1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77
78 #define FW_FILE_VERSION_V15 \
79 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
80 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
81 __stringify(BCM_5710_FW_REVISION_VERSION_V15) "." \
82 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
83
84 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15 "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT (5*HZ)
93
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 "BCM57710/57711/57711E/"
97 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106
107 int bnx2x_num_queues;
108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109 MODULE_PARM_DESC(num_queues,
110 " Set number of queues (default is as a number of CPUs)");
111
112 static int disable_tpa;
113 module_param(disable_tpa, int, 0444);
114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115
116 static int int_mode;
117 module_param(int_mode, int, 0444);
118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119 "(1 INT#x; 2 MSI)");
120
121 static int dropless_fc;
122 module_param(dropless_fc, int, 0444);
123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124
125 static int mrrs = -1;
126 module_param(mrrs, int, 0444);
127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128
129 static int debug;
130 module_param(debug, int, 0444);
131 MODULE_PARM_DESC(debug, " Default debug msglevel");
132
133 static struct workqueue_struct *bnx2x_wq;
134 struct workqueue_struct *bnx2x_iov_wq;
135
136 struct bnx2x_mac_vals {
137 u32 xmac_addr;
138 u32 xmac_val;
139 u32 emac_addr;
140 u32 emac_val;
141 u32 umac_addr[2];
142 u32 umac_val[2];
143 u32 bmac_addr;
144 u32 bmac_val[2];
145 };
146
147 enum bnx2x_board_type {
148 BCM57710 = 0,
149 BCM57711,
150 BCM57711E,
151 BCM57712,
152 BCM57712_MF,
153 BCM57712_VF,
154 BCM57800,
155 BCM57800_MF,
156 BCM57800_VF,
157 BCM57810,
158 BCM57810_MF,
159 BCM57810_VF,
160 BCM57840_4_10,
161 BCM57840_2_20,
162 BCM57840_MF,
163 BCM57840_VF,
164 BCM57811,
165 BCM57811_MF,
166 BCM57840_O,
167 BCM57840_MFO,
168 BCM57811_VF
169 };
170
171 /* indexed by board_type, above */
172 static struct {
173 char *name;
174 } board_info[] = {
175 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
177 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
178 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
179 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
182 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
185 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
188 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
189 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
192 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196 };
197
198 #ifndef PCI_DEVICE_ID_NX2_57710
199 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711
202 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57711E
205 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712
208 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
211 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
214 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800
217 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
220 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
223 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810
226 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
229 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_O
232 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
235 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
238 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
241 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
244 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
247 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
250 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811
253 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
256 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
257 #endif
258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
259 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
260 #endif
261
262 static const struct pci_device_id bnx2x_pci_tbl[] = {
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287 { 0 }
288 };
289
290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291
292 const u32 dmae_reg_go_c[] = {
293 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297 };
298
299 /* Global resources for unloading a previously loaded device */
300 #define BNX2X_PREV_WAIT_NEEDED 1
301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302 static LIST_HEAD(bnx2x_prev_list);
303
304 /* Forward declaration */
305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308
309 /****************************************************************************
310 * General service functions
311 ****************************************************************************/
312
313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
316 u32 addr, dma_addr_t mapping)
317 {
318 REG_WR(bp, addr, U64_LO(mapping));
319 REG_WR(bp, addr + 4, U64_HI(mapping));
320 }
321
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)322 static void storm_memset_spq_addr(struct bnx2x *bp,
323 dma_addr_t mapping, u16 abs_fid)
324 {
325 u32 addr = XSEM_REG_FAST_MEMORY +
326 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327
328 __storm_memset_dma_mapping(bp, addr, mapping);
329 }
330
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332 u16 pf_id)
333 {
334 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335 pf_id);
336 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337 pf_id);
338 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339 pf_id);
340 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341 pf_id);
342 }
343
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345 u8 enable)
346 {
347 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348 enable);
349 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350 enable);
351 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352 enable);
353 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354 enable);
355 }
356
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)357 static void storm_memset_eq_data(struct bnx2x *bp,
358 struct event_ring_data *eq_data,
359 u16 pfid)
360 {
361 size_t size = sizeof(struct event_ring_data);
362
363 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364
365 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366 }
367
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369 u16 pfid)
370 {
371 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372 REG_WR16(bp, addr, eq_prod);
373 }
374
375 /* used only at init
376 * locking is done by mcp
377 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 {
380 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383 PCICFG_VENDOR_ID_OFFSET);
384 }
385
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387 {
388 u32 val;
389
390 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393 PCICFG_VENDOR_ID_OFFSET);
394
395 return val;
396 }
397
398 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
399 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
400 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
401 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
402 #define DMAE_DP_DST_NONE "dst_addr [none]"
403
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)404 static void bnx2x_dp_dmae(struct bnx2x *bp,
405 struct dmae_command *dmae, int msglvl)
406 {
407 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408 int i;
409
410 switch (dmae->opcode & DMAE_COMMAND_DST) {
411 case DMAE_CMD_DST_PCI:
412 if (src_type == DMAE_CMD_SRC_PCI)
413 DP(msglvl, "DMAE: opcode 0x%08x\n"
414 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415 "comp_addr [%x:%08x], comp_val 0x%08x\n",
416 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418 dmae->comp_addr_hi, dmae->comp_addr_lo,
419 dmae->comp_val);
420 else
421 DP(msglvl, "DMAE: opcode 0x%08x\n"
422 "src [%08x], len [%d*4], dst [%x:%08x]\n"
423 "comp_addr [%x:%08x], comp_val 0x%08x\n",
424 dmae->opcode, dmae->src_addr_lo >> 2,
425 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426 dmae->comp_addr_hi, dmae->comp_addr_lo,
427 dmae->comp_val);
428 break;
429 case DMAE_CMD_DST_GRC:
430 if (src_type == DMAE_CMD_SRC_PCI)
431 DP(msglvl, "DMAE: opcode 0x%08x\n"
432 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433 "comp_addr [%x:%08x], comp_val 0x%08x\n",
434 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435 dmae->len, dmae->dst_addr_lo >> 2,
436 dmae->comp_addr_hi, dmae->comp_addr_lo,
437 dmae->comp_val);
438 else
439 DP(msglvl, "DMAE: opcode 0x%08x\n"
440 "src [%08x], len [%d*4], dst [%08x]\n"
441 "comp_addr [%x:%08x], comp_val 0x%08x\n",
442 dmae->opcode, dmae->src_addr_lo >> 2,
443 dmae->len, dmae->dst_addr_lo >> 2,
444 dmae->comp_addr_hi, dmae->comp_addr_lo,
445 dmae->comp_val);
446 break;
447 default:
448 if (src_type == DMAE_CMD_SRC_PCI)
449 DP(msglvl, "DMAE: opcode 0x%08x\n"
450 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
451 "comp_addr [%x:%08x] comp_val 0x%08x\n",
452 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454 dmae->comp_val);
455 else
456 DP(msglvl, "DMAE: opcode 0x%08x\n"
457 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
458 "comp_addr [%x:%08x] comp_val 0x%08x\n",
459 dmae->opcode, dmae->src_addr_lo >> 2,
460 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461 dmae->comp_val);
462 break;
463 }
464
465 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467 i, *(((u32 *)dmae) + i));
468 }
469
470 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472 {
473 u32 cmd_offset;
474 int i;
475
476 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479 }
480 REG_WR(bp, dmae_reg_go_c[idx], 1);
481 }
482
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 {
485 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486 DMAE_CMD_C_ENABLE);
487 }
488
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 {
491 return opcode & ~DMAE_CMD_SRC_RESET;
492 }
493
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495 bool with_comp, u8 comp_type)
496 {
497 u32 opcode = 0;
498
499 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500 (dst_type << DMAE_COMMAND_DST_SHIFT));
501
502 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503
504 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508
509 #ifdef __BIG_ENDIAN
510 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 #else
512 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513 #endif
514 if (with_comp)
515 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516 return opcode;
517 }
518
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520 struct dmae_command *dmae,
521 u8 src_type, u8 dst_type)
522 {
523 memset(dmae, 0, sizeof(struct dmae_command));
524
525 /* set the opcode */
526 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527 true, DMAE_COMP_PCI);
528
529 /* fill in the completion parameters */
530 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532 dmae->comp_val = DMAE_COMP_VAL;
533 }
534
535 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537 u32 *comp)
538 {
539 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540 int rc = 0;
541
542 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543
544 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
545 * as long as this code is called both from syscall context and
546 * from ndo_set_rx_mode() flow that may be called from BH.
547 */
548
549 spin_lock_bh(&bp->dmae_lock);
550
551 /* reset completion */
552 *comp = 0;
553
554 /* post the command on the channel used for initializations */
555 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556
557 /* wait for completion */
558 udelay(5);
559 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560
561 if (!cnt ||
562 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564 BNX2X_ERR("DMAE timeout!\n");
565 rc = DMAE_TIMEOUT;
566 goto unlock;
567 }
568 cnt--;
569 udelay(50);
570 }
571 if (*comp & DMAE_PCI_ERR_FLAG) {
572 BNX2X_ERR("DMAE PCI error!\n");
573 rc = DMAE_PCI_ERROR;
574 }
575
576 unlock:
577
578 spin_unlock_bh(&bp->dmae_lock);
579
580 return rc;
581 }
582
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584 u32 len32)
585 {
586 int rc;
587 struct dmae_command dmae;
588
589 if (!bp->dmae_ready) {
590 u32 *data = bnx2x_sp(bp, wb_data[0]);
591
592 if (CHIP_IS_E1(bp))
593 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594 else
595 bnx2x_init_str_wr(bp, dst_addr, data, len32);
596 return;
597 }
598
599 /* set opcode and fixed command fields */
600 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601
602 /* fill in addresses and len */
603 dmae.src_addr_lo = U64_LO(dma_addr);
604 dmae.src_addr_hi = U64_HI(dma_addr);
605 dmae.dst_addr_lo = dst_addr >> 2;
606 dmae.dst_addr_hi = 0;
607 dmae.len = len32;
608
609 /* issue the command and wait for completion */
610 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611 if (rc) {
612 BNX2X_ERR("DMAE returned failure %d\n", rc);
613 #ifdef BNX2X_STOP_ON_ERROR
614 bnx2x_panic();
615 #endif
616 }
617 }
618
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620 {
621 int rc;
622 struct dmae_command dmae;
623
624 if (!bp->dmae_ready) {
625 u32 *data = bnx2x_sp(bp, wb_data[0]);
626 int i;
627
628 if (CHIP_IS_E1(bp))
629 for (i = 0; i < len32; i++)
630 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631 else
632 for (i = 0; i < len32; i++)
633 data[i] = REG_RD(bp, src_addr + i*4);
634
635 return;
636 }
637
638 /* set opcode and fixed command fields */
639 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640
641 /* fill in addresses and len */
642 dmae.src_addr_lo = src_addr >> 2;
643 dmae.src_addr_hi = 0;
644 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646 dmae.len = len32;
647
648 /* issue the command and wait for completion */
649 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650 if (rc) {
651 BNX2X_ERR("DMAE returned failure %d\n", rc);
652 #ifdef BNX2X_STOP_ON_ERROR
653 bnx2x_panic();
654 #endif
655 }
656 }
657
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659 u32 addr, u32 len)
660 {
661 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662 int offset = 0;
663
664 while (len > dmae_wr_max) {
665 bnx2x_write_dmae(bp, phys_addr + offset,
666 addr + offset, dmae_wr_max);
667 offset += dmae_wr_max * 4;
668 len -= dmae_wr_max;
669 }
670
671 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672 }
673
674 enum storms {
675 XSTORM,
676 TSTORM,
677 CSTORM,
678 USTORM,
679 MAX_STORMS
680 };
681
682 #define STORMS_NUM 4
683 #define REGS_IN_ENTRY 4
684
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686 enum storms storm,
687 int entry)
688 {
689 switch (storm) {
690 case XSTORM:
691 return XSTORM_ASSERT_LIST_OFFSET(entry);
692 case TSTORM:
693 return TSTORM_ASSERT_LIST_OFFSET(entry);
694 case CSTORM:
695 return CSTORM_ASSERT_LIST_OFFSET(entry);
696 case USTORM:
697 return USTORM_ASSERT_LIST_OFFSET(entry);
698 case MAX_STORMS:
699 default:
700 BNX2X_ERR("unknown storm\n");
701 }
702 return -EINVAL;
703 }
704
bnx2x_mc_assert(struct bnx2x * bp)705 static int bnx2x_mc_assert(struct bnx2x *bp)
706 {
707 char last_idx;
708 int i, j, rc = 0;
709 enum storms storm;
710 u32 regs[REGS_IN_ENTRY];
711 u32 bar_storm_intmem[STORMS_NUM] = {
712 BAR_XSTRORM_INTMEM,
713 BAR_TSTRORM_INTMEM,
714 BAR_CSTRORM_INTMEM,
715 BAR_USTRORM_INTMEM
716 };
717 u32 storm_assert_list_index[STORMS_NUM] = {
718 XSTORM_ASSERT_LIST_INDEX_OFFSET,
719 TSTORM_ASSERT_LIST_INDEX_OFFSET,
720 CSTORM_ASSERT_LIST_INDEX_OFFSET,
721 USTORM_ASSERT_LIST_INDEX_OFFSET
722 };
723 char *storms_string[STORMS_NUM] = {
724 "XSTORM",
725 "TSTORM",
726 "CSTORM",
727 "USTORM"
728 };
729
730 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732 storm_assert_list_index[storm]);
733 if (last_idx)
734 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735 storms_string[storm], last_idx);
736
737 /* print the asserts */
738 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739 /* read a single assert entry */
740 for (j = 0; j < REGS_IN_ENTRY; j++)
741 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742 bnx2x_get_assert_list_entry(bp,
743 storm,
744 i) +
745 sizeof(u32) * j);
746
747 /* log entry if it contains a valid assert */
748 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750 storms_string[storm], i, regs[3],
751 regs[2], regs[1], regs[0]);
752 rc++;
753 } else {
754 break;
755 }
756 }
757 }
758
759 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760 CHIP_IS_E1(bp) ? "everest1" :
761 CHIP_IS_E1H(bp) ? "everest1h" :
762 CHIP_IS_E2(bp) ? "everest2" : "everest3",
763 bp->fw_major, bp->fw_minor, bp->fw_rev);
764
765 return rc;
766 }
767
768 #define MCPR_TRACE_BUFFER_SIZE (0x800)
769 #define SCRATCH_BUFFER_SIZE(bp) \
770 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773 {
774 u32 addr, val;
775 u32 mark, offset;
776 __be32 data[9];
777 int word;
778 u32 trace_shmem_base;
779 if (BP_NOMCP(bp)) {
780 BNX2X_ERR("NO MCP - can not dump\n");
781 return;
782 }
783 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784 (bp->common.bc_ver & 0xff0000) >> 16,
785 (bp->common.bc_ver & 0xff00) >> 8,
786 (bp->common.bc_ver & 0xff));
787
788 if (pci_channel_offline(bp->pdev)) {
789 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790 return;
791 }
792
793 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796
797 if (BP_PATH(bp) == 0)
798 trace_shmem_base = bp->common.shmem_base;
799 else
800 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801
802 /* sanity */
803 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805 SCRATCH_BUFFER_SIZE(bp)) {
806 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807 trace_shmem_base);
808 return;
809 }
810
811 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812
813 /* validate TRCB signature */
814 mark = REG_RD(bp, addr);
815 if (mark != MFW_TRACE_SIGNATURE) {
816 BNX2X_ERR("Trace buffer signature is missing.");
817 return ;
818 }
819
820 /* read cyclic buffer pointer */
821 addr += 4;
822 mark = REG_RD(bp, addr);
823 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824 if (mark >= trace_shmem_base || mark < addr + 4) {
825 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826 return;
827 }
828 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829
830 printk("%s", lvl);
831
832 /* dump buffer after the mark */
833 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834 for (word = 0; word < 8; word++)
835 data[word] = htonl(REG_RD(bp, offset + 4*word));
836 data[8] = 0x0;
837 pr_cont("%s", (char *)data);
838 }
839
840 /* dump buffer before the mark */
841 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842 for (word = 0; word < 8; word++)
843 data[word] = htonl(REG_RD(bp, offset + 4*word));
844 data[8] = 0x0;
845 pr_cont("%s", (char *)data);
846 }
847 printk("%s" "end of fw dump\n", lvl);
848 }
849
bnx2x_fw_dump(struct bnx2x * bp)850 static void bnx2x_fw_dump(struct bnx2x *bp)
851 {
852 bnx2x_fw_dump_lvl(bp, KERN_ERR);
853 }
854
bnx2x_hc_int_disable(struct bnx2x * bp)855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 {
857 int port = BP_PORT(bp);
858 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859 u32 val = REG_RD(bp, addr);
860
861 /* in E1 we must use only PCI configuration space to disable
862 * MSI/MSIX capability
863 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864 */
865 if (CHIP_IS_E1(bp)) {
866 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867 * Use mask register to prevent from HC sending interrupts
868 * after we exit the function
869 */
870 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871
872 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873 HC_CONFIG_0_REG_INT_LINE_EN_0 |
874 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875 } else
876 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878 HC_CONFIG_0_REG_INT_LINE_EN_0 |
879 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880
881 DP(NETIF_MSG_IFDOWN,
882 "write %x to HC %d (addr 0x%x)\n",
883 val, port, addr);
884
885 REG_WR(bp, addr, val);
886 if (REG_RD(bp, addr) != val)
887 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888 }
889
bnx2x_igu_int_disable(struct bnx2x * bp)890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 {
892 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893
894 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895 IGU_PF_CONF_INT_LINE_EN |
896 IGU_PF_CONF_ATTN_BIT_EN);
897
898 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899
900 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 }
904
bnx2x_int_disable(struct bnx2x * bp)905 static void bnx2x_int_disable(struct bnx2x *bp)
906 {
907 if (bp->common.int_block == INT_BLOCK_HC)
908 bnx2x_hc_int_disable(bp);
909 else
910 bnx2x_igu_int_disable(bp);
911 }
912
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914 {
915 int i;
916 u16 j;
917 struct hc_sp_status_block_data sp_sb_data;
918 int func = BP_FUNC(bp);
919 #ifdef BNX2X_STOP_ON_ERROR
920 u16 start = 0, end = 0;
921 u8 cos;
922 #endif
923 if (IS_PF(bp) && disable_int)
924 bnx2x_int_disable(bp);
925
926 bp->stats_state = STATS_STATE_DISABLED;
927 bp->eth_stats.unrecoverable_error++;
928 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929
930 BNX2X_ERR("begin crash dump -----------------\n");
931
932 /* Indices */
933 /* Common */
934 if (IS_PF(bp)) {
935 struct host_sp_status_block *def_sb = bp->def_status_blk;
936 int data_size, cstorm_offset;
937
938 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939 bp->def_idx, bp->def_att_idx, bp->attn_state,
940 bp->spq_prod_idx, bp->stats_counter);
941 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
942 def_sb->atten_status_block.attn_bits,
943 def_sb->atten_status_block.attn_bits_ack,
944 def_sb->atten_status_block.status_block_id,
945 def_sb->atten_status_block.attn_bits_index);
946 BNX2X_ERR(" def (");
947 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948 pr_cont("0x%x%s",
949 def_sb->sp_sb.index_values[i],
950 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
951
952 data_size = sizeof(struct hc_sp_status_block_data) /
953 sizeof(u32);
954 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955 for (i = 0; i < data_size; i++)
956 *((u32 *)&sp_sb_data + i) =
957 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958 i * sizeof(u32));
959
960 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
961 sp_sb_data.igu_sb_id,
962 sp_sb_data.igu_seg_id,
963 sp_sb_data.p_func.pf_id,
964 sp_sb_data.p_func.vnic_id,
965 sp_sb_data.p_func.vf_id,
966 sp_sb_data.p_func.vf_valid,
967 sp_sb_data.state);
968 }
969
970 for_each_eth_queue(bp, i) {
971 struct bnx2x_fastpath *fp = &bp->fp[i];
972 int loop;
973 struct hc_status_block_data_e2 sb_data_e2;
974 struct hc_status_block_data_e1x sb_data_e1x;
975 struct hc_status_block_sm *hc_sm_p =
976 CHIP_IS_E1x(bp) ?
977 sb_data_e1x.common.state_machine :
978 sb_data_e2.common.state_machine;
979 struct hc_index_data *hc_index_p =
980 CHIP_IS_E1x(bp) ?
981 sb_data_e1x.index_data :
982 sb_data_e2.index_data;
983 u8 data_size, cos;
984 u32 *sb_data_p;
985 struct bnx2x_fp_txdata txdata;
986
987 if (!bp->fp)
988 break;
989
990 if (!fp->rx_cons_sb)
991 continue;
992
993 /* Rx */
994 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
995 i, fp->rx_bd_prod, fp->rx_bd_cons,
996 fp->rx_comp_prod,
997 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
999 fp->rx_sge_prod, fp->last_max_sge,
1000 le16_to_cpu(fp->fp_hc_idx));
1001
1002 /* Tx */
1003 for_each_cos_in_tx_queue(fp, cos)
1004 {
1005 if (!fp->txdata_ptr[cos])
1006 break;
1007
1008 txdata = *fp->txdata_ptr[cos];
1009
1010 if (!txdata.tx_cons_sb)
1011 continue;
1012
1013 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1014 i, txdata.tx_pkt_prod,
1015 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016 txdata.tx_bd_cons,
1017 le16_to_cpu(*txdata.tx_cons_sb));
1018 }
1019
1020 loop = CHIP_IS_E1x(bp) ?
1021 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022
1023 /* host sb data */
1024
1025 if (IS_FCOE_FP(fp))
1026 continue;
1027
1028 BNX2X_ERR(" run indexes (");
1029 for (j = 0; j < HC_SB_MAX_SM; j++)
1030 pr_cont("0x%x%s",
1031 fp->sb_running_index[j],
1032 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033
1034 BNX2X_ERR(" indexes (");
1035 for (j = 0; j < loop; j++)
1036 pr_cont("0x%x%s",
1037 fp->sb_index_values[j],
1038 (j == loop - 1) ? ")" : " ");
1039
1040 /* VF cannot access FW refelection for status block */
1041 if (IS_VF(bp))
1042 continue;
1043
1044 /* fw sb data */
1045 data_size = CHIP_IS_E1x(bp) ?
1046 sizeof(struct hc_status_block_data_e1x) :
1047 sizeof(struct hc_status_block_data_e2);
1048 data_size /= sizeof(u32);
1049 sb_data_p = CHIP_IS_E1x(bp) ?
1050 (u32 *)&sb_data_e1x :
1051 (u32 *)&sb_data_e2;
1052 /* copy sb data in here */
1053 for (j = 0; j < data_size; j++)
1054 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056 j * sizeof(u32));
1057
1058 if (!CHIP_IS_E1x(bp)) {
1059 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1060 sb_data_e2.common.p_func.pf_id,
1061 sb_data_e2.common.p_func.vf_id,
1062 sb_data_e2.common.p_func.vf_valid,
1063 sb_data_e2.common.p_func.vnic_id,
1064 sb_data_e2.common.same_igu_sb_1b,
1065 sb_data_e2.common.state);
1066 } else {
1067 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1068 sb_data_e1x.common.p_func.pf_id,
1069 sb_data_e1x.common.p_func.vf_id,
1070 sb_data_e1x.common.p_func.vf_valid,
1071 sb_data_e1x.common.p_func.vnic_id,
1072 sb_data_e1x.common.same_igu_sb_1b,
1073 sb_data_e1x.common.state);
1074 }
1075
1076 /* SB_SMs data */
1077 for (j = 0; j < HC_SB_MAX_SM; j++) {
1078 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079 j, hc_sm_p[j].__flags,
1080 hc_sm_p[j].igu_sb_id,
1081 hc_sm_p[j].igu_seg_id,
1082 hc_sm_p[j].time_to_expire,
1083 hc_sm_p[j].timer_value);
1084 }
1085
1086 /* Indices data */
1087 for (j = 0; j < loop; j++) {
1088 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089 hc_index_p[j].flags,
1090 hc_index_p[j].timeout);
1091 }
1092 }
1093
1094 #ifdef BNX2X_STOP_ON_ERROR
1095 if (IS_PF(bp)) {
1096 /* event queue */
1097 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098 for (i = 0; i < NUM_EQ_DESC; i++) {
1099 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100
1101 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102 i, bp->eq_ring[i].message.opcode,
1103 bp->eq_ring[i].message.error);
1104 BNX2X_ERR("data: %x %x %x\n",
1105 data[0], data[1], data[2]);
1106 }
1107 }
1108
1109 /* Rings */
1110 /* Rx */
1111 for_each_valid_rx_queue(bp, i) {
1112 struct bnx2x_fastpath *fp = &bp->fp[i];
1113
1114 if (!bp->fp)
1115 break;
1116
1117 if (!fp->rx_cons_sb)
1118 continue;
1119
1120 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122 for (j = start; j != end; j = RX_BD(j + 1)) {
1123 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125
1126 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1127 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128 }
1129
1130 start = RX_SGE(fp->rx_sge_prod);
1131 end = RX_SGE(fp->last_max_sge);
1132 for (j = start; j != end; j = RX_SGE(j + 1)) {
1133 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135
1136 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1137 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138 }
1139
1140 start = RCQ_BD(fp->rx_comp_cons - 10);
1141 end = RCQ_BD(fp->rx_comp_cons + 503);
1142 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144
1145 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147 }
1148 }
1149
1150 /* Tx */
1151 for_each_valid_tx_queue(bp, i) {
1152 struct bnx2x_fastpath *fp = &bp->fp[i];
1153
1154 if (!bp->fp)
1155 break;
1156
1157 for_each_cos_in_tx_queue(fp, cos) {
1158 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159
1160 if (!fp->txdata_ptr[cos])
1161 break;
1162
1163 if (!txdata->tx_cons_sb)
1164 continue;
1165
1166 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168 for (j = start; j != end; j = TX_BD(j + 1)) {
1169 struct sw_tx_bd *sw_bd =
1170 &txdata->tx_buf_ring[j];
1171
1172 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173 i, cos, j, sw_bd->skb,
1174 sw_bd->first_bd);
1175 }
1176
1177 start = TX_BD(txdata->tx_bd_cons - 10);
1178 end = TX_BD(txdata->tx_bd_cons + 254);
1179 for (j = start; j != end; j = TX_BD(j + 1)) {
1180 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181
1182 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183 i, cos, j, tx_bd[0], tx_bd[1],
1184 tx_bd[2], tx_bd[3]);
1185 }
1186 }
1187 }
1188 #endif
1189 if (IS_PF(bp)) {
1190 int tmp_msg_en = bp->msg_enable;
1191
1192 bnx2x_fw_dump(bp);
1193 bp->msg_enable |= NETIF_MSG_HW;
1194 BNX2X_ERR("Idle check (1st round) ----------\n");
1195 bnx2x_idle_chk(bp);
1196 BNX2X_ERR("Idle check (2nd round) ----------\n");
1197 bnx2x_idle_chk(bp);
1198 bp->msg_enable = tmp_msg_en;
1199 bnx2x_mc_assert(bp);
1200 }
1201
1202 BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204
1205 /*
1206 * FLR Support for E2
1207 *
1208 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209 * initialization.
1210 */
1211 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL 50 /* usec */
1213 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214
1215 struct pbf_pN_buf_regs {
1216 int pN;
1217 u32 init_crd;
1218 u32 crd;
1219 u32 crd_freed;
1220 };
1221
1222 struct pbf_pN_cmd_regs {
1223 int pN;
1224 u32 lines_occup;
1225 u32 lines_freed;
1226 };
1227
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229 struct pbf_pN_buf_regs *regs,
1230 u32 poll_count)
1231 {
1232 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233 u32 cur_cnt = poll_count;
1234
1235 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236 crd = crd_start = REG_RD(bp, regs->crd);
1237 init_crd = REG_RD(bp, regs->init_crd);
1238
1239 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1241 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242
1243 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244 (init_crd - crd_start))) {
1245 if (cur_cnt--) {
1246 udelay(FLR_WAIT_INTERVAL);
1247 crd = REG_RD(bp, regs->crd);
1248 crd_freed = REG_RD(bp, regs->crd_freed);
1249 } else {
1250 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251 regs->pN);
1252 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1253 regs->pN, crd);
1254 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255 regs->pN, crd_freed);
1256 break;
1257 }
1258 }
1259 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264 struct pbf_pN_cmd_regs *regs,
1265 u32 poll_count)
1266 {
1267 u32 occup, to_free, freed, freed_start;
1268 u32 cur_cnt = poll_count;
1269
1270 occup = to_free = REG_RD(bp, regs->lines_occup);
1271 freed = freed_start = REG_RD(bp, regs->lines_freed);
1272
1273 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1274 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275
1276 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277 if (cur_cnt--) {
1278 udelay(FLR_WAIT_INTERVAL);
1279 occup = REG_RD(bp, regs->lines_occup);
1280 freed = REG_RD(bp, regs->lines_freed);
1281 } else {
1282 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283 regs->pN);
1284 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1285 regs->pN, occup);
1286 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287 regs->pN, freed);
1288 break;
1289 }
1290 }
1291 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296 u32 expected, u32 poll_count)
1297 {
1298 u32 cur_cnt = poll_count;
1299 u32 val;
1300
1301 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302 udelay(FLR_WAIT_INTERVAL);
1303
1304 return val;
1305 }
1306
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308 char *msg, u32 poll_cnt)
1309 {
1310 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311 if (val != 0) {
1312 BNX2X_ERR("%s usage count=%d\n", msg, val);
1313 return 1;
1314 }
1315 return 0;
1316 }
1317
1318 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321 /* adjust polling timeout */
1322 if (CHIP_REV_IS_EMUL(bp))
1323 return FLR_POLL_CNT * 2000;
1324
1325 if (CHIP_REV_IS_FPGA(bp))
1326 return FLR_POLL_CNT * 120;
1327
1328 return FLR_POLL_CNT;
1329 }
1330
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333 struct pbf_pN_cmd_regs cmd_regs[] = {
1334 {0, (CHIP_IS_E3B0(bp)) ?
1335 PBF_REG_TQ_OCCUPANCY_Q0 :
1336 PBF_REG_P0_TQ_OCCUPANCY,
1337 (CHIP_IS_E3B0(bp)) ?
1338 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339 PBF_REG_P0_TQ_LINES_FREED_CNT},
1340 {1, (CHIP_IS_E3B0(bp)) ?
1341 PBF_REG_TQ_OCCUPANCY_Q1 :
1342 PBF_REG_P1_TQ_OCCUPANCY,
1343 (CHIP_IS_E3B0(bp)) ?
1344 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345 PBF_REG_P1_TQ_LINES_FREED_CNT},
1346 {4, (CHIP_IS_E3B0(bp)) ?
1347 PBF_REG_TQ_OCCUPANCY_LB_Q :
1348 PBF_REG_P4_TQ_OCCUPANCY,
1349 (CHIP_IS_E3B0(bp)) ?
1350 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351 PBF_REG_P4_TQ_LINES_FREED_CNT}
1352 };
1353
1354 struct pbf_pN_buf_regs buf_regs[] = {
1355 {0, (CHIP_IS_E3B0(bp)) ?
1356 PBF_REG_INIT_CRD_Q0 :
1357 PBF_REG_P0_INIT_CRD ,
1358 (CHIP_IS_E3B0(bp)) ?
1359 PBF_REG_CREDIT_Q0 :
1360 PBF_REG_P0_CREDIT,
1361 (CHIP_IS_E3B0(bp)) ?
1362 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364 {1, (CHIP_IS_E3B0(bp)) ?
1365 PBF_REG_INIT_CRD_Q1 :
1366 PBF_REG_P1_INIT_CRD,
1367 (CHIP_IS_E3B0(bp)) ?
1368 PBF_REG_CREDIT_Q1 :
1369 PBF_REG_P1_CREDIT,
1370 (CHIP_IS_E3B0(bp)) ?
1371 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373 {4, (CHIP_IS_E3B0(bp)) ?
1374 PBF_REG_INIT_CRD_LB_Q :
1375 PBF_REG_P4_INIT_CRD,
1376 (CHIP_IS_E3B0(bp)) ?
1377 PBF_REG_CREDIT_LB_Q :
1378 PBF_REG_P4_CREDIT,
1379 (CHIP_IS_E3B0(bp)) ?
1380 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382 };
1383
1384 int i;
1385
1386 /* Verify the command queues are flushed P0, P1, P4 */
1387 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389
1390 /* Verify the transmission buffers are flushed P0, P1, P4 */
1391 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394
1395 #define OP_GEN_PARAM(param) \
1396 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397
1398 #define OP_GEN_TYPE(type) \
1399 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400
1401 #define OP_GEN_AGG_VECT(index) \
1402 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406 u32 op_gen_command = 0;
1407 u32 comp_addr = BAR_CSTRORM_INTMEM +
1408 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409 int ret = 0;
1410
1411 if (REG_RD(bp, comp_addr)) {
1412 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1413 return 1;
1414 }
1415
1416 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1417 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1418 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1419 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1420
1421 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1422 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1423
1424 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1425 BNX2X_ERR("FW final cleanup did not succeed\n");
1426 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1427 (REG_RD(bp, comp_addr)));
1428 bnx2x_panic();
1429 return 1;
1430 }
1431 /* Zero completion for next FLR */
1432 REG_WR(bp, comp_addr, 0);
1433
1434 return ret;
1435 }
1436
bnx2x_is_pcie_pending(struct pci_dev * dev)1437 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1438 {
1439 u16 status;
1440
1441 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1442 return status & PCI_EXP_DEVSTA_TRPND;
1443 }
1444
1445 /* PF FLR specific routines
1446 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1447 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1448 {
1449 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1450 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451 CFC_REG_NUM_LCIDS_INSIDE_PF,
1452 "CFC PF usage counter timed out",
1453 poll_cnt))
1454 return 1;
1455
1456 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1457 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458 DORQ_REG_PF_USAGE_CNT,
1459 "DQ PF usage counter timed out",
1460 poll_cnt))
1461 return 1;
1462
1463 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1464 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1465 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1466 "QM PF usage counter timed out",
1467 poll_cnt))
1468 return 1;
1469
1470 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1471 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1472 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1473 "Timers VNIC usage counter timed out",
1474 poll_cnt))
1475 return 1;
1476 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1477 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1478 "Timers NUM_SCANS usage counter timed out",
1479 poll_cnt))
1480 return 1;
1481
1482 /* Wait DMAE PF usage counter to zero */
1483 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1484 dmae_reg_go_c[INIT_DMAE_C(bp)],
1485 "DMAE command register timed out",
1486 poll_cnt))
1487 return 1;
1488
1489 return 0;
1490 }
1491
bnx2x_hw_enable_status(struct bnx2x * bp)1492 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1493 {
1494 u32 val;
1495
1496 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1497 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1498
1499 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1500 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1501
1502 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1503 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1504
1505 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1506 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1507
1508 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1509 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1510
1511 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1512 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1513
1514 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1515 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1516
1517 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1518 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1519 val);
1520 }
1521
bnx2x_pf_flr_clnup(struct bnx2x * bp)1522 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1523 {
1524 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1525
1526 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1527
1528 /* Re-enable PF target read access */
1529 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1530
1531 /* Poll HW usage counters */
1532 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1533 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1534 return -EBUSY;
1535
1536 /* Zero the igu 'trailing edge' and 'leading edge' */
1537
1538 /* Send the FW cleanup command */
1539 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1540 return -EBUSY;
1541
1542 /* ATC cleanup */
1543
1544 /* Verify TX hw is flushed */
1545 bnx2x_tx_hw_flushed(bp, poll_cnt);
1546
1547 /* Wait 100ms (not adjusted according to platform) */
1548 msleep(100);
1549
1550 /* Verify no pending pci transactions */
1551 if (bnx2x_is_pcie_pending(bp->pdev))
1552 BNX2X_ERR("PCIE Transactions still pending\n");
1553
1554 /* Debug */
1555 bnx2x_hw_enable_status(bp);
1556
1557 /*
1558 * Master enable - Due to WB DMAE writes performed before this
1559 * register is re-initialized as part of the regular function init
1560 */
1561 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1562
1563 return 0;
1564 }
1565
bnx2x_hc_int_enable(struct bnx2x * bp)1566 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1567 {
1568 int port = BP_PORT(bp);
1569 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1570 u32 val = REG_RD(bp, addr);
1571 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1572 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1573 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1574
1575 if (msix) {
1576 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1577 HC_CONFIG_0_REG_INT_LINE_EN_0);
1578 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1580 if (single_msix)
1581 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1582 } else if (msi) {
1583 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1584 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1585 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1586 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1587 } else {
1588 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1589 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1590 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1591 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1592
1593 if (!CHIP_IS_E1(bp)) {
1594 DP(NETIF_MSG_IFUP,
1595 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1596
1597 REG_WR(bp, addr, val);
1598
1599 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1600 }
1601 }
1602
1603 if (CHIP_IS_E1(bp))
1604 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1605
1606 DP(NETIF_MSG_IFUP,
1607 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1608 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1609
1610 REG_WR(bp, addr, val);
1611 /*
1612 * Ensure that HC_CONFIG is written before leading/trailing edge config
1613 */
1614 barrier();
1615
1616 if (!CHIP_IS_E1(bp)) {
1617 /* init leading/trailing edge */
1618 if (IS_MF(bp)) {
1619 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1620 if (bp->port.pmf)
1621 /* enable nig and gpio3 attention */
1622 val |= 0x1100;
1623 } else
1624 val = 0xffff;
1625
1626 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1627 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1628 }
1629 }
1630
bnx2x_igu_int_enable(struct bnx2x * bp)1631 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1632 {
1633 u32 val;
1634 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1635 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1636 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1637
1638 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1639
1640 if (msix) {
1641 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1642 IGU_PF_CONF_SINGLE_ISR_EN);
1643 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1644 IGU_PF_CONF_ATTN_BIT_EN);
1645
1646 if (single_msix)
1647 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1648 } else if (msi) {
1649 val &= ~IGU_PF_CONF_INT_LINE_EN;
1650 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1651 IGU_PF_CONF_ATTN_BIT_EN |
1652 IGU_PF_CONF_SINGLE_ISR_EN);
1653 } else {
1654 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1655 val |= (IGU_PF_CONF_INT_LINE_EN |
1656 IGU_PF_CONF_ATTN_BIT_EN |
1657 IGU_PF_CONF_SINGLE_ISR_EN);
1658 }
1659
1660 /* Clean previous status - need to configure igu prior to ack*/
1661 if ((!msix) || single_msix) {
1662 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1663 bnx2x_ack_int(bp);
1664 }
1665
1666 val |= IGU_PF_CONF_FUNC_EN;
1667
1668 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1669 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1670
1671 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1672
1673 if (val & IGU_PF_CONF_INT_LINE_EN)
1674 pci_intx(bp->pdev, true);
1675
1676 barrier();
1677
1678 /* init leading/trailing edge */
1679 if (IS_MF(bp)) {
1680 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1681 if (bp->port.pmf)
1682 /* enable nig and gpio3 attention */
1683 val |= 0x1100;
1684 } else
1685 val = 0xffff;
1686
1687 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1688 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1689 }
1690
bnx2x_int_enable(struct bnx2x * bp)1691 void bnx2x_int_enable(struct bnx2x *bp)
1692 {
1693 if (bp->common.int_block == INT_BLOCK_HC)
1694 bnx2x_hc_int_enable(bp);
1695 else
1696 bnx2x_igu_int_enable(bp);
1697 }
1698
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1699 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1700 {
1701 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1702 int i, offset;
1703
1704 if (disable_hw)
1705 /* prevent the HW from sending interrupts */
1706 bnx2x_int_disable(bp);
1707
1708 /* make sure all ISRs are done */
1709 if (msix) {
1710 synchronize_irq(bp->msix_table[0].vector);
1711 offset = 1;
1712 if (CNIC_SUPPORT(bp))
1713 offset++;
1714 for_each_eth_queue(bp, i)
1715 synchronize_irq(bp->msix_table[offset++].vector);
1716 } else
1717 synchronize_irq(bp->pdev->irq);
1718
1719 /* make sure sp_task is not running */
1720 cancel_delayed_work(&bp->sp_task);
1721 cancel_delayed_work(&bp->period_task);
1722 flush_workqueue(bnx2x_wq);
1723 }
1724
1725 /* fast path */
1726
1727 /*
1728 * General service functions
1729 */
1730
1731 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1732 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1733 {
1734 u32 lock_status;
1735 u32 resource_bit = (1 << resource);
1736 int func = BP_FUNC(bp);
1737 u32 hw_lock_control_reg;
1738
1739 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1740 "Trying to take a lock on resource %d\n", resource);
1741
1742 /* Validating that the resource is within range */
1743 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1744 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1746 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1747 return false;
1748 }
1749
1750 if (func <= 5)
1751 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1752 else
1753 hw_lock_control_reg =
1754 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1755
1756 /* Try to acquire the lock */
1757 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1758 lock_status = REG_RD(bp, hw_lock_control_reg);
1759 if (lock_status & resource_bit)
1760 return true;
1761
1762 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1763 "Failed to get a lock on resource %d\n", resource);
1764 return false;
1765 }
1766
1767 /**
1768 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1769 *
1770 * @bp: driver handle
1771 *
1772 * Returns the recovery leader resource id according to the engine this function
1773 * belongs to. Currently only only 2 engines is supported.
