void storm_memset_spq_addr(struct bnx2x *bp,
323 				  dma_addr_t mapping, u16 abs_fid)
324 {
325 	u32 addr = XSEM_REG_FAST_MEMORY +
326 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327 
328 	__storm_memset_dma_mapping(bp, addr, mapping);
329 }
330 
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332 				  u16 pf_id)
333 {
334 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335 		pf_id);
336 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337 		pf_id);
338 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339 		pf_id);
340 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341 		pf_id);
342 }
343 
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345 				 u8 enable)
346 {
347 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348 		enable);
349 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350 		enable);
351 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352 		enable);
353 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354 		enable);
355 }
356 
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)357 static void storm_memset_eq_data(struct bnx2x *bp,
358 				 struct event_ring_data *eq_data,
359 				u16 pfid)
360 {
361 	size_t size = sizeof(struct event_ring_data);
362 
363 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364 
365 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366 }
367 
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369 				 u16 pfid)
370 {
371 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372 	REG_WR16(bp, addr, eq_prod);
373 }
374 
375 /* used only at init
376  * locking is done by mcp
377  */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 {
380 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383 			       PCICFG_VENDOR_ID_OFFSET);
384 }
385 
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387 {
388 	u32 val;
389 
390 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393 			       PCICFG_VENDOR_ID_OFFSET);
394 
395 	return val;
396 }
397 
398 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
399 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
400 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
401 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
402 #define DMAE_DP_DST_NONE	"dst_addr [none]"
403 
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)404 static void bnx2x_dp_dmae(struct bnx2x *bp,
405 			  struct dmae_command *dmae, int msglvl)
406 {
407 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408 	int i;
409 
410 	switch (dmae->opcode & DMAE_COMMAND_DST) {
411 	case DMAE_CMD_DST_PCI:
412 		if (src_type == DMAE_CMD_SRC_PCI)
413 			DP(msglvl, "DMAE: opcode 0x%08x\n"
414 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
416 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
419 			   dmae->comp_val);
420 		else
421 			DP(msglvl, "DMAE: opcode 0x%08x\n"
422 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
423 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
424 			   dmae->opcode, dmae->src_addr_lo >> 2,
425 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
427 			   dmae->comp_val);
428 		break;
429 	case DMAE_CMD_DST_GRC:
430 		if (src_type == DMAE_CMD_SRC_PCI)
431 			DP(msglvl, "DMAE: opcode 0x%08x\n"
432 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
434 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435 			   dmae->len, dmae->dst_addr_lo >> 2,
436 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
437 			   dmae->comp_val);
438 		else
439 			DP(msglvl, "DMAE: opcode 0x%08x\n"
440 			   "src [%08x], len [%d*4], dst [%08x]\n"
441 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
442 			   dmae->opcode, dmae->src_addr_lo >> 2,
443 			   dmae->len, dmae->dst_addr_lo >> 2,
444 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
445 			   dmae->comp_val);
446 		break;
447 	default:
448 		if (src_type == DMAE_CMD_SRC_PCI)
449 			DP(msglvl, "DMAE: opcode 0x%08x\n"
450 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
451 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
452 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454 			   dmae->comp_val);
455 		else
456 			DP(msglvl, "DMAE: opcode 0x%08x\n"
457 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
458 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
459 			   dmae->opcode, dmae->src_addr_lo >> 2,
460 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461 			   dmae->comp_val);
462 		break;
463 	}
464 
465 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467 		   i, *(((u32 *)dmae) + i));
468 }
469 
470 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472 {
473 	u32 cmd_offset;
474 	int i;
475 
476 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479 	}
480 	REG_WR(bp, dmae_reg_go_c[idx], 1);
481 }
482 
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 {
485 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486 			   DMAE_CMD_C_ENABLE);
487 }
488 
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 {
491 	return opcode & ~DMAE_CMD_SRC_RESET;
492 }
493 
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495 			     bool with_comp, u8 comp_type)
496 {
497 	u32 opcode = 0;
498 
499 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
501 
502 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503 
504 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508 
509 #ifdef __BIG_ENDIAN
510 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 #else
512 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513 #endif
514 	if (with_comp)
515 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516 	return opcode;
517 }
518 
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520 				      struct dmae_command *dmae,
521 				      u8 src_type, u8 dst_type)
522 {
523 	memset(dmae, 0, sizeof(struct dmae_command));
524 
525 	/* set the opcode */
526 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527 					 true, DMAE_COMP_PCI);
528 
529 	/* fill in the completion parameters */
530 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532 	dmae->comp_val = DMAE_COMP_VAL;
533 }
534 
535 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537 			       u32 *comp)
538 {
539 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540 	int rc = 0;
541 
542 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543 
544 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
545 	 * as long as this code is called both from syscall context and
546 	 * from ndo_set_rx_mode() flow that may be called from BH.
547 	 */
548 
549 	spin_lock_bh(&bp->dmae_lock);
550 
551 	/* reset completion */
552 	*comp = 0;
553 
554 	/* post the command on the channel used for initializations */
555 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556 
557 	/* wait for completion */
558 	udelay(5);
559 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560 
561 		if (!cnt ||
562 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564 			BNX2X_ERR("DMAE timeout!\n");
565 			rc = DMAE_TIMEOUT;
566 			goto unlock;
567 		}
568 		cnt--;
569 		udelay(50);
570 	}
571 	if (*comp & DMAE_PCI_ERR_FLAG) {
572 		BNX2X_ERR("DMAE PCI error!\n");
573 		rc = DMAE_PCI_ERROR;
574 	}
575 
576 unlock:
577 
578 	spin_unlock_bh(&bp->dmae_lock);
579 
580 	return rc;
581 }
582 
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584 		      u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 
592 		if (CHIP_IS_E1(bp))
593 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594 		else
595 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
596 		return;
597 	}
598 
599 	/* set opcode and fixed command fields */
600 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601 
602 	/* fill in addresses and len */
603 	dmae.src_addr_lo = U64_LO(dma_addr);
604 	dmae.src_addr_hi = U64_HI(dma_addr);
605 	dmae.dst_addr_lo = dst_addr >> 2;
606 	dmae.dst_addr_hi = 0;
607 	dmae.len = len32;
608 
609 	/* issue the command and wait for completion */
610 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611 	if (rc) {
612 		BNX2X_ERR("DMAE returned failure %d\n", rc);
613 #ifdef BNX2X_STOP_ON_ERROR
614 		bnx2x_panic();
615 #endif
616 	}
617 }
618 
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620 {
621 	int rc;
622 	struct dmae_command dmae;
623 
624 	if (!bp->dmae_ready) {
625 		u32 *data = bnx2x_sp(bp, wb_data[0]);
626 		int i;
627 
628 		if (CHIP_IS_E1(bp))
629 			for (i = 0; i < len32; i++)
630 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631 		else
632 			for (i = 0; i < len32; i++)
633 				data[i] = REG_RD(bp, src_addr + i*4);
634 
635 		return;
636 	}
637 
638 	/* set opcode and fixed command fields */
639 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640 
641 	/* fill in addresses and len */
642 	dmae.src_addr_lo = src_addr >> 2;
643 	dmae.src_addr_hi = 0;
644 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646 	dmae.len = len32;
647 
648 	/* issue the command and wait for completion */
649 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650 	if (rc) {
651 		BNX2X_ERR("DMAE returned failure %d\n", rc);
652 #ifdef BNX2X_STOP_ON_ERROR
653 		bnx2x_panic();
654 #endif
655 	}
656 }
657 
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659 				      u32 addr, u32 len)
660 {
661 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662 	int offset = 0;
663 
664 	while (len > dmae_wr_max) {
665 		bnx2x_write_dmae(bp, phys_addr + offset,
666 				 addr + offset, dmae_wr_max);
667 		offset += dmae_wr_max * 4;
668 		len -= dmae_wr_max;
669 	}
670 
671 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672 }
673 
674 enum storms {
675 	   XSTORM,
676 	   TSTORM,
677 	   CSTORM,
678 	   USTORM,
679 	   MAX_STORMS
680 };
681 
682 #define STORMS_NUM 4
683 #define REGS_IN_ENTRY 4
684 
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686 					      enum storms storm,
687 					      int entry)
688 {
689 	switch (storm) {
690 	case XSTORM:
691 		return XSTORM_ASSERT_LIST_OFFSET(entry);
692 	case TSTORM:
693 		return TSTORM_ASSERT_LIST_OFFSET(entry);
694 	case CSTORM:
695 		return CSTORM_ASSERT_LIST_OFFSET(entry);
696 	case USTORM:
697 		return USTORM_ASSERT_LIST_OFFSET(entry);
698 	case MAX_STORMS:
699 	default:
700 		BNX2X_ERR("unknown storm\n");
701 	}
702 	return -EINVAL;
703 }
704 
bnx2x_mc_assert(struct bnx2x * bp)705 static int bnx2x_mc_assert(struct bnx2x *bp)
706 {
707 	char last_idx;
708 	int i, j, rc = 0;
709 	enum storms storm;
710 	u32 regs[REGS_IN_ENTRY];
711 	u32 bar_storm_intmem[STORMS_NUM] = {
712 		BAR_XSTRORM_INTMEM,
713 		BAR_TSTRORM_INTMEM,
714 		BAR_CSTRORM_INTMEM,
715 		BAR_USTRORM_INTMEM
716 	};
717 	u32 storm_assert_list_index[STORMS_NUM] = {
718 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
719 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
720 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
721 		USTORM_ASSERT_LIST_INDEX_OFFSET
722 	};
723 	char *storms_string[STORMS_NUM] = {
724 		"XSTORM",
725 		"TSTORM",
726 		"CSTORM",
727 		"USTORM"
728 	};
729 
730 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732 				   storm_assert_list_index[storm]);
733 		if (last_idx)
734 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735 				  storms_string[storm], last_idx);
736 
737 		/* print the asserts */
738 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739 			/* read a single assert entry */
740 			for (j = 0; j < REGS_IN_ENTRY; j++)
741 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742 					  bnx2x_get_assert_list_entry(bp,
743 								      storm,
744 								      i) +
745 					  sizeof(u32) * j);
746 
747 			/* log entry if it contains a valid assert */
748 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750 					  storms_string[storm], i, regs[3],
751 					  regs[2], regs[1], regs[0]);
752 				rc++;
753 			} else {
754 				break;
755 			}
756 		}
757 	}
758 
759 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760 		  CHIP_IS_E1(bp) ? "everest1" :
761 		  CHIP_IS_E1H(bp) ? "everest1h" :
762 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
763 		  bp->fw_major, bp->fw_minor, bp->fw_rev);
764 
765 	return rc;
766 }
767 
768 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
769 #define SCRATCH_BUFFER_SIZE(bp)	\
770 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771 
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773 {
774 	u32 addr, val;
775 	u32 mark, offset;
776 	__be32 data[9];
777 	int word;
778 	u32 trace_shmem_base;
779 	if (BP_NOMCP(bp)) {
780 		BNX2X_ERR("NO MCP - can not dump\n");
781 		return;
782 	}
783 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784 		(bp->common.bc_ver & 0xff0000) >> 16,
785 		(bp->common.bc_ver & 0xff00) >> 8,
786 		(bp->common.bc_ver & 0xff));
787 
788 	if (pci_channel_offline(bp->pdev)) {
789 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790 		return;
791 	}
792 
793 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796 
797 	if (BP_PATH(bp) == 0)
798 		trace_shmem_base = bp->common.shmem_base;
799 	else
800 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801 
802 	/* sanity */
803 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805 				SCRATCH_BUFFER_SIZE(bp)) {
806 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807 			  trace_shmem_base);
808 		return;
809 	}
810 
811 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812 
813 	/* validate TRCB signature */
814 	mark = REG_RD(bp, addr);
815 	if (mark != MFW_TRACE_SIGNATURE) {
816 		BNX2X_ERR("Trace buffer signature is missing.");
817 		return ;
818 	}
819 
820 	/* read cyclic buffer pointer */
821 	addr += 4;
822 	mark = REG_RD(bp, addr);
823 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824 	if (mark >= trace_shmem_base || mark < addr + 4) {
825 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826 		return;
827 	}
828 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829 
830 	printk("%s", lvl);
831 
832 	/* dump buffer after the mark */
833 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834 		for (word = 0; word < 8; word++)
835 			data[word] = htonl(REG_RD(bp, offset + 4*word));
836 		data[8] = 0x0;
837 		pr_cont("%s", (char *)data);
838 	}
839 
840 	/* dump buffer before the mark */
841 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842 		for (word = 0; word < 8; word++)
843 			data[word] = htonl(REG_RD(bp, offset + 4*word));
844 		data[8] = 0x0;
845 		pr_cont("%s", (char *)data);
846 	}
847 	printk("%s" "end of fw dump\n", lvl);
848 }
849 
bnx2x_fw_dump(struct bnx2x * bp)850 static void bnx2x_fw_dump(struct bnx2x *bp)
851 {
852 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
853 }
854 
bnx2x_hc_int_disable(struct bnx2x * bp)855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 {
857 	int port = BP_PORT(bp);
858 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859 	u32 val = REG_RD(bp, addr);
860 
861 	/* in E1 we must use only PCI configuration space to disable
862 	 * MSI/MSIX capability
863 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864 	 */
865 	if (CHIP_IS_E1(bp)) {
866 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867 		 * Use mask register to prevent from HC sending interrupts
868 		 * after we exit the function
869 		 */
870 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871 
872 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
874 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875 	} else
876 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
879 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880 
881 	DP(NETIF_MSG_IFDOWN,
882 	   "write %x to HC %d (addr 0x%x)\n",
883 	   val, port, addr);
884 
885 	REG_WR(bp, addr, val);
886 	if (REG_RD(bp, addr) != val)
887 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888 }
889 
bnx2x_igu_int_disable(struct bnx2x * bp)890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 {
892 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893 
894 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895 		 IGU_PF_CONF_INT_LINE_EN |
896 		 IGU_PF_CONF_ATTN_BIT_EN);
897 
898 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899 
900 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 }
904 
bnx2x_int_disable(struct bnx2x * bp)905 static void bnx2x_int_disable(struct bnx2x *bp)
906 {
907 	if (bp->common.int_block == INT_BLOCK_HC)
908 		bnx2x_hc_int_disable(bp);
909 	else
910 		bnx2x_igu_int_disable(bp);
911 }
912 
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914 {
915 	int i;
916 	u16 j;
917 	struct hc_sp_status_block_data sp_sb_data;
918 	int func = BP_FUNC(bp);
919 #ifdef BNX2X_STOP_ON_ERROR
920 	u16 start = 0, end = 0;
921 	u8 cos;
922 #endif
923 	if (IS_PF(bp) && disable_int)
924 		bnx2x_int_disable(bp);
925 
926 	bp->stats_state = STATS_STATE_DISABLED;
927 	bp->eth_stats.unrecoverable_error++;
928 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929 
930 	BNX2X_ERR("begin crash dump -----------------\n");
931 
932 	/* Indices */
933 	/* Common */
934 	if (IS_PF(bp)) {
935 		struct host_sp_status_block *def_sb = bp->def_status_blk;
936 		int data_size, cstorm_offset;
937 
938 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
940 			  bp->spq_prod_idx, bp->stats_counter);
941 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
942 			  def_sb->atten_status_block.attn_bits,
943 			  def_sb->atten_status_block.attn_bits_ack,
944 			  def_sb->atten_status_block.status_block_id,
945 			  def_sb->atten_status_block.attn_bits_index);
946 		BNX2X_ERR("     def (");
947 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948 			pr_cont("0x%x%s",
949 				def_sb->sp_sb.index_values[i],
950 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
951 
952 		data_size = sizeof(struct hc_sp_status_block_data) /
953 			    sizeof(u32);
954 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955 		for (i = 0; i < data_size; i++)
956 			*((u32 *)&sp_sb_data + i) =
957 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958 					   i * sizeof(u32));
959 
960 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
961 			sp_sb_data.igu_sb_id,
962 			sp_sb_data.igu_seg_id,
963 			sp_sb_data.p_func.pf_id,
964 			sp_sb_data.p_func.vnic_id,
965 			sp_sb_data.p_func.vf_id,
966 			sp_sb_data.p_func.vf_valid,
967 			sp_sb_data.state);
968 	}
969 
970 	for_each_eth_queue(bp, i) {
971 		struct bnx2x_fastpath *fp = &bp->fp[i];
972 		int loop;
973 		struct hc_status_block_data_e2 sb_data_e2;
974 		struct hc_status_block_data_e1x sb_data_e1x;
975 		struct hc_status_block_sm  *hc_sm_p =
976 			CHIP_IS_E1x(bp) ?
977 			sb_data_e1x.common.state_machine :
978 			sb_data_e2.common.state_machine;
979 		struct hc_index_data *hc_index_p =
980 			CHIP_IS_E1x(bp) ?
981 			sb_data_e1x.index_data :
982 			sb_data_e2.index_data;
983 		u8 data_size, cos;
984 		u32 *sb_data_p;
985 		struct bnx2x_fp_txdata txdata;
986 
987 		if (!bp->fp)
988 			break;
989 
990 		if (!fp->rx_cons_sb)
991 			continue;
992 
993 		/* Rx */
994 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
995 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
996 			  fp->rx_comp_prod,
997 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
999 			  fp->rx_sge_prod, fp->last_max_sge,
1000 			  le16_to_cpu(fp->fp_hc_idx));
1001 
1002 		/* Tx */
1003 		for_each_cos_in_tx_queue(fp, cos)
1004 		{
1005 			if (!fp->txdata_ptr[cos])
1006 				break;
1007 
1008 			txdata = *fp->txdata_ptr[cos];
1009 
1010 			if (!txdata.tx_cons_sb)
1011 				continue;
1012 
1013 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1014 				  i, txdata.tx_pkt_prod,
1015 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016 				  txdata.tx_bd_cons,
1017 				  le16_to_cpu(*txdata.tx_cons_sb));
1018 		}
1019 
1020 		loop = CHIP_IS_E1x(bp) ?
1021 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022 
1023 		/* host sb data */
1024 
1025 		if (IS_FCOE_FP(fp))
1026 			continue;
1027 
1028 		BNX2X_ERR("     run indexes (");
1029 		for (j = 0; j < HC_SB_MAX_SM; j++)
1030 			pr_cont("0x%x%s",
1031 			       fp->sb_running_index[j],
1032 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033 
1034 		BNX2X_ERR("     indexes (");
1035 		for (j = 0; j < loop; j++)
1036 			pr_cont("0x%x%s",
1037 			       fp->sb_index_values[j],
1038 			       (j == loop - 1) ? ")" : " ");
1039 
1040 		/* VF cannot access FW refelection for status block */
1041 		if (IS_VF(bp))
1042 			continue;
1043 
1044 		/* fw sb data */
1045 		data_size = CHIP_IS_E1x(bp) ?
1046 			sizeof(struct hc_status_block_data_e1x) :
1047 			sizeof(struct hc_status_block_data_e2);
1048 		data_size /= sizeof(u32);
1049 		sb_data_p = CHIP_IS_E1x(bp) ?
1050 			(u32 *)&sb_data_e1x :
1051 			(u32 *)&sb_data_e2;
1052 		/* copy sb data in here */
1053 		for (j = 0; j < data_size; j++)
1054 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056 				j * sizeof(u32));
1057 
1058 		if (!CHIP_IS_E1x(bp)) {
1059 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1060 				sb_data_e2.common.p_func.pf_id,
1061 				sb_data_e2.common.p_func.vf_id,
1062 				sb_data_e2.common.p_func.vf_valid,
1063 				sb_data_e2.common.p_func.vnic_id,
1064 				sb_data_e2.common.same_igu_sb_1b,
1065 				sb_data_e2.common.state);
1066 		} else {
1067 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1068 				sb_data_e1x.common.p_func.pf_id,
1069 				sb_data_e1x.common.p_func.vf_id,
1070 				sb_data_e1x.common.p_func.vf_valid,
1071 				sb_data_e1x.common.p_func.vnic_id,
1072 				sb_data_e1x.common.same_igu_sb_1b,
1073 				sb_data_e1x.common.state);
1074 		}
1075 
1076 		/* SB_SMs data */
1077 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1078 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079 				j, hc_sm_p[j].__flags,
1080 				hc_sm_p[j].igu_sb_id,
1081 				hc_sm_p[j].igu_seg_id,
1082 				hc_sm_p[j].time_to_expire,
1083 				hc_sm_p[j].timer_value);
1084 		}
1085 
1086 		/* Indices data */
1087 		for (j = 0; j < loop; j++) {
1088 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089 			       hc_index_p[j].flags,
1090 			       hc_index_p[j].timeout);
1091 		}
1092 	}
1093 
1094 #ifdef BNX2X_STOP_ON_ERROR
1095 	if (IS_PF(bp)) {
1096 		/* event queue */
1097 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098 		for (i = 0; i < NUM_EQ_DESC; i++) {
1099 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100 
1101 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102 				  i, bp->eq_ring[i].message.opcode,
1103 				  bp->eq_ring[i].message.error);
1104 			BNX2X_ERR("data: %x %x %x\n",
1105 				  data[0], data[1], data[2]);
1106 		}
1107 	}
1108 
1109 	/* Rings */
1110 	/* Rx */
1111 	for_each_valid_rx_queue(bp, i) {
1112 		struct bnx2x_fastpath *fp = &bp->fp[i];
1113 
1114 		if (!bp->fp)
1115 			break;
1116 
1117 		if (!fp->rx_cons_sb)
1118 			continue;
1119 
1120 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122 		for (j = start; j != end; j = RX_BD(j + 1)) {
1123 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125 
1126 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1127 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128 		}
1129 
1130 		start = RX_SGE(fp->rx_sge_prod);
1131 		end = RX_SGE(fp->last_max_sge);
1132 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1133 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135 
1136 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1137 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138 		}
1139 
1140 		start = RCQ_BD(fp->rx_comp_cons - 10);
1141 		end = RCQ_BD(fp->rx_comp_cons + 503);
1142 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144 
1145 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147 		}
1148 	}
1149 
1150 	/* Tx */
1151 	for_each_valid_tx_queue(bp, i) {
1152 		struct bnx2x_fastpath *fp = &bp->fp[i];
1153 
1154 		if (!bp->fp)
1155 			break;
1156 
1157 		for_each_cos_in_tx_queue(fp, cos) {
1158 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159 
1160 			if (!fp->txdata_ptr[cos])
1161 				break;
1162 
1163 			if (!txdata->tx_cons_sb)
1164 				continue;
1165 
1166 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168 			for (j = start; j != end; j = TX_BD(j + 1)) {
1169 				struct sw_tx_bd *sw_bd =
1170 					&txdata->tx_buf_ring[j];
1171 
1172 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173 					  i, cos, j, sw_bd->skb,
1174 					  sw_bd->first_bd);
1175 			}
1176 
1177 			start = TX_BD(txdata->tx_bd_cons - 10);
1178 			end = TX_BD(txdata->tx_bd_cons + 254);
1179 			for (j = start; j != end; j = TX_BD(j + 1)) {
1180 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181 
1182 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183 					  i, cos, j, tx_bd[0], tx_bd[1],
1184 					  tx_bd[2], tx_bd[3]);
1185 			}
1186 		}
1187 	}
1188 #endif
1189 	if (IS_PF(bp)) {
1190 		int tmp_msg_en = bp->msg_enable;
1191 
1192 		bnx2x_fw_dump(bp);
1193 		bp->msg_enable |= NETIF_MSG_HW;
1194 		BNX2X_ERR("Idle check (1st round) ----------\n");
1195 		bnx2x_idle_chk(bp);
1196 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1197 		bnx2x_idle_chk(bp);
1198 		bp->msg_enable = tmp_msg_en;
1199 		bnx2x_mc_assert(bp);
1200 	}
1201 
1202 	BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204 
1205 /*
1206  * FLR Support for E2
1207  *
1208  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209  * initialization.
1210  */
1211 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL	50	/* usec */
1213 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214 
1215 struct pbf_pN_buf_regs {
1216 	int pN;
1217 	u32 init_crd;
1218 	u32 crd;
1219 	u32 crd_freed;
1220 };
1221 
1222 struct pbf_pN_cmd_regs {
1223 	int pN;
1224 	u32 lines_occup;
1225 	u32 lines_freed;
1226 };
1227 
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229 				     struct pbf_pN_buf_regs *regs,
1230 				     u32 poll_count)
1231 {
1232 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233 	u32 cur_cnt = poll_count;
1234 
1235 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236 	crd = crd_start = REG_RD(bp, regs->crd);
1237 	init_crd = REG_RD(bp, regs->init_crd);
1238 
1239 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1241 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242 
1243 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244 	       (init_crd - crd_start))) {
1245 		if (cur_cnt--) {
1246 			udelay(FLR_WAIT_INTERVAL);
1247 			crd = REG_RD(bp, regs->crd);
1248 			crd_freed = REG_RD(bp, regs->crd_freed);
1249 		} else {
1250 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251 			   regs->pN);
1252 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1253 			   regs->pN, crd);
1254 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255 			   regs->pN, crd_freed);
1256 			break;
1257 		}
1258 	}
1259 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262 
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264 				     struct pbf_pN_cmd_regs *regs,
1265 				     u32 poll_count)
1266 {
1267 	u32 occup, to_free, freed, freed_start;
1268 	u32 cur_cnt = poll_count;
1269 
1270 	occup = to_free = REG_RD(bp, regs->lines_occup);
1271 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1272 
1273 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1274 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275 
1276 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277 		if (cur_cnt--) {
1278 			udelay(FLR_WAIT_INTERVAL);
1279 			occup = REG_RD(bp, regs->lines_occup);
1280 			freed = REG_RD(bp, regs->lines_freed);
1281 		} else {
1282 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283 			   regs->pN);
1284 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1285 			   regs->pN, occup);
1286 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287 			   regs->pN, freed);
1288 			break;
1289 		}
1290 	}
1291 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294 
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296 				    u32 expected, u32 poll_count)
1297 {
1298 	u32 cur_cnt = poll_count;
1299 	u32 val;
1300 
1301 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302 		udelay(FLR_WAIT_INTERVAL);
1303 
1304 	return val;
1305 }
1306 
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308 				    char *msg, u32 poll_cnt)
1309 {
1310 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311 	if (val != 0) {
1312 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1313 		return 1;
1314 	}
1315 	return 0;
1316 }
1317 
1318 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321 	/* adjust polling timeout */
1322 	if (CHIP_REV_IS_EMUL(bp))
1323 		return FLR_POLL_CNT * 2000;
1324 
1325 	if (CHIP_REV_IS_FPGA(bp))
1326 		return FLR_POLL_CNT * 120;
1327 
1328 	return FLR_POLL_CNT;
1329 }
1330 
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333 	struct pbf_pN_cmd_regs cmd_regs[] = {
1334 		{0, (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_TQ_OCCUPANCY_Q0 :
1336 			PBF_REG_P0_TQ_OCCUPANCY,
1337 		    (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1340 		{1, (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_TQ_OCCUPANCY_Q1 :
1342 			PBF_REG_P1_TQ_OCCUPANCY,
1343 		    (CHIP_IS_E3B0(bp)) ?
1344 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1346 		{4, (CHIP_IS_E3B0(bp)) ?
1347 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1348 			PBF_REG_P4_TQ_OCCUPANCY,
1349 		    (CHIP_IS_E3B0(bp)) ?
1350 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1352 	};
1353 
1354 	struct pbf_pN_buf_regs buf_regs[] = {
1355 		{0, (CHIP_IS_E3B0(bp)) ?
1356 			PBF_REG_INIT_CRD_Q0 :
1357 			PBF_REG_P0_INIT_CRD ,
1358 		    (CHIP_IS_E3B0(bp)) ?
1359 			PBF_REG_CREDIT_Q0 :
1360 			PBF_REG_P0_CREDIT,
1361 		    (CHIP_IS_E3B0(bp)) ?
1362 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364 		{1, (CHIP_IS_E3B0(bp)) ?
1365 			PBF_REG_INIT_CRD_Q1 :
1366 			PBF_REG_P1_INIT_CRD,
1367 		    (CHIP_IS_E3B0(bp)) ?
1368 			PBF_REG_CREDIT_Q1 :
1369 			PBF_REG_P1_CREDIT,
1370 		    (CHIP_IS_E3B0(bp)) ?
1371 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373 		{4, (CHIP_IS_E3B0(bp)) ?
1374 			PBF_REG_INIT_CRD_LB_Q :
1375 			PBF_REG_P4_INIT_CRD,
1376 		    (CHIP_IS_E3B0(bp)) ?
1377 			PBF_REG_CREDIT_LB_Q :
1378 			PBF_REG_P4_CREDIT,
1379 		    (CHIP_IS_E3B0(bp)) ?
1380 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382 	};
1383 
1384 	int i;
1385 
1386 	/* Verify the command queues are flushed P0, P1, P4 */
1387 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389 
1390 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1391 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394 
1395 #define OP_GEN_PARAM(param) \
1396 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397 
1398 #define OP_GEN_TYPE(type) \
1399 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400 
1401 #define OP_GEN_AGG_VECT(index) \
1402 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403 
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406 	u32 op_gen_command = 0;
1407 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1408 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409 	int ret = 0;
1410 
1411 	if (REG_RD(bp, comp_addr)) {
1412 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1413 		return 1;
1414 	}
1415 
1416 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1417 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1418 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1419 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1420 
1421 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1422 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1423 
1424 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1425 		BNX2X_ERR("FW final cleanup did not succeed\n");
1426 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1427 		   (REG_RD(bp, comp_addr)));
1428 		bnx2x_panic();
1429 		return 1;
1430 	}
1431 	/* Zero completion for next FLR */
1432 	REG_WR(bp, comp_addr, 0);
1433 
1434 	return ret;
1435 }
1436 
bnx2x_is_pcie_pending(struct pci_dev * dev)1437 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1438 {
1439 	u16 status;
1440 
1441 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1442 	return status & PCI_EXP_DEVSTA_TRPND;
1443 }
1444 
1445 /* PF FLR specific routines
1446 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1447 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1448 {
1449 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1450 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1452 			"CFC PF usage counter timed out",
1453 			poll_cnt))
1454 		return 1;
1455 
1456 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1457 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458 			DORQ_REG_PF_USAGE_CNT,
1459 			"DQ PF usage counter timed out",
1460 			poll_cnt))
1461 		return 1;
1462 
1463 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1464 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1465 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1466 			"QM PF usage counter timed out",
1467 			poll_cnt))
1468 		return 1;
1469 
1470 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1471 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1472 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1473 			"Timers VNIC usage counter timed out",
1474 			poll_cnt))
1475 		return 1;
1476 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1477 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1478 			"Timers NUM_SCANS usage counter timed out",
1479 			poll_cnt))
1480 		return 1;
1481 
1482 	/* Wait DMAE PF usage counter to zero */
1483 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1484 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1485 			"DMAE command register timed out",
1486 			poll_cnt))
1487 		return 1;
1488 
1489 	return 0;
1490 }
1491 
bnx2x_hw_enable_status(struct bnx2x * bp)1492 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1493 {
1494 	u32 val;
1495 
1496 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1497 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1498 
1499 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1500 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1501 
1502 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1503 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1504 
1505 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1506 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1507 
1508 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1509 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1510 
1511 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1512 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1513 
1514 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1515 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1516 
1517 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1518 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1519 	   val);
1520 }
1521 
bnx2x_pf_flr_clnup(struct bnx2x * bp)1522 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1523 {
1524 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1525 
1526 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1527 
1528 	/* Re-enable PF target read access */
1529 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1530 
1531 	/* Poll HW usage counters */
1532 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1533 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1534 		return -EBUSY;
1535 
1536 	/* Zero the igu 'trailing edge' and 'leading edge' */
1537 
1538 	/* Send the FW cleanup command */
1539 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1540 		return -EBUSY;
1541 
1542 	/* ATC cleanup */
1543 
1544 	/* Verify TX hw is flushed */
1545 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1546 
1547 	/* Wait 100ms (not adjusted according to platform) */
1548 	msleep(100);
1549 
1550 	/* Verify no pending pci transactions */
1551 	if (bnx2x_is_pcie_pending(bp->pdev))
1552 		BNX2X_ERR("PCIE Transactions still pending\n");
1553 
1554 	/* Debug */
1555 	bnx2x_hw_enable_status(bp);
1556 
1557 	/*
1558 	 * Master enable - Due to WB DMAE writes performed before this
1559 	 * register is re-initialized as part of the regular function init
1560 	 */
1561 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1562 
1563 	return 0;
1564 }
1565 
bnx2x_hc_int_enable(struct bnx2x * bp)1566 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1567 {
1568 	int port = BP_PORT(bp);
1569 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1570 	u32 val = REG_RD(bp, addr);
1571 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1572 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1573 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1574 
1575 	if (msix) {
1576 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1577 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1578 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1580 		if (single_msix)
1581 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1582 	} else if (msi) {
1583 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1584 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1585 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1586 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1587 	} else {
1588 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1589 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1590 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1591 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1592 
1593 		if (!CHIP_IS_E1(bp)) {
1594 			DP(NETIF_MSG_IFUP,
1595 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1596 
1597 			REG_WR(bp, addr, val);
1598 
1599 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1600 		}
1601 	}
1602 
1603 	if (CHIP_IS_E1(bp))
1604 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1605 
1606 	DP(NETIF_MSG_IFUP,
1607 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1608 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1609 
1610 	REG_WR(bp, addr, val);
1611 	/*
1612 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1613 	 */
1614 	barrier();
1615 
1616 	if (!CHIP_IS_E1(bp)) {
1617 		/* init leading/trailing edge */
1618 		if (IS_MF(bp)) {
1619 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1620 			if (bp->port.pmf)
1621 				/* enable nig and gpio3 attention */
1622 				val |= 0x1100;
1623 		} else
1624 			val = 0xffff;
1625 
1626 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1627 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1628 	}
1629 }
1630 
bnx2x_igu_int_enable(struct bnx2x * bp)1631 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1632 {
1633 	u32 val;
1634 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1635 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1636 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1637 
1638 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1639 
1640 	if (msix) {
1641 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1642 			 IGU_PF_CONF_SINGLE_ISR_EN);
1643 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1644 			IGU_PF_CONF_ATTN_BIT_EN);
1645 
1646 		if (single_msix)
1647 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1648 	} else if (msi) {
1649 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1650 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1651 			IGU_PF_CONF_ATTN_BIT_EN |
1652 			IGU_PF_CONF_SINGLE_ISR_EN);
1653 	} else {
1654 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1655 		val |= (IGU_PF_CONF_INT_LINE_EN |
1656 			IGU_PF_CONF_ATTN_BIT_EN |
1657 			IGU_PF_CONF_SINGLE_ISR_EN);
1658 	}
1659 
1660 	/* Clean previous status - need to configure igu prior to ack*/
1661 	if ((!msix) || single_msix) {
1662 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1663 		bnx2x_ack_int(bp);
1664 	}
1665 
1666 	val |= IGU_PF_CONF_FUNC_EN;
1667 
1668 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1669 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1670 
1671 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1672 
1673 	if (val & IGU_PF_CONF_INT_LINE_EN)
1674 		pci_intx(bp->pdev, true);
1675 
1676 	barrier();
1677 
1678 	/* init leading/trailing edge */
1679 	if (IS_MF(bp)) {
1680 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1681 		if (bp->port.pmf)
1682 			/* enable nig and gpio3 attention */
1683 			val |= 0x1100;
1684 	} else
1685 		val = 0xffff;
1686 
1687 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1688 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1689 }
1690 
bnx2x_int_enable(struct bnx2x * bp)1691 void bnx2x_int_enable(struct bnx2x *bp)
1692 {
1693 	if (bp->common.int_block == INT_BLOCK_HC)
1694 		bnx2x_hc_int_enable(bp);
1695 	else
1696 		bnx2x_igu_int_enable(bp);
1697 }
1698 
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1699 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1700 {
1701 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1702 	int i, offset;
1703 
1704 	if (disable_hw)
1705 		/* prevent the HW from sending interrupts */
1706 		bnx2x_int_disable(bp);
1707 
1708 	/* make sure all ISRs are done */
1709 	if (msix) {
1710 		synchronize_irq(bp->msix_table[0].vector);
1711 		offset = 1;
1712 		if (CNIC_SUPPORT(bp))
1713 			offset++;
1714 		for_each_eth_queue(bp, i)
1715 			synchronize_irq(bp->msix_table[offset++].vector);
1716 	} else
1717 		synchronize_irq(bp->pdev->irq);
1718 
1719 	/* make sure sp_task is not running */
1720 	cancel_delayed_work(&bp->sp_task);
1721 	cancel_delayed_work(&bp->period_task);
1722 	flush_workqueue(bnx2x_wq);
1723 }
1724 
1725 /* fast path */
1726 
1727 /*
1728  * General service functions
1729  */
1730 
1731 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1732 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1733 {
1734 	u32 lock_status;
1735 	u32 resource_bit = (1 << resource);
1736 	int func = BP_FUNC(bp);
1737 	u32 hw_lock_control_reg;
1738 
1739 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1740 	   "Trying to take a lock on resource %d\n", resource);
1741 
1742 	/* Validating that the resource is within range */
1743 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1744 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1746 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1747 		return false;
1748 	}
1749 
1750 	if (func <= 5)
1751 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1752 	else
1753 		hw_lock_control_reg =
1754 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1755 
1756 	/* Try to acquire the lock */
1757 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1758 	lock_status = REG_RD(bp, hw_lock_control_reg);
1759 	if (lock_status & resource_bit)
1760 		return true;
1761 
1762 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1763 	   "Failed to get a lock on resource %d\n", resource);
1764 	return false;
1765 }
1766 
1767 /**
1768  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1769  *
1770  * @bp:	driver handle
1771  *
1772  * Returns the recovery leader resource id according to the engine this function
1773  * belongs to. Currently only only 2 engines is supported.
1774  */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1775 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1776 {
1777 	if (BP_PATH(bp))
1778 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1779 	else
1780 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1781 }
1782 
1783 /**
1784  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1785  *
1786  * @bp: driver handle
1787  *
1788  * Tries to acquire a leader lock for current engine.
1789  */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1790 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1791 {
1792 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1793 }
1794 
1795 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1796 
1797 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1798 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1799 {
1800 	/* Set the interrupt occurred bit for the sp-task to recognize it
1801 	 * must ack the interrupt and transition according to the IGU
1802 	 * state machine.
1803 	 */
1804 	atomic_set(&bp->interrupt_occurred, 1);
1805 
1806 	/* The sp_task must execute only after this bit
1807 	 * is set, otherwise we will get out of sync and miss all
1808 	 * further interrupts. Hence, the barrier.
1809 	 */
1810 	smp_wmb();
1811 
1812 	/* schedule sp_task to workqueue */
1813 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1814 }
1815 
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1816 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1817 {
1818 	struct bnx2x *bp = fp->bp;
1819 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1821 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1822 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1823 
1824 	DP(BNX2X_MSG_SP,
1825 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1826 	   fp->index, cid, command, bp->state,
1827 	   rr_cqe->ramrod_cqe.ramrod_type);
1828 
1829 	/* If cid is within VF range, replace the slowpath object with the
1830 	 * one corresponding to this VF
1831 	 */
1832 	if (cid >= BNX2X_FIRST_VF_CID  &&
1833 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1834 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1835 
1836 	switch (command) {
1837 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1838 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1839 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1840 		break;
1841 
1842 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1843 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1844 		drv_cmd = BNX2X_Q_CMD_SETUP;
1845 		break;
1846 
1847 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1848 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1849 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1850 		break;
1851 
1852 	case (RAMROD_CMD_ID_ETH_HALT):
1853 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1854 		drv_cmd = BNX2X_Q_CMD_HALT;
1855 		break;
1856 
1857 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1858 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1859 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1860 		break;
1861 
1862 	case (RAMROD_CMD_ID_ETH_EMPTY):
1863 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1864 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1865 		break;
1866 
1867 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1868 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1869 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1870 		break;
1871 
1872 	default:
1873 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1874 			  command, fp->index);
1875 		return;
1876 	}
1877 
1878 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1879 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1880 		/* q_obj->complete_cmd() failure means that this was
1881 		 * an unexpected completion.
1882 		 *
1883 		 * In this case we don't want to increase the bp->spq_left
1884 		 * because apparently we haven't sent this command the first
1885 		 * place.
1886 		 */
1887 #ifdef BNX2X_STOP_ON_ERROR
1888 		bnx2x_panic();
1889 #else
1890 		return;
1891 #endif
1892 
1893 	smp_mb__before_atomic();
1894 	atomic_inc(&bp->cq_spq_left);
1895 	/* push the change in bp->spq_left and towards the memory */
1896 	smp_mb__after_atomic();
1897 
1898 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1899 
1900 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1901 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1902 		/* if Q update ramrod is completed for last Q in AFEX vif set
1903 		 * flow, then ACK MCP at the end
1904 		 *
1905 		 * mark pending ACK to MCP bit.
1906 		 * prevent case that both bits are cleared.
1907 		 * At the end of load/unload driver checks that
1908 		 * sp_state is cleared, and this order prevents
1909 		 * races
1910 		 */
1911 		smp_mb__before_atomic();
1912 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1913 		wmb();
1914 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1915 		smp_mb__after_atomic();
1916 
1917 		/* schedule the sp task as mcp ack is required */
1918 		bnx2x_schedule_sp_task(bp);
1919 	}
1920 
1921 	return;
1922 }
1923 
bnx2x_interrupt(int irq,void * dev_instance)1924 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1925 {
1926 	struct bnx2x *bp = netdev_priv(dev_instance);
1927 	u16 status = bnx2x_ack_int(bp);
1928 	u16 mask;
1929 	int i;
1930 	u8 cos;
1931 
1932 	/* Return here if interrupt is shared and it's not for us */
1933 	if (unlikely(status == 0)) {
1934 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1935 		return IRQ_NONE;
1936 	}
1937 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1938 
1939 #ifdef BNX2X_STOP_ON_ERROR
1940 	if (unlikely(bp->panic))
1941 		return IRQ_HANDLED;
1942 #endif
1943 
1944 	for_each_eth_queue(bp, i) {
1945 		struct bnx2x_fastpath *fp = &bp->fp[i];
1946 
1947 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1948 		if (status & mask) {
1949 			/* Handle Rx or Tx according to SB id */
1950 			for_each_cos_in_tx_queue(fp, cos)
1951 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1952 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1953 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1954 			status &= ~mask;
1955 		}
1956 	}
1957 
1958 	if (CNIC_SUPPORT(bp)) {
1959 		mask = 0x2;
1960 		if (status & (mask | 0x1)) {
1961 			struct cnic_ops *c_ops = NULL;
1962 
1963 			rcu_read_lock();
1964 			c_ops = rcu_dereference(bp->cnic_ops);
1965 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1966 				      CNIC_DRV_STATE_HANDLES_IRQ))
1967 				c_ops->cnic_handler(bp->cnic_data, NULL);
1968 			rcu_read_unlock();
1969 
1970 			status &= ~mask;
1971 		}
1972 	}
1973 
1974 	if (unlikely(status & 0x1)) {
1975 
1976 		/* schedule sp task to perform default status block work, ack
1977 		 * attentions and enable interrupts.
1978 		 */
1979 		bnx2x_schedule_sp_task(bp);
1980 
1981 		status &= ~0x1;
1982 		if (!status)
1983 			return IRQ_HANDLED;
1984 	}
1985 
1986 	if (unlikely(status))
1987 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1988 		   status);
1989 
1990 	return IRQ_HANDLED;
1991 }
1992 
1993 /* Link */
1994 
1995 /*
1996  * General service functions
1997  */
1998 
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1999 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
2000 {
2001 	u32 lock_status;
2002 	u32 resource_bit = (1 << resource);
2003 	int func = BP_FUNC(bp);
2004 	u32 hw_lock_control_reg;
2005 	int cnt;
2006 
2007 	/* Validating that the resource is within range */
2008 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2009 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2010 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2011 		return -EINVAL;
2012 	}
2013 
2014 	if (func <= 5) {
2015 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2016 	} else {
2017 		hw_lock_control_reg =
2018 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2019 	}
2020 
2021 	/* Validating that the resource is not already taken */
2022 	lock_status = REG_RD(bp, hw_lock_control_reg);
2023 	if (lock_status & resource_bit) {
2024 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2025 		   lock_status, resource_bit);
2026 		return -EEXIST;
2027 	}
2028 
2029 	/* Try for 5 second every 5ms */
2030 	for (cnt = 0; cnt < 1000; cnt++) {
2031 		/* Try to acquire the lock */
2032 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2033 		lock_status = REG_RD(bp, hw_lock_control_reg);
2034 		if (lock_status & resource_bit)
2035 			return 0;
2036 
2037 		usleep_range(5000, 10000);
2038 	}
2039 	BNX2X_ERR("Timeout\n");
2040 	return -EAGAIN;
2041 }
2042 
bnx2x_release_leader_lock(struct bnx2x * bp)2043 int bnx2x_release_leader_lock(struct bnx2x *bp)
2044 {
2045 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2046 }
2047 
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2048 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2049 {
2050 	u32 lock_status;
2051 	u32 resource_bit = (1 << resource);
2052 	int func = BP_FUNC(bp);
2053 	u32 hw_lock_control_reg;
2054 
2055 	/* Validating that the resource is within range */
2056 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2057 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2058 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2059 		return -EINVAL;
2060 	}
2061 
2062 	if (func <= 5) {
2063 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2064 	} else {
2065 		hw_lock_control_reg =
2066 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2067 	}
2068 
2069 	/* Validating that the resource is currently taken */
2070 	lock_status = REG_RD(bp, hw_lock_control_reg);
2071 	if (!(lock_status & resource_bit)) {
2072 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2073 			  lock_status, resource_bit);
2074 		return -EFAULT;
2075 	}
2076 
2077 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2078 	return 0;
2079 }
2080 
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2081 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2082 {
2083 	/* The GPIO should be swapped if swap register is set and active */
2084 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2085 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2086 	int gpio_shift = gpio_num +
2087 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2088 	u32 gpio_mask = (1 << gpio_shift);
2089 	u32 gpio_reg;
2090 	int value;
2091 
2092 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2093 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2094 		return -EINVAL;
2095 	}
2096 
2097 	/* read GPIO value */
2098 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2099 
2100 	/* get the requested pin value */
2101 	if ((gpio_reg & gpio_mask) == gpio_mask)
2102 		value = 1;
2103 	else
2104 		value = 0;
2105 
2106 	return value;
2107 }
2108 
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2109 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2110 {
2111 	/* The GPIO should be swapped if swap register is set and active */
2112 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2113 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2114 	int gpio_shift = gpio_num +
2115 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2116 	u32 gpio_mask = (1 << gpio_shift);
2117 	u32 gpio_reg;
2118 
2119 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2120 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2121 		return -EINVAL;
2122 	}
2123 
2124 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2125 	/* read GPIO and mask except the float bits */
2126 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2127 
2128 	switch (mode) {
2129 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130 		DP(NETIF_MSG_LINK,
2131 		   "Set GPIO %d (shift %d) -> output low\n",
2132 		   gpio_num, gpio_shift);
2133 		/* clear FLOAT and set CLR */
2134 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2136 		break;
2137 
2138 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2139 		DP(NETIF_MSG_LINK,
2140 		   "Set GPIO %d (shift %d) -> output high\n",
2141 		   gpio_num, gpio_shift);
2142 		/* clear FLOAT and set SET */
2143 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2145 		break;
2146 
2147 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2148 		DP(NETIF_MSG_LINK,
2149 		   "Set GPIO %d (shift %d) -> input\n",
2150 		   gpio_num, gpio_shift);
2151 		/* set FLOAT */
2152 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2153 		break;
2154 
2155 	default:
2156 		break;
2157 	}
2158 
2159 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2160 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2161 
2162 	return 0;
2163 }
2164 
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2165 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2166 {
2167 	u32 gpio_reg = 0;
2168 	int rc = 0;
2169 
2170 	/* Any port swapping should be handled by caller. */
2171 
2172 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2173 	/* read GPIO and mask except the float bits */
2174 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2175 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2176 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2177 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2178 
2179 	switch (mode) {
2180 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2181 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2182 		/* set CLR */
2183 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2184 		break;
2185 
2186 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2187 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2188 		/* set SET */
2189 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2190 		break;
2191 
2192 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2193 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2194 		/* set FLOAT */
2195 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2196 		break;
2197 
2198 	default:
2199 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2200 		rc = -EINVAL;
2201 		break;
2202 	}
2203 
2204 	if (rc == 0)
2205 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2206 
2207 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2208 
2209 	return rc;
2210 }
2211 
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2212 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2213 {
2214 	/* The GPIO should be swapped if swap register is set and active */
2215 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2216 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2217 	int gpio_shift = gpio_num +
2218 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2219 	u32 gpio_mask = (1 << gpio_shift);
2220 	u32 gpio_reg;
2221 
2222 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2223 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2224 		return -EINVAL;
2225 	}
2226 
2227 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2228 	/* read GPIO int */
2229 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2230 
2231 	switch (mode) {
2232 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2233 		DP(NETIF_MSG_LINK,
2234 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2235 		   gpio_num, gpio_shift);
2236 		/* clear SET and set CLR */
2237 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2238 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2239 		break;
2240 
2241 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2242 		DP(NETIF_MSG_LINK,
2243 		   "Set GPIO INT %d (shift %d) -> output high\n",
2244 		   gpio_num, gpio_shift);
2245 		/* clear CLR and set SET */
2246 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2247 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2248 		break;
2249 
2250 	default:
2251 		break;
2252 	}
2253 
2254 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2255 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2256 
2257 	return 0;
2258 }
2259 
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2260 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2261 {
2262 	u32 spio_reg;
2263 
2264 	/* Only 2 SPIOs are configurable */
2265 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2266 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2267 		return -EINVAL;
2268 	}
2269 
2270 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271 	/* read SPIO and mask except the float bits */
2272 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2273 
2274 	switch (mode) {
2275 	case MISC_SPIO_OUTPUT_LOW:
2276 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2277 		/* clear FLOAT and set CLR */
2278 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2279 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2280 		break;
2281 
2282 	case MISC_SPIO_OUTPUT_HIGH:
2283 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2284 		/* clear FLOAT and set SET */
2285 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2286 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2287 		break;
2288 
2289 	case MISC_SPIO_INPUT_HI_Z:
2290 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2291 		/* set FLOAT */
2292 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2293 		break;
2294 
2295 	default:
2296 		break;
2297 	}
2298 
2299 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2300 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2301 
2302 	return 0;
2303 }
2304 
bnx2x_calc_fc_adv(struct bnx2x * bp)2305 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2306 {
2307 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2308 
2309 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2310 					   ADVERTISED_Pause);
2311 	switch (bp->link_vars.ieee_fc &
2312 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2313 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2314 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2315 						  ADVERTISED_Pause);
2316 		break;
2317 
2318 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2319 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2320 		break;
2321 
2322 	default:
2323 		break;
2324 	}
2325 }
2326 
bnx2x_set_requested_fc(struct bnx2x * bp)2327 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2328 {
2329 	/* Initialize link parameters structure variables
2330 	 * It is recommended to turn off RX FC for jumbo frames
2331 	 *  for better performance
2332 	 */
2333 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2334 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2335 	else
2336 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2337 }
2338 
bnx2x_init_dropless_fc(struct bnx2x * bp)2339 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2340 {
2341 	u32 pause_enabled = 0;
2342 
2343 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2344 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2345 			pause_enabled = 1;
2346 
2347 		REG_WR(bp, BAR_USTRORM_INTMEM +
2348 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2349 		       pause_enabled);
2350 	}
2351 
2352 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2353 	   pause_enabled ? "enabled" : "disabled");
2354 }
2355 
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2356 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2357 {
2358 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2359 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2360 
2361 	if (!BP_NOMCP(bp)) {
2362 		bnx2x_set_requested_fc(bp);
2363 		bnx2x_acquire_phy_lock(bp);
2364 
2365 		if (load_mode == LOAD_DIAG) {
2366 			struct link_params *lp = &bp->link_params;
2367 			lp->loopback_mode = LOOPBACK_XGXS;
2368 			/* Prefer doing PHY loopback at highest speed */
2369 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2370 				if (lp->speed_cap_mask[cfx_idx] &
2371 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2372 					lp->req_line_speed[cfx_idx] =
2373 					SPEED_20000;
2374 				else if (lp->speed_cap_mask[cfx_idx] &
2375 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2376 						lp->req_line_speed[cfx_idx] =
2377 						SPEED_10000;
2378 				else
2379 					lp->req_line_speed[cfx_idx] =
2380 					SPEED_1000;
2381 			}
2382 		}
2383 
2384 		if (load_mode == LOAD_LOOPBACK_EXT) {
2385 			struct link_params *lp = &bp->link_params;
2386 			lp->loopback_mode = LOOPBACK_EXT;
2387 		}
2388 
2389 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2390 
2391 		bnx2x_release_phy_lock(bp);
2392 
2393 		bnx2x_init_dropless_fc(bp);
2394 
2395 		bnx2x_calc_fc_adv(bp);
2396 
2397 		if (bp->link_vars.link_up) {
2398 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2399 			bnx2x_link_report(bp);
2400 		}
2401 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2402 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2403 		return rc;
2404 	}
2405 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2406 	return -EINVAL;
2407 }
2408 
bnx2x_link_set(struct bnx2x * bp)2409 void bnx2x_link_set(struct bnx2x *bp)
2410 {
2411 	if (!BP_NOMCP(bp)) {
2412 		bnx2x_acquire_phy_lock(bp);
2413 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2414 		bnx2x_release_phy_lock(bp);
2415 
2416 		bnx2x_init_dropless_fc(bp);
2417 
2418 		bnx2x_calc_fc_adv(bp);
2419 	} else
2420 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2421 }
2422 
bnx2x__link_reset(struct bnx2x * bp)2423 static void bnx2x__link_reset(struct bnx2x *bp)
2424 {
2425 	if (!BP_NOMCP(bp)) {
2426 		bnx2x_acquire_phy_lock(bp);
2427 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2428 		bnx2x_release_phy_lock(bp);
2429 	} else
2430 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2431 }
2432 
bnx2x_force_link_reset(struct bnx2x * bp)2433 void bnx2x_force_link_reset(struct bnx2x *bp)
2434 {
2435 	bnx2x_acquire_phy_lock(bp);
2436 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2437 	bnx2x_release_phy_lock(bp);
2438 }
2439 
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2440 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2441 {
2442 	u8 rc = 0;
2443 
2444 	if (!BP_NOMCP(bp)) {
2445 		bnx2x_acquire_phy_lock(bp);
2446 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2447 				     is_serdes);
2448 		bnx2x_release_phy_lock(bp);
2449 	} else
2450 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2451 
2452 	return rc;
2453 }
2454 
2455 /* Calculates the sum of vn_min_rates.