1774 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1775 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1776 {
1777 if (BP_PATH(bp))
1778 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1779 else
1780 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1781 }
1782
1783 /**
1784 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1785 *
1786 * @bp: driver handle
1787 *
1788 * Tries to acquire a leader lock for current engine.
1789 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1790 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1791 {
1792 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1793 }
1794
1795 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1796
1797 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1798 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1799 {
1800 /* Set the interrupt occurred bit for the sp-task to recognize it
1801 * must ack the interrupt and transition according to the IGU
1802 * state machine.
1803 */
1804 atomic_set(&bp->interrupt_occurred, 1);
1805
1806 /* The sp_task must execute only after this bit
1807 * is set, otherwise we will get out of sync and miss all
1808 * further interrupts. Hence, the barrier.
1809 */
1810 smp_wmb();
1811
1812 /* schedule sp_task to workqueue */
1813 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1814 }
1815
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1816 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1817 {
1818 struct bnx2x *bp = fp->bp;
1819 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1821 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1822 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1823
1824 DP(BNX2X_MSG_SP,
1825 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1826 fp->index, cid, command, bp->state,
1827 rr_cqe->ramrod_cqe.ramrod_type);
1828
1829 /* If cid is within VF range, replace the slowpath object with the
1830 * one corresponding to this VF
1831 */
1832 if (cid >= BNX2X_FIRST_VF_CID &&
1833 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1834 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1835
1836 switch (command) {
1837 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1838 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1839 drv_cmd = BNX2X_Q_CMD_UPDATE;
1840 break;
1841
1842 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1843 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1844 drv_cmd = BNX2X_Q_CMD_SETUP;
1845 break;
1846
1847 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1848 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1849 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1850 break;
1851
1852 case (RAMROD_CMD_ID_ETH_HALT):
1853 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1854 drv_cmd = BNX2X_Q_CMD_HALT;
1855 break;
1856
1857 case (RAMROD_CMD_ID_ETH_TERMINATE):
1858 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1859 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1860 break;
1861
1862 case (RAMROD_CMD_ID_ETH_EMPTY):
1863 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1864 drv_cmd = BNX2X_Q_CMD_EMPTY;
1865 break;
1866
1867 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1868 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1869 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1870 break;
1871
1872 default:
1873 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1874 command, fp->index);
1875 return;
1876 }
1877
1878 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1879 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1880 /* q_obj->complete_cmd() failure means that this was
1881 * an unexpected completion.
1882 *
1883 * In this case we don't want to increase the bp->spq_left
1884 * because apparently we haven't sent this command the first
1885 * place.
1886 */
1887 #ifdef BNX2X_STOP_ON_ERROR
1888 bnx2x_panic();
1889 #else
1890 return;
1891 #endif
1892
1893 smp_mb__before_atomic();
1894 atomic_inc(&bp->cq_spq_left);
1895 /* push the change in bp->spq_left and towards the memory */
1896 smp_mb__after_atomic();
1897
1898 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1899
1900 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1901 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1902 /* if Q update ramrod is completed for last Q in AFEX vif set
1903 * flow, then ACK MCP at the end
1904 *
1905 * mark pending ACK to MCP bit.
1906 * prevent case that both bits are cleared.
1907 * At the end of load/unload driver checks that
1908 * sp_state is cleared, and this order prevents
1909 * races
1910 */
1911 smp_mb__before_atomic();
1912 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1913 wmb();
1914 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1915 smp_mb__after_atomic();
1916
1917 /* schedule the sp task as mcp ack is required */
1918 bnx2x_schedule_sp_task(bp);
1919 }
1920
1921 return;
1922 }
1923
bnx2x_interrupt(int irq,void * dev_instance)1924 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1925 {
1926 struct bnx2x *bp = netdev_priv(dev_instance);
1927 u16 status = bnx2x_ack_int(bp);
1928 u16 mask;
1929 int i;
1930 u8 cos;
1931
1932 /* Return here if interrupt is shared and it's not for us */
1933 if (unlikely(status == 0)) {
1934 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1935 return IRQ_NONE;
1936 }
1937 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1938
1939 #ifdef BNX2X_STOP_ON_ERROR
1940 if (unlikely(bp->panic))
1941 return IRQ_HANDLED;
1942 #endif
1943
1944 for_each_eth_queue(bp, i) {
1945 struct bnx2x_fastpath *fp = &bp->fp[i];
1946
1947 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1948 if (status & mask) {
1949 /* Handle Rx or Tx according to SB id */
1950 for_each_cos_in_tx_queue(fp, cos)
1951 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1952 prefetch(&fp->sb_running_index[SM_RX_ID]);
1953 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1954 status &= ~mask;
1955 }
1956 }
1957
1958 if (CNIC_SUPPORT(bp)) {
1959 mask = 0x2;
1960 if (status & (mask | 0x1)) {
1961 struct cnic_ops *c_ops = NULL;
1962
1963 rcu_read_lock();
1964 c_ops = rcu_dereference(bp->cnic_ops);
1965 if (c_ops && (bp->cnic_eth_dev.drv_state &
1966 CNIC_DRV_STATE_HANDLES_IRQ))
1967 c_ops->cnic_handler(bp->cnic_data, NULL);
1968 rcu_read_unlock();
1969
1970 status &= ~mask;
1971 }
1972 }
1973
1974 if (unlikely(status & 0x1)) {
1975
1976 /* schedule sp task to perform default status block work, ack
1977 * attentions and enable interrupts.
1978 */
1979 bnx2x_schedule_sp_task(bp);
1980
1981 status &= ~0x1;
1982 if (!status)
1983 return IRQ_HANDLED;
1984 }
1985
1986 if (unlikely(status))
1987 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1988 status);
1989
1990 return IRQ_HANDLED;
1991 }
1992
1993 /* Link */
1994
1995 /*
1996 * General service functions
1997 */
1998
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1999 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
2000 {
2001 u32 lock_status;
2002 u32 resource_bit = (1 << resource);
2003 int func = BP_FUNC(bp);
2004 u32 hw_lock_control_reg;
2005 int cnt;
2006
2007 /* Validating that the resource is within range */
2008 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2009 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2010 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2011 return -EINVAL;
2012 }
2013
2014 if (func <= 5) {
2015 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2016 } else {
2017 hw_lock_control_reg =
2018 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2019 }
2020
2021 /* Validating that the resource is not already taken */
2022 lock_status = REG_RD(bp, hw_lock_control_reg);
2023 if (lock_status & resource_bit) {
2024 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2025 lock_status, resource_bit);
2026 return -EEXIST;
2027 }
2028
2029 /* Try for 5 second every 5ms */
2030 for (cnt = 0; cnt < 1000; cnt++) {
2031 /* Try to acquire the lock */
2032 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2033 lock_status = REG_RD(bp, hw_lock_control_reg);
2034 if (lock_status & resource_bit)
2035 return 0;
2036
2037 usleep_range(5000, 10000);
2038 }
2039 BNX2X_ERR("Timeout\n");
2040 return -EAGAIN;
2041 }
2042
bnx2x_release_leader_lock(struct bnx2x * bp)2043 int bnx2x_release_leader_lock(struct bnx2x *bp)
2044 {
2045 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2046 }
2047
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2048 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2049 {
2050 u32 lock_status;
2051 u32 resource_bit = (1 << resource);
2052 int func = BP_FUNC(bp);
2053 u32 hw_lock_control_reg;
2054
2055 /* Validating that the resource is within range */
2056 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2057 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2058 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2059 return -EINVAL;
2060 }
2061
2062 if (func <= 5) {
2063 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2064 } else {
2065 hw_lock_control_reg =
2066 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2067 }
2068
2069 /* Validating that the resource is currently taken */
2070 lock_status = REG_RD(bp, hw_lock_control_reg);
2071 if (!(lock_status & resource_bit)) {
2072 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2073 lock_status, resource_bit);
2074 return -EFAULT;
2075 }
2076
2077 REG_WR(bp, hw_lock_control_reg, resource_bit);
2078 return 0;
2079 }
2080
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2081 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2082 {
2083 /* The GPIO should be swapped if swap register is set and active */
2084 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2085 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2086 int gpio_shift = gpio_num +
2087 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2088 u32 gpio_mask = (1 << gpio_shift);
2089 u32 gpio_reg;
2090 int value;
2091
2092 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2093 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2094 return -EINVAL;
2095 }
2096
2097 /* read GPIO value */
2098 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2099
2100 /* get the requested pin value */
2101 if ((gpio_reg & gpio_mask) == gpio_mask)
2102 value = 1;
2103 else
2104 value = 0;
2105
2106 return value;
2107 }
2108
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2109 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2110 {
2111 /* The GPIO should be swapped if swap register is set and active */
2112 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2113 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2114 int gpio_shift = gpio_num +
2115 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2116 u32 gpio_mask = (1 << gpio_shift);
2117 u32 gpio_reg;
2118
2119 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2120 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2121 return -EINVAL;
2122 }
2123
2124 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2125 /* read GPIO and mask except the float bits */
2126 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2127
2128 switch (mode) {
2129 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2130 DP(NETIF_MSG_LINK,
2131 "Set GPIO %d (shift %d) -> output low\n",
2132 gpio_num, gpio_shift);
2133 /* clear FLOAT and set CLR */
2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2136 break;
2137
2138 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2139 DP(NETIF_MSG_LINK,
2140 "Set GPIO %d (shift %d) -> output high\n",
2141 gpio_num, gpio_shift);
2142 /* clear FLOAT and set SET */
2143 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2145 break;
2146
2147 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2148 DP(NETIF_MSG_LINK,
2149 "Set GPIO %d (shift %d) -> input\n",
2150 gpio_num, gpio_shift);
2151 /* set FLOAT */
2152 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2153 break;
2154
2155 default:
2156 break;
2157 }
2158
2159 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2160 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2161
2162 return 0;
2163 }
2164
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2165 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2166 {
2167 u32 gpio_reg = 0;
2168 int rc = 0;
2169
2170 /* Any port swapping should be handled by caller. */
2171
2172 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2173 /* read GPIO and mask except the float bits */
2174 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2175 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2176 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2177 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2178
2179 switch (mode) {
2180 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2181 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2182 /* set CLR */
2183 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2184 break;
2185
2186 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2187 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2188 /* set SET */
2189 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2190 break;
2191
2192 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2193 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2194 /* set FLOAT */
2195 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2196 break;
2197
2198 default:
2199 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2200 rc = -EINVAL;
2201 break;
2202 }
2203
2204 if (rc == 0)
2205 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2206
2207 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2208
2209 return rc;
2210 }
2211
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2212 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2213 {
2214 /* The GPIO should be swapped if swap register is set and active */
2215 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2216 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2217 int gpio_shift = gpio_num +
2218 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2219 u32 gpio_mask = (1 << gpio_shift);
2220 u32 gpio_reg;
2221
2222 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2223 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2224 return -EINVAL;
2225 }
2226
2227 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2228 /* read GPIO int */
2229 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2230
2231 switch (mode) {
2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2233 DP(NETIF_MSG_LINK,
2234 "Clear GPIO INT %d (shift %d) -> output low\n",
2235 gpio_num, gpio_shift);
2236 /* clear SET and set CLR */
2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2239 break;
2240
2241 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2242 DP(NETIF_MSG_LINK,
2243 "Set GPIO INT %d (shift %d) -> output high\n",
2244 gpio_num, gpio_shift);
2245 /* clear CLR and set SET */
2246 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2247 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2248 break;
2249
2250 default:
2251 break;
2252 }
2253
2254 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2255 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2256
2257 return 0;
2258 }
2259
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2260 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2261 {
2262 u32 spio_reg;
2263
2264 /* Only 2 SPIOs are configurable */
2265 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2266 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2267 return -EINVAL;
2268 }
2269
2270 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271 /* read SPIO and mask except the float bits */
2272 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2273
2274 switch (mode) {
2275 case MISC_SPIO_OUTPUT_LOW:
2276 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2277 /* clear FLOAT and set CLR */
2278 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2279 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2280 break;
2281
2282 case MISC_SPIO_OUTPUT_HIGH:
2283 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2284 /* clear FLOAT and set SET */
2285 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2286 spio_reg |= (spio << MISC_SPIO_SET_POS);
2287 break;
2288
2289 case MISC_SPIO_INPUT_HI_Z:
2290 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2291 /* set FLOAT */
2292 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2293 break;
2294
2295 default:
2296 break;
2297 }
2298
2299 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2300 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2301
2302 return 0;
2303 }
2304
bnx2x_calc_fc_adv(struct bnx2x * bp)2305 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2306 {
2307 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2308
2309 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2310 ADVERTISED_Pause);
2311 switch (bp->link_vars.ieee_fc &
2312 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2313 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2314 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2315 ADVERTISED_Pause);
2316 break;
2317
2318 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2319 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2320 break;
2321
2322 default:
2323 break;
2324 }
2325 }
2326
bnx2x_set_requested_fc(struct bnx2x * bp)2327 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2328 {
2329 /* Initialize link parameters structure variables
2330 * It is recommended to turn off RX FC for jumbo frames
2331 * for better performance
2332 */
2333 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2334 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2335 else
2336 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2337 }
2338
bnx2x_init_dropless_fc(struct bnx2x * bp)2339 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2340 {
2341 u32 pause_enabled = 0;
2342
2343 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2344 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2345 pause_enabled = 1;
2346
2347 REG_WR(bp, BAR_USTRORM_INTMEM +
2348 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2349 pause_enabled);
2350 }
2351
2352 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2353 pause_enabled ? "enabled" : "disabled");
2354 }
2355
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2356 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2357 {
2358 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2359 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2360
2361 if (!BP_NOMCP(bp)) {
2362 bnx2x_set_requested_fc(bp);
2363 bnx2x_acquire_phy_lock(bp);
2364
2365 if (load_mode == LOAD_DIAG) {
2366 struct link_params *lp = &bp->link_params;
2367 lp->loopback_mode = LOOPBACK_XGXS;
2368 /* Prefer doing PHY loopback at highest speed */
2369 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2370 if (lp->speed_cap_mask[cfx_idx] &
2371 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2372 lp->req_line_speed[cfx_idx] =
2373 SPEED_20000;
2374 else if (lp->speed_cap_mask[cfx_idx] &
2375 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2376 lp->req_line_speed[cfx_idx] =
2377 SPEED_10000;
2378 else
2379 lp->req_line_speed[cfx_idx] =
2380 SPEED_1000;
2381 }
2382 }
2383
2384 if (load_mode == LOAD_LOOPBACK_EXT) {
2385 struct link_params *lp = &bp->link_params;
2386 lp->loopback_mode = LOOPBACK_EXT;
2387 }
2388
2389 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2390
2391 bnx2x_release_phy_lock(bp);
2392
2393 bnx2x_init_dropless_fc(bp);
2394
2395 bnx2x_calc_fc_adv(bp);
2396
2397 if (bp->link_vars.link_up) {
2398 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2399 bnx2x_link_report(bp);
2400 }
2401 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2402 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2403 return rc;
2404 }
2405 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2406 return -EINVAL;
2407 }
2408
bnx2x_link_set(struct bnx2x * bp)2409 void bnx2x_link_set(struct bnx2x *bp)
2410 {
2411 if (!BP_NOMCP(bp)) {
2412 bnx2x_acquire_phy_lock(bp);
2413 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2414 bnx2x_release_phy_lock(bp);
2415
2416 bnx2x_init_dropless_fc(bp);
2417
2418 bnx2x_calc_fc_adv(bp);
2419 } else
2420 BNX2X_ERR("Bootcode is missing - can not set link\n");
2421 }
2422
bnx2x__link_reset(struct bnx2x * bp)2423 static void bnx2x__link_reset(struct bnx2x *bp)
2424 {
2425 if (!BP_NOMCP(bp)) {
2426 bnx2x_acquire_phy_lock(bp);
2427 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2428 bnx2x_release_phy_lock(bp);
2429 } else
2430 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2431 }
2432
bnx2x_force_link_reset(struct bnx2x * bp)2433 void bnx2x_force_link_reset(struct bnx2x *bp)
2434 {
2435 bnx2x_acquire_phy_lock(bp);
2436 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2437 bnx2x_release_phy_lock(bp);
2438 }
2439
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2440 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2441 {
2442 u8 rc = 0;
2443
2444 if (!BP_NOMCP(bp)) {
2445 bnx2x_acquire_phy_lock(bp);
2446 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2447 is_serdes);
2448 bnx2x_release_phy_lock(bp);
2449 } else
2450 BNX2X_ERR("Bootcode is missing - can not test link\n");
2451
2452 return rc;
2453 }
2454
2455 /* Calculates the sum of vn_min_rates.
2456 It's needed for further normalizing of the min_rates.
2457 Returns:
2458 sum of vn_min_rates.
2459 or
2460 0 - if all the min_rates are 0.
2461 In the later case fairness algorithm should be deactivated.
2462 If not all min_rates are zero then those that are zeroes will be set to 1.
2463 */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2464 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2465 struct cmng_init_input *input)
2466 {
2467 int all_zero = 1;
2468 int vn;
2469
2470 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2471 u32 vn_cfg = bp->mf_config[vn];
2472 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2473 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2474
2475 /* Skip hidden vns */
2476 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2477 vn_min_rate = 0;
2478 /* If min rate is zero - set it to 1 */
2479 else if (!vn_min_rate)
2480 vn_min_rate = DEF_MIN_RATE;
2481 else
2482 all_zero = 0;
2483
2484 input->vnic_min_rate[vn] = vn_min_rate;
2485 }
2486
2487 /* if ETS or all min rates are zeros - disable fairness */
2488 if (BNX2X_IS_ETS_ENABLED(bp)) {
2489 input->flags.cmng_enables &=
2490 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2492 } else if (all_zero) {
2493 input->flags.cmng_enables &=
2494 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2495 DP(NETIF_MSG_IFUP,
2496 "All MIN values are zeroes fairness will be disabled\n");
2497 } else
2498 input->flags.cmng_enables |=
2499 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2500 }
2501
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2502 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2503 struct cmng_init_input *input)
2504 {
2505 u16 vn_max_rate;
2506 u32 vn_cfg = bp->mf_config[vn];
2507
2508 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2509 vn_max_rate = 0;
2510 else {
2511 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2512
2513 if (IS_MF_PERCENT_BW(bp)) {
2514 /* maxCfg in percents of linkspeed */
2515 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2516 } else /* SD modes */
2517 /* maxCfg is absolute in 100Mb units */
2518 vn_max_rate = maxCfg * 100;
2519 }
2520
2521 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2522
2523 input->vnic_max_rate[vn] = vn_max_rate;
2524 }
2525
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2526 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2527 {
2528 if (CHIP_REV_IS_SLOW(bp))
2529 return CMNG_FNS_NONE;
2530 if (IS_MF(bp))
2531 return CMNG_FNS_MINMAX;
2532
2533 return CMNG_FNS_NONE;
2534 }
2535
bnx2x_read_mf_cfg(struct bnx2x * bp)2536 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2537 {
2538 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2539
2540 if (BP_NOMCP(bp))
2541 return; /* what should be the default value in this case */
2542
2543 /* For 2 port configuration the absolute function number formula
2544 * is:
2545 * abs_func = 2 * vn + BP_PORT + BP_PATH
2546 *
2547 * and there are 4 functions per port
2548 *
2549 * For 4 port configuration it is
2550 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2551 *
2552 * and there are 2 functions per port
2553 */
2554 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2555 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2556
2557 if (func >= E1H_FUNC_MAX)
2558 break;
2559
2560 bp->mf_config[vn] =
2561 MF_CFG_RD(bp, func_mf_config[func].config);
2562 }
2563 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2564 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2565 bp->flags |= MF_FUNC_DIS;
2566 } else {
2567 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2568 bp->flags &= ~MF_FUNC_DIS;
2569 }
2570 }
2571
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2572 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2573 {
2574 struct cmng_init_input input;
2575 memset(&input, 0, sizeof(struct cmng_init_input));
2576
2577 input.port_rate = bp->link_vars.line_speed;
2578
2579 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2580 int vn;
2581
2582 /* read mf conf from shmem */
2583 if (read_cfg)
2584 bnx2x_read_mf_cfg(bp);
2585
2586 /* vn_weight_sum and enable fairness if not 0 */
2587 bnx2x_calc_vn_min(bp, &input);
2588
2589 /* calculate and set min-max rate for each vn */
2590 if (bp->port.pmf)
2591 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2592 bnx2x_calc_vn_max(bp, vn, &input);
2593
2594 /* always enable rate shaping and fairness */
2595 input.flags.cmng_enables |=
2596 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2597
2598 bnx2x_init_cmng(&input, &bp->cmng);
2599 return;
2600 }
2601
2602 /* rate shaping and fairness are disabled */
2603 DP(NETIF_MSG_IFUP,
2604 "rate shaping and fairness are disabled\n");
2605 }
2606
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2607 static void storm_memset_cmng(struct bnx2x *bp,
2608 struct cmng_init *cmng,
2609 u8 port)
2610 {
2611 int vn;
2612 size_t size = sizeof(struct cmng_struct_per_port);
2613
2614 u32 addr = BAR_XSTRORM_INTMEM +
2615 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2616
2617 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2618
2619 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2620 int func = func_by_vn(bp, vn);
2621
2622 addr = BAR_XSTRORM_INTMEM +
2623 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2624 size = sizeof(struct rate_shaping_vars_per_vn);
2625 __storm_memset_struct(bp, addr, size,
2626 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2627
2628 addr = BAR_XSTRORM_INTMEM +
2629 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2630 size = sizeof(struct fairness_vars_per_vn);
2631 __storm_memset_struct(bp, addr, size,
2632 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2633 }
2634 }
2635
2636 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2637 void bnx2x_set_local_cmng(struct bnx2x *bp)
2638 {
2639 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2640
2641 if (cmng_fns != CMNG_FNS_NONE) {
2642 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2643 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2644 } else {
2645 /* rate shaping and fairness are disabled */
2646 DP(NETIF_MSG_IFUP,
2647 "single function mode without fairness\n");
2648 }
2649 }
2650
2651 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2652 static void bnx2x_link_attn(struct bnx2x *bp)
2653 {
2654 /* Make sure that we are synced with the current statistics */
2655 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2656
2657 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2658
2659 bnx2x_init_dropless_fc(bp);
2660
2661 if (bp->link_vars.link_up) {
2662
2663 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2664 struct host_port_stats *pstats;
2665
2666 pstats = bnx2x_sp(bp, port_stats);
2667 /* reset old mac stats */
2668 memset(&(pstats->mac_stx[0]), 0,
2669 sizeof(struct mac_stx));
2670 }
2671 if (bp->state == BNX2X_STATE_OPEN)
2672 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673 }
2674
2675 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2676 bnx2x_set_local_cmng(bp);
2677
2678 __bnx2x_link_report(bp);
2679
2680 if (IS_MF(bp))
2681 bnx2x_link_sync_notify(bp);
2682 }
2683
bnx2x__link_status_update(struct bnx2x * bp)2684 void bnx2x__link_status_update(struct bnx2x *bp)
2685 {
2686 if (bp->state != BNX2X_STATE_OPEN)
2687 return;
2688
2689 /* read updated dcb configuration */
2690 if (IS_PF(bp)) {
2691 bnx2x_dcbx_pmf_update(bp);
2692 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2693 if (bp->link_vars.link_up)
2694 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2695 else
2696 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2697 /* indicate link status */
2698 bnx2x_link_report(bp);
2699
2700 } else { /* VF */
2701 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2702 SUPPORTED_10baseT_Full |
2703 SUPPORTED_100baseT_Half |
2704 SUPPORTED_100baseT_Full |
2705 SUPPORTED_1000baseT_Full |
2706 SUPPORTED_2500baseX_Full |
2707 SUPPORTED_10000baseT_Full |
2708 SUPPORTED_TP |
2709 SUPPORTED_FIBRE |
2710 SUPPORTED_Autoneg |
2711 SUPPORTED_Pause |
2712 SUPPORTED_Asym_Pause);
2713 bp->port.advertising[0] = bp->port.supported[0];
2714
2715 bp->link_params.bp = bp;
2716 bp->link_params.port = BP_PORT(bp);
2717 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2718 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2719 bp->link_params.req_line_speed[0] = SPEED_10000;
2720 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2721 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2722 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2723 bp->link_vars.line_speed = SPEED_10000;
2724 bp->link_vars.link_status =
2725 (LINK_STATUS_LINK_UP |
2726 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2727 bp->link_vars.link_up = 1;
2728 bp->link_vars.duplex = DUPLEX_FULL;
2729 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2730 __bnx2x_link_report(bp);
2731
2732 bnx2x_sample_bulletin(bp);
2733
2734 /* if bulletin board did not have an update for link status
2735 * __bnx2x_link_report will report current status
2736 * but it will NOT duplicate report in case of already reported
2737 * during sampling bulletin board.
2738 */
2739 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2740 }
2741 }
2742
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2743 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2744 u16 vlan_val, u8 allowed_prio)
2745 {
2746 struct bnx2x_func_state_params func_params = {NULL};
2747 struct bnx2x_func_afex_update_params *f_update_params =
2748 &func_params.params.afex_update;
2749
2750 func_params.f_obj = &bp->func_obj;
2751 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2752
2753 /* no need to wait for RAMROD completion, so don't
2754 * set RAMROD_COMP_WAIT flag
2755 */
2756
2757 f_update_params->vif_id = vifid;
2758 f_update_params->afex_default_vlan = vlan_val;
2759 f_update_params->allowed_priorities = allowed_prio;
2760
2761 /* if ramrod can not be sent, response to MCP immediately */
2762 if (bnx2x_func_state_change(bp, &func_params) < 0)
2763 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2764
2765 return 0;
2766 }
2767
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2768 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2769 u16 vif_index, u8 func_bit_map)
2770 {
2771 struct bnx2x_func_state_params func_params = {NULL};
2772 struct bnx2x_func_afex_viflists_params *update_params =
2773 &func_params.params.afex_viflists;
2774 int rc;
2775 u32 drv_msg_code;
2776
2777 /* validate only LIST_SET and LIST_GET are received from switch */
2778 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2779 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2780 cmd_type);
2781
2782 func_params.f_obj = &bp->func_obj;
2783 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2784
2785 /* set parameters according to cmd_type */
2786 update_params->afex_vif_list_command = cmd_type;
2787 update_params->vif_list_index = vif_index;
2788 update_params->func_bit_map =
2789 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2790 update_params->func_to_clear = 0;
2791 drv_msg_code =
2792 (cmd_type == VIF_LIST_RULE_GET) ?
2793 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2794 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2795
2796 /* if ramrod can not be sent, respond to MCP immediately for
2797 * SET and GET requests (other are not triggered from MCP)
2798 */
2799 rc = bnx2x_func_state_change(bp, &func_params);
2800 if (rc < 0)
2801 bnx2x_fw_command(bp, drv_msg_code, 0);
2802
2803 return 0;
2804 }
2805
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2806 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2807 {
2808 struct afex_stats afex_stats;
2809 u32 func = BP_ABS_FUNC(bp);
2810 u32 mf_config;
2811 u16 vlan_val;
2812 u32 vlan_prio;
2813 u16 vif_id;
2814 u8 allowed_prio;
2815 u8 vlan_mode;
2816 u32 addr_to_write, vifid, addrs, stats_type, i;
2817
2818 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2819 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2820 DP(BNX2X_MSG_MCP,
2821 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2823 }
2824
2825 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2826 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2828 DP(BNX2X_MSG_MCP,
2829 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2830 vifid, addrs);
2831 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2832 addrs);
2833 }
2834
2835 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2836 addr_to_write = SHMEM2_RD(bp,
2837 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2838 stats_type = SHMEM2_RD(bp,
2839 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2840
2841 DP(BNX2X_MSG_MCP,
2842 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2843 addr_to_write);
2844
2845 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2846
2847 /* write response to scratchpad, for MCP */
2848 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2849 REG_WR(bp, addr_to_write + i*sizeof(u32),
2850 *(((u32 *)(&afex_stats))+i));
2851
2852 /* send ack message to MCP */
2853 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2854 }
2855
2856 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2857 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2858 bp->mf_config[BP_VN(bp)] = mf_config;
2859 DP(BNX2X_MSG_MCP,
2860 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2861 mf_config);
2862
2863 /* if VIF_SET is "enabled" */
2864 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2865 /* set rate limit directly to internal RAM */
2866 struct cmng_init_input cmng_input;
2867 struct rate_shaping_vars_per_vn m_rs_vn;
2868 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2869 u32 addr = BAR_XSTRORM_INTMEM +
2870 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2871
2872 bp->mf_config[BP_VN(bp)] = mf_config;
2873
2874 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2875 m_rs_vn.vn_counter.rate =
2876 cmng_input.vnic_max_rate[BP_VN(bp)];
2877 m_rs_vn.vn_counter.quota =
2878 (m_rs_vn.vn_counter.rate *
2879 RS_PERIODIC_TIMEOUT_USEC) / 8;
2880
2881 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2882
2883 /* read relevant values from mf_cfg struct in shmem */
2884 vif_id =
2885 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2886 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2887 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2888 vlan_val =
2889 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2890 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2891 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2892 vlan_prio = (mf_config &
2893 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2894 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2895 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2896 vlan_mode =
2897 (MF_CFG_RD(bp,
2898 func_mf_config[func].afex_config) &
2899 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2900 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2901 allowed_prio =
2902 (MF_CFG_RD(bp,
2903 func_mf_config[func].afex_config) &
2904 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2905 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2906
2907 /* send ramrod to FW, return in case of failure */
2908 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2909 allowed_prio))
2910 return;
2911
2912 bp->afex_def_vlan_tag = vlan_val;
2913 bp->afex_vlan_mode = vlan_mode;
2914 } else {
2915 /* notify link down because BP->flags is disabled */
2916 bnx2x_link_report(bp);
2917
2918 /* send INVALID VIF ramrod to FW */
2919 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2920
2921 /* Reset the default afex VLAN */
2922 bp->afex_def_vlan_tag = -1;
2923 }
2924 }
2925 }
2926
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2927 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2928 {
2929 struct bnx2x_func_switch_update_params *switch_update_params;
2930 struct bnx2x_func_state_params func_params;
2931
2932 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2933 switch_update_params = &func_params.params.switch_update;
2934 func_params.f_obj = &bp->func_obj;
2935 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2936
2937 /* Prepare parameters for function state transitions */
2938 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2939 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2940
2941 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2942 int func = BP_ABS_FUNC(bp);
2943 u32 val;
2944
2945 /* Re-learn the S-tag from shmem */
2946 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2947 FUNC_MF_CFG_E1HOV_TAG_MASK;
2948 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2949 bp->mf_ov = val;
2950 } else {
2951 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2952 goto fail;
2953 }
2954
2955 /* Configure new S-tag in LLH */
2956 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2957 bp->mf_ov);
2958
2959 /* Send Ramrod to update FW of change */
2960 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2961 &switch_update_params->changes);
2962 switch_update_params->vlan = bp->mf_ov;
2963
2964 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2965 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2966 bp->mf_ov);
2967 goto fail;
2968 } else {
2969 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2970 bp->mf_ov);
2971 }
2972 } else {
2973 goto fail;
2974 }
2975
2976 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2977 return;
2978 fail:
2979 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2980 }
2981
bnx2x_pmf_update(struct bnx2x * bp)2982 static void bnx2x_pmf_update(struct bnx2x *bp)
2983 {
2984 int port = BP_PORT(bp);
2985 u32 val;
2986
2987 bp->port.pmf = 1;
2988 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2989
2990 /*
2991 * We need the mb() to ensure the ordering between the writing to
2992 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2993 */
2994 smp_mb();
2995
2996 /* queue a periodic task */
2997 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2998
2999 bnx2x_dcbx_pmf_update(bp);
3000
3001 /* enable nig attention */
3002 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3003 if (bp->common.int_block == INT_BLOCK_HC) {
3004 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3005 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3006 } else if (!CHIP_IS_E1x(bp)) {
3007 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3008 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3009 }
3010
3011 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3012 }
3013
3014 /* end of Link */
3015
3016 /* slow path */
3017
3018 /*
3019 * General service functions
3020 */
3021
3022 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3023 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3024 {
3025 int mb_idx = BP_FW_MB_IDX(bp);
3026 u32 seq;
3027 u32 rc = 0;
3028 u32 cnt = 1;
3029 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3030
3031 mutex_lock(&bp->fw_mb_mutex);
3032 seq = ++bp->fw_seq;
3033 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3034 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3035
3036 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3037 (command | seq), param);
3038
3039 do {
3040 /* let the FW do it's magic ... */
3041 msleep(delay);
3042
3043 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3044
3045 /* Give the FW up to 5 second (500*10ms) */
3046 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3047
3048 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3049 cnt*delay, rc, seq);
3050
3051 /* is this a reply to our command? */
3052 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3053 rc &= FW_MSG_CODE_MASK;
3054 else {
3055 /* FW BUG! */
3056 BNX2X_ERR("FW failed to respond!\n");
3057 bnx2x_fw_dump(bp);
3058 rc = 0;
3059 }
3060 mutex_unlock(&bp->fw_mb_mutex);
3061
3062 return rc;
3063 }
3064
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3065 static void storm_memset_func_cfg(struct bnx2x *bp,
3066 struct tstorm_eth_function_common_config *tcfg,
3067 u16 abs_fid)
3068 {
3069 size_t size = sizeof(struct tstorm_eth_function_common_config);
3070
3071 u32 addr = BAR_TSTRORM_INTMEM +
3072 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3073
3074 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3075 }
3076
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3077 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3078 {
3079 if (CHIP_IS_E1x(bp)) {
3080 struct tstorm_eth_function_common_config tcfg = {0};
3081
3082 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3083 }
3084
3085 /* Enable the function in the FW */
3086 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3087 storm_memset_func_en(bp, p->func_id, 1);
3088
3089 /* spq */
3090 if (p->spq_active) {
3091 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3092 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3093 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3094 }
3095 }
3096
3097 /**
3098 * bnx2x_get_common_flags - Return common flags
3099 *
3100 * @bp: device handle
3101 * @fp: queue handle
3102 * @zero_stats: TRUE if statistics zeroing is needed
3103 *
3104 * Return the flags that are common for the Tx-only and not normal connections.
3105 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3106 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3107 struct bnx2x_fastpath *fp,
3108 bool zero_stats)
3109 {
3110 unsigned long flags = 0;
3111
3112 /* PF driver will always initialize the Queue to an ACTIVE state */
3113 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3114
3115 /* tx only connections collect statistics (on the same index as the
3116 * parent connection). The statistics are zeroed when the parent
3117 * connection is initialized.
3118 */
3119
3120 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3121 if (zero_stats)
3122 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3123
3124 if (bp->flags & TX_SWITCHING)
3125 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3126
3127 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3128 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3129
3130 #ifdef BNX2X_STOP_ON_ERROR
3131 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3132 #endif
3133
3134 return flags;
3135 }
3136
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3137 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3138 struct bnx2x_fastpath *fp,
3139 bool leading)
3140 {
3141 unsigned long flags = 0;
3142
3143 /* calculate other queue flags */
3144 if (IS_MF_SD(bp))
3145 __set_bit(BNX2X_Q_FLG_OV, &flags);
3146
3147 if (IS_FCOE_FP(fp)) {
3148 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3149 /* For FCoE - force usage of default priority (for afex) */
3150 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3151 }
3152
3153 if (fp->mode != TPA_MODE_DISABLED) {
3154 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3155 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3156 if (fp->mode == TPA_MODE_GRO)
3157 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3158 }
3159
3160 if (leading) {
3161 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3162 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3163 }
3164
3165 /* Always set HW VLAN stripping */
3166 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3167
3168 /* configure silent vlan removal */
3169 if (IS_MF_AFEX(bp))
3170 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3171
3172 return flags | bnx2x_get_common_flags(bp, fp, true);
3173 }
3174
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3175 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3176 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3177 u8 cos)
3178 {
3179 gen_init->stat_id = bnx2x_stats_id(fp);
3180 gen_init->spcl_id = fp->cl_id;
3181
3182 /* Always use mini-jumbo MTU for FCoE L2 ring */
3183 if (IS_FCOE_FP(fp))
3184 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3185 else
3186 gen_init->mtu = bp->dev->mtu;
3187
3188 gen_init->cos = cos;
3189
3190 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3191 }
3192
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3193 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3194 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3195 struct bnx2x_rxq_setup_params *rxq_init)
3196 {
3197 u8 max_sge = 0;
3198 u16 sge_sz = 0;
3199 u16 tpa_agg_size = 0;
3200
3201 if (fp->mode != TPA_MODE_DISABLED) {
3202 pause->sge_th_lo = SGE_TH_LO(bp);
3203 pause->sge_th_hi = SGE_TH_HI(bp);
3204
3205 /* validate SGE ring has enough to cross high threshold */
3206 WARN_ON(bp->dropless_fc &&
3207 pause->sge_th_hi + FW_PREFETCH_CNT >
3208 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3209
3210 tpa_agg_size = TPA_AGG_SIZE;
3211 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3212 SGE_PAGE_SHIFT;
3213 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3214 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3215 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3216 }
3217
3218 /* pause - not for e1 */
3219 if (!CHIP_IS_E1(bp)) {
3220 pause->bd_th_lo = BD_TH_LO(bp);
3221 pause->bd_th_hi = BD_TH_HI(bp);
3222
3223 pause->rcq_th_lo = RCQ_TH_LO(bp);
3224 pause->rcq_th_hi = RCQ_TH_HI(bp);
3225 /*
3226 * validate that rings have enough entries to cross
3227 * high thresholds
3228 */
3229 WARN_ON(bp->dropless_fc &&
3230 pause->bd_th_hi + FW_PREFETCH_CNT >
3231 bp->rx_ring_size);
3232 WARN_ON(bp->dropless_fc &&
3233 pause->rcq_th_hi + FW_PREFETCH_CNT >
3234 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3235
3236 pause->pri_map = 1;
3237 }
3238
3239 /* rxq setup */
3240 rxq_init->dscr_map = fp->rx_desc_mapping;
3241 rxq_init->sge_map = fp->rx_sge_mapping;
3242 rxq_init->rcq_map = fp->rx_comp_mapping;
3243 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3244
3245 /* This should be a maximum number of data bytes that may be
3246 * placed on the BD (not including paddings).
3247 */
3248 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3249 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3250
3251 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3252 rxq_init->tpa_agg_sz = tpa_agg_size;
3253 rxq_init->sge_buf_sz = sge_sz;
3254 rxq_init->max_sges_pkt = max_sge;
3255 rxq_init->rss_engine_id = BP_FUNC(bp);
3256 rxq_init->mcast_engine_id = BP_FUNC(bp);
3257
3258 /* Maximum number or simultaneous TPA aggregation for this Queue.
3259 *
3260 * For PF Clients it should be the maximum available number.
3261 * VF driver(s) may want to define it to a smaller value.
3262 */
3263 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3264
3265 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3266 rxq_init->fw_sb_id = fp->fw_sb_id;
3267
3268 if (IS_FCOE_FP(fp))
3269 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3270 else
3271 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3272 /* configure silent vlan removal
3273 * if multi function mode is afex, then mask default vlan
3274 */
3275 if (IS_MF_AFEX(bp)) {
3276 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3277 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3278 }
3279 }
3280
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3281 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3282 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3283 u8 cos)
3284 {
3285 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3286 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3287 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3288 txq_init->fw_sb_id = fp->fw_sb_id;
3289
3290 /*
3291 * set the tss leading client id for TX classification ==
3292 * leading RSS client id
3293 */
3294 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3295
3296 if (IS_FCOE_FP(fp)) {
3297 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3298 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3299 }
3300 }
3301
bnx2x_pf_init(struct bnx2x * bp)3302 static void bnx2x_pf_init(struct bnx2x *bp)
3303 {
3304 struct bnx2x_func_init_params func_init = {0};
3305 struct event_ring_data eq_data = { {0} };
3306
3307 if (!CHIP_IS_E1x(bp)) {
3308 /* reset IGU PF statistics: MSIX + ATTN */
3309 /* PF */
3310 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3311 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3312 (CHIP_MODE_IS_4_PORT(bp) ?
3313 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3314 /* ATTN */
3315 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3316 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3317 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3318 (CHIP_MODE_IS_4_PORT(bp) ?
3319 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3320 }
3321
3322 func_init.spq_active = true;
3323 func_init.pf_id = BP_FUNC(bp);
3324 func_init.func_id = BP_FUNC(bp);
3325 func_init.spq_map = bp->spq_mapping;
3326 func_init.spq_prod = bp->spq_prod_idx;
3327
3328 bnx2x_func_init(bp, &func_init);
3329
3330 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3331
3332 /*
3333 * Congestion management values depend on the link rate
3334 * There is no active link so initial link rate is set to 10 Gbps.
3335 * When the link comes up The congestion management values are
3336 * re-calculated according to the actual link rate.
3337 */
3338 bp->link_vars.line_speed = SPEED_10000;
3339 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3340
3341 /* Only the PMF sets the HW */
3342 if (bp->port.pmf)
3343 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3344
3345 /* init Event Queue - PCI bus guarantees correct endianity*/
3346 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3347 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3348 eq_data.producer = bp->eq_prod;
3349 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3350 eq_data.sb_id = DEF_SB_ID;
3351 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3352 }
3353
bnx2x_e1h_disable(struct bnx2x * bp)3354 static void bnx2x_e1h_disable(struct bnx2x *bp)
3355 {
3356 int port = BP_PORT(bp);
3357
3358 bnx2x_tx_disable(bp);
3359
3360 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3361 }
3362
bnx2x_e1h_enable(struct bnx2x * bp)3363 static void bnx2x_e1h_enable(struct bnx2x *bp)
3364 {
3365 int port = BP_PORT(bp);
3366
3367 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3368 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3369
3370 /* Tx queue should be only re-enabled */
3371 netif_tx_wake_all_queues(bp->dev);
3372
3373 /*
3374 * Should not call netif_carrier_on since it will be called if the link
3375 * is up when checking for link state
3376 */
3377 }
3378
3379 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3380
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3381 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3382 {
3383 struct eth_stats_info *ether_stat =
3384 &bp->slowpath->drv_info_to_mcp.ether_stat;
3385 struct bnx2x_vlan_mac_obj *mac_obj =
3386 &bp->sp_objs->mac_obj;
3387 int i;
3388
3389 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3390 ETH_STAT_INFO_VERSION_LEN);
3391
3392 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3393 * mac_local field in ether_stat struct. The base address is offset by 2
3394 * bytes to account for the field being 8 bytes but a mac address is
3395 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3396 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3397 * allocated by the ether_stat struct, so the macs will land in their
3398 * proper positions.
3399 */
3400 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3401 memset(ether_stat->mac_local + i, 0,
3402 sizeof(ether_stat->mac_local[0]));
3403 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3404 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3405 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3406 ETH_ALEN);
3407 ether_stat->mtu_size = bp->dev->mtu;
3408 if (bp->dev->features & NETIF_F_RXCSUM)
3409 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3410 if (bp->dev->features & NETIF_F_TSO)
3411 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3412 ether_stat->feature_flags |= bp->common.boot_mode;
3413
3414 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3415
3416 ether_stat->txq_size = bp->tx_ring_size;
3417 ether_stat->rxq_size = bp->rx_ring_size;
3418
3419 #ifdef CONFIG_BNX2X_SRIOV
3420 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3421 #endif
3422 }
3423
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3424 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3425 {
3426 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3427 struct fcoe_stats_info *fcoe_stat =
3428 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3429
3430 if (!CNIC_LOADED(bp))
3431 return;
3432
3433 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3434
3435 fcoe_stat->qos_priority =
3436 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3437
3438 /* insert FCoE stats from ramrod response */
3439 if (!NO_FCOE(bp)) {
3440 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3441 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3442 tstorm_queue_statistics;
3443
3444 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3445 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3446 xstorm_queue_statistics;
3447
3448 struct fcoe_statistics_params *fw_fcoe_stat =
3449 &bp->fw_stats_data->fcoe;
3450
3451 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3452 fcoe_stat->rx_bytes_lo,
3453 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3454
3455 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3456 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3457 fcoe_stat->rx_bytes_lo,
3458 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3459
3460 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3461 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3462 fcoe_stat->rx_bytes_lo,
3463 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3464
3465 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3466 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3467 fcoe_stat->rx_bytes_lo,
3468 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3469
3470 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3471 fcoe_stat->rx_frames_lo,
3472 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3473
3474 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3475 fcoe_stat->rx_frames_lo,
3476 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3477
3478 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3479 fcoe_stat->rx_frames_lo,
3480 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3481
3482 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3483 fcoe_stat->rx_frames_lo,
3484 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3485
3486 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3487 fcoe_stat->tx_bytes_lo,
3488 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3489
3490 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3491 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3492 fcoe_stat->tx_bytes_lo,
3493 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3494
3495 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3496 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3497 fcoe_stat->tx_bytes_lo,
3498 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3499
3500 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3501 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3502 fcoe_stat->tx_bytes_lo,
3503 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3504
3505 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3506 fcoe_stat->tx_frames_lo,
3507 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3508
3509 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3510 fcoe_stat->tx_frames_lo,
3511 fcoe_q_xstorm_stats->ucast_pkts_sent);
3512
3513 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3514 fcoe_stat->tx_frames_lo,
3515 fcoe_q_xstorm_stats->bcast_pkts_sent);
3516
3517 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3518 fcoe_stat->tx_frames_lo,
3519 fcoe_q_xstorm_stats->mcast_pkts_sent);
3520 }
3521
3522 /* ask L5 driver to add data to the struct */
3523 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3524 }
3525
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3526 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3527 {
3528 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3529 struct iscsi_stats_info *iscsi_stat =
3530 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3531
3532 if (!CNIC_LOADED(bp))
3533 return;
3534
3535 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3536 ETH_ALEN);
3537
3538 iscsi_stat->qos_priority =
3539 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3540
3541 /* ask L5 driver to add data to the struct */
3542 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3543 }
3544
3545 /* called due to MCP event (on pmf):
3546 * reread new bandwidth configuration
3547 * configure FW
3548 * notify others function about the change
3549 */
bnx2x_config_mf_bw(struct bnx2x * bp)3550 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3551 {
3552 /* Workaround for MFW bug.
3553 * MFW is not supposed to generate BW attention in
3554 * single function mode.
3555 */
3556 if (!IS_MF(bp)) {
3557 DP(BNX2X_MSG_MCP,
3558 "Ignoring MF BW config in single function mode\n");
3559 return;
3560 }
3561
3562 if (bp->link_vars.link_up) {
3563 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3564 bnx2x_link_sync_notify(bp);
3565 }
3566 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3567 }
3568
bnx2x_set_mf_bw(struct bnx2x * bp)3569 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3570 {
3571 bnx2x_config_mf_bw(bp);
3572 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3573 }
3574
bnx2x_handle_eee_event(struct bnx2x * bp)3575 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3576 {
3577 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3578 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3579 }
3580
3581 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3582 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3583
bnx2x_handle_drv_info_req(struct bnx2x * bp)3584 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3585 {
3586 enum drv_info_opcode op_code;
3587 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3588 bool release = false;
3589 int wait;
3590
3591 /* if drv_info version supported by MFW doesn't match - send NACK */
3592 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3593 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3594 return;
3595 }
3596
3597 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3598 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3599
3600 /* Must prevent other flows from accessing drv_info_to_mcp */
3601 mutex_lock(&bp->drv_info_mutex);
3602
3603 memset(&bp->slowpath->drv_info_to_mcp, 0,
3604 sizeof(union drv_info_to_mcp));
3605
3606 switch (op_code) {
3607 case ETH_STATS_OPCODE:
3608 bnx2x_drv_info_ether_stat(bp);
3609 break;
3610 case FCOE_STATS_OPCODE:
3611 bnx2x_drv_info_fcoe_stat(bp);
3612 break;
3613 case ISCSI_STATS_OPCODE:
3614 bnx2x_drv_info_iscsi_stat(bp);
3615 break;
3616 default:
3617 /* if op code isn't supported - send NACK */
3618 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3619 goto out;
3620 }
3621
3622 /* if we got drv_info attn from MFW then these fields are defined in
3623 * shmem2 for sure
3624 */
3625 SHMEM2_WR(bp, drv_info_host_addr_lo,
3626 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3627 SHMEM2_WR(bp, drv_info_host_addr_hi,
3628 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3629
3630 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3631
3632 /* Since possible management wants both this and get_driver_version
3633 * need to wait until management notifies us it finished utilizing
3634 * the buffer.
3635 */
3636 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3637 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3638 } else if (!bp->drv_info_mng_owner) {
3639 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3640
3641 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3642 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3643
3644 /* Management is done; need to clear indication */
3645 if (indication & bit) {
3646 SHMEM2_WR(bp, mfw_drv_indication,
3647 indication & ~bit);
3648 release = true;
3649 break;
3650 }
3651
3652 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3653 }
3654 }
3655 if (!release) {
3656 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3657 bp->drv_info_mng_owner = true;
3658 }
3659
3660 out:
3661 mutex_unlock(&bp->drv_info_mutex);
3662 }
3663
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3664 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3665 {
3666 u8 vals[4];
3667 int i = 0;
3668
3669 if (bnx2x_format) {
3670 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3671 &vals[0], &vals[1], &vals[2], &vals[3]);
3672 if (i > 0)
3673 vals[0] -= '0';
3674 } else {
3675 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3676 &vals[0], &vals[1], &vals[2], &vals[3]);
3677 }
3678
3679 while (i < 4)
3680 vals[i++] = 0;
3681
3682 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3683 }
3684
bnx2x_update_mng_version(struct bnx2x * bp)3685 void bnx2x_update_mng_version(struct bnx2x *bp)
3686 {
3687 u32 iscsiver = DRV_VER_NOT_LOADED;
3688 u32 fcoever = DRV_VER_NOT_LOADED;
3689 u32 ethver = DRV_VER_NOT_LOADED;
3690 int idx = BP_FW_MB_IDX(bp);
3691 u8 *version;
3692
3693 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3694 return;
3695
3696 mutex_lock(&bp->drv_info_mutex);
3697 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3698 if (bp->drv_info_mng_owner)
3699 goto out;
3700
3701 if (bp->state != BNX2X_STATE_OPEN)
3702 goto out;
3703
3704 /* Parse ethernet driver version */
3705 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3706 if (!CNIC_LOADED(bp))
3707 goto out;
3708
3709 /* Try getting storage driver version via cnic */
3710 memset(&bp->slowpath->drv_info_to_mcp, 0,
3711 sizeof(union drv_info_to_mcp));
3712 bnx2x_drv_info_iscsi_stat(bp);
3713 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3714 iscsiver = bnx2x_update_mng_version_utility(version, false);
3715
3716 memset(&bp->slowpath->drv_info_to_mcp, 0,
3717 sizeof(union drv_info_to_mcp));
3718 bnx2x_drv_info_fcoe_stat(bp);
3719 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3720 fcoever = bnx2x_update_mng_version_utility(version, false);
3721
3722 out:
3723 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3724 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3725 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3726
3727 mutex_unlock(&bp->drv_info_mutex);
3728
3729 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3730 ethver, iscsiver, fcoever);
3731 }
3732
bnx2x_update_mfw_dump(struct bnx2x * bp)3733 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3734 {
3735 u32 drv_ver;
3736 u32 valid_dump;
3737
3738 if (!SHMEM2_HAS(bp, drv_info))
3739 return;
3740
3741 /* Update Driver load time, possibly broken in y2038 */
3742 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3743
3744 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3745 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3746
3747 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3748
3749 /* Check & notify On-Chip dump. */
3750 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3751
3752 if (valid_dump & FIRST_DUMP_VALID)
3753 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3754
3755 if (valid_dump & SECOND_DUMP_VALID)
3756 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3757 }
3758
bnx2x_oem_event(struct bnx2x * bp,u32 event)3759 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3760 {
3761 u32 cmd_ok, cmd_fail;
3762
3763 /* sanity */
3764 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3765 event & DRV_STATUS_OEM_EVENT_MASK) {
3766 BNX2X_ERR("Received simultaneous events %08x\n", event);
3767 return;
3768 }
3769
3770 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3771 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3772 cmd_ok = DRV_MSG_CODE_DCC_OK;
3773 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3774 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3775 cmd_ok = DRV_MSG_CODE_OEM_OK;
3776 }
3777
3778 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3779
3780 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3781 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3782 /* This is the only place besides the function initialization
3783 * where the bp->flags can change so it is done without any
3784 * locks
3785 */
3786 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3787 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3788 bp->flags |= MF_FUNC_DIS;
3789
3790 bnx2x_e1h_disable(bp);
3791 } else {
3792 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3793 bp->flags &= ~MF_FUNC_DIS;
3794
3795 bnx2x_e1h_enable(bp);
3796 }
3797 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3798 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3799 }
3800
3801 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3802 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3803 bnx2x_config_mf_bw(bp);
3804 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3805 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3806 }
3807
3808 /* Report results to MCP */
3809 if (event)
3810 bnx2x_fw_command(bp, cmd_fail, 0);
3811 else
3812 bnx2x_fw_command(bp, cmd_ok, 0);
3813 }
3814
3815 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3816 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3817 {
3818 struct eth_spe *next_spe = bp->spq_prod_bd;
3819
3820 if (bp->spq_prod_bd == bp->spq_last_bd) {
3821 bp->spq_prod_bd = bp->spq;
3822 bp->spq_prod_idx = 0;
3823 DP(BNX2X_MSG_SP, "end of spq\n");
3824 } else {
3825 bp->spq_prod_bd++;
3826 bp->spq_prod_idx++;
3827 }
3828 return next_spe;
3829 }
3830
3831 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3832 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3833 {
3834 int func = BP_FUNC(bp);
3835
3836 /*
3837 * Make sure that BD data is updated before writing the producer:
3838 * BD data is written to the memory, the producer is read from the
3839 * memory, thus we need a full memory barrier to ensure the ordering.
3840 */
3841 mb();
3842
3843 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3844 bp->spq_prod_idx);
3845 }
3846
3847 /**
3848 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3849 *
3850 * @cmd: command to check
3851 * @cmd_type: command type
3852 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3853 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3854 {
3855 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3856 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3857 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3858 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3859 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3860 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3861 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3862 return true;
3863 else
3864 return false;
3865 }
3866
3867 /**
3868 * bnx2x_sp_post - place a single command on an SP ring
3869 *
3870 * @bp: driver handle
3871 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3872 * @cid: SW CID the command is related to
3873 * @data_hi: command private data address (high 32 bits)
3874 * @data_lo: command private data address (low 32 bits)
3875 * @cmd_type: command type (e.g. NONE, ETH)
3876 *
3877 * SP data is handled as if it's always an address pair, thus data fields are
3878 * not swapped to little endian in upper functions. Instead this function swaps
3879 * data as if it's two u32 fields.
3880 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3881 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3882 u32 data_hi, u32 data_lo, int cmd_type)
3883 {
3884 struct eth_spe *spe;
3885 u16 type;
3886 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3887
3888 #ifdef BNX2X_STOP_ON_ERROR
3889 if (unlikely(bp->panic)) {
3890 BNX2X_ERR("Can't post SP when there is panic\n");
3891 return -EIO;
3892 }
3893 #endif
3894
3895 spin_lock_bh(&bp->spq_lock);
3896
3897 if (common) {
3898 if (!atomic_read(&bp->eq_spq_left)) {
3899 BNX2X_ERR("BUG! EQ ring full!\n");
3900 spin_unlock_bh(&bp->spq_lock);
3901 bnx2x_panic();
3902 return -EBUSY;
3903 }
3904 } else if (!atomic_read(&bp->cq_spq_left)) {
3905 BNX2X_ERR("BUG! SPQ ring full!\n");
3906 spin_unlock_bh(&bp->spq_lock);
3907 bnx2x_panic();
3908 return -EBUSY;
3909 }
3910
3911 spe = bnx2x_sp_get_next(bp);
3912
3913 /* CID needs port number to be encoded int it */
3914 spe->hdr.conn_and_cmd_data =
3915 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3916 HW_CID(bp, cid));
3917
3918 /* In some cases, type may already contain the func-id
3919 * mainly in SRIOV related use cases, so we add it here only
3920 * if it's not already set.
3921 */
3922 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3923 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3924 SPE_HDR_CONN_TYPE;
3925 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3926 SPE_HDR_FUNCTION_ID);
3927 } else {
3928 type = cmd_type;
3929 }
3930
3931 spe->hdr.type = cpu_to_le16(type);
3932
3933 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3934 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3935
3936 /*
3937 * It's ok if the actual decrement is issued towards the memory
3938 * somewhere between the spin_lock and spin_unlock. Thus no
3939 * more explicit memory barrier is needed.
3940 */
3941 if (common)
3942 atomic_dec(&bp->eq_spq_left);
3943 else
3944 atomic_dec(&bp->cq_spq_left);
3945
3946 DP(BNX2X_MSG_SP,
3947 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3948 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3949 (u32)(U64_LO(bp->spq_mapping) +
3950 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3951 HW_CID(bp, cid), data_hi, data_lo, type,
3952 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3953
3954 bnx2x_sp_prod_update(bp);
3955 spin_unlock_bh(&bp->spq_lock);
3956 return 0;
3957 }
3958
3959 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3960 static int bnx2x_acquire_alr(struct bnx2x *bp)
3961 {
3962 u32 j, val;
3963 int rc = 0;
3964
3965 might_sleep();
3966 for (j = 0; j < 1000; j++) {
3967 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3968 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3969 if (val & MCPR_ACCESS_LOCK_LOCK)
3970 break;
3971
3972 usleep_range(5000, 10000);
3973 }
3974 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3975 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3976 rc = -EBUSY;
3977 }
3978
3979 return rc;
3980 }
3981
3982 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3983 static void bnx2x_release_alr(struct bnx2x *bp)
3984 {
3985 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3986 }
3987
3988 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3989 #define BNX2X_DEF_SB_IDX 0x0002
3990
bnx2x_update_dsb_idx(struct bnx2x * bp)3991 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3992 {
3993 struct host_sp_status_block *def_sb = bp->def_status_blk;
3994 u16 rc = 0;
3995
3996 barrier(); /* status block is written to by the chip */
3997 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3998 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3999 rc |= BNX2X_DEF_SB_ATT_IDX;
4000 }
4001
4002 if (bp->def_idx != def_sb->sp_sb.running_index) {
4003 bp->def_idx = def_sb->sp_sb.running_index;
4004 rc |= BNX2X_DEF_SB_IDX;
4005 }
4006
4007 /* Do not reorder: indices reading should complete before handling */
4008 barrier();
4009 return rc;
4010 }
4011
4012 /*
4013 * slow path service functions
4014 */
4015
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4016 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4017 {
4018 int port = BP_PORT(bp);
4019 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4020 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4021 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4022 NIG_REG_MASK_INTERRUPT_PORT0;
4023 u32 aeu_mask;
4024 u32 nig_mask = 0;
4025 u32 reg_addr;
4026
4027 if (bp->attn_state & asserted)
4028 BNX2X_ERR("IGU ERROR\n");
4029
4030 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4031 aeu_mask = REG_RD(bp, aeu_addr);
4032
4033 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4034 aeu_mask, asserted);
4035 aeu_mask &= ~(asserted & 0x3ff);
4036 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4037
4038 REG_WR(bp, aeu_addr, aeu_mask);
4039 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4040
4041 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4042 bp->attn_state |= asserted;
4043 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4044
4045 if (asserted & ATTN_HARD_WIRED_MASK) {
4046 if (asserted & ATTN_NIG_FOR_FUNC) {
4047
4048 bnx2x_acquire_phy_lock(bp);
4049
4050 /* save nig interrupt mask */
4051 nig_mask = REG_RD(bp, nig_int_mask_addr);
4052
4053 /* If nig_mask is not set, no need to call the update
4054 * function.
4055 */
4056 if (nig_mask) {
4057 REG_WR(bp, nig_int_mask_addr, 0);
4058
4059 bnx2x_link_attn(bp);
4060 }
4061
4062 /* handle unicore attn? */
4063 }
4064 if (asserted & ATTN_SW_TIMER_4_FUNC)
4065 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4066
4067 if (asserted & GPIO_2_FUNC)
4068 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4069
4070 if (asserted & GPIO_3_FUNC)
4071 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4072
4073 if (asserted & GPIO_4_FUNC)
4074 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4075
4076 if (port == 0) {
4077 if (asserted & ATTN_GENERAL_ATTN_1) {
4078 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4079 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4080 }
4081 if (asserted & ATTN_GENERAL_ATTN_2) {
4082 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4083 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4084 }
4085 if (asserted & ATTN_GENERAL_ATTN_3) {
4086 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4087 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4088 }
4089 } else {
4090 if (asserted & ATTN_GENERAL_ATTN_4) {
4091 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4092 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4093 }
4094 if (asserted & ATTN_GENERAL_ATTN_5) {
4095 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4096 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4097 }
4098 if (asserted & ATTN_GENERAL_ATTN_6) {
4099 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4100 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4101 }
4102 }
4103
4104 } /* if hardwired */
4105
4106 if (bp->common.int_block == INT_BLOCK_HC)
4107 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4108 COMMAND_REG_ATTN_BITS_SET);
4109 else
4110 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4111
4112 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4113 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4114 REG_WR(bp, reg_addr, asserted);
4115
4116 /* now set back the mask */
4117 if (asserted & ATTN_NIG_FOR_FUNC) {
4118 /* Verify that IGU ack through BAR was written before restoring
4119 * NIG mask. This loop should exit after 2-3 iterations max.
4120 */
4121 if (bp->common.int_block != INT_BLOCK_HC) {
4122 u32 cnt = 0, igu_acked;
4123 do {
4124 igu_acked = REG_RD(bp,
4125 IGU_REG_ATTENTION_ACK_BITS);
4126 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4127 (++cnt < MAX_IGU_ATTN_ACK_TO));
4128 if (!igu_acked)
4129 DP(NETIF_MSG_HW,
4130 "Failed to verify IGU ack on time\n");
4131 barrier();
4132 }
4133 REG_WR(bp, nig_int_mask_addr, nig_mask);
4134 bnx2x_release_phy_lock(bp);
4135 }
4136 }
4137
bnx2x_fan_failure(struct bnx2x * bp)4138 static void bnx2x_fan_failure(struct bnx2x *bp)
4139 {
4140 int port = BP_PORT(bp);
4141 u32 ext_phy_config;
4142 /* mark the failure */
4143 ext_phy_config =
4144 SHMEM_RD(bp,
4145 dev_info.port_hw_config[port].external_phy_config);
4146
4147 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4148 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4149 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4150 ext_phy_config);
4151
4152 /* log the failure */
4153 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4154 "Please contact OEM Support for assistance\n");
4155
4156 /* Schedule device reset (unload)
4157 * This is due to some boards consuming sufficient power when driver is
4158 * up to overheat if fan fails.
4159 */
4160 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4161 }
4162
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4163 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4164 {
4165 int port = BP_PORT(bp);
4166 int reg_offset;
4167 u32 val;
4168
4169 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4170 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4171
4172 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4173
4174 val = REG_RD(bp, reg_offset);
4175 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4176 REG_WR(bp, reg_offset, val);
4177
4178 BNX2X_ERR("SPIO5 hw attention\n");
4179
4180 /* Fan failure attention */
4181 bnx2x_hw_reset_phy(&bp->link_params);
4182 bnx2x_fan_failure(bp);
4183 }
4184
4185 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4186 bnx2x_acquire_phy_lock(bp);
4187 bnx2x_handle_module_detect_int(&bp->link_params);
4188 bnx2x_release_phy_lock(bp);
4189 }
4190
4191 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4192
4193 val = REG_RD(bp, reg_offset);
4194 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4195 REG_WR(bp, reg_offset, val);
4196
4197 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4198 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4199 bnx2x_panic();
4200 }
4201 }
4202
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4203 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4204 {
4205 u32 val;
4206
4207 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4208
4209 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4210 BNX2X_ERR("DB hw attention 0x%x\n", val);
4211 /* DORQ discard attention */
4212 if (val & 0x2)
4213 BNX2X_ERR("FATAL error from DORQ\n");
4214 }
4215
4216 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4217
4218 int port = BP_PORT(bp);
4219 int reg_offset;
4220
4221 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4222 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4223
4224 val = REG_RD(bp, reg_offset);
4225 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4226 REG_WR(bp, reg_offset, val);
4227
4228 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4229 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4230 bnx2x_panic();
4231 }
4232 }
4233
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4234 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4235 {
4236 u32 val;
4237
4238 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4239
4240 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4241 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4242 /* CFC error attention */
4243 if (val & 0x2)
4244 BNX2X_ERR("FATAL error from CFC\n");
4245 }
4246
4247 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4248 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4249 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4250 /* RQ_USDMDP_FIFO_OVERFLOW */
4251 if (val & 0x18000)
4252 BNX2X_ERR("FATAL error from PXP\n");
4253
4254 if (!CHIP_IS_E1x(bp)) {
4255 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4256 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4257 }
4258 }
4259
4260 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4261
4262 int port = BP_PORT(bp);
4263 int reg_offset;
4264
4265 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4266 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4267
4268 val = REG_RD(bp, reg_offset);
4269 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4270 REG_WR(bp, reg_offset, val);
4271
4272 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4273 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4274 bnx2x_panic();
4275 }
4276 }
4277
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4278 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4279 {
4280 u32 val;
4281
4282 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4283
4284 if (attn & BNX2X_PMF_LINK_ASSERT) {
4285 int func = BP_FUNC(bp);
4286
4287 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4288 bnx2x_read_mf_cfg(bp);
4289 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4290 func_mf_config[BP_ABS_FUNC(bp)].config);
4291 val = SHMEM_RD(bp,
4292 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4293
4294 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4295 DRV_STATUS_OEM_EVENT_MASK))
4296 bnx2x_oem_event(bp,
4297 (val & (DRV_STATUS_DCC_EVENT_MASK |
4298 DRV_STATUS_OEM_EVENT_MASK)));
4299
4300 if (val & DRV_STATUS_SET_MF_BW)
4301 bnx2x_set_mf_bw(bp);
4302
4303 if (val & DRV_STATUS_DRV_INFO_REQ)
4304 bnx2x_handle_drv_info_req(bp);
4305
4306 if (val & DRV_STATUS_VF_DISABLED)
4307 bnx2x_schedule_iov_task(bp,
4308 BNX2X_IOV_HANDLE_FLR);
4309
4310 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4311 bnx2x_pmf_update(bp);
4312
4313 if (bp->port.pmf &&
4314 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4315 bp->dcbx_enabled > 0)
4316 /* start dcbx state machine */
4317 bnx2x_dcbx_set_params(bp,
4318 BNX2X_DCBX_STATE_NEG_RECEIVED);
4319 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4320 bnx2x_handle_afex_cmd(bp,
4321 val & DRV_STATUS_AFEX_EVENT_MASK);
4322 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4323 bnx2x_handle_eee_event(bp);
4324
4325 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4326 bnx2x_schedule_sp_rtnl(bp,
4327 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4328
4329 if (bp->link_vars.periodic_flags &
4330 PERIODIC_FLAGS_LINK_EVENT) {
4331 /* sync with link */
4332 bnx2x_acquire_phy_lock(bp);
4333 bp->link_vars.periodic_flags &=
4334 ~PERIODIC_FLAGS_LINK_EVENT;
4335 bnx2x_release_phy_lock(bp);
4336 if (IS_MF(bp))
4337 bnx2x_link_sync_notify(bp);
4338 bnx2x_link_report(bp);
4339 }
4340 /* Always call it here: bnx2x_link_report() will
4341 * prevent the link indication duplication.
4342 */
4343 bnx2x__link_status_update(bp);
4344 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4345
4346 BNX2X_ERR("MC assert!\n");
4347 bnx2x_mc_assert(bp);
4348 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4350 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4351 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4352 bnx2x_panic();
4353
4354 } else if (attn & BNX2X_MCP_ASSERT) {
4355
4356 BNX2X_ERR("MCP assert!\n");
4357 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4358 bnx2x_fw_dump(bp);
4359
4360 } else
4361 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4362 }
4363
4364 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4365 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4366 if (attn & BNX2X_GRC_TIMEOUT) {
4367 val = CHIP_IS_E1(bp) ? 0 :
4368 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4369 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4370 }
4371 if (attn & BNX2X_GRC_RSV) {
4372 val = CHIP_IS_E1(bp) ? 0 :
4373 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4374 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4375 }
4376 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4377 }
4378 }
4379
4380 /*
4381 * Bits map:
4382 * 0-7 - Engine0 load counter.
4383 * 8-15 - Engine1 load counter.
4384 * 16 - Engine0 RESET_IN_PROGRESS bit.
4385 * 17 - Engine1 RESET_IN_PROGRESS bit.
4386 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4387 * on the engine
4388 * 19 - Engine1 ONE_IS_LOADED.
4389 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4390 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4391 * just the one belonging to its engine).
4392 *
4393 */
4394 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4395
4396 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4397 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4398 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4399 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4400 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4401 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4402 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4403
4404 /*
4405 * Set the GLOBAL_RESET bit.
4406 *
4407 * Should be run under rtnl lock
4408 */
bnx2x_set_reset_global(struct bnx2x * bp)4409 void bnx2x_set_reset_global(struct bnx2x *bp)
4410 {
4411 u32 val;
4412 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4413 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4414 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4415 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416 }
4417
4418 /*
4419 * Clear the GLOBAL_RESET bit.