2456    It's needed for further normalizing of the min_rates.
2457    Returns:
2458      sum of vn_min_rates.
2459        or
2460      0 - if all the min_rates are 0.
2461      In the later case fairness algorithm should be deactivated.
2462      If not all min_rates are zero then those that are zeroes will be set to 1.
2463  */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2464 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2465 				      struct cmng_init_input *input)
2466 {
2467 	int all_zero = 1;
2468 	int vn;
2469 
2470 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2471 		u32 vn_cfg = bp->mf_config[vn];
2472 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2473 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2474 
2475 		/* Skip hidden vns */
2476 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2477 			vn_min_rate = 0;
2478 		/* If min rate is zero - set it to 1 */
2479 		else if (!vn_min_rate)
2480 			vn_min_rate = DEF_MIN_RATE;
2481 		else
2482 			all_zero = 0;
2483 
2484 		input->vnic_min_rate[vn] = vn_min_rate;
2485 	}
2486 
2487 	/* if ETS or all min rates are zeros - disable fairness */
2488 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2489 		input->flags.cmng_enables &=
2490 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2492 	} else if (all_zero) {
2493 		input->flags.cmng_enables &=
2494 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2495 		DP(NETIF_MSG_IFUP,
2496 		   "All MIN values are zeroes fairness will be disabled\n");
2497 	} else
2498 		input->flags.cmng_enables |=
2499 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2500 }
2501 
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2502 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2503 				    struct cmng_init_input *input)
2504 {
2505 	u16 vn_max_rate;
2506 	u32 vn_cfg = bp->mf_config[vn];
2507 
2508 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2509 		vn_max_rate = 0;
2510 	else {
2511 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2512 
2513 		if (IS_MF_PERCENT_BW(bp)) {
2514 			/* maxCfg in percents of linkspeed */
2515 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2516 		} else /* SD modes */
2517 			/* maxCfg is absolute in 100Mb units */
2518 			vn_max_rate = maxCfg * 100;
2519 	}
2520 
2521 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2522 
2523 	input->vnic_max_rate[vn] = vn_max_rate;
2524 }
2525 
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2526 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2527 {
2528 	if (CHIP_REV_IS_SLOW(bp))
2529 		return CMNG_FNS_NONE;
2530 	if (IS_MF(bp))
2531 		return CMNG_FNS_MINMAX;
2532 
2533 	return CMNG_FNS_NONE;
2534 }
2535 
bnx2x_read_mf_cfg(struct bnx2x * bp)2536 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2537 {
2538 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2539 
2540 	if (BP_NOMCP(bp))
2541 		return; /* what should be the default value in this case */
2542 
2543 	/* For 2 port configuration the absolute function number formula
2544 	 * is:
2545 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2546 	 *
2547 	 *      and there are 4 functions per port
2548 	 *
2549 	 * For 4 port configuration it is
2550 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2551 	 *
2552 	 *      and there are 2 functions per port
2553 	 */
2554 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2555 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2556 
2557 		if (func >= E1H_FUNC_MAX)
2558 			break;
2559 
2560 		bp->mf_config[vn] =
2561 			MF_CFG_RD(bp, func_mf_config[func].config);
2562 	}
2563 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2564 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2565 		bp->flags |= MF_FUNC_DIS;
2566 	} else {
2567 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2568 		bp->flags &= ~MF_FUNC_DIS;
2569 	}
2570 }
2571 
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2572 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2573 {
2574 	struct cmng_init_input input;
2575 	memset(&input, 0, sizeof(struct cmng_init_input));
2576 
2577 	input.port_rate = bp->link_vars.line_speed;
2578 
2579 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2580 		int vn;
2581 
2582 		/* read mf conf from shmem */
2583 		if (read_cfg)
2584 			bnx2x_read_mf_cfg(bp);
2585 
2586 		/* vn_weight_sum and enable fairness if not 0 */
2587 		bnx2x_calc_vn_min(bp, &input);
2588 
2589 		/* calculate and set min-max rate for each vn */
2590 		if (bp->port.pmf)
2591 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2592 				bnx2x_calc_vn_max(bp, vn, &input);
2593 
2594 		/* always enable rate shaping and fairness */
2595 		input.flags.cmng_enables |=
2596 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2597 
2598 		bnx2x_init_cmng(&input, &bp->cmng);
2599 		return;
2600 	}
2601 
2602 	/* rate shaping and fairness are disabled */
2603 	DP(NETIF_MSG_IFUP,
2604 	   "rate shaping and fairness are disabled\n");
2605 }
2606 
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2607 static void storm_memset_cmng(struct bnx2x *bp,
2608 			      struct cmng_init *cmng,
2609 			      u8 port)
2610 {
2611 	int vn;
2612 	size_t size = sizeof(struct cmng_struct_per_port);
2613 
2614 	u32 addr = BAR_XSTRORM_INTMEM +
2615 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2616 
2617 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2618 
2619 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2620 		int func = func_by_vn(bp, vn);
2621 
2622 		addr = BAR_XSTRORM_INTMEM +
2623 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2624 		size = sizeof(struct rate_shaping_vars_per_vn);
2625 		__storm_memset_struct(bp, addr, size,
2626 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2627 
2628 		addr = BAR_XSTRORM_INTMEM +
2629 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2630 		size = sizeof(struct fairness_vars_per_vn);
2631 		__storm_memset_struct(bp, addr, size,
2632 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2633 	}
2634 }
2635 
2636 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2637 void bnx2x_set_local_cmng(struct bnx2x *bp)
2638 {
2639 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2640 
2641 	if (cmng_fns != CMNG_FNS_NONE) {
2642 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2643 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2644 	} else {
2645 		/* rate shaping and fairness are disabled */
2646 		DP(NETIF_MSG_IFUP,
2647 		   "single function mode without fairness\n");
2648 	}
2649 }
2650 
2651 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2652 static void bnx2x_link_attn(struct bnx2x *bp)
2653 {
2654 	/* Make sure that we are synced with the current statistics */
2655 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2656 
2657 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2658 
2659 	bnx2x_init_dropless_fc(bp);
2660 
2661 	if (bp->link_vars.link_up) {
2662 
2663 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2664 			struct host_port_stats *pstats;
2665 
2666 			pstats = bnx2x_sp(bp, port_stats);
2667 			/* reset old mac stats */
2668 			memset(&(pstats->mac_stx[0]), 0,
2669 			       sizeof(struct mac_stx));
2670 		}
2671 		if (bp->state == BNX2X_STATE_OPEN)
2672 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673 	}
2674 
2675 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2676 		bnx2x_set_local_cmng(bp);
2677 
2678 	__bnx2x_link_report(bp);
2679 
2680 	if (IS_MF(bp))
2681 		bnx2x_link_sync_notify(bp);
2682 }
2683 
bnx2x__link_status_update(struct bnx2x * bp)2684 void bnx2x__link_status_update(struct bnx2x *bp)
2685 {
2686 	if (bp->state != BNX2X_STATE_OPEN)
2687 		return;
2688 
2689 	/* read updated dcb configuration */
2690 	if (IS_PF(bp)) {
2691 		bnx2x_dcbx_pmf_update(bp);
2692 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2693 		if (bp->link_vars.link_up)
2694 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2695 		else
2696 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2697 			/* indicate link status */
2698 		bnx2x_link_report(bp);
2699 
2700 	} else { /* VF */
2701 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2702 					  SUPPORTED_10baseT_Full |
2703 					  SUPPORTED_100baseT_Half |
2704 					  SUPPORTED_100baseT_Full |
2705 					  SUPPORTED_1000baseT_Full |
2706 					  SUPPORTED_2500baseX_Full |
2707 					  SUPPORTED_10000baseT_Full |
2708 					  SUPPORTED_TP |
2709 					  SUPPORTED_FIBRE |
2710 					  SUPPORTED_Autoneg |
2711 					  SUPPORTED_Pause |
2712 					  SUPPORTED_Asym_Pause);
2713 		bp->port.advertising[0] = bp->port.supported[0];
2714 
2715 		bp->link_params.bp = bp;
2716 		bp->link_params.port = BP_PORT(bp);
2717 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2718 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2719 		bp->link_params.req_line_speed[0] = SPEED_10000;
2720 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2721 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2722 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2723 		bp->link_vars.line_speed = SPEED_10000;
2724 		bp->link_vars.link_status =
2725 			(LINK_STATUS_LINK_UP |
2726 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2727 		bp->link_vars.link_up = 1;
2728 		bp->link_vars.duplex = DUPLEX_FULL;
2729 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2730 		__bnx2x_link_report(bp);
2731 
2732 		bnx2x_sample_bulletin(bp);
2733 
2734 		/* if bulletin board did not have an update for link status
2735 		 * __bnx2x_link_report will report current status
2736 		 * but it will NOT duplicate report in case of already reported
2737 		 * during sampling bulletin board.
2738 		 */
2739 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2740 	}
2741 }
2742 
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2743 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2744 				  u16 vlan_val, u8 allowed_prio)
2745 {
2746 	struct bnx2x_func_state_params func_params = {NULL};
2747 	struct bnx2x_func_afex_update_params *f_update_params =
2748 		&func_params.params.afex_update;
2749 
2750 	func_params.f_obj = &bp->func_obj;
2751 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2752 
2753 	/* no need to wait for RAMROD completion, so don't
2754 	 * set RAMROD_COMP_WAIT flag
2755 	 */
2756 
2757 	f_update_params->vif_id = vifid;
2758 	f_update_params->afex_default_vlan = vlan_val;
2759 	f_update_params->allowed_priorities = allowed_prio;
2760 
2761 	/* if ramrod can not be sent, response to MCP immediately */
2762 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2763 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2764 
2765 	return 0;
2766 }
2767 
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2768 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2769 					  u16 vif_index, u8 func_bit_map)
2770 {
2771 	struct bnx2x_func_state_params func_params = {NULL};
2772 	struct bnx2x_func_afex_viflists_params *update_params =
2773 		&func_params.params.afex_viflists;
2774 	int rc;
2775 	u32 drv_msg_code;
2776 
2777 	/* validate only LIST_SET and LIST_GET are received from switch */
2778 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2779 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2780 			  cmd_type);
2781 
2782 	func_params.f_obj = &bp->func_obj;
2783 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2784 
2785 	/* set parameters according to cmd_type */
2786 	update_params->afex_vif_list_command = cmd_type;
2787 	update_params->vif_list_index = vif_index;
2788 	update_params->func_bit_map =
2789 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2790 	update_params->func_to_clear = 0;
2791 	drv_msg_code =
2792 		(cmd_type == VIF_LIST_RULE_GET) ?
2793 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2794 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2795 
2796 	/* if ramrod can not be sent, respond to MCP immediately for
2797 	 * SET and GET requests (other are not triggered from MCP)
2798 	 */
2799 	rc = bnx2x_func_state_change(bp, &func_params);
2800 	if (rc < 0)
2801 		bnx2x_fw_command(bp, drv_msg_code, 0);
2802 
2803 	return 0;
2804 }
2805 
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2806 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2807 {
2808 	struct afex_stats afex_stats;
2809 	u32 func = BP_ABS_FUNC(bp);
2810 	u32 mf_config;
2811 	u16 vlan_val;
2812 	u32 vlan_prio;
2813 	u16 vif_id;
2814 	u8 allowed_prio;
2815 	u8 vlan_mode;
2816 	u32 addr_to_write, vifid, addrs, stats_type, i;
2817 
2818 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2819 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2820 		DP(BNX2X_MSG_MCP,
2821 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2822 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2823 	}
2824 
2825 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2826 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2828 		DP(BNX2X_MSG_MCP,
2829 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2830 		   vifid, addrs);
2831 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2832 					       addrs);
2833 	}
2834 
2835 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2836 		addr_to_write = SHMEM2_RD(bp,
2837 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2838 		stats_type = SHMEM2_RD(bp,
2839 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2840 
2841 		DP(BNX2X_MSG_MCP,
2842 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2843 		   addr_to_write);
2844 
2845 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2846 
2847 		/* write response to scratchpad, for MCP */
2848 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2849 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2850 			       *(((u32 *)(&afex_stats))+i));
2851 
2852 		/* send ack message to MCP */
2853 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2854 	}
2855 
2856 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2857 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2858 		bp->mf_config[BP_VN(bp)] = mf_config;
2859 		DP(BNX2X_MSG_MCP,
2860 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2861 		   mf_config);
2862 
2863 		/* if VIF_SET is "enabled" */
2864 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2865 			/* set rate limit directly to internal RAM */
2866 			struct cmng_init_input cmng_input;
2867 			struct rate_shaping_vars_per_vn m_rs_vn;
2868 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2869 			u32 addr = BAR_XSTRORM_INTMEM +
2870 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2871 
2872 			bp->mf_config[BP_VN(bp)] = mf_config;
2873 
2874 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2875 			m_rs_vn.vn_counter.rate =
2876 				cmng_input.vnic_max_rate[BP_VN(bp)];
2877 			m_rs_vn.vn_counter.quota =
2878 				(m_rs_vn.vn_counter.rate *
2879 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2880 
2881 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2882 
2883 			/* read relevant values from mf_cfg struct in shmem */
2884 			vif_id =
2885 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2886 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2887 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2888 			vlan_val =
2889 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2890 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2891 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2892 			vlan_prio = (mf_config &
2893 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2894 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2895 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2896 			vlan_mode =
2897 				(MF_CFG_RD(bp,
2898 					   func_mf_config[func].afex_config) &
2899 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2900 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2901 			allowed_prio =
2902 				(MF_CFG_RD(bp,
2903 					   func_mf_config[func].afex_config) &
2904 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2905 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2906 
2907 			/* send ramrod to FW, return in case of failure */
2908 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2909 						   allowed_prio))
2910 				return;
2911 
2912 			bp->afex_def_vlan_tag = vlan_val;
2913 			bp->afex_vlan_mode = vlan_mode;
2914 		} else {
2915 			/* notify link down because BP->flags is disabled */
2916 			bnx2x_link_report(bp);
2917 
2918 			/* send INVALID VIF ramrod to FW */
2919 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2920 
2921 			/* Reset the default afex VLAN */
2922 			bp->afex_def_vlan_tag = -1;
2923 		}
2924 	}
2925 }
2926 
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2927 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2928 {
2929 	struct bnx2x_func_switch_update_params *switch_update_params;
2930 	struct bnx2x_func_state_params func_params;
2931 
2932 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2933 	switch_update_params = &func_params.params.switch_update;
2934 	func_params.f_obj = &bp->func_obj;
2935 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2936 
2937 	/* Prepare parameters for function state transitions */
2938 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2939 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2940 
2941 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2942 		int func = BP_ABS_FUNC(bp);
2943 		u32 val;
2944 
2945 		/* Re-learn the S-tag from shmem */
2946 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2947 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2948 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2949 			bp->mf_ov = val;
2950 		} else {
2951 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2952 			goto fail;
2953 		}
2954 
2955 		/* Configure new S-tag in LLH */
2956 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2957 		       bp->mf_ov);
2958 
2959 		/* Send Ramrod to update FW of change */
2960 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2961 			  &switch_update_params->changes);
2962 		switch_update_params->vlan = bp->mf_ov;
2963 
2964 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2965 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2966 				  bp->mf_ov);
2967 			goto fail;
2968 		} else {
2969 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2970 			   bp->mf_ov);
2971 		}
2972 	} else {
2973 		goto fail;
2974 	}
2975 
2976 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2977 	return;
2978 fail:
2979 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2980 }
2981 
bnx2x_pmf_update(struct bnx2x * bp)2982 static void bnx2x_pmf_update(struct bnx2x *bp)
2983 {
2984 	int port = BP_PORT(bp);
2985 	u32 val;
2986 
2987 	bp->port.pmf = 1;
2988 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2989 
2990 	/*
2991 	 * We need the mb() to ensure the ordering between the writing to
2992 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2993 	 */
2994 	smp_mb();
2995 
2996 	/* queue a periodic task */
2997 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2998 
2999 	bnx2x_dcbx_pmf_update(bp);
3000 
3001 	/* enable nig attention */
3002 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3003 	if (bp->common.int_block == INT_BLOCK_HC) {
3004 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3005 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3006 	} else if (!CHIP_IS_E1x(bp)) {
3007 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3008 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3009 	}
3010 
3011 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3012 }
3013 
3014 /* end of Link */
3015 
3016 /* slow path */
3017 
3018 /*
3019  * General service functions
3020  */
3021 
3022 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3023 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3024 {
3025 	int mb_idx = BP_FW_MB_IDX(bp);
3026 	u32 seq;
3027 	u32 rc = 0;
3028 	u32 cnt = 1;
3029 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3030 
3031 	mutex_lock(&bp->fw_mb_mutex);
3032 	seq = ++bp->fw_seq;
3033 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3034 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3035 
3036 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3037 			(command | seq), param);
3038 
3039 	do {
3040 		/* let the FW do it's magic ... */
3041 		msleep(delay);
3042 
3043 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3044 
3045 		/* Give the FW up to 5 second (500*10ms) */
3046 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3047 
3048 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3049 	   cnt*delay, rc, seq);
3050 
3051 	/* is this a reply to our command? */
3052 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3053 		rc &= FW_MSG_CODE_MASK;
3054 	else {
3055 		/* FW BUG! */
3056 		BNX2X_ERR("FW failed to respond!\n");
3057 		bnx2x_fw_dump(bp);
3058 		rc = 0;
3059 	}
3060 	mutex_unlock(&bp->fw_mb_mutex);
3061 
3062 	return rc;
3063 }
3064 
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3065 static void storm_memset_func_cfg(struct bnx2x *bp,
3066 				 struct tstorm_eth_function_common_config *tcfg,
3067 				 u16 abs_fid)
3068 {
3069 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3070 
3071 	u32 addr = BAR_TSTRORM_INTMEM +
3072 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3073 
3074 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3075 }
3076 
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3077 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3078 {
3079 	if (CHIP_IS_E1x(bp)) {
3080 		struct tstorm_eth_function_common_config tcfg = {0};
3081 
3082 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3083 	}
3084 
3085 	/* Enable the function in the FW */
3086 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3087 	storm_memset_func_en(bp, p->func_id, 1);
3088 
3089 	/* spq */
3090 	if (p->spq_active) {
3091 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3092 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3093 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3094 	}
3095 }
3096 
3097 /**
3098  * bnx2x_get_common_flags - Return common flags
3099  *
3100  * @bp:		device handle
3101  * @fp:		queue handle
3102  * @zero_stats:	TRUE if statistics zeroing is needed
3103  *
3104  * Return the flags that are common for the Tx-only and not normal connections.
3105  */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3106 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3107 					    struct bnx2x_fastpath *fp,
3108 					    bool zero_stats)
3109 {
3110 	unsigned long flags = 0;
3111 
3112 	/* PF driver will always initialize the Queue to an ACTIVE state */
3113 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3114 
3115 	/* tx only connections collect statistics (on the same index as the
3116 	 * parent connection). The statistics are zeroed when the parent
3117 	 * connection is initialized.
3118 	 */
3119 
3120 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3121 	if (zero_stats)
3122 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3123 
3124 	if (bp->flags & TX_SWITCHING)
3125 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3126 
3127 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3128 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3129 
3130 #ifdef BNX2X_STOP_ON_ERROR
3131 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3132 #endif
3133 
3134 	return flags;
3135 }
3136 
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3137 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3138 				       struct bnx2x_fastpath *fp,
3139 				       bool leading)
3140 {
3141 	unsigned long flags = 0;
3142 
3143 	/* calculate other queue flags */
3144 	if (IS_MF_SD(bp))
3145 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3146 
3147 	if (IS_FCOE_FP(fp)) {
3148 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3149 		/* For FCoE - force usage of default priority (for afex) */
3150 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3151 	}
3152 
3153 	if (fp->mode != TPA_MODE_DISABLED) {
3154 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3155 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3156 		if (fp->mode == TPA_MODE_GRO)
3157 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3158 	}
3159 
3160 	if (leading) {
3161 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3162 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3163 	}
3164 
3165 	/* Always set HW VLAN stripping */
3166 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3167 
3168 	/* configure silent vlan removal */
3169 	if (IS_MF_AFEX(bp))
3170 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3171 
3172 	return flags | bnx2x_get_common_flags(bp, fp, true);
3173 }
3174 
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3175 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3176 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3177 	u8 cos)
3178 {
3179 	gen_init->stat_id = bnx2x_stats_id(fp);
3180 	gen_init->spcl_id = fp->cl_id;
3181 
3182 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3183 	if (IS_FCOE_FP(fp))
3184 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3185 	else
3186 		gen_init->mtu = bp->dev->mtu;
3187 
3188 	gen_init->cos = cos;
3189 
3190 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3191 }
3192 
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3193 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3194 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3195 	struct bnx2x_rxq_setup_params *rxq_init)
3196 {
3197 	u8 max_sge = 0;
3198 	u16 sge_sz = 0;
3199 	u16 tpa_agg_size = 0;
3200 
3201 	if (fp->mode != TPA_MODE_DISABLED) {
3202 		pause->sge_th_lo = SGE_TH_LO(bp);
3203 		pause->sge_th_hi = SGE_TH_HI(bp);
3204 
3205 		/* validate SGE ring has enough to cross high threshold */
3206 		WARN_ON(bp->dropless_fc &&
3207 				pause->sge_th_hi + FW_PREFETCH_CNT >
3208 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3209 
3210 		tpa_agg_size = TPA_AGG_SIZE;
3211 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3212 			SGE_PAGE_SHIFT;
3213 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3214 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3215 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3216 	}
3217 
3218 	/* pause - not for e1 */
3219 	if (!CHIP_IS_E1(bp)) {
3220 		pause->bd_th_lo = BD_TH_LO(bp);
3221 		pause->bd_th_hi = BD_TH_HI(bp);
3222 
3223 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3224 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3225 		/*
3226 		 * validate that rings have enough entries to cross
3227 		 * high thresholds
3228 		 */
3229 		WARN_ON(bp->dropless_fc &&
3230 				pause->bd_th_hi + FW_PREFETCH_CNT >
3231 				bp->rx_ring_size);
3232 		WARN_ON(bp->dropless_fc &&
3233 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3234 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3235 
3236 		pause->pri_map = 1;
3237 	}
3238 
3239 	/* rxq setup */
3240 	rxq_init->dscr_map = fp->rx_desc_mapping;
3241 	rxq_init->sge_map = fp->rx_sge_mapping;
3242 	rxq_init->rcq_map = fp->rx_comp_mapping;
3243 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3244 
3245 	/* This should be a maximum number of data bytes that may be
3246 	 * placed on the BD (not including paddings).
3247 	 */
3248 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3249 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3250 
3251 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3252 	rxq_init->tpa_agg_sz = tpa_agg_size;
3253 	rxq_init->sge_buf_sz = sge_sz;
3254 	rxq_init->max_sges_pkt = max_sge;
3255 	rxq_init->rss_engine_id = BP_FUNC(bp);
3256 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3257 
3258 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3259 	 *
3260 	 * For PF Clients it should be the maximum available number.
3261 	 * VF driver(s) may want to define it to a smaller value.
3262 	 */
3263 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3264 
3265 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3266 	rxq_init->fw_sb_id = fp->fw_sb_id;
3267 
3268 	if (IS_FCOE_FP(fp))
3269 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3270 	else
3271 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3272 	/* configure silent vlan removal
3273 	 * if multi function mode is afex, then mask default vlan
3274 	 */
3275 	if (IS_MF_AFEX(bp)) {
3276 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3277 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3278 	}
3279 }
3280 
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3281 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3282 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3283 	u8 cos)
3284 {
3285 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3286 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3287 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3288 	txq_init->fw_sb_id = fp->fw_sb_id;
3289 
3290 	/*
3291 	 * set the tss leading client id for TX classification ==
3292 	 * leading RSS client id
3293 	 */
3294 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3295 
3296 	if (IS_FCOE_FP(fp)) {
3297 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3298 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3299 	}
3300 }
3301 
bnx2x_pf_init(struct bnx2x * bp)3302 static void bnx2x_pf_init(struct bnx2x *bp)
3303 {
3304 	struct bnx2x_func_init_params func_init = {0};
3305 	struct event_ring_data eq_data = { {0} };
3306 
3307 	if (!CHIP_IS_E1x(bp)) {
3308 		/* reset IGU PF statistics: MSIX + ATTN */
3309 		/* PF */
3310 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3311 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3312 			   (CHIP_MODE_IS_4_PORT(bp) ?
3313 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3314 		/* ATTN */
3315 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3316 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3317 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3318 			   (CHIP_MODE_IS_4_PORT(bp) ?
3319 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3320 	}
3321 
3322 	func_init.spq_active = true;
3323 	func_init.pf_id = BP_FUNC(bp);
3324 	func_init.func_id = BP_FUNC(bp);
3325 	func_init.spq_map = bp->spq_mapping;
3326 	func_init.spq_prod = bp->spq_prod_idx;
3327 
3328 	bnx2x_func_init(bp, &func_init);
3329 
3330 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3331 
3332 	/*
3333 	 * Congestion management values depend on the link rate
3334 	 * There is no active link so initial link rate is set to 10 Gbps.
3335 	 * When the link comes up The congestion management values are
3336 	 * re-calculated according to the actual link rate.
3337 	 */
3338 	bp->link_vars.line_speed = SPEED_10000;
3339 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3340 
3341 	/* Only the PMF sets the HW */
3342 	if (bp->port.pmf)
3343 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3344 
3345 	/* init Event Queue - PCI bus guarantees correct endianity*/
3346 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3347 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3348 	eq_data.producer = bp->eq_prod;
3349 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3350 	eq_data.sb_id = DEF_SB_ID;
3351 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3352 }
3353 
bnx2x_e1h_disable(struct bnx2x * bp)3354 static void bnx2x_e1h_disable(struct bnx2x *bp)
3355 {
3356 	int port = BP_PORT(bp);
3357 
3358 	bnx2x_tx_disable(bp);
3359 
3360 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3361 }
3362 
bnx2x_e1h_enable(struct bnx2x * bp)3363 static void bnx2x_e1h_enable(struct bnx2x *bp)
3364 {
3365 	int port = BP_PORT(bp);
3366 
3367 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3368 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3369 
3370 	/* Tx queue should be only re-enabled */
3371 	netif_tx_wake_all_queues(bp->dev);
3372 
3373 	/*
3374 	 * Should not call netif_carrier_on since it will be called if the link
3375 	 * is up when checking for link state
3376 	 */
3377 }
3378 
3379 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3380 
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3381 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3382 {
3383 	struct eth_stats_info *ether_stat =
3384 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3385 	struct bnx2x_vlan_mac_obj *mac_obj =
3386 		&bp->sp_objs->mac_obj;
3387 	int i;
3388 
3389 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3390 		ETH_STAT_INFO_VERSION_LEN);
3391 
3392 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3393 	 * mac_local field in ether_stat struct. The base address is offset by 2
3394 	 * bytes to account for the field being 8 bytes but a mac address is
3395 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3396 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3397 	 * allocated by the ether_stat struct, so the macs will land in their
3398 	 * proper positions.
3399 	 */
3400 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3401 		memset(ether_stat->mac_local + i, 0,
3402 		       sizeof(ether_stat->mac_local[0]));
3403 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3404 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3405 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3406 				ETH_ALEN);
3407 	ether_stat->mtu_size = bp->dev->mtu;
3408 	if (bp->dev->features & NETIF_F_RXCSUM)
3409 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3410 	if (bp->dev->features & NETIF_F_TSO)
3411 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3412 	ether_stat->feature_flags |= bp->common.boot_mode;
3413 
3414 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3415 
3416 	ether_stat->txq_size = bp->tx_ring_size;
3417 	ether_stat->rxq_size = bp->rx_ring_size;
3418 
3419 #ifdef CONFIG_BNX2X_SRIOV
3420 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3421 #endif
3422 }
3423 
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3424 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3425 {
3426 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3427 	struct fcoe_stats_info *fcoe_stat =
3428 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3429 
3430 	if (!CNIC_LOADED(bp))
3431 		return;
3432 
3433 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3434 
3435 	fcoe_stat->qos_priority =
3436 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3437 
3438 	/* insert FCoE stats from ramrod response */
3439 	if (!NO_FCOE(bp)) {
3440 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3441 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3442 			tstorm_queue_statistics;
3443 
3444 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3445 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3446 			xstorm_queue_statistics;
3447 
3448 		struct fcoe_statistics_params *fw_fcoe_stat =
3449 			&bp->fw_stats_data->fcoe;
3450 
3451 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3452 			  fcoe_stat->rx_bytes_lo,
3453 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3454 
3455 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3456 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3457 			  fcoe_stat->rx_bytes_lo,
3458 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3459 
3460 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3461 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3462 			  fcoe_stat->rx_bytes_lo,
3463 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3466 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3467 			  fcoe_stat->rx_bytes_lo,
3468 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3469 
3470 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3471 			  fcoe_stat->rx_frames_lo,
3472 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3473 
3474 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3475 			  fcoe_stat->rx_frames_lo,
3476 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3477 
3478 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3479 			  fcoe_stat->rx_frames_lo,
3480 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3481 
3482 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3483 			  fcoe_stat->rx_frames_lo,
3484 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3485 
3486 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3487 			  fcoe_stat->tx_bytes_lo,
3488 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3489 
3490 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3491 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3492 			  fcoe_stat->tx_bytes_lo,
3493 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3494 
3495 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3496 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3497 			  fcoe_stat->tx_bytes_lo,
3498 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3501 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3502 			  fcoe_stat->tx_bytes_lo,
3503 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3504 
3505 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3506 			  fcoe_stat->tx_frames_lo,
3507 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3508 
3509 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3510 			  fcoe_stat->tx_frames_lo,
3511 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3512 
3513 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3514 			  fcoe_stat->tx_frames_lo,
3515 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3516 
3517 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3518 			  fcoe_stat->tx_frames_lo,
3519 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3520 	}
3521 
3522 	/* ask L5 driver to add data to the struct */
3523 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3524 }
3525 
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3526 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3527 {
3528 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3529 	struct iscsi_stats_info *iscsi_stat =
3530 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3531 
3532 	if (!CNIC_LOADED(bp))
3533 		return;
3534 
3535 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3536 	       ETH_ALEN);
3537 
3538 	iscsi_stat->qos_priority =
3539 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3540 
3541 	/* ask L5 driver to add data to the struct */
3542 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3543 }
3544 
3545 /* called due to MCP event (on pmf):
3546  *	reread new bandwidth configuration
3547  *	configure FW
3548  *	notify others function about the change
3549  */
bnx2x_config_mf_bw(struct bnx2x * bp)3550 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3551 {
3552 	/* Workaround for MFW bug.
3553 	 * MFW is not supposed to generate BW attention in
3554 	 * single function mode.
3555 	 */
3556 	if (!IS_MF(bp)) {
3557 		DP(BNX2X_MSG_MCP,
3558 		   "Ignoring MF BW config in single function mode\n");
3559 		return;
3560 	}
3561 
3562 	if (bp->link_vars.link_up) {
3563 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3564 		bnx2x_link_sync_notify(bp);
3565 	}
3566 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3567 }
3568 
bnx2x_set_mf_bw(struct bnx2x * bp)3569 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3570 {
3571 	bnx2x_config_mf_bw(bp);
3572 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3573 }
3574 
bnx2x_handle_eee_event(struct bnx2x * bp)3575 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3576 {
3577 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3578 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3579 }
3580 
3581 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3582 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3583 
bnx2x_handle_drv_info_req(struct bnx2x * bp)3584 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3585 {
3586 	enum drv_info_opcode op_code;
3587 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3588 	bool release = false;
3589 	int wait;
3590 
3591 	/* if drv_info version supported by MFW doesn't match - send NACK */
3592 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3593 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3594 		return;
3595 	}
3596 
3597 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3598 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3599 
3600 	/* Must prevent other flows from accessing drv_info_to_mcp */
3601 	mutex_lock(&bp->drv_info_mutex);
3602 
3603 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3604 	       sizeof(union drv_info_to_mcp));
3605 
3606 	switch (op_code) {
3607 	case ETH_STATS_OPCODE:
3608 		bnx2x_drv_info_ether_stat(bp);
3609 		break;
3610 	case FCOE_STATS_OPCODE:
3611 		bnx2x_drv_info_fcoe_stat(bp);
3612 		break;
3613 	case ISCSI_STATS_OPCODE:
3614 		bnx2x_drv_info_iscsi_stat(bp);
3615 		break;
3616 	default:
3617 		/* if op code isn't supported - send NACK */
3618 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3619 		goto out;
3620 	}
3621 
3622 	/* if we got drv_info attn from MFW then these fields are defined in
3623 	 * shmem2 for sure
3624 	 */
3625 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3626 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3628 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3629 
3630 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3631 
3632 	/* Since possible management wants both this and get_driver_version
3633 	 * need to wait until management notifies us it finished utilizing
3634 	 * the buffer.
3635 	 */
3636 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3637 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3638 	} else if (!bp->drv_info_mng_owner) {
3639 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3640 
3641 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3642 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3643 
3644 			/* Management is done; need to clear indication */
3645 			if (indication & bit) {
3646 				SHMEM2_WR(bp, mfw_drv_indication,
3647 					  indication & ~bit);
3648 				release = true;
3649 				break;
3650 			}
3651 
3652 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3653 		}
3654 	}
3655 	if (!release) {
3656 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3657 		bp->drv_info_mng_owner = true;
3658 	}
3659 
3660 out:
3661 	mutex_unlock(&bp->drv_info_mutex);
3662 }
3663 
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3664 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3665 {
3666 	u8 vals[4];
3667 	int i = 0;
3668 
3669 	if (bnx2x_format) {
3670 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3671 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3672 		if (i > 0)
3673 			vals[0] -= '0';
3674 	} else {
3675 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3676 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3677 	}
3678 
3679 	while (i < 4)
3680 		vals[i++] = 0;
3681 
3682 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3683 }
3684 
bnx2x_update_mng_version(struct bnx2x * bp)3685 void bnx2x_update_mng_version(struct bnx2x *bp)
3686 {
3687 	u32 iscsiver = DRV_VER_NOT_LOADED;
3688 	u32 fcoever = DRV_VER_NOT_LOADED;
3689 	u32 ethver = DRV_VER_NOT_LOADED;
3690 	int idx = BP_FW_MB_IDX(bp);
3691 	u8 *version;
3692 
3693 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3694 		return;
3695 
3696 	mutex_lock(&bp->drv_info_mutex);
3697 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3698 	if (bp->drv_info_mng_owner)
3699 		goto out;
3700 
3701 	if (bp->state != BNX2X_STATE_OPEN)
3702 		goto out;
3703 
3704 	/* Parse ethernet driver version */
3705 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3706 	if (!CNIC_LOADED(bp))
3707 		goto out;
3708 
3709 	/* Try getting storage driver version via cnic */
3710 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3711 	       sizeof(union drv_info_to_mcp));
3712 	bnx2x_drv_info_iscsi_stat(bp);
3713 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3714 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3715 
3716 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3717 	       sizeof(union drv_info_to_mcp));
3718 	bnx2x_drv_info_fcoe_stat(bp);
3719 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3720 	fcoever = bnx2x_update_mng_version_utility(version, false);
3721 
3722 out:
3723 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3724 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3725 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3726 
3727 	mutex_unlock(&bp->drv_info_mutex);
3728 
3729 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3730 	   ethver, iscsiver, fcoever);
3731 }
3732 
bnx2x_update_mfw_dump(struct bnx2x * bp)3733 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3734 {
3735 	u32 drv_ver;
3736 	u32 valid_dump;
3737 
3738 	if (!SHMEM2_HAS(bp, drv_info))
3739 		return;
3740 
3741 	/* Update Driver load time, possibly broken in y2038 */
3742 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3743 
3744 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3745 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3746 
3747 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3748 
3749 	/* Check & notify On-Chip dump. */
3750 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3751 
3752 	if (valid_dump & FIRST_DUMP_VALID)
3753 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3754 
3755 	if (valid_dump & SECOND_DUMP_VALID)
3756 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3757 }
3758 
bnx2x_oem_event(struct bnx2x * bp,u32 event)3759 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3760 {
3761 	u32 cmd_ok, cmd_fail;
3762 
3763 	/* sanity */
3764 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3765 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3766 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3767 		return;
3768 	}
3769 
3770 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3771 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3772 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3773 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3774 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3775 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3776 	}
3777 
3778 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3779 
3780 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3781 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3782 		/* This is the only place besides the function initialization
3783 		 * where the bp->flags can change so it is done without any
3784 		 * locks
3785 		 */
3786 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3787 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3788 			bp->flags |= MF_FUNC_DIS;
3789 
3790 			bnx2x_e1h_disable(bp);
3791 		} else {
3792 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3793 			bp->flags &= ~MF_FUNC_DIS;
3794 
3795 			bnx2x_e1h_enable(bp);
3796 		}
3797 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3798 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3799 	}
3800 
3801 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3802 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3803 		bnx2x_config_mf_bw(bp);
3804 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3805 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3806 	}
3807 
3808 	/* Report results to MCP */
3809 	if (event)
3810 		bnx2x_fw_command(bp, cmd_fail, 0);
3811 	else
3812 		bnx2x_fw_command(bp, cmd_ok, 0);
3813 }
3814 
3815 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3816 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3817 {
3818 	struct eth_spe *next_spe = bp->spq_prod_bd;
3819 
3820 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3821 		bp->spq_prod_bd = bp->spq;
3822 		bp->spq_prod_idx = 0;
3823 		DP(BNX2X_MSG_SP, "end of spq\n");
3824 	} else {
3825 		bp->spq_prod_bd++;
3826 		bp->spq_prod_idx++;
3827 	}
3828 	return next_spe;
3829 }
3830 
3831 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3832 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3833 {
3834 	int func = BP_FUNC(bp);
3835 
3836 	/*
3837 	 * Make sure that BD data is updated before writing the producer:
3838 	 * BD data is written to the memory, the producer is read from the
3839 	 * memory, thus we need a full memory barrier to ensure the ordering.
3840 	 */
3841 	mb();
3842 
3843 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3844 			 bp->spq_prod_idx);
3845 }
3846 
3847 /**
3848  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3849  *
3850  * @cmd:	command to check
3851  * @cmd_type:	command type
3852  */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3853 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3854 {
3855 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3856 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3857 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3858 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3859 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3860 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3861 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3862 		return true;
3863 	else
3864 		return false;
3865 }
3866 
3867 /**
3868  * bnx2x_sp_post - place a single command on an SP ring
3869  *
3870  * @bp:		driver handle
3871  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3872  * @cid:	SW CID the command is related to
3873  * @data_hi:	command private data address (high 32 bits)
3874  * @data_lo:	command private data address (low 32 bits)
3875  * @cmd_type:	command type (e.g. NONE, ETH)
3876  *
3877  * SP data is handled as if it's always an address pair, thus data fields are
3878  * not swapped to little endian in upper functions. Instead this function swaps
3879  * data as if it's two u32 fields.
3880  */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3881 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3882 		  u32 data_hi, u32 data_lo, int cmd_type)
3883 {
3884 	struct eth_spe *spe;
3885 	u16 type;
3886 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3887 
3888 #ifdef BNX2X_STOP_ON_ERROR
3889 	if (unlikely(bp->panic)) {
3890 		BNX2X_ERR("Can't post SP when there is panic\n");
3891 		return -EIO;
3892 	}
3893 #endif
3894 
3895 	spin_lock_bh(&bp->spq_lock);
3896 
3897 	if (common) {
3898 		if (!atomic_read(&bp->eq_spq_left)) {
3899 			BNX2X_ERR("BUG! EQ ring full!\n");
3900 			spin_unlock_bh(&bp->spq_lock);
3901 			bnx2x_panic();
3902 			return -EBUSY;
3903 		}
3904 	} else if (!atomic_read(&bp->cq_spq_left)) {
3905 			BNX2X_ERR("BUG! SPQ ring full!\n");
3906 			spin_unlock_bh(&bp->spq_lock);
3907 			bnx2x_panic();
3908 			return -EBUSY;
3909 	}
3910 
3911 	spe = bnx2x_sp_get_next(bp);
3912 
3913 	/* CID needs port number to be encoded int it */
3914 	spe->hdr.conn_and_cmd_data =
3915 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3916 				    HW_CID(bp, cid));
3917 
3918 	/* In some cases, type may already contain the func-id
3919 	 * mainly in SRIOV related use cases, so we add it here only
3920 	 * if it's not already set.
3921 	 */
3922 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3923 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3924 			SPE_HDR_CONN_TYPE;
3925 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3926 			 SPE_HDR_FUNCTION_ID);
3927 	} else {
3928 		type = cmd_type;
3929 	}
3930 
3931 	spe->hdr.type = cpu_to_le16(type);
3932 
3933 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3934 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3935 
3936 	/*
3937 	 * It's ok if the actual decrement is issued towards the memory
3938 	 * somewhere between the spin_lock and spin_unlock. Thus no
3939 	 * more explicit memory barrier is needed.
3940 	 */
3941 	if (common)
3942 		atomic_dec(&bp->eq_spq_left);
3943 	else
3944 		atomic_dec(&bp->cq_spq_left);
3945 
3946 	DP(BNX2X_MSG_SP,
3947 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3948 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3949 	   (u32)(U64_LO(bp->spq_mapping) +
3950 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3951 	   HW_CID(bp, cid), data_hi, data_lo, type,
3952 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3953 
3954 	bnx2x_sp_prod_update(bp);
3955 	spin_unlock_bh(&bp->spq_lock);
3956 	return 0;
3957 }
3958 
3959 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3960 static int bnx2x_acquire_alr(struct bnx2x *bp)
3961 {
3962 	u32 j, val;
3963 	int rc = 0;
3964 
3965 	might_sleep();
3966 	for (j = 0; j < 1000; j++) {
3967 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3968 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3969 		if (val & MCPR_ACCESS_LOCK_LOCK)
3970 			break;
3971 
3972 		usleep_range(5000, 10000);
3973 	}
3974 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3975 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3976 		rc = -EBUSY;
3977 	}
3978 
3979 	return rc;
3980 }
3981 
3982 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3983 static void bnx2x_release_alr(struct bnx2x *bp)
3984 {
3985 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3986 }
3987 
3988 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3989 #define BNX2X_DEF_SB_IDX	0x0002
3990 
bnx2x_update_dsb_idx(struct bnx2x * bp)3991 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3992 {
3993 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3994 	u16 rc = 0;
3995 
3996 	barrier(); /* status block is written to by the chip */
3997 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3998 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3999 		rc |= BNX2X_DEF_SB_ATT_IDX;
4000 	}
4001 
4002 	if (bp->def_idx != def_sb->sp_sb.running_index) {
4003 		bp->def_idx = def_sb->sp_sb.running_index;
4004 		rc |= BNX2X_DEF_SB_IDX;
4005 	}
4006 
4007 	/* Do not reorder: indices reading should complete before handling */
4008 	barrier();
4009 	return rc;
4010 }
4011 
4012 /*
4013  * slow path service functions
4014  */
4015 
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4016 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4017 {
4018 	int port = BP_PORT(bp);
4019 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4020 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4021 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4022 				       NIG_REG_MASK_INTERRUPT_PORT0;
4023 	u32 aeu_mask;
4024 	u32 nig_mask = 0;
4025 	u32 reg_addr;
4026 
4027 	if (bp->attn_state & asserted)
4028 		BNX2X_ERR("IGU ERROR\n");
4029 
4030 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4031 	aeu_mask = REG_RD(bp, aeu_addr);
4032 
4033 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4034 	   aeu_mask, asserted);
4035 	aeu_mask &= ~(asserted & 0x3ff);
4036 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4037 
4038 	REG_WR(bp, aeu_addr, aeu_mask);
4039 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4040 
4041 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4042 	bp->attn_state |= asserted;
4043 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4044 
4045 	if (asserted & ATTN_HARD_WIRED_MASK) {
4046 		if (asserted & ATTN_NIG_FOR_FUNC) {
4047 
4048 			bnx2x_acquire_phy_lock(bp);
4049 
4050 			/* save nig interrupt mask */
4051 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4052 
4053 			/* If nig_mask is not set, no need to call the update
4054 			 * function.
4055 			 */
4056 			if (nig_mask) {
4057 				REG_WR(bp, nig_int_mask_addr, 0);
4058 
4059 				bnx2x_link_attn(bp);
4060 			}
4061 
4062 			/* handle unicore attn? */
4063 		}
4064 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4065 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4066 
4067 		if (asserted & GPIO_2_FUNC)
4068 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4069 
4070 		if (asserted & GPIO_3_FUNC)
4071 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4072 
4073 		if (asserted & GPIO_4_FUNC)
4074 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4075 
4076 		if (port == 0) {
4077 			if (asserted & ATTN_GENERAL_ATTN_1) {
4078 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4079 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4080 			}
4081 			if (asserted & ATTN_GENERAL_ATTN_2) {
4082 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4083 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4084 			}
4085 			if (asserted & ATTN_GENERAL_ATTN_3) {
4086 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4087 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4088 			}
4089 		} else {
4090 			if (asserted & ATTN_GENERAL_ATTN_4) {
4091 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4092 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4093 			}
4094 			if (asserted & ATTN_GENERAL_ATTN_5) {
4095 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4096 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4097 			}
4098 			if (asserted & ATTN_GENERAL_ATTN_6) {
4099 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4100 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4101 			}
4102 		}
4103 
4104 	} /* if hardwired */
4105 
4106 	if (bp->common.int_block == INT_BLOCK_HC)
4107 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4108 			    COMMAND_REG_ATTN_BITS_SET);
4109 	else
4110 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4111 
4112 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4113 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4114 	REG_WR(bp, reg_addr, asserted);
4115 
4116 	/* now set back the mask */
4117 	if (asserted & ATTN_NIG_FOR_FUNC) {
4118 		/* Verify that IGU ack through BAR was written before restoring
4119 		 * NIG mask. This loop should exit after 2-3 iterations max.
4120 		 */
4121 		if (bp->common.int_block != INT_BLOCK_HC) {
4122 			u32 cnt = 0, igu_acked;
4123 			do {
4124 				igu_acked = REG_RD(bp,
4125 						   IGU_REG_ATTENTION_ACK_BITS);
4126 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4127 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4128 			if (!igu_acked)
4129 				DP(NETIF_MSG_HW,
4130 				   "Failed to verify IGU ack on time\n");
4131 			barrier();
4132 		}
4133 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4134 		bnx2x_release_phy_lock(bp);
4135 	}
4136 }
4137 
bnx2x_fan_failure(struct bnx2x * bp)4138 static void bnx2x_fan_failure(struct bnx2x *bp)
4139 {
4140 	int port = BP_PORT(bp);
4141 	u32 ext_phy_config;
4142 	/* mark the failure */
4143 	ext_phy_config =
4144 		SHMEM_RD(bp,
4145 			 dev_info.port_hw_config[port].external_phy_config);
4146 
4147 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4148 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4149 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4150 		 ext_phy_config);
4151 
4152 	/* log the failure */
4153 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4154 			    "Please contact OEM Support for assistance\n");
4155 
4156 	/* Schedule device reset (unload)
4157 	 * This is due to some boards consuming sufficient power when driver is
4158 	 * up to overheat if fan fails.
4159 	 */
4160 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4161 }
4162 
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4163 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4164 {
4165 	int port = BP_PORT(bp);
4166 	int reg_offset;
4167 	u32 val;
4168 
4169 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4170 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4171 
4172 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4173 
4174 		val = REG_RD(bp, reg_offset);
4175 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4176 		REG_WR(bp, reg_offset, val);
4177 
4178 		BNX2X_ERR("SPIO5 hw attention\n");
4179 
4180 		/* Fan failure attention */
4181 		bnx2x_hw_reset_phy(&bp->link_params);
4182 		bnx2x_fan_failure(bp);
4183 	}
4184 
4185 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4186 		bnx2x_acquire_phy_lock(bp);
4187 		bnx2x_handle_module_detect_int(&bp->link_params);
4188 		bnx2x_release_phy_lock(bp);
4189 	}
4190 
4191 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4192 
4193 		val = REG_RD(bp, reg_offset);
4194 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4195 		REG_WR(bp, reg_offset, val);
4196 
4197 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4198 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4199 		bnx2x_panic();
4200 	}
4201 }
4202 
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4203 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4204 {
4205 	u32 val;
4206 
4207 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4208 
4209 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4210 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4211 		/* DORQ discard attention */
4212 		if (val & 0x2)
4213 			BNX2X_ERR("FATAL error from DORQ\n");
4214 	}
4215 
4216 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4217 
4218 		int port = BP_PORT(bp);
4219 		int reg_offset;
4220 
4221 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4222 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4223 
4224 		val = REG_RD(bp, reg_offset);
4225 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4226 		REG_WR(bp, reg_offset, val);
4227 
4228 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4229 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4230 		bnx2x_panic();
4231 	}
4232 }
4233 
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4234 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4235 {
4236 	u32 val;
4237 
4238 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4239 
4240 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4241 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4242 		/* CFC error attention */
4243 		if (val & 0x2)
4244 			BNX2X_ERR("FATAL error from CFC\n");
4245 	}
4246 
4247 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4248 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4249 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4250 		/* RQ_USDMDP_FIFO_OVERFLOW */
4251 		if (val & 0x18000)
4252 			BNX2X_ERR("FATAL error from PXP\n");
4253 
4254 		if (!CHIP_IS_E1x(bp)) {
4255 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4256 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4257 		}
4258 	}
4259 
4260 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4261 
4262 		int port = BP_PORT(bp);
4263 		int reg_offset;
4264 
4265 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4266 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4267 
4268 		val = REG_RD(bp, reg_offset);
4269 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4270 		REG_WR(bp, reg_offset, val);
4271 
4272 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4273 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4274 		bnx2x_panic();
4275 	}
4276 }
4277 
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4278 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4279 {
4280 	u32 val;
4281 
4282 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4283 
4284 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4285 			int func = BP_FUNC(bp);
4286 
4287 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4288 			bnx2x_read_mf_cfg(bp);
4289 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4290 					func_mf_config[BP_ABS_FUNC(bp)].config);
4291 			val = SHMEM_RD(bp,
4292 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4293 
4294 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4295 				   DRV_STATUS_OEM_EVENT_MASK))
4296 				bnx2x_oem_event(bp,
4297 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4298 						DRV_STATUS_OEM_EVENT_MASK)));
4299 
4300 			if (val & DRV_STATUS_SET_MF_BW)
4301 				bnx2x_set_mf_bw(bp);
4302 
4303 			if (val & DRV_STATUS_DRV_INFO_REQ)
4304 				bnx2x_handle_drv_info_req(bp);
4305 
4306 			if (val & DRV_STATUS_VF_DISABLED)
4307 				bnx2x_schedule_iov_task(bp,
4308 							BNX2X_IOV_HANDLE_FLR);
4309 
4310 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4311 				bnx2x_pmf_update(bp);
4312 
4313 			if (bp->port.pmf &&
4314 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4315 				bp->dcbx_enabled > 0)
4316 				/* start dcbx state machine */
4317 				bnx2x_dcbx_set_params(bp,
4318 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4319 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4320 				bnx2x_handle_afex_cmd(bp,
4321 					val & DRV_STATUS_AFEX_EVENT_MASK);
4322 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4323 				bnx2x_handle_eee_event(bp);
4324 
4325 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4326 				bnx2x_schedule_sp_rtnl(bp,
4327 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4328 
4329 			if (bp->link_vars.periodic_flags &
4330 			    PERIODIC_FLAGS_LINK_EVENT) {
4331 				/*  sync with link */
4332 				bnx2x_acquire_phy_lock(bp);
4333 				bp->link_vars.periodic_flags &=
4334 					~PERIODIC_FLAGS_LINK_EVENT;
4335 				bnx2x_release_phy_lock(bp);
4336 				if (IS_MF(bp))
4337 					bnx2x_link_sync_notify(bp);
4338 				bnx2x_link_report(bp);
4339 			}
4340 			/* Always call it here: bnx2x_link_report() will
4341 			 * prevent the link indication duplication.