4420 *
4421 * Should be run under rtnl lock
4422 */
bnx2x_clear_reset_global(struct bnx2x * bp)4423 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4424 {
4425 u32 val;
4426 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4429 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430 }
4431
4432 /*
4433 * Checks the GLOBAL_RESET bit.
4434 *
4435 * should be run under rtnl lock
4436 */
bnx2x_reset_is_global(struct bnx2x * bp)4437 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4438 {
4439 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440
4441 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4442 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4443 }
4444
4445 /*
4446 * Clear RESET_IN_PROGRESS bit for the current engine.
4447 *
4448 * Should be run under rtnl lock
4449 */
bnx2x_set_reset_done(struct bnx2x * bp)4450 static void bnx2x_set_reset_done(struct bnx2x *bp)
4451 {
4452 u32 val;
4453 u32 bit = BP_PATH(bp) ?
4454 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4455 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4456 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4457
4458 /* Clear the bit */
4459 val &= ~bit;
4460 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4461
4462 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463 }
4464
4465 /*
4466 * Set RESET_IN_PROGRESS for the current engine.
4467 *
4468 * should be run under rtnl lock
4469 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4470 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4471 {
4472 u32 val;
4473 u32 bit = BP_PATH(bp) ?
4474 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4475 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4476 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4477
4478 /* Set the bit */
4479 val |= bit;
4480 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4481 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4482 }
4483
4484 /*
4485 * Checks the RESET_IN_PROGRESS bit for the given engine.
4486 * should be run under rtnl lock
4487 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4488 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4489 {
4490 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491 u32 bit = engine ?
4492 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4493
4494 /* return false if bit is set */
4495 return (val & bit) ? false : true;
4496 }
4497
4498 /*
4499 * set pf load for the current pf.
4500 *
4501 * should be run under rtnl lock
4502 */
bnx2x_set_pf_load(struct bnx2x * bp)4503 void bnx2x_set_pf_load(struct bnx2x *bp)
4504 {
4505 u32 val1, val;
4506 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4507 BNX2X_PATH0_LOAD_CNT_MASK;
4508 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4509 BNX2X_PATH0_LOAD_CNT_SHIFT;
4510
4511 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4512 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4513
4514 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4515
4516 /* get the current counter value */
4517 val1 = (val & mask) >> shift;
4518
4519 /* set bit of that PF */
4520 val1 |= (1 << bp->pf_num);
4521
4522 /* clear the old value */
4523 val &= ~mask;
4524
4525 /* set the new one */
4526 val |= ((val1 << shift) & mask);
4527
4528 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4529 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4530 }
4531
4532 /**
4533 * bnx2x_clear_pf_load - clear pf load mark
4534 *
4535 * @bp: driver handle
4536 *
4537 * Should be run under rtnl lock.
4538 * Decrements the load counter for the current engine. Returns
4539 * whether other functions are still loaded
4540 */
bnx2x_clear_pf_load(struct bnx2x * bp)4541 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4542 {
4543 u32 val1, val;
4544 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4545 BNX2X_PATH0_LOAD_CNT_MASK;
4546 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4547 BNX2X_PATH0_LOAD_CNT_SHIFT;
4548
4549 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4550 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4551 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4552
4553 /* get the current counter value */
4554 val1 = (val & mask) >> shift;
4555
4556 /* clear bit of that PF */
4557 val1 &= ~(1 << bp->pf_num);
4558
4559 /* clear the old value */
4560 val &= ~mask;
4561
4562 /* set the new one */
4563 val |= ((val1 << shift) & mask);
4564
4565 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4566 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4567 return val1 != 0;
4568 }
4569
4570 /*
4571 * Read the load status for the current engine.
4572 *
4573 * should be run under rtnl lock
4574 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4575 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4576 {
4577 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4578 BNX2X_PATH0_LOAD_CNT_MASK);
4579 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4580 BNX2X_PATH0_LOAD_CNT_SHIFT);
4581 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4582
4583 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4584
4585 val = (val & mask) >> shift;
4586
4587 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4588 engine, val);
4589
4590 return val != 0;
4591 }
4592
_print_parity(struct bnx2x * bp,u32 reg)4593 static void _print_parity(struct bnx2x *bp, u32 reg)
4594 {
4595 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4596 }
4597
_print_next_block(int idx,const char * blk)4598 static void _print_next_block(int idx, const char *blk)
4599 {
4600 pr_cont("%s%s", idx ? ", " : "", blk);
4601 }
4602
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4603 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4604 int *par_num, bool print)
4605 {
4606 u32 cur_bit;
4607 bool res;
4608 int i;
4609
4610 res = false;
4611
4612 for (i = 0; sig; i++) {
4613 cur_bit = (0x1UL << i);
4614 if (sig & cur_bit) {
4615 res |= true; /* Each bit is real error! */
4616
4617 if (print) {
4618 switch (cur_bit) {
4619 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4620 _print_next_block((*par_num)++, "BRB");
4621 _print_parity(bp,
4622 BRB1_REG_BRB1_PRTY_STS);
4623 break;
4624 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4625 _print_next_block((*par_num)++,
4626 "PARSER");
4627 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4628 break;
4629 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4630 _print_next_block((*par_num)++, "TSDM");
4631 _print_parity(bp,
4632 TSDM_REG_TSDM_PRTY_STS);
4633 break;
4634 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4635 _print_next_block((*par_num)++,
4636 "SEARCHER");
4637 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4638 break;
4639 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4640 _print_next_block((*par_num)++, "TCM");
4641 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4642 break;
4643 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4644 _print_next_block((*par_num)++,
4645 "TSEMI");
4646 _print_parity(bp,
4647 TSEM_REG_TSEM_PRTY_STS_0);
4648 _print_parity(bp,
4649 TSEM_REG_TSEM_PRTY_STS_1);
4650 break;
4651 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4652 _print_next_block((*par_num)++, "XPB");
4653 _print_parity(bp, GRCBASE_XPB +
4654 PB_REG_PB_PRTY_STS);
4655 break;
4656 }
4657 }
4658
4659 /* Clear the bit */
4660 sig &= ~cur_bit;
4661 }
4662 }
4663
4664 return res;
4665 }
4666
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4667 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4668 int *par_num, bool *global,
4669 bool print)
4670 {
4671 u32 cur_bit;
4672 bool res;
4673 int i;
4674
4675 res = false;
4676
4677 for (i = 0; sig; i++) {
4678 cur_bit = (0x1UL << i);
4679 if (sig & cur_bit) {
4680 res |= true; /* Each bit is real error! */
4681 switch (cur_bit) {
4682 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4683 if (print) {
4684 _print_next_block((*par_num)++, "PBF");
4685 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4686 }
4687 break;
4688 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4689 if (print) {
4690 _print_next_block((*par_num)++, "QM");
4691 _print_parity(bp, QM_REG_QM_PRTY_STS);
4692 }
4693 break;
4694 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4695 if (print) {
4696 _print_next_block((*par_num)++, "TM");
4697 _print_parity(bp, TM_REG_TM_PRTY_STS);
4698 }
4699 break;
4700 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4701 if (print) {
4702 _print_next_block((*par_num)++, "XSDM");
4703 _print_parity(bp,
4704 XSDM_REG_XSDM_PRTY_STS);
4705 }
4706 break;
4707 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4708 if (print) {
4709 _print_next_block((*par_num)++, "XCM");
4710 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4711 }
4712 break;
4713 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4714 if (print) {
4715 _print_next_block((*par_num)++,
4716 "XSEMI");
4717 _print_parity(bp,
4718 XSEM_REG_XSEM_PRTY_STS_0);
4719 _print_parity(bp,
4720 XSEM_REG_XSEM_PRTY_STS_1);
4721 }
4722 break;
4723 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4724 if (print) {
4725 _print_next_block((*par_num)++,
4726 "DOORBELLQ");
4727 _print_parity(bp,
4728 DORQ_REG_DORQ_PRTY_STS);
4729 }
4730 break;
4731 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4732 if (print) {
4733 _print_next_block((*par_num)++, "NIG");
4734 if (CHIP_IS_E1x(bp)) {
4735 _print_parity(bp,
4736 NIG_REG_NIG_PRTY_STS);
4737 } else {
4738 _print_parity(bp,
4739 NIG_REG_NIG_PRTY_STS_0);
4740 _print_parity(bp,
4741 NIG_REG_NIG_PRTY_STS_1);
4742 }
4743 }
4744 break;
4745 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4746 if (print)
4747 _print_next_block((*par_num)++,
4748 "VAUX PCI CORE");
4749 *global = true;
4750 break;
4751 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4752 if (print) {
4753 _print_next_block((*par_num)++,
4754 "DEBUG");
4755 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4756 }
4757 break;
4758 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4759 if (print) {
4760 _print_next_block((*par_num)++, "USDM");
4761 _print_parity(bp,
4762 USDM_REG_USDM_PRTY_STS);
4763 }
4764 break;
4765 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4766 if (print) {
4767 _print_next_block((*par_num)++, "UCM");
4768 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4769 }
4770 break;
4771 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4772 if (print) {
4773 _print_next_block((*par_num)++,
4774 "USEMI");
4775 _print_parity(bp,
4776 USEM_REG_USEM_PRTY_STS_0);
4777 _print_parity(bp,
4778 USEM_REG_USEM_PRTY_STS_1);
4779 }
4780 break;
4781 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4782 if (print) {
4783 _print_next_block((*par_num)++, "UPB");
4784 _print_parity(bp, GRCBASE_UPB +
4785 PB_REG_PB_PRTY_STS);
4786 }
4787 break;
4788 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4789 if (print) {
4790 _print_next_block((*par_num)++, "CSDM");
4791 _print_parity(bp,
4792 CSDM_REG_CSDM_PRTY_STS);
4793 }
4794 break;
4795 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4796 if (print) {
4797 _print_next_block((*par_num)++, "CCM");
4798 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4799 }
4800 break;
4801 }
4802
4803 /* Clear the bit */
4804 sig &= ~cur_bit;
4805 }
4806 }
4807
4808 return res;
4809 }
4810
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4811 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4812 int *par_num, bool print)
4813 {
4814 u32 cur_bit;
4815 bool res;
4816 int i;
4817
4818 res = false;
4819
4820 for (i = 0; sig; i++) {
4821 cur_bit = (0x1UL << i);
4822 if (sig & cur_bit) {
4823 res = true; /* Each bit is real error! */
4824 if (print) {
4825 switch (cur_bit) {
4826 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4827 _print_next_block((*par_num)++,
4828 "CSEMI");
4829 _print_parity(bp,
4830 CSEM_REG_CSEM_PRTY_STS_0);
4831 _print_parity(bp,
4832 CSEM_REG_CSEM_PRTY_STS_1);
4833 break;
4834 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4835 _print_next_block((*par_num)++, "PXP");
4836 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4837 _print_parity(bp,
4838 PXP2_REG_PXP2_PRTY_STS_0);
4839 _print_parity(bp,
4840 PXP2_REG_PXP2_PRTY_STS_1);
4841 break;
4842 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4843 _print_next_block((*par_num)++,
4844 "PXPPCICLOCKCLIENT");
4845 break;
4846 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4847 _print_next_block((*par_num)++, "CFC");
4848 _print_parity(bp,
4849 CFC_REG_CFC_PRTY_STS);
4850 break;
4851 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4852 _print_next_block((*par_num)++, "CDU");
4853 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4854 break;
4855 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4856 _print_next_block((*par_num)++, "DMAE");
4857 _print_parity(bp,
4858 DMAE_REG_DMAE_PRTY_STS);
4859 break;
4860 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4861 _print_next_block((*par_num)++, "IGU");
4862 if (CHIP_IS_E1x(bp))
4863 _print_parity(bp,
4864 HC_REG_HC_PRTY_STS);
4865 else
4866 _print_parity(bp,
4867 IGU_REG_IGU_PRTY_STS);
4868 break;
4869 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4870 _print_next_block((*par_num)++, "MISC");
4871 _print_parity(bp,
4872 MISC_REG_MISC_PRTY_STS);
4873 break;
4874 }
4875 }
4876
4877 /* Clear the bit */
4878 sig &= ~cur_bit;
4879 }
4880 }
4881
4882 return res;
4883 }
4884
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4885 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4886 int *par_num, bool *global,
4887 bool print)
4888 {
4889 bool res = false;
4890 u32 cur_bit;
4891 int i;
4892
4893 for (i = 0; sig; i++) {
4894 cur_bit = (0x1UL << i);
4895 if (sig & cur_bit) {
4896 switch (cur_bit) {
4897 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4898 if (print)
4899 _print_next_block((*par_num)++,
4900 "MCP ROM");
4901 *global = true;
4902 res = true;
4903 break;
4904 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4905 if (print)
4906 _print_next_block((*par_num)++,
4907 "MCP UMP RX");
4908 *global = true;
4909 res = true;
4910 break;
4911 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4912 if (print)
4913 _print_next_block((*par_num)++,
4914 "MCP UMP TX");
4915 *global = true;
4916 res = true;
4917 break;
4918 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4919 (*par_num)++;
4920 /* clear latched SCPAD PATIRY from MCP */
4921 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4922 1UL << 10);
4923 break;
4924 }
4925
4926 /* Clear the bit */
4927 sig &= ~cur_bit;
4928 }
4929 }
4930
4931 return res;
4932 }
4933
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4934 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4935 int *par_num, bool print)
4936 {
4937 u32 cur_bit;
4938 bool res;
4939 int i;
4940
4941 res = false;
4942
4943 for (i = 0; sig; i++) {
4944 cur_bit = (0x1UL << i);
4945 if (sig & cur_bit) {
4946 res = true; /* Each bit is real error! */
4947 if (print) {
4948 switch (cur_bit) {
4949 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4950 _print_next_block((*par_num)++,
4951 "PGLUE_B");
4952 _print_parity(bp,
4953 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4954 break;
4955 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4956 _print_next_block((*par_num)++, "ATC");
4957 _print_parity(bp,
4958 ATC_REG_ATC_PRTY_STS);
4959 break;
4960 }
4961 }
4962 /* Clear the bit */
4963 sig &= ~cur_bit;
4964 }
4965 }
4966
4967 return res;
4968 }
4969
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4970 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4971 u32 *sig)
4972 {
4973 bool res = false;
4974
4975 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4976 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4977 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4978 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4979 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4980 int par_num = 0;
4981
4982 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4983 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4984 sig[0] & HW_PRTY_ASSERT_SET_0,
4985 sig[1] & HW_PRTY_ASSERT_SET_1,
4986 sig[2] & HW_PRTY_ASSERT_SET_2,
4987 sig[3] & HW_PRTY_ASSERT_SET_3,
4988 sig[4] & HW_PRTY_ASSERT_SET_4);
4989 if (print) {
4990 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4991 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4992 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4993 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4994 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4995 netdev_err(bp->dev,
4996 "Parity errors detected in blocks: ");
4997 } else {
4998 print = false;
4999 }
5000 }
5001 res |= bnx2x_check_blocks_with_parity0(bp,
5002 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5003 res |= bnx2x_check_blocks_with_parity1(bp,
5004 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5005 res |= bnx2x_check_blocks_with_parity2(bp,
5006 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5007 res |= bnx2x_check_blocks_with_parity3(bp,
5008 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5009 res |= bnx2x_check_blocks_with_parity4(bp,
5010 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5011
5012 if (print)
5013 pr_cont("\n");
5014 }
5015
5016 return res;
5017 }
5018
5019 /**
5020 * bnx2x_chk_parity_attn - checks for parity attentions.
5021 *
5022 * @bp: driver handle
5023 * @global: true if there was a global attention
5024 * @print: show parity attention in syslog
5025 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5026 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5027 {
5028 struct attn_route attn = { {0} };
5029 int port = BP_PORT(bp);
5030
5031 attn.sig[0] = REG_RD(bp,
5032 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5033 port*4);
5034 attn.sig[1] = REG_RD(bp,
5035 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5036 port*4);
5037 attn.sig[2] = REG_RD(bp,
5038 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5039 port*4);
5040 attn.sig[3] = REG_RD(bp,
5041 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5042 port*4);
5043 /* Since MCP attentions can't be disabled inside the block, we need to
5044 * read AEU registers to see whether they're currently disabled
5045 */
5046 attn.sig[3] &= ((REG_RD(bp,
5047 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5048 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5049 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5050 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5051
5052 if (!CHIP_IS_E1x(bp))
5053 attn.sig[4] = REG_RD(bp,
5054 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5055 port*4);
5056
5057 return bnx2x_parity_attn(bp, global, print, attn.sig);
5058 }
5059
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5060 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5061 {
5062 u32 val;
5063 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5064
5065 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5066 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5067 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5068 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5069 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5070 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5071 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5072 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5073 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5075 if (val &
5076 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5077 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5078 if (val &
5079 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5080 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5081 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5082 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5083 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5084 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5085 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5086 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5087 }
5088 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5089 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5090 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5091 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5092 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5093 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5094 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5095 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5096 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5097 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5098 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5099 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5100 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5101 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5102 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5103 }
5104
5105 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5106 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5107 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5108 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5109 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5110 }
5111 }
5112
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5113 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5114 {
5115 struct attn_route attn, *group_mask;
5116 int port = BP_PORT(bp);
5117 int index;
5118 u32 reg_addr;
5119 u32 val;
5120 u32 aeu_mask;
5121 bool global = false;
5122
5123 /* need to take HW lock because MCP or other port might also
5124 try to handle this event */
5125 bnx2x_acquire_alr(bp);
5126
5127 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5128 #ifndef BNX2X_STOP_ON_ERROR
5129 bp->recovery_state = BNX2X_RECOVERY_INIT;
5130 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5131 /* Disable HW interrupts */
5132 bnx2x_int_disable(bp);
5133 /* In case of parity errors don't handle attentions so that
5134 * other function would "see" parity errors.
5135 */
5136 #else
5137 bnx2x_panic();
5138 #endif
5139 bnx2x_release_alr(bp);
5140 return;
5141 }
5142
5143 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5144 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5145 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5146 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5147 if (!CHIP_IS_E1x(bp))
5148 attn.sig[4] =
5149 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5150 else
5151 attn.sig[4] = 0;
5152
5153 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5154 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5155
5156 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5157 if (deasserted & (1 << index)) {
5158 group_mask = &bp->attn_group[index];
5159
5160 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5161 index,
5162 group_mask->sig[0], group_mask->sig[1],
5163 group_mask->sig[2], group_mask->sig[3],
5164 group_mask->sig[4]);
5165
5166 bnx2x_attn_int_deasserted4(bp,
5167 attn.sig[4] & group_mask->sig[4]);
5168 bnx2x_attn_int_deasserted3(bp,
5169 attn.sig[3] & group_mask->sig[3]);
5170 bnx2x_attn_int_deasserted1(bp,
5171 attn.sig[1] & group_mask->sig[1]);
5172 bnx2x_attn_int_deasserted2(bp,
5173 attn.sig[2] & group_mask->sig[2]);
5174 bnx2x_attn_int_deasserted0(bp,
5175 attn.sig[0] & group_mask->sig[0]);
5176 }
5177 }
5178
5179 bnx2x_release_alr(bp);
5180
5181 if (bp->common.int_block == INT_BLOCK_HC)
5182 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5183 COMMAND_REG_ATTN_BITS_CLR);
5184 else
5185 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5186
5187 val = ~deasserted;
5188 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5189 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5190 REG_WR(bp, reg_addr, val);
5191
5192 if (~bp->attn_state & deasserted)
5193 BNX2X_ERR("IGU ERROR\n");
5194
5195 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5196 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5197
5198 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5199 aeu_mask = REG_RD(bp, reg_addr);
5200
5201 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5202 aeu_mask, deasserted);
5203 aeu_mask |= (deasserted & 0x3ff);
5204 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5205
5206 REG_WR(bp, reg_addr, aeu_mask);
5207 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5208
5209 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5210 bp->attn_state &= ~deasserted;
5211 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5212 }
5213
bnx2x_attn_int(struct bnx2x * bp)5214 static void bnx2x_attn_int(struct bnx2x *bp)
5215 {
5216 /* read local copy of bits */
5217 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5218 attn_bits);
5219 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5220 attn_bits_ack);
5221 u32 attn_state = bp->attn_state;
5222
5223 /* look for changed bits */
5224 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5225 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5226
5227 DP(NETIF_MSG_HW,
5228 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5229 attn_bits, attn_ack, asserted, deasserted);
5230
5231 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5232 BNX2X_ERR("BAD attention state\n");
5233
5234 /* handle bits that were raised */
5235 if (asserted)
5236 bnx2x_attn_int_asserted(bp, asserted);
5237
5238 if (deasserted)
5239 bnx2x_attn_int_deasserted(bp, deasserted);
5240 }
5241
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5242 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5243 u16 index, u8 op, u8 update)
5244 {
5245 u32 igu_addr = bp->igu_base_addr;
5246 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5247 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5248 igu_addr);
5249 }
5250
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5251 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5252 {
5253 /* No memory barriers */
5254 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5255 }
5256
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5257 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5258 union event_ring_elem *elem)
5259 {
5260 u8 err = elem->message.error;
5261
5262 if (!bp->cnic_eth_dev.starting_cid ||
5263 (cid < bp->cnic_eth_dev.starting_cid &&
5264 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5265 return 1;
5266
5267 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5268
5269 if (unlikely(err)) {
5270
5271 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5272 cid);
5273 bnx2x_panic_dump(bp, false);
5274 }
5275 bnx2x_cnic_cfc_comp(bp, cid, err);
5276 return 0;
5277 }
5278
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5279 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5280 {
5281 struct bnx2x_mcast_ramrod_params rparam;
5282 int rc;
5283
5284 memset(&rparam, 0, sizeof(rparam));
5285
5286 rparam.mcast_obj = &bp->mcast_obj;
5287
5288 netif_addr_lock_bh(bp->dev);
5289
5290 /* Clear pending state for the last command */
5291 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5292
5293 /* If there are pending mcast commands - send them */
5294 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5295 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5296 if (rc < 0)
5297 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5298 rc);
5299 }
5300
5301 netif_addr_unlock_bh(bp->dev);
5302 }
5303
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5304 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5305 union event_ring_elem *elem)
5306 {
5307 unsigned long ramrod_flags = 0;
5308 int rc = 0;
5309 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5310 u32 cid = echo & BNX2X_SWCID_MASK;
5311 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5312
5313 /* Always push next commands out, don't wait here */
5314 __set_bit(RAMROD_CONT, &ramrod_flags);
5315
5316 switch (echo >> BNX2X_SWCID_SHIFT) {
5317 case BNX2X_FILTER_MAC_PENDING:
5318 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5319 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5320 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5321 else
5322 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5323
5324 break;
5325 case BNX2X_FILTER_VLAN_PENDING:
5326 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5327 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5328 break;
5329 case BNX2X_FILTER_MCAST_PENDING:
5330 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5331 /* This is only relevant for 57710 where multicast MACs are
5332 * configured as unicast MACs using the same ramrod.
5333 */
5334 bnx2x_handle_mcast_eqe(bp);
5335 return;
5336 default:
5337 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5338 return;
5339 }
5340
5341 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5342
5343 if (rc < 0)
5344 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5345 else if (rc > 0)
5346 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5347 }
5348
5349 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5350
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5351 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5352 {
5353 netif_addr_lock_bh(bp->dev);
5354
5355 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5356
5357 /* Send rx_mode command again if was requested */
5358 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5359 bnx2x_set_storm_rx_mode(bp);
5360 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5361 &bp->sp_state))
5362 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5363 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5364 &bp->sp_state))
5365 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5366
5367 netif_addr_unlock_bh(bp->dev);
5368 }
5369
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5370 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5371 union event_ring_elem *elem)
5372 {
5373 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5374 DP(BNX2X_MSG_SP,
5375 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5376 elem->message.data.vif_list_event.func_bit_map);
5377 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5378 elem->message.data.vif_list_event.func_bit_map);
5379 } else if (elem->message.data.vif_list_event.echo ==
5380 VIF_LIST_RULE_SET) {
5381 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5382 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5383 }
5384 }
5385
5386 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5387 static void bnx2x_after_function_update(struct bnx2x *bp)
5388 {
5389 int q, rc;
5390 struct bnx2x_fastpath *fp;
5391 struct bnx2x_queue_state_params queue_params = {NULL};
5392 struct bnx2x_queue_update_params *q_update_params =
5393 &queue_params.params.update;
5394
5395 /* Send Q update command with afex vlan removal values for all Qs */
5396 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5397
5398 /* set silent vlan removal values according to vlan mode */
5399 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5400 &q_update_params->update_flags);
5401 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5402 &q_update_params->update_flags);
5403 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5404
5405 /* in access mode mark mask and value are 0 to strip all vlans */
5406 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5407 q_update_params->silent_removal_value = 0;
5408 q_update_params->silent_removal_mask = 0;
5409 } else {
5410 q_update_params->silent_removal_value =
5411 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5412 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5413 }
5414
5415 for_each_eth_queue(bp, q) {
5416 /* Set the appropriate Queue object */
5417 fp = &bp->fp[q];
5418 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419
5420 /* send the ramrod */
5421 rc = bnx2x_queue_state_change(bp, &queue_params);
5422 if (rc < 0)
5423 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5424 q);
5425 }
5426
5427 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5428 fp = &bp->fp[FCOE_IDX(bp)];
5429 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5430
5431 /* clear pending completion bit */
5432 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5433
5434 /* mark latest Q bit */
5435 smp_mb__before_atomic();
5436 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5437 smp_mb__after_atomic();
5438
5439 /* send Q update ramrod for FCoE Q */
5440 rc = bnx2x_queue_state_change(bp, &queue_params);
5441 if (rc < 0)
5442 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5443 q);
5444 } else {
5445 /* If no FCoE ring - ACK MCP now */
5446 bnx2x_link_report(bp);
5447 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5448 }
5449 }
5450
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5451 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5452 struct bnx2x *bp, u32 cid)
5453 {
5454 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5455
5456 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5457 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5458 else
5459 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5460 }
5461
bnx2x_eq_int(struct bnx2x * bp)5462 static void bnx2x_eq_int(struct bnx2x *bp)
5463 {
5464 u16 hw_cons, sw_cons, sw_prod;
5465 union event_ring_elem *elem;
5466 u8 echo;
5467 u32 cid;
5468 u8 opcode;
5469 int rc, spqe_cnt = 0;
5470 struct bnx2x_queue_sp_obj *q_obj;
5471 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5472 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5473
5474 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5475
5476 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5477 * when we get the next-page we need to adjust so the loop
5478 * condition below will be met. The next element is the size of a
5479 * regular element and hence incrementing by 1
5480 */
5481 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5482 hw_cons++;
5483
5484 /* This function may never run in parallel with itself for a
5485 * specific bp, thus there is no need in "paired" read memory
5486 * barrier here.
5487 */
5488 sw_cons = bp->eq_cons;
5489 sw_prod = bp->eq_prod;
5490
5491 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5492 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5493
5494 for (; sw_cons != hw_cons;
5495 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5496
5497 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5498
5499 rc = bnx2x_iov_eq_sp_event(bp, elem);
5500 if (!rc) {
5501 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5502 rc);
5503 goto next_spqe;
5504 }
5505
5506 opcode = elem->message.opcode;
5507
5508 /* handle eq element */
5509 switch (opcode) {
5510 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5511 bnx2x_vf_mbx_schedule(bp,
5512 &elem->message.data.vf_pf_event);
5513 continue;
5514
5515 case EVENT_RING_OPCODE_STAT_QUERY:
5516 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5517 "got statistics comp event %d\n",
5518 bp->stats_comp++);
5519 /* nothing to do with stats comp */
5520 goto next_spqe;
5521
5522 case EVENT_RING_OPCODE_CFC_DEL:
5523 /* handle according to cid range */
5524 /*
5525 * we may want to verify here that the bp state is
5526 * HALTING
5527 */
5528
5529 /* elem CID originates from FW; actually LE */
5530 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5531
5532 DP(BNX2X_MSG_SP,
5533 "got delete ramrod for MULTI[%d]\n", cid);
5534
5535 if (CNIC_LOADED(bp) &&
5536 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5537 goto next_spqe;
5538
5539 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5540
5541 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5542 break;
5543
5544 goto next_spqe;
5545
5546 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5547 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5548 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5549 if (f_obj->complete_cmd(bp, f_obj,
5550 BNX2X_F_CMD_TX_STOP))
5551 break;
5552 goto next_spqe;
5553
5554 case EVENT_RING_OPCODE_START_TRAFFIC:
5555 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5556 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5557 if (f_obj->complete_cmd(bp, f_obj,
5558 BNX2X_F_CMD_TX_START))
5559 break;
5560 goto next_spqe;
5561
5562 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5563 echo = elem->message.data.function_update_event.echo;
5564 if (echo == SWITCH_UPDATE) {
5565 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5566 "got FUNC_SWITCH_UPDATE ramrod\n");
5567 if (f_obj->complete_cmd(
5568 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5569 break;
5570
5571 } else {
5572 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5573
5574 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5575 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5576 f_obj->complete_cmd(bp, f_obj,
5577 BNX2X_F_CMD_AFEX_UPDATE);
5578
5579 /* We will perform the Queues update from
5580 * sp_rtnl task as all Queue SP operations
5581 * should run under rtnl_lock.
5582 */
5583 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5584 }
5585
5586 goto next_spqe;
5587
5588 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5589 f_obj->complete_cmd(bp, f_obj,
5590 BNX2X_F_CMD_AFEX_VIFLISTS);
5591 bnx2x_after_afex_vif_lists(bp, elem);
5592 goto next_spqe;
5593 case EVENT_RING_OPCODE_FUNCTION_START:
5594 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5595 "got FUNC_START ramrod\n");
5596 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5597 break;
5598
5599 goto next_spqe;
5600
5601 case EVENT_RING_OPCODE_FUNCTION_STOP:
5602 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5603 "got FUNC_STOP ramrod\n");
5604 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5605 break;
5606
5607 goto next_spqe;
5608
5609 case EVENT_RING_OPCODE_SET_TIMESYNC:
5610 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5611 "got set_timesync ramrod completion\n");
5612 if (f_obj->complete_cmd(bp, f_obj,
5613 BNX2X_F_CMD_SET_TIMESYNC))
5614 break;
5615 goto next_spqe;
5616 }
5617
5618 switch (opcode | bp->state) {
5619 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5620 BNX2X_STATE_OPEN):
5621 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5622 BNX2X_STATE_OPENING_WAIT4_PORT):
5623 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5624 BNX2X_STATE_CLOSING_WAIT4_HALT):
5625 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5626 SW_CID(elem->message.data.eth_event.echo));
5627 rss_raw->clear_pending(rss_raw);
5628 break;
5629
5630 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5631 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5632 case (EVENT_RING_OPCODE_SET_MAC |
5633 BNX2X_STATE_CLOSING_WAIT4_HALT):
5634 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5635 BNX2X_STATE_OPEN):
5636 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5637 BNX2X_STATE_DIAG):
5638 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5639 BNX2X_STATE_CLOSING_WAIT4_HALT):
5640 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5641 bnx2x_handle_classification_eqe(bp, elem);
5642 break;
5643
5644 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5645 BNX2X_STATE_OPEN):
5646 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5647 BNX2X_STATE_DIAG):
5648 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5649 BNX2X_STATE_CLOSING_WAIT4_HALT):
5650 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5651 bnx2x_handle_mcast_eqe(bp);
5652 break;
5653
5654 case (EVENT_RING_OPCODE_FILTERS_RULES |
5655 BNX2X_STATE_OPEN):
5656 case (EVENT_RING_OPCODE_FILTERS_RULES |
5657 BNX2X_STATE_DIAG):
5658 case (EVENT_RING_OPCODE_FILTERS_RULES |
5659 BNX2X_STATE_CLOSING_WAIT4_HALT):
5660 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5661 bnx2x_handle_rx_mode_eqe(bp);
5662 break;
5663 default:
5664 /* unknown event log error and continue */
5665 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5666 elem->message.opcode, bp->state);
5667 }
5668 next_spqe:
5669 spqe_cnt++;
5670 } /* for */
5671
5672 smp_mb__before_atomic();
5673 atomic_add(spqe_cnt, &bp->eq_spq_left);
5674
5675 bp->eq_cons = sw_cons;
5676 bp->eq_prod = sw_prod;
5677 /* Make sure that above mem writes were issued towards the memory */
5678 smp_wmb();
5679
5680 /* update producer */
5681 bnx2x_update_eq_prod(bp, bp->eq_prod);
5682 }
5683
bnx2x_sp_task(struct work_struct * work)5684 static void bnx2x_sp_task(struct work_struct *work)
5685 {
5686 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5687
5688 DP(BNX2X_MSG_SP, "sp task invoked\n");
5689
5690 /* make sure the atomic interrupt_occurred has been written */
5691 smp_rmb();
5692 if (atomic_read(&bp->interrupt_occurred)) {
5693
5694 /* what work needs to be performed? */
5695 u16 status = bnx2x_update_dsb_idx(bp);
5696
5697 DP(BNX2X_MSG_SP, "status %x\n", status);
5698 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5699 atomic_set(&bp->interrupt_occurred, 0);
5700
5701 /* HW attentions */
5702 if (status & BNX2X_DEF_SB_ATT_IDX) {
5703 bnx2x_attn_int(bp);
5704 status &= ~BNX2X_DEF_SB_ATT_IDX;
5705 }
5706
5707 /* SP events: STAT_QUERY and others */
5708 if (status & BNX2X_DEF_SB_IDX) {
5709 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5710
5711 if (FCOE_INIT(bp) &&
5712 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5713 /* Prevent local bottom-halves from running as
5714 * we are going to change the local NAPI list.
5715 */
5716 local_bh_disable();
5717 napi_schedule(&bnx2x_fcoe(bp, napi));
5718 local_bh_enable();
5719 }
5720
5721 /* Handle EQ completions */
5722 bnx2x_eq_int(bp);
5723 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5724 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5725
5726 status &= ~BNX2X_DEF_SB_IDX;
5727 }
5728
5729 /* if status is non zero then perhaps something went wrong */
5730 if (unlikely(status))
5731 DP(BNX2X_MSG_SP,
5732 "got an unknown interrupt! (status 0x%x)\n", status);
5733
5734 /* ack status block only if something was actually handled */
5735 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5736 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5737 }
5738
5739 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5740 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5741 &bp->sp_state)) {
5742 bnx2x_link_report(bp);
5743 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5744 }
5745 }
5746
bnx2x_msix_sp_int(int irq,void * dev_instance)5747 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5748 {
5749 struct net_device *dev = dev_instance;
5750 struct bnx2x *bp = netdev_priv(dev);
5751
5752 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5753 IGU_INT_DISABLE, 0);
5754
5755 #ifdef BNX2X_STOP_ON_ERROR
5756 if (unlikely(bp->panic))
5757 return IRQ_HANDLED;
5758 #endif
5759
5760 if (CNIC_LOADED(bp)) {
5761 struct cnic_ops *c_ops;
5762
5763 rcu_read_lock();
5764 c_ops = rcu_dereference(bp->cnic_ops);
5765 if (c_ops)
5766 c_ops->cnic_handler(bp->cnic_data, NULL);
5767 rcu_read_unlock();
5768 }
5769
5770 /* schedule sp task to perform default status block work, ack
5771 * attentions and enable interrupts.
5772 */
5773 bnx2x_schedule_sp_task(bp);
5774
5775 return IRQ_HANDLED;
5776 }
5777
5778 /* end of slow path */
5779
bnx2x_drv_pulse(struct bnx2x * bp)5780 void bnx2x_drv_pulse(struct bnx2x *bp)
5781 {
5782 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5783 bp->fw_drv_pulse_wr_seq);
5784 }
5785
bnx2x_timer(struct timer_list * t)5786 static void bnx2x_timer(struct timer_list *t)
5787 {
5788 struct bnx2x *bp = from_timer(bp, t, timer);
5789
5790 if (!netif_running(bp->dev))
5791 return;
5792
5793 if (IS_PF(bp) &&
5794 !BP_NOMCP(bp)) {
5795 int mb_idx = BP_FW_MB_IDX(bp);
5796 u16 drv_pulse;
5797 u16 mcp_pulse;
5798
5799 ++bp->fw_drv_pulse_wr_seq;
5800 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5801 drv_pulse = bp->fw_drv_pulse_wr_seq;
5802 bnx2x_drv_pulse(bp);
5803
5804 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5805 MCP_PULSE_SEQ_MASK);
5806 /* The delta between driver pulse and mcp response
5807 * should not get too big. If the MFW is more than 5 pulses
5808 * behind, we should worry about it enough to generate an error
5809 * log.
5810 */
5811 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5812 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5813 drv_pulse, mcp_pulse);
5814 }
5815
5816 if (bp->state == BNX2X_STATE_OPEN)
5817 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5818
5819 /* sample pf vf bulletin board for new posts from pf */
5820 if (IS_VF(bp))
5821 bnx2x_timer_sriov(bp);
5822
5823 mod_timer(&bp->timer, jiffies + bp->current_interval);
5824 }
5825
5826 /* end of Statistics */
5827
5828 /* nic init */
5829
5830 /*
5831 * nic init service functions
5832 */
5833
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5834 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5835 {
5836 u32 i;
5837 if (!(len%4) && !(addr%4))
5838 for (i = 0; i < len; i += 4)
5839 REG_WR(bp, addr + i, fill);
5840 else
5841 for (i = 0; i < len; i++)
5842 REG_WR8(bp, addr + i, fill);
5843 }
5844
5845 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5846 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5847 int fw_sb_id,
5848 u32 *sb_data_p,
5849 u32 data_size)
5850 {
5851 int index;
5852 for (index = 0; index < data_size; index++)
5853 REG_WR(bp, BAR_CSTRORM_INTMEM +
5854 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5855 sizeof(u32)*index,
5856 *(sb_data_p + index));
5857 }
5858
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5859 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5860 {
5861 u32 *sb_data_p;
5862 u32 data_size = 0;
5863 struct hc_status_block_data_e2 sb_data_e2;
5864 struct hc_status_block_data_e1x sb_data_e1x;
5865
5866 /* disable the function first */
5867 if (!CHIP_IS_E1x(bp)) {
5868 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5869 sb_data_e2.common.state = SB_DISABLED;
5870 sb_data_e2.common.p_func.vf_valid = false;
5871 sb_data_p = (u32 *)&sb_data_e2;
5872 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5873 } else {
5874 memset(&sb_data_e1x, 0,
5875 sizeof(struct hc_status_block_data_e1x));
5876 sb_data_e1x.common.state = SB_DISABLED;
5877 sb_data_e1x.common.p_func.vf_valid = false;
5878 sb_data_p = (u32 *)&sb_data_e1x;
5879 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5880 }
5881 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5882
5883 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5884 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5885 CSTORM_STATUS_BLOCK_SIZE);
5886 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5887 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5888 CSTORM_SYNC_BLOCK_SIZE);
5889 }
5890
5891 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5892 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5893 struct hc_sp_status_block_data *sp_sb_data)
5894 {
5895 int func = BP_FUNC(bp);
5896 int i;
5897 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5898 REG_WR(bp, BAR_CSTRORM_INTMEM +
5899 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5900 i*sizeof(u32),
5901 *((u32 *)sp_sb_data + i));
5902 }
5903
bnx2x_zero_sp_sb(struct bnx2x * bp)5904 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5905 {
5906 int func = BP_FUNC(bp);
5907 struct hc_sp_status_block_data sp_sb_data;
5908 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5909
5910 sp_sb_data.state = SB_DISABLED;
5911 sp_sb_data.p_func.vf_valid = false;
5912
5913 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5914
5915 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5916 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5917 CSTORM_SP_STATUS_BLOCK_SIZE);
5918 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5919 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5920 CSTORM_SP_SYNC_BLOCK_SIZE);
5921 }
5922
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5923 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5924 int igu_sb_id, int igu_seg_id)
5925 {
5926 hc_sm->igu_sb_id = igu_sb_id;
5927 hc_sm->igu_seg_id = igu_seg_id;
5928 hc_sm->timer_value = 0xFF;
5929 hc_sm->time_to_expire = 0xFFFFFFFF;
5930 }
5931
5932 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5933 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5934 {
5935 /* zero out state machine indices */
5936 /* rx indices */
5937 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938
5939 /* tx indices */
5940 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5941 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5942 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5943 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5944
5945 /* map indices */
5946 /* rx indices */
5947 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5948 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5949
5950 /* tx indices */
5951 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5952 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5953 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5954 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5955 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5956 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5957 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5958 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5959 }
5960
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5961 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5962 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5963 {
5964 int igu_seg_id;
5965
5966 struct hc_status_block_data_e2 sb_data_e2;
5967 struct hc_status_block_data_e1x sb_data_e1x;
5968 struct hc_status_block_sm *hc_sm_p;
5969 int data_size;
5970 u32 *sb_data_p;
5971
5972 if (CHIP_INT_MODE_IS_BC(bp))
5973 igu_seg_id = HC_SEG_ACCESS_NORM;
5974 else
5975 igu_seg_id = IGU_SEG_ACCESS_NORM;
5976
5977 bnx2x_zero_fp_sb(bp, fw_sb_id);
5978
5979 if (!CHIP_IS_E1x(bp)) {
5980 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5981 sb_data_e2.common.state = SB_ENABLED;
5982 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5983 sb_data_e2.common.p_func.vf_id = vfid;
5984 sb_data_e2.common.p_func.vf_valid = vf_valid;
5985 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5986 sb_data_e2.common.same_igu_sb_1b = true;
5987 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5988 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5989 hc_sm_p = sb_data_e2.common.state_machine;
5990 sb_data_p = (u32 *)&sb_data_e2;
5991 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5992 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5993 } else {
5994 memset(&sb_data_e1x, 0,
5995 sizeof(struct hc_status_block_data_e1x));
5996 sb_data_e1x.common.state = SB_ENABLED;
5997 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5998 sb_data_e1x.common.p_func.vf_id = 0xff;
5999 sb_data_e1x.common.p_func.vf_valid = false;
6000 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6001 sb_data_e1x.common.same_igu_sb_1b = true;
6002 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6003 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6004 hc_sm_p = sb_data_e1x.common.state_machine;
6005 sb_data_p = (u32 *)&sb_data_e1x;
6006 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6007 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6008 }
6009
6010 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6011 igu_sb_id, igu_seg_id);
6012 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6013 igu_sb_id, igu_seg_id);
6014
6015 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6016
6017 /* write indices to HW - PCI guarantees endianity of regpairs */
6018 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6019 }
6020
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6021 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6022 u16 tx_usec, u16 rx_usec)
6023 {
6024 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6025 false, rx_usec);
6026 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6027 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6028 tx_usec);
6029 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6030 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6031 tx_usec);
6032 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6033 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6034 tx_usec);
6035 }
6036
bnx2x_init_def_sb(struct bnx2x * bp)6037 static void bnx2x_init_def_sb(struct bnx2x *bp)
6038 {
6039 struct host_sp_status_block *def_sb = bp->def_status_blk;
6040 dma_addr_t mapping = bp->def_status_blk_mapping;
6041 int igu_sp_sb_index;
6042 int igu_seg_id;
6043 int port = BP_PORT(bp);
6044 int func = BP_FUNC(bp);
6045 int reg_offset, reg_offset_en5;
6046 u64 section;
6047 int index;
6048 struct hc_sp_status_block_data sp_sb_data;
6049 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6050
6051 if (CHIP_INT_MODE_IS_BC(bp)) {
6052 igu_sp_sb_index = DEF_SB_IGU_ID;
6053 igu_seg_id = HC_SEG_ACCESS_DEF;
6054 } else {
6055 igu_sp_sb_index = bp->igu_dsb_id;
6056 igu_seg_id = IGU_SEG_ACCESS_DEF;
6057 }
6058
6059 /* ATTN */
6060 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6061 atten_status_block);
6062 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6063
6064 bp->attn_state = 0;
6065
6066 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6067 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6068 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6069 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6070 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6071 int sindex;
6072 /* take care of sig[0]..sig[4] */
6073 for (sindex = 0; sindex < 4; sindex++)
6074 bp->attn_group[index].sig[sindex] =
6075 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6076
6077 if (!CHIP_IS_E1x(bp))
6078 /*
6079 * enable5 is separate from the rest of the registers,
6080 * and therefore the address skip is 4
6081 * and not 16 between the different groups
6082 */
6083 bp->attn_group[index].sig[4] = REG_RD(bp,
6084 reg_offset_en5 + 0x4*index);
6085 else
6086 bp->attn_group[index].sig[4] = 0;
6087 }
6088
6089 if (bp->common.int_block == INT_BLOCK_HC) {
6090 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6091 HC_REG_ATTN_MSG0_ADDR_L);
6092
6093 REG_WR(bp, reg_offset, U64_LO(section));
6094 REG_WR(bp, reg_offset + 4, U64_HI(section));
6095 } else if (!CHIP_IS_E1x(bp)) {
6096 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6097 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6098 }
6099
6100 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6101 sp_sb);
6102
6103 bnx2x_zero_sp_sb(bp);
6104
6105 /* PCI guarantees endianity of regpairs */
6106 sp_sb_data.state = SB_ENABLED;
6107 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6108 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6109 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6110 sp_sb_data.igu_seg_id = igu_seg_id;
6111 sp_sb_data.p_func.pf_id = func;
6112 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6113 sp_sb_data.p_func.vf_id = 0xff;
6114
6115 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6116
6117 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6118 }
6119
bnx2x_update_coalesce(struct bnx2x * bp)6120 void bnx2x_update_coalesce(struct bnx2x *bp)
6121 {
6122 int i;
6123
6124 for_each_eth_queue(bp, i)
6125 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6126 bp->tx_ticks, bp->rx_ticks);
6127 }
6128
bnx2x_init_sp_ring(struct bnx2x * bp)6129 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6130 {
6131 spin_lock_init(&bp->spq_lock);
6132 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6133
6134 bp->spq_prod_idx = 0;
6135 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6136 bp->spq_prod_bd = bp->spq;
6137 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6138 }
6139
bnx2x_init_eq_ring(struct bnx2x * bp)6140 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6141 {
6142 int i;
6143 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6144 union event_ring_elem *elem =
6145 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6146
6147 elem->next_page.addr.hi =
6148 cpu_to_le32(U64_HI(bp->eq_mapping +
6149 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6150 elem->next_page.addr.lo =
6151 cpu_to_le32(U64_LO(bp->eq_mapping +
6152 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6153 }
6154 bp->eq_cons = 0;
6155 bp->eq_prod = NUM_EQ_DESC;
6156 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6157 /* we want a warning message before it gets wrought... */
6158 atomic_set(&bp->eq_spq_left,
6159 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6160 }
6161
6162 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6163 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6164 unsigned long rx_mode_flags,
6165 unsigned long rx_accept_flags,
6166 unsigned long tx_accept_flags,
6167 unsigned long ramrod_flags)
6168 {
6169 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6170 int rc;
6171
6172 memset(&ramrod_param, 0, sizeof(ramrod_param));
6173
6174 /* Prepare ramrod parameters */
6175 ramrod_param.cid = 0;
6176 ramrod_param.cl_id = cl_id;
6177 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6178 ramrod_param.func_id = BP_FUNC(bp);
6179
6180 ramrod_param.pstate = &bp->sp_state;
6181 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6182
6183 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6184 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6185
6186 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6187
6188 ramrod_param.ramrod_flags = ramrod_flags;
6189 ramrod_param.rx_mode_flags = rx_mode_flags;
6190
6191 ramrod_param.rx_accept_flags = rx_accept_flags;
6192 ramrod_param.tx_accept_flags = tx_accept_flags;
6193
6194 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6195 if (rc < 0) {
6196 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6197 return rc;
6198 }
6199
6200 return 0;
6201 }
6202
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6203 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6204 unsigned long *rx_accept_flags,
6205 unsigned long *tx_accept_flags)
6206 {
6207 /* Clear the flags first */
6208 *rx_accept_flags = 0;
6209 *tx_accept_flags = 0;
6210
6211 switch (rx_mode) {
6212 case BNX2X_RX_MODE_NONE:
6213 /*
6214 * 'drop all' supersedes any accept flags that may have been
6215 * passed to the function.
6216 */
6217 break;
6218 case BNX2X_RX_MODE_NORMAL:
6219 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6220 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6221 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6222
6223 /* internal switching mode */
6224 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6225 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6226 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6227
6228 if (bp->accept_any_vlan) {
6229 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6230 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6231 }
6232
6233 break;
6234 case BNX2X_RX_MODE_ALLMULTI:
6235 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6236 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6237 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6238
6239 /* internal switching mode */
6240 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6242 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6243
6244 if (bp->accept_any_vlan) {
6245 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247 }
6248
6249 break;
6250 case BNX2X_RX_MODE_PROMISC:
6251 /* According to definition of SI mode, iface in promisc mode
6252 * should receive matched and unmatched (in resolution of port)
6253 * unicast packets.
6254 */
6255 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6256 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6257 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6258 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6259
6260 /* internal switching mode */
6261 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6262 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6263
6264 if (IS_MF_SI(bp))
6265 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6266 else
6267 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6268
6269 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6270 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6271
6272 break;
6273 default:
6274 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6275 return -EINVAL;
6276 }
6277
6278 return 0;
6279 }
6280
6281 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6282 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6283 {
6284 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6285 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6286 int rc;
6287
6288 if (!NO_FCOE(bp))
6289 /* Configure rx_mode of FCoE Queue */
6290 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6291
6292 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6293 &tx_accept_flags);
6294 if (rc)
6295 return rc;
6296
6297 __set_bit(RAMROD_RX, &ramrod_flags);
6298 __set_bit(RAMROD_TX, &ramrod_flags);
6299
6300 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6301 rx_accept_flags, tx_accept_flags,
6302 ramrod_flags);
6303 }
6304
bnx2x_init_internal_common(struct bnx2x * bp)6305 static void bnx2x_init_internal_common(struct bnx2x *bp)
6306 {
6307 int i;
6308
6309 /* Zero this manually as its initialization is
6310 currently missing in the initTool */
6311 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6312 REG_WR(bp, BAR_USTRORM_INTMEM +
6313 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6314 if (!CHIP_IS_E1x(bp)) {
6315 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6316 CHIP_INT_MODE_IS_BC(bp) ?
6317 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6318 }
6319 }
6320
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6321 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6322 {
6323 switch (load_code) {
6324 case FW_MSG_CODE_DRV_LOAD_COMMON:
6325 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6326 bnx2x_init_internal_common(bp);
6327 fallthrough;
6328
6329 case FW_MSG_CODE_DRV_LOAD_PORT:
6330 /* nothing to do */
6331 fallthrough;
6332
6333 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6334 /* internal memory per function is
6335 initialized inside bnx2x_pf_init */
6336 break;
6337
6338 default:
6339 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6340 break;
6341 }
6342 }
6343
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6344 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6345 {
6346 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6347 }
6348
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6349 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6350 {
6351 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6352 }
6353
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6354 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6355 {
6356 if (CHIP_IS_E1x(fp->bp))
6357 return BP_L_ID(fp->bp) + fp->index;
6358 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6359 return bnx2x_fp_igu_sb_id(fp);
6360 }
6361
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6362 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6363 {
6364 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6365 u8 cos;
6366 unsigned long q_type = 0;
6367 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6368 fp->rx_queue = fp_idx;
6369 fp->cid = fp_idx;
6370 fp->cl_id = bnx2x_fp_cl_id(fp);
6371 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6372 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6373 /* qZone id equals to FW (per path) client id */
6374 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6375
6376 /* init shortcut */
6377 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6378
6379 /* Setup SB indices */
6380 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6381
6382 /* Configure Queue State object */
6383 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6384 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6385
6386 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6387
6388 /* init tx data */
6389 for_each_cos_in_tx_queue(fp, cos) {
6390 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6391 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6392 FP_COS_TO_TXQ(fp, cos, bp),
6393 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6394 cids[cos] = fp->txdata_ptr[cos]->cid;
6395 }
6396
6397 /* nothing more for vf to do here */
6398 if (IS_VF(bp))
6399 return;
6400
6401 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6402 fp->fw_sb_id, fp->igu_sb_id);
6403 bnx2x_update_fpsb_idx(fp);
6404 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6405 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6406 bnx2x_sp_mapping(bp, q_rdata), q_type);
6407
6408 /**
6409 * Configure classification DBs: Always enable Tx switching
6410 */
6411 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6412
6413 DP(NETIF_MSG_IFUP,
6414 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6415 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6416 fp->igu_sb_id);
6417 }
6418
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6419 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6420 {
6421 int i;
6422
6423 for (i = 1; i <= NUM_TX_RINGS; i++) {
6424 struct eth_tx_next_bd *tx_next_bd =
6425 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6426
6427 tx_next_bd->addr_hi =
6428 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6429 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6430 tx_next_bd->addr_lo =
6431 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6432 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6433 }
6434
6435 *txdata->tx_cons_sb = cpu_to_le16(0);
6436
6437 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6438 txdata->tx_db.data.zero_fill1 = 0;
6439 txdata->tx_db.data.prod = 0;
6440
6441 txdata->tx_pkt_prod = 0;
6442 txdata->tx_pkt_cons = 0;
6443 txdata->tx_bd_prod = 0;
6444 txdata->tx_bd_cons = 0;
6445 txdata->tx_pkt = 0;
6446 }
6447
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6448 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6449 {
6450 int i;
6451
6452 for_each_tx_queue_cnic(bp, i)
6453 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6454 }
6455
bnx2x_init_tx_rings(struct bnx2x * bp)6456 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6457 {
6458 int i;
6459 u8 cos;
6460
6461 for_each_eth_queue(bp, i)
6462 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6463 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6464 }
6465
bnx2x_init_fcoe_fp(struct bnx2x * bp)6466 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6467 {
6468 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6469 unsigned long q_type = 0;
6470
6471 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6472 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6473 BNX2X_FCOE_ETH_CL_ID_IDX);
6474 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6475 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6476 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6477 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6478 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6479 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6480 fp);
6481
6482 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6483
6484 /* qZone id equals to FW (per path) client id */
6485 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6486 /* init shortcut */
6487 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6488 bnx2x_rx_ustorm_prods_offset(fp);
6489
6490 /* Configure Queue State object */
6491 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6492 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6493
6494 /* No multi-CoS for FCoE L2 client */
6495 BUG_ON(fp->max_cos != 1);
6496
6497 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6498 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6499 bnx2x_sp_mapping(bp, q_rdata), q_type);
6500
6501 DP(NETIF_MSG_IFUP,
6502 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6503 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6504 fp->igu_sb_id);
6505 }
6506
bnx2x_nic_init_cnic(struct bnx2x * bp)6507 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6508 {
6509 if (!NO_FCOE(bp))
6510 bnx2x_init_fcoe_fp(bp);
6511
6512 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6513 BNX2X_VF_ID_INVALID, false,
6514 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6515
6516 /* ensure status block indices were read */
6517 rmb();
6518 bnx2x_init_rx_rings_cnic(bp);
6519 bnx2x_init_tx_rings_cnic(bp);
6520
6521 /* flush all */
6522 mb();
6523 }
6524
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6525 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6526 {
6527 int i;
6528
6529 /* Setup NIC internals and enable interrupts */
6530 for_each_eth_queue(bp, i)
6531 bnx2x_init_eth_fp(bp, i);
6532
6533 /* ensure status block indices were read */
6534 rmb();
6535 bnx2x_init_rx_rings(bp);
6536 bnx2x_init_tx_rings(bp);
6537
6538 if (IS_PF(bp)) {
6539 /* Initialize MOD_ABS interrupts */
6540 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6541 bp->common.shmem_base,
6542 bp->common.shmem2_base, BP_PORT(bp));
6543
6544 /* initialize the default status block and sp ring */
6545 bnx2x_init_def_sb(bp);
6546 bnx2x_update_dsb_idx(bp);
6547 bnx2x_init_sp_ring(bp);
6548 } else {
6549 bnx2x_memset_stats(bp);
6550 }
6551 }
6552
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6553 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6554 {
6555 bnx2x_init_eq_ring(bp);
6556 bnx2x_init_internal(bp, load_code);
6557 bnx2x_pf_init(bp);
6558 bnx2x_stats_init(bp);
6559
6560 /* flush all before enabling interrupts */
6561 mb();
6562
6563 bnx2x_int_enable(bp);
6564
6565 /* Check for SPIO5 */
6566 bnx2x_attn_int_deasserted0(bp,
6567 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6568 AEU_INPUTS_ATTN_BITS_SPIO5);
6569 }
6570
6571 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6572 static int bnx2x_gunzip_init(struct bnx2x *bp)
6573 {
6574 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6575 &bp->gunzip_mapping, GFP_KERNEL);
6576 if (bp->gunzip_buf == NULL)
6577 goto gunzip_nomem1;
6578
6579 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6580 if (bp->strm == NULL)
6581 goto gunzip_nomem2;
6582
6583 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6584 if (bp->strm->workspace == NULL)
6585 goto gunzip_nomem3;
6586
6587 return 0;
6588
6589 gunzip_nomem3:
6590 kfree(bp->strm);
6591 bp->strm = NULL;
6592
6593 gunzip_nomem2:
6594 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6595 bp->gunzip_mapping);
6596 bp->gunzip_buf = NULL;
6597
6598 gunzip_nomem1:
6599 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6600 return -ENOMEM;
6601 }
6602
bnx2x_gunzip_end(struct bnx2x * bp)6603 static void bnx2x_gunzip_end(struct bnx2x *bp)
6604 {
6605 if (bp->strm) {
6606 vfree(bp->strm->workspace);
6607 kfree(bp->strm);
6608 bp->strm = NULL;
6609 }
6610
6611 if (bp->gunzip_buf) {
6612 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6613 bp->gunzip_mapping);
6614 bp->gunzip_buf = NULL;
6615 }
6616 }
6617
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6618 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6619 {
6620 int n, rc;
6621
6622 /* check gzip header */
6623 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6624 BNX2X_ERR("Bad gzip header\n");
6625 return -EINVAL;
6626 }
6627
6628 n = 10;
6629
6630 #define FNAME 0x8
6631
6632 if (zbuf[3] & FNAME)
6633 while ((zbuf[n++] != 0) && (n < len));
6634
6635 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6636 bp->strm->avail_in = len - n;
6637 bp->strm->next_out = bp->gunzip_buf;
6638 bp->strm->avail_out = FW_BUF_SIZE;
6639
6640 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6641 if (rc != Z_OK)
6642 return rc;
6643
6644 rc = zlib_inflate(bp->strm, Z_FINISH);
6645 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6646 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6647 bp->strm->msg);
6648
6649 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6650 if (bp->gunzip_outlen & 0x3)
6651 netdev_err(bp->dev,
6652 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6653 bp->gunzip_outlen);
6654 bp->gunzip_outlen >>= 2;
6655
6656 zlib_inflateEnd(bp->strm);
6657
6658 if (rc == Z_STREAM_END)
6659 return 0;
6660
6661 return rc;
6662 }
6663
6664 /* nic load/unload */
6665
6666 /*
6667 * General service functions
6668 */
6669
6670 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6671 static void bnx2x_lb_pckt(struct bnx2x *bp)
6672 {
6673 u32 wb_write[3];
6674
6675 /* Ethernet source and destination addresses */
6676 wb_write[0] = 0x55555555;
6677 wb_write[1] = 0x55555555;
6678 wb_write[2] = 0x20; /* SOP */
6679 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6680
6681 /* NON-IP protocol */
6682 wb_write[0] = 0x09000000;
6683 wb_write[1] = 0x55555555;
6684 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6685 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6686 }
6687
6688 /* some of the internal memories
6689 * are not directly readable from the driver
6690 * to test them we send debug packets
6691 */
bnx2x_int_mem_test(struct bnx2x * bp)6692 static int bnx2x_int_mem_test(struct bnx2x *bp)
6693 {
6694 int factor;
6695 int count, i;
6696 u32 val = 0;
6697
6698 if (CHIP_REV_IS_FPGA(bp))
6699 factor = 120;
6700 else if (CHIP_REV_IS_EMUL(bp))
6701 factor = 200;
6702 else
6703 factor = 1;
6704
6705 /* Disable inputs of parser neighbor blocks */
6706 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6707 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6708 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6709 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6710
6711 /* Write 0 to parser credits for CFC search request */
6712 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6713
6714 /* send Ethernet packet */
6715 bnx2x_lb_pckt(bp);
6716
6717 /* TODO do i reset NIG statistic? */
6718 /* Wait until NIG register shows 1 packet of size 0x10 */
6719 count = 1000 * factor;
6720 while (count) {
6721
6722 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6723 val = *bnx2x_sp(bp, wb_data[0]);
6724 if (val == 0x10)
6725 break;
6726
6727 usleep_range(10000, 20000);
6728 count--;
6729 }
6730 if (val != 0x10) {
6731 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6732 return -1;
6733 }
6734
6735 /* Wait until PRS register shows 1 packet */
6736 count = 1000 * factor;
6737 while (count) {
6738 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6739 if (val == 1)
6740 break;
6741
6742 usleep_range(10000, 20000);
6743 count--;
6744 }
6745 if (val != 0x1) {
6746 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6747 return -2;
6748 }
6749
6750 /* Reset and init BRB, PRS */
6751 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6752 msleep(50);
6753 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6754 msleep(50);
6755 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6756 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6757
6758 DP(NETIF_MSG_HW, "part2\n");
6759
6760 /* Disable inputs of parser neighbor blocks */
6761 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6762 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6763 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6764 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6765
6766 /* Write 0 to parser credits for CFC search request */
6767 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6768
6769 /* send 10 Ethernet packets */
6770 for (i = 0; i < 10; i++)
6771 bnx2x_lb_pckt(bp);
6772
6773 /* Wait until NIG register shows 10 + 1
6774 packets of size 11*0x10 = 0xb0 */
6775 count = 1000 * factor;
6776 while (count) {
6777
6778 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6779 val = *bnx2x_sp(bp, wb_data[0]);
6780 if (val == 0xb0)
6781 break;
6782
6783 usleep_range(10000, 20000);
6784 count--;
6785 }
6786 if (val != 0xb0) {
6787 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6788 return -3;
6789 }
6790
6791 /* Wait until PRS register shows 2 packets */
6792 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6793 if (val != 2)
6794 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6795
6796 /* Write 1 to parser credits for CFC search request */
6797 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6798
6799 /* Wait until PRS register shows 3 packets */
6800 msleep(10 * factor);
6801 /* Wait until NIG register shows 1 packet of size 0x10 */
6802 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6803 if (val != 3)
6804 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6805
6806 /* clear NIG EOP FIFO */
6807 for (i = 0; i < 11; i++)
6808 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6809 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6810 if (val != 1) {
6811 BNX2X_ERR("clear of NIG failed\n");
6812 return -4;
6813 }
6814
6815 /* Reset and init BRB, PRS, NIG */
6816 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6817 msleep(50);
6818 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6819 msleep(50);
6820 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6821 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6822 if (!CNIC_SUPPORT(bp))
6823 /* set NIC mode */
6824 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6825
6826 /* Enable inputs of parser neighbor blocks */
6827 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6828 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6829 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6830 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6831
6832 DP(NETIF_MSG_HW, "done\n");
6833
6834 return 0; /* OK */
6835 }
6836
bnx2x_enable_blocks_attention(struct bnx2x * bp)6837 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6838 {
6839 u32 val;
6840
6841 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6842 if (!CHIP_IS_E1x(bp))
6843 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6844 else
6845 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6846 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6847 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6848 /*
6849 * mask read length error interrupts in brb for parser
6850 * (parsing unit and 'checksum and crc' unit)
6851 * these errors are legal (PU reads fixed length and CAC can cause
6852 * read length error on truncated packets)
6853 */
6854 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6855 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6856 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6857 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6858 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6859 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6860 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6861 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6862 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6863 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6864 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6865 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6866 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6867 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6868 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6869 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6870 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6871 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6872 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6873
6874 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6875 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6876 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6877 if (!CHIP_IS_E1x(bp))
6878 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6879 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6880 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6881
6882 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6883 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6884 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6885 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6886
6887 if (!CHIP_IS_E1x(bp))
6888 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6889 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6890
6891 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6892 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6893 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6894 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6895 }
6896
bnx2x_reset_common(struct bnx2x * bp)6897 static void bnx2x_reset_common(struct bnx2x *bp)
6898 {
6899 u32 val = 0x1400;
6900
6901 /* reset_common */
6902 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6903 0xd3ffff7f);
6904
6905 if (CHIP_IS_E3(bp)) {
6906 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6907 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6908 }
6909
6910 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6911 }
6912
bnx2x_setup_dmae(struct bnx2x * bp)6913 static void bnx2x_setup_dmae(struct bnx2x *bp)
6914 {
6915 bp->dmae_ready = 0;
6916 spin_lock_init(&bp->dmae_lock);
6917 }
6918
bnx2x_init_pxp(struct bnx2x * bp)6919 static void bnx2x_init_pxp(struct bnx2x *bp)
6920 {
6921 u16 devctl;
6922 int r_order, w_order;
6923
6924 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6925 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6926 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6927 if (bp->mrrs == -1)
6928 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6929 else {
6930 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6931 r_order = bp->mrrs;
6932 }
6933
6934 bnx2x_init_pxp_arb(bp, r_order, w_order);
6935 }
6936
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6937 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6938 {
6939 int is_required;
6940 u32 val;
6941 int port;
6942
6943 if (BP_NOMCP(bp))
6944 return;
6945
6946 is_required = 0;
6947 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6948 SHARED_HW_CFG_FAN_FAILURE_MASK;
6949
6950 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6951 is_required = 1;
6952
6953 /*
6954 * The fan failure mechanism is usually related to the PHY type since
6955 * the power consumption of the board is affected by the PHY. Currently,
6956 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6957 */
6958 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6959 for (port = PORT_0; port < PORT_MAX; port++) {
6960 is_required |=
6961 bnx2x_fan_failure_det_req(
6962 bp,
6963 bp->common.shmem_base,
6964 bp->common.shmem2_base,
6965 port);
6966 }
6967
6968 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6969
6970 if (is_required == 0)
6971 return;
6972
6973 /* Fan failure is indicated by SPIO 5 */
6974 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6975
6976 /* set to active low mode */
6977 val = REG_RD(bp, MISC_REG_SPIO_INT);
6978 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6979 REG_WR(bp, MISC_REG_SPIO_INT, val);
6980
6981 /* enable interrupt to signal the IGU */
6982 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6983 val |= MISC_SPIO_SPIO5;
6984 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6985 }
6986
bnx2x_pf_disable(struct bnx2x * bp)6987 void bnx2x_pf_disable(struct bnx2x *bp)
6988 {
6989 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6990 val &= ~IGU_PF_CONF_FUNC_EN;
6991
6992 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6993 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6994 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6995 }
6996
bnx2x__common_init_phy(struct bnx2x * bp)6997 static void bnx2x__common_init_phy(struct bnx2x *bp)
6998 {
6999 u32 shmem_base[2], shmem2_base[2];
7000 /* Avoid common init in case MFW supports LFA */
7001 if (SHMEM2_RD(bp, size) >
7002 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7003 return;
7004 shmem_base[0] = bp->common.shmem_base;
7005 shmem2_base[0] = bp->common.shmem2_base;
7006 if (!CHIP_IS_E1x(bp)) {
7007 shmem_base[1] =
7008 SHMEM2_RD(bp, other_shmem_base_addr);
7009 shmem2_base[1] =
7010 SHMEM2_RD(bp, other_shmem2_base_addr);
7011 }
7012 bnx2x_acquire_phy_lock(bp);
7013 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7014 bp->common.chip_id);
7015 bnx2x_release_phy_lock(bp);
7016 }
7017
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7018 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7019 {
7020 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7021 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7022 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7023 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7024 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7025
7026 /* make sure this value is 0 */
7027 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7028
7029 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7030 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7031 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7032 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7033 }
7034
bnx2x_set_endianity(struct bnx2x * bp)7035 static void bnx2x_set_endianity(struct bnx2x *bp)
7036 {
7037 #ifdef __BIG_ENDIAN
7038 bnx2x_config_endianity(bp, 1);
7039 #else
7040 bnx2x_config_endianity(bp, 0);
7041 #endif
7042 }
7043
bnx2x_reset_endianity(struct bnx2x * bp)7044 static void bnx2x_reset_endianity(struct bnx2x *bp)
7045 {
7046 bnx2x_config_endianity(bp, 0);
7047 }
7048
7049 /**
7050 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7051 *
7052 * @bp: driver handle
7053 */
bnx2x_init_hw_common(struct bnx2x * bp)7054 static int bnx2x_init_hw_common(struct bnx2x *bp)
7055 {
7056 u32 val;
7057
7058 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7059
7060 /*
7061 * take the RESET lock to protect undi_unload flow from accessing
7062 * registers while we're resetting the chip
7063 */
7064 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7065
7066 bnx2x_reset_common(bp);
7067 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7068
7069 val = 0xfffc;
7070 if (CHIP_IS_E3(bp)) {
7071 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7072 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7073 }
7074 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7075
7076 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7077
7078 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7079
7080 if (!CHIP_IS_E1x(bp)) {
7081 u8 abs_func_id;
7082
7083 /**
7084 * 4-port mode or 2-port mode we need to turn of master-enable
7085 * for everyone, after that, turn it back on for self.
7086 * so, we disregard multi-function or not, and always disable
7087 * for all functions on the given path, this means 0,2,4,6 for
7088 * path 0 and 1,3,5,7 for path 1
7089 */
7090 for (abs_func_id = BP_PATH(bp);
7091 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7092 if (abs_func_id == BP_ABS_FUNC(bp)) {
7093 REG_WR(bp,
7094 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7095 1);
7096 continue;
7097 }
7098
7099 bnx2x_pretend_func(bp, abs_func_id);
7100 /* clear pf enable */
7101 bnx2x_pf_disable(bp);
7102 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7103 }
7104 }
7105
7106 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7107 if (CHIP_IS_E1(bp)) {
7108 /* enable HW interrupt from PXP on USDM overflow
7109 bit 16 on INT_MASK_0 */
7110 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7111 }
7112
7113 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7114 bnx2x_init_pxp(bp);
7115 bnx2x_set_endianity(bp);
7116 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7117
7118 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7119 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7120
7121 /* let the HW do it's magic ... */
7122 msleep(100);
7123 /* finish PXP init */
7124 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7125 if (val != 1) {
7126 BNX2X_ERR("PXP2 CFG failed\n");
7127 return -EBUSY;
7128 }
7129 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7130 if (val != 1) {
7131 BNX2X_ERR("PXP2 RD_INIT failed\n");
7132 return -EBUSY;
7133 }
7134
7135 /* Timers bug workaround E2 only. We need to set the entire ILT to
7136 * have entries with value "0" and valid bit on.
7137 * This needs to be done by the first PF that is loaded in a path
7138 * (i.e. common phase)
7139 */
7140 if (!CHIP_IS_E1x(bp)) {
7141 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7142 * (i.e. vnic3) to start even if it is marked as "scan-off".
7143 * This occurs when a different function (func2,3) is being marked
7144 * as "scan-off". Real-life scenario for example: if a driver is being
7145 * load-unloaded while func6,7 are down. This will cause the timer to access
7146 * the ilt, translate to a logical address and send a request to read/write.
7147 * Since the ilt for the function that is down is not valid, this will cause
7148 * a translation error which is unrecoverable.
7149 * The Workaround is intended to make sure that when this happens nothing fatal
7150 * will occur. The workaround:
7151 * 1. First PF driver which loads on a path will:
7152 * a. After taking the chip out of reset, by using pretend,
7153 * it will write "0" to the following registers of
7154 * the other vnics.
7155 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7156 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7157 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7158 * And for itself it will write '1' to
7159 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7160 * dmae-operations (writing to pram for example.)
7161 * note: can be done for only function 6,7 but cleaner this
7162 * way.
7163 * b. Write zero+valid to the entire ILT.
7164 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7165 * VNIC3 (of that port). The range allocated will be the
7166 * entire ILT. This is needed to prevent ILT range error.
7167 * 2. Any PF driver load flow:
7168 * a. ILT update with the physical addresses of the allocated
7169 * logical pages.
7170 * b. Wait 20msec. - note that this timeout is needed to make
7171 * sure there are no requests in one of the PXP internal
7172 * queues with "old" ILT addresses.
7173 * c. PF enable in the PGLC.
7174 * d. Clear the was_error of the PF in the PGLC. (could have
7175 * occurred while driver was down)
7176 * e. PF enable in the CFC (WEAK + STRONG)
7177 * f. Timers scan enable
7178 * 3. PF driver unload flow:
7179 * a. Clear the Timers scan_en.
7180 * b. Polling for scan_on=0 for that PF.
7181 * c. Clear the PF enable bit in the PXP.
7182 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7183 * e. Write zero+valid to all ILT entries (The valid bit must
7184 * stay set)
7185 * f. If this is VNIC 3 of a port then also init
7186 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7187 * to the last entry in the ILT.
7188 *
7189 * Notes:
7190 * Currently the PF error in the PGLC is non recoverable.
7191 * In the future the there will be a recovery routine for this error.
7192 * Currently attention is masked.
7193 * Having an MCP lock on the load/unload process does not guarantee that
7194 * there is no Timer disable during Func6/7 enable. This is because the
7195 * Timers scan is currently being cleared by the MCP on FLR.
7196 * Step 2.d can be done only for PF6/7 and the driver can also check if
7197 * there is error before clearing it. But the flow above is simpler and
7198 * more general.
7199 * All ILT entries are written by zero+valid and not just PF6/7
7200 * ILT entries since in the future the ILT entries allocation for
7201 * PF-s might be dynamic.