4342 			 */
4343 			bnx2x__link_status_update(bp);
4344 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4345 
4346 			BNX2X_ERR("MC assert!\n");
4347 			bnx2x_mc_assert(bp);
4348 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4349 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4350 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4351 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4352 			bnx2x_panic();
4353 
4354 		} else if (attn & BNX2X_MCP_ASSERT) {
4355 
4356 			BNX2X_ERR("MCP assert!\n");
4357 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4358 			bnx2x_fw_dump(bp);
4359 
4360 		} else
4361 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4362 	}
4363 
4364 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4365 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4366 		if (attn & BNX2X_GRC_TIMEOUT) {
4367 			val = CHIP_IS_E1(bp) ? 0 :
4368 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4369 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4370 		}
4371 		if (attn & BNX2X_GRC_RSV) {
4372 			val = CHIP_IS_E1(bp) ? 0 :
4373 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4374 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4375 		}
4376 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4377 	}
4378 }
4379 
4380 /*
4381  * Bits map:
4382  * 0-7   - Engine0 load counter.
4383  * 8-15  - Engine1 load counter.
4384  * 16    - Engine0 RESET_IN_PROGRESS bit.
4385  * 17    - Engine1 RESET_IN_PROGRESS bit.
4386  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4387  *         on the engine
4388  * 19    - Engine1 ONE_IS_LOADED.
4389  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4390  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4391  *         just the one belonging to its engine).
4392  *
4393  */
4394 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4395 
4396 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4397 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4398 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4399 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4400 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4401 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4402 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4403 
4404 /*
4405  * Set the GLOBAL_RESET bit.
4406  *
4407  * Should be run under rtnl lock
4408  */
bnx2x_set_reset_global(struct bnx2x * bp)4409 void bnx2x_set_reset_global(struct bnx2x *bp)
4410 {
4411 	u32 val;
4412 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4413 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4414 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4415 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416 }
4417 
4418 /*
4419  * Clear the GLOBAL_RESET bit.
4420  *
4421  * Should be run under rtnl lock
4422  */
bnx2x_clear_reset_global(struct bnx2x * bp)4423 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4424 {
4425 	u32 val;
4426 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4429 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430 }
4431 
4432 /*
4433  * Checks the GLOBAL_RESET bit.
4434  *
4435  * should be run under rtnl lock
4436  */
bnx2x_reset_is_global(struct bnx2x * bp)4437 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4438 {
4439 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440 
4441 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4442 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4443 }
4444 
4445 /*
4446  * Clear RESET_IN_PROGRESS bit for the current engine.
4447  *
4448  * Should be run under rtnl lock
4449  */
bnx2x_set_reset_done(struct bnx2x * bp)4450 static void bnx2x_set_reset_done(struct bnx2x *bp)
4451 {
4452 	u32 val;
4453 	u32 bit = BP_PATH(bp) ?
4454 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4455 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4456 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4457 
4458 	/* Clear the bit */
4459 	val &= ~bit;
4460 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4461 
4462 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463 }
4464 
4465 /*
4466  * Set RESET_IN_PROGRESS for the current engine.
4467  *
4468  * should be run under rtnl lock
4469  */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4470 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4471 {
4472 	u32 val;
4473 	u32 bit = BP_PATH(bp) ?
4474 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4475 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4476 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4477 
4478 	/* Set the bit */
4479 	val |= bit;
4480 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4481 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4482 }
4483 
4484 /*
4485  * Checks the RESET_IN_PROGRESS bit for the given engine.
4486  * should be run under rtnl lock
4487  */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4488 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4489 {
4490 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491 	u32 bit = engine ?
4492 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4493 
4494 	/* return false if bit is set */
4495 	return (val & bit) ? false : true;
4496 }
4497 
4498 /*
4499  * set pf load for the current pf.
4500  *
4501  * should be run under rtnl lock
4502  */
bnx2x_set_pf_load(struct bnx2x * bp)4503 void bnx2x_set_pf_load(struct bnx2x *bp)
4504 {
4505 	u32 val1, val;
4506 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4507 			     BNX2X_PATH0_LOAD_CNT_MASK;
4508 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4509 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4510 
4511 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4512 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4513 
4514 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4515 
4516 	/* get the current counter value */
4517 	val1 = (val & mask) >> shift;
4518 
4519 	/* set bit of that PF */
4520 	val1 |= (1 << bp->pf_num);
4521 
4522 	/* clear the old value */
4523 	val &= ~mask;
4524 
4525 	/* set the new one */
4526 	val |= ((val1 << shift) & mask);
4527 
4528 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4529 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4530 }
4531 
4532 /**
4533  * bnx2x_clear_pf_load - clear pf load mark
4534  *
4535  * @bp:		driver handle
4536  *
4537  * Should be run under rtnl lock.
4538  * Decrements the load counter for the current engine. Returns
4539  * whether other functions are still loaded
4540  */
bnx2x_clear_pf_load(struct bnx2x * bp)4541 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4542 {
4543 	u32 val1, val;
4544 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4545 			     BNX2X_PATH0_LOAD_CNT_MASK;
4546 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4547 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4548 
4549 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4550 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4551 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4552 
4553 	/* get the current counter value */
4554 	val1 = (val & mask) >> shift;
4555 
4556 	/* clear bit of that PF */
4557 	val1 &= ~(1 << bp->pf_num);
4558 
4559 	/* clear the old value */
4560 	val &= ~mask;
4561 
4562 	/* set the new one */
4563 	val |= ((val1 << shift) & mask);
4564 
4565 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4566 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4567 	return val1 != 0;
4568 }
4569 
4570 /*
4571  * Read the load status for the current engine.
4572  *
4573  * should be run under rtnl lock
4574  */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4575 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4576 {
4577 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4578 			     BNX2X_PATH0_LOAD_CNT_MASK);
4579 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4580 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4581 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4582 
4583 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4584 
4585 	val = (val & mask) >> shift;
4586 
4587 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4588 	   engine, val);
4589 
4590 	return val != 0;
4591 }
4592 
_print_parity(struct bnx2x * bp,u32 reg)4593 static void _print_parity(struct bnx2x *bp, u32 reg)
4594 {
4595 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4596 }
4597 
_print_next_block(int idx,const char * blk)4598 static void _print_next_block(int idx, const char *blk)
4599 {
4600 	pr_cont("%s%s", idx ? ", " : "", blk);
4601 }
4602 
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4603 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4604 					    int *par_num, bool print)
4605 {
4606 	u32 cur_bit;
4607 	bool res;
4608 	int i;
4609 
4610 	res = false;
4611 
4612 	for (i = 0; sig; i++) {
4613 		cur_bit = (0x1UL << i);
4614 		if (sig & cur_bit) {
4615 			res |= true; /* Each bit is real error! */
4616 
4617 			if (print) {
4618 				switch (cur_bit) {
4619 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4620 					_print_next_block((*par_num)++, "BRB");
4621 					_print_parity(bp,
4622 						      BRB1_REG_BRB1_PRTY_STS);
4623 					break;
4624 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4625 					_print_next_block((*par_num)++,
4626 							  "PARSER");
4627 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4628 					break;
4629 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4630 					_print_next_block((*par_num)++, "TSDM");
4631 					_print_parity(bp,
4632 						      TSDM_REG_TSDM_PRTY_STS);
4633 					break;
4634 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4635 					_print_next_block((*par_num)++,
4636 							  "SEARCHER");
4637 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4638 					break;
4639 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4640 					_print_next_block((*par_num)++, "TCM");
4641 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4642 					break;
4643 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4644 					_print_next_block((*par_num)++,
4645 							  "TSEMI");
4646 					_print_parity(bp,
4647 						      TSEM_REG_TSEM_PRTY_STS_0);
4648 					_print_parity(bp,
4649 						      TSEM_REG_TSEM_PRTY_STS_1);
4650 					break;
4651 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4652 					_print_next_block((*par_num)++, "XPB");
4653 					_print_parity(bp, GRCBASE_XPB +
4654 							  PB_REG_PB_PRTY_STS);
4655 					break;
4656 				}
4657 			}
4658 
4659 			/* Clear the bit */
4660 			sig &= ~cur_bit;
4661 		}
4662 	}
4663 
4664 	return res;
4665 }
4666 
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4667 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4668 					    int *par_num, bool *global,
4669 					    bool print)
4670 {
4671 	u32 cur_bit;
4672 	bool res;
4673 	int i;
4674 
4675 	res = false;
4676 
4677 	for (i = 0; sig; i++) {
4678 		cur_bit = (0x1UL << i);
4679 		if (sig & cur_bit) {
4680 			res |= true; /* Each bit is real error! */
4681 			switch (cur_bit) {
4682 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4683 				if (print) {
4684 					_print_next_block((*par_num)++, "PBF");
4685 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4686 				}
4687 				break;
4688 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4689 				if (print) {
4690 					_print_next_block((*par_num)++, "QM");
4691 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4692 				}
4693 				break;
4694 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4695 				if (print) {
4696 					_print_next_block((*par_num)++, "TM");
4697 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4698 				}
4699 				break;
4700 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4701 				if (print) {
4702 					_print_next_block((*par_num)++, "XSDM");
4703 					_print_parity(bp,
4704 						      XSDM_REG_XSDM_PRTY_STS);
4705 				}
4706 				break;
4707 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4708 				if (print) {
4709 					_print_next_block((*par_num)++, "XCM");
4710 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4711 				}
4712 				break;
4713 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4714 				if (print) {
4715 					_print_next_block((*par_num)++,
4716 							  "XSEMI");
4717 					_print_parity(bp,
4718 						      XSEM_REG_XSEM_PRTY_STS_0);
4719 					_print_parity(bp,
4720 						      XSEM_REG_XSEM_PRTY_STS_1);
4721 				}
4722 				break;
4723 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4724 				if (print) {
4725 					_print_next_block((*par_num)++,
4726 							  "DOORBELLQ");
4727 					_print_parity(bp,
4728 						      DORQ_REG_DORQ_PRTY_STS);
4729 				}
4730 				break;
4731 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4732 				if (print) {
4733 					_print_next_block((*par_num)++, "NIG");
4734 					if (CHIP_IS_E1x(bp)) {
4735 						_print_parity(bp,
4736 							NIG_REG_NIG_PRTY_STS);
4737 					} else {
4738 						_print_parity(bp,
4739 							NIG_REG_NIG_PRTY_STS_0);
4740 						_print_parity(bp,
4741 							NIG_REG_NIG_PRTY_STS_1);
4742 					}
4743 				}
4744 				break;
4745 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4746 				if (print)
4747 					_print_next_block((*par_num)++,
4748 							  "VAUX PCI CORE");
4749 				*global = true;
4750 				break;
4751 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4752 				if (print) {
4753 					_print_next_block((*par_num)++,
4754 							  "DEBUG");
4755 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4756 				}
4757 				break;
4758 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4759 				if (print) {
4760 					_print_next_block((*par_num)++, "USDM");
4761 					_print_parity(bp,
4762 						      USDM_REG_USDM_PRTY_STS);
4763 				}
4764 				break;
4765 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4766 				if (print) {
4767 					_print_next_block((*par_num)++, "UCM");
4768 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4769 				}
4770 				break;
4771 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4772 				if (print) {
4773 					_print_next_block((*par_num)++,
4774 							  "USEMI");
4775 					_print_parity(bp,
4776 						      USEM_REG_USEM_PRTY_STS_0);
4777 					_print_parity(bp,
4778 						      USEM_REG_USEM_PRTY_STS_1);
4779 				}
4780 				break;
4781 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4782 				if (print) {
4783 					_print_next_block((*par_num)++, "UPB");
4784 					_print_parity(bp, GRCBASE_UPB +
4785 							  PB_REG_PB_PRTY_STS);
4786 				}
4787 				break;
4788 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4789 				if (print) {
4790 					_print_next_block((*par_num)++, "CSDM");
4791 					_print_parity(bp,
4792 						      CSDM_REG_CSDM_PRTY_STS);
4793 				}
4794 				break;
4795 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4796 				if (print) {
4797 					_print_next_block((*par_num)++, "CCM");
4798 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4799 				}
4800 				break;
4801 			}
4802 
4803 			/* Clear the bit */
4804 			sig &= ~cur_bit;
4805 		}
4806 	}
4807 
4808 	return res;
4809 }
4810 
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4811 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4812 					    int *par_num, bool print)
4813 {
4814 	u32 cur_bit;
4815 	bool res;
4816 	int i;
4817 
4818 	res = false;
4819 
4820 	for (i = 0; sig; i++) {
4821 		cur_bit = (0x1UL << i);
4822 		if (sig & cur_bit) {
4823 			res = true; /* Each bit is real error! */
4824 			if (print) {
4825 				switch (cur_bit) {
4826 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4827 					_print_next_block((*par_num)++,
4828 							  "CSEMI");
4829 					_print_parity(bp,
4830 						      CSEM_REG_CSEM_PRTY_STS_0);
4831 					_print_parity(bp,
4832 						      CSEM_REG_CSEM_PRTY_STS_1);
4833 					break;
4834 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4835 					_print_next_block((*par_num)++, "PXP");
4836 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4837 					_print_parity(bp,
4838 						      PXP2_REG_PXP2_PRTY_STS_0);
4839 					_print_parity(bp,
4840 						      PXP2_REG_PXP2_PRTY_STS_1);
4841 					break;
4842 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4843 					_print_next_block((*par_num)++,
4844 							  "PXPPCICLOCKCLIENT");
4845 					break;
4846 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4847 					_print_next_block((*par_num)++, "CFC");
4848 					_print_parity(bp,
4849 						      CFC_REG_CFC_PRTY_STS);
4850 					break;
4851 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4852 					_print_next_block((*par_num)++, "CDU");
4853 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4854 					break;
4855 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4856 					_print_next_block((*par_num)++, "DMAE");
4857 					_print_parity(bp,
4858 						      DMAE_REG_DMAE_PRTY_STS);
4859 					break;
4860 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4861 					_print_next_block((*par_num)++, "IGU");
4862 					if (CHIP_IS_E1x(bp))
4863 						_print_parity(bp,
4864 							HC_REG_HC_PRTY_STS);
4865 					else
4866 						_print_parity(bp,
4867 							IGU_REG_IGU_PRTY_STS);
4868 					break;
4869 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4870 					_print_next_block((*par_num)++, "MISC");
4871 					_print_parity(bp,
4872 						      MISC_REG_MISC_PRTY_STS);
4873 					break;
4874 				}
4875 			}
4876 
4877 			/* Clear the bit */
4878 			sig &= ~cur_bit;
4879 		}
4880 	}
4881 
4882 	return res;
4883 }
4884 
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4885 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4886 					    int *par_num, bool *global,
4887 					    bool print)
4888 {
4889 	bool res = false;
4890 	u32 cur_bit;
4891 	int i;
4892 
4893 	for (i = 0; sig; i++) {
4894 		cur_bit = (0x1UL << i);
4895 		if (sig & cur_bit) {
4896 			switch (cur_bit) {
4897 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4898 				if (print)
4899 					_print_next_block((*par_num)++,
4900 							  "MCP ROM");
4901 				*global = true;
4902 				res = true;
4903 				break;
4904 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4905 				if (print)
4906 					_print_next_block((*par_num)++,
4907 							  "MCP UMP RX");
4908 				*global = true;
4909 				res = true;
4910 				break;
4911 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4912 				if (print)
4913 					_print_next_block((*par_num)++,
4914 							  "MCP UMP TX");
4915 				*global = true;
4916 				res = true;
4917 				break;
4918 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4919 				(*par_num)++;
4920 				/* clear latched SCPAD PATIRY from MCP */
4921 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4922 				       1UL << 10);
4923 				break;
4924 			}
4925 
4926 			/* Clear the bit */
4927 			sig &= ~cur_bit;
4928 		}
4929 	}
4930 
4931 	return res;
4932 }
4933 
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4934 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4935 					    int *par_num, bool print)
4936 {
4937 	u32 cur_bit;
4938 	bool res;
4939 	int i;
4940 
4941 	res = false;
4942 
4943 	for (i = 0; sig; i++) {
4944 		cur_bit = (0x1UL << i);
4945 		if (sig & cur_bit) {
4946 			res = true; /* Each bit is real error! */
4947 			if (print) {
4948 				switch (cur_bit) {
4949 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4950 					_print_next_block((*par_num)++,
4951 							  "PGLUE_B");
4952 					_print_parity(bp,
4953 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4954 					break;
4955 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4956 					_print_next_block((*par_num)++, "ATC");
4957 					_print_parity(bp,
4958 						      ATC_REG_ATC_PRTY_STS);
4959 					break;
4960 				}
4961 			}
4962 			/* Clear the bit */
4963 			sig &= ~cur_bit;
4964 		}
4965 	}
4966 
4967 	return res;
4968 }
4969 
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4970 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4971 			      u32 *sig)
4972 {
4973 	bool res = false;
4974 
4975 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4976 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4977 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4978 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4979 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4980 		int par_num = 0;
4981 
4982 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4983 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4984 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4985 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4986 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4987 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4988 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4989 		if (print) {
4990 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4991 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4992 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4993 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4994 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4995 				netdev_err(bp->dev,
4996 					   "Parity errors detected in blocks: ");
4997 			} else {
4998 				print = false;
4999 			}
5000 		}
5001 		res |= bnx2x_check_blocks_with_parity0(bp,
5002 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5003 		res |= bnx2x_check_blocks_with_parity1(bp,
5004 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5005 		res |= bnx2x_check_blocks_with_parity2(bp,
5006 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5007 		res |= bnx2x_check_blocks_with_parity3(bp,
5008 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5009 		res |= bnx2x_check_blocks_with_parity4(bp,
5010 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5011 
5012 		if (print)
5013 			pr_cont("\n");
5014 	}
5015 
5016 	return res;
5017 }
5018 
5019 /**
5020  * bnx2x_chk_parity_attn - checks for parity attentions.
5021  *
5022  * @bp:		driver handle
5023  * @global:	true if there was a global attention
5024  * @print:	show parity attention in syslog
5025  */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5026 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5027 {
5028 	struct attn_route attn = { {0} };
5029 	int port = BP_PORT(bp);
5030 
5031 	attn.sig[0] = REG_RD(bp,
5032 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5033 			     port*4);
5034 	attn.sig[1] = REG_RD(bp,
5035 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5036 			     port*4);
5037 	attn.sig[2] = REG_RD(bp,
5038 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5039 			     port*4);
5040 	attn.sig[3] = REG_RD(bp,
5041 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5042 			     port*4);
5043 	/* Since MCP attentions can't be disabled inside the block, we need to
5044 	 * read AEU registers to see whether they're currently disabled
5045 	 */
5046 	attn.sig[3] &= ((REG_RD(bp,
5047 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5048 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5049 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5050 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5051 
5052 	if (!CHIP_IS_E1x(bp))
5053 		attn.sig[4] = REG_RD(bp,
5054 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5055 				     port*4);
5056 
5057 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5058 }
5059 
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5060 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5061 {
5062 	u32 val;
5063 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5064 
5065 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5066 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5067 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5068 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5069 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5070 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5071 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5072 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5073 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5074 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5075 		if (val &
5076 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5077 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5078 		if (val &
5079 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5080 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5081 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5082 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5083 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5084 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5085 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5086 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5087 	}
5088 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5089 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5090 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5091 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5092 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5093 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5094 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5095 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5096 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5097 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5098 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5099 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5100 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5101 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5102 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5103 	}
5104 
5105 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5106 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5107 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5108 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5109 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5110 	}
5111 }
5112 
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5113 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5114 {
5115 	struct attn_route attn, *group_mask;
5116 	int port = BP_PORT(bp);
5117 	int index;
5118 	u32 reg_addr;
5119 	u32 val;
5120 	u32 aeu_mask;
5121 	bool global = false;
5122 
5123 	/* need to take HW lock because MCP or other port might also
5124 	   try to handle this event */
5125 	bnx2x_acquire_alr(bp);
5126 
5127 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5128 #ifndef BNX2X_STOP_ON_ERROR
5129 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5130 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5131 		/* Disable HW interrupts */
5132 		bnx2x_int_disable(bp);
5133 		/* In case of parity errors don't handle attentions so that
5134 		 * other function would "see" parity errors.
5135 		 */
5136 #else
5137 		bnx2x_panic();
5138 #endif
5139 		bnx2x_release_alr(bp);
5140 		return;
5141 	}
5142 
5143 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5144 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5145 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5146 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5147 	if (!CHIP_IS_E1x(bp))
5148 		attn.sig[4] =
5149 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5150 	else
5151 		attn.sig[4] = 0;
5152 
5153 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5154 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5155 
5156 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5157 		if (deasserted & (1 << index)) {
5158 			group_mask = &bp->attn_group[index];
5159 
5160 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5161 			   index,
5162 			   group_mask->sig[0], group_mask->sig[1],
5163 			   group_mask->sig[2], group_mask->sig[3],
5164 			   group_mask->sig[4]);
5165 
5166 			bnx2x_attn_int_deasserted4(bp,
5167 					attn.sig[4] & group_mask->sig[4]);
5168 			bnx2x_attn_int_deasserted3(bp,
5169 					attn.sig[3] & group_mask->sig[3]);
5170 			bnx2x_attn_int_deasserted1(bp,
5171 					attn.sig[1] & group_mask->sig[1]);
5172 			bnx2x_attn_int_deasserted2(bp,
5173 					attn.sig[2] & group_mask->sig[2]);
5174 			bnx2x_attn_int_deasserted0(bp,
5175 					attn.sig[0] & group_mask->sig[0]);
5176 		}
5177 	}
5178 
5179 	bnx2x_release_alr(bp);
5180 
5181 	if (bp->common.int_block == INT_BLOCK_HC)
5182 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5183 			    COMMAND_REG_ATTN_BITS_CLR);
5184 	else
5185 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5186 
5187 	val = ~deasserted;
5188 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5189 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5190 	REG_WR(bp, reg_addr, val);
5191 
5192 	if (~bp->attn_state & deasserted)
5193 		BNX2X_ERR("IGU ERROR\n");
5194 
5195 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5196 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5197 
5198 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5199 	aeu_mask = REG_RD(bp, reg_addr);
5200 
5201 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5202 	   aeu_mask, deasserted);
5203 	aeu_mask |= (deasserted & 0x3ff);
5204 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5205 
5206 	REG_WR(bp, reg_addr, aeu_mask);
5207 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5208 
5209 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5210 	bp->attn_state &= ~deasserted;
5211 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5212 }
5213 
bnx2x_attn_int(struct bnx2x * bp)5214 static void bnx2x_attn_int(struct bnx2x *bp)
5215 {
5216 	/* read local copy of bits */
5217 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218 								attn_bits);
5219 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5220 								attn_bits_ack);
5221 	u32 attn_state = bp->attn_state;
5222 
5223 	/* look for changed bits */
5224 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5225 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5226 
5227 	DP(NETIF_MSG_HW,
5228 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5229 	   attn_bits, attn_ack, asserted, deasserted);
5230 
5231 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5232 		BNX2X_ERR("BAD attention state\n");
5233 
5234 	/* handle bits that were raised */
5235 	if (asserted)
5236 		bnx2x_attn_int_asserted(bp, asserted);
5237 
5238 	if (deasserted)
5239 		bnx2x_attn_int_deasserted(bp, deasserted);
5240 }
5241 
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5242 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5243 		      u16 index, u8 op, u8 update)
5244 {
5245 	u32 igu_addr = bp->igu_base_addr;
5246 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5247 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5248 			     igu_addr);
5249 }
5250 
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5251 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5252 {
5253 	/* No memory barriers */
5254 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5255 }
5256 
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5257 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5258 				      union event_ring_elem *elem)
5259 {
5260 	u8 err = elem->message.error;
5261 
5262 	if (!bp->cnic_eth_dev.starting_cid  ||
5263 	    (cid < bp->cnic_eth_dev.starting_cid &&
5264 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5265 		return 1;
5266 
5267 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5268 
5269 	if (unlikely(err)) {
5270 
5271 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5272 			  cid);
5273 		bnx2x_panic_dump(bp, false);
5274 	}
5275 	bnx2x_cnic_cfc_comp(bp, cid, err);
5276 	return 0;
5277 }
5278 
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5279 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5280 {
5281 	struct bnx2x_mcast_ramrod_params rparam;
5282 	int rc;
5283 
5284 	memset(&rparam, 0, sizeof(rparam));
5285 
5286 	rparam.mcast_obj = &bp->mcast_obj;
5287 
5288 	netif_addr_lock_bh(bp->dev);
5289 
5290 	/* Clear pending state for the last command */
5291 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5292 
5293 	/* If there are pending mcast commands - send them */
5294 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5295 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5296 		if (rc < 0)
5297 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5298 				  rc);
5299 	}
5300 
5301 	netif_addr_unlock_bh(bp->dev);
5302 }
5303 
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5304 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5305 					    union event_ring_elem *elem)
5306 {
5307 	unsigned long ramrod_flags = 0;
5308 	int rc = 0;
5309 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5310 	u32 cid = echo & BNX2X_SWCID_MASK;
5311 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5312 
5313 	/* Always push next commands out, don't wait here */
5314 	__set_bit(RAMROD_CONT, &ramrod_flags);
5315 
5316 	switch (echo >> BNX2X_SWCID_SHIFT) {
5317 	case BNX2X_FILTER_MAC_PENDING:
5318 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5319 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5320 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5321 		else
5322 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5323 
5324 		break;
5325 	case BNX2X_FILTER_VLAN_PENDING:
5326 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5327 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5328 		break;
5329 	case BNX2X_FILTER_MCAST_PENDING:
5330 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5331 		/* This is only relevant for 57710 where multicast MACs are
5332 		 * configured as unicast MACs using the same ramrod.
5333 		 */
5334 		bnx2x_handle_mcast_eqe(bp);
5335 		return;
5336 	default:
5337 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5338 		return;
5339 	}
5340 
5341 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5342 
5343 	if (rc < 0)
5344 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5345 	else if (rc > 0)
5346 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5347 }
5348 
5349 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5350 
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5351 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5352 {
5353 	netif_addr_lock_bh(bp->dev);
5354 
5355 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5356 
5357 	/* Send rx_mode command again if was requested */
5358 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5359 		bnx2x_set_storm_rx_mode(bp);
5360 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5361 				    &bp->sp_state))
5362 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5363 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5364 				    &bp->sp_state))
5365 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5366 
5367 	netif_addr_unlock_bh(bp->dev);
5368 }
5369 
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5370 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5371 					      union event_ring_elem *elem)
5372 {
5373 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5374 		DP(BNX2X_MSG_SP,
5375 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5376 		   elem->message.data.vif_list_event.func_bit_map);
5377 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5378 			elem->message.data.vif_list_event.func_bit_map);
5379 	} else if (elem->message.data.vif_list_event.echo ==
5380 		   VIF_LIST_RULE_SET) {
5381 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5382 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5383 	}
5384 }
5385 
5386 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5387 static void bnx2x_after_function_update(struct bnx2x *bp)
5388 {
5389 	int q, rc;
5390 	struct bnx2x_fastpath *fp;
5391 	struct bnx2x_queue_state_params queue_params = {NULL};
5392 	struct bnx2x_queue_update_params *q_update_params =
5393 		&queue_params.params.update;
5394 
5395 	/* Send Q update command with afex vlan removal values for all Qs */
5396 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5397 
5398 	/* set silent vlan removal values according to vlan mode */
5399 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5400 		  &q_update_params->update_flags);
5401 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5402 		  &q_update_params->update_flags);
5403 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5404 
5405 	/* in access mode mark mask and value are 0 to strip all vlans */
5406 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5407 		q_update_params->silent_removal_value = 0;
5408 		q_update_params->silent_removal_mask = 0;
5409 	} else {
5410 		q_update_params->silent_removal_value =
5411 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5412 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5413 	}
5414 
5415 	for_each_eth_queue(bp, q) {
5416 		/* Set the appropriate Queue object */
5417 		fp = &bp->fp[q];
5418 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419 
5420 		/* send the ramrod */
5421 		rc = bnx2x_queue_state_change(bp, &queue_params);
5422 		if (rc < 0)
5423 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5424 				  q);
5425 	}
5426 
5427 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5428 		fp = &bp->fp[FCOE_IDX(bp)];
5429 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5430 
5431 		/* clear pending completion bit */
5432 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5433 
5434 		/* mark latest Q bit */
5435 		smp_mb__before_atomic();
5436 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5437 		smp_mb__after_atomic();
5438 
5439 		/* send Q update ramrod for FCoE Q */
5440 		rc = bnx2x_queue_state_change(bp, &queue_params);
5441 		if (rc < 0)
5442 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5443 				  q);
5444 	} else {
5445 		/* If no FCoE ring - ACK MCP now */
5446 		bnx2x_link_report(bp);
5447 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5448 	}
5449 }
5450 
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5451 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5452 	struct bnx2x *bp, u32 cid)
5453 {
5454 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5455 
5456 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5457 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5458 	else
5459 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5460 }
5461 
bnx2x_eq_int(struct bnx2x * bp)5462 static void bnx2x_eq_int(struct bnx2x *bp)
5463 {
5464 	u16 hw_cons, sw_cons, sw_prod;
5465 	union event_ring_elem *elem;
5466 	u8 echo;
5467 	u32 cid;
5468 	u8 opcode;
5469 	int rc, spqe_cnt = 0;
5470 	struct bnx2x_queue_sp_obj *q_obj;
5471 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5472 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5473 
5474 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5475 
5476 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5477 	 * when we get the next-page we need to adjust so the loop
5478 	 * condition below will be met. The next element is the size of a
5479 	 * regular element and hence incrementing by 1
5480 	 */
5481 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5482 		hw_cons++;
5483 
5484 	/* This function may never run in parallel with itself for a
5485 	 * specific bp, thus there is no need in "paired" read memory
5486 	 * barrier here.
5487 	 */
5488 	sw_cons = bp->eq_cons;
5489 	sw_prod = bp->eq_prod;
5490 
5491 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5492 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5493 
5494 	for (; sw_cons != hw_cons;
5495 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5496 
5497 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5498 
5499 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5500 		if (!rc) {
5501 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5502 			   rc);
5503 			goto next_spqe;
5504 		}
5505 
5506 		opcode = elem->message.opcode;
5507 
5508 		/* handle eq element */
5509 		switch (opcode) {
5510 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5511 			bnx2x_vf_mbx_schedule(bp,
5512 					      &elem->message.data.vf_pf_event);
5513 			continue;
5514 
5515 		case EVENT_RING_OPCODE_STAT_QUERY:
5516 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5517 			       "got statistics comp event %d\n",
5518 			       bp->stats_comp++);
5519 			/* nothing to do with stats comp */
5520 			goto next_spqe;
5521 
5522 		case EVENT_RING_OPCODE_CFC_DEL:
5523 			/* handle according to cid range */
5524 			/*
5525 			 * we may want to verify here that the bp state is
5526 			 * HALTING
5527 			 */
5528 
5529 			/* elem CID originates from FW; actually LE */
5530 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5531 
5532 			DP(BNX2X_MSG_SP,
5533 			   "got delete ramrod for MULTI[%d]\n", cid);
5534 
5535 			if (CNIC_LOADED(bp) &&
5536 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5537 				goto next_spqe;
5538 
5539 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5540 
5541 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5542 				break;
5543 
5544 			goto next_spqe;
5545 
5546 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5547 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5548 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5549 			if (f_obj->complete_cmd(bp, f_obj,
5550 						BNX2X_F_CMD_TX_STOP))
5551 				break;
5552 			goto next_spqe;
5553 
5554 		case EVENT_RING_OPCODE_START_TRAFFIC:
5555 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5556 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5557 			if (f_obj->complete_cmd(bp, f_obj,
5558 						BNX2X_F_CMD_TX_START))
5559 				break;
5560 			goto next_spqe;
5561 
5562 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5563 			echo = elem->message.data.function_update_event.echo;
5564 			if (echo == SWITCH_UPDATE) {
5565 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5566 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5567 				if (f_obj->complete_cmd(
5568 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5569 					break;
5570 
5571 			} else {
5572 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5573 
5574 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5575 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5576 				f_obj->complete_cmd(bp, f_obj,
5577 						    BNX2X_F_CMD_AFEX_UPDATE);
5578 
5579 				/* We will perform the Queues update from
5580 				 * sp_rtnl task as all Queue SP operations
5581 				 * should run under rtnl_lock.
5582 				 */
5583 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5584 			}
5585 
5586 			goto next_spqe;
5587 
5588 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5589 			f_obj->complete_cmd(bp, f_obj,
5590 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5591 			bnx2x_after_afex_vif_lists(bp, elem);
5592 			goto next_spqe;
5593 		case EVENT_RING_OPCODE_FUNCTION_START:
5594 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5595 			   "got FUNC_START ramrod\n");
5596 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5597 				break;
5598 
5599 			goto next_spqe;
5600 
5601 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5602 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5603 			   "got FUNC_STOP ramrod\n");
5604 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5605 				break;
5606 
5607 			goto next_spqe;
5608 
5609 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5610 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5611 			   "got set_timesync ramrod completion\n");
5612 			if (f_obj->complete_cmd(bp, f_obj,
5613 						BNX2X_F_CMD_SET_TIMESYNC))
5614 				break;
5615 			goto next_spqe;
5616 		}
5617 
5618 		switch (opcode | bp->state) {
5619 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620 		      BNX2X_STATE_OPEN):
5621 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5623 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5624 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5625 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5626 			   SW_CID(elem->message.data.eth_event.echo));
5627 			rss_raw->clear_pending(rss_raw);
5628 			break;
5629 
5630 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5631 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5632 		case (EVENT_RING_OPCODE_SET_MAC |
5633 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5634 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635 		      BNX2X_STATE_OPEN):
5636 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637 		      BNX2X_STATE_DIAG):
5638 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5639 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5640 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5641 			bnx2x_handle_classification_eqe(bp, elem);
5642 			break;
5643 
5644 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645 		      BNX2X_STATE_OPEN):
5646 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647 		      BNX2X_STATE_DIAG):
5648 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5649 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5650 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5651 			bnx2x_handle_mcast_eqe(bp);
5652 			break;
5653 
5654 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5655 		      BNX2X_STATE_OPEN):
5656 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5657 		      BNX2X_STATE_DIAG):
5658 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5659 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5660 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5661 			bnx2x_handle_rx_mode_eqe(bp);
5662 			break;
5663 		default:
5664 			/* unknown event log error and continue */
5665 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5666 				  elem->message.opcode, bp->state);
5667 		}
5668 next_spqe:
5669 		spqe_cnt++;
5670 	} /* for */
5671 
5672 	smp_mb__before_atomic();
5673 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5674 
5675 	bp->eq_cons = sw_cons;
5676 	bp->eq_prod = sw_prod;
5677 	/* Make sure that above mem writes were issued towards the memory */
5678 	smp_wmb();
5679 
5680 	/* update producer */
5681 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5682 }
5683 
bnx2x_sp_task(struct work_struct * work)5684 static void bnx2x_sp_task(struct work_struct *work)
5685 {
5686 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5687 
5688 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5689 
5690 	/* make sure the atomic interrupt_occurred has been written */
5691 	smp_rmb();
5692 	if (atomic_read(&bp->interrupt_occurred)) {
5693 
5694 		/* what work needs to be performed? */
5695 		u16 status = bnx2x_update_dsb_idx(bp);
5696 
5697 		DP(BNX2X_MSG_SP, "status %x\n", status);
5698 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5699 		atomic_set(&bp->interrupt_occurred, 0);
5700 
5701 		/* HW attentions */
5702 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5703 			bnx2x_attn_int(bp);
5704 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5705 		}
5706 
5707 		/* SP events: STAT_QUERY and others */
5708 		if (status & BNX2X_DEF_SB_IDX) {
5709 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5710 
5711 			if (FCOE_INIT(bp) &&
5712 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5713 				/* Prevent local bottom-halves from running as
5714 				 * we are going to change the local NAPI list.
5715 				 */
5716 				local_bh_disable();
5717 				napi_schedule(&bnx2x_fcoe(bp, napi));
5718 				local_bh_enable();
5719 			}
5720 
5721 			/* Handle EQ completions */
5722 			bnx2x_eq_int(bp);
5723 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5724 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5725 
5726 			status &= ~BNX2X_DEF_SB_IDX;
5727 		}
5728 
5729 		/* if status is non zero then perhaps something went wrong */
5730 		if (unlikely(status))
5731 			DP(BNX2X_MSG_SP,
5732 			   "got an unknown interrupt! (status 0x%x)\n", status);
5733 
5734 		/* ack status block only if something was actually handled */
5735 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5736 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5737 	}
5738 
5739 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5740 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5741 			       &bp->sp_state)) {
5742 		bnx2x_link_report(bp);
5743 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5744 	}
5745 }
5746 
bnx2x_msix_sp_int(int irq,void * dev_instance)5747 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5748 {
5749 	struct net_device *dev = dev_instance;
5750 	struct bnx2x *bp = netdev_priv(dev);
5751 
5752 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5753 		     IGU_INT_DISABLE, 0);
5754 
5755 #ifdef BNX2X_STOP_ON_ERROR
5756 	if (unlikely(bp->panic))
5757 		return IRQ_HANDLED;
5758 #endif
5759 
5760 	if (CNIC_LOADED(bp)) {
5761 		struct cnic_ops *c_ops;
5762 
5763 		rcu_read_lock();
5764 		c_ops = rcu_dereference(bp->cnic_ops);
5765 		if (c_ops)
5766 			c_ops->cnic_handler(bp->cnic_data, NULL);
5767 		rcu_read_unlock();
5768 	}
5769 
5770 	/* schedule sp task to perform default status block work, ack
5771 	 * attentions and enable interrupts.
5772 	 */
5773 	bnx2x_schedule_sp_task(bp);
5774 
5775 	return IRQ_HANDLED;
5776 }
5777 
5778 /* end of slow path */
5779 
bnx2x_drv_pulse(struct bnx2x * bp)5780 void bnx2x_drv_pulse(struct bnx2x *bp)
5781 {
5782 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5783 		 bp->fw_drv_pulse_wr_seq);
5784 }
5785 
bnx2x_timer(struct timer_list * t)5786 static void bnx2x_timer(struct timer_list *t)
5787 {
5788 	struct bnx2x *bp = from_timer(bp, t, timer);
5789 
5790 	if (!netif_running(bp->dev))
5791 		return;
5792 
5793 	if (IS_PF(bp) &&
5794 	    !BP_NOMCP(bp)) {
5795 		int mb_idx = BP_FW_MB_IDX(bp);
5796 		u16 drv_pulse;
5797 		u16 mcp_pulse;
5798 
5799 		++bp->fw_drv_pulse_wr_seq;
5800 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5801 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5802 		bnx2x_drv_pulse(bp);
5803 
5804 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5805 			     MCP_PULSE_SEQ_MASK);
5806 		/* The delta between driver pulse and mcp response
5807 		 * should not get too big. If the MFW is more than 5 pulses
5808 		 * behind, we should worry about it enough to generate an error
5809 		 * log.
5810 		 */
5811 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5812 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5813 				  drv_pulse, mcp_pulse);
5814 	}
5815 
5816 	if (bp->state == BNX2X_STATE_OPEN)
5817 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5818 
5819 	/* sample pf vf bulletin board for new posts from pf */
5820 	if (IS_VF(bp))
5821 		bnx2x_timer_sriov(bp);
5822 
5823 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5824 }
5825 
5826 /* end of Statistics */
5827 
5828 /* nic init */
5829 
5830 /*
5831  * nic init service functions
5832  */
5833 
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5834 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5835 {
5836 	u32 i;
5837 	if (!(len%4) && !(addr%4))
5838 		for (i = 0; i < len; i += 4)
5839 			REG_WR(bp, addr + i, fill);
5840 	else
5841 		for (i = 0; i < len; i++)
5842 			REG_WR8(bp, addr + i, fill);
5843 }
5844 
5845 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5846 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5847 				int fw_sb_id,
5848 				u32 *sb_data_p,
5849 				u32 data_size)
5850 {
5851 	int index;
5852 	for (index = 0; index < data_size; index++)
5853 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5854 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5855 			sizeof(u32)*index,
5856 			*(sb_data_p + index));
5857 }
5858 
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5859 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5860 {
5861 	u32 *sb_data_p;
5862 	u32 data_size = 0;
5863 	struct hc_status_block_data_e2 sb_data_e2;
5864 	struct hc_status_block_data_e1x sb_data_e1x;
5865 
5866 	/* disable the function first */
5867 	if (!CHIP_IS_E1x(bp)) {
5868 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5869 		sb_data_e2.common.state = SB_DISABLED;
5870 		sb_data_e2.common.p_func.vf_valid = false;
5871 		sb_data_p = (u32 *)&sb_data_e2;
5872 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5873 	} else {
5874 		memset(&sb_data_e1x, 0,
5875 		       sizeof(struct hc_status_block_data_e1x));
5876 		sb_data_e1x.common.state = SB_DISABLED;
5877 		sb_data_e1x.common.p_func.vf_valid = false;
5878 		sb_data_p = (u32 *)&sb_data_e1x;
5879 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5880 	}
5881 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5882 
5883 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5884 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5885 			CSTORM_STATUS_BLOCK_SIZE);
5886 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5887 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5888 			CSTORM_SYNC_BLOCK_SIZE);
5889 }
5890 
5891 /* helper:  writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5892 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5893 		struct hc_sp_status_block_data *sp_sb_data)
5894 {
5895 	int func = BP_FUNC(bp);
5896 	int i;
5897 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5898 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5899 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5900 			i*sizeof(u32),
5901 			*((u32 *)sp_sb_data + i));
5902 }
5903 
bnx2x_zero_sp_sb(struct bnx2x * bp)5904 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5905 {
5906 	int func = BP_FUNC(bp);
5907 	struct hc_sp_status_block_data sp_sb_data;
5908 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5909 
5910 	sp_sb_data.state = SB_DISABLED;
5911 	sp_sb_data.p_func.vf_valid = false;
5912 
5913 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5914 
5915 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5916 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5917 			CSTORM_SP_STATUS_BLOCK_SIZE);
5918 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5919 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5920 			CSTORM_SP_SYNC_BLOCK_SIZE);
5921 }
5922 
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5923 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5924 					   int igu_sb_id, int igu_seg_id)
5925 {
5926 	hc_sm->igu_sb_id = igu_sb_id;
5927 	hc_sm->igu_seg_id = igu_seg_id;
5928 	hc_sm->timer_value = 0xFF;
5929 	hc_sm->time_to_expire = 0xFFFFFFFF;
5930 }
5931 
5932 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5933 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5934 {
5935 	/* zero out state machine indices */
5936 	/* rx indices */
5937 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938 
5939 	/* tx indices */
5940 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5941 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5942 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5943 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5944 
5945 	/* map indices */
5946 	/* rx indices */
5947 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5948 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5949 
5950 	/* tx indices */
5951 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5952 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5954 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5956 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5958 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5959 }
5960 
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5961 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5962 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5963 {
5964 	int igu_seg_id;
5965 
5966 	struct hc_status_block_data_e2 sb_data_e2;
5967 	struct hc_status_block_data_e1x sb_data_e1x;
5968 	struct hc_status_block_sm  *hc_sm_p;
5969 	int data_size;
5970 	u32 *sb_data_p;
5971 
5972 	if (CHIP_INT_MODE_IS_BC(bp))
5973 		igu_seg_id = HC_SEG_ACCESS_NORM;
5974 	else
5975 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5976 
5977 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5978 
5979 	if (!CHIP_IS_E1x(bp)) {
5980 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5981 		sb_data_e2.common.state = SB_ENABLED;
5982 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5983 		sb_data_e2.common.p_func.vf_id = vfid;
5984 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5985 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5986 		sb_data_e2.common.same_igu_sb_1b = true;
5987 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5988 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5989 		hc_sm_p = sb_data_e2.common.state_machine;
5990 		sb_data_p = (u32 *)&sb_data_e2;
5991 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5992 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5993 	} else {
5994 		memset(&sb_data_e1x, 0,
5995 		       sizeof(struct hc_status_block_data_e1x));
5996 		sb_data_e1x.common.state = SB_ENABLED;
5997 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5998 		sb_data_e1x.common.p_func.vf_id = 0xff;
5999 		sb_data_e1x.common.p_func.vf_valid = false;
6000 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6001 		sb_data_e1x.common.same_igu_sb_1b = true;
6002 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6003 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6004 		hc_sm_p = sb_data_e1x.common.state_machine;
6005 		sb_data_p = (u32 *)&sb_data_e1x;
6006 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6007 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6008 	}
6009 
6010 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6011 				       igu_sb_id, igu_seg_id);
6012 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6013 				       igu_sb_id, igu_seg_id);
6014 
6015 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6016 
6017 	/* write indices to HW - PCI guarantees endianity of regpairs */
6018 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6019 }
6020 
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6021 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6022 				     u16 tx_usec, u16 rx_usec)
6023 {
6024 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6025 				    false, rx_usec);
6026 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6027 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6028 				       tx_usec);
6029 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6030 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6031 				       tx_usec);
6032 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6033 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6034 				       tx_usec);
6035 }
6036 
bnx2x_init_def_sb(struct bnx2x * bp)6037 static void bnx2x_init_def_sb(struct bnx2x *bp)
6038 {
6039 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6040 	dma_addr_t mapping = bp->def_status_blk_mapping;
6041 	int igu_sp_sb_index;
6042 	int igu_seg_id;
6043 	int port = BP_PORT(bp);
6044 	int func = BP_FUNC(bp);
6045 	int reg_offset, reg_offset_en5;
6046 	u64 section;
6047 	int index;
6048 	struct hc_sp_status_block_data sp_sb_data;
6049 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6050 
6051 	if (CHIP_INT_MODE_IS_BC(bp)) {
6052 		igu_sp_sb_index = DEF_SB_IGU_ID;
6053 		igu_seg_id = HC_SEG_ACCESS_DEF;
6054 	} else {
6055 		igu_sp_sb_index = bp->igu_dsb_id;
6056 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6057 	}
6058 
6059 	/* ATTN */
6060 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6061 					    atten_status_block);
6062 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6063 
6064 	bp->attn_state = 0;
6065 
6066 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6067 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6068 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6069 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6070 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6071 		int sindex;
6072 		/* take care of sig[0]..sig[4] */
6073 		for (sindex = 0; sindex < 4; sindex++)
6074 			bp->attn_group[index].sig[sindex] =
6075 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6076 
6077 		if (!CHIP_IS_E1x(bp))
6078 			/*
6079 			 * enable5 is separate from the rest of the registers,
6080 			 * and therefore the address skip is 4
6081 			 * and not 16 between the different groups
6082 			 */
6083 			bp->attn_group[index].sig[4] = REG_RD(bp,
6084 					reg_offset_en5 + 0x4*index);
6085 		else
6086 			bp->attn_group[index].sig[4] = 0;
6087 	}
6088 
6089 	if (bp->common.int_block == INT_BLOCK_HC) {
6090 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6091 				     HC_REG_ATTN_MSG0_ADDR_L);
6092 
6093 		REG_WR(bp, reg_offset, U64_LO(section));
6094 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6095 	} else if (!CHIP_IS_E1x(bp)) {
6096 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6097 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6098 	}
6099 
6100 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6101 					    sp_sb);
6102 
6103 	bnx2x_zero_sp_sb(bp);
6104 
6105 	/* PCI guarantees endianity of regpairs */
6106 	sp_sb_data.state		= SB_ENABLED;
6107 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6108 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6109 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6110 	sp_sb_data.igu_seg_id		= igu_seg_id;
6111 	sp_sb_data.p_func.pf_id		= func;
6112 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6113 	sp_sb_data.p_func.vf_id		= 0xff;
6114 
6115 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6116 
6117 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6118 }
6119 
bnx2x_update_coalesce(struct bnx2x * bp)6120 void bnx2x_update_coalesce(struct bnx2x *bp)
6121 {
6122 	int i;
6123 
6124 	for_each_eth_queue(bp, i)
6125 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6126 					 bp->tx_ticks, bp->rx_ticks);
6127 }
6128 
bnx2x_init_sp_ring(struct bnx2x * bp)6129 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6130 {
6131 	spin_lock_init(&bp->spq_lock);
6132 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6133 
6134 	bp->spq_prod_idx = 0;
6135 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6136 	bp->spq_prod_bd = bp->spq;
6137 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6138 }
6139 
bnx2x_init_eq_ring(struct bnx2x * bp)6140 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6141 {
6142 	int i;
6143 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6144 		union event_ring_elem *elem =
6145 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6146 
6147 		elem->next_page.addr.hi =
6148 			cpu_to_le32(U64_HI(bp->eq_mapping +
6149 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6150 		elem->next_page.addr.lo =
6151 			cpu_to_le32(U64_LO(bp->eq_mapping +
6152 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6153 	}
6154 	bp->eq_cons = 0;
6155 	bp->eq_prod = NUM_EQ_DESC;
6156 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6157 	/* we want a warning message before it gets wrought... */
6158 	atomic_set(&bp->eq_spq_left,
6159 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6160 }
6161 
6162 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6163 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6164 			       unsigned long rx_mode_flags,
6165 			       unsigned long rx_accept_flags,
6166 			       unsigned long tx_accept_flags,
6167 			       unsigned long ramrod_flags)
6168 {
6169 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6170 	int rc;
6171 
6172 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6173 
6174 	/* Prepare ramrod parameters */
6175 	ramrod_param.cid = 0;
6176 	ramrod_param.cl_id = cl_id;
6177 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6178 	ramrod_param.func_id = BP_FUNC(bp);
6179 
6180 	ramrod_param.pstate = &bp->sp_state;
6181 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6182 
6183 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6184 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6185 
6186 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6187 
6188 	ramrod_param.ramrod_flags = ramrod_flags;
6189 	ramrod_param.rx_mode_flags = rx_mode_flags;
6190 
6191 	ramrod_param.rx_accept_flags = rx_accept_flags;
6192 	ramrod_param.tx_accept_flags = tx_accept_flags;
6193 
6194 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6195 	if (rc < 0) {
6196 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6197 		return rc;
6198 	}
6199 
6200 	return 0;
6201 }
6202 
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6203 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6204 				   unsigned long *rx_accept_flags,
6205 				   unsigned long *tx_accept_flags)
6206 {
6207 	/* Clear the flags first */
6208 	*rx_accept_flags = 0;
6209 	*tx_accept_flags = 0;
6210 
6211 	switch (rx_mode) {
6212 	case BNX2X_RX_MODE_NONE:
6213 		/*
6214 		 * 'drop all' supersedes any accept flags that may have been
6215 		 * passed to the function.