7202 */
7203 struct ilt_client_info ilt_cli;
7204 struct bnx2x_ilt ilt;
7205 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7206 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7207
7208 /* initialize dummy TM client */
7209 ilt_cli.start = 0;
7210 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7211 ilt_cli.client_num = ILT_CLIENT_TM;
7212
7213 /* Step 1: set zeroes to all ilt page entries with valid bit on
7214 * Step 2: set the timers first/last ilt entry to point
7215 * to the entire range to prevent ILT range error for 3rd/4th
7216 * vnic (this code assumes existence of the vnic)
7217 *
7218 * both steps performed by call to bnx2x_ilt_client_init_op()
7219 * with dummy TM client
7220 *
7221 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7222 * and his brother are split registers
7223 */
7224 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7225 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7226 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7227
7228 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7229 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7230 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7231 }
7232
7233 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7234 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7235
7236 if (!CHIP_IS_E1x(bp)) {
7237 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7238 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7239 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7240
7241 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7242
7243 /* let the HW do it's magic ... */
7244 do {
7245 msleep(200);
7246 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7247 } while (factor-- && (val != 1));
7248
7249 if (val != 1) {
7250 BNX2X_ERR("ATC_INIT failed\n");
7251 return -EBUSY;
7252 }
7253 }
7254
7255 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7256
7257 bnx2x_iov_init_dmae(bp);
7258
7259 /* clean the DMAE memory */
7260 bp->dmae_ready = 1;
7261 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7262
7263 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7264
7265 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7266
7267 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7268
7269 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7270
7271 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7272 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7273 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7274 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7275
7276 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7277
7278 /* QM queues pointers table */
7279 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7280
7281 /* soft reset pulse */
7282 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7283 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7284
7285 if (CNIC_SUPPORT(bp))
7286 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7287
7288 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7289
7290 if (!CHIP_REV_IS_SLOW(bp))
7291 /* enable hw interrupt from doorbell Q */
7292 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7293
7294 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7295
7296 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7297 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7298
7299 if (!CHIP_IS_E1(bp))
7300 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7301
7302 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7303 if (IS_MF_AFEX(bp)) {
7304 /* configure that VNTag and VLAN headers must be
7305 * received in afex mode
7306 */
7307 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7308 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7309 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7310 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7311 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7312 } else {
7313 /* Bit-map indicating which L2 hdrs may appear
7314 * after the basic Ethernet header
7315 */
7316 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7317 bp->path_has_ovlan ? 7 : 6);
7318 }
7319 }
7320
7321 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7322 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7323 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7324 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7325
7326 if (!CHIP_IS_E1x(bp)) {
7327 /* reset VFC memories */
7328 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7329 VFC_MEMORIES_RST_REG_CAM_RST |
7330 VFC_MEMORIES_RST_REG_RAM_RST);
7331 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7332 VFC_MEMORIES_RST_REG_CAM_RST |
7333 VFC_MEMORIES_RST_REG_RAM_RST);
7334
7335 msleep(20);
7336 }
7337
7338 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7339 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7340 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7341 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7342
7343 /* sync semi rtc */
7344 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7345 0x80000000);
7346 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7347 0x80000000);
7348
7349 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7350 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7351 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7352
7353 if (!CHIP_IS_E1x(bp)) {
7354 if (IS_MF_AFEX(bp)) {
7355 /* configure that VNTag and VLAN headers must be
7356 * sent in afex mode
7357 */
7358 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7359 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7360 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7361 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7362 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7363 } else {
7364 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7365 bp->path_has_ovlan ? 7 : 6);
7366 }
7367 }
7368
7369 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7370
7371 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7372
7373 if (CNIC_SUPPORT(bp)) {
7374 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7375 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7376 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7377 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7378 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7379 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7380 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7381 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7382 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7383 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7384 }
7385 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7386
7387 if (sizeof(union cdu_context) != 1024)
7388 /* we currently assume that a context is 1024 bytes */
7389 dev_alert(&bp->pdev->dev,
7390 "please adjust the size of cdu_context(%ld)\n",
7391 (long)sizeof(union cdu_context));
7392
7393 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7394 val = (4 << 24) + (0 << 12) + 1024;
7395 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7396
7397 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7398 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7399 /* enable context validation interrupt from CFC */
7400 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7401
7402 /* set the thresholds to prevent CFC/CDU race */
7403 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7404
7405 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7406
7407 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7408 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7409
7410 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7411 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7412
7413 /* Reset PCIE errors for debug */
7414 REG_WR(bp, 0x2814, 0xffffffff);
7415 REG_WR(bp, 0x3820, 0xffffffff);
7416
7417 if (!CHIP_IS_E1x(bp)) {
7418 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7419 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7420 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7421 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7422 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7423 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7424 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7425 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7426 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7427 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7428 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7429 }
7430
7431 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7432 if (!CHIP_IS_E1(bp)) {
7433 /* in E3 this done in per-port section */
7434 if (!CHIP_IS_E3(bp))
7435 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7436 }
7437 if (CHIP_IS_E1H(bp))
7438 /* not applicable for E2 (and above ...) */
7439 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7440
7441 if (CHIP_REV_IS_SLOW(bp))
7442 msleep(200);
7443
7444 /* finish CFC init */
7445 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7446 if (val != 1) {
7447 BNX2X_ERR("CFC LL_INIT failed\n");
7448 return -EBUSY;
7449 }
7450 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7451 if (val != 1) {
7452 BNX2X_ERR("CFC AC_INIT failed\n");
7453 return -EBUSY;
7454 }
7455 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7456 if (val != 1) {
7457 BNX2X_ERR("CFC CAM_INIT failed\n");
7458 return -EBUSY;
7459 }
7460 REG_WR(bp, CFC_REG_DEBUG0, 0);
7461
7462 if (CHIP_IS_E1(bp)) {
7463 /* read NIG statistic
7464 to see if this is our first up since powerup */
7465 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7466 val = *bnx2x_sp(bp, wb_data[0]);
7467
7468 /* do internal memory self test */
7469 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7470 BNX2X_ERR("internal mem self test failed\n");
7471 return -EBUSY;
7472 }
7473 }
7474
7475 bnx2x_setup_fan_failure_detection(bp);
7476
7477 /* clear PXP2 attentions */
7478 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7479
7480 bnx2x_enable_blocks_attention(bp);
7481 bnx2x_enable_blocks_parity(bp);
7482
7483 if (!BP_NOMCP(bp)) {
7484 if (CHIP_IS_E1x(bp))
7485 bnx2x__common_init_phy(bp);
7486 } else
7487 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7488
7489 if (SHMEM2_HAS(bp, netproc_fw_ver))
7490 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7491
7492 return 0;
7493 }
7494
7495 /**
7496 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7497 *
7498 * @bp: driver handle
7499 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7500 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7501 {
7502 int rc = bnx2x_init_hw_common(bp);
7503
7504 if (rc)
7505 return rc;
7506
7507 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7508 if (!BP_NOMCP(bp))
7509 bnx2x__common_init_phy(bp);
7510
7511 return 0;
7512 }
7513
bnx2x_init_hw_port(struct bnx2x * bp)7514 static int bnx2x_init_hw_port(struct bnx2x *bp)
7515 {
7516 int port = BP_PORT(bp);
7517 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7518 u32 low, high;
7519 u32 val, reg;
7520
7521 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7522
7523 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7524
7525 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7526 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7527 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7528
7529 /* Timers bug workaround: disables the pf_master bit in pglue at
7530 * common phase, we need to enable it here before any dmae access are
7531 * attempted. Therefore we manually added the enable-master to the
7532 * port phase (it also happens in the function phase)
7533 */
7534 if (!CHIP_IS_E1x(bp))
7535 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7536
7537 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7538 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7539 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7540 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7541
7542 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7543 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7544 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7545 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7546
7547 /* QM cid (connection) count */
7548 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7549
7550 if (CNIC_SUPPORT(bp)) {
7551 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7552 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7553 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7554 }
7555
7556 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7557
7558 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7559
7560 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7561
7562 if (IS_MF(bp))
7563 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7564 else if (bp->dev->mtu > 4096) {
7565 if (bp->flags & ONE_PORT_FLAG)
7566 low = 160;
7567 else {
7568 val = bp->dev->mtu;
7569 /* (24*1024 + val*4)/256 */
7570 low = 96 + (val/64) +
7571 ((val % 64) ? 1 : 0);
7572 }
7573 } else
7574 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7575 high = low + 56; /* 14*1024/256 */
7576 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7577 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7578 }
7579
7580 if (CHIP_MODE_IS_4_PORT(bp))
7581 REG_WR(bp, (BP_PORT(bp) ?
7582 BRB1_REG_MAC_GUARANTIED_1 :
7583 BRB1_REG_MAC_GUARANTIED_0), 40);
7584
7585 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7586 if (CHIP_IS_E3B0(bp)) {
7587 if (IS_MF_AFEX(bp)) {
7588 /* configure headers for AFEX mode */
7589 REG_WR(bp, BP_PORT(bp) ?
7590 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7591 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7592 REG_WR(bp, BP_PORT(bp) ?
7593 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7594 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7595 REG_WR(bp, BP_PORT(bp) ?
7596 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7597 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7598 } else {
7599 /* Ovlan exists only if we are in multi-function +
7600 * switch-dependent mode, in switch-independent there
7601 * is no ovlan headers
7602 */
7603 REG_WR(bp, BP_PORT(bp) ?
7604 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7605 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7606 (bp->path_has_ovlan ? 7 : 6));
7607 }
7608 }
7609
7610 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7611 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7612 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7613 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7614
7615 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7619
7620 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7621 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7622
7623 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7624
7625 if (CHIP_IS_E1x(bp)) {
7626 /* configure PBF to work without PAUSE mtu 9000 */
7627 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7628
7629 /* update threshold */
7630 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7631 /* update init credit */
7632 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7633
7634 /* probe changes */
7635 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7636 udelay(50);
7637 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7638 }
7639
7640 if (CNIC_SUPPORT(bp))
7641 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7642
7643 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7644 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7645
7646 if (CHIP_IS_E1(bp)) {
7647 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7648 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7649 }
7650 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7651
7652 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7653
7654 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7655 /* init aeu_mask_attn_func_0/1:
7656 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7657 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7658 * bits 4-7 are used for "per vn group attention" */
7659 val = IS_MF(bp) ? 0xF7 : 0x7;
7660 /* Enable DCBX attention for all but E1 */
7661 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7662 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7663
7664 /* SCPAD_PARITY should NOT trigger close the gates */
7665 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7666 REG_WR(bp, reg,
7667 REG_RD(bp, reg) &
7668 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7669
7670 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7671 REG_WR(bp, reg,
7672 REG_RD(bp, reg) &
7673 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7674
7675 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7676
7677 if (!CHIP_IS_E1x(bp)) {
7678 /* Bit-map indicating which L2 hdrs may appear after the
7679 * basic Ethernet header
7680 */
7681 if (IS_MF_AFEX(bp))
7682 REG_WR(bp, BP_PORT(bp) ?
7683 NIG_REG_P1_HDRS_AFTER_BASIC :
7684 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7685 else
7686 REG_WR(bp, BP_PORT(bp) ?
7687 NIG_REG_P1_HDRS_AFTER_BASIC :
7688 NIG_REG_P0_HDRS_AFTER_BASIC,
7689 IS_MF_SD(bp) ? 7 : 6);
7690
7691 if (CHIP_IS_E3(bp))
7692 REG_WR(bp, BP_PORT(bp) ?
7693 NIG_REG_LLH1_MF_MODE :
7694 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7695 }
7696 if (!CHIP_IS_E3(bp))
7697 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7698
7699 if (!CHIP_IS_E1(bp)) {
7700 /* 0x2 disable mf_ov, 0x1 enable */
7701 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7702 (IS_MF_SD(bp) ? 0x1 : 0x2));
7703
7704 if (!CHIP_IS_E1x(bp)) {
7705 val = 0;
7706 switch (bp->mf_mode) {
7707 case MULTI_FUNCTION_SD:
7708 val = 1;
7709 break;
7710 case MULTI_FUNCTION_SI:
7711 case MULTI_FUNCTION_AFEX:
7712 val = 2;
7713 break;
7714 }
7715
7716 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7717 NIG_REG_LLH0_CLS_TYPE), val);
7718 }
7719 {
7720 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7721 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7722 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7723 }
7724 }
7725
7726 /* If SPIO5 is set to generate interrupts, enable it for this port */
7727 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7728 if (val & MISC_SPIO_SPIO5) {
7729 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7730 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7731 val = REG_RD(bp, reg_addr);
7732 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7733 REG_WR(bp, reg_addr, val);
7734 }
7735
7736 if (CHIP_IS_E3B0(bp))
7737 bp->flags |= PTP_SUPPORTED;
7738
7739 return 0;
7740 }
7741
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7742 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7743 {
7744 int reg;
7745 u32 wb_write[2];
7746
7747 if (CHIP_IS_E1(bp))
7748 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7749 else
7750 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7751
7752 wb_write[0] = ONCHIP_ADDR1(addr);
7753 wb_write[1] = ONCHIP_ADDR2(addr);
7754 REG_WR_DMAE(bp, reg, wb_write, 2);
7755 }
7756
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7757 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7758 {
7759 u32 data, ctl, cnt = 100;
7760 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7761 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7762 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7763 u32 sb_bit = 1 << (idu_sb_id%32);
7764 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7765 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7766
7767 /* Not supported in BC mode */
7768 if (CHIP_INT_MODE_IS_BC(bp))
7769 return;
7770
7771 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7772 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7773 IGU_REGULAR_CLEANUP_SET |
7774 IGU_REGULAR_BCLEANUP;
7775
7776 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7777 func_encode << IGU_CTRL_REG_FID_SHIFT |
7778 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7779
7780 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7781 data, igu_addr_data);
7782 REG_WR(bp, igu_addr_data, data);
7783 barrier();
7784 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7785 ctl, igu_addr_ctl);
7786 REG_WR(bp, igu_addr_ctl, ctl);
7787 barrier();
7788
7789 /* wait for clean up to finish */
7790 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7791 msleep(20);
7792
7793 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7794 DP(NETIF_MSG_HW,
7795 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7796 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7797 }
7798 }
7799
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7800 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7801 {
7802 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7803 }
7804
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7805 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7806 {
7807 u32 i, base = FUNC_ILT_BASE(func);
7808 for (i = base; i < base + ILT_PER_FUNC; i++)
7809 bnx2x_ilt_wr(bp, i, 0);
7810 }
7811
bnx2x_init_searcher(struct bnx2x * bp)7812 static void bnx2x_init_searcher(struct bnx2x *bp)
7813 {
7814 int port = BP_PORT(bp);
7815 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7816 /* T1 hash bits value determines the T1 number of entries */
7817 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7818 }
7819
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7820 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7821 {
7822 int rc;
7823 struct bnx2x_func_state_params func_params = {NULL};
7824 struct bnx2x_func_switch_update_params *switch_update_params =
7825 &func_params.params.switch_update;
7826
7827 /* Prepare parameters for function state transitions */
7828 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7829 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7830
7831 func_params.f_obj = &bp->func_obj;
7832 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7833
7834 /* Function parameters */
7835 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7836 &switch_update_params->changes);
7837 if (suspend)
7838 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7839 &switch_update_params->changes);
7840
7841 rc = bnx2x_func_state_change(bp, &func_params);
7842
7843 return rc;
7844 }
7845
bnx2x_reset_nic_mode(struct bnx2x * bp)7846 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7847 {
7848 int rc, i, port = BP_PORT(bp);
7849 int vlan_en = 0, mac_en[NUM_MACS];
7850
7851 /* Close input from network */
7852 if (bp->mf_mode == SINGLE_FUNCTION) {
7853 bnx2x_set_rx_filter(&bp->link_params, 0);
7854 } else {
7855 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7856 NIG_REG_LLH0_FUNC_EN);
7857 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7858 NIG_REG_LLH0_FUNC_EN, 0);
7859 for (i = 0; i < NUM_MACS; i++) {
7860 mac_en[i] = REG_RD(bp, port ?
7861 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7862 4 * i) :
7863 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7864 4 * i));
7865 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7866 4 * i) :
7867 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7868 }
7869 }
7870
7871 /* Close BMC to host */
7872 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7873 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7874
7875 /* Suspend Tx switching to the PF. Completion of this ramrod
7876 * further guarantees that all the packets of that PF / child
7877 * VFs in BRB were processed by the Parser, so it is safe to
7878 * change the NIC_MODE register.
7879 */
7880 rc = bnx2x_func_switch_update(bp, 1);
7881 if (rc) {
7882 BNX2X_ERR("Can't suspend tx-switching!\n");
7883 return rc;
7884 }
7885
7886 /* Change NIC_MODE register */
7887 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7888
7889 /* Open input from network */
7890 if (bp->mf_mode == SINGLE_FUNCTION) {
7891 bnx2x_set_rx_filter(&bp->link_params, 1);
7892 } else {
7893 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7894 NIG_REG_LLH0_FUNC_EN, vlan_en);
7895 for (i = 0; i < NUM_MACS; i++) {
7896 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7897 4 * i) :
7898 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7899 mac_en[i]);
7900 }
7901 }
7902
7903 /* Enable BMC to host */
7904 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7905 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7906
7907 /* Resume Tx switching to the PF */
7908 rc = bnx2x_func_switch_update(bp, 0);
7909 if (rc) {
7910 BNX2X_ERR("Can't resume tx-switching!\n");
7911 return rc;
7912 }
7913
7914 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7915 return 0;
7916 }
7917
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7918 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7919 {
7920 int rc;
7921
7922 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7923
7924 if (CONFIGURE_NIC_MODE(bp)) {
7925 /* Configure searcher as part of function hw init */
7926 bnx2x_init_searcher(bp);
7927
7928 /* Reset NIC mode */
7929 rc = bnx2x_reset_nic_mode(bp);
7930 if (rc)
7931 BNX2X_ERR("Can't change NIC mode!\n");
7932 return rc;
7933 }
7934
7935 return 0;
7936 }
7937
7938 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7939 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7940 * the addresses of the transaction, resulting in was-error bit set in the pci
7941 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7942 * to clear the interrupt which detected this from the pglueb and the was done
7943 * bit
7944 */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7945 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7946 {
7947 if (!CHIP_IS_E1x(bp))
7948 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7949 1 << BP_ABS_FUNC(bp));
7950 }
7951
bnx2x_init_hw_func(struct bnx2x * bp)7952 static int bnx2x_init_hw_func(struct bnx2x *bp)
7953 {
7954 int port = BP_PORT(bp);
7955 int func = BP_FUNC(bp);
7956 int init_phase = PHASE_PF0 + func;
7957 struct bnx2x_ilt *ilt = BP_ILT(bp);
7958 u16 cdu_ilt_start;
7959 u32 addr, val;
7960 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7961 int i, main_mem_width, rc;
7962
7963 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7964
7965 /* FLR cleanup - hmmm */
7966 if (!CHIP_IS_E1x(bp)) {
7967 rc = bnx2x_pf_flr_clnup(bp);
7968 if (rc) {
7969 bnx2x_fw_dump(bp);
7970 return rc;
7971 }
7972 }
7973
7974 /* set MSI reconfigure capability */
7975 if (bp->common.int_block == INT_BLOCK_HC) {
7976 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7977 val = REG_RD(bp, addr);
7978 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7979 REG_WR(bp, addr, val);
7980 }
7981
7982 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7983 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7984
7985 ilt = BP_ILT(bp);
7986 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7987
7988 if (IS_SRIOV(bp))
7989 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7990 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7991
7992 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7993 * those of the VFs, so start line should be reset
7994 */
7995 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7996 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7997 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7998 ilt->lines[cdu_ilt_start + i].page_mapping =
7999 bp->context[i].cxt_mapping;
8000 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8001 }
8002
8003 bnx2x_ilt_init_op(bp, INITOP_SET);
8004
8005 if (!CONFIGURE_NIC_MODE(bp)) {
8006 bnx2x_init_searcher(bp);
8007 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8008 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8009 } else {
8010 /* Set NIC mode */
8011 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8012 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8013 }
8014
8015 if (!CHIP_IS_E1x(bp)) {
8016 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8017
8018 /* Turn on a single ISR mode in IGU if driver is going to use
8019 * INT#x or MSI
8020 */
8021 if (!(bp->flags & USING_MSIX_FLAG))
8022 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8023 /*
8024 * Timers workaround bug: function init part.
8025 * Need to wait 20msec after initializing ILT,
8026 * needed to make sure there are no requests in
8027 * one of the PXP internal queues with "old" ILT addresses
8028 */
8029 msleep(20);
8030 /*
8031 * Master enable - Due to WB DMAE writes performed before this
8032 * register is re-initialized as part of the regular function
8033 * init
8034 */
8035 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8036 /* Enable the function in IGU */
8037 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8038 }
8039
8040 bp->dmae_ready = 1;
8041
8042 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8043
8044 bnx2x_clean_pglue_errors(bp);
8045
8046 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8047 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8048 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8049 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8050 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8051 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8052 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8053 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8054 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8055 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8056 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8057 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8058 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8059
8060 if (!CHIP_IS_E1x(bp))
8061 REG_WR(bp, QM_REG_PF_EN, 1);
8062
8063 if (!CHIP_IS_E1x(bp)) {
8064 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8068 }
8069 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8070
8071 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8072 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8073 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8074
8075 bnx2x_iov_init_dq(bp);
8076
8077 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8078 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8079 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8080 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8081 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8082 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8083 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8084 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8085 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8086 if (!CHIP_IS_E1x(bp))
8087 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8088
8089 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8090
8091 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8092
8093 if (!CHIP_IS_E1x(bp))
8094 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8095
8096 if (IS_MF(bp)) {
8097 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8098 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8099 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8100 bp->mf_ov);
8101 }
8102 }
8103
8104 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8105
8106 /* HC init per function */
8107 if (bp->common.int_block == INT_BLOCK_HC) {
8108 if (CHIP_IS_E1H(bp)) {
8109 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8110
8111 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8112 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8113 }
8114 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8115
8116 } else {
8117 int num_segs, sb_idx, prod_offset;
8118
8119 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8120
8121 if (!CHIP_IS_E1x(bp)) {
8122 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8123 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8124 }
8125
8126 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8127
8128 if (!CHIP_IS_E1x(bp)) {
8129 int dsb_idx = 0;
8130 /**
8131 * Producer memory:
8132 * E2 mode: address 0-135 match to the mapping memory;
8133 * 136 - PF0 default prod; 137 - PF1 default prod;
8134 * 138 - PF2 default prod; 139 - PF3 default prod;
8135 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8136 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8137 * 144-147 reserved.
8138 *
8139 * E1.5 mode - In backward compatible mode;
8140 * for non default SB; each even line in the memory
8141 * holds the U producer and each odd line hold
8142 * the C producer. The first 128 producers are for
8143 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8144 * producers are for the DSB for each PF.
8145 * Each PF has five segments: (the order inside each
8146 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8147 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8148 * 144-147 attn prods;
8149 */
8150 /* non-default-status-blocks */
8151 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8152 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8153 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8154 prod_offset = (bp->igu_base_sb + sb_idx) *
8155 num_segs;
8156
8157 for (i = 0; i < num_segs; i++) {
8158 addr = IGU_REG_PROD_CONS_MEMORY +
8159 (prod_offset + i) * 4;
8160 REG_WR(bp, addr, 0);
8161 }
8162 /* send consumer update with value 0 */
8163 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8164 USTORM_ID, 0, IGU_INT_NOP, 1);
8165 bnx2x_igu_clear_sb(bp,
8166 bp->igu_base_sb + sb_idx);
8167 }
8168
8169 /* default-status-blocks */
8170 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8171 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8172
8173 if (CHIP_MODE_IS_4_PORT(bp))
8174 dsb_idx = BP_FUNC(bp);
8175 else
8176 dsb_idx = BP_VN(bp);
8177
8178 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8179 IGU_BC_BASE_DSB_PROD + dsb_idx :
8180 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8181
8182 /*
8183 * igu prods come in chunks of E1HVN_MAX (4) -
8184 * does not matters what is the current chip mode
8185 */
8186 for (i = 0; i < (num_segs * E1HVN_MAX);
8187 i += E1HVN_MAX) {
8188 addr = IGU_REG_PROD_CONS_MEMORY +
8189 (prod_offset + i)*4;
8190 REG_WR(bp, addr, 0);
8191 }
8192 /* send consumer update with 0 */
8193 if (CHIP_INT_MODE_IS_BC(bp)) {
8194 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 USTORM_ID, 0, IGU_INT_NOP, 1);
8196 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 CSTORM_ID, 0, IGU_INT_NOP, 1);
8198 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8199 XSTORM_ID, 0, IGU_INT_NOP, 1);
8200 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8201 TSTORM_ID, 0, IGU_INT_NOP, 1);
8202 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8204 } else {
8205 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8206 USTORM_ID, 0, IGU_INT_NOP, 1);
8207 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8208 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8209 }
8210 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8211
8212 /* !!! These should become driver const once
8213 rf-tool supports split-68 const */
8214 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8215 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8216 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8217 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8218 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8219 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8220 }
8221 }
8222
8223 /* Reset PCIE errors for debug */
8224 REG_WR(bp, 0x2114, 0xffffffff);
8225 REG_WR(bp, 0x2120, 0xffffffff);
8226
8227 if (CHIP_IS_E1x(bp)) {
8228 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8229 main_mem_base = HC_REG_MAIN_MEMORY +
8230 BP_PORT(bp) * (main_mem_size * 4);
8231 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8232 main_mem_width = 8;
8233
8234 val = REG_RD(bp, main_mem_prty_clr);
8235 if (val)
8236 DP(NETIF_MSG_HW,
8237 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8238 val);
8239
8240 /* Clear "false" parity errors in MSI-X table */
8241 for (i = main_mem_base;
8242 i < main_mem_base + main_mem_size * 4;
8243 i += main_mem_width) {
8244 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8245 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8246 i, main_mem_width / 4);
8247 }
8248 /* Clear HC parity attention */
8249 REG_RD(bp, main_mem_prty_clr);
8250 }
8251
8252 #ifdef BNX2X_STOP_ON_ERROR
8253 /* Enable STORMs SP logging */
8254 REG_WR8(bp, BAR_USTRORM_INTMEM +
8255 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8257 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8258 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8259 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8260 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8261 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8262 #endif
8263
8264 bnx2x_phy_probe(&bp->link_params);
8265
8266 return 0;
8267 }
8268
bnx2x_free_mem_cnic(struct bnx2x * bp)8269 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8270 {
8271 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8272
8273 if (!CHIP_IS_E1x(bp))
8274 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8275 sizeof(struct host_hc_status_block_e2));
8276 else
8277 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8278 sizeof(struct host_hc_status_block_e1x));
8279
8280 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8281 }
8282
bnx2x_free_mem(struct bnx2x * bp)8283 void bnx2x_free_mem(struct bnx2x *bp)
8284 {
8285 int i;
8286
8287 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8288 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8289
8290 if (IS_VF(bp))
8291 return;
8292
8293 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8294 sizeof(struct host_sp_status_block));
8295
8296 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8297 sizeof(struct bnx2x_slowpath));
8298
8299 for (i = 0; i < L2_ILT_LINES(bp); i++)
8300 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8301 bp->context[i].size);
8302 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8303
8304 BNX2X_FREE(bp->ilt->lines);
8305
8306 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8307
8308 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8309 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8310
8311 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8312
8313 bnx2x_iov_free_mem(bp);
8314 }
8315
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8316 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8317 {
8318 if (!CHIP_IS_E1x(bp)) {
8319 /* size = the status block + ramrod buffers */
8320 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8321 sizeof(struct host_hc_status_block_e2));
8322 if (!bp->cnic_sb.e2_sb)
8323 goto alloc_mem_err;
8324 } else {
8325 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8326 sizeof(struct host_hc_status_block_e1x));
8327 if (!bp->cnic_sb.e1x_sb)
8328 goto alloc_mem_err;
8329 }
8330
8331 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332 /* allocate searcher T2 table, as it wasn't allocated before */
8333 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334 if (!bp->t2)
8335 goto alloc_mem_err;
8336 }
8337
8338 /* write address to which L5 should insert its values */
8339 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8340 &bp->slowpath->drv_info_to_mcp;
8341
8342 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8343 goto alloc_mem_err;
8344
8345 return 0;
8346
8347 alloc_mem_err:
8348 bnx2x_free_mem_cnic(bp);
8349 BNX2X_ERR("Can't allocate memory\n");
8350 return -ENOMEM;
8351 }
8352
bnx2x_alloc_mem(struct bnx2x * bp)8353 int bnx2x_alloc_mem(struct bnx2x *bp)
8354 {
8355 int i, allocated, context_size;
8356
8357 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8358 /* allocate searcher T2 table */
8359 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8360 if (!bp->t2)
8361 goto alloc_mem_err;
8362 }
8363
8364 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8365 sizeof(struct host_sp_status_block));
8366 if (!bp->def_status_blk)
8367 goto alloc_mem_err;
8368
8369 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8370 sizeof(struct bnx2x_slowpath));
8371 if (!bp->slowpath)
8372 goto alloc_mem_err;
8373
8374 /* Allocate memory for CDU context:
8375 * This memory is allocated separately and not in the generic ILT
8376 * functions because CDU differs in few aspects:
8377 * 1. There are multiple entities allocating memory for context -
8378 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8379 * its own ILT lines.
8380 * 2. Since CDU page-size is not a single 4KB page (which is the case
8381 * for the other ILT clients), to be efficient we want to support
8382 * allocation of sub-page-size in the last entry.
8383 * 3. Context pointers are used by the driver to pass to FW / update
8384 * the context (for the other ILT clients the pointers are used just to
8385 * free the memory during unload).
8386 */
8387 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8388
8389 for (i = 0, allocated = 0; allocated < context_size; i++) {
8390 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8391 (context_size - allocated));
8392 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8393 bp->context[i].size);
8394 if (!bp->context[i].vcxt)
8395 goto alloc_mem_err;
8396 allocated += bp->context[i].size;
8397 }
8398 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8399 GFP_KERNEL);
8400 if (!bp->ilt->lines)
8401 goto alloc_mem_err;
8402
8403 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8404 goto alloc_mem_err;
8405
8406 if (bnx2x_iov_alloc_mem(bp))
8407 goto alloc_mem_err;
8408
8409 /* Slow path ring */
8410 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8411 if (!bp->spq)
8412 goto alloc_mem_err;
8413
8414 /* EQ */
8415 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8416 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8417 if (!bp->eq_ring)
8418 goto alloc_mem_err;
8419
8420 return 0;
8421
8422 alloc_mem_err:
8423 bnx2x_free_mem(bp);
8424 BNX2X_ERR("Can't allocate memory\n");
8425 return -ENOMEM;
8426 }
8427
8428 /*
8429 * Init service functions
8430 */
8431
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8432 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8433 struct bnx2x_vlan_mac_obj *obj, bool set,
8434 int mac_type, unsigned long *ramrod_flags)
8435 {
8436 int rc;
8437 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8438
8439 memset(&ramrod_param, 0, sizeof(ramrod_param));
8440
8441 /* Fill general parameters */
8442 ramrod_param.vlan_mac_obj = obj;
8443 ramrod_param.ramrod_flags = *ramrod_flags;
8444
8445 /* Fill a user request section if needed */
8446 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8447 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8448
8449 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8450
8451 /* Set the command: ADD or DEL */
8452 if (set)
8453 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8454 else
8455 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8456 }
8457
8458 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8459
8460 if (rc == -EEXIST) {
8461 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8462 /* do not treat adding same MAC as error */
8463 rc = 0;
8464 } else if (rc < 0)
8465 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8466
8467 return rc;
8468 }
8469
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8470 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8471 struct bnx2x_vlan_mac_obj *obj, bool set,
8472 unsigned long *ramrod_flags)
8473 {
8474 int rc;
8475 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8476
8477 memset(&ramrod_param, 0, sizeof(ramrod_param));
8478
8479 /* Fill general parameters */
8480 ramrod_param.vlan_mac_obj = obj;
8481 ramrod_param.ramrod_flags = *ramrod_flags;
8482
8483 /* Fill a user request section if needed */
8484 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8485 ramrod_param.user_req.u.vlan.vlan = vlan;
8486 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8487 /* Set the command: ADD or DEL */
8488 if (set)
8489 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8490 else
8491 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8492 }
8493
8494 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8495
8496 if (rc == -EEXIST) {
8497 /* Do not treat adding same vlan as error. */
8498 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8499 rc = 0;
8500 } else if (rc < 0) {
8501 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8502 }
8503
8504 return rc;
8505 }
8506
bnx2x_clear_vlan_info(struct bnx2x * bp)8507 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8508 {
8509 struct bnx2x_vlan_entry *vlan;
8510
8511 /* Mark that hw forgot all entries */
8512 list_for_each_entry(vlan, &bp->vlan_reg, link)
8513 vlan->hw = false;
8514
8515 bp->vlan_cnt = 0;
8516 }
8517
bnx2x_del_all_vlans(struct bnx2x * bp)8518 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8519 {
8520 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8521 unsigned long ramrod_flags = 0, vlan_flags = 0;
8522 int rc;
8523
8524 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8525 __set_bit(BNX2X_VLAN, &vlan_flags);
8526 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8527 if (rc)
8528 return rc;
8529
8530 bnx2x_clear_vlan_info(bp);
8531
8532 return 0;
8533 }
8534
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8535 int bnx2x_del_all_macs(struct bnx2x *bp,
8536 struct bnx2x_vlan_mac_obj *mac_obj,
8537 int mac_type, bool wait_for_comp)
8538 {
8539 int rc;
8540 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8541
8542 /* Wait for completion of requested */
8543 if (wait_for_comp)
8544 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8545
8546 /* Set the mac type of addresses we want to clear */
8547 __set_bit(mac_type, &vlan_mac_flags);
8548
8549 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8550 if (rc < 0)
8551 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8552
8553 return rc;
8554 }
8555
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8556 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8557 {
8558 if (IS_PF(bp)) {
8559 unsigned long ramrod_flags = 0;
8560
8561 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8562 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8563 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8564 &bp->sp_objs->mac_obj, set,
8565 BNX2X_ETH_MAC, &ramrod_flags);
8566 } else { /* vf */
8567 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8568 bp->fp->index, set);
8569 }
8570 }
8571
bnx2x_setup_leading(struct bnx2x * bp)8572 int bnx2x_setup_leading(struct bnx2x *bp)
8573 {
8574 if (IS_PF(bp))
8575 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8576 else /* VF */
8577 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8578 }
8579
8580 /**
8581 * bnx2x_set_int_mode - configure interrupt mode
8582 *
8583 * @bp: driver handle
8584 *
8585 * In case of MSI-X it will also try to enable MSI-X.
8586 */
bnx2x_set_int_mode(struct bnx2x * bp)8587 int bnx2x_set_int_mode(struct bnx2x *bp)
8588 {
8589 int rc = 0;
8590
8591 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8592 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8593 return -EINVAL;
8594 }
8595
8596 switch (int_mode) {
8597 case BNX2X_INT_MODE_MSIX:
8598 /* attempt to enable msix */
8599 rc = bnx2x_enable_msix(bp);
8600
8601 /* msix attained */
8602 if (!rc)
8603 return 0;
8604
8605 /* vfs use only msix */
8606 if (rc && IS_VF(bp))
8607 return rc;
8608
8609 /* failed to enable multiple MSI-X */
8610 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8611 bp->num_queues,
8612 1 + bp->num_cnic_queues);
8613
8614 fallthrough;
8615 case BNX2X_INT_MODE_MSI:
8616 bnx2x_enable_msi(bp);
8617
8618 fallthrough;
8619 case BNX2X_INT_MODE_INTX:
8620 bp->num_ethernet_queues = 1;
8621 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8622 BNX2X_DEV_INFO("set number of queues to 1\n");
8623 break;
8624 default:
8625 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8626 return -EINVAL;
8627 }
8628 return 0;
8629 }
8630
8631 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8632 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8633 {
8634 if (IS_SRIOV(bp))
8635 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8636 return L2_ILT_LINES(bp);
8637 }
8638
bnx2x_ilt_set_info(struct bnx2x * bp)8639 void bnx2x_ilt_set_info(struct bnx2x *bp)
8640 {
8641 struct ilt_client_info *ilt_client;
8642 struct bnx2x_ilt *ilt = BP_ILT(bp);
8643 u16 line = 0;
8644
8645 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8646 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8647
8648 /* CDU */
8649 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8650 ilt_client->client_num = ILT_CLIENT_CDU;
8651 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8652 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8653 ilt_client->start = line;
8654 line += bnx2x_cid_ilt_lines(bp);
8655
8656 if (CNIC_SUPPORT(bp))
8657 line += CNIC_ILT_LINES;
8658 ilt_client->end = line - 1;
8659
8660 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661 ilt_client->start,
8662 ilt_client->end,
8663 ilt_client->page_size,
8664 ilt_client->flags,
8665 ilog2(ilt_client->page_size >> 12));
8666
8667 /* QM */
8668 if (QM_INIT(bp->qm_cid_count)) {
8669 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8670 ilt_client->client_num = ILT_CLIENT_QM;
8671 ilt_client->page_size = QM_ILT_PAGE_SZ;
8672 ilt_client->flags = 0;
8673 ilt_client->start = line;
8674
8675 /* 4 bytes for each cid */
8676 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8677 QM_ILT_PAGE_SZ);
8678
8679 ilt_client->end = line - 1;
8680
8681 DP(NETIF_MSG_IFUP,
8682 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8683 ilt_client->start,
8684 ilt_client->end,
8685 ilt_client->page_size,
8686 ilt_client->flags,
8687 ilog2(ilt_client->page_size >> 12));
8688 }
8689
8690 if (CNIC_SUPPORT(bp)) {
8691 /* SRC */
8692 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8693 ilt_client->client_num = ILT_CLIENT_SRC;
8694 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8695 ilt_client->flags = 0;
8696 ilt_client->start = line;
8697 line += SRC_ILT_LINES;
8698 ilt_client->end = line - 1;
8699
8700 DP(NETIF_MSG_IFUP,
8701 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8702 ilt_client->start,
8703 ilt_client->end,
8704 ilt_client->page_size,
8705 ilt_client->flags,
8706 ilog2(ilt_client->page_size >> 12));
8707
8708 /* TM */
8709 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8710 ilt_client->client_num = ILT_CLIENT_TM;
8711 ilt_client->page_size = TM_ILT_PAGE_SZ;
8712 ilt_client->flags = 0;
8713 ilt_client->start = line;
8714 line += TM_ILT_LINES;
8715 ilt_client->end = line - 1;
8716
8717 DP(NETIF_MSG_IFUP,
8718 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8719 ilt_client->start,
8720 ilt_client->end,
8721 ilt_client->page_size,
8722 ilt_client->flags,
8723 ilog2(ilt_client->page_size >> 12));
8724 }
8725
8726 BUG_ON(line > ILT_MAX_LINES);
8727 }
8728
8729 /**
8730 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8731 *
8732 * @bp: driver handle
8733 * @fp: pointer to fastpath
8734 * @init_params: pointer to parameters structure
8735 *
8736 * parameters configured:
8737 * - HC configuration
8738 * - Queue's CDU context
8739 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8740 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8741 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8742 {
8743 u8 cos;
8744 int cxt_index, cxt_offset;
8745
8746 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8747 if (!IS_FCOE_FP(fp)) {
8748 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8749 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8750
8751 /* If HC is supported, enable host coalescing in the transition
8752 * to INIT state.