6216 		 */
6217 		break;
6218 	case BNX2X_RX_MODE_NORMAL:
6219 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6220 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6221 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6222 
6223 		/* internal switching mode */
6224 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6225 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6226 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6227 
6228 		if (bp->accept_any_vlan) {
6229 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6230 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6231 		}
6232 
6233 		break;
6234 	case BNX2X_RX_MODE_ALLMULTI:
6235 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6236 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6237 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6238 
6239 		/* internal switching mode */
6240 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6242 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6243 
6244 		if (bp->accept_any_vlan) {
6245 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247 		}
6248 
6249 		break;
6250 	case BNX2X_RX_MODE_PROMISC:
6251 		/* According to definition of SI mode, iface in promisc mode
6252 		 * should receive matched and unmatched (in resolution of port)
6253 		 * unicast packets.
6254 		 */
6255 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6256 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6257 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6258 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6259 
6260 		/* internal switching mode */
6261 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6262 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6263 
6264 		if (IS_MF_SI(bp))
6265 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6266 		else
6267 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6268 
6269 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6270 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6271 
6272 		break;
6273 	default:
6274 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6275 		return -EINVAL;
6276 	}
6277 
6278 	return 0;
6279 }
6280 
6281 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6282 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6283 {
6284 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6285 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6286 	int rc;
6287 
6288 	if (!NO_FCOE(bp))
6289 		/* Configure rx_mode of FCoE Queue */
6290 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6291 
6292 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6293 				     &tx_accept_flags);
6294 	if (rc)
6295 		return rc;
6296 
6297 	__set_bit(RAMROD_RX, &ramrod_flags);
6298 	__set_bit(RAMROD_TX, &ramrod_flags);
6299 
6300 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6301 				   rx_accept_flags, tx_accept_flags,
6302 				   ramrod_flags);
6303 }
6304 
bnx2x_init_internal_common(struct bnx2x * bp)6305 static void bnx2x_init_internal_common(struct bnx2x *bp)
6306 {
6307 	int i;
6308 
6309 	/* Zero this manually as its initialization is
6310 	   currently missing in the initTool */
6311 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6312 		REG_WR(bp, BAR_USTRORM_INTMEM +
6313 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6314 	if (!CHIP_IS_E1x(bp)) {
6315 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6316 			CHIP_INT_MODE_IS_BC(bp) ?
6317 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6318 	}
6319 }
6320 
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6321 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6322 {
6323 	switch (load_code) {
6324 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6325 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6326 		bnx2x_init_internal_common(bp);
6327 		fallthrough;
6328 
6329 	case FW_MSG_CODE_DRV_LOAD_PORT:
6330 		/* nothing to do */
6331 		fallthrough;
6332 
6333 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6334 		/* internal memory per function is
6335 		   initialized inside bnx2x_pf_init */
6336 		break;
6337 
6338 	default:
6339 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6340 		break;
6341 	}
6342 }
6343 
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6344 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6345 {
6346 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6347 }
6348 
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6349 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6350 {
6351 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6352 }
6353 
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6354 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6355 {
6356 	if (CHIP_IS_E1x(fp->bp))
6357 		return BP_L_ID(fp->bp) + fp->index;
6358 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6359 		return bnx2x_fp_igu_sb_id(fp);
6360 }
6361 
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6362 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6363 {
6364 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6365 	u8 cos;
6366 	unsigned long q_type = 0;
6367 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6368 	fp->rx_queue = fp_idx;
6369 	fp->cid = fp_idx;
6370 	fp->cl_id = bnx2x_fp_cl_id(fp);
6371 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6372 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6373 	/* qZone id equals to FW (per path) client id */
6374 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6375 
6376 	/* init shortcut */
6377 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6378 
6379 	/* Setup SB indices */
6380 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6381 
6382 	/* Configure Queue State object */
6383 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6384 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6385 
6386 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6387 
6388 	/* init tx data */
6389 	for_each_cos_in_tx_queue(fp, cos) {
6390 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6391 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6392 				  FP_COS_TO_TXQ(fp, cos, bp),
6393 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6394 		cids[cos] = fp->txdata_ptr[cos]->cid;
6395 	}
6396 
6397 	/* nothing more for vf to do here */
6398 	if (IS_VF(bp))
6399 		return;
6400 
6401 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6402 		      fp->fw_sb_id, fp->igu_sb_id);
6403 	bnx2x_update_fpsb_idx(fp);
6404 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6405 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6406 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6407 
6408 	/**
6409 	 * Configure classification DBs: Always enable Tx switching
6410 	 */
6411 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6412 
6413 	DP(NETIF_MSG_IFUP,
6414 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6415 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6416 	   fp->igu_sb_id);
6417 }
6418 
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6419 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6420 {
6421 	int i;
6422 
6423 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6424 		struct eth_tx_next_bd *tx_next_bd =
6425 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6426 
6427 		tx_next_bd->addr_hi =
6428 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6429 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6430 		tx_next_bd->addr_lo =
6431 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6432 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6433 	}
6434 
6435 	*txdata->tx_cons_sb = cpu_to_le16(0);
6436 
6437 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6438 	txdata->tx_db.data.zero_fill1 = 0;
6439 	txdata->tx_db.data.prod = 0;
6440 
6441 	txdata->tx_pkt_prod = 0;
6442 	txdata->tx_pkt_cons = 0;
6443 	txdata->tx_bd_prod = 0;
6444 	txdata->tx_bd_cons = 0;
6445 	txdata->tx_pkt = 0;
6446 }
6447 
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6448 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6449 {
6450 	int i;
6451 
6452 	for_each_tx_queue_cnic(bp, i)
6453 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6454 }
6455 
bnx2x_init_tx_rings(struct bnx2x * bp)6456 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6457 {
6458 	int i;
6459 	u8 cos;
6460 
6461 	for_each_eth_queue(bp, i)
6462 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6463 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6464 }
6465 
bnx2x_init_fcoe_fp(struct bnx2x * bp)6466 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6467 {
6468 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6469 	unsigned long q_type = 0;
6470 
6471 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6472 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6473 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6474 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6475 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6476 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6477 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6478 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6479 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6480 			  fp);
6481 
6482 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6483 
6484 	/* qZone id equals to FW (per path) client id */
6485 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6486 	/* init shortcut */
6487 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6488 		bnx2x_rx_ustorm_prods_offset(fp);
6489 
6490 	/* Configure Queue State object */
6491 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6492 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6493 
6494 	/* No multi-CoS for FCoE L2 client */
6495 	BUG_ON(fp->max_cos != 1);
6496 
6497 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6498 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6499 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6500 
6501 	DP(NETIF_MSG_IFUP,
6502 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6503 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6504 	   fp->igu_sb_id);
6505 }
6506 
bnx2x_nic_init_cnic(struct bnx2x * bp)6507 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6508 {
6509 	if (!NO_FCOE(bp))
6510 		bnx2x_init_fcoe_fp(bp);
6511 
6512 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6513 		      BNX2X_VF_ID_INVALID, false,
6514 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6515 
6516 	/* ensure status block indices were read */
6517 	rmb();
6518 	bnx2x_init_rx_rings_cnic(bp);
6519 	bnx2x_init_tx_rings_cnic(bp);
6520 
6521 	/* flush all */
6522 	mb();
6523 }
6524 
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6525 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6526 {
6527 	int i;
6528 
6529 	/* Setup NIC internals and enable interrupts */
6530 	for_each_eth_queue(bp, i)
6531 		bnx2x_init_eth_fp(bp, i);
6532 
6533 	/* ensure status block indices were read */
6534 	rmb();
6535 	bnx2x_init_rx_rings(bp);
6536 	bnx2x_init_tx_rings(bp);
6537 
6538 	if (IS_PF(bp)) {
6539 		/* Initialize MOD_ABS interrupts */
6540 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6541 				       bp->common.shmem_base,
6542 				       bp->common.shmem2_base, BP_PORT(bp));
6543 
6544 		/* initialize the default status block and sp ring */
6545 		bnx2x_init_def_sb(bp);
6546 		bnx2x_update_dsb_idx(bp);
6547 		bnx2x_init_sp_ring(bp);
6548 	} else {
6549 		bnx2x_memset_stats(bp);
6550 	}
6551 }
6552 
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6553 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6554 {
6555 	bnx2x_init_eq_ring(bp);
6556 	bnx2x_init_internal(bp, load_code);
6557 	bnx2x_pf_init(bp);
6558 	bnx2x_stats_init(bp);
6559 
6560 	/* flush all before enabling interrupts */
6561 	mb();
6562 
6563 	bnx2x_int_enable(bp);
6564 
6565 	/* Check for SPIO5 */
6566 	bnx2x_attn_int_deasserted0(bp,
6567 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6568 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6569 }
6570 
6571 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6572 static int bnx2x_gunzip_init(struct bnx2x *bp)
6573 {
6574 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6575 					    &bp->gunzip_mapping, GFP_KERNEL);
6576 	if (bp->gunzip_buf  == NULL)
6577 		goto gunzip_nomem1;
6578 
6579 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6580 	if (bp->strm  == NULL)
6581 		goto gunzip_nomem2;
6582 
6583 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6584 	if (bp->strm->workspace == NULL)
6585 		goto gunzip_nomem3;
6586 
6587 	return 0;
6588 
6589 gunzip_nomem3:
6590 	kfree(bp->strm);
6591 	bp->strm = NULL;
6592 
6593 gunzip_nomem2:
6594 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6595 			  bp->gunzip_mapping);
6596 	bp->gunzip_buf = NULL;
6597 
6598 gunzip_nomem1:
6599 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6600 	return -ENOMEM;
6601 }
6602 
bnx2x_gunzip_end(struct bnx2x * bp)6603 static void bnx2x_gunzip_end(struct bnx2x *bp)
6604 {
6605 	if (bp->strm) {
6606 		vfree(bp->strm->workspace);
6607 		kfree(bp->strm);
6608 		bp->strm = NULL;
6609 	}
6610 
6611 	if (bp->gunzip_buf) {
6612 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6613 				  bp->gunzip_mapping);
6614 		bp->gunzip_buf = NULL;
6615 	}
6616 }
6617 
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6618 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6619 {
6620 	int n, rc;
6621 
6622 	/* check gzip header */
6623 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6624 		BNX2X_ERR("Bad gzip header\n");
6625 		return -EINVAL;
6626 	}
6627 
6628 	n = 10;
6629 
6630 #define FNAME				0x8
6631 
6632 	if (zbuf[3] & FNAME)
6633 		while ((zbuf[n++] != 0) && (n < len));
6634 
6635 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6636 	bp->strm->avail_in = len - n;
6637 	bp->strm->next_out = bp->gunzip_buf;
6638 	bp->strm->avail_out = FW_BUF_SIZE;
6639 
6640 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6641 	if (rc != Z_OK)
6642 		return rc;
6643 
6644 	rc = zlib_inflate(bp->strm, Z_FINISH);
6645 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6646 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6647 			   bp->strm->msg);
6648 
6649 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6650 	if (bp->gunzip_outlen & 0x3)
6651 		netdev_err(bp->dev,
6652 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6653 				bp->gunzip_outlen);
6654 	bp->gunzip_outlen >>= 2;
6655 
6656 	zlib_inflateEnd(bp->strm);
6657 
6658 	if (rc == Z_STREAM_END)
6659 		return 0;
6660 
6661 	return rc;
6662 }
6663 
6664 /* nic load/unload */
6665 
6666 /*
6667  * General service functions
6668  */
6669 
6670 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6671 static void bnx2x_lb_pckt(struct bnx2x *bp)
6672 {
6673 	u32 wb_write[3];
6674 
6675 	/* Ethernet source and destination addresses */
6676 	wb_write[0] = 0x55555555;
6677 	wb_write[1] = 0x55555555;
6678 	wb_write[2] = 0x20;		/* SOP */
6679 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6680 
6681 	/* NON-IP protocol */
6682 	wb_write[0] = 0x09000000;
6683 	wb_write[1] = 0x55555555;
6684 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6685 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6686 }
6687 
6688 /* some of the internal memories
6689  * are not directly readable from the driver
6690  * to test them we send debug packets
6691  */
bnx2x_int_mem_test(struct bnx2x * bp)6692 static int bnx2x_int_mem_test(struct bnx2x *bp)
6693 {
6694 	int factor;
6695 	int count, i;
6696 	u32 val = 0;
6697 
6698 	if (CHIP_REV_IS_FPGA(bp))
6699 		factor = 120;
6700 	else if (CHIP_REV_IS_EMUL(bp))
6701 		factor = 200;
6702 	else
6703 		factor = 1;
6704 
6705 	/* Disable inputs of parser neighbor blocks */
6706 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6707 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6708 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6709 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6710 
6711 	/*  Write 0 to parser credits for CFC search request */
6712 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6713 
6714 	/* send Ethernet packet */
6715 	bnx2x_lb_pckt(bp);
6716 
6717 	/* TODO do i reset NIG statistic? */
6718 	/* Wait until NIG register shows 1 packet of size 0x10 */
6719 	count = 1000 * factor;
6720 	while (count) {
6721 
6722 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6723 		val = *bnx2x_sp(bp, wb_data[0]);
6724 		if (val == 0x10)
6725 			break;
6726 
6727 		usleep_range(10000, 20000);
6728 		count--;
6729 	}
6730 	if (val != 0x10) {
6731 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6732 		return -1;
6733 	}
6734 
6735 	/* Wait until PRS register shows 1 packet */
6736 	count = 1000 * factor;
6737 	while (count) {
6738 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6739 		if (val == 1)
6740 			break;
6741 
6742 		usleep_range(10000, 20000);
6743 		count--;
6744 	}
6745 	if (val != 0x1) {
6746 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6747 		return -2;
6748 	}
6749 
6750 	/* Reset and init BRB, PRS */
6751 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752 	msleep(50);
6753 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754 	msleep(50);
6755 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757 
6758 	DP(NETIF_MSG_HW, "part2\n");
6759 
6760 	/* Disable inputs of parser neighbor blocks */
6761 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6762 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6763 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6764 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6765 
6766 	/* Write 0 to parser credits for CFC search request */
6767 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6768 
6769 	/* send 10 Ethernet packets */
6770 	for (i = 0; i < 10; i++)
6771 		bnx2x_lb_pckt(bp);
6772 
6773 	/* Wait until NIG register shows 10 + 1
6774 	   packets of size 11*0x10 = 0xb0 */
6775 	count = 1000 * factor;
6776 	while (count) {
6777 
6778 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6779 		val = *bnx2x_sp(bp, wb_data[0]);
6780 		if (val == 0xb0)
6781 			break;
6782 
6783 		usleep_range(10000, 20000);
6784 		count--;
6785 	}
6786 	if (val != 0xb0) {
6787 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6788 		return -3;
6789 	}
6790 
6791 	/* Wait until PRS register shows 2 packets */
6792 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6793 	if (val != 2)
6794 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6795 
6796 	/* Write 1 to parser credits for CFC search request */
6797 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6798 
6799 	/* Wait until PRS register shows 3 packets */
6800 	msleep(10 * factor);
6801 	/* Wait until NIG register shows 1 packet of size 0x10 */
6802 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6803 	if (val != 3)
6804 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6805 
6806 	/* clear NIG EOP FIFO */
6807 	for (i = 0; i < 11; i++)
6808 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6809 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6810 	if (val != 1) {
6811 		BNX2X_ERR("clear of NIG failed\n");
6812 		return -4;
6813 	}
6814 
6815 	/* Reset and init BRB, PRS, NIG */
6816 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6817 	msleep(50);
6818 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6819 	msleep(50);
6820 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6821 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6822 	if (!CNIC_SUPPORT(bp))
6823 		/* set NIC mode */
6824 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6825 
6826 	/* Enable inputs of parser neighbor blocks */
6827 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6828 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6829 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6830 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6831 
6832 	DP(NETIF_MSG_HW, "done\n");
6833 
6834 	return 0; /* OK */
6835 }
6836 
bnx2x_enable_blocks_attention(struct bnx2x * bp)6837 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6838 {
6839 	u32 val;
6840 
6841 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6842 	if (!CHIP_IS_E1x(bp))
6843 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6844 	else
6845 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6846 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6847 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6848 	/*
6849 	 * mask read length error interrupts in brb for parser
6850 	 * (parsing unit and 'checksum and crc' unit)
6851 	 * these errors are legal (PU reads fixed length and CAC can cause
6852 	 * read length error on truncated packets)
6853 	 */
6854 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6855 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6856 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6857 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6858 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6859 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6860 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6861 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6862 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6863 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6864 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6865 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6866 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6867 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6868 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6869 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6870 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6871 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6872 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6873 
6874 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6875 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6876 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6877 	if (!CHIP_IS_E1x(bp))
6878 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6879 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6880 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6881 
6882 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6883 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6884 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6885 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6886 
6887 	if (!CHIP_IS_E1x(bp))
6888 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6889 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6890 
6891 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6892 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6893 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6894 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6895 }
6896 
bnx2x_reset_common(struct bnx2x * bp)6897 static void bnx2x_reset_common(struct bnx2x *bp)
6898 {
6899 	u32 val = 0x1400;
6900 
6901 	/* reset_common */
6902 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6903 	       0xd3ffff7f);
6904 
6905 	if (CHIP_IS_E3(bp)) {
6906 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6907 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6908 	}
6909 
6910 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6911 }
6912 
bnx2x_setup_dmae(struct bnx2x * bp)6913 static void bnx2x_setup_dmae(struct bnx2x *bp)
6914 {
6915 	bp->dmae_ready = 0;
6916 	spin_lock_init(&bp->dmae_lock);
6917 }
6918 
bnx2x_init_pxp(struct bnx2x * bp)6919 static void bnx2x_init_pxp(struct bnx2x *bp)
6920 {
6921 	u16 devctl;
6922 	int r_order, w_order;
6923 
6924 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6925 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6926 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6927 	if (bp->mrrs == -1)
6928 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6929 	else {
6930 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6931 		r_order = bp->mrrs;
6932 	}
6933 
6934 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6935 }
6936 
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6937 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6938 {
6939 	int is_required;
6940 	u32 val;
6941 	int port;
6942 
6943 	if (BP_NOMCP(bp))
6944 		return;
6945 
6946 	is_required = 0;
6947 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6948 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6949 
6950 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6951 		is_required = 1;
6952 
6953 	/*
6954 	 * The fan failure mechanism is usually related to the PHY type since
6955 	 * the power consumption of the board is affected by the PHY. Currently,
6956 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6957 	 */
6958 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6959 		for (port = PORT_0; port < PORT_MAX; port++) {
6960 			is_required |=
6961 				bnx2x_fan_failure_det_req(
6962 					bp,
6963 					bp->common.shmem_base,
6964 					bp->common.shmem2_base,
6965 					port);
6966 		}
6967 
6968 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6969 
6970 	if (is_required == 0)
6971 		return;
6972 
6973 	/* Fan failure is indicated by SPIO 5 */
6974 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6975 
6976 	/* set to active low mode */
6977 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6978 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6979 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6980 
6981 	/* enable interrupt to signal the IGU */
6982 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6983 	val |= MISC_SPIO_SPIO5;
6984 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6985 }
6986 
bnx2x_pf_disable(struct bnx2x * bp)6987 void bnx2x_pf_disable(struct bnx2x *bp)
6988 {
6989 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6990 	val &= ~IGU_PF_CONF_FUNC_EN;
6991 
6992 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6993 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6994 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6995 }
6996 
bnx2x__common_init_phy(struct bnx2x * bp)6997 static void bnx2x__common_init_phy(struct bnx2x *bp)
6998 {
6999 	u32 shmem_base[2], shmem2_base[2];
7000 	/* Avoid common init in case MFW supports LFA */
7001 	if (SHMEM2_RD(bp, size) >
7002 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7003 		return;
7004 	shmem_base[0] =  bp->common.shmem_base;
7005 	shmem2_base[0] = bp->common.shmem2_base;
7006 	if (!CHIP_IS_E1x(bp)) {
7007 		shmem_base[1] =
7008 			SHMEM2_RD(bp, other_shmem_base_addr);
7009 		shmem2_base[1] =
7010 			SHMEM2_RD(bp, other_shmem2_base_addr);
7011 	}
7012 	bnx2x_acquire_phy_lock(bp);
7013 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7014 			      bp->common.chip_id);
7015 	bnx2x_release_phy_lock(bp);
7016 }
7017 
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7018 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7019 {
7020 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7021 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7022 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7023 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7024 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7025 
7026 	/* make sure this value is 0 */
7027 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7028 
7029 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7030 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7031 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7032 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7033 }
7034 
bnx2x_set_endianity(struct bnx2x * bp)7035 static void bnx2x_set_endianity(struct bnx2x *bp)
7036 {
7037 #ifdef __BIG_ENDIAN
7038 	bnx2x_config_endianity(bp, 1);
7039 #else
7040 	bnx2x_config_endianity(bp, 0);
7041 #endif
7042 }
7043 
bnx2x_reset_endianity(struct bnx2x * bp)7044 static void bnx2x_reset_endianity(struct bnx2x *bp)
7045 {
7046 	bnx2x_config_endianity(bp, 0);
7047 }
7048 
7049 /**
7050  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7051  *
7052  * @bp:		driver handle
7053  */
bnx2x_init_hw_common(struct bnx2x * bp)7054 static int bnx2x_init_hw_common(struct bnx2x *bp)
7055 {
7056 	u32 val;
7057 
7058 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7059 
7060 	/*
7061 	 * take the RESET lock to protect undi_unload flow from accessing
7062 	 * registers while we're resetting the chip
7063 	 */
7064 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7065 
7066 	bnx2x_reset_common(bp);
7067 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7068 
7069 	val = 0xfffc;
7070 	if (CHIP_IS_E3(bp)) {
7071 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7072 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7073 	}
7074 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7075 
7076 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7077 
7078 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7079 
7080 	if (!CHIP_IS_E1x(bp)) {
7081 		u8 abs_func_id;
7082 
7083 		/**
7084 		 * 4-port mode or 2-port mode we need to turn of master-enable
7085 		 * for everyone, after that, turn it back on for self.
7086 		 * so, we disregard multi-function or not, and always disable
7087 		 * for all functions on the given path, this means 0,2,4,6 for
7088 		 * path 0 and 1,3,5,7 for path 1
7089 		 */
7090 		for (abs_func_id = BP_PATH(bp);
7091 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7092 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7093 				REG_WR(bp,
7094 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7095 				    1);
7096 				continue;
7097 			}
7098 
7099 			bnx2x_pretend_func(bp, abs_func_id);
7100 			/* clear pf enable */
7101 			bnx2x_pf_disable(bp);
7102 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7103 		}
7104 	}
7105 
7106 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7107 	if (CHIP_IS_E1(bp)) {
7108 		/* enable HW interrupt from PXP on USDM overflow
7109 		   bit 16 on INT_MASK_0 */
7110 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7111 	}
7112 
7113 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7114 	bnx2x_init_pxp(bp);
7115 	bnx2x_set_endianity(bp);
7116 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7117 
7118 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7119 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7120 
7121 	/* let the HW do it's magic ... */
7122 	msleep(100);
7123 	/* finish PXP init */
7124 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7125 	if (val != 1) {
7126 		BNX2X_ERR("PXP2 CFG failed\n");
7127 		return -EBUSY;
7128 	}
7129 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7130 	if (val != 1) {
7131 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7132 		return -EBUSY;
7133 	}
7134 
7135 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7136 	 * have entries with value "0" and valid bit on.
7137 	 * This needs to be done by the first PF that is loaded in a path
7138 	 * (i.e. common phase)
7139 	 */
7140 	if (!CHIP_IS_E1x(bp)) {
7141 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7142  * (i.e. vnic3) to start even if it is marked as "scan-off".
7143  * This occurs when a different function (func2,3) is being marked
7144  * as "scan-off". Real-life scenario for example: if a driver is being
7145  * load-unloaded while func6,7 are down. This will cause the timer to access
7146  * the ilt, translate to a logical address and send a request to read/write.
7147  * Since the ilt for the function that is down is not valid, this will cause
7148  * a translation error which is unrecoverable.
7149  * The Workaround is intended to make sure that when this happens nothing fatal
7150  * will occur. The workaround:
7151  *	1.  First PF driver which loads on a path will:
7152  *		a.  After taking the chip out of reset, by using pretend,
7153  *		    it will write "0" to the following registers of
7154  *		    the other vnics.
7155  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7156  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7157  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7158  *		    And for itself it will write '1' to
7159  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7160  *		    dmae-operations (writing to pram for example.)
7161  *		    note: can be done for only function 6,7 but cleaner this
7162  *			  way.
7163  *		b.  Write zero+valid to the entire ILT.
7164  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7165  *		    VNIC3 (of that port). The range allocated will be the
7166  *		    entire ILT. This is needed to prevent  ILT range error.
7167  *	2.  Any PF driver load flow:
7168  *		a.  ILT update with the physical addresses of the allocated
7169  *		    logical pages.
7170  *		b.  Wait 20msec. - note that this timeout is needed to make
7171  *		    sure there are no requests in one of the PXP internal
7172  *		    queues with "old" ILT addresses.
7173  *		c.  PF enable in the PGLC.
7174  *		d.  Clear the was_error of the PF in the PGLC. (could have
7175  *		    occurred while driver was down)
7176  *		e.  PF enable in the CFC (WEAK + STRONG)
7177  *		f.  Timers scan enable
7178  *	3.  PF driver unload flow:
7179  *		a.  Clear the Timers scan_en.
7180  *		b.  Polling for scan_on=0 for that PF.
7181  *		c.  Clear the PF enable bit in the PXP.
7182  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7183  *		e.  Write zero+valid to all ILT entries (The valid bit must
7184  *		    stay set)
7185  *		f.  If this is VNIC 3 of a port then also init
7186  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7187  *		    to the last entry in the ILT.
7188  *
7189  *	Notes:
7190  *	Currently the PF error in the PGLC is non recoverable.
7191  *	In the future the there will be a recovery routine for this error.
7192  *	Currently attention is masked.
7193  *	Having an MCP lock on the load/unload process does not guarantee that
7194  *	there is no Timer disable during Func6/7 enable. This is because the
7195  *	Timers scan is currently being cleared by the MCP on FLR.
7196  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7197  *	there is error before clearing it. But the flow above is simpler and
7198  *	more general.
7199  *	All ILT entries are written by zero+valid and not just PF6/7
7200  *	ILT entries since in the future the ILT entries allocation for
7201  *	PF-s might be dynamic.
7202  */
7203 		struct ilt_client_info ilt_cli;
7204 		struct bnx2x_ilt ilt;
7205 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7206 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7207 
7208 		/* initialize dummy TM client */
7209 		ilt_cli.start = 0;
7210 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7211 		ilt_cli.client_num = ILT_CLIENT_TM;
7212 
7213 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7214 		 * Step 2: set the timers first/last ilt entry to point
7215 		 * to the entire range to prevent ILT range error for 3rd/4th
7216 		 * vnic	(this code assumes existence of the vnic)
7217 		 *
7218 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7219 		 * with dummy TM client
7220 		 *
7221 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7222 		 * and his brother are split registers
7223 		 */
7224 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7225 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7226 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7227 
7228 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7229 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7230 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7231 	}
7232 
7233 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7234 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7235 
7236 	if (!CHIP_IS_E1x(bp)) {
7237 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7238 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7239 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7240 
7241 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7242 
7243 		/* let the HW do it's magic ... */
7244 		do {
7245 			msleep(200);
7246 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7247 		} while (factor-- && (val != 1));
7248 
7249 		if (val != 1) {
7250 			BNX2X_ERR("ATC_INIT failed\n");
7251 			return -EBUSY;
7252 		}
7253 	}
7254 
7255 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7256 
7257 	bnx2x_iov_init_dmae(bp);
7258 
7259 	/* clean the DMAE memory */
7260 	bp->dmae_ready = 1;
7261 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7262 
7263 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7264 
7265 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7266 
7267 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7268 
7269 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7270 
7271 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7272 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7273 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7274 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7275 
7276 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7277 
7278 	/* QM queues pointers table */
7279 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7280 
7281 	/* soft reset pulse */
7282 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7283 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7284 
7285 	if (CNIC_SUPPORT(bp))
7286 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7287 
7288 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7289 
7290 	if (!CHIP_REV_IS_SLOW(bp))
7291 		/* enable hw interrupt from doorbell Q */
7292 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7293 
7294 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7295 
7296 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7297 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7298 
7299 	if (!CHIP_IS_E1(bp))
7300 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7301 
7302 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7303 		if (IS_MF_AFEX(bp)) {
7304 			/* configure that VNTag and VLAN headers must be
7305 			 * received in afex mode
7306 			 */
7307 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7308 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7309 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7310 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7311 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7312 		} else {
7313 			/* Bit-map indicating which L2 hdrs may appear
7314 			 * after the basic Ethernet header
7315 			 */
7316 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7317 			       bp->path_has_ovlan ? 7 : 6);
7318 		}
7319 	}
7320 
7321 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7322 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7323 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7324 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7325 
7326 	if (!CHIP_IS_E1x(bp)) {
7327 		/* reset VFC memories */
7328 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7329 			   VFC_MEMORIES_RST_REG_CAM_RST |
7330 			   VFC_MEMORIES_RST_REG_RAM_RST);
7331 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7332 			   VFC_MEMORIES_RST_REG_CAM_RST |
7333 			   VFC_MEMORIES_RST_REG_RAM_RST);
7334 
7335 		msleep(20);
7336 	}
7337 
7338 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7339 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7340 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7341 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7342 
7343 	/* sync semi rtc */
7344 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7345 	       0x80000000);
7346 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7347 	       0x80000000);
7348 
7349 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7350 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7351 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7352 
7353 	if (!CHIP_IS_E1x(bp)) {
7354 		if (IS_MF_AFEX(bp)) {
7355 			/* configure that VNTag and VLAN headers must be
7356 			 * sent in afex mode
7357 			 */
7358 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7359 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7360 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7361 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7362 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7363 		} else {
7364 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7365 			       bp->path_has_ovlan ? 7 : 6);
7366 		}
7367 	}
7368 
7369 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7370 
7371 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7372 
7373 	if (CNIC_SUPPORT(bp)) {
7374 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7379 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7380 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7381 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7382 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7383 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7384 	}
7385 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7386 
7387 	if (sizeof(union cdu_context) != 1024)
7388 		/* we currently assume that a context is 1024 bytes */
7389 		dev_alert(&bp->pdev->dev,
7390 			  "please adjust the size of cdu_context(%ld)\n",
7391 			  (long)sizeof(union cdu_context));
7392 
7393 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7394 	val = (4 << 24) + (0 << 12) + 1024;
7395 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7396 
7397 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7398 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7399 	/* enable context validation interrupt from CFC */
7400 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7401 
7402 	/* set the thresholds to prevent CFC/CDU race */
7403 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7404 
7405 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7406 
7407 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7408 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7409 
7410 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7411 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7412 
7413 	/* Reset PCIE errors for debug */
7414 	REG_WR(bp, 0x2814, 0xffffffff);
7415 	REG_WR(bp, 0x3820, 0xffffffff);
7416 
7417 	if (!CHIP_IS_E1x(bp)) {
7418 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7419 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7420 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7421 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7422 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7423 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7424 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7425 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7426 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7427 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7428 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7429 	}
7430 
7431 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7432 	if (!CHIP_IS_E1(bp)) {
7433 		/* in E3 this done in per-port section */
7434 		if (!CHIP_IS_E3(bp))
7435 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7436 	}
7437 	if (CHIP_IS_E1H(bp))
7438 		/* not applicable for E2 (and above ...) */
7439 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7440 
7441 	if (CHIP_REV_IS_SLOW(bp))
7442 		msleep(200);
7443 
7444 	/* finish CFC init */
7445 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7446 	if (val != 1) {
7447 		BNX2X_ERR("CFC LL_INIT failed\n");
7448 		return -EBUSY;
7449 	}
7450 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7451 	if (val != 1) {
7452 		BNX2X_ERR("CFC AC_INIT failed\n");
7453 		return -EBUSY;
7454 	}
7455 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7456 	if (val != 1) {
7457 		BNX2X_ERR("CFC CAM_INIT failed\n");
7458 		return -EBUSY;
7459 	}
7460 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7461 
7462 	if (CHIP_IS_E1(bp)) {
7463 		/* read NIG statistic
7464 		   to see if this is our first up since powerup */
7465 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7466 		val = *bnx2x_sp(bp, wb_data[0]);
7467 
7468 		/* do internal memory self test */
7469 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7470 			BNX2X_ERR("internal mem self test failed\n");
7471 			return -EBUSY;
7472 		}
7473 	}
7474 
7475 	bnx2x_setup_fan_failure_detection(bp);
7476 
7477 	/* clear PXP2 attentions */
7478 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7479 
7480 	bnx2x_enable_blocks_attention(bp);
7481 	bnx2x_enable_blocks_parity(bp);
7482 
7483 	if (!BP_NOMCP(bp)) {
7484 		if (CHIP_IS_E1x(bp))
7485 			bnx2x__common_init_phy(bp);
7486 	} else
7487 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7488 
7489 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7490 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7491 
7492 	return 0;
7493 }
7494 
7495 /**
7496  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7497  *
7498  * @bp:		driver handle
7499  */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7500 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7501 {
7502 	int rc = bnx2x_init_hw_common(bp);
7503 
7504 	if (rc)
7505 		return rc;
7506 
7507 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7508 	if (!BP_NOMCP(bp))
7509 		bnx2x__common_init_phy(bp);
7510 
7511 	return 0;
7512 }
7513 
bnx2x_init_hw_port(struct bnx2x * bp)7514 static int bnx2x_init_hw_port(struct bnx2x *bp)
7515 {
7516 	int port = BP_PORT(bp);
7517 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7518 	u32 low, high;
7519 	u32 val, reg;
7520 
7521 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7522 
7523 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7524 
7525 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7526 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7528 
7529 	/* Timers bug workaround: disables the pf_master bit in pglue at
7530 	 * common phase, we need to enable it here before any dmae access are
7531 	 * attempted. Therefore we manually added the enable-master to the
7532 	 * port phase (it also happens in the function phase)
7533 	 */
7534 	if (!CHIP_IS_E1x(bp))
7535 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7536 
7537 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7538 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7539 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7540 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7541 
7542 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7543 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7544 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7545 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7546 
7547 	/* QM cid (connection) count */
7548 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7549 
7550 	if (CNIC_SUPPORT(bp)) {
7551 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7552 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7553 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7554 	}
7555 
7556 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7557 
7558 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7559 
7560 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7561 
7562 		if (IS_MF(bp))
7563 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7564 		else if (bp->dev->mtu > 4096) {
7565 			if (bp->flags & ONE_PORT_FLAG)
7566 				low = 160;
7567 			else {
7568 				val = bp->dev->mtu;
7569 				/* (24*1024 + val*4)/256 */
7570 				low = 96 + (val/64) +
7571 						((val % 64) ? 1 : 0);
7572 			}
7573 		} else
7574 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7575 		high = low + 56;	/* 14*1024/256 */
7576 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7577 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7578 	}
7579 
7580 	if (CHIP_MODE_IS_4_PORT(bp))
7581 		REG_WR(bp, (BP_PORT(bp) ?
7582 			    BRB1_REG_MAC_GUARANTIED_1 :
7583 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7584 
7585 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7586 	if (CHIP_IS_E3B0(bp)) {
7587 		if (IS_MF_AFEX(bp)) {
7588 			/* configure headers for AFEX mode */
7589 			REG_WR(bp, BP_PORT(bp) ?
7590 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7591 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7592 			REG_WR(bp, BP_PORT(bp) ?
7593 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7594 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7595 			REG_WR(bp, BP_PORT(bp) ?
7596 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7597 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7598 		} else {
7599 			/* Ovlan exists only if we are in multi-function +
7600 			 * switch-dependent mode, in switch-independent there
7601 			 * is no ovlan headers
7602 			 */
7603 			REG_WR(bp, BP_PORT(bp) ?
7604 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7605 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7606 			       (bp->path_has_ovlan ? 7 : 6));
7607 		}
7608 	}
7609 
7610 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7614 
7615 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7619 
7620 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7621 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7622 
7623 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7624 
7625 	if (CHIP_IS_E1x(bp)) {
7626 		/* configure PBF to work without PAUSE mtu 9000 */
7627 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7628 
7629 		/* update threshold */
7630 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7631 		/* update init credit */
7632 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7633 
7634 		/* probe changes */
7635 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7636 		udelay(50);
7637 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7638 	}
7639 
7640 	if (CNIC_SUPPORT(bp))
7641 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7642 
7643 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7644 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7645 
7646 	if (CHIP_IS_E1(bp)) {
7647 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7648 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7649 	}
7650 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7651 
7652 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7653 
7654 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7655 	/* init aeu_mask_attn_func_0/1:
7656 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7657 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7658 	 *             bits 4-7 are used for "per vn group attention" */
7659 	val = IS_MF(bp) ? 0xF7 : 0x7;
7660 	/* Enable DCBX attention for all but E1 */
7661 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7662 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7663 
7664 	/* SCPAD_PARITY should NOT trigger close the gates */
7665 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7666 	REG_WR(bp, reg,
7667 	       REG_RD(bp, reg) &
7668 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7669 
7670 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7671 	REG_WR(bp, reg,
7672 	       REG_RD(bp, reg) &
7673 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7674 
7675 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7676 
7677 	if (!CHIP_IS_E1x(bp)) {
7678 		/* Bit-map indicating which L2 hdrs may appear after the
7679 		 * basic Ethernet header
7680 		 */
7681 		if (IS_MF_AFEX(bp))
7682 			REG_WR(bp, BP_PORT(bp) ?
7683 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7684 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7685 		else
7686 			REG_WR(bp, BP_PORT(bp) ?
7687 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7688 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7689 			       IS_MF_SD(bp) ? 7 : 6);
7690 
7691 		if (CHIP_IS_E3(bp))
7692 			REG_WR(bp, BP_PORT(bp) ?
7693 				   NIG_REG_LLH1_MF_MODE :
7694 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7695 	}
7696 	if (!CHIP_IS_E3(bp))
7697 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7698 
7699 	if (!CHIP_IS_E1(bp)) {
7700 		/* 0x2 disable mf_ov, 0x1 enable */
7701 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7702 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7703 
7704 		if (!CHIP_IS_E1x(bp)) {
7705 			val = 0;
7706 			switch (bp->mf_mode) {
7707 			case MULTI_FUNCTION_SD:
7708 				val = 1;
7709 				break;
7710 			case MULTI_FUNCTION_SI:
7711 			case MULTI_FUNCTION_AFEX:
7712 				val = 2;
7713 				break;
7714 			}
7715 
7716 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7717 						  NIG_REG_LLH0_CLS_TYPE), val);
7718 		}
7719 		{
7720 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7721 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7722 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7723 		}
7724 	}
7725 
7726 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7727 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7728 	if (val & MISC_SPIO_SPIO5) {
7729 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7730 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7731 		val = REG_RD(bp, reg_addr);
7732 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7733 		REG_WR(bp, reg_addr, val);
7734 	}
7735 
7736 	if (CHIP_IS_E3B0(bp))
7737 		bp->flags |= PTP_SUPPORTED;
7738 
7739 	return 0;
7740 }
7741 
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7742 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7743 {
7744 	int reg;
7745 	u32 wb_write[2];
7746 
7747 	if (CHIP_IS_E1(bp))
7748 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7749 	else
7750 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7751 
7752 	wb_write[0] = ONCHIP_ADDR1(addr);
7753 	wb_write[1] = ONCHIP_ADDR2(addr);
7754 	REG_WR_DMAE(bp, reg, wb_write, 2);
7755 }
7756 
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7757 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7758 {
7759 	u32 data, ctl, cnt = 100;
7760 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7761 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7762 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7763 	u32 sb_bit =  1 << (idu_sb_id%32);
7764 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7765 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7766 
7767 	/* Not supported in BC mode */
7768 	if (CHIP_INT_MODE_IS_BC(bp))
7769 		return;
7770 
7771 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7772 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7773 		IGU_REGULAR_CLEANUP_SET				|
7774 		IGU_REGULAR_BCLEANUP;
7775 
7776 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7777 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7778 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7779 
7780 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7781 			 data, igu_addr_data);
7782 	REG_WR(bp, igu_addr_data, data);
7783 	barrier();
7784 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7785 			  ctl, igu_addr_ctl);
7786 	REG_WR(bp, igu_addr_ctl, ctl);
7787 	barrier();
7788 
7789 	/* wait for clean up to finish */
7790 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7791 		msleep(20);
7792 
7793 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7794 		DP(NETIF_MSG_HW,
7795 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7796 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7797 	}
7798 }
7799 
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7800 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7801 {
7802 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7803 }
7804 
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7805 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7806 {
7807 	u32 i, base = FUNC_ILT_BASE(func);
7808 	for (i = base; i < base + ILT_PER_FUNC; i++)
7809 		bnx2x_ilt_wr(bp, i, 0);
7810 }
7811 
bnx2x_init_searcher(struct bnx2x * bp)7812 static void bnx2x_init_searcher(struct bnx2x *bp)
7813 {
7814 	int port = BP_PORT(bp);
7815 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7816 	/* T1 hash bits value determines the T1 number of entries */
7817 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7818 }
7819 
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7820 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7821 {
7822 	int rc;
7823 	struct bnx2x_func_state_params func_params = {NULL};
7824 	struct bnx2x_func_switch_update_params *switch_update_params =
7825 		&func_params.params.switch_update;
7826 
7827 	/* Prepare parameters for function state transitions */
7828 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7829 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7830 
7831 	func_params.f_obj = &bp->func_obj;
7832 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7833 
7834 	/* Function parameters */
7835 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7836 		  &switch_update_params->changes);
7837 	if (suspend)
7838 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7839 			  &switch_update_params->changes);
7840 
7841 	rc = bnx2x_func_state_change(bp, &func_params);
7842 
7843 	return rc;
7844 }
7845 
bnx2x_reset_nic_mode(struct bnx2x * bp)7846 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7847 {
7848 	int rc, i, port = BP_PORT(bp);
7849 	int vlan_en = 0, mac_en[NUM_MACS];
7850 
7851 	/* Close input from network */
7852 	if (bp->mf_mode == SINGLE_FUNCTION) {
7853 		bnx2x_set_rx_filter(&bp->link_params, 0);
7854 	} else {
7855 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856 				   NIG_REG_LLH0_FUNC_EN);
7857 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7858 			  NIG_REG_LLH0_FUNC_EN, 0);
7859 		for (i = 0; i < NUM_MACS; i++) {
7860 			mac_en[i] = REG_RD(bp, port ?
7861 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7862 					      4 * i) :
7863 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7864 					      4 * i));
7865 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7866 					      4 * i) :
7867 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7868 		}
7869 	}
7870 
7871 	/* Close BMC to host */
7872 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7873 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7874 
7875 	/* Suspend Tx switching to the PF. Completion of this ramrod
7876 	 * further guarantees that all the packets of that PF / child
7877 	 * VFs in BRB were processed by the Parser, so it is safe to
7878 	 * change the NIC_MODE register.
7879 	 */
7880 	rc = bnx2x_func_switch_update(bp, 1);
7881 	if (rc) {
7882 		BNX2X_ERR("Can't suspend tx-switching!\n");
7883 		return rc;
7884 	}
7885 
7886 	/* Change NIC_MODE register */
7887 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7888 
7889 	/* Open input from network */
7890 	if (bp->mf_mode == SINGLE_FUNCTION) {
7891 		bnx2x_set_rx_filter(&bp->link_params, 1);
7892 	} else {
7893 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7894 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7895 		for (i = 0; i < NUM_MACS; i++) {
7896 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7897 					      4 * i) :
7898 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7899 				  mac_en[i]);
7900 		}
7901 	}
7902 
7903 	/* Enable BMC to host */
7904 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7905 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7906 
7907 	/* Resume Tx switching to the PF */
7908 	rc = bnx2x_func_switch_update(bp, 0);
7909 	if (rc) {
7910 		BNX2X_ERR("Can't resume tx-switching!\n");
7911 		return rc;
7912 	}
7913 
7914 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7915 	return 0;
7916 }
7917 
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7918 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7919 {
7920 	int rc;
7921 
7922 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7923 
7924 	if (CONFIGURE_NIC_MODE(bp)) {
7925 		/* Configure searcher as part of function hw init */
7926 		bnx2x_init_searcher(bp);
7927 
7928 		/* Reset NIC mode */
7929 		rc = bnx2x_reset_nic_mode(bp);
7930 		if (rc)
7931 			BNX2X_ERR("Can't change NIC mode!\n");
7932 		return rc;
7933 	}
7934 
7935 	return 0;
7936 }
7937 
7938 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7939  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7940  * the addresses of the transaction, resulting in was-error bit set in the pci
7941  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7942  * to clear the interrupt which detected this from the pglueb and the was done
7943  * bit
7944  */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7945 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7946 {
7947 	if (!CHIP_IS_E1x(bp))
7948 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7949 		       1 << BP_ABS_FUNC(bp));
7950 }
7951 
bnx2x_init_hw_func(struct bnx2x * bp)7952 static int bnx2x_init_hw_func(struct bnx2x *bp)
7953 {
7954 	int port = BP_PORT(bp);
7955 	int func = BP_FUNC(bp);
7956 	int init_phase = PHASE_PF0 + func;
7957 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7958 	u16 cdu_ilt_start;
7959 	u32 addr, val;
7960 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7961 	int i, main_mem_width, rc;
7962 
7963 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7964 
7965 	/* FLR cleanup - hmmm */
7966 	if (!CHIP_IS_E1x(bp)) {
7967 		rc = bnx2x_pf_flr_clnup(bp);
7968 		if (rc) {
7969 			bnx2x_fw_dump(bp);
7970 			return rc;
7971 		}
7972 	}
7973 
7974 	/* set MSI reconfigure capability */
7975 	if (bp->common.int_block == INT_BLOCK_HC) {
7976 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7977 		val = REG_RD(bp, addr);
7978 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7979 		REG_WR(bp, addr, val);
7980 	}
7981 
7982 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7983 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7984 
7985 	ilt = BP_ILT(bp);
7986 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7987 
7988 	if (IS_SRIOV(bp))
7989 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7990 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7991 
7992 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7993 	 * those of the VFs, so start line should be reset
7994 	 */
7995 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7996 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7997 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7998 		ilt->lines[cdu_ilt_start + i].page_mapping =
7999 			bp->context[i].cxt_mapping;
8000 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8001 	}
8002 
8003 	bnx2x_ilt_init_op(bp, INITOP_SET);
8004 
8005 	if (!CONFIGURE_NIC_MODE(bp)) {
8006 		bnx2x_init_searcher(bp);
8007 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8008 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8009 	} else {
8010 		/* Set NIC mode */
8011 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8012 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8013 	}
8014 
8015 	if (!CHIP_IS_E1x(bp)) {
8016 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8017 
8018 		/* Turn on a single ISR mode in IGU if driver is going to use
8019 		 * INT#x or MSI
8020 		 */
8021 		if (!(bp->flags & USING_MSIX_FLAG))
8022 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8023 		/*
8024 		 * Timers workaround bug: function init part.
8025 		 * Need to wait 20msec after initializing ILT,
8026 		 * needed to make sure there are no requests in
8027 		 * one of the PXP internal queues with "old" ILT addresses
8028 		 */
8029 		msleep(20);
8030 		/*
8031 		 * Master enable - Due to WB DMAE writes performed before this
8032 		 * register is re-initialized as part of the regular function
8033 		 * init
8034 		 */
8035 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8036 		/* Enable the function in IGU */
8037 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8038 	}
8039 
8040 	bp->dmae_ready = 1;
8041 
8042 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8043 
8044 	bnx2x_clean_pglue_errors(bp);
8045 
8046 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8059 
8060 	if (!CHIP_IS_E1x(bp))
8061 		REG_WR(bp, QM_REG_PF_EN, 1);
8062 
8063 	if (!CHIP_IS_E1x(bp)) {
8064 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8068 	}
8069 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8070 
8071 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8072 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8073 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8074 
8075 	bnx2x_iov_init_dq(bp);
8076 
8077 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8078 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8083 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8084 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8085 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8086 	if (!CHIP_IS_E1x(bp))
8087 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8088 
8089 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8090 
8091 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8092 
8093 	if (!CHIP_IS_E1x(bp))
8094 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8095 
8096 	if (IS_MF(bp)) {
8097 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8098 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8099 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8100 			       bp->mf_ov);
8101 		}
8102 	}
8103 
8104 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8105 
8106 	/* HC init per function */
8107 	if (bp->common.int_block == INT_BLOCK_HC) {
8108 		if (CHIP_IS_E1H(bp)) {
8109 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8110 
8111 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8112 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8113 		}
8114 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8115 
8116 	} else {
8117 		int num_segs, sb_idx, prod_offset;
8118 
8119 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8120 
8121 		if (!CHIP_IS_E1x(bp)) {
8122 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8123 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8124 		}
8125 
8126 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8127 
8128 		if (!CHIP_IS_E1x(bp)) {
8129 			int dsb_idx = 0;
8130 			/**
8131 			 * Producer memory:
8132 			 * E2 mode: address 0-135 match to the mapping memory;
8133 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8134 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8135 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8136 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8137 			 * 144-147 reserved.
8138 			 *
8139 			 * E1.5 mode - In backward compatible mode;
8140 			 * for non default SB; each even line in the memory
8141 			 * holds the U producer and each odd line hold
8142 			 * the C producer. The first 128 producers are for
8143 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8144 			 * producers are for the DSB for each PF.