8753 */
8754 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8755 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8756
8757 /* HC rate */
8758 init_params->rx.hc_rate = bp->rx_ticks ?
8759 (1000000 / bp->rx_ticks) : 0;
8760 init_params->tx.hc_rate = bp->tx_ticks ?
8761 (1000000 / bp->tx_ticks) : 0;
8762
8763 /* FW SB ID */
8764 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8765 fp->fw_sb_id;
8766
8767 /*
8768 * CQ index among the SB indices: FCoE clients uses the default
8769 * SB, therefore it's different.
8770 */
8771 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8772 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8773 }
8774
8775 /* set maximum number of COSs supported by this queue */
8776 init_params->max_cos = fp->max_cos;
8777
8778 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8779 fp->index, init_params->max_cos);
8780
8781 /* set the context pointers queue object */
8782 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8783 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8784 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8785 ILT_PAGE_CIDS);
8786 init_params->cxts[cos] =
8787 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8788 }
8789 }
8790
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8791 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8792 struct bnx2x_queue_state_params *q_params,
8793 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8794 int tx_index, bool leading)
8795 {
8796 memset(tx_only_params, 0, sizeof(*tx_only_params));
8797
8798 /* Set the command */
8799 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8800
8801 /* Set tx-only QUEUE flags: don't zero statistics */
8802 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8803
8804 /* choose the index of the cid to send the slow path on */
8805 tx_only_params->cid_index = tx_index;
8806
8807 /* Set general TX_ONLY_SETUP parameters */
8808 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8809
8810 /* Set Tx TX_ONLY_SETUP parameters */
8811 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8812
8813 DP(NETIF_MSG_IFUP,
8814 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8815 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8816 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8817 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8818
8819 /* send the ramrod */
8820 return bnx2x_queue_state_change(bp, q_params);
8821 }
8822
8823 /**
8824 * bnx2x_setup_queue - setup queue
8825 *
8826 * @bp: driver handle
8827 * @fp: pointer to fastpath
8828 * @leading: is leading
8829 *
8830 * This function performs 2 steps in a Queue state machine
8831 * actually: 1) RESET->INIT 2) INIT->SETUP
8832 */
8833
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8834 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8835 bool leading)
8836 {
8837 struct bnx2x_queue_state_params q_params = {NULL};
8838 struct bnx2x_queue_setup_params *setup_params =
8839 &q_params.params.setup;
8840 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8841 &q_params.params.tx_only;
8842 int rc;
8843 u8 tx_index;
8844
8845 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8846
8847 /* reset IGU state skip FCoE L2 queue */
8848 if (!IS_FCOE_FP(fp))
8849 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8850 IGU_INT_ENABLE, 0);
8851
8852 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8853 /* We want to wait for completion in this context */
8854 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8855
8856 /* Prepare the INIT parameters */
8857 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8858
8859 /* Set the command */
8860 q_params.cmd = BNX2X_Q_CMD_INIT;
8861
8862 /* Change the state to INIT */
8863 rc = bnx2x_queue_state_change(bp, &q_params);
8864 if (rc) {
8865 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8866 return rc;
8867 }
8868
8869 DP(NETIF_MSG_IFUP, "init complete\n");
8870
8871 /* Now move the Queue to the SETUP state... */
8872 memset(setup_params, 0, sizeof(*setup_params));
8873
8874 /* Set QUEUE flags */
8875 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8876
8877 /* Set general SETUP parameters */
8878 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8879 FIRST_TX_COS_INDEX);
8880
8881 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8882 &setup_params->rxq_params);
8883
8884 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8885 FIRST_TX_COS_INDEX);
8886
8887 /* Set the command */
8888 q_params.cmd = BNX2X_Q_CMD_SETUP;
8889
8890 if (IS_FCOE_FP(fp))
8891 bp->fcoe_init = true;
8892
8893 /* Change the state to SETUP */
8894 rc = bnx2x_queue_state_change(bp, &q_params);
8895 if (rc) {
8896 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8897 return rc;
8898 }
8899
8900 /* loop through the relevant tx-only indices */
8901 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8902 tx_index < fp->max_cos;
8903 tx_index++) {
8904
8905 /* prepare and send tx-only ramrod*/
8906 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8907 tx_only_params, tx_index, leading);
8908 if (rc) {
8909 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8910 fp->index, tx_index);
8911 return rc;
8912 }
8913 }
8914
8915 return rc;
8916 }
8917
bnx2x_stop_queue(struct bnx2x * bp,int index)8918 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8919 {
8920 struct bnx2x_fastpath *fp = &bp->fp[index];
8921 struct bnx2x_fp_txdata *txdata;
8922 struct bnx2x_queue_state_params q_params = {NULL};
8923 int rc, tx_index;
8924
8925 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8926
8927 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8928 /* We want to wait for completion in this context */
8929 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8930
8931 /* close tx-only connections */
8932 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8933 tx_index < fp->max_cos;
8934 tx_index++){
8935
8936 /* ascertain this is a normal queue*/
8937 txdata = fp->txdata_ptr[tx_index];
8938
8939 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8940 txdata->txq_index);
8941
8942 /* send halt terminate on tx-only connection */
8943 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8944 memset(&q_params.params.terminate, 0,
8945 sizeof(q_params.params.terminate));
8946 q_params.params.terminate.cid_index = tx_index;
8947
8948 rc = bnx2x_queue_state_change(bp, &q_params);
8949 if (rc)
8950 return rc;
8951
8952 /* send halt terminate on tx-only connection */
8953 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8954 memset(&q_params.params.cfc_del, 0,
8955 sizeof(q_params.params.cfc_del));
8956 q_params.params.cfc_del.cid_index = tx_index;
8957 rc = bnx2x_queue_state_change(bp, &q_params);
8958 if (rc)
8959 return rc;
8960 }
8961 /* Stop the primary connection: */
8962 /* ...halt the connection */
8963 q_params.cmd = BNX2X_Q_CMD_HALT;
8964 rc = bnx2x_queue_state_change(bp, &q_params);
8965 if (rc)
8966 return rc;
8967
8968 /* ...terminate the connection */
8969 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8970 memset(&q_params.params.terminate, 0,
8971 sizeof(q_params.params.terminate));
8972 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8973 rc = bnx2x_queue_state_change(bp, &q_params);
8974 if (rc)
8975 return rc;
8976 /* ...delete cfc entry */
8977 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8978 memset(&q_params.params.cfc_del, 0,
8979 sizeof(q_params.params.cfc_del));
8980 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8981 return bnx2x_queue_state_change(bp, &q_params);
8982 }
8983
bnx2x_reset_func(struct bnx2x * bp)8984 static void bnx2x_reset_func(struct bnx2x *bp)
8985 {
8986 int port = BP_PORT(bp);
8987 int func = BP_FUNC(bp);
8988 int i;
8989
8990 /* Disable the function in the FW */
8991 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8992 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8993 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8994 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8995
8996 /* FP SBs */
8997 for_each_eth_queue(bp, i) {
8998 struct bnx2x_fastpath *fp = &bp->fp[i];
8999 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9000 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9001 SB_DISABLED);
9002 }
9003
9004 if (CNIC_LOADED(bp))
9005 /* CNIC SB */
9006 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9007 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9008 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9009
9010 /* SP SB */
9011 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9012 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9013 SB_DISABLED);
9014
9015 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9016 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9017 0);
9018
9019 /* Configure IGU */
9020 if (bp->common.int_block == INT_BLOCK_HC) {
9021 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9022 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9023 } else {
9024 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9025 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9026 }
9027
9028 if (CNIC_LOADED(bp)) {
9029 /* Disable Timer scan */
9030 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9031 /*
9032 * Wait for at least 10ms and up to 2 second for the timers
9033 * scan to complete
9034 */
9035 for (i = 0; i < 200; i++) {
9036 usleep_range(10000, 20000);
9037 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9038 break;
9039 }
9040 }
9041 /* Clear ILT */
9042 bnx2x_clear_func_ilt(bp, func);
9043
9044 /* Timers workaround bug for E2: if this is vnic-3,
9045 * we need to set the entire ilt range for this timers.
9046 */
9047 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9048 struct ilt_client_info ilt_cli;
9049 /* use dummy TM client */
9050 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9051 ilt_cli.start = 0;
9052 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9053 ilt_cli.client_num = ILT_CLIENT_TM;
9054
9055 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9056 }
9057
9058 /* this assumes that reset_port() called before reset_func()*/
9059 if (!CHIP_IS_E1x(bp))
9060 bnx2x_pf_disable(bp);
9061
9062 bp->dmae_ready = 0;
9063 }
9064
bnx2x_reset_port(struct bnx2x * bp)9065 static void bnx2x_reset_port(struct bnx2x *bp)
9066 {
9067 int port = BP_PORT(bp);
9068 u32 val;
9069
9070 /* Reset physical Link */
9071 bnx2x__link_reset(bp);
9072
9073 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9074
9075 /* Do not rcv packets to BRB */
9076 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9077 /* Do not direct rcv packets that are not for MCP to the BRB */
9078 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9079 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9080
9081 /* Configure AEU */
9082 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9083
9084 msleep(100);
9085 /* Check for BRB port occupancy */
9086 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9087 if (val)
9088 DP(NETIF_MSG_IFDOWN,
9089 "BRB1 is not empty %d blocks are occupied\n", val);
9090
9091 /* TODO: Close Doorbell port? */
9092 }
9093
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9094 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9095 {
9096 struct bnx2x_func_state_params func_params = {NULL};
9097
9098 /* Prepare parameters for function state transitions */
9099 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9100
9101 func_params.f_obj = &bp->func_obj;
9102 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9103
9104 func_params.params.hw_init.load_phase = load_code;
9105
9106 return bnx2x_func_state_change(bp, &func_params);
9107 }
9108
bnx2x_func_stop(struct bnx2x * bp)9109 static int bnx2x_func_stop(struct bnx2x *bp)
9110 {
9111 struct bnx2x_func_state_params func_params = {NULL};
9112 int rc;
9113
9114 /* Prepare parameters for function state transitions */
9115 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9116 func_params.f_obj = &bp->func_obj;
9117 func_params.cmd = BNX2X_F_CMD_STOP;
9118
9119 /*
9120 * Try to stop the function the 'good way'. If fails (in case
9121 * of a parity error during bnx2x_chip_cleanup()) and we are
9122 * not in a debug mode, perform a state transaction in order to
9123 * enable further HW_RESET transaction.
9124 */
9125 rc = bnx2x_func_state_change(bp, &func_params);
9126 if (rc) {
9127 #ifdef BNX2X_STOP_ON_ERROR
9128 return rc;
9129 #else
9130 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9131 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9132 return bnx2x_func_state_change(bp, &func_params);
9133 #endif
9134 }
9135
9136 return 0;
9137 }
9138
9139 /**
9140 * bnx2x_send_unload_req - request unload mode from the MCP.
9141 *
9142 * @bp: driver handle
9143 * @unload_mode: requested function's unload mode
9144 *
9145 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9146 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9147 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9148 {
9149 u32 reset_code = 0;
9150 int port = BP_PORT(bp);
9151
9152 /* Select the UNLOAD request mode */
9153 if (unload_mode == UNLOAD_NORMAL)
9154 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9155
9156 else if (bp->flags & NO_WOL_FLAG)
9157 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9158
9159 else if (bp->wol) {
9160 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9161 u8 *mac_addr = bp->dev->dev_addr;
9162 struct pci_dev *pdev = bp->pdev;
9163 u32 val;
9164 u16 pmc;
9165
9166 /* The mac address is written to entries 1-4 to
9167 * preserve entry 0 which is used by the PMF
9168 */
9169 u8 entry = (BP_VN(bp) + 1)*8;
9170
9171 val = (mac_addr[0] << 8) | mac_addr[1];
9172 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9173
9174 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9175 (mac_addr[4] << 8) | mac_addr[5];
9176 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9177
9178 /* Enable the PME and clear the status */
9179 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9180 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9181 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9182
9183 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9184
9185 } else
9186 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9187
9188 /* Send the request to the MCP */
9189 if (!BP_NOMCP(bp))
9190 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9191 else {
9192 int path = BP_PATH(bp);
9193
9194 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9195 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9196 bnx2x_load_count[path][2]);
9197 bnx2x_load_count[path][0]--;
9198 bnx2x_load_count[path][1 + port]--;
9199 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9200 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9201 bnx2x_load_count[path][2]);
9202 if (bnx2x_load_count[path][0] == 0)
9203 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9204 else if (bnx2x_load_count[path][1 + port] == 0)
9205 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9206 else
9207 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9208 }
9209
9210 return reset_code;
9211 }
9212
9213 /**
9214 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9215 *
9216 * @bp: driver handle
9217 * @keep_link: true iff link should be kept up
9218 */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9219 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9220 {
9221 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9222
9223 /* Report UNLOAD_DONE to MCP */
9224 if (!BP_NOMCP(bp))
9225 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9226 }
9227
bnx2x_func_wait_started(struct bnx2x * bp)9228 static int bnx2x_func_wait_started(struct bnx2x *bp)
9229 {
9230 int tout = 50;
9231 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9232
9233 if (!bp->port.pmf)
9234 return 0;
9235
9236 /*
9237 * (assumption: No Attention from MCP at this stage)
9238 * PMF probably in the middle of TX disable/enable transaction
9239 * 1. Sync IRS for default SB
9240 * 2. Sync SP queue - this guarantees us that attention handling started
9241 * 3. Wait, that TX disable/enable transaction completes
9242 *
9243 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9244 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9245 * received completion for the transaction the state is TX_STOPPED.
9246 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9247 * transaction.
9248 */
9249
9250 /* make sure default SB ISR is done */
9251 if (msix)
9252 synchronize_irq(bp->msix_table[0].vector);
9253 else
9254 synchronize_irq(bp->pdev->irq);
9255
9256 flush_workqueue(bnx2x_wq);
9257 flush_workqueue(bnx2x_iov_wq);
9258
9259 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9260 BNX2X_F_STATE_STARTED && tout--)
9261 msleep(20);
9262
9263 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9264 BNX2X_F_STATE_STARTED) {
9265 #ifdef BNX2X_STOP_ON_ERROR
9266 BNX2X_ERR("Wrong function state\n");
9267 return -EBUSY;
9268 #else
9269 /*
9270 * Failed to complete the transaction in a "good way"
9271 * Force both transactions with CLR bit
9272 */
9273 struct bnx2x_func_state_params func_params = {NULL};
9274
9275 DP(NETIF_MSG_IFDOWN,
9276 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9277
9278 func_params.f_obj = &bp->func_obj;
9279 __set_bit(RAMROD_DRV_CLR_ONLY,
9280 &func_params.ramrod_flags);
9281
9282 /* STARTED-->TX_ST0PPED */
9283 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9284 bnx2x_func_state_change(bp, &func_params);
9285
9286 /* TX_ST0PPED-->STARTED */
9287 func_params.cmd = BNX2X_F_CMD_TX_START;
9288 return bnx2x_func_state_change(bp, &func_params);
9289 #endif
9290 }
9291
9292 return 0;
9293 }
9294
bnx2x_disable_ptp(struct bnx2x * bp)9295 static void bnx2x_disable_ptp(struct bnx2x *bp)
9296 {
9297 int port = BP_PORT(bp);
9298
9299 /* Disable sending PTP packets to host */
9300 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9301 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9302
9303 /* Reset PTP event detection rules */
9304 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9305 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9306 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9307 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9308 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9309 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9310 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9311 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9312
9313 /* Disable the PTP feature */
9314 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9315 NIG_REG_P0_PTP_EN, 0x0);
9316 }
9317
9318 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9319 static void bnx2x_stop_ptp(struct bnx2x *bp)
9320 {
9321 /* Cancel PTP work queue. Should be done after the Tx queues are
9322 * drained to prevent additional scheduling.
9323 */
9324 cancel_work_sync(&bp->ptp_task);
9325
9326 if (bp->ptp_tx_skb) {
9327 dev_kfree_skb_any(bp->ptp_tx_skb);
9328 bp->ptp_tx_skb = NULL;
9329 }
9330
9331 /* Disable PTP in HW */
9332 bnx2x_disable_ptp(bp);
9333
9334 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9335 }
9336
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9337 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9338 {
9339 int port = BP_PORT(bp);
9340 int i, rc = 0;
9341 u8 cos;
9342 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9343 u32 reset_code;
9344
9345 /* Wait until tx fastpath tasks complete */
9346 for_each_tx_queue(bp, i) {
9347 struct bnx2x_fastpath *fp = &bp->fp[i];
9348
9349 for_each_cos_in_tx_queue(fp, cos)
9350 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9351 #ifdef BNX2X_STOP_ON_ERROR
9352 if (rc)
9353 return;
9354 #endif
9355 }
9356
9357 /* Give HW time to discard old tx messages */
9358 usleep_range(1000, 2000);
9359
9360 /* Clean all ETH MACs */
9361 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9362 false);
9363 if (rc < 0)
9364 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9365
9366 /* Clean up UC list */
9367 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9368 true);
9369 if (rc < 0)
9370 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9371 rc);
9372
9373 /* The whole *vlan_obj structure may be not initialized if VLAN
9374 * filtering offload is not supported by hardware. Currently this is
9375 * true for all hardware covered by CHIP_IS_E1x().
9376 */
9377 if (!CHIP_IS_E1x(bp)) {
9378 /* Remove all currently configured VLANs */
9379 rc = bnx2x_del_all_vlans(bp);
9380 if (rc < 0)
9381 BNX2X_ERR("Failed to delete all VLANs\n");
9382 }
9383
9384 /* Disable LLH */
9385 if (!CHIP_IS_E1(bp))
9386 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9387
9388 /* Set "drop all" (stop Rx).
9389 * We need to take a netif_addr_lock() here in order to prevent
9390 * a race between the completion code and this code.
9391 */
9392 netif_addr_lock_bh(bp->dev);
9393 /* Schedule the rx_mode command */
9394 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9395 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9396 else if (bp->slowpath)
9397 bnx2x_set_storm_rx_mode(bp);
9398
9399 /* Cleanup multicast configuration */
9400 rparam.mcast_obj = &bp->mcast_obj;
9401 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9402 if (rc < 0)
9403 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9404
9405 netif_addr_unlock_bh(bp->dev);
9406
9407 bnx2x_iov_chip_cleanup(bp);
9408
9409 /*
9410 * Send the UNLOAD_REQUEST to the MCP. This will return if
9411 * this function should perform FUNC, PORT or COMMON HW
9412 * reset.
9413 */
9414 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9415
9416 /*
9417 * (assumption: No Attention from MCP at this stage)
9418 * PMF probably in the middle of TX disable/enable transaction
9419 */
9420 rc = bnx2x_func_wait_started(bp);
9421 if (rc) {
9422 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9423 #ifdef BNX2X_STOP_ON_ERROR
9424 return;
9425 #endif
9426 }
9427
9428 /* Close multi and leading connections
9429 * Completions for ramrods are collected in a synchronous way
9430 */
9431 for_each_eth_queue(bp, i)
9432 if (bnx2x_stop_queue(bp, i))
9433 #ifdef BNX2X_STOP_ON_ERROR
9434 return;
9435 #else
9436 goto unload_error;
9437 #endif
9438
9439 if (CNIC_LOADED(bp)) {
9440 for_each_cnic_queue(bp, i)
9441 if (bnx2x_stop_queue(bp, i))
9442 #ifdef BNX2X_STOP_ON_ERROR
9443 return;
9444 #else
9445 goto unload_error;
9446 #endif
9447 }
9448
9449 /* If SP settings didn't get completed so far - something
9450 * very wrong has happen.
9451 */
9452 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9453 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9454
9455 #ifndef BNX2X_STOP_ON_ERROR
9456 unload_error:
9457 #endif
9458 rc = bnx2x_func_stop(bp);
9459 if (rc) {
9460 BNX2X_ERR("Function stop failed!\n");
9461 #ifdef BNX2X_STOP_ON_ERROR
9462 return;
9463 #endif
9464 }
9465
9466 /* stop_ptp should be after the Tx queues are drained to prevent
9467 * scheduling to the cancelled PTP work queue. It should also be after
9468 * function stop ramrod is sent, since as part of this ramrod FW access
9469 * PTP registers.
9470 */
9471 if (bp->flags & PTP_SUPPORTED) {
9472 bnx2x_stop_ptp(bp);
9473 if (bp->ptp_clock) {
9474 ptp_clock_unregister(bp->ptp_clock);
9475 bp->ptp_clock = NULL;
9476 }
9477 }
9478
9479 /* Disable HW interrupts, NAPI */
9480 bnx2x_netif_stop(bp, 1);
9481 /* Delete all NAPI objects */
9482 bnx2x_del_all_napi(bp);
9483 if (CNIC_LOADED(bp))
9484 bnx2x_del_all_napi_cnic(bp);
9485
9486 /* Release IRQs */
9487 bnx2x_free_irq(bp);
9488
9489 /* Reset the chip, unless PCI function is offline. If we reach this
9490 * point following a PCI error handling, it means device is really
9491 * in a bad state and we're about to remove it, so reset the chip
9492 * is not a good idea.
9493 */
9494 if (!pci_channel_offline(bp->pdev)) {
9495 rc = bnx2x_reset_hw(bp, reset_code);
9496 if (rc)
9497 BNX2X_ERR("HW_RESET failed\n");
9498 }
9499
9500 /* Report UNLOAD_DONE to MCP */
9501 bnx2x_send_unload_done(bp, keep_link);
9502 }
9503
bnx2x_disable_close_the_gate(struct bnx2x * bp)9504 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9505 {
9506 u32 val;
9507
9508 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9509
9510 if (CHIP_IS_E1(bp)) {
9511 int port = BP_PORT(bp);
9512 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9513 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9514
9515 val = REG_RD(bp, addr);
9516 val &= ~(0x300);
9517 REG_WR(bp, addr, val);
9518 } else {
9519 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9520 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9521 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9522 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9523 }
9524 }
9525
9526 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9527 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9528 {
9529 u32 val;
9530
9531 /* Gates #2 and #4a are closed/opened for "not E1" only */
9532 if (!CHIP_IS_E1(bp)) {
9533 /* #4 */
9534 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9535 /* #2 */
9536 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9537 }
9538
9539 /* #3 */
9540 if (CHIP_IS_E1x(bp)) {
9541 /* Prevent interrupts from HC on both ports */
9542 val = REG_RD(bp, HC_REG_CONFIG_1);
9543 REG_WR(bp, HC_REG_CONFIG_1,
9544 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9545 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9546
9547 val = REG_RD(bp, HC_REG_CONFIG_0);
9548 REG_WR(bp, HC_REG_CONFIG_0,
9549 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9550 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9551 } else {
9552 /* Prevent incoming interrupts in IGU */
9553 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9554
9555 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9556 (!close) ?
9557 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9558 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9559 }
9560
9561 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9562 close ? "closing" : "opening");
9563 }
9564
9565 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9566
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9567 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9568 {
9569 /* Do some magic... */
9570 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9571 *magic_val = val & SHARED_MF_CLP_MAGIC;
9572 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9573 }
9574
9575 /**
9576 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9577 *
9578 * @bp: driver handle
9579 * @magic_val: old value of the `magic' bit.
9580 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9581 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9582 {
9583 /* Restore the `magic' bit value... */
9584 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9585 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9586 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9587 }
9588
9589 /**
9590 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9591 *
9592 * @bp: driver handle
9593 * @magic_val: old value of 'magic' bit.
9594 *
9595 * Takes care of CLP configurations.
9596 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9597 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9598 {
9599 u32 shmem;
9600 u32 validity_offset;
9601
9602 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9603
9604 /* Set `magic' bit in order to save MF config */
9605 if (!CHIP_IS_E1(bp))
9606 bnx2x_clp_reset_prep(bp, magic_val);
9607
9608 /* Get shmem offset */
9609 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9610 validity_offset =
9611 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9612
9613 /* Clear validity map flags */
9614 if (shmem > 0)
9615 REG_WR(bp, shmem + validity_offset, 0);
9616 }
9617
9618 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9619 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9620
9621 /**
9622 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9623 *
9624 * @bp: driver handle
9625 */
bnx2x_mcp_wait_one(struct bnx2x * bp)9626 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9627 {
9628 /* special handling for emulation and FPGA,
9629 wait 10 times longer */
9630 if (CHIP_REV_IS_SLOW(bp))
9631 msleep(MCP_ONE_TIMEOUT*10);
9632 else
9633 msleep(MCP_ONE_TIMEOUT);
9634 }
9635
9636 /*
9637 * initializes bp->common.shmem_base and waits for validity signature to appear
9638 */
bnx2x_init_shmem(struct bnx2x * bp)9639 static int bnx2x_init_shmem(struct bnx2x *bp)
9640 {
9641 int cnt = 0;
9642 u32 val = 0;
9643
9644 do {
9645 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9646
9647 /* If we read all 0xFFs, means we are in PCI error state and
9648 * should bail out to avoid crashes on adapter's FW reads.
9649 */
9650 if (bp->common.shmem_base == 0xFFFFFFFF) {
9651 bp->flags |= NO_MCP_FLAG;
9652 return -ENODEV;
9653 }
9654
9655 if (bp->common.shmem_base) {
9656 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9657 if (val & SHR_MEM_VALIDITY_MB)
9658 return 0;
9659 }
9660
9661 bnx2x_mcp_wait_one(bp);
9662
9663 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9664
9665 BNX2X_ERR("BAD MCP validity signature\n");
9666
9667 return -ENODEV;
9668 }
9669
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9670 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9671 {
9672 int rc = bnx2x_init_shmem(bp);
9673
9674 /* Restore the `magic' bit value */
9675 if (!CHIP_IS_E1(bp))
9676 bnx2x_clp_reset_done(bp, magic_val);
9677
9678 return rc;
9679 }
9680
bnx2x_pxp_prep(struct bnx2x * bp)9681 static void bnx2x_pxp_prep(struct bnx2x *bp)
9682 {
9683 if (!CHIP_IS_E1(bp)) {
9684 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9685 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9686 }
9687 }
9688
9689 /*
9690 * Reset the whole chip except for:
9691 * - PCIE core
9692 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9693 * one reset bit)
9694 * - IGU
9695 * - MISC (including AEU)
9696 * - GRC
9697 * - RBCN, RBCP
9698 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9699 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9700 {
9701 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9702 u32 global_bits2, stay_reset2;
9703
9704 /*
9705 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9706 * (per chip) blocks.
9707 */
9708 global_bits2 =
9709 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9710 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9711
9712 /* Don't reset the following blocks.
9713 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9714 * reset, as in 4 port device they might still be owned
9715 * by the MCP (there is only one leader per path).
9716 */
9717 not_reset_mask1 =
9718 MISC_REGISTERS_RESET_REG_1_RST_HC |
9719 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9720 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9721
9722 not_reset_mask2 =
9723 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9725 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9726 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9727 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9728 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9729 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9730 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9731 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9732 MISC_REGISTERS_RESET_REG_2_PGLC |
9733 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9734 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9735 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9736 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9737 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9738 MISC_REGISTERS_RESET_REG_2_UMAC1;
9739
9740 /*
9741 * Keep the following blocks in reset:
9742 * - all xxMACs are handled by the bnx2x_link code.
9743 */
9744 stay_reset2 =
9745 MISC_REGISTERS_RESET_REG_2_XMAC |
9746 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9747
9748 /* Full reset masks according to the chip */
9749 reset_mask1 = 0xffffffff;
9750
9751 if (CHIP_IS_E1(bp))
9752 reset_mask2 = 0xffff;
9753 else if (CHIP_IS_E1H(bp))
9754 reset_mask2 = 0x1ffff;
9755 else if (CHIP_IS_E2(bp))
9756 reset_mask2 = 0xfffff;
9757 else /* CHIP_IS_E3 */
9758 reset_mask2 = 0x3ffffff;
9759
9760 /* Don't reset global blocks unless we need to */
9761 if (!global)
9762 reset_mask2 &= ~global_bits2;
9763
9764 /*
9765 * In case of attention in the QM, we need to reset PXP
9766 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9767 * because otherwise QM reset would release 'close the gates' shortly
9768 * before resetting the PXP, then the PSWRQ would send a write
9769 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9770 * read the payload data from PSWWR, but PSWWR would not
9771 * respond. The write queue in PGLUE would stuck, dmae commands
9772 * would not return. Therefore it's important to reset the second
9773 * reset register (containing the
9774 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9775 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9776 * bit).
9777 */
9778 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9779 reset_mask2 & (~not_reset_mask2));
9780
9781 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9782 reset_mask1 & (~not_reset_mask1));
9783
9784 barrier();
9785
9786 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9787 reset_mask2 & (~stay_reset2));
9788
9789 barrier();
9790
9791 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9792 }
9793
9794 /**
9795 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9796 * It should get cleared in no more than 1s.
9797 *
9798 * @bp: driver handle
9799 *
9800 * It should get cleared in no more than 1s. Returns 0 if
9801 * pending writes bit gets cleared.
9802 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9803 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9804 {
9805 u32 cnt = 1000;
9806 u32 pend_bits = 0;
9807
9808 do {
9809 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9810
9811 if (pend_bits == 0)
9812 break;
9813
9814 usleep_range(1000, 2000);
9815 } while (cnt-- > 0);
9816
9817 if (cnt <= 0) {
9818 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9819 pend_bits);
9820 return -EBUSY;
9821 }
9822
9823 return 0;
9824 }
9825
bnx2x_process_kill(struct bnx2x * bp,bool global)9826 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9827 {
9828 int cnt = 1000;
9829 u32 val = 0;
9830 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9831 u32 tags_63_32 = 0;
9832
9833 /* Empty the Tetris buffer, wait for 1s */
9834 do {
9835 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9836 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9837 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9838 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9839 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9840 if (CHIP_IS_E3(bp))
9841 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9842
9843 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9844 ((port_is_idle_0 & 0x1) == 0x1) &&
9845 ((port_is_idle_1 & 0x1) == 0x1) &&
9846 (pgl_exp_rom2 == 0xffffffff) &&
9847 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9848 break;
9849 usleep_range(1000, 2000);
9850 } while (cnt-- > 0);
9851
9852 if (cnt <= 0) {
9853 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9854 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9855 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9856 pgl_exp_rom2);
9857 return -EAGAIN;
9858 }
9859
9860 barrier();
9861
9862 /* Close gates #2, #3 and #4 */
9863 bnx2x_set_234_gates(bp, true);
9864
9865 /* Poll for IGU VQs for 57712 and newer chips */
9866 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9867 return -EAGAIN;
9868
9869 /* TBD: Indicate that "process kill" is in progress to MCP */
9870
9871 /* Clear "unprepared" bit */
9872 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9873 barrier();
9874
9875 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9876 * PSWHST, GRC and PSWRD Tetris buffer.
9877 */
9878 usleep_range(1000, 2000);
9879
9880 /* Prepare to chip reset: */
9881 /* MCP */
9882 if (global)
9883 bnx2x_reset_mcp_prep(bp, &val);
9884
9885 /* PXP */
9886 bnx2x_pxp_prep(bp);
9887 barrier();
9888
9889 /* reset the chip */
9890 bnx2x_process_kill_chip_reset(bp, global);
9891 barrier();
9892
9893 /* clear errors in PGB */
9894 if (!CHIP_IS_E1x(bp))
9895 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9896
9897 /* Recover after reset: */
9898 /* MCP */
9899 if (global && bnx2x_reset_mcp_comp(bp, val))
9900 return -EAGAIN;
9901
9902 /* TBD: Add resetting the NO_MCP mode DB here */
9903
9904 /* Open the gates #2, #3 and #4 */
9905 bnx2x_set_234_gates(bp, false);
9906
9907 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9908 * reset state, re-enable attentions. */
9909
9910 return 0;
9911 }
9912
bnx2x_leader_reset(struct bnx2x * bp)9913 static int bnx2x_leader_reset(struct bnx2x *bp)
9914 {
9915 int rc = 0;
9916 bool global = bnx2x_reset_is_global(bp);
9917 u32 load_code;
9918
9919 /* if not going to reset MCP - load "fake" driver to reset HW while
9920 * driver is owner of the HW
9921 */
9922 if (!global && !BP_NOMCP(bp)) {
9923 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9924 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9925 if (!load_code) {
9926 BNX2X_ERR("MCP response failure, aborting\n");
9927 rc = -EAGAIN;
9928 goto exit_leader_reset;
9929 }
9930 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9931 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9932 BNX2X_ERR("MCP unexpected resp, aborting\n");
9933 rc = -EAGAIN;
9934 goto exit_leader_reset2;
9935 }
9936 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9937 if (!load_code) {
9938 BNX2X_ERR("MCP response failure, aborting\n");
9939 rc = -EAGAIN;
9940 goto exit_leader_reset2;
9941 }
9942 }
9943
9944 /* Try to recover after the failure */
9945 if (bnx2x_process_kill(bp, global)) {
9946 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9947 BP_PATH(bp));
9948 rc = -EAGAIN;
9949 goto exit_leader_reset2;
9950 }
9951
9952 /*
9953 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9954 * state.
9955 */
9956 bnx2x_set_reset_done(bp);
9957 if (global)
9958 bnx2x_clear_reset_global(bp);
9959
9960 exit_leader_reset2:
9961 /* unload "fake driver" if it was loaded */
9962 if (!global && !BP_NOMCP(bp)) {
9963 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9964 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9965 }
9966 exit_leader_reset:
9967 bp->is_leader = 0;
9968 bnx2x_release_leader_lock(bp);
9969 smp_mb();
9970 return rc;
9971 }
9972
bnx2x_recovery_failed(struct bnx2x * bp)9973 static void bnx2x_recovery_failed(struct bnx2x *bp)
9974 {
9975 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9976
9977 /* Disconnect this device */
9978 netif_device_detach(bp->dev);
9979
9980 /*
9981 * Block ifup for all function on this engine until "process kill"
9982 * or power cycle.
9983 */
9984 bnx2x_set_reset_in_progress(bp);
9985
9986 /* Shut down the power */
9987 bnx2x_set_power_state(bp, PCI_D3hot);
9988
9989 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9990
9991 smp_mb();
9992 }
9993
9994 /*
9995 * Assumption: runs under rtnl lock. This together with the fact
9996 * that it's called only from bnx2x_sp_rtnl() ensure that it
9997 * will never be called when netif_running(bp->dev) is false.
9998 */
bnx2x_parity_recover(struct bnx2x * bp)9999 static void bnx2x_parity_recover(struct bnx2x *bp)
10000 {
10001 u32 error_recovered, error_unrecovered;
10002 bool is_parity, global = false;
10003 #ifdef CONFIG_BNX2X_SRIOV
10004 int vf_idx;
10005
10006 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10007 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10008
10009 if (vf)
10010 vf->state = VF_LOST;
10011 }
10012 #endif
10013 DP(NETIF_MSG_HW, "Handling parity\n");
10014 while (1) {
10015 switch (bp->recovery_state) {
10016 case BNX2X_RECOVERY_INIT:
10017 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10018 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10019 WARN_ON(!is_parity);
10020
10021 /* Try to get a LEADER_LOCK HW lock */
10022 if (bnx2x_trylock_leader_lock(bp)) {
10023 bnx2x_set_reset_in_progress(bp);
10024 /*
10025 * Check if there is a global attention and if
10026 * there was a global attention, set the global
10027 * reset bit.