8145 			 * Each PF has five segments: (the order inside each
8146 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8147 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8148 			 * 144-147 attn prods;
8149 			 */
8150 			/* non-default-status-blocks */
8151 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8152 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8153 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8154 				prod_offset = (bp->igu_base_sb + sb_idx) *
8155 					num_segs;
8156 
8157 				for (i = 0; i < num_segs; i++) {
8158 					addr = IGU_REG_PROD_CONS_MEMORY +
8159 							(prod_offset + i) * 4;
8160 					REG_WR(bp, addr, 0);
8161 				}
8162 				/* send consumer update with value 0 */
8163 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8164 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8165 				bnx2x_igu_clear_sb(bp,
8166 						   bp->igu_base_sb + sb_idx);
8167 			}
8168 
8169 			/* default-status-blocks */
8170 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8171 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8172 
8173 			if (CHIP_MODE_IS_4_PORT(bp))
8174 				dsb_idx = BP_FUNC(bp);
8175 			else
8176 				dsb_idx = BP_VN(bp);
8177 
8178 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8179 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8180 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8181 
8182 			/*
8183 			 * igu prods come in chunks of E1HVN_MAX (4) -
8184 			 * does not matters what is the current chip mode
8185 			 */
8186 			for (i = 0; i < (num_segs * E1HVN_MAX);
8187 			     i += E1HVN_MAX) {
8188 				addr = IGU_REG_PROD_CONS_MEMORY +
8189 							(prod_offset + i)*4;
8190 				REG_WR(bp, addr, 0);
8191 			}
8192 			/* send consumer update with 0 */
8193 			if (CHIP_INT_MODE_IS_BC(bp)) {
8194 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8196 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8198 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8200 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8202 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8204 			} else {
8205 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8207 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8208 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8209 			}
8210 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8211 
8212 			/* !!! These should become driver const once
8213 			   rf-tool supports split-68 const */
8214 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8215 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8216 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8217 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8218 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8219 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8220 		}
8221 	}
8222 
8223 	/* Reset PCIE errors for debug */
8224 	REG_WR(bp, 0x2114, 0xffffffff);
8225 	REG_WR(bp, 0x2120, 0xffffffff);
8226 
8227 	if (CHIP_IS_E1x(bp)) {
8228 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8229 		main_mem_base = HC_REG_MAIN_MEMORY +
8230 				BP_PORT(bp) * (main_mem_size * 4);
8231 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8232 		main_mem_width = 8;
8233 
8234 		val = REG_RD(bp, main_mem_prty_clr);
8235 		if (val)
8236 			DP(NETIF_MSG_HW,
8237 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8238 			   val);
8239 
8240 		/* Clear "false" parity errors in MSI-X table */
8241 		for (i = main_mem_base;
8242 		     i < main_mem_base + main_mem_size * 4;
8243 		     i += main_mem_width) {
8244 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8245 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8246 					 i, main_mem_width / 4);
8247 		}
8248 		/* Clear HC parity attention */
8249 		REG_RD(bp, main_mem_prty_clr);
8250 	}
8251 
8252 #ifdef BNX2X_STOP_ON_ERROR
8253 	/* Enable STORMs SP logging */
8254 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8255 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8257 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8259 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8261 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8262 #endif
8263 
8264 	bnx2x_phy_probe(&bp->link_params);
8265 
8266 	return 0;
8267 }
8268 
bnx2x_free_mem_cnic(struct bnx2x * bp)8269 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8270 {
8271 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8272 
8273 	if (!CHIP_IS_E1x(bp))
8274 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8275 			       sizeof(struct host_hc_status_block_e2));
8276 	else
8277 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8278 			       sizeof(struct host_hc_status_block_e1x));
8279 
8280 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8281 }
8282 
bnx2x_free_mem(struct bnx2x * bp)8283 void bnx2x_free_mem(struct bnx2x *bp)
8284 {
8285 	int i;
8286 
8287 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8288 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8289 
8290 	if (IS_VF(bp))
8291 		return;
8292 
8293 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8294 		       sizeof(struct host_sp_status_block));
8295 
8296 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8297 		       sizeof(struct bnx2x_slowpath));
8298 
8299 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8300 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8301 			       bp->context[i].size);
8302 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8303 
8304 	BNX2X_FREE(bp->ilt->lines);
8305 
8306 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8307 
8308 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8309 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8310 
8311 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8312 
8313 	bnx2x_iov_free_mem(bp);
8314 }
8315 
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8316 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8317 {
8318 	if (!CHIP_IS_E1x(bp)) {
8319 		/* size = the status block + ramrod buffers */
8320 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8321 						    sizeof(struct host_hc_status_block_e2));
8322 		if (!bp->cnic_sb.e2_sb)
8323 			goto alloc_mem_err;
8324 	} else {
8325 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8326 						     sizeof(struct host_hc_status_block_e1x));
8327 		if (!bp->cnic_sb.e1x_sb)
8328 			goto alloc_mem_err;
8329 	}
8330 
8331 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332 		/* allocate searcher T2 table, as it wasn't allocated before */
8333 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334 		if (!bp->t2)
8335 			goto alloc_mem_err;
8336 	}
8337 
8338 	/* write address to which L5 should insert its values */
8339 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8340 		&bp->slowpath->drv_info_to_mcp;
8341 
8342 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8343 		goto alloc_mem_err;
8344 
8345 	return 0;
8346 
8347 alloc_mem_err:
8348 	bnx2x_free_mem_cnic(bp);
8349 	BNX2X_ERR("Can't allocate memory\n");
8350 	return -ENOMEM;
8351 }
8352 
bnx2x_alloc_mem(struct bnx2x * bp)8353 int bnx2x_alloc_mem(struct bnx2x *bp)
8354 {
8355 	int i, allocated, context_size;
8356 
8357 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8358 		/* allocate searcher T2 table */
8359 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8360 		if (!bp->t2)
8361 			goto alloc_mem_err;
8362 	}
8363 
8364 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8365 					     sizeof(struct host_sp_status_block));
8366 	if (!bp->def_status_blk)
8367 		goto alloc_mem_err;
8368 
8369 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8370 				       sizeof(struct bnx2x_slowpath));
8371 	if (!bp->slowpath)
8372 		goto alloc_mem_err;
8373 
8374 	/* Allocate memory for CDU context:
8375 	 * This memory is allocated separately and not in the generic ILT
8376 	 * functions because CDU differs in few aspects:
8377 	 * 1. There are multiple entities allocating memory for context -
8378 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8379 	 * its own ILT lines.
8380 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8381 	 * for the other ILT clients), to be efficient we want to support
8382 	 * allocation of sub-page-size in the last entry.
8383 	 * 3. Context pointers are used by the driver to pass to FW / update
8384 	 * the context (for the other ILT clients the pointers are used just to
8385 	 * free the memory during unload).
8386 	 */
8387 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8388 
8389 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8390 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8391 					  (context_size - allocated));
8392 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8393 						      bp->context[i].size);
8394 		if (!bp->context[i].vcxt)
8395 			goto alloc_mem_err;
8396 		allocated += bp->context[i].size;
8397 	}
8398 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8399 				 GFP_KERNEL);
8400 	if (!bp->ilt->lines)
8401 		goto alloc_mem_err;
8402 
8403 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8404 		goto alloc_mem_err;
8405 
8406 	if (bnx2x_iov_alloc_mem(bp))
8407 		goto alloc_mem_err;
8408 
8409 	/* Slow path ring */
8410 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8411 	if (!bp->spq)
8412 		goto alloc_mem_err;
8413 
8414 	/* EQ */
8415 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8416 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8417 	if (!bp->eq_ring)
8418 		goto alloc_mem_err;
8419 
8420 	return 0;
8421 
8422 alloc_mem_err:
8423 	bnx2x_free_mem(bp);
8424 	BNX2X_ERR("Can't allocate memory\n");
8425 	return -ENOMEM;
8426 }
8427 
8428 /*
8429  * Init service functions
8430  */
8431 
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8432 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8433 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8434 		      int mac_type, unsigned long *ramrod_flags)
8435 {
8436 	int rc;
8437 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8438 
8439 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8440 
8441 	/* Fill general parameters */
8442 	ramrod_param.vlan_mac_obj = obj;
8443 	ramrod_param.ramrod_flags = *ramrod_flags;
8444 
8445 	/* Fill a user request section if needed */
8446 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8447 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8448 
8449 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8450 
8451 		/* Set the command: ADD or DEL */
8452 		if (set)
8453 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8454 		else
8455 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8456 	}
8457 
8458 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8459 
8460 	if (rc == -EEXIST) {
8461 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8462 		/* do not treat adding same MAC as error */
8463 		rc = 0;
8464 	} else if (rc < 0)
8465 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8466 
8467 	return rc;
8468 }
8469 
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8470 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8471 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8472 		       unsigned long *ramrod_flags)
8473 {
8474 	int rc;
8475 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8476 
8477 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8478 
8479 	/* Fill general parameters */
8480 	ramrod_param.vlan_mac_obj = obj;
8481 	ramrod_param.ramrod_flags = *ramrod_flags;
8482 
8483 	/* Fill a user request section if needed */
8484 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8485 		ramrod_param.user_req.u.vlan.vlan = vlan;
8486 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8487 		/* Set the command: ADD or DEL */
8488 		if (set)
8489 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8490 		else
8491 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8492 	}
8493 
8494 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8495 
8496 	if (rc == -EEXIST) {
8497 		/* Do not treat adding same vlan as error. */
8498 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8499 		rc = 0;
8500 	} else if (rc < 0) {
8501 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8502 	}
8503 
8504 	return rc;
8505 }
8506 
bnx2x_clear_vlan_info(struct bnx2x * bp)8507 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8508 {
8509 	struct bnx2x_vlan_entry *vlan;
8510 
8511 	/* Mark that hw forgot all entries */
8512 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8513 		vlan->hw = false;
8514 
8515 	bp->vlan_cnt = 0;
8516 }
8517 
bnx2x_del_all_vlans(struct bnx2x * bp)8518 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8519 {
8520 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8521 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8522 	int rc;
8523 
8524 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8525 	__set_bit(BNX2X_VLAN, &vlan_flags);
8526 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8527 	if (rc)
8528 		return rc;
8529 
8530 	bnx2x_clear_vlan_info(bp);
8531 
8532 	return 0;
8533 }
8534 
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8535 int bnx2x_del_all_macs(struct bnx2x *bp,
8536 		       struct bnx2x_vlan_mac_obj *mac_obj,
8537 		       int mac_type, bool wait_for_comp)
8538 {
8539 	int rc;
8540 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8541 
8542 	/* Wait for completion of requested */
8543 	if (wait_for_comp)
8544 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8545 
8546 	/* Set the mac type of addresses we want to clear */
8547 	__set_bit(mac_type, &vlan_mac_flags);
8548 
8549 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8550 	if (rc < 0)
8551 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8552 
8553 	return rc;
8554 }
8555 
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8556 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8557 {
8558 	if (IS_PF(bp)) {
8559 		unsigned long ramrod_flags = 0;
8560 
8561 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8562 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8563 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8564 					 &bp->sp_objs->mac_obj, set,
8565 					 BNX2X_ETH_MAC, &ramrod_flags);
8566 	} else { /* vf */
8567 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8568 					     bp->fp->index, set);
8569 	}
8570 }
8571 
bnx2x_setup_leading(struct bnx2x * bp)8572 int bnx2x_setup_leading(struct bnx2x *bp)
8573 {
8574 	if (IS_PF(bp))
8575 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8576 	else /* VF */
8577 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8578 }
8579 
8580 /**
8581  * bnx2x_set_int_mode - configure interrupt mode
8582  *
8583  * @bp:		driver handle
8584  *
8585  * In case of MSI-X it will also try to enable MSI-X.
8586  */
bnx2x_set_int_mode(struct bnx2x * bp)8587 int bnx2x_set_int_mode(struct bnx2x *bp)
8588 {
8589 	int rc = 0;
8590 
8591 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8592 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8593 		return -EINVAL;
8594 	}
8595 
8596 	switch (int_mode) {
8597 	case BNX2X_INT_MODE_MSIX:
8598 		/* attempt to enable msix */
8599 		rc = bnx2x_enable_msix(bp);
8600 
8601 		/* msix attained */
8602 		if (!rc)
8603 			return 0;
8604 
8605 		/* vfs use only msix */
8606 		if (rc && IS_VF(bp))
8607 			return rc;
8608 
8609 		/* failed to enable multiple MSI-X */
8610 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8611 			       bp->num_queues,
8612 			       1 + bp->num_cnic_queues);
8613 
8614 		fallthrough;
8615 	case BNX2X_INT_MODE_MSI:
8616 		bnx2x_enable_msi(bp);
8617 
8618 		fallthrough;
8619 	case BNX2X_INT_MODE_INTX:
8620 		bp->num_ethernet_queues = 1;
8621 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8622 		BNX2X_DEV_INFO("set number of queues to 1\n");
8623 		break;
8624 	default:
8625 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8626 		return -EINVAL;
8627 	}
8628 	return 0;
8629 }
8630 
8631 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8632 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8633 {
8634 	if (IS_SRIOV(bp))
8635 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8636 	return L2_ILT_LINES(bp);
8637 }
8638 
bnx2x_ilt_set_info(struct bnx2x * bp)8639 void bnx2x_ilt_set_info(struct bnx2x *bp)
8640 {
8641 	struct ilt_client_info *ilt_client;
8642 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8643 	u16 line = 0;
8644 
8645 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8646 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8647 
8648 	/* CDU */
8649 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8650 	ilt_client->client_num = ILT_CLIENT_CDU;
8651 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8652 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8653 	ilt_client->start = line;
8654 	line += bnx2x_cid_ilt_lines(bp);
8655 
8656 	if (CNIC_SUPPORT(bp))
8657 		line += CNIC_ILT_LINES;
8658 	ilt_client->end = line - 1;
8659 
8660 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661 	   ilt_client->start,
8662 	   ilt_client->end,
8663 	   ilt_client->page_size,
8664 	   ilt_client->flags,
8665 	   ilog2(ilt_client->page_size >> 12));
8666 
8667 	/* QM */
8668 	if (QM_INIT(bp->qm_cid_count)) {
8669 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8670 		ilt_client->client_num = ILT_CLIENT_QM;
8671 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8672 		ilt_client->flags = 0;
8673 		ilt_client->start = line;
8674 
8675 		/* 4 bytes for each cid */
8676 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8677 							 QM_ILT_PAGE_SZ);
8678 
8679 		ilt_client->end = line - 1;
8680 
8681 		DP(NETIF_MSG_IFUP,
8682 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8683 		   ilt_client->start,
8684 		   ilt_client->end,
8685 		   ilt_client->page_size,
8686 		   ilt_client->flags,
8687 		   ilog2(ilt_client->page_size >> 12));
8688 	}
8689 
8690 	if (CNIC_SUPPORT(bp)) {
8691 		/* SRC */
8692 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8693 		ilt_client->client_num = ILT_CLIENT_SRC;
8694 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8695 		ilt_client->flags = 0;
8696 		ilt_client->start = line;
8697 		line += SRC_ILT_LINES;
8698 		ilt_client->end = line - 1;
8699 
8700 		DP(NETIF_MSG_IFUP,
8701 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8702 		   ilt_client->start,
8703 		   ilt_client->end,
8704 		   ilt_client->page_size,
8705 		   ilt_client->flags,
8706 		   ilog2(ilt_client->page_size >> 12));
8707 
8708 		/* TM */
8709 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8710 		ilt_client->client_num = ILT_CLIENT_TM;
8711 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8712 		ilt_client->flags = 0;
8713 		ilt_client->start = line;
8714 		line += TM_ILT_LINES;
8715 		ilt_client->end = line - 1;
8716 
8717 		DP(NETIF_MSG_IFUP,
8718 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8719 		   ilt_client->start,
8720 		   ilt_client->end,
8721 		   ilt_client->page_size,
8722 		   ilt_client->flags,
8723 		   ilog2(ilt_client->page_size >> 12));
8724 	}
8725 
8726 	BUG_ON(line > ILT_MAX_LINES);
8727 }
8728 
8729 /**
8730  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8731  *
8732  * @bp:			driver handle
8733  * @fp:			pointer to fastpath
8734  * @init_params:	pointer to parameters structure
8735  *
8736  * parameters configured:
8737  *      - HC configuration
8738  *      - Queue's CDU context
8739  */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8740 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8741 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8742 {
8743 	u8 cos;
8744 	int cxt_index, cxt_offset;
8745 
8746 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8747 	if (!IS_FCOE_FP(fp)) {
8748 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8749 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8750 
8751 		/* If HC is supported, enable host coalescing in the transition
8752 		 * to INIT state.
8753 		 */
8754 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8755 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8756 
8757 		/* HC rate */
8758 		init_params->rx.hc_rate = bp->rx_ticks ?
8759 			(1000000 / bp->rx_ticks) : 0;
8760 		init_params->tx.hc_rate = bp->tx_ticks ?
8761 			(1000000 / bp->tx_ticks) : 0;
8762 
8763 		/* FW SB ID */
8764 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8765 			fp->fw_sb_id;
8766 
8767 		/*
8768 		 * CQ index among the SB indices: FCoE clients uses the default
8769 		 * SB, therefore it's different.
8770 		 */
8771 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8772 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8773 	}
8774 
8775 	/* set maximum number of COSs supported by this queue */
8776 	init_params->max_cos = fp->max_cos;
8777 
8778 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8779 	    fp->index, init_params->max_cos);
8780 
8781 	/* set the context pointers queue object */
8782 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8783 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8784 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8785 				ILT_PAGE_CIDS);
8786 		init_params->cxts[cos] =
8787 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8788 	}
8789 }
8790 
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8791 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8792 			struct bnx2x_queue_state_params *q_params,
8793 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8794 			int tx_index, bool leading)
8795 {
8796 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8797 
8798 	/* Set the command */
8799 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8800 
8801 	/* Set tx-only QUEUE flags: don't zero statistics */
8802 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8803 
8804 	/* choose the index of the cid to send the slow path on */
8805 	tx_only_params->cid_index = tx_index;
8806 
8807 	/* Set general TX_ONLY_SETUP parameters */
8808 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8809 
8810 	/* Set Tx TX_ONLY_SETUP parameters */
8811 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8812 
8813 	DP(NETIF_MSG_IFUP,
8814 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8815 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8816 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8817 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8818 
8819 	/* send the ramrod */
8820 	return bnx2x_queue_state_change(bp, q_params);
8821 }
8822 
8823 /**
8824  * bnx2x_setup_queue - setup queue
8825  *
8826  * @bp:		driver handle
8827  * @fp:		pointer to fastpath
8828  * @leading:	is leading
8829  *
8830  * This function performs 2 steps in a Queue state machine
8831  *      actually: 1) RESET->INIT 2) INIT->SETUP
8832  */
8833 
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8834 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8835 		       bool leading)
8836 {
8837 	struct bnx2x_queue_state_params q_params = {NULL};
8838 	struct bnx2x_queue_setup_params *setup_params =
8839 						&q_params.params.setup;
8840 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8841 						&q_params.params.tx_only;
8842 	int rc;
8843 	u8 tx_index;
8844 
8845 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8846 
8847 	/* reset IGU state skip FCoE L2 queue */
8848 	if (!IS_FCOE_FP(fp))
8849 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8850 			     IGU_INT_ENABLE, 0);
8851 
8852 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8853 	/* We want to wait for completion in this context */
8854 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8855 
8856 	/* Prepare the INIT parameters */
8857 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8858 
8859 	/* Set the command */
8860 	q_params.cmd = BNX2X_Q_CMD_INIT;
8861 
8862 	/* Change the state to INIT */
8863 	rc = bnx2x_queue_state_change(bp, &q_params);
8864 	if (rc) {
8865 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8866 		return rc;
8867 	}
8868 
8869 	DP(NETIF_MSG_IFUP, "init complete\n");
8870 
8871 	/* Now move the Queue to the SETUP state... */
8872 	memset(setup_params, 0, sizeof(*setup_params));
8873 
8874 	/* Set QUEUE flags */
8875 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8876 
8877 	/* Set general SETUP parameters */
8878 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8879 				FIRST_TX_COS_INDEX);
8880 
8881 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8882 			    &setup_params->rxq_params);
8883 
8884 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8885 			   FIRST_TX_COS_INDEX);
8886 
8887 	/* Set the command */
8888 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8889 
8890 	if (IS_FCOE_FP(fp))
8891 		bp->fcoe_init = true;
8892 
8893 	/* Change the state to SETUP */
8894 	rc = bnx2x_queue_state_change(bp, &q_params);
8895 	if (rc) {
8896 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8897 		return rc;
8898 	}
8899 
8900 	/* loop through the relevant tx-only indices */
8901 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8902 	      tx_index < fp->max_cos;
8903 	      tx_index++) {
8904 
8905 		/* prepare and send tx-only ramrod*/
8906 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8907 					  tx_only_params, tx_index, leading);
8908 		if (rc) {
8909 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8910 				  fp->index, tx_index);
8911 			return rc;
8912 		}
8913 	}
8914 
8915 	return rc;
8916 }
8917 
bnx2x_stop_queue(struct bnx2x * bp,int index)8918 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8919 {
8920 	struct bnx2x_fastpath *fp = &bp->fp[index];
8921 	struct bnx2x_fp_txdata *txdata;
8922 	struct bnx2x_queue_state_params q_params = {NULL};
8923 	int rc, tx_index;
8924 
8925 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8926 
8927 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8928 	/* We want to wait for completion in this context */
8929 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8930 
8931 	/* close tx-only connections */
8932 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8933 	     tx_index < fp->max_cos;
8934 	     tx_index++){
8935 
8936 		/* ascertain this is a normal queue*/
8937 		txdata = fp->txdata_ptr[tx_index];
8938 
8939 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8940 							txdata->txq_index);
8941 
8942 		/* send halt terminate on tx-only connection */
8943 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8944 		memset(&q_params.params.terminate, 0,
8945 		       sizeof(q_params.params.terminate));
8946 		q_params.params.terminate.cid_index = tx_index;
8947 
8948 		rc = bnx2x_queue_state_change(bp, &q_params);
8949 		if (rc)
8950 			return rc;
8951 
8952 		/* send halt terminate on tx-only connection */
8953 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8954 		memset(&q_params.params.cfc_del, 0,
8955 		       sizeof(q_params.params.cfc_del));
8956 		q_params.params.cfc_del.cid_index = tx_index;
8957 		rc = bnx2x_queue_state_change(bp, &q_params);
8958 		if (rc)
8959 			return rc;
8960 	}
8961 	/* Stop the primary connection: */
8962 	/* ...halt the connection */
8963 	q_params.cmd = BNX2X_Q_CMD_HALT;
8964 	rc = bnx2x_queue_state_change(bp, &q_params);
8965 	if (rc)
8966 		return rc;
8967 
8968 	/* ...terminate the connection */
8969 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8970 	memset(&q_params.params.terminate, 0,
8971 	       sizeof(q_params.params.terminate));
8972 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8973 	rc = bnx2x_queue_state_change(bp, &q_params);
8974 	if (rc)
8975 		return rc;
8976 	/* ...delete cfc entry */
8977 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8978 	memset(&q_params.params.cfc_del, 0,
8979 	       sizeof(q_params.params.cfc_del));
8980 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8981 	return bnx2x_queue_state_change(bp, &q_params);
8982 }
8983 
bnx2x_reset_func(struct bnx2x * bp)8984 static void bnx2x_reset_func(struct bnx2x *bp)
8985 {
8986 	int port = BP_PORT(bp);
8987 	int func = BP_FUNC(bp);
8988 	int i;
8989 
8990 	/* Disable the function in the FW */
8991 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8992 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8993 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8994 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8995 
8996 	/* FP SBs */
8997 	for_each_eth_queue(bp, i) {
8998 		struct bnx2x_fastpath *fp = &bp->fp[i];
8999 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9000 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9001 			   SB_DISABLED);
9002 	}
9003 
9004 	if (CNIC_LOADED(bp))
9005 		/* CNIC SB */
9006 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9007 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9008 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9009 
9010 	/* SP SB */
9011 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9012 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9013 		SB_DISABLED);
9014 
9015 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9016 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9017 		       0);
9018 
9019 	/* Configure IGU */
9020 	if (bp->common.int_block == INT_BLOCK_HC) {
9021 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9022 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9023 	} else {
9024 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9025 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9026 	}
9027 
9028 	if (CNIC_LOADED(bp)) {
9029 		/* Disable Timer scan */
9030 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9031 		/*
9032 		 * Wait for at least 10ms and up to 2 second for the timers
9033 		 * scan to complete
9034 		 */
9035 		for (i = 0; i < 200; i++) {
9036 			usleep_range(10000, 20000);
9037 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9038 				break;
9039 		}
9040 	}
9041 	/* Clear ILT */
9042 	bnx2x_clear_func_ilt(bp, func);
9043 
9044 	/* Timers workaround bug for E2: if this is vnic-3,
9045 	 * we need to set the entire ilt range for this timers.
9046 	 */
9047 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9048 		struct ilt_client_info ilt_cli;
9049 		/* use dummy TM client */
9050 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9051 		ilt_cli.start = 0;
9052 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9053 		ilt_cli.client_num = ILT_CLIENT_TM;
9054 
9055 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9056 	}
9057 
9058 	/* this assumes that reset_port() called before reset_func()*/
9059 	if (!CHIP_IS_E1x(bp))
9060 		bnx2x_pf_disable(bp);
9061 
9062 	bp->dmae_ready = 0;
9063 }
9064 
bnx2x_reset_port(struct bnx2x * bp)9065 static void bnx2x_reset_port(struct bnx2x *bp)
9066 {
9067 	int port = BP_PORT(bp);
9068 	u32 val;
9069 
9070 	/* Reset physical Link */
9071 	bnx2x__link_reset(bp);
9072 
9073 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9074 
9075 	/* Do not rcv packets to BRB */
9076 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9077 	/* Do not direct rcv packets that are not for MCP to the BRB */
9078 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9079 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9080 
9081 	/* Configure AEU */
9082 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9083 
9084 	msleep(100);
9085 	/* Check for BRB port occupancy */
9086 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9087 	if (val)
9088 		DP(NETIF_MSG_IFDOWN,
9089 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9090 
9091 	/* TODO: Close Doorbell port? */
9092 }
9093 
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9094 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9095 {
9096 	struct bnx2x_func_state_params func_params = {NULL};
9097 
9098 	/* Prepare parameters for function state transitions */
9099 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9100 
9101 	func_params.f_obj = &bp->func_obj;
9102 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9103 
9104 	func_params.params.hw_init.load_phase = load_code;
9105 
9106 	return bnx2x_func_state_change(bp, &func_params);
9107 }
9108 
bnx2x_func_stop(struct bnx2x * bp)9109 static int bnx2x_func_stop(struct bnx2x *bp)
9110 {
9111 	struct bnx2x_func_state_params func_params = {NULL};
9112 	int rc;
9113 
9114 	/* Prepare parameters for function state transitions */
9115 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9116 	func_params.f_obj = &bp->func_obj;
9117 	func_params.cmd = BNX2X_F_CMD_STOP;
9118 
9119 	/*
9120 	 * Try to stop the function the 'good way'. If fails (in case
9121 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9122 	 * not in a debug mode, perform a state transaction in order to
9123 	 * enable further HW_RESET transaction.
9124 	 */
9125 	rc = bnx2x_func_state_change(bp, &func_params);
9126 	if (rc) {
9127 #ifdef BNX2X_STOP_ON_ERROR
9128 		return rc;
9129 #else
9130 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9131 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9132 		return bnx2x_func_state_change(bp, &func_params);
9133 #endif
9134 	}
9135 
9136 	return 0;
9137 }
9138 
9139 /**
9140  * bnx2x_send_unload_req - request unload mode from the MCP.
9141  *
9142  * @bp:			driver handle
9143  * @unload_mode:	requested function's unload mode
9144  *
9145  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9146  */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9147 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9148 {
9149 	u32 reset_code = 0;
9150 	int port = BP_PORT(bp);
9151 
9152 	/* Select the UNLOAD request mode */
9153 	if (unload_mode == UNLOAD_NORMAL)
9154 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9155 
9156 	else if (bp->flags & NO_WOL_FLAG)
9157 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9158 
9159 	else if (bp->wol) {
9160 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9161 		u8 *mac_addr = bp->dev->dev_addr;
9162 		struct pci_dev *pdev = bp->pdev;
9163 		u32 val;
9164 		u16 pmc;
9165 
9166 		/* The mac address is written to entries 1-4 to
9167 		 * preserve entry 0 which is used by the PMF
9168 		 */
9169 		u8 entry = (BP_VN(bp) + 1)*8;
9170 
9171 		val = (mac_addr[0] << 8) | mac_addr[1];
9172 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9173 
9174 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9175 		      (mac_addr[4] << 8) | mac_addr[5];
9176 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9177 
9178 		/* Enable the PME and clear the status */
9179 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9180 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9181 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9182 
9183 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9184 
9185 	} else
9186 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9187 
9188 	/* Send the request to the MCP */
9189 	if (!BP_NOMCP(bp))
9190 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9191 	else {
9192 		int path = BP_PATH(bp);
9193 
9194 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9195 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9196 		   bnx2x_load_count[path][2]);
9197 		bnx2x_load_count[path][0]--;
9198 		bnx2x_load_count[path][1 + port]--;
9199 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9200 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9201 		   bnx2x_load_count[path][2]);
9202 		if (bnx2x_load_count[path][0] == 0)
9203 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9204 		else if (bnx2x_load_count[path][1 + port] == 0)
9205 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9206 		else
9207 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9208 	}
9209 
9210 	return reset_code;
9211 }
9212 
9213 /**
9214  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9215  *
9216  * @bp:		driver handle
9217  * @keep_link:		true iff link should be kept up
9218  */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9219 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9220 {
9221 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9222 
9223 	/* Report UNLOAD_DONE to MCP */
9224 	if (!BP_NOMCP(bp))
9225 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9226 }
9227 
bnx2x_func_wait_started(struct bnx2x * bp)9228 static int bnx2x_func_wait_started(struct bnx2x *bp)
9229 {
9230 	int tout = 50;
9231 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9232 
9233 	if (!bp->port.pmf)
9234 		return 0;
9235 
9236 	/*
9237 	 * (assumption: No Attention from MCP at this stage)
9238 	 * PMF probably in the middle of TX disable/enable transaction
9239 	 * 1. Sync IRS for default SB
9240 	 * 2. Sync SP queue - this guarantees us that attention handling started
9241 	 * 3. Wait, that TX disable/enable transaction completes
9242 	 *
9243 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9244 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9245 	 * received completion for the transaction the state is TX_STOPPED.
9246 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9247 	 * transaction.
9248 	 */
9249 
9250 	/* make sure default SB ISR is done */
9251 	if (msix)
9252 		synchronize_irq(bp->msix_table[0].vector);
9253 	else
9254 		synchronize_irq(bp->pdev->irq);
9255 
9256 	flush_workqueue(bnx2x_wq);
9257 	flush_workqueue(bnx2x_iov_wq);
9258 
9259 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9260 				BNX2X_F_STATE_STARTED && tout--)
9261 		msleep(20);
9262 
9263 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9264 						BNX2X_F_STATE_STARTED) {
9265 #ifdef BNX2X_STOP_ON_ERROR
9266 		BNX2X_ERR("Wrong function state\n");
9267 		return -EBUSY;
9268 #else
9269 		/*
9270 		 * Failed to complete the transaction in a "good way"
9271 		 * Force both transactions with CLR bit
9272 		 */
9273 		struct bnx2x_func_state_params func_params = {NULL};
9274 
9275 		DP(NETIF_MSG_IFDOWN,
9276 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9277 
9278 		func_params.f_obj = &bp->func_obj;
9279 		__set_bit(RAMROD_DRV_CLR_ONLY,
9280 					&func_params.ramrod_flags);
9281 
9282 		/* STARTED-->TX_ST0PPED */
9283 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9284 		bnx2x_func_state_change(bp, &func_params);
9285 
9286 		/* TX_ST0PPED-->STARTED */
9287 		func_params.cmd = BNX2X_F_CMD_TX_START;
9288 		return bnx2x_func_state_change(bp, &func_params);
9289 #endif
9290 	}
9291 
9292 	return 0;
9293 }
9294 
bnx2x_disable_ptp(struct bnx2x * bp)9295 static void bnx2x_disable_ptp(struct bnx2x *bp)
9296 {
9297 	int port = BP_PORT(bp);
9298 
9299 	/* Disable sending PTP packets to host */
9300 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9301 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9302 
9303 	/* Reset PTP event detection rules */
9304 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9305 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9306 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9307 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9308 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9309 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9310 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9311 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9312 
9313 	/* Disable the PTP feature */
9314 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9315 	       NIG_REG_P0_PTP_EN, 0x0);
9316 }
9317 
9318 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9319 static void bnx2x_stop_ptp(struct bnx2x *bp)
9320 {
9321 	/* Cancel PTP work queue. Should be done after the Tx queues are
9322 	 * drained to prevent additional scheduling.
9323 	 */
9324 	cancel_work_sync(&bp->ptp_task);
9325 
9326 	if (bp->ptp_tx_skb) {
9327 		dev_kfree_skb_any(bp->ptp_tx_skb);
9328 		bp->ptp_tx_skb = NULL;
9329 	}
9330 
9331 	/* Disable PTP in HW */
9332 	bnx2x_disable_ptp(bp);
9333 
9334 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9335 }
9336 
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9337 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9338 {
9339 	int port = BP_PORT(bp);
9340 	int i, rc = 0;
9341 	u8 cos;
9342 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9343 	u32 reset_code;
9344 
9345 	/* Wait until tx fastpath tasks complete */
9346 	for_each_tx_queue(bp, i) {
9347 		struct bnx2x_fastpath *fp = &bp->fp[i];
9348 
9349 		for_each_cos_in_tx_queue(fp, cos)
9350 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9351 #ifdef BNX2X_STOP_ON_ERROR
9352 		if (rc)
9353 			return;
9354 #endif
9355 	}
9356 
9357 	/* Give HW time to discard old tx messages */
9358 	usleep_range(1000, 2000);
9359 
9360 	/* Clean all ETH MACs */
9361 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9362 				false);
9363 	if (rc < 0)
9364 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9365 
9366 	/* Clean up UC list  */
9367 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9368 				true);
9369 	if (rc < 0)
9370 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9371 			  rc);
9372 
9373 	/* The whole *vlan_obj structure may be not initialized if VLAN
9374 	 * filtering offload is not supported by hardware. Currently this is
9375 	 * true for all hardware covered by CHIP_IS_E1x().
9376 	 */
9377 	if (!CHIP_IS_E1x(bp)) {
9378 		/* Remove all currently configured VLANs */
9379 		rc = bnx2x_del_all_vlans(bp);
9380 		if (rc < 0)
9381 			BNX2X_ERR("Failed to delete all VLANs\n");
9382 	}
9383 
9384 	/* Disable LLH */
9385 	if (!CHIP_IS_E1(bp))
9386 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9387 
9388 	/* Set "drop all" (stop Rx).
9389 	 * We need to take a netif_addr_lock() here in order to prevent
9390 	 * a race between the completion code and this code.
9391 	 */
9392 	netif_addr_lock_bh(bp->dev);
9393 	/* Schedule the rx_mode command */
9394 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9395 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9396 	else if (bp->slowpath)
9397 		bnx2x_set_storm_rx_mode(bp);
9398 
9399 	/* Cleanup multicast configuration */
9400 	rparam.mcast_obj = &bp->mcast_obj;
9401 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9402 	if (rc < 0)
9403 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9404 
9405 	netif_addr_unlock_bh(bp->dev);
9406 
9407 	bnx2x_iov_chip_cleanup(bp);
9408 
9409 	/*
9410 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9411 	 * this function should perform FUNC, PORT or COMMON HW
9412 	 * reset.
9413 	 */
9414 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9415 
9416 	/*
9417 	 * (assumption: No Attention from MCP at this stage)
9418 	 * PMF probably in the middle of TX disable/enable transaction
9419 	 */
9420 	rc = bnx2x_func_wait_started(bp);
9421 	if (rc) {
9422 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9423 #ifdef BNX2X_STOP_ON_ERROR
9424 		return;
9425 #endif
9426 	}
9427 
9428 	/* Close multi and leading connections
9429 	 * Completions for ramrods are collected in a synchronous way
9430 	 */
9431 	for_each_eth_queue(bp, i)
9432 		if (bnx2x_stop_queue(bp, i))
9433 #ifdef BNX2X_STOP_ON_ERROR
9434 			return;
9435 #else
9436 			goto unload_error;
9437 #endif
9438 
9439 	if (CNIC_LOADED(bp)) {
9440 		for_each_cnic_queue(bp, i)
9441 			if (bnx2x_stop_queue(bp, i))
9442 #ifdef BNX2X_STOP_ON_ERROR
9443 				return;
9444 #else
9445 				goto unload_error;
9446 #endif
9447 	}
9448 
9449 	/* If SP settings didn't get completed so far - something
9450 	 * very wrong has happen.
9451 	 */
9452 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9453 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9454 
9455 #ifndef BNX2X_STOP_ON_ERROR
9456 unload_error:
9457 #endif
9458 	rc = bnx2x_func_stop(bp);
9459 	if (rc) {
9460 		BNX2X_ERR("Function stop failed!\n");
9461 #ifdef BNX2X_STOP_ON_ERROR
9462 		return;
9463 #endif
9464 	}
9465 
9466 	/* stop_ptp should be after the Tx queues are drained to prevent
9467 	 * scheduling to the cancelled PTP work queue. It should also be after
9468 	 * function stop ramrod is sent, since as part of this ramrod FW access
9469 	 * PTP registers.
9470 	 */
9471 	if (bp->flags & PTP_SUPPORTED) {
9472 		bnx2x_stop_ptp(bp);
9473 		if (bp->ptp_clock) {
9474 			ptp_clock_unregister(bp->ptp_clock);
9475 			bp->ptp_clock = NULL;
9476 		}
9477 	}
9478 
9479 	/* Disable HW interrupts, NAPI */
9480 	bnx2x_netif_stop(bp, 1);
9481 	/* Delete all NAPI objects */
9482 	bnx2x_del_all_napi(bp);
9483 	if (CNIC_LOADED(bp))
9484 		bnx2x_del_all_napi_cnic(bp);
9485 
9486 	/* Release IRQs */
9487 	bnx2x_free_irq(bp);
9488 
9489 	/* Reset the chip, unless PCI function is offline. If we reach this
9490 	 * point following a PCI error handling, it means device is really
9491 	 * in a bad state and we're about to remove it, so reset the chip
9492 	 * is not a good idea.
9493 	 */
9494 	if (!pci_channel_offline(bp->pdev)) {
9495 		rc = bnx2x_reset_hw(bp, reset_code);
9496 		if (rc)
9497 			BNX2X_ERR("HW_RESET failed\n");
9498 	}
9499 
9500 	/* Report UNLOAD_DONE to MCP */
9501 	bnx2x_send_unload_done(bp, keep_link);
9502 }
9503 
bnx2x_disable_close_the_gate(struct bnx2x * bp)9504 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9505 {
9506 	u32 val;
9507 
9508 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9509 
9510 	if (CHIP_IS_E1(bp)) {
9511 		int port = BP_PORT(bp);
9512 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9513 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9514 
9515 		val = REG_RD(bp, addr);
9516 		val &= ~(0x300);
9517 		REG_WR(bp, addr, val);
9518 	} else {
9519 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9520 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9521 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9522 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9523 	}
9524 }
9525 
9526 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9527 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9528 {
9529 	u32 val;
9530 
9531 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9532 	if (!CHIP_IS_E1(bp)) {
9533 		/* #4 */
9534 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9535 		/* #2 */
9536 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9537 	}
9538 
9539 	/* #3 */
9540 	if (CHIP_IS_E1x(bp)) {
9541 		/* Prevent interrupts from HC on both ports */
9542 		val = REG_RD(bp, HC_REG_CONFIG_1);
9543 		REG_WR(bp, HC_REG_CONFIG_1,
9544 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9545 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9546 
9547 		val = REG_RD(bp, HC_REG_CONFIG_0);
9548 		REG_WR(bp, HC_REG_CONFIG_0,
9549 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9550 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9551 	} else {
9552 		/* Prevent incoming interrupts in IGU */
9553 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9554 
9555 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9556 		       (!close) ?
9557 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9558 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9559 	}
9560 
9561 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9562 		close ? "closing" : "opening");
9563 }
9564 
9565 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9566 
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9567 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9568 {
9569 	/* Do some magic... */
9570 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9571 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9572 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9573 }
9574 
9575 /**
9576  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9577  *
9578  * @bp:		driver handle
9579  * @magic_val:	old value of the `magic' bit.
9580  */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9581 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9582 {
9583 	/* Restore the `magic' bit value... */
9584 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9585 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9586 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9587 }
9588 
9589 /**
9590  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9591  *
9592  * @bp:		driver handle
9593  * @magic_val:	old value of 'magic' bit.
9594  *
9595  * Takes care of CLP configurations.
9596  */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9597 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9598 {
9599 	u32 shmem;
9600 	u32 validity_offset;
9601 
9602 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9603 
9604 	/* Set `magic' bit in order to save MF config */
9605 	if (!CHIP_IS_E1(bp))
9606 		bnx2x_clp_reset_prep(bp, magic_val);
9607 
9608 	/* Get shmem offset */
9609 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9610 	validity_offset =
9611 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9612 
9613 	/* Clear validity map flags */
9614 	if (shmem > 0)
9615 		REG_WR(bp, shmem + validity_offset, 0);
9616 }
9617 
9618 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9619 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9620 
9621 /**
9622  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9623  *
9624  * @bp:	driver handle
9625  */
bnx2x_mcp_wait_one(struct bnx2x * bp)9626 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9627 {
9628 	/* special handling for emulation and FPGA,
9629 	   wait 10 times longer */
9630 	if (CHIP_REV_IS_SLOW(bp))
9631 		msleep(MCP_ONE_TIMEOUT*10);
9632 	else
9633 		msleep(MCP_ONE_TIMEOUT);
9634 }
9635 
9636 /*
9637  * initializes bp->common.shmem_base and waits for validity signature to appear
9638  */
bnx2x_init_shmem(struct bnx2x * bp)9639 static int bnx2x_init_shmem(struct bnx2x *bp)
9640 {
9641 	int cnt = 0;
9642 	u32 val = 0;
9643 
9644 	do {
9645 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9646 
9647 		/* If we read all 0xFFs, means we are in PCI error state and
9648 		 * should bail out to avoid crashes on adapter's FW reads.
9649 		 */
9650 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9651 			bp->flags |= NO_MCP_FLAG;
9652 			return -ENODEV;
9653 		}
9654 
9655 		if (bp->common.shmem_base) {
9656 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9657 			if (val & SHR_MEM_VALIDITY_MB)
9658 				return 0;
9659 		}
9660 
9661 		bnx2x_mcp_wait_one(bp);
9662 
9663 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9664 
9665 	BNX2X_ERR("BAD MCP validity signature\n");
9666 
9667 	return -ENODEV;
9668 }
9669 
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9670 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9671 {
9672 	int rc = bnx2x_init_shmem(bp);
9673 
9674 	/* Restore the `magic' bit value */
9675 	if (!CHIP_IS_E1(bp))
9676 		bnx2x_clp_reset_done(bp, magic_val);
9677 
9678 	return rc;
9679 }
9680 
bnx2x_pxp_prep(struct bnx2x * bp)9681 static void bnx2x_pxp_prep(struct bnx2x *bp)
9682 {
9683 	if (!CHIP_IS_E1(bp)) {
9684 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9685 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9686 	}
9687 }
9688 
9689 /*
9690  * Reset the whole chip except for:
9691  *      - PCIE core
9692  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9693  *              one reset bit)
9694  *      - IGU
9695  *      - MISC (including AEU)
9696  *      - GRC
9697  *      - RBCN, RBCP
9698  */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9699 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9700 {
9701 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9702 	u32 global_bits2, stay_reset2;
9703 
9704 	/*
9705 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9706 	 * (per chip) blocks.
9707 	 */
9708 	global_bits2 =
9709 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9710 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9711 
9712 	/* Don't reset the following blocks.
9713 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9714 	 *            reset, as in 4 port device they might still be owned
9715 	 *            by the MCP (there is only one leader per path).
9716 	 */
9717 	not_reset_mask1 =
9718 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9719 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9720 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9721 
9722 	not_reset_mask2 =
9723 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9724 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9725 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9726 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9727 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9728 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9729 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9730 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9731 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9732 		MISC_REGISTERS_RESET_REG_2_PGLC |
9733 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9734 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9735 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9736 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9737 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9738 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9739 
9740 	/*
9741 	 * Keep the following blocks in reset:
9742 	 *  - all xxMACs are handled by the bnx2x_link code.
9743 	 */
9744 	stay_reset2 =
9745 		MISC_REGISTERS_RESET_REG_2_XMAC |
9746 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9747 
9748 	/* Full reset masks according to the chip */
9749 	reset_mask1 = 0xffffffff;
9750 
9751 	if (CHIP_IS_E1(bp))
9752 		reset_mask2 = 0xffff;
9753 	else if (CHIP_IS_E1H(bp))
9754 		reset_mask2 = 0x1ffff;
9755 	else if (CHIP_IS_E2(bp))
9756 		reset_mask2 = 0xfffff;
9757 	else /* CHIP_IS_E3 */
9758 		reset_mask2 = 0x3ffffff;
9759 
9760 	/* Don't reset global blocks unless we need to */
9761 	if (!global)
9762 		reset_mask2 &= ~global_bits2;
9763 
9764 	/*
9765 	 * In case of attention in the QM, we need to reset PXP
9766 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9767 	 * because otherwise QM reset would release 'close the gates' shortly
9768 	 * before resetting the PXP, then the PSWRQ would send a write
9769 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9770 	 * read the payload data from PSWWR, but PSWWR would not
9771 	 * respond. The write queue in PGLUE would stuck, dmae commands
9772 	 * would not return. Therefore it's important to reset the second
9773 	 * reset register (containing the
9774 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9775 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9776 	 * bit).
9777 	 */
9778 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9779 	       reset_mask2 & (~not_reset_mask2));
9780 
9781 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9782 	       reset_mask1 & (~not_reset_mask1));
9783 
9784 	barrier();
9785 
9786 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9787 	       reset_mask2 & (~stay_reset2));
9788 
9789 	barrier();
9790 
9791 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9792 }
9793 
9794 /**
9795  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9796  * It should get cleared in no more than 1s.
9797  *
9798  * @bp:	driver handle
9799  *
9800  * It should get cleared in no more than 1s. Returns 0 if
9801  * pending writes bit gets cleared.
9802  */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9803 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9804 {
9805 	u32 cnt = 1000;
9806 	u32 pend_bits = 0;
9807 
9808 	do {
9809 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9810 
9811 		if (pend_bits == 0)
9812 			break;
9813 
9814 		usleep_range(1000, 2000);
9815 	} while (cnt-- > 0);
9816 
9817 	if (cnt <= 0) {
9818 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9819 			  pend_bits);
9820 		return -EBUSY;
9821 	}
9822 
9823 	return 0;
9824 }
9825 
bnx2x_process_kill(struct bnx2x * bp,bool global)9826 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9827 {
9828 	int cnt = 1000;
9829 	u32 val = 0;
9830 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9831 	u32 tags_63_32 = 0;
9832 
9833 	/* Empty the Tetris buffer, wait for 1s */
9834 	do {
9835 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9836 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9837 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9838 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9839 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9840 		if (CHIP_IS_E3(bp))
9841 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9842 
9843 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9844 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9845 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9846 		    (pgl_exp_rom2 == 0xffffffff) &&
9847 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9848 			break;
9849 		usleep_range(1000, 2000);
9850 	} while (cnt-- > 0);
9851 
9852 	if (cnt <= 0) {
9853 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9854 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9855 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9856 			  pgl_exp_rom2);
9857 		return -EAGAIN;
9858 	}
9859 
9860 	barrier();
9861 
9862 	/* Close gates #2, #3 and #4 */
9863 	bnx2x_set_234_gates(bp, true);
9864 
9865 	/* Poll for IGU VQs for 57712 and newer chips */
9866 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9867 		return -EAGAIN;
9868 
9869 	/* TBD: Indicate that "process kill" is in progress to MCP */
9870 
9871 	/* Clear "unprepared" bit */
9872 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9873 	barrier();
9874 
9875 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9876 	 * PSWHST, GRC and PSWRD Tetris buffer.
9877 	 */
9878 	usleep_range(1000, 2000);
9879 
9880 	/* Prepare to chip reset: */
9881 	/* MCP */
9882 	if (global)
9883 		bnx2x_reset_mcp_prep(bp, &val);
9884 
9885 	/* PXP */
9886 	bnx2x_pxp_prep(bp);
9887 	barrier();
9888 
9889 	/* reset the chip */
9890 	bnx2x_process_kill_chip_reset(bp, global);
9891 	barrier();
9892 
9893 	/* clear errors in PGB */
9894 	if (!CHIP_IS_E1x(bp))
9895 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9896 
9897 	/* Recover after reset: */
9898 	/* MCP */
9899 	if (global && bnx2x_reset_mcp_comp(bp, val))
9900 		return -EAGAIN;
9901 
9902 	/* TBD: Add resetting the NO_MCP mode DB here */
9903 
9904 	/* Open the gates #2, #3 and #4 */
9905 	bnx2x_set_234_gates(bp, false);
9906 
9907 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9908 	 * reset state, re-enable attentions. */
9909 
9910 	return 0;
9911 }
9912 
bnx2x_leader_reset(struct bnx2x * bp)9913 static int bnx2x_leader_reset(struct bnx2x *bp)
9914 {
9915 	int rc = 0;
9916 	bool global = bnx2x_reset_is_global(bp);
9917 	u32 load_code;
9918 
9919 	/* if not going to reset MCP - load "fake" driver to reset HW while
9920 	 * driver is owner of the HW
9921 	 */
9922 	if (!global && !BP_NOMCP(bp)) {
9923 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9924 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9925 		if (!load_code) {
9926 			BNX2X_ERR("MCP response failure, aborting\n");
9927 			rc = -EAGAIN;
9928 			goto exit_leader_reset;
9929 		}
9930 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9931 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9932 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9933 			rc = -EAGAIN;
9934 			goto exit_leader_reset2;
9935 		}
9936 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9937 		if (!load_code) {
9938 			BNX2X_ERR("MCP response failure, aborting\n");
9939 			rc = -EAGAIN;
9940 			goto exit_leader_reset2;
9941 		}
9942 	}
9943 
9944 	/* Try to recover after the failure */
9945 	if (bnx2x_process_kill(bp, global)) {
9946 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9947 			  BP_PATH(bp));
9948 		rc = -EAGAIN;
9949 		goto exit_leader_reset2;
9950 	}
9951 
9952 	/*
9953 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9954 	 * state.
9955 	 */
9956 	bnx2x_set_reset_done(bp);
9957 	if (global)
9958 		bnx2x_clear_reset_global(bp);
9959 
9960 exit_leader_reset2:
9961 	/* unload "fake driver" if it was loaded */
9962 	if (!global && !BP_NOMCP(bp)) {
9963 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9964 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9965 	}
9966 exit_leader_reset:
9967 	bp->is_leader = 0;
9968 	bnx2x_release_leader_lock(bp);
9969 	smp_mb();
9970 	return rc;
9971 }
9972 
bnx2x_recovery_failed(struct bnx2x * bp)9973 static void bnx2x_recovery_failed(struct bnx2x *bp)
9974 {
9975 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9976 
9977 	/* Disconnect this device */
9978 	netif_device_detach(bp->dev);
9979 
9980 	/*
9981 	 * Block ifup for all function on this engine until "process kill"
9982 	 * or power cycle.
9983 	 */
9984 	bnx2x_set_reset_in_progress(bp);
9985 
9986 	/* Shut down the power */
9987 	bnx2x_set_power_state(bp, PCI_D3hot);
9988 
9989 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9990 
9991 	smp_mb();
9992 }
9993 
9994 /*
9995  * Assumption: runs under rtnl lock. This together with the fact
9996  * that it's called only from bnx2x_sp_rtnl() ensure that it
9997  * will never be called when netif_running(bp->dev) is false.
9998  */
bnx2x_parity_recover(struct bnx2x * bp)9999 static void bnx2x_parity_recover(struct bnx2x *bp)
10000 {
10001 	u32 error_recovered, error_unrecovered;
10002 	bool is_parity, global = false;
10003 #ifdef CONFIG_BNX2X_SRIOV
10004 	int vf_idx;
10005 
10006 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10007 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10008 
10009 		if (vf)
10010 			vf->state = VF_LOST;
10011 	}
10012 #endif
10013 	DP(NETIF_MSG_HW, "Handling parity\n");
10014 	while (1) {
10015 		switch (bp->recovery_state) {
10016 		case BNX2X_RECOVERY_INIT:
10017 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10018 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10019 			WARN_ON(!is_parity);
10020 
10021 			/* Try to get a LEADER_LOCK HW lock */
10022 			if (bnx2x_trylock_leader_lock(bp)) {
10023 				bnx2x_set_reset_in_progress(bp);
10024 				/*
10025 				 * Check if there is a global attention and if
10026 				 * there was a global attention, set the global
10027 				 * reset bit.
10028 				 */
10029 
10030 				if (global)
10031 					bnx2x_set_reset_global(bp);
10032 
10033 				bp->is_leader = 1;
10034 			}
10035 
10036 			/* Stop the driver */
10037 			/* If interface has been removed - break */
10038 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10039 				return;
10040 
10041 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10042 
10043 			/* Ensure "is_leader", MCP command sequence and
10044 			 * "recovery_state" update values are seen on other
10045 			 * CPUs.
10046 			 */
10047 			smp_mb();
10048 			break;
10049 
10050 		case BNX2X_RECOVERY_WAIT:
10051 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10052 			if (bp->is_leader) {
10053 				int other_engine = BP_PATH(bp) ? 0 : 1;
10054 				bool other_load_status =
10055 					bnx2x_get_load_status(bp, other_engine);
10056 				bool load_status =
10057 					bnx2x_get_load_status(bp, BP_PATH(bp));
10058 				global = bnx2x_reset_is_global(bp);
10059 
10060 				/*
10061 				 * In case of a parity in a global block, let
10062 				 * the first leader that performs a
10063 				 * leader_reset() reset the global blocks in
10064 				 * order to clear global attentions. Otherwise
10065 				 * the gates will remain closed for that
10066 				 * engine.
10067 				 */
10068 				if (load_status ||
10069 				    (global && other_load_status)) {
10070 					/* Wait until all other functions get
10071 					 * down.
10072 					 */
10073 					schedule_delayed_work(&bp->sp_rtnl_task,
10074 								HZ/10);
10075 					return;
10076 				} else {
10077 					/* If all other functions got down -
10078 					 * try to bring the chip back to
10079 					 * normal. In any case it's an exit
10080 					 * point for a leader.
10081 					 */
10082 					if (bnx2x_leader_reset(bp)) {
10083 						bnx2x_recovery_failed(bp);
10084 						return;
10085 					}
10086 
10087 					/* If we are here, means that the
10088 					 * leader has succeeded and doesn't
10089 					 * want to be a leader any more. Try
10090 					 * to continue as a none-leader.
10091 					 */
10092 					break;
10093 				}
10094 			} else { /* non-leader */
10095 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10096 					/* Try to get a LEADER_LOCK HW lock as
10097 					 * long as a former leader may have
10098 					 * been unloaded by the user or
10099 					 * released a leadership by another
10100 					 * reason.
10101 					 */
10102 					if (bnx2x_trylock_leader_lock(bp)) {
10103 						/* I'm a leader now! Restart a
10104 						 * switch case.
10105 						 */
10106 						bp->is_leader = 1;
10107 						break;
10108 					}
10109 
10110 					schedule_delayed_work(&bp->sp_rtnl_task,
10111 								HZ/10);
10112 					return;
10113 
10114 				} else {
10115 					/*
10116 					 * If there was a global attention, wait
10117 					 * for it to be cleared.
10118 					 */
10119 					if (bnx2x_reset_is_global(bp)) {
10120 						schedule_delayed_work(
10121 							&bp->sp_rtnl_task,
10122 							HZ/10);
10123 						return;
10124 					}
10125 
10126 					error_recovered =
10127 					  bp->eth_stats.recoverable_error;
10128 					error_unrecovered =
10129 					  bp->eth_stats.unrecoverable_error;
10130 					bp->recovery_state =
10131 						BNX2X_RECOVERY_NIC_LOADING;
10132 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10133 						error_unrecovered++;
10134 						netdev_err(bp->dev,
10135 							   "Recovery failed. Power cycle needed\n");
10136 						/* Disconnect this device */
10137 						netif_device_detach(bp->dev);
10138 						/* Shut down the power */
10139 						bnx2x_set_power_state(
10140 							bp, PCI_D3hot);
10141 						smp_mb();
10142 					} else {
10143 						bp->recovery_state =
10144 							BNX2X_RECOVERY_DONE;
10145 						error_recovered++;
10146 						smp_mb();
10147 					}
10148 					bp->eth_stats.recoverable_error =
10149 						error_recovered;
10150 					bp->eth_stats.unrecoverable_error =
10151 						error_unrecovered;
10152 
10153 					return;
10154 				}
10155 			}
10156 		default:
10157 			return;
10158 		}
10159 	}
10160 }
10161 
bnx2x_udp_port_update(struct bnx2x * bp)10162 static int bnx2x_udp_port_update(struct bnx2x *bp)
10163 {
10164 	struct bnx2x_func_switch_update_params *switch_update_params;
10165 	struct bnx2x_func_state_params func_params = {NULL};
10166 	u16 vxlan_port = 0, geneve_port = 0;
10167 	int rc;
10168 
10169 	switch_update_params = &func_params.params.switch_update;
10170 
10171 	/* Prepare parameters for function state transitions */
10172 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10173 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10174 
10175 	func_params.f_obj = &bp->func_obj;
10176 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10177 
10178 	/* Function parameters */
10179 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10180 		  &switch_update_params->changes);
10181 
10182 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10183 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10184 		switch_update_params->geneve_dst_port = geneve_port;
10185 	}
10186 
10187 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10188 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10189 		switch_update_params->vxlan_dst_port = vxlan_port;
10190 	}
10191 
10192 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10193 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10194 		  &switch_update_params->changes);
10195 
10196 	rc = bnx2x_func_state_change(bp, &func_params);
10197 	if (rc)
10198 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10199 			  vxlan_port, geneve_port, rc);
10200 	else
10201 		DP(BNX2X_MSG_SP,
10202 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10203 		   vxlan_port, geneve_port);
10204 
10205 	return rc;
10206 }
10207 
bnx2x_udp_tunnel_sync(struct net_device * netdev,unsigned int table)10208 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10209 {
10210 	struct bnx2x *bp = netdev_priv(netdev);
10211 	struct udp_tunnel_info ti;
10212 
10213 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10214 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10215 
10216 	return bnx2x_udp_port_update(bp);
10217 }
10218 
10219 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10220 	.sync_table	= bnx2x_udp_tunnel_sync,
10221 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10222 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10223 	.tables		= {
10224 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10225 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10226 	},
10227 };
10228 
10229 static int bnx2x_close(struct net_device *dev);
10230 
10231 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10232  * scheduled on a general queue in order to prevent a dead lock.
10233  */
bnx2x_sp_rtnl_task(struct work_struct * work)10234 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10235 {
10236 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10237 
10238 	rtnl_lock();
10239 
10240 	if (!netif_running(bp->dev)) {
10241 		rtnl_unlock();
10242 		return;
10243 	}
10244 
10245 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10246 #ifdef BNX2X_STOP_ON_ERROR
10247 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10248 			  "you will need to reboot when done\n");
10249 		goto sp_rtnl_not_reset;
10250 #endif
10251 		/*
10252 		 * Clear all pending SP commands as we are going to reset the
10253 		 * function anyway.
10254 		 */
10255 		bp->sp_rtnl_state = 0;
10256 		smp_mb();
10257 
10258 		bnx2x_parity_recover(bp);
10259 
10260 		rtnl_unlock();
10261 		return;
10262 	}
10263 
10264 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10265 #ifdef BNX2X_STOP_ON_ERROR
10266 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10267 			  "you will need to reboot when done\n");
10268 		goto sp_rtnl_not_reset;
10269 #endif
10270 
10271 		/*
10272 		 * Clear all pending SP commands as we are going to reset the
10273 		 * function anyway.
10274 		 */
10275 		bp->sp_rtnl_state = 0;
10276 		smp_mb();
10277 
10278 		/* Immediately indicate link as down */
10279 		bp->link_vars.link_up = 0;
10280 		bp->force_link_down = true;
10281 		netif_carrier_off(bp->dev);
10282 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10283 
10284 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10285 		/* When ret value shows failure of allocation failure,
10286 		 * the nic is rebooted again. If open still fails, a error
10287 		 * message to notify the user.
10288 		 */
10289 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10290 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10291 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10292 				BNX2X_ERR("Open the NIC fails again!\n");
10293 		}
10294 		rtnl_unlock();
10295 		return;
10296 	}
10297 #ifdef BNX2X_STOP_ON_ERROR
10298 sp_rtnl_not_reset:
10299 #endif
10300 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10301 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10302 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10303 		bnx2x_after_function_update(bp);
10304 	/*
10305 	 * in case of fan failure we need to reset id if the "stop on error"
10306 	 * debug flag is set, since we trying to prevent permanent overheating
10307 	 * damage
10308 	 */
10309 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10310 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10311 		netif_device_detach(bp->dev);
10312 		bnx2x_close(bp->dev);
10313 		rtnl_unlock();
10314 		return;
10315 	}
10316 
10317 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10318 		DP(BNX2X_MSG_SP,
10319 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10320 		bnx2x_vfpf_set_mcast(bp->dev);
10321 	}
10322 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10323 			       &bp->sp_rtnl_state)){
10324 		if (netif_carrier_ok(bp->dev)) {
10325 			bnx2x_tx_disable(bp);
10326 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10327 		}
10328 	}
10329 
10330 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10331 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10332 		bnx2x_set_rx_mode_inner(bp);
10333 	}
10334 
10335 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10336 			       &bp->sp_rtnl_state))
10337 		bnx2x_pf_set_vfs_vlan(bp);
10338 
10339 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10340 		bnx2x_dcbx_stop_hw_tx(bp);
10341 		bnx2x_dcbx_resume_hw_tx(bp);
10342 	}
10343 
10344 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10345 			       &bp->sp_rtnl_state))
10346 		bnx2x_update_mng_version(bp);
10347 
10348 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10349 		bnx2x_handle_update_svid_cmd(bp);
10350 
10351 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10352 	 * can be called from other contexts as well)
10353 	 */
10354 	rtnl_unlock();
10355 
10356 	/* enable SR-IOV if applicable */
10357 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10358 					       &bp->sp_rtnl_state)) {
10359 		bnx2x_disable_sriov(bp);
10360 		bnx2x_enable_sriov(bp);
10361 	}
10362 }
10363 
bnx2x_period_task(struct work_struct * work)10364 static void bnx2x_period_task(struct work_struct *work)
10365 {
10366 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10367 
10368 	if (!netif_running(bp->dev))
10369 		goto period_task_exit;
10370 
10371 	if (CHIP_REV_IS_SLOW(bp)) {
10372 		BNX2X_ERR("period task called on emulation, ignoring\n");
10373 		goto period_task_exit;
10374 	}
10375 
10376 	bnx2x_acquire_phy_lock(bp);
10377 	/*
10378 	 * The barrier is needed to ensure the ordering between the writing to
10379 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10380 	 * the reading here.
10381 	 */
10382 	smp_mb();
10383 	if (bp->port.pmf) {
10384 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10385 
10386 		/* Re-queue task in 1 sec */
10387 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10388 	}
10389 
10390 	bnx2x_release_phy_lock(bp);
10391 period_task_exit:
10392 	return;
10393 }
10394 
10395 /*
10396  * Init service functions
10397  */
10398 
bnx2x_get_pretend_reg(struct bnx2x * bp)10399 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10400 {
10401 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10402 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10403 	return base + (BP_ABS_FUNC(bp)) * stride;
10404 }
10405 
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10406 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10407 					 u8 port, u32 reset_reg,
10408 					 struct bnx2x_mac_vals *vals)
10409 {
10410 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10411 	u32 base_addr;
10412 
10413 	if (!(mask & reset_reg))
10414 		return false;
10415 
10416 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10417 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10418 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10419 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10420 	REG_WR(bp, vals->umac_addr[port], 0);
10421 
10422 	return true;
10423 }
10424 
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10425 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10426 					struct bnx2x_mac_vals *vals)
10427 {
10428 	u32 val, base_addr, offset, mask, reset_reg;
10429 	bool mac_stopped = false;
10430 	u8 port = BP_PORT(bp);
10431 
10432 	/* reset addresses as they also mark which values were changed */
10433 	memset(vals, 0, sizeof(*vals));
10434 
10435 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10436 
10437 	if (!CHIP_IS_E3(bp)) {
10438 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10439 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10440 		if ((mask & reset_reg) && val) {
10441 			u32 wb_data[2];
10442 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10443 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10444 						: NIG_REG_INGRESS_BMAC0_MEM;
10445 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10446 						: BIGMAC_REGISTER_BMAC_CONTROL;
10447 
10448 			/*
10449 			 * use rd/wr since we cannot use dmae. This is safe
10450 			 * since MCP won't access the bus due to the request
10451 			 * to unload, and no function on the path can be
10452 			 * loaded at this time.
10453 			 */
10454 			wb_data[0] = REG_RD(bp, base_addr + offset);
10455 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10456 			vals->bmac_addr = base_addr + offset;
10457 			vals->bmac_val[0] = wb_data[0];
10458 			vals->bmac_val[1] = wb_data[1];
10459 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10460 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10461 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10462 		}
10463 		BNX2X_DEV_INFO("Disable emac Rx\n");
10464 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10465 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10466 		REG_WR(bp, vals->emac_addr, 0);
10467 		mac_stopped = true;
10468 	} else {
10469 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10470 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10471 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10472 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10473 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10474 			       val & ~(1 << 1));
10475 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10476 			       val | (1 << 1));
10477 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10478 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10479 			REG_WR(bp, vals->xmac_addr, 0);
10480 			mac_stopped = true;
10481 		}
10482 
10483 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10484 							    reset_reg, vals);
10485 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10486 							    reset_reg, vals);
10487 	}
10488 
10489 	if (mac_stopped)
10490 		msleep(20);
10491 }
10492 
10493 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10494 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10495 					0x1848 + ((f) << 4))
10496 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10497 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10498 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10499 
10500 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10501 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10502 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10503 
bnx2x_prev_is_after_undi(struct bnx2x * bp)10504 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10505 {
10506 	/* UNDI marks its presence in DORQ -
10507 	 * it initializes CID offset for normal bell to 0x7
10508 	 */
10509 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10510 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10511 		return false;
10512 
10513 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10514 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10515 		return true;
10516 	}
10517 
10518 	return false;
10519 }
10520 
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10521 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10522 {
10523 	u16 rcq, bd;
10524 	u32 addr, tmp_reg;
10525 
10526 	if (BP_FUNC(bp) < 2)
10527 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10528 	else
10529 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10530 
10531 	tmp_reg = REG_RD(bp, addr);
10532 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10533 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10534 
10535 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10536 	REG_WR(bp, addr, tmp_reg);
10537 
10538 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10539 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10540 }
10541 
bnx2x_prev_mcp_done(struct bnx2x * bp)10542 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10543 {
10544 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10545 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10546 	if (!rc) {
10547 		BNX2X_ERR("MCP response failure, aborting\n");
10548 		return -EBUSY;
10549 	}
10550 
10551 	return 0;
10552 }
10553 
10554 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10555 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10556 {
10557 	struct bnx2x_prev_path_list *tmp_list;
10558 
10559 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10560 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10561 		    bp->pdev->bus->number == tmp_list->bus &&
10562 		    BP_PATH(bp) == tmp_list->path)
10563 			return tmp_list;
10564 
10565 	return NULL;
10566 }
10567 
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10568 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10569 {
10570 	struct bnx2x_prev_path_list *tmp_list;
10571 	int rc;
10572 
10573 	rc = down_interruptible(&bnx2x_prev_sem);
10574 	if (rc) {
10575 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10576 		return rc;
10577 	}
10578 
10579 	tmp_list = bnx2x_prev_path_get_entry(bp);
10580 	if (tmp_list) {
10581 		tmp_list->aer = 1;
10582 		rc = 0;
10583 	} else {
10584 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10585 			  BP_PATH(bp));
10586 	}
10587 
10588 	up(&bnx2x_prev_sem);
10589 
10590 	return rc;
10591 }
10592 
bnx2x_prev_is_path_marked(struct bnx2x * bp)10593 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10594 {
10595 	struct bnx2x_prev_path_list *tmp_list;
10596 	bool rc = false;
10597 
10598 	if (down_trylock(&bnx2x_prev_sem))
10599 		return false;
10600 
10601 	tmp_list = bnx2x_prev_path_get_entry(bp);
10602 	if (tmp_list) {
10603 		if (tmp_list->aer) {
10604 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10605 			   BP_PATH(bp));
10606 		} else {
10607 			rc = true;
10608 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10609 				       BP_PATH(bp));
10610 		}
10611 	}
10612 
10613 	up(&bnx2x_prev_sem);
10614 
10615 	return rc;
10616 }
10617 
bnx2x_port_after_undi(struct bnx2x * bp)10618 bool bnx2x_port_after_undi(struct bnx2x *bp)
10619 {
10620 	struct bnx2x_prev_path_list *entry;
10621 	bool val;
10622 
10623 	down(&bnx2x_prev_sem);
10624 
10625 	entry = bnx2x_prev_path_get_entry(bp);
10626 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10627 
10628 	up(&bnx2x_prev_sem);
10629 
10630 	return val;
10631 }
10632 
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10633 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10634 {
10635 	struct bnx2x_prev_path_list *tmp_list;
10636 	int rc;
10637 
10638 	rc = down_interruptible(&bnx2x_prev_sem);
10639 	if (rc) {
10640 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10641 		return rc;
10642 	}
10643 
10644 	/* Check whether the entry for this path already exists */
10645 	tmp_list = bnx2x_prev_path_get_entry(bp);
10646 	if (tmp_list) {
10647 		if (!tmp_list->aer) {
10648 			BNX2X_ERR("Re-Marking the path.\n");
10649 		} else {
10650 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10651 			   BP_PATH(bp));
10652 			tmp_list->aer = 0;
10653 		}
10654 		up(&bnx2x_prev_sem);
10655 		return 0;
10656 	}
10657 	up(&bnx2x_prev_sem);
10658 
10659 	/* Create an entry for this path and add it */
10660 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10661 	if (!tmp_list) {
10662 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10663 		return -ENOMEM;
10664 	}
10665 
10666 	tmp_list->bus = bp->pdev->bus->number;
10667 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10668 	tmp_list->path = BP_PATH(bp);
10669 	tmp_list->aer = 0;
10670 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10671 
10672 	rc = down_interruptible(&bnx2x_prev_sem);
10673 	if (rc) {
10674 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10675 		kfree(tmp_list);
10676 	} else {
10677 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10678 		   BP_PATH(bp));
10679 		list_add(&tmp_list->list, &bnx2x_prev_list);
10680 		up(&bnx2x_prev_sem);
10681 	}
10682 
10683 	return rc;
10684 }
10685 
bnx2x_do_flr(struct bnx2x * bp)10686 static int bnx2x_do_flr(struct bnx2x *bp)
10687 {
10688 	struct pci_dev *dev = bp->pdev;
10689 
10690 	if (CHIP_IS_E1x(bp)) {
10691 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10692 		return -EINVAL;
10693 	}
10694 
10695 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10696 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10697 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10698 			  bp->common.bc_ver);
10699 		return -EINVAL;
10700 	}
10701 
10702 	if (!pci_wait_for_pending_transaction(dev))
10703 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10704 
10705 	BNX2X_DEV_INFO("Initiating FLR\n");
10706 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10707 
10708 	return 0;
10709 }
10710 
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10711 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10712 {
10713 	int rc;
10714 
10715 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10716 
10717 	/* Test if previous unload process was already finished for this path */
10718 	if (bnx2x_prev_is_path_marked(bp))
10719 		return bnx2x_prev_mcp_done(bp);
10720 
10721 	BNX2X_DEV_INFO("Path is unmarked\n");
10722 
10723 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10724 	if (bnx2x_prev_is_after_undi(bp))
10725 		goto out;
10726 
10727 	/* If function has FLR capabilities, and existing FW version matches
10728 	 * the one required, then FLR will be sufficient to clean any residue
10729 	 * left by previous driver
10730 	 */
10731 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10732 
10733 	if (!rc) {
10734 		/* fw version is good */
10735 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10736 		rc = bnx2x_do_flr(bp);
10737 	}
10738 
10739 	if (!rc) {
10740 		/* FLR was performed */
10741 		BNX2X_DEV_INFO("FLR successful\n");
10742 		return 0;
10743 	}
10744 
10745 	BNX2X_DEV_INFO("Could not FLR\n");
10746 
10747 out:
10748 	/* Close the MCP request, return failure*/
10749 	rc = bnx2x_prev_mcp_done(bp);
10750 	if (!rc)
10751 		rc = BNX2X_PREV_WAIT_NEEDED;
10752 
10753 	return rc;
10754 }
10755 
bnx2x_prev_unload_common(struct bnx2x * bp)10756 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10757 {
10758 	u32 reset_reg, tmp_reg = 0, rc;
10759 	bool prev_undi = false;
10760 	struct bnx2x_mac_vals mac_vals;
10761 
10762 	/* It is possible a previous function received 'common' answer,
10763 	 * but hasn't loaded yet, therefore creating a scenario of
10764 	 * multiple functions receiving 'common' on the same path.
10765 	 */
10766 	BNX2X_DEV_INFO("Common unload Flow\n");
10767 
10768 	memset(&mac_vals, 0, sizeof(mac_vals));
10769 
10770 	if (bnx2x_prev_is_path_marked(bp))
10771 		return bnx2x_prev_mcp_done(bp);
10772 
10773 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10774 
10775 	/* Reset should be performed after BRB is emptied */
10776 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10777 		u32 timer_count = 1000;
10778 
10779 		/* Close the MAC Rx to prevent BRB from filling up */
10780 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10781 
10782 		/* close LLH filters for both ports towards the BRB */
10783 		bnx2x_set_rx_filter(&bp->link_params, 0);
10784 		bp->link_params.port ^= 1;
10785 		bnx2x_set_rx_filter(&bp->link_params, 0);
10786 		bp->link_params.port ^= 1;
10787 
10788 		/* Check if the UNDI driver was previously loaded */
10789 		if (bnx2x_prev_is_after_undi(bp)) {
10790 			prev_undi = true;
10791 			/* clear the UNDI indication */
10792 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10793 			/* clear possible idle check errors */
10794 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10795 		}
10796 		if (!CHIP_IS_E1x(bp))
10797 			/* block FW from writing to host */
10798 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10799 
10800 		/* wait until BRB is empty */
10801 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10802 		while (timer_count) {
10803 			u32 prev_brb = tmp_reg;
10804 
10805 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10806 			if (!tmp_reg)
10807 				break;
10808 
10809 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10810 
10811 			/* reset timer as long as BRB actually gets emptied */
10812 			if (prev_brb > tmp_reg)
10813 				timer_count = 1000;
10814 			else
10815 				timer_count--;
10816 
10817 			/* If UNDI resides in memory, manually increment it */
10818 			if (prev_undi)
10819 				bnx2x_prev_unload_undi_inc(bp, 1);
10820 
10821 			udelay(10);
10822 		}
10823 
10824 		if (!timer_count)
10825 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10826 	}
10827 
10828 	/* No packets are in the pipeline, path is ready for reset */
10829 	bnx2x_reset_common(bp);
10830 
10831 	if (mac_vals.xmac_addr)
10832 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10833 	if (mac_vals.umac_addr[0])
10834 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10835 	if (mac_vals.umac_addr[1])
10836 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10837 	if (mac_vals.emac_addr)
10838 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10839 	if (mac_vals.bmac_addr) {
10840 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10841 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10842 	}
10843 
10844 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10845 	if (rc) {
10846 		bnx2x_prev_mcp_done(bp);
10847 		return rc;
10848 	}
10849 
10850 	return bnx2x_prev_mcp_done(bp);
10851 }
10852 
bnx2x_prev_unload(struct bnx2x * bp)10853 static int bnx2x_prev_unload(struct bnx2x *bp)
10854 {
10855 	int time_counter = 10;
10856 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10857 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10858 
10859 	/* clear hw from errors which may have resulted from an interrupted
10860 	 * dmae transaction.
10861 	 */
10862 	bnx2x_clean_pglue_errors(bp);
10863 
10864 	/* Release previously held locks */
10865 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10866 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10867 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10868 
10869 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10870 	if (hw_lock_val) {
10871 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10872 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10873 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10874 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10875 		}
10876 
10877 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10878 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10879 	} else
10880 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10881 
10882 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10883 		BNX2X_DEV_INFO("Release previously held alr\n");
10884 		bnx2x_release_alr(bp);
10885 	}
10886 
10887 	do {
10888 		int aer = 0;
10889 		/* Lock MCP using an unload request */
10890 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10891 		if (!fw) {
10892 			BNX2X_ERR("MCP response failure, aborting\n");
10893 			rc = -EBUSY;
10894 			break;
10895 		}
10896 
10897 		rc = down_interruptible(&bnx2x_prev_sem);
10898 		if (rc) {
10899 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10900 				  rc);
10901 		} else {
10902 			/* If Path is marked by EEH, ignore unload status */
10903 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10904 				 bnx2x_prev_path_get_entry(bp)->aer);
10905 			up(&bnx2x_prev_sem);
10906 		}
10907 
10908 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10909 			rc = bnx2x_prev_unload_common(bp);
10910 			break;
10911 		}
10912 
10913 		/* non-common reply from MCP might require looping */
10914 		rc = bnx2x_prev_unload_uncommon(bp);
10915 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10916 			break;
10917 
10918 		msleep(20);
10919 	} while (--time_counter);
10920 
10921 	if (!time_counter || rc) {
10922 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10923 		rc = -EPROBE_DEFER;
10924 	}
10925 
10926 	/* Mark function if its port was used to boot from SAN */
10927 	if (bnx2x_port_after_undi(bp))
10928 		bp->link_params.feature_config_flags |=
10929 			FEATURE_CONFIG_BOOT_FROM_SAN;
10930 
10931 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10932 
10933 	return rc;
10934 }
10935 
bnx2x_get_common_hwinfo(struct bnx2x * bp)10936 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10937 {
10938 	u32 val, val2, val3, val4, id, boot_mode;
10939 	u16 pmc;
10940 
10941 	/* Get the chip revision id and number. */
10942 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10943 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10944 	id = ((val & 0xffff) << 16);
10945 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10946 	id |= ((val & 0xf) << 12);
10947 
10948 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10949 	 * the configuration space (so we need to reg_rd)
10950 	 */
10951 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10952 	id |= (((val >> 24) & 0xf) << 4);
10953 	val = REG_RD(bp, MISC_REG_BOND_ID);
10954 	id |= (val & 0xf);
10955 	bp->common.chip_id = id;
10956 
10957 	/* force 57811 according to MISC register */
10958 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10959 		if (CHIP_IS_57810(bp))
10960 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10961 				(bp->common.chip_id & 0x0000FFFF);
10962 		else if (CHIP_IS_57810_MF(bp))
10963 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10964 				(bp->common.chip_id & 0x0000FFFF);
10965 		bp->common.chip_id |= 0x1;
10966 	}
10967 
10968 	/* Set doorbell size */
10969 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10970 
10971 	if (!CHIP_IS_E1x(bp)) {
10972 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10973 		if ((val & 1) == 0)
10974 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10975 		else
10976 			val = (val >> 1) & 1;
10977 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10978 						       "2_PORT_MODE");
10979 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10980 						 CHIP_2_PORT_MODE;
10981 
10982 		if (CHIP_MODE_IS_4_PORT(bp))
10983 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10984 		else
10985 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10986 	} else {
10987 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10988 		bp->pfid = bp->pf_num;			/* 0..7 */
10989 	}
10990 
10991 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10992 
10993 	bp->link_params.chip_id = bp->common.chip_id;
10994 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10995 
10996 	val = (REG_RD(bp, 0x2874) & 0x55);
10997 	if ((bp->common.chip_id & 0x1) ||
10998 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10999 		bp->flags |= ONE_PORT_FLAG;
11000 		BNX2X_DEV_INFO("single port device\n");
11001 	}
11002 
11003 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11004 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11005 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11006 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11007 		       bp->common.flash_size, bp->common.flash_size);
11008 
11009 	bnx2x_init_shmem(bp);
11010 
11011 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11012 					MISC_REG_GENERIC_CR_1 :
11013 					MISC_REG_GENERIC_CR_0));
11014 
11015 	bp->link_params.shmem_base = bp->common.shmem_base;
11016 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11017 	if (SHMEM2_RD(bp, size) >
11018 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11019 		bp->link_params.lfa_base =
11020 		REG_RD(bp, bp->common.shmem2_base +
11021 		       (u32)offsetof(struct shmem2_region,
11022 				     lfa_host_addr[BP_PORT(bp)]));
11023 	else
11024 		bp->link_params.lfa_base = 0;
11025 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11026 		       bp->common.shmem_base, bp->common.shmem2_base);
11027 
11028 	if (!bp->common.shmem_base) {
11029 		BNX2X_DEV_INFO("MCP not active\n");
11030 		bp->flags |= NO_MCP_FLAG;
11031 		return;
11032 	}
11033 
11034 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11035 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11036 
11037 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11038 					SHARED_HW_CFG_LED_MODE_MASK) >>
11039 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11040 
11041 	bp->link_params.feature_config_flags = 0;
11042 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11043 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11044 		bp->link_params.feature_config_flags |=
11045 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046 	else
11047 		bp->link_params.feature_config_flags &=
11048 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11049 
11050 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11051 	bp->common.bc_ver = val;
11052 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11053 	if (val < BNX2X_BC_VER) {
11054 		/* for now only warn
11055 		 * later we might need to enforce this */
11056 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11057 			  BNX2X_BC_VER, val);
11058 	}
11059 	bp->link_params.feature_config_flags |=
11060 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11061 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11062 
11063 	bp->link_params.feature_config_flags |=
11064 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11065 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11066 	bp->link_params.feature_config_flags |=
11067 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11068 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11069 	bp->link_params.feature_config_flags |=
11070 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11071 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11072 
11073 	bp->link_params.feature_config_flags |=
11074 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11075 		FEATURE_CONFIG_MT_SUPPORT : 0;
11076 
11077 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11078 			BC_SUPPORTS_PFC_STATS : 0;
11079 
11080 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11081 			BC_SUPPORTS_FCOE_FEATURES : 0;
11082 
11083 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11084 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11085 
11086 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11087 			BC_SUPPORTS_RMMOD_CMD : 0;
11088 
11089 	boot_mode = SHMEM_RD(bp,
11090 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11091 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11092 	switch (boot_mode) {
11093 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11094 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11095 		break;
11096 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11097 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11098 		break;
11099 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11100 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11101 		break;
11102 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11103 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11104 		break;
11105 	}
11106 
11107 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11108 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11109 
11110 	BNX2X_DEV_INFO("%sWoL capable\n",
11111 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11112 
11113 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11114 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11115 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11116 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11117 
11118 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11119 		 val, val2, val3, val4);
11120 }
11121 
11122 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11123 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11124 
bnx2x_get_igu_cam_info(struct bnx2x * bp)11125 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11126 {
11127 	int pfid = BP_FUNC(bp);
11128 	int igu_sb_id;
11129 	u32 val;
11130 	u8 fid, igu_sb_cnt = 0;
11131 
11132 	bp->igu_base_sb = 0xff;
11133 	if (CHIP_INT_MODE_IS_BC(bp)) {
11134 		int vn = BP_VN(bp);
11135 		igu_sb_cnt = bp->igu_sb_cnt;
11136 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11137 			FP_SB_MAX_E1x;
11138 
11139 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11140 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11141 
11142 		return 0;
11143 	}
11144 
11145 	/* IGU in normal mode - read CAM */
11146 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11147 	     igu_sb_id++) {
11148 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11149 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11150 			continue;
11151 		fid = IGU_FID(val);
11152 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11153 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11154 				continue;
11155 			if (IGU_VEC(val) == 0)
11156 				/* default status block */
11157 				bp->igu_dsb_id = igu_sb_id;
11158 			else {
11159 				if (bp->igu_base_sb == 0xff)
11160 					bp->igu_base_sb = igu_sb_id;
11161 				igu_sb_cnt++;
11162 			}
11163 		}
11164 	}
11165 
11166 #ifdef CONFIG_PCI_MSI
11167 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11168 	 * optional that number of CAM entries will not be equal to the value
11169 	 * advertised in PCI.
11170 	 * Driver should use the minimal value of both as the actual status
11171 	 * block count
11172 	 */
11173 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11174 #endif
11175 
11176 	if (igu_sb_cnt == 0) {
11177 		BNX2X_ERR("CAM configuration error\n");
11178 		return -EINVAL;
11179 	}
11180 
11181 	return 0;
11182 }
11183 
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11184 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11185 {
11186 	int cfg_size = 0, idx, port = BP_PORT(bp);
11187 
11188 	/* Aggregation of supported attributes of all external phys */
11189 	bp->port.supported[0] = 0;
11190 	bp->port.supported[1] = 0;
11191 	switch (bp->link_params.num_phys) {
11192 	case 1:
11193 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11194 		cfg_size = 1;
11195 		break;
11196 	case 2:
11197 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11198 		cfg_size = 1;
11199 		break;
11200 	case 3:
11201 		if (bp->link_params.multi_phy_config &
11202 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11203 			bp->port.supported[1] =
11204 				bp->link_params.phy[EXT_PHY1].supported;
11205 			bp->port.supported[0] =
11206 				bp->link_params.phy[EXT_PHY2].supported;
11207 		} else {
11208 			bp->port.supported[0] =
11209 				bp->link_params.phy[EXT_PHY1].supported;
11210 			bp->port.supported[1] =
11211 				bp->link_params.phy[EXT_PHY2].supported;
11212 		}
11213 		cfg_size = 2;
11214 		break;
11215 	}
11216 
11217 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11218 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11219 			   SHMEM_RD(bp,
11220 			   dev_info.port_hw_config[port].external_phy_config),
11221 			   SHMEM_RD(bp,
11222 			   dev_info.port_hw_config[port].external_phy_config2));
11223 		return;
11224 	}
11225 
11226 	if (CHIP_IS_E3(bp))
11227 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11228 	else {
11229 		switch (switch_cfg) {
11230 		case SWITCH_CFG_1G:
11231 			bp->port.phy_addr = REG_RD(
11232 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11233 			break;
11234 		case SWITCH_CFG_10G:
11235 			bp->port.phy_addr = REG_RD(
11236 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11237 			break;
11238 		default:
11239 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11240 				  bp->port.link_config[0]);
11241 			return;
11242 		}
11243 	}
11244 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11245 	/* mask what we support according to speed_cap_mask per configuration */
11246 	for (idx = 0; idx < cfg_size; idx++) {
11247 		if (!(bp->link_params.speed_cap_mask[idx] &
11248 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11249 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11250 
11251 		if (!(bp->link_params.speed_cap_mask[idx] &
11252 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11253 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11254 
11255 		if (!(bp->link_params.speed_cap_mask[idx] &
11256 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11257 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11258 
11259 		if (!(bp->link_params.speed_cap_mask[idx] &
11260 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11261 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11262 
11263 		if (!(bp->link_params.speed_cap_mask[idx] &
11264 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11265 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11266 						     SUPPORTED_1000baseT_Full);
11267 
11268 		if (!(bp->link_params.speed_cap_mask[idx] &
11269 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11270 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11271 
11272 		if (!(bp->link_params.speed_cap_mask[idx] &
11273 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11274 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11275 
11276 		if (!(bp->link_params.speed_cap_mask[idx] &
11277 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11278 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11279 	}
11280 
11281 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11282 		       bp->port.supported[1]);
11283 }
11284 
bnx2x_link_settings_requested(struct bnx2x * bp)11285 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11286 {
11287 	u32 link_config, idx, cfg_size = 0;
11288 	bp->port.advertising[0] = 0;
11289 	bp->port.advertising[1] = 0;
11290 	switch (bp->link_params.num_phys) {
11291 	case 1:
11292 	case 2:
11293 		cfg_size = 1;
11294 		break;
11295 	case 3:
11296 		cfg_size = 2;
11297 		break;
11298 	}
11299 	for (idx = 0; idx < cfg_size; idx++) {
11300 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11301 		link_config = bp->port.link_config[idx];
11302 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11303 		case PORT_FEATURE_LINK_SPEED_AUTO:
11304 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11305 				bp->link_params.req_line_speed[idx] =
11306 					SPEED_AUTO_NEG;
11307 				bp->port.advertising[idx] |=
11308 					bp->port.supported[idx];
11309 				if (bp->link_params.phy[EXT_PHY1].type ==
11310 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11311 					bp->port.advertising[idx] |=
11312 					(SUPPORTED_100baseT_Half |
11313 					 SUPPORTED_100baseT_Full);
11314 			} else {
11315 				/* force 10G, no AN */
11316 				bp->link_params.req_line_speed[idx] =
11317 					SPEED_10000;
11318 				bp->port.advertising[idx] |=
11319 					(ADVERTISED_10000baseT_Full |
11320 					 ADVERTISED_FIBRE);
11321 				continue;
11322 			}
11323 			break;
11324 
11325 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11326 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11327 				bp->link_params.req_line_speed[idx] =
11328 					SPEED_10;
11329 				bp->port.advertising[idx] |=
11330 					(ADVERTISED_10baseT_Full |
11331 					 ADVERTISED_TP);
11332 			} else {
11333 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11334 					    link_config,
11335 				    bp->link_params.speed_cap_mask[idx]);
11336 				return;
11337 			}
11338 			break;
11339 
11340 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11341 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11342 				bp->link_params.req_line_speed[idx] =
11343 					SPEED_10;
11344 				bp->link_params.req_duplex[idx] =
11345 					DUPLEX_HALF;
11346 				bp->port.advertising[idx] |=
11347 					(ADVERTISED_10baseT_Half |
11348 					 ADVERTISED_TP);
11349 			} else {
11350 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11351 					    link_config,
11352 					  bp->link_params.speed_cap_mask[idx]);
11353 				return;
11354 			}
11355 			break;
11356 
11357 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11358 			if (bp->port.supported[idx] &
11359 			    SUPPORTED_100baseT_Full) {
11360 				bp->link_params.req_line_speed[idx] =
11361 					SPEED_100;
11362 				bp->port.advertising[idx] |=
11363 					(ADVERTISED_100baseT_Full |
11364 					 ADVERTISED_TP);
11365 			} else {
11366 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11367 					    link_config,
11368 					  bp->link_params.speed_cap_mask[idx]);
11369 				return;
11370 			}
11371 			break;
11372 
11373 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11374 			if (bp->port.supported[idx] &
11375 			    SUPPORTED_100baseT_Half) {
11376 				bp->link_params.req_line_speed[idx] =
11377 								SPEED_100;
11378 				bp->link_params.req_duplex[idx] =
11379 								DUPLEX_HALF;
11380 				bp->port.advertising[idx] |=
11381 					(ADVERTISED_100baseT_Half |
11382 					 ADVERTISED_TP);
11383 			} else {
11384 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11385 				    link_config,
11386 				    bp->link_params.speed_cap_mask[idx]);
11387 				return;
11388 			}
11389 			break;
11390 
11391 		case PORT_FEATURE_LINK_SPEED_1G:
11392 			if (bp->port.supported[idx] &
11393 			    SUPPORTED_1000baseT_Full) {
11394 				bp->link_params.req_line_speed[idx] =
11395 					SPEED_1000;
11396 				bp->port.advertising[idx] |=
11397 					(ADVERTISED_1000baseT_Full |
11398 					 ADVERTISED_TP);
11399 			} else if (bp->port.supported[idx] &
11400 				   SUPPORTED_1000baseKX_Full) {
11401 				bp->link_params.req_line_speed[idx] =
11402 					SPEED_1000;
11403 				bp->port.advertising[idx] |=
11404 					ADVERTISED_1000baseKX_Full;
11405 			} else {
11406 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11407 				    link_config,
11408 				    bp->link_params.speed_cap_mask[idx]);
11409 				return;
11410 			}
11411 			break;
11412 
11413 		case PORT_FEATURE_LINK_SPEED_2_5G:
11414 			if (bp->port.supported[idx] &
11415 			    SUPPORTED_2500baseX_Full) {
11416 				bp->link_params.req_line_speed[idx] =
11417 					SPEED_2500;
11418 				bp->port.advertising[idx] |=
11419 					(ADVERTISED_2500baseX_Full |
11420 						ADVERTISED_TP);
11421 			} else {
11422 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11423 				    link_config,
11424 				    bp->link_params.speed_cap_mask[idx]);
11425 				return;
11426 			}
11427 			break;
11428 
11429 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11430 			if (bp->port.supported[idx] &
11431 			    SUPPORTED_10000baseT_Full) {
11432 				bp->link_params.req_line_speed[idx] =
11433 					SPEED_10000;
11434 				bp->port.advertising[idx] |=
11435 					(ADVERTISED_10000baseT_Full |
11436 						ADVERTISED_FIBRE);
11437 			} else if (bp->port.supported[idx] &
11438 				   SUPPORTED_10000baseKR_Full) {
11439 				bp->link_params.req_line_speed[idx] =
11440 					SPEED_10000;
11441 				bp->port.advertising[idx] |=
11442 					(ADVERTISED_10000baseKR_Full |
11443 						ADVERTISED_FIBRE);
11444 			} else {
11445 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11446 				    link_config,
11447 				    bp->link_params.speed_cap_mask[idx]);
11448 				return;
11449 			}
11450 			break;
11451 		case PORT_FEATURE_LINK_SPEED_20G:
11452 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11453 
11454 			break;
11455 		default:
11456 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11457 				  link_config);
11458 				bp->link_params.req_line_speed[idx] =
11459 							SPEED_AUTO_NEG;
11460 				bp->port.advertising[idx] =
11461 						bp->port.supported[idx];
11462 			break;
11463 		}
11464 
11465 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11466 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11467 		if (bp->link_params.req_flow_ctrl[idx] ==
11468 		    BNX2X_FLOW_CTRL_AUTO) {
11469 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11470 				bp->link_params.req_flow_ctrl[idx] =
11471 							BNX2X_FLOW_CTRL_NONE;
11472 			else
11473 				bnx2x_set_requested_fc(bp);
11474 		}
11475 
11476 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11477 			       bp->link_params.req_line_speed[idx],
11478 			       bp->link_params.req_duplex[idx],
11479 			       bp->link_params.req_flow_ctrl[idx],
11480 			       bp->port.advertising[idx]);
11481 	}
11482 }
11483 
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11484 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11485 {
11486 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11487 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11488 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11489 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11490 }
11491 
bnx2x_get_port_hwinfo(struct bnx2x * bp)11492 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11493 {
11494 	int port = BP_PORT(bp);
11495 	u32 config;
11496 	u32 ext_phy_type, ext_phy_config, eee_mode;
11497 
11498 	bp->link_params.bp = bp;
11499 	bp->link_params.port = port;
11500 
11501 	bp->link_params.lane_config =
11502 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11503 
11504 	bp->link_params.speed_cap_mask[0] =
11505 		SHMEM_RD(bp,
11506 			 dev_info.port_hw_config[port].speed_capability_mask) &
11507 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11508 	bp->link_params.speed_cap_mask[1] =
11509 		SHMEM_RD(bp,
11510 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11511 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11512 	bp->port.link_config[0] =
11513 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11514 
11515 	bp->port.link_config[1] =
11516 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11517 
11518 	bp->link_params.multi_phy_config =
11519 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11520 	/* If the device is capable of WoL, set the default state according
11521 	 * to the HW
11522 	 */
11523 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11524 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11525 		   (config & PORT_FEATURE_WOL_ENABLED));
11526 
11527 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11529 		bp->flags |= NO_ISCSI_FLAG;
11530 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11531 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11532 		bp->flags |= NO_FCOE_FLAG;
11533 
11534 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11535 		       bp->link_params.lane_config,
11536 		       bp->link_params.speed_cap_mask[0],
11537 		       bp->port.link_config[0]);
11538 
11539 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11540 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11541 	bnx2x_phy_probe(&bp->link_params);
11542 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11543 
11544 	bnx2x_link_settings_requested(bp);
11545 
11546 	/*
11547 	 * If connected directly, work with the internal PHY, otherwise, work
11548 	 * with the external PHY
11549 	 */
11550 	ext_phy_config =
11551 		SHMEM_RD(bp,
11552 			 dev_info.port_hw_config[port].external_phy_config);
11553 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11554 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11555 		bp->mdio.prtad = bp->port.phy_addr;
11556 
11557 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11558 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11559 		bp->mdio.prtad =
11560 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11561 
11562 	/* Configure link feature according to nvram value */
11563 	eee_mode = (((SHMEM_RD(bp, dev_info.
11564 		      port_feature_config[port].eee_power_mode)) &
11565 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11566 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11567 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11568 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11569 					   EEE_MODE_ENABLE_LPI |
11570 					   EEE_MODE_OUTPUT_TIME;
11571 	} else {
11572 		bp->link_params.eee_mode = 0;
11573 	}
11574 }
11575 
bnx2x_get_iscsi_info(struct bnx2x * bp)11576 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11577 {
11578 	u32 no_flags = NO_ISCSI_FLAG;
11579 	int port = BP_PORT(bp);
11580 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11581 				drv_lic_key[port].max_iscsi_conn);
11582 
11583 	if (!CNIC_SUPPORT(bp)) {
11584 		bp->flags |= no_flags;
11585 		return;
11586 	}
11587 
11588 	/* Get the number of maximum allowed iSCSI connections */
11589 	bp->cnic_eth_dev.max_iscsi_conn =
11590 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11591 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11592 
11593 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11594 		       bp->cnic_eth_dev.max_iscsi_conn);
11595 
11596 	/*
11597 	 * If maximum allowed number of connections is zero -
11598 	 * disable the feature.
11599 	 */
11600 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11601 		bp->flags |= no_flags;
11602 }
11603 
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11604 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11605 {
11606 	/* Port info */
11607 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11608 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11609 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11610 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11611 
11612 	/* Node info */
11613 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11614 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11615 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11616 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11617 }
11618 
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11619 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11620 {
11621 	u8 count = 0;
11622 
11623 	if (IS_MF(bp)) {
11624 		u8 fid;
11625 
11626 		/* iterate over absolute function ids for this path: */
11627 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11628 			if (IS_MF_SD(bp)) {
11629 				u32 cfg = MF_CFG_RD(bp,
11630 						    func_mf_config[fid].config);
11631 
11632 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11633 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11634 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11635 					count++;
11636 			} else {
11637 				u32 cfg = MF_CFG_RD(bp,
11638 						    func_ext_config[fid].
11639 								      func_cfg);
11640 
11641 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11642 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11643 					count++;
11644 			}
11645 		}
11646 	} else { /* SF */
11647 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11648 
11649 		for (port = 0; port < port_cnt; port++) {
11650 			u32 lic = SHMEM_RD(bp,
11651 					   drv_lic_key[port].max_fcoe_conn) ^
11652 				  FW_ENCODE_32BIT_PATTERN;
11653 			if (lic)
11654 				count++;
11655 		}
11656 	}
11657 
11658 	return count;
11659 }
11660 
bnx2x_get_fcoe_info(struct bnx2x * bp)11661 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11662 {
11663 	int port = BP_PORT(bp);
11664 	int func = BP_ABS_FUNC(bp);
11665 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11666 				drv_lic_key[port].max_fcoe_conn);
11667 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11668 
11669 	if (!CNIC_SUPPORT(bp)) {
11670 		bp->flags |= NO_FCOE_FLAG;
11671 		return;
11672 	}
11673 
11674 	/* Get the number of maximum allowed FCoE connections */
11675 	bp->cnic_eth_dev.max_fcoe_conn =
11676 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11677 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11678 
11679 	/* Calculate the number of maximum allowed FCoE tasks */
11680 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11681 
11682 	/* check if FCoE resources must be shared between different functions */
11683 	if (num_fcoe_func)
11684 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11685 
11686 	/* Read the WWN: */
11687 	if (!IS_MF(bp)) {
11688 		/* Port info */
11689 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11690 			SHMEM_RD(bp,
11691 				 dev_info.port_hw_config[port].
11692 				 fcoe_wwn_port_name_upper);
11693 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11694 			SHMEM_RD(bp,
11695 				 dev_info.port_hw_config[port].
11696 				 fcoe_wwn_port_name_lower);
11697 
11698 		/* Node info */
11699 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11700 			SHMEM_RD(bp,
11701 				 dev_info.port_hw_config[port].
11702 				 fcoe_wwn_node_name_upper);
11703 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11704 			SHMEM_RD(bp,
11705 				 dev_info.port_hw_config[port].
11706 				 fcoe_wwn_node_name_lower);
11707 	} else if (!IS_MF_SD(bp)) {
11708 		/* Read the WWN info only if the FCoE feature is enabled for
11709 		 * this function.
11710 		 */
11711 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11712 			bnx2x_get_ext_wwn_info(bp, func);
11713 	} else {
11714 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11715 			bnx2x_get_ext_wwn_info(bp, func);
11716 	}
11717 
11718 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11719 
11720 	/*
11721 	 * If maximum allowed number of connections is zero -
11722 	 * disable the feature.
11723 	 */
11724 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11725 		bp->flags |= NO_FCOE_FLAG;
11726 		eth_zero_addr(bp->fip_mac);
11727 	}
11728 }
11729 
bnx2x_get_cnic_info(struct bnx2x * bp)11730 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731 {
11732 	/*
11733 	 * iSCSI may be dynamically disabled but reading
11734 	 * info here we will decrease memory usage by driver
11735 	 * if the feature is disabled for good
11736 	 */
11737 	bnx2x_get_iscsi_info(bp);
11738 	bnx2x_get_fcoe_info(bp);
11739 }
11740 
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11741 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742 {
11743 	u32 val, val2;
11744 	int func = BP_ABS_FUNC(bp);
11745 	int port = BP_PORT(bp);
11746 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11747 	u8 *fip_mac = bp->fip_mac;
11748 
11749 	if (IS_MF(bp)) {
11750 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11751 		 * FCoE MAC then the appropriate feature should be disabled.
11752 		 * In non SD mode features configuration comes from struct
11753 		 * func_ext_config.
11754 		 */
11755 		if (!IS_MF_SD(bp)) {
11756 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11757 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11758 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11759 						 iscsi_mac_addr_upper);
11760 				val = MF_CFG_RD(bp, func_ext_config[func].
11761 						iscsi_mac_addr_lower);
11762 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11763 				BNX2X_DEV_INFO
11764 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11765 			} else {
11766 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767 			}
11768 
11769 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11770 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11771 						 fcoe_mac_addr_upper);
11772 				val = MF_CFG_RD(bp, func_ext_config[func].
11773 						fcoe_mac_addr_lower);
11774 				bnx2x_set_mac_buf(fip_mac, val, val2);
11775 				BNX2X_DEV_INFO
11776 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11777 			} else {
11778 				bp->flags |= NO_FCOE_FLAG;
11779 			}
11780 
11781 			bp->mf_ext_config = cfg;
11782 
11783 		} else { /* SD MODE */
11784 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11785 				/* use primary mac as iscsi mac */
11786 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11787 
11788 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11789 				BNX2X_DEV_INFO
11790 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11791 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11792 				/* use primary mac as fip mac */
11793 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11794 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11795 				BNX2X_DEV_INFO
11796 					("Read FIP MAC: %pM\n", fip_mac);
11797 			}
11798 		}
11799 
11800 		/* If this is a storage-only interface, use SAN mac as
11801 		 * primary MAC. Notice that for SD this is already the case,
11802 		 * as the SAN mac was copied from the primary MAC.
11803 		 */
11804 		if (IS_MF_FCOE_AFEX(bp))
11805 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11806 	} else {
11807 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808 				iscsi_mac_upper);
11809 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11810 			       iscsi_mac_lower);
11811 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11812 
11813 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814 				fcoe_fip_mac_upper);
11815 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11816 			       fcoe_fip_mac_lower);
11817 		bnx2x_set_mac_buf(fip_mac, val, val2);
11818 	}
11819 
11820 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11821 	if (!is_valid_ether_addr(iscsi_mac)) {
11822 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11823 		eth_zero_addr(iscsi_mac);
11824 	}
11825 
11826 	/* Disable FCoE if MAC configuration is invalid. */
11827 	if (!is_valid_ether_addr(fip_mac)) {
11828 		bp->flags |= NO_FCOE_FLAG;
11829 		eth_zero_addr(bp->fip_mac);
11830 	}
11831 }
11832 
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11833 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834 {
11835 	u32 val, val2;
11836 	int func = BP_ABS_FUNC(bp);
11837 	int port = BP_PORT(bp);
11838 
11839 	/* Zero primary MAC configuration */
11840 	eth_zero_addr(bp->dev->dev_addr);
11841 
11842 	if (BP_NOMCP(bp)) {
11843 		BNX2X_ERROR("warning: random MAC workaround active\n");
11844 		eth_hw_addr_random(bp->dev);
11845 	} else if (IS_MF(bp)) {
11846 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11850 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11851 
11852 		if (CNIC_SUPPORT(bp))
11853 			bnx2x_get_cnic_mac_hwinfo(bp);
11854 	} else {
11855 		/* in SF read MACs from port configuration */
11856 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11857 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11858 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11859 
11860 		if (CNIC_SUPPORT(bp))
11861 			bnx2x_get_cnic_mac_hwinfo(bp);
11862 	}
11863 
11864 	if (!BP_NOMCP(bp)) {
11865 		/* Read physical port identifier from shmem */
11866 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11867 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11868 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11869 		bp->flags |= HAS_PHYS_PORT_ID;
11870 	}
11871 
11872 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11873 
11874 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11875 		dev_err(&bp->pdev->dev,
11876 			"bad Ethernet MAC address configuration: %pM\n"
11877 			"change it manually before bringing up the appropriate network interface\n",
11878 			bp->dev->dev_addr);
11879 }
11880 
bnx2x_get_dropless_info(struct bnx2x * bp)11881 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11882 {
11883 	int tmp;
11884 	u32 cfg;
11885 
11886 	if (IS_VF(bp))
11887 		return false;
11888 
11889 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11890 		/* Take function: tmp = func */
11891 		tmp = BP_ABS_FUNC(bp);
11892 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11893 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11894 	} else {
11895 		/* Take port: tmp = port */
11896 		tmp = BP_PORT(bp);
11897 		cfg = SHMEM_RD(bp,
11898 			       dev_info.port_hw_config[tmp].generic_features);
11899 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11900 	}
11901 	return cfg;
11902 }
11903 
validate_set_si_mode(struct bnx2x * bp)11904 static void validate_set_si_mode(struct bnx2x *bp)
11905 {
11906 	u8 func = BP_ABS_FUNC(bp);
11907 	u32 val;
11908 
11909 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11910 
11911 	/* check for legal mac (upper bytes) */
11912 	if (val != 0xffff) {
11913 		bp->mf_mode = MULTI_FUNCTION_SI;
11914 		bp->mf_config[BP_VN(bp)] =
11915 			MF_CFG_RD(bp, func_mf_config[func].config);
11916 	} else
11917 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11918 }
11919 
bnx2x_get_hwinfo(struct bnx2x * bp)11920 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11921 {
11922 	int /*abs*/func = BP_ABS_FUNC(bp);
11923 	int vn;
11924 	u32 val = 0, val2 = 0;
11925 	int rc = 0;
11926 
11927 	/* Validate that chip access is feasible */
11928 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11929 		dev_err(&bp->pdev->dev,
11930 			"Chip read returns all Fs. Preventing probe from continuing\n");
11931 		return -EINVAL;
11932 	}
11933 
11934 	bnx2x_get_common_hwinfo(bp);
11935 
11936 	/*
11937 	 * initialize IGU parameters
11938 	 */
11939 	if (CHIP_IS_E1x(bp)) {
11940 		bp->common.int_block = INT_BLOCK_HC;
11941 
11942 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11943 		bp->igu_base_sb = 0;
11944 	} else {
11945 		bp->common.int_block = INT_BLOCK_IGU;
11946 
11947 		/* do not allow device reset during IGU info processing */
11948 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11949 
11950 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11951 
11952 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11953 			int tout = 5000;
11954 
11955 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11956 
11957 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11958 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11959 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11960 
11961 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962 				tout--;
11963 				usleep_range(1000, 2000);
11964 			}
11965 
11966 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967 				dev_err(&bp->pdev->dev,
11968 					"FORCING Normal Mode failed!!!\n");
11969 				bnx2x_release_hw_lock(bp,
11970 						      HW_LOCK_RESOURCE_RESET);
11971 				return -EPERM;
11972 			}
11973 		}
11974 
11975 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11976 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11977 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11978 		} else
11979 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11980 
11981 		rc = bnx2x_get_igu_cam_info(bp);
11982 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11983 		if (rc)
11984 			return rc;
11985 	}
11986 
11987 	/*
11988 	 * set base FW non-default (fast path) status block id, this value is
11989 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11990 	 * determine the id used by the FW.
11991 	 */
11992 	if (CHIP_IS_E1x(bp))
11993 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11994 	else /*
11995 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11996 	      * the same queue are indicated on the same IGU SB). So we prefer
11997 	      * FW and IGU SBs to be the same value.
11998 	      */
11999 		bp->base_fw_ndsb = bp->igu_base_sb;
12000 
12001 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12002 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12003 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12004 
12005 	/*
12006 	 * Initialize MF configuration
12007 	 */
12008 	bp->mf_ov = 0;
12009 	bp->mf_mode = 0;
12010 	bp->mf_sub_mode = 0;
12011 	vn = BP_VN(bp);
12012 
12013 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12014 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12015 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12016 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12017 
12018 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12019 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12020 		else
12021 			bp->common.mf_cfg_base = bp->common.shmem_base +
12022 				offsetof(struct shmem_region, func_mb) +
12023 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12024 		/*
12025 		 * get mf configuration:
12026 		 * 1. Existence of MF configuration
12027 		 * 2. MAC address must be legal (check only upper bytes)
12028 		 *    for  Switch-Independent mode;
12029 		 *    OVLAN must be legal for Switch-Dependent mode
12030 		 * 3. SF_MODE configures specific MF mode
12031 		 */
12032 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12033 			/* get mf configuration */
12034 			val = SHMEM_RD(bp,
12035 				       dev_info.shared_feature_config.config);
12036 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12037 
12038 			switch (val) {
12039 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12040 				validate_set_si_mode(bp);
12041 				break;
12042 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12043 				if ((!CHIP_IS_E1x(bp)) &&
12044 				    (MF_CFG_RD(bp, func_mf_config[func].
12045 					       mac_upper) != 0xffff) &&
12046 				    (SHMEM2_HAS(bp,
12047 						afex_driver_support))) {
12048 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12049 					bp->mf_config[vn] = MF_CFG_RD(bp,
12050 						func_mf_config[func].config);
12051 				} else {
12052 					BNX2X_DEV_INFO("can not configure afex mode\n");
12053 				}
12054 				break;
12055 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12056 				/* get OV configuration */
12057 				val = MF_CFG_RD(bp,
12058 					func_mf_config[FUNC_0].e1hov_tag);
12059 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12060 
12061 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12062 					bp->mf_mode = MULTI_FUNCTION_SD;
12063 					bp->mf_config[vn] = MF_CFG_RD(bp,
12064 						func_mf_config[func].config);
12065 				} else
12066 					BNX2X_DEV_INFO("illegal OV for SD\n");
12067 				break;
12068 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12069 				bp->mf_mode = MULTI_FUNCTION_SD;
12070 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12071 				bp->mf_config[vn] =
12072 					MF_CFG_RD(bp,
12073 						  func_mf_config[func].config);
12074 
12075 				if (SHMEM2_HAS(bp, mtu_size)) {
12076 					int mtu_idx = BP_FW_MB_IDX(bp);
12077 					u16 mtu_size;
12078 					u32 mtu;
12079 
12080 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12081 					mtu_size = (u16)mtu;
12082 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12083 					   mtu_size, mtu);
12084 
12085 					/* if valid: update device mtu */
12086 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12087 					    (mtu_size <=
12088 					     ETH_MAX_JUMBO_PACKET_SIZE))
12089 						bp->dev->mtu = mtu_size;
12090 				}
12091 				break;
12092 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12093 				bp->mf_mode = MULTI_FUNCTION_SD;
12094 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12095 				bp->mf_config[vn] =
12096 					MF_CFG_RD(bp,
12097 						  func_mf_config[func].config);
12098 				break;
12099 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12100 				bp->mf_config[vn] = 0;
12101 				break;
12102 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12103 				val2 = SHMEM_RD(bp,
12104 					dev_info.shared_hw_config.config_3);
12105 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12106 				switch (val2) {
12107 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12108 					validate_set_si_mode(bp);
12109 					bp->mf_sub_mode =
12110 							SUB_MF_MODE_NPAR1_DOT_5;
12111 					break;
12112 				default:
12113 					/* Unknown configuration */
12114 					bp->mf_config[vn] = 0;
12115 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12116 						       val);
12117 				}
12118 				break;
12119 			default:
12120 				/* Unknown configuration: reset mf_config */
12121 				bp->mf_config[vn] = 0;
12122 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12123 			}
12124 		}
12125 
12126 		BNX2X_DEV_INFO("%s function mode\n",
12127 			       IS_MF(bp) ? "multi" : "single");
12128 
12129 		switch (bp->mf_mode) {
12130 		case MULTI_FUNCTION_SD:
12131 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12132 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12133 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12134 				bp->mf_ov = val;
12135 				bp->path_has_ovlan = true;
12136 
12137 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12138 					       func, bp->mf_ov, bp->mf_ov);
12139 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12140 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12141 				dev_err(&bp->pdev->dev,
12142 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12143 					func);
12144 				bp->path_has_ovlan = true;
12145 			} else {
12146 				dev_err(&bp->pdev->dev,
12147 					"No valid MF OV for func %d, aborting\n",
12148 					func);
12149 				return -EPERM;
12150 			}
12151 			break;
12152 		case MULTI_FUNCTION_AFEX:
12153 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12154 			break;
12155 		case MULTI_FUNCTION_SI:
12156 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12157 				       func);
12158 			break;
12159 		default:
12160 			if (vn) {
12161 				dev_err(&bp->pdev->dev,
12162 					"VN %d is in a single function mode, aborting\n",
12163 					vn);
12164 				return -EPERM;
12165 			}
12166 			break;
12167 		}
12168 
12169 		/* check if other port on the path needs ovlan:
12170 		 * Since MF configuration is shared between ports
12171 		 * Possible mixed modes are only
12172 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12173 		 */
12174 		if (CHIP_MODE_IS_4_PORT(bp) &&
12175 		    !bp->path_has_ovlan &&
12176 		    !IS_MF(bp) &&
12177 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12178 			u8 other_port = !BP_PORT(bp);
12179 			u8 other_func = BP_PATH(bp) + 2*other_port;
12180 			val = MF_CFG_RD(bp,
12181 					func_mf_config[other_func].e1hov_tag);
12182 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12183 				bp->path_has_ovlan = true;
12184 		}
12185 	}
12186 
12187 	/* adjust igu_sb_cnt to MF for E1H */
12188 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12189 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12190 
12191 	/* port info */
12192 	bnx2x_get_port_hwinfo(bp);
12193 
12194 	/* Get MAC addresses */
12195 	bnx2x_get_mac_hwinfo(bp);
12196 
12197 	bnx2x_get_cnic_info(bp);
12198 
12199 	return rc;
12200 }
12201 
bnx2x_read_fwinfo(struct bnx2x * bp)12202 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12203 {
12204 	int cnt, i, block_end, rodi;
12205 	char vpd_start[BNX2X_VPD_LEN+1];
12206 	char str_id_reg[VENDOR_ID_LEN+1];
12207 	char str_id_cap[VENDOR_ID_LEN+1];
12208 	char *vpd_data;
12209 	char *vpd_extended_data = NULL;
12210 	u8 len;
12211 
12212 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12213 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12214 
12215 	if (cnt < BNX2X_VPD_LEN)
12216 		goto out_not_found;
12217 
12218 	/* VPD RO tag should be first tag after identifier string, hence
12219 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12220 	 */
12221 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12222 			     PCI_VPD_LRDT_RO_DATA);
12223 	if (i < 0)
12224 		goto out_not_found;
12225 
12226 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12227 		    pci_vpd_lrdt_size(&vpd_start[i]);
12228 
12229 	i += PCI_VPD_LRDT_TAG_SIZE;
12230 
12231 	if (block_end > BNX2X_VPD_LEN) {
12232 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12233 		if (vpd_extended_data  == NULL)
12234 			goto out_not_found;
12235 
12236 		/* read rest of vpd image into vpd_extended_data */
12237 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12238 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12239 				   block_end - BNX2X_VPD_LEN,
12240 				   vpd_extended_data + BNX2X_VPD_LEN);
12241 		if (cnt < (block_end - BNX2X_VPD_LEN))
12242 			goto out_not_found;
12243 		vpd_data = vpd_extended_data;
12244 	} else
12245 		vpd_data = vpd_start;
12246 
12247 	/* now vpd_data holds full vpd content in both cases */
12248 
12249 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12250 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12251 	if (rodi < 0)
12252 		goto out_not_found;
12253 
12254 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12255 
12256 	if (len != VENDOR_ID_LEN)
12257 		goto out_not_found;
12258 
12259 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260 
12261 	/* vendor specific info */
12262 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12263 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12264 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12265 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12266 
12267 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12268 						PCI_VPD_RO_KEYWORD_VENDOR0);
12269 		if (rodi >= 0) {
12270 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12271 
12272 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12273 
12274 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12275 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12276 				bp->fw_ver[len] = ' ';
12277 			}
12278 		}
12279 		kfree(vpd_extended_data);
12280 		return;
12281 	}
12282 out_not_found:
12283 	kfree(vpd_extended_data);
12284 	return;
12285 }
12286 
bnx2x_set_modes_bitmap(struct bnx2x * bp)12287 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12288 {
12289 	u32 flags = 0;
12290 
12291 	if (CHIP_REV_IS_FPGA(bp))
12292 		SET_FLAGS(flags, MODE_FPGA);
12293 	else if (CHIP_REV_IS_EMUL(bp))
12294 		SET_FLAGS(flags, MODE_EMUL);
12295 	else
12296 		SET_FLAGS(flags, MODE_ASIC);
12297 
12298 	if (CHIP_MODE_IS_4_PORT(bp))
12299 		SET_FLAGS(flags, MODE_PORT4);
12300 	else
12301 		SET_FLAGS(flags, MODE_PORT2);
12302 
12303 	if (CHIP_IS_E2(bp))
12304 		SET_FLAGS(flags, MODE_E2);
12305 	else if (CHIP_IS_E3(bp)) {
12306 		SET_FLAGS(flags, MODE_E3);
12307 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12308 			SET_FLAGS(flags, MODE_E3_A0);
12309 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12310 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12311 	}
12312 
12313 	if (IS_MF(bp)) {
12314 		SET_FLAGS(flags, MODE_MF);
12315 		switch (bp->mf_mode) {
12316 		case MULTI_FUNCTION_SD:
12317 			SET_FLAGS(flags, MODE_MF_SD);
12318 			break;
12319 		case MULTI_FUNCTION_SI:
12320 			SET_FLAGS(flags, MODE_MF_SI);
12321 			break;
12322 		case MULTI_FUNCTION_AFEX:
12323 			SET_FLAGS(flags, MODE_MF_AFEX);
12324 			break;
12325 		}
12326 	} else
12327 		SET_FLAGS(flags, MODE_SF);
12328 
12329 #if defined(__LITTLE_ENDIAN)
12330 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12331 #else /*(__BIG_ENDIAN)*/
12332 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12333 #endif
12334 	INIT_MODE_FLAGS(bp) = flags;
12335 }
12336 
bnx2x_init_bp(struct bnx2x * bp)12337 static int bnx2x_init_bp(struct bnx2x *bp)
12338 {
12339 	int func;
12340 	int rc;
12341 
12342 	mutex_init(&bp->port.phy_mutex);
12343 	mutex_init(&bp->fw_mb_mutex);
12344 	mutex_init(&bp->drv_info_mutex);
12345 	sema_init(&bp->stats_lock, 1);
12346 	bp->drv_info_mng_owner = false;
12347 	INIT_LIST_HEAD(&bp->vlan_reg);
12348 
12349 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12350 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12351 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12352 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12353 	if (IS_PF(bp)) {
12354 		rc = bnx2x_get_hwinfo(bp);
12355 		if (rc)
12356 			return rc;
12357 	} else {
12358 		eth_zero_addr(bp->dev->dev_addr);
12359 	}
12360 
12361 	bnx2x_set_modes_bitmap(bp);
12362 
12363 	rc = bnx2x_alloc_mem_bp(bp);
12364 	if (rc)
12365 		return rc;
12366 
12367 	bnx2x_read_fwinfo(bp);
12368 
12369 	func = BP_FUNC(bp);
12370 
12371 	/* need to reset chip if undi was active */
12372 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12373 		/* init fw_seq */
12374 		bp->fw_seq =
12375 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12376 							DRV_MSG_SEQ_NUMBER_MASK;
12377 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12378 
12379 		rc = bnx2x_prev_unload(bp);
12380 		if (rc) {
12381 			bnx2x_free_mem_bp(bp);
12382 			return rc;
12383 		}
12384 	}
12385 
12386 	if (CHIP_REV_IS_FPGA(bp))
12387 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12388 
12389 	if (BP_NOMCP(bp) && (func == 0))
12390 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12391 
12392 	bp->disable_tpa = disable_tpa;
12393 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12394 	/* Reduce memory usage in kdump environment by disabling TPA */
12395 	bp->disable_tpa |= is_kdump_kernel();
12396 
12397 	/* Set TPA flags */
12398 	if (bp->disable_tpa) {
12399 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12400 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12401 	}
12402 
12403 	if (CHIP_IS_E1(bp))
12404 		bp->dropless_fc = false;
12405 	else
12406 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12407 
12408 	bp->mrrs = mrrs;
12409 
12410 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12411 	if (IS_VF(bp))
12412 		bp->rx_ring_size = MAX_RX_AVAIL;
12413 
12414 	/* make sure that the numbers are in the right granularity */
12415 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12416 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12417 
12418 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12419 
12420 	timer_setup(&bp->timer, bnx2x_timer, 0);
12421 	bp->timer.expires = jiffies + bp->current_interval;
12422 
12423 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12424 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12425 	    SHMEM2_HAS(bp, dcbx_en) &&
12426 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12427 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12428 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12429 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12430 		bnx2x_dcbx_init_params(bp);
12431 	} else {
12432 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12433 	}
12434 
12435 	if (CHIP_IS_E1x(bp))
12436 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12437 	else
12438 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12439 
12440 	/* multiple tx priority */
12441 	if (IS_VF(bp))
12442 		bp->max_cos = 1;
12443 	else if (CHIP_IS_E1x(bp))
12444 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12445 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12446 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12447 	else if (CHIP_IS_E3B0(bp))
12448 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12449 	else
12450 		BNX2X_ERR("unknown chip %x revision %x\n",
12451 			  CHIP_NUM(bp), CHIP_REV(bp));
12452 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12453 
12454 	/* We need at least one default status block for slow-path events,
12455 	 * second status block for the L2 queue, and a third status block for
12456 	 * CNIC if supported.
12457 	 */
12458 	if (IS_VF(bp))
12459 		bp->min_msix_vec_cnt = 1;
12460 	else if (CNIC_SUPPORT(bp))
12461 		bp->min_msix_vec_cnt = 3;
12462 	else /* PF w/o cnic */
12463 		bp->min_msix_vec_cnt = 2;
12464 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12465 
12466 	bp->dump_preset_idx = 1;
12467 
12468 	return rc;
12469 }
12470 
12471 /****************************************************************************
12472 * General service functions
12473 ****************************************************************************/
12474 
12475 /*
12476  * net_device service functions
12477  */
12478 
12479 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12480 static int bnx2x_open(struct net_device *dev)
12481 {
12482 	struct bnx2x *bp = netdev_priv(dev);
12483 	int rc;
12484 
12485 	bp->stats_init = true;
12486 
12487 	netif_carrier_off(dev);
12488 
12489 	bnx2x_set_power_state(bp, PCI_D0);
12490 
12491 	/* If parity had happen during the unload, then attentions
12492 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12493 	 * want the first function loaded on the current engine to
12494 	 * complete the recovery.
12495 	 * Parity recovery is only relevant for PF driver.
12496 	 */
12497 	if (IS_PF(bp)) {
12498 		int other_engine = BP_PATH(bp) ? 0 : 1;
12499 		bool other_load_status, load_status;
12500 		bool global = false;
12501 
12502 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12503 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12504 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12505 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12506 			do {
12507 				/* If there are attentions and they are in a
12508 				 * global blocks, set the GLOBAL_RESET bit
12509 				 * regardless whether it will be this function
12510 				 * that will complete the recovery or not.
12511 				 */
12512 				if (global)
12513 					bnx2x_set_reset_global(bp);
12514 
12515 				/* Only the first function on the current
12516 				 * engine should try to recover in open. In case
12517 				 * of attentions in global blocks only the first
12518 				 * in the chip should try to recover.
12519 				 */
12520 				if ((!load_status &&
12521 				     (!global || !other_load_status)) &&
12522 				      bnx2x_trylock_leader_lock(bp) &&
12523 				      !bnx2x_leader_reset(bp)) {
12524 					netdev_info(bp->dev,
12525 						    "Recovered in open\n");
12526 					break;
12527 				}
12528 
12529 				/* recovery has failed... */
12530 				bnx2x_set_power_state(bp, PCI_D3hot);
12531 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12532 
12533 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12534 					  "If you still see this message after a few retries then power cycle is required.\n");
12535 
12536 				return -EAGAIN;
12537 			} while (0);
12538 		}
12539 	}
12540 
12541 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12542 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12543 	if (rc)
12544 		return rc;
12545 
12546 	return 0;
12547 }
12548 
12549 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12550 static int bnx2x_close(struct net_device *dev)
12551 {
12552 	struct bnx2x *bp = netdev_priv(dev);
12553 
12554 	/* Unload the driver, release IRQs */
12555 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12556 
12557 	return 0;
12558 }
12559 
12560 struct bnx2x_mcast_list_elem_group
12561 {
12562 	struct list_head mcast_group_link;
12563 	struct bnx2x_mcast_list_elem mcast_elems[];
12564 };
12565 
12566 #define MCAST_ELEMS_PER_PG \
12567 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12568 	sizeof(struct bnx2x_mcast_list_elem))
12569 
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12570 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12571 {
12572 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12573 
12574 	while (!list_empty(mcast_group_list)) {
12575 		current_mcast_group = list_first_entry(mcast_group_list,
12576 				      struct bnx2x_mcast_list_elem_group,
12577 				      mcast_group_link);
12578 		list_del(&current_mcast_group->mcast_group_link);
12579 		free_page((unsigned long)current_mcast_group);
12580 	}
12581 }
12582 
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12583 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12584 				      struct bnx2x_mcast_ramrod_params *p,
12585 				      struct list_head *mcast_group_list)
12586 {
12587 	struct bnx2x_mcast_list_elem *mc_mac;
12588 	struct netdev_hw_addr *ha;
12589 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12590 	int mc_count = netdev_mc_count(bp->dev);
12591 	int offset = 0;
12592 
12593 	INIT_LIST_HEAD(&p->mcast_list);
12594 	netdev_for_each_mc_addr(ha, bp->dev) {
12595 		if (!offset) {
12596 			current_mcast_group =
12597 				(struct bnx2x_mcast_list_elem_group *)
12598 				__get_free_page(GFP_ATOMIC);
12599 			if (!current_mcast_group) {
12600 				bnx2x_free_mcast_macs_list(mcast_group_list);
12601 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12602 				return -ENOMEM;
12603 			}
12604 			list_add(&current_mcast_group->mcast_group_link,
12605 				 mcast_group_list);
12606 		}
12607 		mc_mac = &current_mcast_group->mcast_elems[offset];
12608 		mc_mac->mac = bnx2x_mc_addr(ha);
12609 		list_add_tail(&mc_mac->link, &p->mcast_list);
12610 		offset++;
12611 		if (offset == MCAST_ELEMS_PER_PG)
12612 			offset = 0;
12613 	}
12614 	p->mcast_list_len = mc_count;
12615 	return 0;
12616 }
12617 
12618 /**
12619  * bnx2x_set_uc_list - configure a new unicast MACs list.
12620  *
12621  * @bp: driver handle
12622  *
12623  * We will use zero (0) as a MAC type for these MACs.
12624  */
bnx2x_set_uc_list(struct bnx2x * bp)12625 static int bnx2x_set_uc_list(struct bnx2x *bp)
12626 {
12627 	int rc;
12628 	struct net_device *dev = bp->dev;
12629 	struct netdev_hw_addr *ha;
12630 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12631 	unsigned long ramrod_flags = 0;
12632 
12633 	/* First schedule a cleanup up of old configuration */
12634 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12635 	if (rc < 0) {
12636 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12637 		return rc;
12638 	}
12639 
12640 	netdev_for_each_uc_addr(ha, dev) {
12641 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12642 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12643 		if (rc == -EEXIST) {
12644 			DP(BNX2X_MSG_SP,
12645 			   "Failed to schedule ADD operations: %d\n", rc);
12646 			/* do not treat adding same MAC as error */
12647 			rc = 0;
12648 
12649 		} else if (rc < 0) {
12650 
12651 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12652 				  rc);
12653 			return rc;
12654 		}
12655 	}
12656 
12657 	/* Execute the pending commands */
12658 	__set_bit(RAMROD_CONT, &ramrod_flags);
12659 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12660 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12661 }
12662 
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12663 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12664 {
12665 	LIST_HEAD(mcast_group_list);
12666 	struct net_device *dev = bp->dev;
12667 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12668 	int rc = 0;
12669 
12670 	rparam.mcast_obj = &bp->mcast_obj;
12671 
12672 	/* first, clear all configured multicast MACs */
12673 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12674 	if (rc < 0) {
12675 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12676 		return rc;
12677 	}
12678 
12679 	/* then, configure a new MACs list */
12680 	if (netdev_mc_count(dev)) {
12681 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12682 		if (rc)
12683 			return rc;
12684 
12685 		/* Now add the new MACs */
12686 		rc = bnx2x_config_mcast(bp, &rparam,
12687 					BNX2X_MCAST_CMD_ADD);
12688 		if (rc < 0)
12689 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12690 				  rc);
12691 
12692 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12693 	}
12694 
12695 	return rc;
12696 }
12697 
bnx2x_set_mc_list(struct bnx2x * bp)12698 static int bnx2x_set_mc_list(struct bnx2x *bp)
12699 {
12700 	LIST_HEAD(mcast_group_list);
12701 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12702 	struct net_device *dev = bp->dev;
12703 	int rc = 0;
12704 
12705 	/* On older adapters, we need to flush and re-add filters */
12706 	if (CHIP_IS_E1x(bp))
12707 		return bnx2x_set_mc_list_e1x(bp);
12708 
12709 	rparam.mcast_obj = &bp->mcast_obj;
12710 
12711 	if (netdev_mc_count(dev)) {
12712 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12713 		if (rc)
12714 			return rc;
12715 
12716 		/* Override the curently configured set of mc filters */
12717 		rc = bnx2x_config_mcast(bp, &rparam,
12718 					BNX2X_MCAST_CMD_SET);
12719 		if (rc < 0)
12720 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12721 				  rc);
12722 
12723 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12724 	} else {
12725 		/* If no mc addresses are required, flush the configuration */
12726 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12727 		if (rc < 0)
12728 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12729 				  rc);
12730 	}
12731 
12732 	return rc;
12733 }
12734 
12735 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12736 static void bnx2x_set_rx_mode(struct net_device *dev)
12737 {
12738 	struct bnx2x *bp = netdev_priv(dev);
12739 
12740 	if (bp->state != BNX2X_STATE_OPEN) {
12741 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12742 		return;
12743 	} else {
12744 		/* Schedule an SP task to handle rest of change */
12745 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12746 				       NETIF_MSG_IFUP);
12747 	}
12748 }
12749 
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12750 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12751 {
12752 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12753 
12754 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12755 
12756 	netif_addr_lock_bh(bp->dev);
12757 
12758 	if (bp->dev->flags & IFF_PROMISC) {
12759 		rx_mode = BNX2X_RX_MODE_PROMISC;
12760 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12761 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12762 		    CHIP_IS_E1(bp))) {
12763 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12764 	} else {
12765 		if (IS_PF(bp)) {
12766 			/* some multicasts */
12767 			if (bnx2x_set_mc_list(bp) < 0)
12768 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12769 
12770 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12771 			netif_addr_unlock_bh(bp->dev);
12772 			if (bnx2x_set_uc_list(bp) < 0)
12773 				rx_mode = BNX2X_RX_MODE_PROMISC;
12774 			netif_addr_lock_bh(bp->dev);
12775 		} else {
12776 			/* configuring mcast to a vf involves sleeping (when we
12777 			 * wait for the pf's response).
12778 			 */
12779 			bnx2x_schedule_sp_rtnl(bp,
12780 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12781 		}
12782 	}
12783 
12784 	bp->rx_mode = rx_mode;
12785 	/* handle ISCSI SD mode */
12786 	if (IS_MF_ISCSI_ONLY(bp))
12787 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12788 
12789 	/* Schedule the rx_mode command */
12790 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12791 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12792 		netif_addr_unlock_bh(bp->dev);
12793 		return;
12794 	}
12795 
12796 	if (IS_PF(bp)) {
12797 		bnx2x_set_storm_rx_mode(bp);
12798 		netif_addr_unlock_bh(bp->dev);
12799 	} else {
12800 		/* VF will need to request the PF to make this change, and so
12801 		 * the VF needs to release the bottom-half lock prior to the
12802 		 * request (as it will likely require sleep on the VF side)
12803 		 */
12804 		netif_addr_unlock_bh(bp->dev);
12805 		bnx2x_vfpf_storm_rx_mode(bp);
12806 	}
12807 }
12808 
12809 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12810 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12811 			   int devad, u16 addr)
12812 {
12813 	struct bnx2x *bp = netdev_priv(netdev);
12814 	u16 value;
12815 	int rc;
12816 
12817 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12818 	   prtad, devad, addr);
12819 
12820 	/* The HW expects different devad if CL22 is used */
12821 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12822 
12823 	bnx2x_acquire_phy_lock(bp);
12824 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12825 	bnx2x_release_phy_lock(bp);
12826 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12827 
12828 	if (!rc)
12829 		rc = value;
12830 	return rc;
12831 }
12832 
12833 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12834 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12835 			    u16 addr, u16 value)
12836 {
12837 	struct bnx2x *bp = netdev_priv(netdev);
12838 	int rc;
12839 
12840 	DP(NETIF_MSG_LINK,
12841 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12842 	   prtad, devad, addr, value);
12843 
12844 	/* The HW expects different devad if CL22 is used */
12845 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12846 
12847 	bnx2x_acquire_phy_lock(bp);
12848 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12849 	bnx2x_release_phy_lock(bp);
12850 	return rc;
12851 }
12852 
12853 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12854 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12855 {
12856 	struct bnx2x *bp = netdev_priv(dev);
12857 	struct mii_ioctl_data *mdio = if_mii(ifr);
12858 
12859 	if (!netif_running(dev))
12860 		return -EAGAIN;
12861 
12862 	switch (cmd) {
12863 	case SIOCSHWTSTAMP:
12864 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12865 	default:
12866 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12867 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12868 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12869 	}
12870 }
12871 
bnx2x_validate_addr(struct net_device * dev)12872 static int bnx2x_validate_addr(struct net_device *dev)
12873 {
12874 	struct bnx2x *bp = netdev_priv(dev);
12875 
12876 	/* query the bulletin board for mac address configured by the PF */
12877 	if (IS_VF(bp))
12878 		bnx2x_sample_bulletin(bp);
12879 
12880 	if (!is_valid_ether_addr(dev->dev_addr)) {
12881 		BNX2X_ERR("Non-valid Ethernet address\n");
12882 		return -EADDRNOTAVAIL;
12883 	}
12884 	return 0;
12885 }
12886 
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12887 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12888 				  struct netdev_phys_item_id *ppid)
12889 {
12890 	struct bnx2x *bp = netdev_priv(netdev);
12891 
12892 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12893 		return -EOPNOTSUPP;
12894 
12895 	ppid->id_len = sizeof(bp->phys_port_id);
12896 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12897 
12898 	return 0;
12899 }
12900 
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12901 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12902 					      struct net_device *dev,
12903 					      netdev_features_t features)
12904 {
12905 	/*
12906 	 * A skb with gso_size + header length > 9700 will cause a
12907 	 * firmware panic. Drop GSO support.
12908 	 *
12909 	 * Eventually the upper layer should not pass these packets down.
12910 	 *
12911 	 * For speed, if the gso_size is <= 9000, assume there will
12912 	 * not be 700 bytes of headers and pass it through. Only do a
12913 	 * full (slow) validation if the gso_size is > 9000.
12914 	 *
12915 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12916 	 * validation in that case.)
12917 	 */
12918 	if (unlikely(skb_is_gso(skb) &&
12919 		     (skb_shinfo(skb)->gso_size > 9000) &&
12920 		     !skb_gso_validate_mac_len(skb, 9700)))
12921 		features &= ~NETIF_F_GSO_MASK;
12922 
12923 	features = vlan_features_check(skb, features);
12924 	return vxlan_features_check(skb, features);
12925 }
12926 
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12927 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12928 {
12929 	int rc;
12930 
12931 	if (IS_PF(bp)) {
12932 		unsigned long ramrod_flags = 0;
12933 
12934 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12935 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12936 					add, &ramrod_flags);
12937 	} else {
12938 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12939 	}
12940 
12941 	return rc;
12942 }
12943 
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)12944 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12945 {
12946 	struct bnx2x_vlan_entry *vlan;
12947 	int rc = 0;
12948 
12949 	/* Configure all non-configured entries */
12950 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12951 		if (vlan->hw)
12952 			continue;
12953 
12954 		if (bp->vlan_cnt >= bp->vlan_credit)
12955 			return -ENOBUFS;
12956 
12957 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12958 		if (rc) {
12959 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12960 			return rc;
12961 		}
12962 
12963 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12964 		vlan->hw = true;
12965 		bp->vlan_cnt++;
12966 	}
12967 
12968 	return 0;
12969 }
12970 
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)12971 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12972 {
12973 	bool need_accept_any_vlan;
12974 
12975 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12976 
12977 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12978 		bp->accept_any_vlan = need_accept_any_vlan;
12979 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12980 		   bp->accept_any_vlan ? "raised" : "cleared");
12981 		if (set_rx_mode) {
12982 			if (IS_PF(bp))
12983 				bnx2x_set_rx_mode_inner(bp);
12984 			else
12985 				bnx2x_vfpf_storm_rx_mode(bp);
12986 		}
12987 	}
12988 }
12989 
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)12990 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12991 {
12992 	/* Don't set rx mode here. Our caller will do it. */
12993 	bnx2x_vlan_configure(bp, false);
12994 
12995 	return 0;
12996 }
12997 
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)12998 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12999 {
13000 	struct bnx2x *bp = netdev_priv(dev);
13001 	struct bnx2x_vlan_entry *vlan;
13002 
13003 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13004 
13005 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13006 	if (!vlan)
13007 		return -ENOMEM;
13008 
13009 	vlan->vid = vid;
13010 	vlan->hw = false;
13011 	list_add_tail(&vlan->link, &bp->vlan_reg);
13012 
13013 	if (netif_running(dev))
13014 		bnx2x_vlan_configure(bp, true);
13015 
13016 	return 0;
13017 }
13018 
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13019 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13020 {
13021 	struct bnx2x *bp = netdev_priv(dev);
13022 	struct bnx2x_vlan_entry *vlan;
13023 	bool found = false;
13024 	int rc = 0;
13025 
13026 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13027 
13028 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13029 		if (vlan->vid == vid) {
13030 			found = true;
13031 			break;
13032 		}
13033 
13034 	if (!found) {
13035 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13036 		return -EINVAL;
13037 	}
13038 
13039 	if (netif_running(dev) && vlan->hw) {
13040 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13041 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13042 		bp->vlan_cnt--;
13043 	}
13044 
13045 	list_del(&vlan->link);
13046 	kfree(vlan);
13047 
13048 	if (netif_running(dev))
13049 		bnx2x_vlan_configure(bp, true);
13050 
13051 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13052 
13053 	return rc;
13054 }
13055 
13056 static const struct net_device_ops bnx2x_netdev_ops = {
13057 	.ndo_open		= bnx2x_open,
13058 	.ndo_stop		= bnx2x_close,
13059 	.ndo_start_xmit		= bnx2x_start_xmit,
13060 	.ndo_select_queue	= bnx2x_select_queue,
13061 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13062 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13063 	.ndo_validate_addr	= bnx2x_validate_addr,
13064 	.ndo_do_ioctl		= bnx2x_ioctl,
13065 	.ndo_change_mtu		= bnx2x_change_mtu,
13066 	.ndo_fix_features	= bnx2x_fix_features,
13067 	.ndo_set_features	= bnx2x_set_features,
13068 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13069 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13070 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13071 	.ndo_setup_tc		= __bnx2x_setup_tc,
13072 #ifdef CONFIG_BNX2X_SRIOV
13073 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13074 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13075 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13076 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13077 #endif
13078 #ifdef NETDEV_FCOE_WWNN
13079 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13080 #endif
13081 
13082 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13083 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13084 	.ndo_features_check	= bnx2x_features_check,
13085 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
13086 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
13087 };
13088 
bnx2x_set_coherency_mask(struct bnx2x * bp)13089 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13090 {
13091 	struct device *dev = &bp->pdev->dev;
13092 
13093 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13094 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13095 		dev_err(dev, "System does not support DMA, aborting\n");
13096 		return -EIO;
13097 	}
13098 
13099 	return 0;
13100 }
13101 
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13102 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13103 {
13104 	if (bp->flags & AER_ENABLED) {
13105 		pci_disable_pcie_error_reporting(bp->pdev);
13106 		bp->flags &= ~AER_ENABLED;
13107 	}
13108 }
13109 
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13110 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13111 			  struct net_device *dev, unsigned long board_type)
13112 {
13113 	int rc;
13114 	u32 pci_cfg_dword;
13115 	bool chip_is_e1x = (board_type == BCM57710 ||
13116 			    board_type == BCM57711 ||
13117 			    board_type == BCM57711E);
13118 
13119 	SET_NETDEV_DEV(dev, &pdev->dev);
13120 
13121 	bp->dev = dev;
13122 	bp->pdev = pdev;
13123 
13124 	rc = pci_enable_device(pdev);
13125 	if (rc) {
13126 		dev_err(&bp->pdev->dev,
13127 			"Cannot enable PCI device, aborting\n");
13128 		goto err_out;
13129 	}
13130 
13131 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13132 		dev_err(&bp->pdev->dev,
13133 			"Cannot find PCI device base address, aborting\n");
13134 		rc = -ENODEV;
13135 		goto err_out_disable;
13136 	}
13137 
13138 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13139 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13140 		rc = -ENODEV;
13141 		goto err_out_disable;
13142 	}
13143 
13144 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13145 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13146 	    PCICFG_REVESION_ID_ERROR_VAL) {
13147 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13148 		rc = -ENODEV;
13149 		goto err_out_disable;
13150 	}
13151 
13152 	if (atomic_read(&pdev->enable_cnt) == 1) {
13153 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13154 		if (rc) {
13155 			dev_err(&bp->pdev->dev,
13156 				"Cannot obtain PCI resources, aborting\n");
13157 			goto err_out_disable;
13158 		}
13159 
13160 		pci_set_master(pdev);
13161 		pci_save_state(pdev);
13162 	}
13163 
13164 	if (IS_PF(bp)) {
13165 		if (!pdev->pm_cap) {
13166 			dev_err(&bp->pdev->dev,
13167 				"Cannot find power management capability, aborting\n");
13168 			rc = -EIO;
13169 			goto err_out_release;
13170 		}
13171 	}
13172 
13173 	if (!pci_is_pcie(pdev)) {
13174 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13175 		rc = -EIO;
13176 		goto err_out_release;
13177 	}
13178 
13179 	rc = bnx2x_set_coherency_mask(bp);
13180 	if (rc)
13181 		goto err_out_release;
13182 
13183 	dev->mem_start = pci_resource_start(pdev, 0);
13184 	dev->base_addr = dev->mem_start;
13185 	dev->mem_end = pci_resource_end(pdev, 0);
13186 
13187 	dev->irq = pdev->irq;
13188 
13189 	bp->regview = pci_ioremap_bar(pdev, 0);
13190 	if (!bp->regview) {
13191 		dev_err(&bp->pdev->dev,
13192 			"Cannot map register space, aborting\n");
13193 		rc = -ENOMEM;
13194 		goto err_out_release;
13195 	}
13196 
13197 	/* In E1/E1H use pci device function given by kernel.
13198 	 * In E2/E3 read physical function from ME register since these chips
13199 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13200 	 * (depending on hypervisor).
13201 	 */
13202 	if (chip_is_e1x) {
13203 		bp->pf_num = PCI_FUNC(pdev->devfn);
13204 	} else {
13205 		/* chip is E2/3*/
13206 		pci_read_config_dword(bp->pdev,
13207 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13208 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13209 				  ME_REG_ABS_PF_NUM_SHIFT);
13210 	}
13211 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13212 
13213 	/* clean indirect addresses */
13214 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13215 			       PCICFG_VENDOR_ID_OFFSET);
13216 
13217 	/* Set PCIe reset type to fundamental for EEH recovery */
13218 	pdev->needs_freset = 1;
13219 
13220 	/* AER (Advanced Error reporting) configuration */
13221 	rc = pci_enable_pcie_error_reporting(pdev);
13222 	if (!rc)
13223 		bp->flags |= AER_ENABLED;
13224 	else
13225 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13226 
13227 	/*
13228 	 * Clean the following indirect addresses for all functions since it
13229 	 * is not used by the driver.
13230 	 */
13231 	if (IS_PF(bp)) {
13232 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13233 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13234 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13235 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13236 
13237 		if (chip_is_e1x) {
13238 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13239 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13240 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13241 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13242 		}
13243 
13244 		/* Enable internal target-read (in case we are probed after PF
13245 		 * FLR). Must be done prior to any BAR read access. Only for
13246 		 * 57712 and up
13247 		 */
13248 		if (!chip_is_e1x)
13249 			REG_WR(bp,
13250 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13251 	}
13252 
13253 	dev->watchdog_timeo = TX_TIMEOUT;
13254 
13255 	dev->netdev_ops = &bnx2x_netdev_ops;
13256 	bnx2x_set_ethtool_ops(bp, dev);
13257 
13258 	dev->priv_flags |= IFF_UNICAST_FLT;
13259 
13260 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13261 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13262 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13263 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13264 	if (!chip_is_e1x) {
13265 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13266 				    NETIF_F_GSO_IPXIP4 |
13267 				    NETIF_F_GSO_UDP_TUNNEL |
13268 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13269 				    NETIF_F_GSO_PARTIAL;
13270 
13271 		dev->hw_enc_features =
13272 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13273 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13274 			NETIF_F_GSO_IPXIP4 |
13275 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13276 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13277 			NETIF_F_GSO_PARTIAL;
13278 
13279 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13280 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13281 
13282 		if (IS_PF(bp))
13283 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13284 	}
13285 
13286 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13287 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13288 
13289 	if (IS_PF(bp)) {
13290 		if (chip_is_e1x)
13291 			bp->accept_any_vlan = true;
13292 		else
13293 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13294 	}
13295 	/* For VF we'll know whether to enable VLAN filtering after
13296 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13297 	 */
13298 
13299 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13300 	dev->features |= NETIF_F_HIGHDMA;
13301 	if (dev->features & NETIF_F_LRO)
13302 		dev->features &= ~NETIF_F_GRO_HW;
13303 
13304 	/* Add Loopback capability to the device */
13305 	dev->hw_features |= NETIF_F_LOOPBACK;
13306 
13307 #ifdef BCM_DCBNL
13308 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13309 #endif
13310 
13311 	/* MTU range, 46 - 9600 */
13312 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13313 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13314 
13315 	/* get_port_hwinfo() will set prtad and mmds properly */
13316 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13317 	bp->mdio.mmds = 0;
13318 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13319 	bp->mdio.dev = dev;
13320 	bp->mdio.mdio_read = bnx2x_mdio_read;
13321 	bp->mdio.mdio_write = bnx2x_mdio_write;
13322 
13323 	return 0;
13324 
13325 err_out_release:
13326 	if (atomic_read(&pdev->enable_cnt) == 1)
13327 		pci_release_regions(pdev);
13328 
13329 err_out_disable:
13330 	pci_disable_device(pdev);
13331 
13332 err_out:
13333 	return rc;
13334 }
13335 
bnx2x_check_firmware(struct bnx2x * bp)13336 static int bnx2x_check_firmware(struct bnx2x *bp)
13337 {
13338 	const struct firmware *firmware = bp->firmware;
13339 	struct bnx2x_fw_file_hdr *fw_hdr;
13340 	struct bnx2x_fw_file_section *sections;
13341 	u32 offset, len, num_ops;
13342 	__be16 *ops_offsets;
13343 	int i;
13344 	const u8 *fw_ver;
13345 
13346 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13347 		BNX2X_ERR("Wrong FW size\n");
13348 		return -EINVAL;
13349 	}
13350 
13351 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13352 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13353 
13354 	/* Make sure none of the offsets and sizes make us read beyond
13355 	 * the end of the firmware data */
13356 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13357 		offset = be32_to_cpu(sections[i].offset);
13358 		len = be32_to_cpu(sections[i].len);
13359 		if (offset + len > firmware->size) {
13360 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13361 			return -EINVAL;
13362 		}
13363 	}
13364 
13365 	/* Likewise for the init_ops offsets */
13366 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13367 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13368 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13369 
13370 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13371 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13372 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13373 			return -EINVAL;
13374 		}
13375 	}
13376 
13377 	/* Check FW version */
13378 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13379 	fw_ver = firmware->data + offset;
13380 	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13381 	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13382 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13383 			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13384 			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13385 		return -EINVAL;
13386 	}
13387 
13388 	return 0;
13389 }
13390 
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13391 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13392 {
13393 	const __be32 *source = (const __be32 *)_source;
13394 	u32 *target = (u32 *)_target;
13395 	u32 i;
13396 
13397 	for (i = 0; i < n/4; i++)
13398 		target[i] = be32_to_cpu(source[i]);
13399 }
13400 
13401 /*
13402    Ops array is stored in the following format:
13403    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13404  */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13405 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13406 {
13407 	const __be32 *source = (const __be32 *)_source;
13408 	struct raw_op *target = (struct raw_op *)_target;
13409 	u32 i, j, tmp;
13410 
13411 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13412 		tmp = be32_to_cpu(source[j]);
13413 		target[i].op = (tmp >> 24) & 0xff;
13414 		target[i].offset = tmp & 0xffffff;
13415 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13416 	}
13417 }
13418 
13419 /* IRO array is stored in the following format:
13420  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13421  */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13422 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13423 {
13424 	const __be32 *source = (const __be32 *)_source;
13425 	struct iro *target = (struct iro *)_target;
13426 	u32 i, j, tmp;
13427 
13428 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13429 		target[i].base = be32_to_cpu(source[j]);
13430 		j++;
13431 		tmp = be32_to_cpu(source[j]);
13432 		target[i].m1 = (tmp >> 16) & 0xffff;
13433 		target[i].m2 = tmp & 0xffff;
13434 		j++;
13435 		tmp = be32_to_cpu(source[j]);
13436 		target[i].m3 = (tmp >> 16) & 0xffff;
13437 		target[i].size = tmp & 0xffff;
13438 		j++;
13439 	}
13440 }
13441 
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13442 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13443 {
13444 	const __be16 *source = (const __be16 *)_source;
13445 	u16 *target = (u16 *)_target;
13446 	u32 i;
13447 
13448 	for (i = 0; i < n/2; i++)
13449 		target[i] = be16_to_cpu(source[i]);
13450 }
13451 
13452 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13453 do {									\
13454 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13455 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13456 	if (!bp->arr)							\
13457 		goto lbl;						\
13458 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13459 	     (u8 *)bp->arr, len);					\
13460 } while (0)
13461 
bnx2x_init_firmware(struct bnx2x * bp)13462 static int bnx2x_init_firmware(struct bnx2x *bp)
13463 {
13464 	const char *fw_file_name, *fw_file_name_v15;
13465 	struct bnx2x_fw_file_hdr *fw_hdr;
13466 	int rc;
13467 
13468 	if (bp->firmware)
13469 		return 0;
13470 
13471 	if (CHIP_IS_E1(bp)) {
13472 		fw_file_name = FW_FILE_NAME_E1;
13473 		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13474 	} else if (CHIP_IS_E1H(bp)) {
13475 		fw_file_name = FW_FILE_NAME_E1H;
13476 		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13477 	} else if (!CHIP_IS_E1x(bp)) {
13478 		fw_file_name = FW_FILE_NAME_E2;
13479 		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13480 	} else {
13481 		BNX2X_ERR("Unsupported chip revision\n");
13482 		return -EINVAL;
13483 	}
13484 
13485 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13486 
13487 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13488 	if (rc) {
13489 		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13490 
13491 		/* try to load prev version */
13492 		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13493 
13494 		if (rc)
13495 			goto request_firmware_exit;
13496 
13497 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13498 	} else {
13499 		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13500 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13501 	}
13502 
13503 	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13504 	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13505 	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13506 
13507 	rc = bnx2x_check_firmware(bp);
13508 	if (rc) {
13509 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13510 		goto request_firmware_exit;
13511 	}
13512 
13513 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13514 
13515 	/* Initialize the pointers to the init arrays */
13516 	/* Blob */
13517 	rc = -ENOMEM;
13518 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13519 
13520 	/* Opcodes */
13521 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13522 
13523 	/* Offsets */
13524 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13525 			    be16_to_cpu_n);
13526 
13527 	/* STORMs firmware */
13528 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13529 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13530 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13531 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13532 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13533 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13534 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13535 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13536 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13537 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13538 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13539 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13540 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13541 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13542 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13543 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13544 	/* IRO */
13545 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13546 
13547 	return 0;
13548 
13549 iro_alloc_err:
13550 	kfree(bp->init_ops_offsets);
13551 init_offsets_alloc_err:
13552 	kfree(bp->init_ops);
13553 init_ops_alloc_err:
13554 	kfree(bp->init_data);
13555 request_firmware_exit:
13556 	release_firmware(bp->firmware);
13557 	bp->firmware = NULL;
13558 
13559 	return rc;
13560 }
13561 
bnx2x_release_firmware(struct bnx2x * bp)13562 static void bnx2x_release_firmware(struct bnx2x *bp)
13563 {
13564 	kfree(bp->init_ops_offsets);
13565 	kfree(bp->init_ops);
13566 	kfree(bp->init_data);
13567 	release_firmware(bp->firmware);
13568 	bp->firmware = NULL;
13569 }
13570 
13571 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13572 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13573 	.init_hw_cmn      = bnx2x_init_hw_common,
13574 	.init_hw_port     = bnx2x_init_hw_port,
13575 	.init_hw_func     = bnx2x_init_hw_func,
13576 
13577 	.reset_hw_cmn     = bnx2x_reset_common,
13578 	.reset_hw_port    = bnx2x_reset_port,
13579 	.reset_hw_func    = bnx2x_reset_func,
13580 
13581 	.gunzip_init      = bnx2x_gunzip_init,
13582 	.gunzip_end       = bnx2x_gunzip_end,
13583 
13584 	.init_fw          = bnx2x_init_firmware,
13585 	.release_fw       = bnx2x_release_firmware,
13586 };
13587 
bnx2x__init_func_obj(struct bnx2x * bp)13588 void bnx2x__init_func_obj(struct bnx2x *bp)
13589 {
13590 	/* Prepare DMAE related driver resources */
13591 	bnx2x_setup_dmae(bp);
13592 
13593 	bnx2x_init_func_obj(bp, &bp->func_obj,
13594 			    bnx2x_sp(bp, func_rdata),
13595 			    bnx2x_sp_mapping(bp, func_rdata),
13596 			    bnx2x_sp(bp, func_afex_rdata),
13597 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13598 			    &bnx2x_func_sp_drv);
13599 }
13600 
13601 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13602 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13603 {
13604 	int cid_count = BNX2X_L2_MAX_CID(bp);
13605 
13606 	if (IS_SRIOV(bp))
13607 		cid_count += BNX2X_VF_CIDS;
13608 
13609 	if (CNIC_SUPPORT(bp))
13610 		cid_count += CNIC_CID_MAX;
13611 
13612 	return roundup(cid_count, QM_CID_ROUND);
13613 }
13614 
13615 /**
13616  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13617  * @pdev: pci device
13618  * @cnic_cnt: count
13619  *
13620  */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13621 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13622 {
13623 	int index;
13624 	u16 control = 0;
13625 
13626 	/*
13627 	 * If MSI-X is not supported - return number of SBs needed to support
13628 	 * one fast path queue: one FP queue + SB for CNIC
13629 	 */
13630 	if (!pdev->msix_cap) {
13631 		dev_info(&pdev->dev, "no msix capability found\n");
13632 		return 1 + cnic_cnt;
13633 	}
13634 	dev_info(&pdev->dev, "msix capability found\n");
13635 
13636 	/*
13637 	 * The value in the PCI configuration space is the index of the last
13638 	 * entry, namely one less than the actual size of the table, which is
13639 	 * exactly what we want to return from this function: number of all SBs
13640 	 * without the default SB.
13641 	 * For VFs there is no default SB, then we return (index+1).
13642 	 */
13643 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13644 
13645 	index = control & PCI_MSIX_FLAGS_QSIZE;
13646 
13647 	return index;
13648 }
13649 
set_max_cos_est(int chip_id)13650 static int set_max_cos_est(int chip_id)
13651 {
13652 	switch (chip_id) {
13653 	case BCM57710:
13654 	case BCM57711:
13655 	case BCM57711E:
13656 		return BNX2X_MULTI_TX_COS_E1X;
13657 	case BCM57712:
13658 	case BCM57712_MF:
13659 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13660 	case BCM57800:
13661 	case BCM57800_MF:
13662 	case BCM57810:
13663 	case BCM57810_MF:
13664 	case BCM57840_4_10:
13665 	case BCM57840_2_20:
13666 	case BCM57840_O:
13667 	case BCM57840_MFO:
13668 	case BCM57840_MF:
13669 	case BCM57811:
13670 	case BCM57811_MF:
13671 		return BNX2X_MULTI_TX_COS_E3B0;
13672 	case BCM57712_VF:
13673 	case BCM57800_VF:
13674 	case BCM57810_VF:
13675 	case BCM57840_VF:
13676 	case BCM57811_VF:
13677 		return 1;
13678 	default:
13679 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13680 		return -ENODEV;
13681 	}
13682 }
13683 
set_is_vf(int chip_id)13684 static int set_is_vf(int chip_id)
13685 {
13686 	switch (chip_id) {
13687 	case BCM57712_VF:
13688 	case BCM57800_VF:
13689 	case BCM57810_VF:
13690 	case BCM57840_VF:
13691 	case BCM57811_VF:
13692 		return true;
13693 	default:
13694 		return false;
13695 	}
13696 }
13697 
13698 /* nig_tsgen registers relative address */
13699 #define tsgen_ctrl 0x0
13700 #define tsgen_freecount 0x10
13701 #define tsgen_synctime_t0 0x20
13702 #define tsgen_offset_t0 0x28
13703 #define tsgen_drift_t0 0x30
13704 #define tsgen_synctime_t1 0x58
13705 #define tsgen_offset_t1 0x60
13706 #define tsgen_drift_t1 0x68
13707 
13708 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13709 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13710 					  int best_val, int best_period)
13711 {
13712 	struct bnx2x_func_state_params func_params = {NULL};
13713 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13714 		&func_params.params.set_timesync;
13715 
13716 	/* Prepare parameters for function state transitions */
13717 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13718 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13719 
13720 	func_params.f_obj = &bp->func_obj;
13721 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13722 
13723 	/* Function parameters */
13724 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13725 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13726 	set_timesync_params->add_sub_drift_adjust_value =
13727 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13728 	set_timesync_params->drift_adjust_value = best_val;
13729 	set_timesync_params->drift_adjust_period = best_period;
13730 
13731 	return bnx2x_func_state_change(bp, &func_params);
13732 }
13733 
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13734 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13735 {
13736 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13737 	int rc;
13738 	int drift_dir = 1;
13739 	int val, period, period1, period2, dif, dif1, dif2;
13740 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13741 
13742 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13743 
13744 	if (!netif_running(bp->dev)) {
13745 		DP(BNX2X_MSG_PTP,
13746 		   "PTP adjfreq called while the interface is down\n");
13747 		return -ENETDOWN;
13748 	}
13749 
13750 	if (ppb < 0) {
13751 		ppb = -ppb;
13752 		drift_dir = 0;
13753 	}
13754 
13755 	if (ppb == 0) {
13756 		best_val = 1;
13757 		best_period = 0x1FFFFFF;
13758 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13759 		best_val = 31;
13760 		best_period = 1;
13761 	} else {
13762 		/* Changed not to allow val = 8, 16, 24 as these values
13763 		 * are not supported in workaround.
13764 		 */
13765 		for (val = 0; val <= 31; val++) {
13766 			if ((val & 0x7) == 0)
13767 				continue;
13768 			period1 = val * 1000000 / ppb;
13769 			period2 = period1 + 1;
13770 			if (period1 != 0)
13771 				dif1 = ppb - (val * 1000000 / period1);
13772 			else
13773 				dif1 = BNX2X_MAX_PHC_DRIFT;
13774 			if (dif1 < 0)
13775 				dif1 = -dif1;
13776 			dif2 = ppb - (val * 1000000 / period2);
13777 			if (dif2 < 0)
13778 				dif2 = -dif2;
13779 			dif = (dif1 < dif2) ? dif1 : dif2;
13780 			period = (dif1 < dif2) ? period1 : period2;
13781 			if (dif < best_dif) {
13782 				best_dif = dif;
13783 				best_val = val;
13784 				best_period = period;
13785 			}
13786 		}
13787 	}
13788 
13789 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13790 					    best_period);
13791 	if (rc) {
13792 		BNX2X_ERR("Failed to set drift\n");
13793 		return -EFAULT;
13794 	}
13795 
13796 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13797 	   best_period);
13798 
13799 	return 0;
13800 }
13801 
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13802 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13803 {
13804 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13805 
13806 	if (!netif_running(bp->dev)) {
13807 		DP(BNX2X_MSG_PTP,
13808 		   "PTP adjtime called while the interface is down\n");
13809 		return -ENETDOWN;
13810 	}
13811 
13812 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13813 
13814 	timecounter_adjtime(&bp->timecounter, delta);
13815 
13816 	return 0;
13817 }
13818 
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13819 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13820 {
13821 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13822 	u64 ns;
13823 
13824 	if (!netif_running(bp->dev)) {
13825 		DP(BNX2X_MSG_PTP,
13826 		   "PTP gettime called while the interface is down\n");
13827 		return -ENETDOWN;
13828 	}
13829 
13830 	ns = timecounter_read(&bp->timecounter);
13831 
13832 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13833 
13834 	*ts = ns_to_timespec64(ns);
13835 
13836 	return 0;
13837 }
13838 
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13839 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13840 			     const struct timespec64 *ts)
13841 {
13842 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13843 	u64 ns;
13844 
13845 	if (!netif_running(bp->dev)) {
13846 		DP(BNX2X_MSG_PTP,
13847 		   "PTP settime called while the interface is down\n");
13848 		return -ENETDOWN;
13849 	}
13850 
13851 	ns = timespec64_to_ns(ts);
13852 
13853 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13854 
13855 	/* Re-init the timecounter */
13856 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13857 
13858 	return 0;
13859 }
13860 
13861 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13862 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13863 			    struct ptp_clock_request *rq, int on)
13864 {
13865 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13866 
13867 	BNX2X_ERR("PHC ancillary features are not supported\n");
13868 	return -ENOTSUPP;
13869 }
13870 
bnx2x_register_phc(struct bnx2x * bp)13871 void bnx2x_register_phc(struct bnx2x *bp)
13872 {
13873 	/* Fill the ptp_clock_info struct and register PTP clock*/
13874 	bp->ptp_clock_info.owner = THIS_MODULE;
13875 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13876 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13877 	bp->ptp_clock_info.n_alarm = 0;
13878 	bp->ptp_clock_info.n_ext_ts = 0;
13879 	bp->ptp_clock_info.n_per_out = 0;
13880 	bp->ptp_clock_info.pps = 0;
13881 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13882 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13883 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13884 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13885 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13886 
13887 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13888 	if (IS_ERR(bp->ptp_clock)) {
13889 		bp->ptp_clock = NULL;
13890 		BNX2X_ERR("PTP clock registration failed\n");
13891 	}
13892 }
13893 
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13894 static int bnx2x_init_one(struct pci_dev *pdev,
13895 				    const struct pci_device_id *ent)
13896 {
13897 	struct net_device *dev = NULL;
13898 	struct bnx2x *bp;
13899 	int rc, max_non_def_sbs;
13900 	int rx_count, tx_count, rss_count, doorbell_size;
13901 	int max_cos_est;
13902 	bool is_vf;
13903 	int cnic_cnt;
13904 
13905 	/* Management FW 'remembers' living interfaces. Allow it some time
13906 	 * to forget previously living interfaces, allowing a proper re-load.
13907 	 */
13908 	if (is_kdump_kernel()) {
13909 		ktime_t now = ktime_get_boottime();
13910 		ktime_t fw_ready_time = ktime_set(5, 0);
13911 
13912 		if (ktime_before(now, fw_ready_time))
13913 			msleep(ktime_ms_delta(fw_ready_time, now));
13914 	}
13915 
13916 	/* An estimated maximum supported CoS number according to the chip
13917 	 * version.
13918 	 * We will try to roughly estimate the maximum number of CoSes this chip
13919 	 * may support in order to minimize the memory allocated for Tx
13920 	 * netdev_queue's. This number will be accurately calculated during the
13921 	 * initialization of bp->max_cos based on the chip versions AND chip
13922 	 * revision in the bnx2x_init_bp().
13923 	 */
13924 	max_cos_est = set_max_cos_est(ent->driver_data);
13925 	if (max_cos_est < 0)
13926 		return max_cos_est;
13927 	is_vf = set_is_vf(ent->driver_data);
13928 	cnic_cnt = is_vf ? 0 : 1;
13929 
13930 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13931 
13932 	/* add another SB for VF as it has no default SB */
13933 	max_non_def_sbs += is_vf ? 1 : 0;
13934 
13935 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13936 	rss_count = max_non_def_sbs - cnic_cnt;
13937 
13938 	if (rss_count < 1)
13939 		return -EINVAL;
13940 
13941 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13942 	rx_count = rss_count + cnic_cnt;
13943 
13944 	/* Maximum number of netdev Tx queues:
13945 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13946 	 */
13947 	tx_count = rss_count * max_cos_est + cnic_cnt;
13948 
13949 	/* dev zeroed in init_etherdev */
13950 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13951 	if (!dev)
13952 		return -ENOMEM;
13953 
13954 	bp = netdev_priv(dev);
13955 
13956 	bp->flags = 0;
13957 	if (is_vf)
13958 		bp->flags |= IS_VF_FLAG;
13959 
13960 	bp->igu_sb_cnt = max_non_def_sbs;
13961 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13962 	bp->msg_enable = debug;
13963 	bp->cnic_support = cnic_cnt;
13964 	bp->cnic_probe = bnx2x_cnic_probe;
13965 
13966 	pci_set_drvdata(pdev, dev);
13967 
13968 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13969 	if (rc < 0) {
13970 		free_netdev(dev);
13971 		return rc;
13972 	}
13973 
13974 	BNX2X_DEV_INFO("This is a %s function\n",
13975 		       IS_PF(bp) ? "physical" : "virtual");
13976 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13977 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13978 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13979 		       tx_count, rx_count);
13980 
13981 	rc = bnx2x_init_bp(bp);
13982 	if (rc)
13983 		goto init_one_exit;
13984 
13985 	/* Map doorbells here as we need the real value of bp->max_cos which
13986 	 * is initialized in bnx2x_init_bp() to determine the number of
13987 	 * l2 connections.
13988 	 */
13989 	if (IS_VF(bp)) {
13990 		bp->doorbells = bnx2x_vf_doorbells(bp);
13991 		rc = bnx2x_vf_pci_alloc(bp);
13992 		if (rc)
13993 			goto init_one_freemem;
13994 	} else {
13995 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13996 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13997 			dev_err(&bp->pdev->dev,
13998 				"Cannot map doorbells, bar size too small, aborting\n");
13999 			rc = -ENOMEM;
14000 			goto init_one_freemem;
14001 		}
14002 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
14003 						doorbell_size);
14004 	}
14005 	if (!bp->doorbells) {
14006 		dev_err(&bp->pdev->dev,
14007 			"Cannot map doorbell space, aborting\n");
14008 		rc = -ENOMEM;
14009 		goto init_one_freemem;
14010 	}
14011 
14012 	if (IS_VF(bp)) {
14013 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14014 		if (rc)
14015 			goto init_one_freemem;
14016 
14017 #ifdef CONFIG_BNX2X_SRIOV
14018 		/* VF with OLD Hypervisor or old PF do not support filtering */
14019 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14020 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14021 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14022 		}
14023 #endif
14024 	}
14025 
14026 	/* Enable SRIOV if capability found in configuration space */
14027 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14028 	if (rc)
14029 		goto init_one_freemem;
14030 
14031 	/* calc qm_cid_count */
14032 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14033 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14034 
14035 	/* disable FCOE L2 queue for E1x*/
14036 	if (CHIP_IS_E1x(bp))
14037 		bp->flags |= NO_FCOE_FLAG;
14038 
14039 	/* Set bp->num_queues for MSI-X mode*/
14040 	bnx2x_set_num_queues(bp);
14041 
14042 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14043 	 * needed.
14044 	 */
14045 	rc = bnx2x_set_int_mode(bp);
14046 	if (rc) {
14047 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14048 		goto init_one_freemem;
14049 	}
14050 	BNX2X_DEV_INFO("set interrupts successfully\n");
14051 
14052 	/* register the net device */
14053 	rc = register_netdev(dev);
14054 	if (rc) {
14055 		dev_err(&pdev->dev, "Cannot register net device\n");
14056 		goto init_one_freemem;
14057 	}
14058 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14059 
14060 	if (!NO_FCOE(bp)) {
14061 		/* Add storage MAC address */
14062 		rtnl_lock();
14063 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14064 		rtnl_unlock();
14065 	}
14066 	BNX2X_DEV_INFO(
14067 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14068 	       board_info[ent->driver_data].name,
14069 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14070 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14071 	pcie_print_link_status(bp->pdev);
14072 
14073 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14074 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14075 
14076 	return 0;
14077 
14078 init_one_freemem:
14079 	bnx2x_free_mem_bp(bp);
14080 
14081 init_one_exit:
14082 	bnx2x_disable_pcie_error_reporting(bp);
14083 
14084 	if (bp->regview)
14085 		iounmap(bp->regview);
14086 
14087 	if (IS_PF(bp) && bp->doorbells)
14088 		iounmap(bp->doorbells);
14089 
14090 	free_netdev(dev);
14091 
14092 	if (atomic_read(&pdev->enable_cnt) == 1)
14093 		pci_release_regions(pdev);
14094 
14095 	pci_disable_device(pdev);
14096 
14097 	return rc;
14098 }
14099 
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14100 static void __bnx2x_remove(struct pci_dev *pdev,
14101 			   struct net_device *dev,
14102 			   struct bnx2x *bp,
14103 			   bool remove_netdev)
14104 {
14105 	/* Delete storage MAC address */
14106 	if (!NO_FCOE(bp)) {
14107 		rtnl_lock();
14108 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14109 		rtnl_unlock();
14110 	}
14111 
14112 #ifdef BCM_DCBNL
14113 	/* Delete app tlvs from dcbnl */
14114 	bnx2x_dcbnl_update_applist(bp, true);
14115 #endif
14116 
14117 	if (IS_PF(bp) &&
14118 	    !BP_NOMCP(bp) &&
14119 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14120 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14121 
14122 	/* Close the interface - either directly or implicitly */
14123 	if (remove_netdev) {
14124 		unregister_netdev(dev);
14125 	} else {
14126 		rtnl_lock();
14127 		dev_close(dev);
14128 		rtnl_unlock();
14129 	}
14130 
14131 	bnx2x_iov_remove_one(bp);
14132 
14133 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14134 	if (IS_PF(bp)) {
14135 		bnx2x_set_power_state(bp, PCI_D0);
14136 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14137 
14138 		/* Set endianity registers to reset values in case next driver
14139 		 * boots in different endianty environment.
14140 		 */
14141 		bnx2x_reset_endianity(bp);
14142 	}
14143 
14144 	/* Disable MSI/MSI-X */
14145 	bnx2x_disable_msi(bp);
14146 
14147 	/* Power off */
14148 	if (IS_PF(bp))
14149 		bnx2x_set_power_state(bp, PCI_D3hot);
14150 
14151 	/* Make sure RESET task is not scheduled before continuing */
14152 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14153 
14154 	/* send message via vfpf channel to release the resources of this vf */
14155 	if (IS_VF(bp))
14156 		bnx2x_vfpf_release(bp);
14157 
14158 	/* Assumes no further PCIe PM changes will occur */
14159 	if (system_state == SYSTEM_POWER_OFF) {
14160 		pci_wake_from_d3(pdev, bp->wol);
14161 		pci_set_power_state(pdev, PCI_D3hot);
14162 	}
14163 
14164 	bnx2x_disable_pcie_error_reporting(bp);
14165 	if (remove_netdev) {
14166 		if (bp->regview)
14167 			iounmap(bp->regview);
14168 
14169 		/* For vfs, doorbells are part of the regview and were unmapped
14170 		 * along with it. FW is only loaded by PF.
14171 		 */
14172 		if (IS_PF(bp)) {
14173 			if (bp->doorbells)
14174 				iounmap(bp->doorbells);
14175 
14176 			bnx2x_release_firmware(bp);
14177 		} else {
14178 			bnx2x_vf_pci_dealloc(bp);
14179 		}
14180 		bnx2x_free_mem_bp(bp);
14181 
14182 		free_netdev(dev);
14183 
14184 		if (atomic_read(&pdev->enable_cnt) == 1)
14185 			pci_release_regions(pdev);
14186 
14187 		pci_disable_device(pdev);
14188 	}
14189 }
14190 
bnx2x_remove_one(struct pci_dev * pdev)14191 static void bnx2x_remove_one(struct pci_dev *pdev)
14192 {
14193 	struct net_device *dev = pci_get_drvdata(pdev);
14194 	struct bnx2x *bp;
14195 
14196 	if (!dev) {
14197 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14198 		return;
14199 	}
14200 	bp = netdev_priv(dev);
14201 
14202 	__bnx2x_remove(pdev, dev, bp, true);
14203 }
14204 
bnx2x_eeh_nic_unload(struct bnx2x * bp)14205 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14206 {
14207 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14208 
14209 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14210 
14211 	if (CNIC_LOADED(bp))
14212 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14213 
14214 	/* Stop Tx */
14215 	bnx2x_tx_disable(bp);
14216 	netdev_reset_tc(bp->dev);
14217 
14218 	del_timer_sync(&bp->timer);
14219 	cancel_delayed_work_sync(&bp->sp_task);
14220 	cancel_delayed_work_sync(&bp->period_task);
14221 
14222 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14223 		bp->stats_state = STATS_STATE_DISABLED;
14224 		up(&bp->stats_lock);
14225 	}
14226 
14227 	bnx2x_save_statistics(bp);
14228 
14229 	netif_carrier_off(bp->dev);
14230 
14231 	return 0;
14232 }
14233 
14234 /**
14235  * bnx2x_io_error_detected - called when PCI error is detected
14236  * @pdev: Pointer to PCI device
14237  * @state: The current pci connection state
14238  *
14239  * This function is called after a PCI bus error affecting
14240  * this device has been detected.
14241  */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14242 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14243 						pci_channel_state_t state)
14244 {
14245 	struct net_device *dev = pci_get_drvdata(pdev);
14246 	struct bnx2x *bp = netdev_priv(dev);
14247 
14248 	rtnl_lock();
14249 
14250 	BNX2X_ERR("IO error detected\n");
14251 
14252 	netif_device_detach(dev);
14253 
14254 	if (state == pci_channel_io_perm_failure) {
14255 		rtnl_unlock();
14256 		return PCI_ERS_RESULT_DISCONNECT;
14257 	}
14258 
14259 	if (netif_running(dev))
14260 		bnx2x_eeh_nic_unload(bp);
14261 
14262 	bnx2x_prev_path_mark_eeh(bp);
14263 
14264 	pci_disable_device(pdev);
14265 
14266 	rtnl_unlock();
14267 
14268 	/* Request a slot reset */
14269 	return PCI_ERS_RESULT_NEED_RESET;
14270 }
14271 
14272 /**
14273  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14274  * @pdev: Pointer to PCI device
14275  *
14276  * Restart the card from scratch, as if from a cold-boot.
14277  */
bnx2x_io_slot_reset(struct pci_dev * pdev)14278 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14279 {
14280 	struct net_device *dev = pci_get_drvdata(pdev);
14281 	struct bnx2x *bp = netdev_priv(dev);
14282 	int i;
14283 
14284 	rtnl_lock();
14285 	BNX2X_ERR("IO slot reset initializing...\n");
14286 	if (pci_enable_device(pdev)) {
14287 		dev_err(&pdev->dev,
14288 			"Cannot re-enable PCI device after reset\n");
14289 		rtnl_unlock();
14290 		return PCI_ERS_RESULT_DISCONNECT;
14291 	}
14292 
14293 	pci_set_master(pdev);
14294 	pci_restore_state(pdev);
14295 	pci_save_state(pdev);
14296 
14297 	if (netif_running(dev))
14298 		bnx2x_set_power_state(bp, PCI_D0);
14299 
14300 	if (netif_running(dev)) {
14301 		BNX2X_ERR("IO slot reset --> driver unload\n");
14302 
14303 		/* MCP should have been reset; Need to wait for validity */
14304 		if (bnx2x_init_shmem(bp)) {
14305 			rtnl_unlock();
14306 			return PCI_ERS_RESULT_DISCONNECT;
14307 		}
14308 
14309 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14310 			u32 v;
14311 
14312 			v = SHMEM2_RD(bp,
14313 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14314 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14315 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14316 		}
14317 		bnx2x_drain_tx_queues(bp);
14318 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14319 		bnx2x_netif_stop(bp, 1);
14320 		bnx2x_del_all_napi(bp);
14321 
14322 		if (CNIC_LOADED(bp))
14323 			bnx2x_del_all_napi_cnic(bp);
14324 
14325 		bnx2x_free_irq(bp);
14326 
14327 		/* Report UNLOAD_DONE to MCP */
14328 		bnx2x_send_unload_done(bp, true);
14329 
14330 		bp->sp_state = 0;
14331 		bp->port.pmf = 0;
14332 
14333 		bnx2x_prev_unload(bp);
14334 
14335 		/* We should have reseted the engine, so It's fair to
14336 		 * assume the FW will no longer write to the bnx2x driver.
14337 		 */
14338 		bnx2x_squeeze_objects(bp);
14339 		bnx2x_free_skbs(bp);
14340 		for_each_rx_queue(bp, i)
14341 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14342 		bnx2x_free_fp_mem(bp);
14343 		bnx2x_free_mem(bp);
14344 
14345 		bp->state = BNX2X_STATE_CLOSED;
14346 	}
14347 
14348 	rtnl_unlock();
14349 
14350 	return PCI_ERS_RESULT_RECOVERED;
14351 }
14352 
14353 /**
14354  * bnx2x_io_resume - called when traffic can start flowing again
14355  * @pdev: Pointer to PCI device
14356  *
14357  * This callback is called when the error recovery driver tells us that
14358  * its OK to resume normal operation.
14359  */
bnx2x_io_resume(struct pci_dev * pdev)14360 static void bnx2x_io_resume(struct pci_dev *pdev)
14361 {
14362 	struct net_device *dev = pci_get_drvdata(pdev);
14363 	struct bnx2x *bp = netdev_priv(dev);
14364 
14365 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14366 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14367 		return;
14368 	}
14369 
14370 	rtnl_lock();
14371 
14372 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14373 							DRV_MSG_SEQ_NUMBER_MASK;
14374 
14375 	if (netif_running(dev)) {
14376 		if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14377 			netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14378 			goto done;
14379 		}
14380 	}
14381 
14382 	netif_device_attach(dev);
14383 
14384 done:
14385 	rtnl_unlock();
14386 }
14387 
14388 static const struct pci_error_handlers bnx2x_err_handler = {
14389 	.error_detected = bnx2x_io_error_detected,
14390 	.slot_reset     = bnx2x_io_slot_reset,
14391 	.resume         = bnx2x_io_resume,
14392 };
14393 
bnx2x_shutdown(struct pci_dev * pdev)14394 static void bnx2x_shutdown(struct pci_dev *pdev)
14395 {
14396 	struct net_device *dev = pci_get_drvdata(pdev);
14397 	struct bnx2x *bp;
14398 
14399 	if (!dev)
14400 		return;
14401 
14402 	bp = netdev_priv(dev);
14403 	if (!bp)
14404 		return;
14405 
14406 	rtnl_lock();
14407 	netif_device_detach(dev);
14408 	rtnl_unlock();
14409 
14410 	/* Don't remove the netdevice, as there are scenarios which will cause
14411 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14412 	 * rootfs is mounted from SAN.
14413 	 */
14414 	__bnx2x_remove(pdev, dev, bp, false);
14415 }
14416 
14417 static struct pci_driver bnx2x_pci_driver = {
14418 	.name        = DRV_MODULE_NAME,
14419 	.id_table    = bnx2x_pci_tbl,
14420 	.probe       = bnx2x_init_one,
14421 	.remove      = bnx2x_remove_one,
14422 	.driver.pm   = &bnx2x_pm_ops,
14423 	.err_handler = &bnx2x_err_handler,
14424 #ifdef CONFIG_BNX2X_SRIOV
14425 	.sriov_configure = bnx2x_sriov_configure,
14426 #endif
14427 	.shutdown    = bnx2x_shutdown,
14428 };
14429 
bnx2x_init(void)14430 static int __init bnx2x_init(void)
14431 {
14432 	int ret;
14433 
14434 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14435 	if (bnx2x_wq == NULL) {
14436 		pr_err("Cannot create workqueue\n");
14437 		return -ENOMEM;
14438 	}
14439 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14440 	if (!bnx2x_iov_wq) {
14441 		pr_err("Cannot create iov workqueue\n");
14442 		destroy_workqueue(bnx2x_wq);
14443 		return -ENOMEM;
14444 	}
14445 
14446 	ret = pci_register_driver(&bnx2x_pci_driver);
14447 	if (ret) {
14448 		pr_err("Cannot register driver\n");
14449 		destroy_workqueue(bnx2x_wq);
14450 		destroy_workqueue(bnx2x_iov_wq);
14451 	}
14452 	return ret;
14453 }
14454 
bnx2x_cleanup(void)14455 static void __exit bnx2x_cleanup(void)
14456 {
14457 	struct list_head *pos, *q;
14458 
14459 	pci_unregister_driver(&bnx2x_pci_driver);
14460 
14461 	destroy_workqueue(bnx2x_wq);
14462 	destroy_workqueue(bnx2x_iov_wq);
14463 
14464 	/* Free globally allocated resources */
14465 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14466 		struct bnx2x_prev_path_list *tmp =
14467 			list_entry(pos, struct bnx2x_prev_path_list, list);
14468 		list_del(pos);
14469 		kfree(tmp);
14470 	}
14471 }
14472 
bnx2x_notify_link_changed(struct bnx2x * bp)14473 void bnx2x_notify_link_changed(struct bnx2x *bp)
14474 {
14475 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14476 }
14477 
14478 module_init(bnx2x_init);
14479 module_exit(bnx2x_cleanup);
14480 
14481 /**
14482  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14483  * @bp:		driver handle
14484  *
14485  * This function will wait until the ramrod completion returns.
14486  * Return 0 if success, -ENODEV if ramrod doesn't return.
14487  */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14488 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14489 {
14490 	unsigned long ramrod_flags = 0;
14491 
14492 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14493 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14494 				 &bp->iscsi_l2_mac_obj, true,
14495 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14496 }
14497 
14498 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14499 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14500 {
14501 	struct eth_spe *spe;
14502 	int cxt_index, cxt_offset;
14503 
14504 #ifdef BNX2X_STOP_ON_ERROR
14505 	if (unlikely(bp->panic))
14506 		return;
14507 #endif
14508 
14509 	spin_lock_bh(&bp->spq_lock);
14510 	BUG_ON(bp->cnic_spq_pending < count);
14511 	bp->cnic_spq_pending -= count;
14512 
14513 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14514 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14515 				& SPE_HDR_CONN_TYPE) >>
14516 				SPE_HDR_CONN_TYPE_SHIFT;
14517 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14518 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14519 
14520 		/* Set validation for iSCSI L2 client before sending SETUP
14521 		 *  ramrod
14522 		 */
14523 		if (type == ETH_CONNECTION_TYPE) {
14524 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14525 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14526 					ILT_PAGE_CIDS;
14527 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14528 					(cxt_index * ILT_PAGE_CIDS);
14529 				bnx2x_set_ctx_validation(bp,
14530 					&bp->context[cxt_index].
14531 							 vcxt[cxt_offset].eth,
14532 					BNX2X_ISCSI_ETH_CID(bp));
14533 			}
14534 		}
14535 
14536 		/*
14537 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14538 		 * and in the air. We also check that number of outstanding
14539 		 * COMMON ramrods is not more than the EQ and SPQ can
14540 		 * accommodate.
14541 		 */
14542 		if (type == ETH_CONNECTION_TYPE) {
14543 			if (!atomic_read(&bp->cq_spq_left))
14544 				break;
14545 			else
14546 				atomic_dec(&bp->cq_spq_left);
14547 		} else if (type == NONE_CONNECTION_TYPE) {
14548 			if (!atomic_read(&bp->eq_spq_left))
14549 				break;
14550 			else
14551 				atomic_dec(&bp->eq_spq_left);
14552 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14553 			   (type == FCOE_CONNECTION_TYPE)) {
14554 			if (bp->cnic_spq_pending >=
14555 			    bp->cnic_eth_dev.max_kwqe_pending)
14556 				break;
14557 			else
14558 				bp->cnic_spq_pending++;
14559 		} else {
14560 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14561 			bnx2x_panic();
14562 			break;
14563 		}
14564 
14565 		spe = bnx2x_sp_get_next(bp);
14566 		*spe = *bp->cnic_kwq_cons;
14567 
14568 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14569 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14570 
14571 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14572 			bp->cnic_kwq_cons = bp->cnic_kwq;
14573 		else
14574 			bp->cnic_kwq_cons++;
14575 	}
14576 	bnx2x_sp_prod_update(bp);
14577 	spin_unlock_bh(&bp->spq_lock);
14578 }
14579 
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14580 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14581 			       struct kwqe_16 *kwqes[], u32 count)
14582 {
14583 	struct bnx2x *bp = netdev_priv(dev);
14584 	int i;
14585 
14586 #ifdef BNX2X_STOP_ON_ERROR
14587 	if (unlikely(bp->panic)) {
14588 		BNX2X_ERR("Can't post to SP queue while panic\n");
14589 		return -EIO;
14590 	}
14591 #endif
14592 
14593 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14594 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14595 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14596 		return -EAGAIN;
14597 	}
14598 
14599 	spin_lock_bh(&bp->spq_lock);
14600 
14601 	for (i = 0; i < count; i++) {
14602 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14603 
14604 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14605 			break;
14606 
14607 		*bp->cnic_kwq_prod = *spe;
14608 
14609 		bp->cnic_kwq_pending++;
14610 
14611 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14612 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14613 		   spe->data.update_data_addr.hi,
14614 		   spe->data.update_data_addr.lo,
14615 		   bp->cnic_kwq_pending);
14616 
14617 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14618 			bp->cnic_kwq_prod = bp->cnic_kwq;
14619 		else
14620 			bp->cnic_kwq_prod++;
14621 	}
14622 
14623 	spin_unlock_bh(&bp->spq_lock);
14624 
14625 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14626 		bnx2x_cnic_sp_post(bp, 0);
14627 
14628 	return i;
14629 }
14630 
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14631 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14632 {
14633 	struct cnic_ops *c_ops;
14634 	int rc = 0;
14635 
14636 	mutex_lock(&bp->cnic_mutex);
14637 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14638 					  lockdep_is_held(&bp->cnic_mutex));
14639 	if (c_ops)
14640 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14641 	mutex_unlock(&bp->cnic_mutex);
14642 
14643 	return rc;
14644 }
14645 
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14646 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14647 {
14648 	struct cnic_ops *c_ops;
14649 	int rc = 0;
14650 
14651 	rcu_read_lock();
14652 	c_ops = rcu_dereference(bp->cnic_ops);
14653 	if (c_ops)
14654 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14655 	rcu_read_unlock();
14656 
14657 	return rc;
14658 }
14659 
14660 /*
14661  * for commands that have no data
14662  */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14663 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14664 {
14665 	struct cnic_ctl_info ctl = {0};
14666 
14667 	ctl.cmd = cmd;
14668 
14669 	return bnx2x_cnic_ctl_send(bp, &ctl);
14670 }
14671 
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14672 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14673 {
14674 	struct cnic_ctl_info ctl = {0};
14675 
14676 	/* first we tell CNIC and only then we count this as a completion */
14677 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14678 	ctl.data.comp.cid = cid;
14679 	ctl.data.comp.error = err;
14680 
14681 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14682 	bnx2x_cnic_sp_post(bp, 0);
14683 }
14684 
14685 /* Called with netif_addr_lock_bh() taken.
14686  * Sets an rx_mode config for an iSCSI ETH client.
14687  * Doesn't block.
14688  * Completion should be checked outside.
14689  */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14690 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14691 {
14692 	unsigned long accept_flags = 0, ramrod_flags = 0;
14693 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14694 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14695 
14696 	if (start) {
14697 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14698 		 * because it's the only way for UIO Queue to accept
14699 		 * multicasts (in non-promiscuous mode only one Queue per
14700 		 * function will receive multicast packets (leading in our
14701 		 * case).
14702 		 */
14703 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14704 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14705 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14706 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14707 
14708 		/* Clear STOP_PENDING bit if START is requested */
14709 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14710 
14711 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14712 	} else
14713 		/* Clear START_PENDING bit if STOP is requested */
14714 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14715 
14716 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14717 		set_bit(sched_state, &bp->sp_state);
14718 	else {
14719 		__set_bit(RAMROD_RX, &ramrod_flags);
14720 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14721 				    ramrod_flags);
14722 	}
14723 }
14724 
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14725 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14726 {
14727 	struct bnx2x *bp = netdev_priv(dev);
14728 	int rc = 0;
14729 
14730 	switch (ctl->cmd) {
14731 	case DRV_CTL_CTXTBL_WR_CMD: {
14732 		u32 index = ctl->data.io.offset;
14733 		dma_addr_t addr = ctl->data.io.dma_addr;
14734 
14735 		bnx2x_ilt_wr(bp, index, addr);
14736 		break;
14737 	}
14738 
14739 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14740 		int count = ctl->data.credit.credit_count;
14741 
14742 		bnx2x_cnic_sp_post(bp, count);
14743 		break;
14744 	}
14745 
14746 	/* rtnl_lock is held.  */
14747 	case DRV_CTL_START_L2_CMD: {
14748 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14749 		unsigned long sp_bits = 0;
14750 
14751 		/* Configure the iSCSI classification object */
14752 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14753 				   cp->iscsi_l2_client_id,
14754 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14755 				   bnx2x_sp(bp, mac_rdata),
14756 				   bnx2x_sp_mapping(bp, mac_rdata),
14757 				   BNX2X_FILTER_MAC_PENDING,
14758 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14759 				   &bp->macs_pool);
14760 
14761 		/* Set iSCSI MAC address */
14762 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14763 		if (rc)
14764 			break;
14765 
14766 		barrier();
14767 
14768 		/* Start accepting on iSCSI L2 ring */
14769 
14770 		netif_addr_lock_bh(dev);
14771 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14772 		netif_addr_unlock_bh(dev);
14773 
14774 		/* bits to wait on */
14775 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14776 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14777 
14778 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14779 			BNX2X_ERR("rx_mode completion timed out!\n");
14780 
14781 		break;
14782 	}
14783 
14784 	/* rtnl_lock is held.  */
14785 	case DRV_CTL_STOP_L2_CMD: {
14786 		unsigned long sp_bits = 0;
14787 
14788 		/* Stop accepting on iSCSI L2 ring */
14789 		netif_addr_lock_bh(dev);
14790 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14791 		netif_addr_unlock_bh(dev);
14792 
14793 		/* bits to wait on */
14794 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14795 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14796 
14797 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14798 			BNX2X_ERR("rx_mode completion timed out!\n");
14799 
14800 		barrier();
14801 
14802 		/* Unset iSCSI L2 MAC */
14803 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14804 					BNX2X_ISCSI_ETH_MAC, true);
14805 		break;
14806 	}
14807 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14808 		int count = ctl->data.credit.credit_count;
14809 
14810 		smp_mb__before_atomic();
14811 		atomic_add(count, &bp->cq_spq_left);
14812 		smp_mb__after_atomic();
14813 		break;
14814 	}
14815 	case DRV_CTL_ULP_REGISTER_CMD: {
14816 		int ulp_type = ctl->data.register_data.ulp_type;
14817 
14818 		if (CHIP_IS_E3(bp)) {
14819 			int idx = BP_FW_MB_IDX(bp);
14820 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14821 			int path = BP_PATH(bp);
14822 			int port = BP_PORT(bp);
14823 			int i;
14824 			u32 scratch_offset;
14825 			u32 *host_addr;
14826 
14827 			/* first write capability to shmem2 */
14828 			if (ulp_type == CNIC_ULP_ISCSI)
14829 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14830 			else if (ulp_type == CNIC_ULP_FCOE)
14831 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14832 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14833 
14834 			if ((ulp_type != CNIC_ULP_FCOE) ||
14835 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14836 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14837 				break;
14838 
14839 			/* if reached here - should write fcoe capabilities */
14840 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14841 			if (!scratch_offset)
14842 				break;
14843 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14844 						   fcoe_features[path][port]);
14845 			host_addr = (u32 *) &(ctl->data.register_data.
14846 					      fcoe_features);
14847 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14848 			     i += 4)
14849 				REG_WR(bp, scratch_offset + i,
14850 				       *(host_addr + i/4));
14851 		}
14852 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14853 		break;
14854 	}
14855 
14856 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14857 		int ulp_type = ctl->data.ulp_type;
14858 
14859 		if (CHIP_IS_E3(bp)) {
14860 			int idx = BP_FW_MB_IDX(bp);
14861 			u32 cap;
14862 
14863 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14864 			if (ulp_type == CNIC_ULP_ISCSI)
14865 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14866 			else if (ulp_type == CNIC_ULP_FCOE)
14867 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14868 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14869 		}
14870 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14871 		break;
14872 	}
14873 
14874 	default:
14875 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14876 		rc = -EINVAL;
14877 	}
14878 
14879 	/* For storage-only interfaces, change driver state */
14880 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14881 		switch (ctl->drv_state) {
14882 		case DRV_NOP:
14883 			break;
14884 		case DRV_ACTIVE:
14885 			bnx2x_set_os_driver_state(bp,
14886 						  OS_DRIVER_STATE_ACTIVE);
14887 			break;
14888 		case DRV_INACTIVE:
14889 			bnx2x_set_os_driver_state(bp,
14890 						  OS_DRIVER_STATE_DISABLED);
14891 			break;
14892 		case DRV_UNLOADED:
14893 			bnx2x_set_os_driver_state(bp,
14894 						  OS_DRIVER_STATE_NOT_LOADED);
14895 			break;
14896 		default:
14897 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14898 		}
14899 	}
14900 
14901 	return rc;
14902 }
14903 
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14904 static int bnx2x_get_fc_npiv(struct net_device *dev,
14905 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14906 {
14907 	struct bnx2x *bp = netdev_priv(dev);
14908 	struct bdn_fc_npiv_tbl *tbl = NULL;
14909 	u32 offset, entries;
14910 	int rc = -EINVAL;
14911 	int i;
14912 
14913 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14914 		goto out;
14915 
14916 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14917 
14918 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14919 	if (!tbl) {
14920 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14921 		goto out;
14922 	}
14923 
14924 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14925 	if (!offset) {
14926 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14927 		goto out;
14928 	}
14929 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14930 
14931 	/* Read the table contents from nvram */
14932 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14933 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14934 		goto out;
14935 	}
14936 
14937 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14938 	 * the number of entries back to cpu endianness.
14939 	 */
14940 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14941 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14942 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14943 
14944 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14945 		DP(BNX2X_MSG_MCP,
14946 		   "No FC-NPIV table [valid, simply not present]\n");
14947 		goto out;
14948 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14949 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14950 			  tbl->fc_npiv_cfg.num_of_npiv);
14951 		goto out;
14952 	} else {
14953 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14954 		   tbl->fc_npiv_cfg.num_of_npiv);
14955 	}
14956 
14957 	/* Copy the data into cnic-provided struct */
14958 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14959 	for (i = 0; i < cnic_tbl->count; i++) {
14960 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14961 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14962 	}
14963 
14964 	rc = 0;
14965 out:
14966 	kfree(tbl);
14967 	return rc;
14968 }
14969 
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)14970 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14971 {
14972 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14973 
14974 	if (bp->flags & USING_MSIX_FLAG) {
14975 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14976 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14977 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14978 	} else {
14979 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14980 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14981 	}
14982 	if (!CHIP_IS_E1x(bp))
14983 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14984 	else
14985 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14986 
14987 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14988 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14989 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14990 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14991 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14992 
14993 	cp->num_irq = 2;
14994 }
14995 
bnx2x_setup_cnic_info(struct bnx2x * bp)14996 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14997 {
14998 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14999 
15000 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15001 			     bnx2x_cid_ilt_lines(bp);
15002 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15003 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15004 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15005 
15006 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15007 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15008 	   cp->iscsi_l2_cid);
15009 
15010 	if (NO_ISCSI_OOO(bp))
15011 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15012 }
15013 
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15014 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15015 			       void *data)
15016 {
15017 	struct bnx2x *bp = netdev_priv(dev);
15018 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15019 	int rc;
15020 
15021 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15022 
15023 	if (ops == NULL) {
15024 		BNX2X_ERR("NULL ops received\n");
15025 		return -EINVAL;
15026 	}
15027 
15028 	if (!CNIC_SUPPORT(bp)) {
15029 		BNX2X_ERR("Can't register CNIC when not supported\n");
15030 		return -EOPNOTSUPP;
15031 	}
15032 
15033 	if (!CNIC_LOADED(bp)) {
15034 		rc = bnx2x_load_cnic(bp);
15035 		if (rc) {
15036 			BNX2X_ERR("CNIC-related load failed\n");
15037 			return rc;
15038 		}
15039 	}
15040 
15041 	bp->cnic_enabled = true;
15042 
15043 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15044 	if (!bp->cnic_kwq)
15045 		return -ENOMEM;
15046 
15047 	bp->cnic_kwq_cons = bp->cnic_kwq;
15048 	bp->cnic_kwq_prod = bp->cnic_kwq;
15049 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15050 
15051 	bp->cnic_spq_pending = 0;
15052 	bp->cnic_kwq_pending = 0;
15053 
15054 	bp->cnic_data = data;
15055 
15056 	cp->num_irq = 0;
15057 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15058 	cp->iro_arr = bp->iro_arr;
15059 
15060 	bnx2x_setup_cnic_irq_info(bp);
15061 
15062 	rcu_assign_pointer(bp->cnic_ops, ops);
15063 
15064 	/* Schedule driver to read CNIC driver versions */
15065 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15066 
15067 	return 0;
15068 }
15069 
bnx2x_unregister_cnic(struct net_device * dev)15070 static int bnx2x_unregister_cnic(struct net_device *dev)
15071 {
15072 	struct bnx2x *bp = netdev_priv(dev);
15073 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15074 
15075 	mutex_lock(&bp->cnic_mutex);
15076 	cp->drv_state = 0;
15077 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15078 	mutex_unlock(&bp->cnic_mutex);
15079 	synchronize_rcu();
15080 	bp->cnic_enabled = false;
15081 	kfree(bp->cnic_kwq);
15082 	bp->cnic_kwq = NULL;
15083 
15084 	return 0;
15085 }
15086 
bnx2x_cnic_probe(struct net_device * dev)15087 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15088 {
15089 	struct bnx2x *bp = netdev_priv(dev);
15090 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15091 
15092 	/* If both iSCSI and FCoE are disabled - return NULL in
15093 	 * order to indicate CNIC that it should not try to work
15094 	 * with this device.
15095 	 */
15096 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15097 		return NULL;
15098 
15099 	cp->drv_owner = THIS_MODULE;
15100 	cp->chip_id = CHIP_ID(bp);
15101 	cp->pdev = bp->pdev;
15102 	cp->io_base = bp->regview;
15103 	cp->io_base2 = bp->doorbells;
15104 	cp->max_kwqe_pending = 8;
15105 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15106 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15107 			     bnx2x_cid_ilt_lines(bp);
15108 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15109 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15110 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15111 	cp->drv_ctl = bnx2x_drv_ctl;
15112 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15113 	cp->drv_register_cnic = bnx2x_register_cnic;
15114 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15115 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15116 	cp->iscsi_l2_client_id =
15117 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15118 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15119 
15120 	if (NO_ISCSI_OOO(bp))
15121 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15122 
15123 	if (NO_ISCSI(bp))
15124 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15125 
15126 	if (NO_FCOE(bp))
15127 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15128 
15129 	BNX2X_DEV_INFO(
15130 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15131 	   cp->ctx_blk_size,
15132 	   cp->ctx_tbl_offset,
15133 	   cp->ctx_tbl_len,
15134 	   cp->starting_cid);
15135 	return cp;
15136 }
15137 
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15138 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15139 {
15140 	struct bnx2x *bp = fp->bp;
15141 	u32 offset = BAR_USTRORM_INTMEM;
15142 
15143 	if (IS_VF(bp))
15144 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15145 	else if (!CHIP_IS_E1x(bp))
15146 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15147 	else
15148 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15149 
15150 	return offset;
15151 }
15152 
15153 /* called only on E1H or E2.
15154  * When pretending to be PF, the pretend value is the function number 0...7
15155  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15156  * combination
15157  */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15158 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15159 {
15160 	u32 pretend_reg;
15161 
15162 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15163 		return -1;
15164 
15165 	/* get my own pretend register */
15166 	pretend_reg = bnx2x_get_pretend_reg(bp);
15167 	REG_WR(bp, pretend_reg, pretend_func_val);
15168 	REG_RD(bp, pretend_reg);
15169 	return 0;
15170 }
15171 
bnx2x_ptp_task(struct work_struct * work)15172 static void bnx2x_ptp_task(struct work_struct *work)
15173 {
15174 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15175 	int port = BP_PORT(bp);
15176 	u32 val_seq;
15177 	u64 timestamp, ns;
15178 	struct skb_shared_hwtstamps shhwtstamps;
15179 	bool bail = true;
15180 	int i;
15181 
15182 	/* FW may take a while to complete timestamping; try a bit and if it's
15183 	 * still not complete, may indicate an error state - bail out then.
15184 	 */
15185 	for (i = 0; i < 10; i++) {
15186 		/* Read Tx timestamp registers */
15187 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15188 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15189 		if (val_seq & 0x10000) {
15190 			bail = false;
15191 			break;
15192 		}
15193 		msleep(1 << i);
15194 	}
15195 
15196 	if (!bail) {
15197 		/* There is a valid timestamp value */
15198 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15199 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15200 		timestamp <<= 32;
15201 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15202 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15203 		/* Reset timestamp register to allow new timestamp */
15204 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15205 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15206 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15207 
15208 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15209 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15210 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15211 
15212 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15213 		   timestamp, ns);
15214 	} else {
15215 		DP(BNX2X_MSG_PTP,
15216 		   "Tx timestamp is not recorded (register read=%u)\n",
15217 		   val_seq);
15218 		bp->eth_stats.ptp_skip_tx_ts++;
15219 	}
15220 
15221 	dev_kfree_skb_any(bp->ptp_tx_skb);
15222 	bp->ptp_tx_skb = NULL;
15223 }
15224 
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15225 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15226 {
15227 	int port = BP_PORT(bp);
15228 	u64 timestamp, ns;
15229 
15230 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15231 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15232 	timestamp <<= 32;
15233 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15234 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15235 
15236 	/* Reset timestamp register to allow new timestamp */
15237 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15238 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15239 
15240 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15241 
15242 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15243 
15244 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15245 	   timestamp, ns);
15246 }
15247 
15248 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15249 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15250 {
15251 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15252 	int port = BP_PORT(bp);
15253 	u32 wb_data[2];
15254 	u64 phc_cycles;
15255 
15256 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15257 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15258 	phc_cycles = wb_data[1];
15259 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15260 
15261 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15262 
15263 	return phc_cycles;
15264 }
15265 
bnx2x_init_cyclecounter(struct bnx2x * bp)15266 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15267 {
15268 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15269 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15270 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15271 	bp->cyclecounter.shift = 0;
15272 	bp->cyclecounter.mult = 1;
15273 }
15274 
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15275 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15276 {
15277 	struct bnx2x_func_state_params func_params = {NULL};
15278 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15279 		&func_params.params.set_timesync;
15280 
15281 	/* Prepare parameters for function state transitions */
15282 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15283 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15284 
15285 	func_params.f_obj = &bp->func_obj;
15286 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15287 
15288 	/* Function parameters */
15289 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15290 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15291 
15292 	return bnx2x_func_state_change(bp, &func_params);
15293 }
15294 
bnx2x_enable_ptp_packets(struct bnx2x * bp)15295 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15296 {
15297 	struct bnx2x_queue_state_params q_params;
15298 	int rc, i;
15299 
15300 	/* send queue update ramrod to enable PTP packets */
15301 	memset(&q_params, 0, sizeof(q_params));
15302 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15303 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15304 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15305 		  &q_params.params.update.update_flags);
15306 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15307 		  &q_params.params.update.update_flags);
15308 
15309 	/* send the ramrod on all the queues of the PF */
15310 	for_each_eth_queue(bp, i) {
15311 		struct bnx2x_fastpath *fp = &bp->fp[i];
15312 
15313 		/* Set the appropriate Queue object */
15314 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15315 
15316 		/* Update the Queue state */
15317 		rc = bnx2x_queue_state_change(bp, &q_params);
15318 		if (rc) {
15319 			BNX2X_ERR("Failed to enable PTP packets\n");
15320 			return rc;
15321 		}
15322 	}
15323 
15324 	return 0;
15325 }
15326 
15327 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15328 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15329 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15330 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15331 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15332 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15333 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15334 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15335 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15336 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15337 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15338 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15339 
bnx2x_configure_ptp_filters(struct bnx2x * bp)15340 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15341 {
15342 	int port = BP_PORT(bp);
15343 	u32 param, rule;
15344 	int rc;
15345 
15346 	if (!bp->hwtstamp_ioctl_called)
15347 		return 0;
15348 
15349 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15350 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15351 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15352 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15353 	switch (bp->tx_type) {
15354 	case HWTSTAMP_TX_ON:
15355 		bp->flags |= TX_TIMESTAMPING_EN;
15356 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15357 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15358 		break;
15359 	case HWTSTAMP_TX_ONESTEP_SYNC:
15360 	case HWTSTAMP_TX_ONESTEP_P2P:
15361 		BNX2X_ERR("One-step timestamping is not supported\n");
15362 		return -ERANGE;
15363 	}
15364 
15365 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15366 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15367 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15368 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15369 	switch (bp->rx_filter) {
15370 	case HWTSTAMP_FILTER_NONE:
15371 		break;
15372 	case HWTSTAMP_FILTER_ALL:
15373 	case HWTSTAMP_FILTER_SOME:
15374 	case HWTSTAMP_FILTER_NTP_ALL:
15375 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15376 		break;
15377 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15378 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15379 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15380 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15381 		/* Initialize PTP detection for UDP/IPv4 events */
15382 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15383 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15384 		break;
15385 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15386 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15387 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15388 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15389 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15390 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15391 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15392 		break;
15393 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15394 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15395 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15396 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15397 		/* Initialize PTP detection L2 events */
15398 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15399 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15400 
15401 		break;
15402 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15403 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15404 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15405 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15406 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15407 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15408 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15409 		break;
15410 	}
15411 
15412 	/* Indicate to FW that this PF expects recorded PTP packets */
15413 	rc = bnx2x_enable_ptp_packets(bp);
15414 	if (rc)
15415 		return rc;
15416 
15417 	/* Enable sending PTP packets to host */
15418 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15419 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15420 
15421 	return 0;
15422 }
15423 
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15424 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15425 {
15426 	struct hwtstamp_config config;
15427 	int rc;
15428 
15429 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15430 
15431 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15432 		return -EFAULT;
15433 
15434 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15435 	   config.tx_type, config.rx_filter);
15436 
15437 	if (config.flags) {
15438 		BNX2X_ERR("config.flags is reserved for future use\n");
15439 		return -EINVAL;
15440 	}
15441 
15442 	bp->hwtstamp_ioctl_called = true;
15443 	bp->tx_type = config.tx_type;
15444 	bp->rx_filter = config.rx_filter;
15445 
15446 	rc = bnx2x_configure_ptp_filters(bp);
15447 	if (rc)
15448 		return rc;
15449 
15450 	config.rx_filter = bp->rx_filter;
15451 
15452 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15453 		-EFAULT : 0;
15454 }
15455 
15456 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15457 static int bnx2x_configure_ptp(struct bnx2x *bp)
15458 {
15459 	int rc, port = BP_PORT(bp);
15460 	u32 wb_data[2];
15461 
15462 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15463 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15464 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15465 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15466 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15467 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15468 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15469 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15470 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15471 
15472 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15473 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15474 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15475 
15476 	/* Enable the PTP feature */
15477 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15478 	       NIG_REG_P0_PTP_EN, 0x3F);
15479 
15480 	/* Enable the free-running counter */
15481 	wb_data[0] = 0;
15482 	wb_data[1] = 0;
15483 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15484 
15485 	/* Reset drift register (offset register is not reset) */
15486 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15487 	if (rc) {
15488 		BNX2X_ERR("Failed to reset PHC drift register\n");
15489 		return -EFAULT;
15490 	}
15491 
15492 	/* Reset possibly old timestamps */
15493 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15494 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15495 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15496 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15497 
15498 	return 0;
15499 }
15500 
15501 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15502 void bnx2x_init_ptp(struct bnx2x *bp)
15503 {
15504 	int rc;
15505 
15506 	/* Configure PTP in HW */
15507 	rc = bnx2x_configure_ptp(bp);
15508 	if (rc) {
15509 		BNX2X_ERR("Stopping PTP initialization\n");
15510 		return;
15511 	}
15512 
15513 	/* Init work queue for Tx timestamping */
15514 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15515 
15516 	/* Init cyclecounter and timecounter. This is done only in the first
15517 	 * load. If done in every load, PTP application will fail when doing
15518 	 * unload / load (e.g. MTU change) while it is running.
15519 	 */
15520 	if (!bp->timecounter_init_done) {
15521 		bnx2x_init_cyclecounter(bp);
15522 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15523 				 ktime_to_ns(ktime_get_real()));
15524 		bp->timecounter_init_done = true;
15525 	}
15526 
15527 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15528 }
15529