10028 */
10029
10030 if (global)
10031 bnx2x_set_reset_global(bp);
10032
10033 bp->is_leader = 1;
10034 }
10035
10036 /* Stop the driver */
10037 /* If interface has been removed - break */
10038 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10039 return;
10040
10041 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10042
10043 /* Ensure "is_leader", MCP command sequence and
10044 * "recovery_state" update values are seen on other
10045 * CPUs.
10046 */
10047 smp_mb();
10048 break;
10049
10050 case BNX2X_RECOVERY_WAIT:
10051 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10052 if (bp->is_leader) {
10053 int other_engine = BP_PATH(bp) ? 0 : 1;
10054 bool other_load_status =
10055 bnx2x_get_load_status(bp, other_engine);
10056 bool load_status =
10057 bnx2x_get_load_status(bp, BP_PATH(bp));
10058 global = bnx2x_reset_is_global(bp);
10059
10060 /*
10061 * In case of a parity in a global block, let
10062 * the first leader that performs a
10063 * leader_reset() reset the global blocks in
10064 * order to clear global attentions. Otherwise
10065 * the gates will remain closed for that
10066 * engine.
10067 */
10068 if (load_status ||
10069 (global && other_load_status)) {
10070 /* Wait until all other functions get
10071 * down.
10072 */
10073 schedule_delayed_work(&bp->sp_rtnl_task,
10074 HZ/10);
10075 return;
10076 } else {
10077 /* If all other functions got down -
10078 * try to bring the chip back to
10079 * normal. In any case it's an exit
10080 * point for a leader.
10081 */
10082 if (bnx2x_leader_reset(bp)) {
10083 bnx2x_recovery_failed(bp);
10084 return;
10085 }
10086
10087 /* If we are here, means that the
10088 * leader has succeeded and doesn't
10089 * want to be a leader any more. Try
10090 * to continue as a none-leader.
10091 */
10092 break;
10093 }
10094 } else { /* non-leader */
10095 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10096 /* Try to get a LEADER_LOCK HW lock as
10097 * long as a former leader may have
10098 * been unloaded by the user or
10099 * released a leadership by another
10100 * reason.
10101 */
10102 if (bnx2x_trylock_leader_lock(bp)) {
10103 /* I'm a leader now! Restart a
10104 * switch case.
10105 */
10106 bp->is_leader = 1;
10107 break;
10108 }
10109
10110 schedule_delayed_work(&bp->sp_rtnl_task,
10111 HZ/10);
10112 return;
10113
10114 } else {
10115 /*
10116 * If there was a global attention, wait
10117 * for it to be cleared.
10118 */
10119 if (bnx2x_reset_is_global(bp)) {
10120 schedule_delayed_work(
10121 &bp->sp_rtnl_task,
10122 HZ/10);
10123 return;
10124 }
10125
10126 error_recovered =
10127 bp->eth_stats.recoverable_error;
10128 error_unrecovered =
10129 bp->eth_stats.unrecoverable_error;
10130 bp->recovery_state =
10131 BNX2X_RECOVERY_NIC_LOADING;
10132 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10133 error_unrecovered++;
10134 netdev_err(bp->dev,
10135 "Recovery failed. Power cycle needed\n");
10136 /* Disconnect this device */
10137 netif_device_detach(bp->dev);
10138 /* Shut down the power */
10139 bnx2x_set_power_state(
10140 bp, PCI_D3hot);
10141 smp_mb();
10142 } else {
10143 bp->recovery_state =
10144 BNX2X_RECOVERY_DONE;
10145 error_recovered++;
10146 smp_mb();
10147 }
10148 bp->eth_stats.recoverable_error =
10149 error_recovered;
10150 bp->eth_stats.unrecoverable_error =
10151 error_unrecovered;
10152
10153 return;
10154 }
10155 }
10156 default:
10157 return;
10158 }
10159 }
10160 }
10161
bnx2x_udp_port_update(struct bnx2x * bp)10162 static int bnx2x_udp_port_update(struct bnx2x *bp)
10163 {
10164 struct bnx2x_func_switch_update_params *switch_update_params;
10165 struct bnx2x_func_state_params func_params = {NULL};
10166 u16 vxlan_port = 0, geneve_port = 0;
10167 int rc;
10168
10169 switch_update_params = &func_params.params.switch_update;
10170
10171 /* Prepare parameters for function state transitions */
10172 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10173 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10174
10175 func_params.f_obj = &bp->func_obj;
10176 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10177
10178 /* Function parameters */
10179 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10180 &switch_update_params->changes);
10181
10182 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10183 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10184 switch_update_params->geneve_dst_port = geneve_port;
10185 }
10186
10187 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10188 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10189 switch_update_params->vxlan_dst_port = vxlan_port;
10190 }
10191
10192 /* Re-enable inner-rss for the offloaded UDP tunnels */
10193 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10194 &switch_update_params->changes);
10195
10196 rc = bnx2x_func_state_change(bp, &func_params);
10197 if (rc)
10198 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10199 vxlan_port, geneve_port, rc);
10200 else
10201 DP(BNX2X_MSG_SP,
10202 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10203 vxlan_port, geneve_port);
10204
10205 return rc;
10206 }
10207
bnx2x_udp_tunnel_sync(struct net_device * netdev,unsigned int table)10208 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10209 {
10210 struct bnx2x *bp = netdev_priv(netdev);
10211 struct udp_tunnel_info ti;
10212
10213 udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10214 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10215
10216 return bnx2x_udp_port_update(bp);
10217 }
10218
10219 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10220 .sync_table = bnx2x_udp_tunnel_sync,
10221 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10222 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10223 .tables = {
10224 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
10225 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10226 },
10227 };
10228
10229 static int bnx2x_close(struct net_device *dev);
10230
10231 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10232 * scheduled on a general queue in order to prevent a dead lock.
10233 */
bnx2x_sp_rtnl_task(struct work_struct * work)10234 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10235 {
10236 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10237
10238 rtnl_lock();
10239
10240 if (!netif_running(bp->dev)) {
10241 rtnl_unlock();
10242 return;
10243 }
10244
10245 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10246 #ifdef BNX2X_STOP_ON_ERROR
10247 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10248 "you will need to reboot when done\n");
10249 goto sp_rtnl_not_reset;
10250 #endif
10251 /*
10252 * Clear all pending SP commands as we are going to reset the
10253 * function anyway.
10254 */
10255 bp->sp_rtnl_state = 0;
10256 smp_mb();
10257
10258 bnx2x_parity_recover(bp);
10259
10260 rtnl_unlock();
10261 return;
10262 }
10263
10264 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10265 #ifdef BNX2X_STOP_ON_ERROR
10266 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10267 "you will need to reboot when done\n");
10268 goto sp_rtnl_not_reset;
10269 #endif
10270
10271 /*
10272 * Clear all pending SP commands as we are going to reset the
10273 * function anyway.
10274 */
10275 bp->sp_rtnl_state = 0;
10276 smp_mb();
10277
10278 /* Immediately indicate link as down */
10279 bp->link_vars.link_up = 0;
10280 bp->force_link_down = true;
10281 netif_carrier_off(bp->dev);
10282 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10283
10284 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10285 /* When ret value shows failure of allocation failure,
10286 * the nic is rebooted again. If open still fails, a error
10287 * message to notify the user.
10288 */
10289 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10290 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10291 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10292 BNX2X_ERR("Open the NIC fails again!\n");
10293 }
10294 rtnl_unlock();
10295 return;
10296 }
10297 #ifdef BNX2X_STOP_ON_ERROR
10298 sp_rtnl_not_reset:
10299 #endif
10300 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10301 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10302 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10303 bnx2x_after_function_update(bp);
10304 /*
10305 * in case of fan failure we need to reset id if the "stop on error"
10306 * debug flag is set, since we trying to prevent permanent overheating
10307 * damage
10308 */
10309 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10310 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10311 netif_device_detach(bp->dev);
10312 bnx2x_close(bp->dev);
10313 rtnl_unlock();
10314 return;
10315 }
10316
10317 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10318 DP(BNX2X_MSG_SP,
10319 "sending set mcast vf pf channel message from rtnl sp-task\n");
10320 bnx2x_vfpf_set_mcast(bp->dev);
10321 }
10322 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10323 &bp->sp_rtnl_state)){
10324 if (netif_carrier_ok(bp->dev)) {
10325 bnx2x_tx_disable(bp);
10326 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10327 }
10328 }
10329
10330 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10331 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10332 bnx2x_set_rx_mode_inner(bp);
10333 }
10334
10335 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10336 &bp->sp_rtnl_state))
10337 bnx2x_pf_set_vfs_vlan(bp);
10338
10339 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10340 bnx2x_dcbx_stop_hw_tx(bp);
10341 bnx2x_dcbx_resume_hw_tx(bp);
10342 }
10343
10344 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10345 &bp->sp_rtnl_state))
10346 bnx2x_update_mng_version(bp);
10347
10348 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10349 bnx2x_handle_update_svid_cmd(bp);
10350
10351 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10352 * can be called from other contexts as well)
10353 */
10354 rtnl_unlock();
10355
10356 /* enable SR-IOV if applicable */
10357 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10358 &bp->sp_rtnl_state)) {
10359 bnx2x_disable_sriov(bp);
10360 bnx2x_enable_sriov(bp);
10361 }
10362 }
10363
bnx2x_period_task(struct work_struct * work)10364 static void bnx2x_period_task(struct work_struct *work)
10365 {
10366 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10367
10368 if (!netif_running(bp->dev))
10369 goto period_task_exit;
10370
10371 if (CHIP_REV_IS_SLOW(bp)) {
10372 BNX2X_ERR("period task called on emulation, ignoring\n");
10373 goto period_task_exit;
10374 }
10375
10376 bnx2x_acquire_phy_lock(bp);
10377 /*
10378 * The barrier is needed to ensure the ordering between the writing to
10379 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10380 * the reading here.
10381 */
10382 smp_mb();
10383 if (bp->port.pmf) {
10384 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10385
10386 /* Re-queue task in 1 sec */
10387 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10388 }
10389
10390 bnx2x_release_phy_lock(bp);
10391 period_task_exit:
10392 return;
10393 }
10394
10395 /*
10396 * Init service functions
10397 */
10398
bnx2x_get_pretend_reg(struct bnx2x * bp)10399 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10400 {
10401 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10402 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10403 return base + (BP_ABS_FUNC(bp)) * stride;
10404 }
10405
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10406 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10407 u8 port, u32 reset_reg,
10408 struct bnx2x_mac_vals *vals)
10409 {
10410 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10411 u32 base_addr;
10412
10413 if (!(mask & reset_reg))
10414 return false;
10415
10416 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10417 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10418 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10419 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10420 REG_WR(bp, vals->umac_addr[port], 0);
10421
10422 return true;
10423 }
10424
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10425 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10426 struct bnx2x_mac_vals *vals)
10427 {
10428 u32 val, base_addr, offset, mask, reset_reg;
10429 bool mac_stopped = false;
10430 u8 port = BP_PORT(bp);
10431
10432 /* reset addresses as they also mark which values were changed */
10433 memset(vals, 0, sizeof(*vals));
10434
10435 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10436
10437 if (!CHIP_IS_E3(bp)) {
10438 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10439 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10440 if ((mask & reset_reg) && val) {
10441 u32 wb_data[2];
10442 BNX2X_DEV_INFO("Disable bmac Rx\n");
10443 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10444 : NIG_REG_INGRESS_BMAC0_MEM;
10445 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10446 : BIGMAC_REGISTER_BMAC_CONTROL;
10447
10448 /*
10449 * use rd/wr since we cannot use dmae. This is safe
10450 * since MCP won't access the bus due to the request
10451 * to unload, and no function on the path can be
10452 * loaded at this time.
10453 */
10454 wb_data[0] = REG_RD(bp, base_addr + offset);
10455 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10456 vals->bmac_addr = base_addr + offset;
10457 vals->bmac_val[0] = wb_data[0];
10458 vals->bmac_val[1] = wb_data[1];
10459 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10460 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10461 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10462 }
10463 BNX2X_DEV_INFO("Disable emac Rx\n");
10464 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10465 vals->emac_val = REG_RD(bp, vals->emac_addr);
10466 REG_WR(bp, vals->emac_addr, 0);
10467 mac_stopped = true;
10468 } else {
10469 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10470 BNX2X_DEV_INFO("Disable xmac Rx\n");
10471 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10472 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10473 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10474 val & ~(1 << 1));
10475 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10476 val | (1 << 1));
10477 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10478 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10479 REG_WR(bp, vals->xmac_addr, 0);
10480 mac_stopped = true;
10481 }
10482
10483 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10484 reset_reg, vals);
10485 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10486 reset_reg, vals);
10487 }
10488
10489 if (mac_stopped)
10490 msleep(20);
10491 }
10492
10493 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10494 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10495 0x1848 + ((f) << 4))
10496 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10497 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10498 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10499
10500 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10501 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10502 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10503
bnx2x_prev_is_after_undi(struct bnx2x * bp)10504 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10505 {
10506 /* UNDI marks its presence in DORQ -
10507 * it initializes CID offset for normal bell to 0x7
10508 */
10509 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10510 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10511 return false;
10512
10513 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10514 BNX2X_DEV_INFO("UNDI previously loaded\n");
10515 return true;
10516 }
10517
10518 return false;
10519 }
10520
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10521 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10522 {
10523 u16 rcq, bd;
10524 u32 addr, tmp_reg;
10525
10526 if (BP_FUNC(bp) < 2)
10527 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10528 else
10529 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10530
10531 tmp_reg = REG_RD(bp, addr);
10532 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10533 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10534
10535 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10536 REG_WR(bp, addr, tmp_reg);
10537
10538 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10539 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10540 }
10541
bnx2x_prev_mcp_done(struct bnx2x * bp)10542 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10543 {
10544 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10545 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10546 if (!rc) {
10547 BNX2X_ERR("MCP response failure, aborting\n");
10548 return -EBUSY;
10549 }
10550
10551 return 0;
10552 }
10553
10554 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10555 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10556 {
10557 struct bnx2x_prev_path_list *tmp_list;
10558
10559 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10560 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10561 bp->pdev->bus->number == tmp_list->bus &&
10562 BP_PATH(bp) == tmp_list->path)
10563 return tmp_list;
10564
10565 return NULL;
10566 }
10567
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10568 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10569 {
10570 struct bnx2x_prev_path_list *tmp_list;
10571 int rc;
10572
10573 rc = down_interruptible(&bnx2x_prev_sem);
10574 if (rc) {
10575 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10576 return rc;
10577 }
10578
10579 tmp_list = bnx2x_prev_path_get_entry(bp);
10580 if (tmp_list) {
10581 tmp_list->aer = 1;
10582 rc = 0;
10583 } else {
10584 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10585 BP_PATH(bp));
10586 }
10587
10588 up(&bnx2x_prev_sem);
10589
10590 return rc;
10591 }
10592
bnx2x_prev_is_path_marked(struct bnx2x * bp)10593 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10594 {
10595 struct bnx2x_prev_path_list *tmp_list;
10596 bool rc = false;
10597
10598 if (down_trylock(&bnx2x_prev_sem))
10599 return false;
10600
10601 tmp_list = bnx2x_prev_path_get_entry(bp);
10602 if (tmp_list) {
10603 if (tmp_list->aer) {
10604 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10605 BP_PATH(bp));
10606 } else {
10607 rc = true;
10608 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10609 BP_PATH(bp));
10610 }
10611 }
10612
10613 up(&bnx2x_prev_sem);
10614
10615 return rc;
10616 }
10617
bnx2x_port_after_undi(struct bnx2x * bp)10618 bool bnx2x_port_after_undi(struct bnx2x *bp)
10619 {
10620 struct bnx2x_prev_path_list *entry;
10621 bool val;
10622
10623 down(&bnx2x_prev_sem);
10624
10625 entry = bnx2x_prev_path_get_entry(bp);
10626 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10627
10628 up(&bnx2x_prev_sem);
10629
10630 return val;
10631 }
10632
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10633 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10634 {
10635 struct bnx2x_prev_path_list *tmp_list;
10636 int rc;
10637
10638 rc = down_interruptible(&bnx2x_prev_sem);
10639 if (rc) {
10640 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10641 return rc;
10642 }
10643
10644 /* Check whether the entry for this path already exists */
10645 tmp_list = bnx2x_prev_path_get_entry(bp);
10646 if (tmp_list) {
10647 if (!tmp_list->aer) {
10648 BNX2X_ERR("Re-Marking the path.\n");
10649 } else {
10650 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10651 BP_PATH(bp));
10652 tmp_list->aer = 0;
10653 }
10654 up(&bnx2x_prev_sem);
10655 return 0;
10656 }
10657 up(&bnx2x_prev_sem);
10658
10659 /* Create an entry for this path and add it */
10660 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10661 if (!tmp_list) {
10662 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10663 return -ENOMEM;
10664 }
10665
10666 tmp_list->bus = bp->pdev->bus->number;
10667 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10668 tmp_list->path = BP_PATH(bp);
10669 tmp_list->aer = 0;
10670 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10671
10672 rc = down_interruptible(&bnx2x_prev_sem);
10673 if (rc) {
10674 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10675 kfree(tmp_list);
10676 } else {
10677 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10678 BP_PATH(bp));
10679 list_add(&tmp_list->list, &bnx2x_prev_list);
10680 up(&bnx2x_prev_sem);
10681 }
10682
10683 return rc;
10684 }
10685
bnx2x_do_flr(struct bnx2x * bp)10686 static int bnx2x_do_flr(struct bnx2x *bp)
10687 {
10688 struct pci_dev *dev = bp->pdev;
10689
10690 if (CHIP_IS_E1x(bp)) {
10691 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10692 return -EINVAL;
10693 }
10694
10695 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10696 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10697 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10698 bp->common.bc_ver);
10699 return -EINVAL;
10700 }
10701
10702 if (!pci_wait_for_pending_transaction(dev))
10703 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10704
10705 BNX2X_DEV_INFO("Initiating FLR\n");
10706 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10707
10708 return 0;
10709 }
10710
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10711 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10712 {
10713 int rc;
10714
10715 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10716
10717 /* Test if previous unload process was already finished for this path */
10718 if (bnx2x_prev_is_path_marked(bp))
10719 return bnx2x_prev_mcp_done(bp);
10720
10721 BNX2X_DEV_INFO("Path is unmarked\n");
10722
10723 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10724 if (bnx2x_prev_is_after_undi(bp))
10725 goto out;
10726
10727 /* If function has FLR capabilities, and existing FW version matches
10728 * the one required, then FLR will be sufficient to clean any residue
10729 * left by previous driver
10730 */
10731 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10732
10733 if (!rc) {
10734 /* fw version is good */
10735 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10736 rc = bnx2x_do_flr(bp);
10737 }
10738
10739 if (!rc) {
10740 /* FLR was performed */
10741 BNX2X_DEV_INFO("FLR successful\n");
10742 return 0;
10743 }
10744
10745 BNX2X_DEV_INFO("Could not FLR\n");
10746
10747 out:
10748 /* Close the MCP request, return failure*/
10749 rc = bnx2x_prev_mcp_done(bp);
10750 if (!rc)
10751 rc = BNX2X_PREV_WAIT_NEEDED;
10752
10753 return rc;
10754 }
10755
bnx2x_prev_unload_common(struct bnx2x * bp)10756 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10757 {
10758 u32 reset_reg, tmp_reg = 0, rc;
10759 bool prev_undi = false;
10760 struct bnx2x_mac_vals mac_vals;
10761
10762 /* It is possible a previous function received 'common' answer,
10763 * but hasn't loaded yet, therefore creating a scenario of
10764 * multiple functions receiving 'common' on the same path.
10765 */
10766 BNX2X_DEV_INFO("Common unload Flow\n");
10767
10768 memset(&mac_vals, 0, sizeof(mac_vals));
10769
10770 if (bnx2x_prev_is_path_marked(bp))
10771 return bnx2x_prev_mcp_done(bp);
10772
10773 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10774
10775 /* Reset should be performed after BRB is emptied */
10776 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10777 u32 timer_count = 1000;
10778
10779 /* Close the MAC Rx to prevent BRB from filling up */
10780 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10781
10782 /* close LLH filters for both ports towards the BRB */
10783 bnx2x_set_rx_filter(&bp->link_params, 0);
10784 bp->link_params.port ^= 1;
10785 bnx2x_set_rx_filter(&bp->link_params, 0);
10786 bp->link_params.port ^= 1;
10787
10788 /* Check if the UNDI driver was previously loaded */
10789 if (bnx2x_prev_is_after_undi(bp)) {
10790 prev_undi = true;
10791 /* clear the UNDI indication */
10792 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10793 /* clear possible idle check errors */
10794 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10795 }
10796 if (!CHIP_IS_E1x(bp))
10797 /* block FW from writing to host */
10798 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10799
10800 /* wait until BRB is empty */
10801 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10802 while (timer_count) {
10803 u32 prev_brb = tmp_reg;
10804
10805 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10806 if (!tmp_reg)
10807 break;
10808
10809 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10810
10811 /* reset timer as long as BRB actually gets emptied */
10812 if (prev_brb > tmp_reg)
10813 timer_count = 1000;
10814 else
10815 timer_count--;
10816
10817 /* If UNDI resides in memory, manually increment it */
10818 if (prev_undi)
10819 bnx2x_prev_unload_undi_inc(bp, 1);
10820
10821 udelay(10);
10822 }
10823
10824 if (!timer_count)
10825 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10826 }
10827
10828 /* No packets are in the pipeline, path is ready for reset */
10829 bnx2x_reset_common(bp);
10830
10831 if (mac_vals.xmac_addr)
10832 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10833 if (mac_vals.umac_addr[0])
10834 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10835 if (mac_vals.umac_addr[1])
10836 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10837 if (mac_vals.emac_addr)
10838 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10839 if (mac_vals.bmac_addr) {
10840 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10841 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10842 }
10843
10844 rc = bnx2x_prev_mark_path(bp, prev_undi);
10845 if (rc) {
10846 bnx2x_prev_mcp_done(bp);
10847 return rc;
10848 }
10849
10850 return bnx2x_prev_mcp_done(bp);
10851 }
10852
bnx2x_prev_unload(struct bnx2x * bp)10853 static int bnx2x_prev_unload(struct bnx2x *bp)
10854 {
10855 int time_counter = 10;
10856 u32 rc, fw, hw_lock_reg, hw_lock_val;
10857 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10858
10859 /* clear hw from errors which may have resulted from an interrupted
10860 * dmae transaction.
10861 */
10862 bnx2x_clean_pglue_errors(bp);
10863
10864 /* Release previously held locks */
10865 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10866 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10867 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10868
10869 hw_lock_val = REG_RD(bp, hw_lock_reg);
10870 if (hw_lock_val) {
10871 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10872 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10873 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10874 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10875 }
10876
10877 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10878 REG_WR(bp, hw_lock_reg, 0xffffffff);
10879 } else
10880 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10881
10882 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10883 BNX2X_DEV_INFO("Release previously held alr\n");
10884 bnx2x_release_alr(bp);
10885 }
10886
10887 do {
10888 int aer = 0;
10889 /* Lock MCP using an unload request */
10890 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10891 if (!fw) {
10892 BNX2X_ERR("MCP response failure, aborting\n");
10893 rc = -EBUSY;
10894 break;
10895 }
10896
10897 rc = down_interruptible(&bnx2x_prev_sem);
10898 if (rc) {
10899 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10900 rc);
10901 } else {
10902 /* If Path is marked by EEH, ignore unload status */
10903 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10904 bnx2x_prev_path_get_entry(bp)->aer);
10905 up(&bnx2x_prev_sem);
10906 }
10907
10908 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10909 rc = bnx2x_prev_unload_common(bp);
10910 break;
10911 }
10912
10913 /* non-common reply from MCP might require looping */
10914 rc = bnx2x_prev_unload_uncommon(bp);
10915 if (rc != BNX2X_PREV_WAIT_NEEDED)
10916 break;
10917
10918 msleep(20);
10919 } while (--time_counter);
10920
10921 if (!time_counter || rc) {
10922 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10923 rc = -EPROBE_DEFER;
10924 }
10925
10926 /* Mark function if its port was used to boot from SAN */
10927 if (bnx2x_port_after_undi(bp))
10928 bp->link_params.feature_config_flags |=
10929 FEATURE_CONFIG_BOOT_FROM_SAN;
10930
10931 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10932
10933 return rc;
10934 }
10935
bnx2x_get_common_hwinfo(struct bnx2x * bp)10936 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10937 {
10938 u32 val, val2, val3, val4, id, boot_mode;
10939 u16 pmc;
10940
10941 /* Get the chip revision id and number. */
10942 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10943 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10944 id = ((val & 0xffff) << 16);
10945 val = REG_RD(bp, MISC_REG_CHIP_REV);
10946 id |= ((val & 0xf) << 12);
10947
10948 /* Metal is read from PCI regs, but we can't access >=0x400 from
10949 * the configuration space (so we need to reg_rd)
10950 */
10951 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10952 id |= (((val >> 24) & 0xf) << 4);
10953 val = REG_RD(bp, MISC_REG_BOND_ID);
10954 id |= (val & 0xf);
10955 bp->common.chip_id = id;
10956
10957 /* force 57811 according to MISC register */
10958 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10959 if (CHIP_IS_57810(bp))
10960 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10961 (bp->common.chip_id & 0x0000FFFF);
10962 else if (CHIP_IS_57810_MF(bp))
10963 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10964 (bp->common.chip_id & 0x0000FFFF);
10965 bp->common.chip_id |= 0x1;
10966 }
10967
10968 /* Set doorbell size */
10969 bp->db_size = (1 << BNX2X_DB_SHIFT);
10970
10971 if (!CHIP_IS_E1x(bp)) {
10972 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10973 if ((val & 1) == 0)
10974 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10975 else
10976 val = (val >> 1) & 1;
10977 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10978 "2_PORT_MODE");
10979 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10980 CHIP_2_PORT_MODE;
10981
10982 if (CHIP_MODE_IS_4_PORT(bp))
10983 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10984 else
10985 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10986 } else {
10987 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10988 bp->pfid = bp->pf_num; /* 0..7 */
10989 }
10990
10991 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10992
10993 bp->link_params.chip_id = bp->common.chip_id;
10994 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10995
10996 val = (REG_RD(bp, 0x2874) & 0x55);
10997 if ((bp->common.chip_id & 0x1) ||
10998 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10999 bp->flags |= ONE_PORT_FLAG;
11000 BNX2X_DEV_INFO("single port device\n");
11001 }
11002
11003 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11004 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11005 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11006 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11007 bp->common.flash_size, bp->common.flash_size);
11008
11009 bnx2x_init_shmem(bp);
11010
11011 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11012 MISC_REG_GENERIC_CR_1 :
11013 MISC_REG_GENERIC_CR_0));
11014
11015 bp->link_params.shmem_base = bp->common.shmem_base;
11016 bp->link_params.shmem2_base = bp->common.shmem2_base;
11017 if (SHMEM2_RD(bp, size) >
11018 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11019 bp->link_params.lfa_base =
11020 REG_RD(bp, bp->common.shmem2_base +
11021 (u32)offsetof(struct shmem2_region,
11022 lfa_host_addr[BP_PORT(bp)]));
11023 else
11024 bp->link_params.lfa_base = 0;
11025 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11026 bp->common.shmem_base, bp->common.shmem2_base);
11027
11028 if (!bp->common.shmem_base) {
11029 BNX2X_DEV_INFO("MCP not active\n");
11030 bp->flags |= NO_MCP_FLAG;
11031 return;
11032 }
11033
11034 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11035 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11036
11037 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11038 SHARED_HW_CFG_LED_MODE_MASK) >>
11039 SHARED_HW_CFG_LED_MODE_SHIFT);
11040
11041 bp->link_params.feature_config_flags = 0;
11042 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11043 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11044 bp->link_params.feature_config_flags |=
11045 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046 else
11047 bp->link_params.feature_config_flags &=
11048 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11049
11050 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11051 bp->common.bc_ver = val;
11052 BNX2X_DEV_INFO("bc_ver %X\n", val);
11053 if (val < BNX2X_BC_VER) {
11054 /* for now only warn
11055 * later we might need to enforce this */
11056 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11057 BNX2X_BC_VER, val);
11058 }
11059 bp->link_params.feature_config_flags |=
11060 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11061 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11062
11063 bp->link_params.feature_config_flags |=
11064 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11065 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11066 bp->link_params.feature_config_flags |=
11067 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11068 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11069 bp->link_params.feature_config_flags |=
11070 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11071 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11072
11073 bp->link_params.feature_config_flags |=
11074 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11075 FEATURE_CONFIG_MT_SUPPORT : 0;
11076
11077 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11078 BC_SUPPORTS_PFC_STATS : 0;
11079
11080 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11081 BC_SUPPORTS_FCOE_FEATURES : 0;
11082
11083 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11084 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11085
11086 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11087 BC_SUPPORTS_RMMOD_CMD : 0;
11088
11089 boot_mode = SHMEM_RD(bp,
11090 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11091 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11092 switch (boot_mode) {
11093 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11094 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11095 break;
11096 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11097 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11098 break;
11099 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11100 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11101 break;
11102 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11103 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11104 break;
11105 }
11106
11107 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11108 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11109
11110 BNX2X_DEV_INFO("%sWoL capable\n",
11111 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11112
11113 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11114 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11115 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11116 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11117
11118 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11119 val, val2, val3, val4);
11120 }
11121
11122 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11123 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11124
bnx2x_get_igu_cam_info(struct bnx2x * bp)11125 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11126 {
11127 int pfid = BP_FUNC(bp);
11128 int igu_sb_id;
11129 u32 val;
11130 u8 fid, igu_sb_cnt = 0;
11131
11132 bp->igu_base_sb = 0xff;
11133 if (CHIP_INT_MODE_IS_BC(bp)) {
11134 int vn = BP_VN(bp);
11135 igu_sb_cnt = bp->igu_sb_cnt;
11136 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11137 FP_SB_MAX_E1x;
11138
11139 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11140 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11141
11142 return 0;
11143 }
11144
11145 /* IGU in normal mode - read CAM */
11146 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11147 igu_sb_id++) {
11148 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11149 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11150 continue;
11151 fid = IGU_FID(val);
11152 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11153 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11154 continue;
11155 if (IGU_VEC(val) == 0)
11156 /* default status block */
11157 bp->igu_dsb_id = igu_sb_id;
11158 else {
11159 if (bp->igu_base_sb == 0xff)
11160 bp->igu_base_sb = igu_sb_id;
11161 igu_sb_cnt++;
11162 }
11163 }
11164 }
11165
11166 #ifdef CONFIG_PCI_MSI
11167 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11168 * optional that number of CAM entries will not be equal to the value
11169 * advertised in PCI.
11170 * Driver should use the minimal value of both as the actual status
11171 * block count
11172 */
11173 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11174 #endif
11175
11176 if (igu_sb_cnt == 0) {
11177 BNX2X_ERR("CAM configuration error\n");
11178 return -EINVAL;
11179 }
11180
11181 return 0;
11182 }
11183
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11184 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11185 {
11186 int cfg_size = 0, idx, port = BP_PORT(bp);
11187
11188 /* Aggregation of supported attributes of all external phys */
11189 bp->port.supported[0] = 0;
11190 bp->port.supported[1] = 0;
11191 switch (bp->link_params.num_phys) {
11192 case 1:
11193 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11194 cfg_size = 1;
11195 break;
11196 case 2:
11197 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11198 cfg_size = 1;
11199 break;
11200 case 3:
11201 if (bp->link_params.multi_phy_config &
11202 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11203 bp->port.supported[1] =
11204 bp->link_params.phy[EXT_PHY1].supported;
11205 bp->port.supported[0] =
11206 bp->link_params.phy[EXT_PHY2].supported;
11207 } else {
11208 bp->port.supported[0] =
11209 bp->link_params.phy[EXT_PHY1].supported;
11210 bp->port.supported[1] =
11211 bp->link_params.phy[EXT_PHY2].supported;
11212 }
11213 cfg_size = 2;
11214 break;
11215 }
11216
11217 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11218 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11219 SHMEM_RD(bp,
11220 dev_info.port_hw_config[port].external_phy_config),
11221 SHMEM_RD(bp,
11222 dev_info.port_hw_config[port].external_phy_config2));
11223 return;
11224 }
11225
11226 if (CHIP_IS_E3(bp))
11227 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11228 else {
11229 switch (switch_cfg) {
11230 case SWITCH_CFG_1G:
11231 bp->port.phy_addr = REG_RD(
11232 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11233 break;
11234 case SWITCH_CFG_10G:
11235 bp->port.phy_addr = REG_RD(
11236 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11237 break;
11238 default:
11239 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11240 bp->port.link_config[0]);
11241 return;
11242 }
11243 }
11244 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11245 /* mask what we support according to speed_cap_mask per configuration */
11246 for (idx = 0; idx < cfg_size; idx++) {
11247 if (!(bp->link_params.speed_cap_mask[idx] &
11248 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11249 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11250
11251 if (!(bp->link_params.speed_cap_mask[idx] &
11252 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11253 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11254
11255 if (!(bp->link_params.speed_cap_mask[idx] &
11256 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11257 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11258
11259 if (!(bp->link_params.speed_cap_mask[idx] &
11260 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11261 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11262
11263 if (!(bp->link_params.speed_cap_mask[idx] &
11264 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11265 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11266 SUPPORTED_1000baseT_Full);
11267
11268 if (!(bp->link_params.speed_cap_mask[idx] &
11269 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11270 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11271
11272 if (!(bp->link_params.speed_cap_mask[idx] &
11273 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11274 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11275
11276 if (!(bp->link_params.speed_cap_mask[idx] &
11277 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11278 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11279 }
11280
11281 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11282 bp->port.supported[1]);
11283 }
11284
bnx2x_link_settings_requested(struct bnx2x * bp)11285 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11286 {
11287 u32 link_config, idx, cfg_size = 0;
11288 bp->port.advertising[0] = 0;
11289 bp->port.advertising[1] = 0;
11290 switch (bp->link_params.num_phys) {
11291 case 1:
11292 case 2:
11293 cfg_size = 1;
11294 break;
11295 case 3:
11296 cfg_size = 2;
11297 break;
11298 }
11299 for (idx = 0; idx < cfg_size; idx++) {
11300 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11301 link_config = bp->port.link_config[idx];
11302 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11303 case PORT_FEATURE_LINK_SPEED_AUTO:
11304 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11305 bp->link_params.req_line_speed[idx] =
11306 SPEED_AUTO_NEG;
11307 bp->port.advertising[idx] |=
11308 bp->port.supported[idx];
11309 if (bp->link_params.phy[EXT_PHY1].type ==
11310 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11311 bp->port.advertising[idx] |=
11312 (SUPPORTED_100baseT_Half |
11313 SUPPORTED_100baseT_Full);
11314 } else {
11315 /* force 10G, no AN */
11316 bp->link_params.req_line_speed[idx] =
11317 SPEED_10000;
11318 bp->port.advertising[idx] |=
11319 (ADVERTISED_10000baseT_Full |
11320 ADVERTISED_FIBRE);
11321 continue;
11322 }
11323 break;
11324
11325 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11326 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11327 bp->link_params.req_line_speed[idx] =
11328 SPEED_10;
11329 bp->port.advertising[idx] |=
11330 (ADVERTISED_10baseT_Full |
11331 ADVERTISED_TP);
11332 } else {
11333 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11334 link_config,
11335 bp->link_params.speed_cap_mask[idx]);
11336 return;
11337 }
11338 break;
11339
11340 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11341 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11342 bp->link_params.req_line_speed[idx] =
11343 SPEED_10;
11344 bp->link_params.req_duplex[idx] =
11345 DUPLEX_HALF;
11346 bp->port.advertising[idx] |=
11347 (ADVERTISED_10baseT_Half |
11348 ADVERTISED_TP);
11349 } else {
11350 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11351 link_config,
11352 bp->link_params.speed_cap_mask[idx]);
11353 return;
11354 }
11355 break;
11356
11357 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11358 if (bp->port.supported[idx] &
11359 SUPPORTED_100baseT_Full) {
11360 bp->link_params.req_line_speed[idx] =
11361 SPEED_100;
11362 bp->port.advertising[idx] |=
11363 (ADVERTISED_100baseT_Full |
11364 ADVERTISED_TP);
11365 } else {
11366 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11367 link_config,
11368 bp->link_params.speed_cap_mask[idx]);
11369 return;
11370 }
11371 break;
11372
11373 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11374 if (bp->port.supported[idx] &
11375 SUPPORTED_100baseT_Half) {
11376 bp->link_params.req_line_speed[idx] =
11377 SPEED_100;
11378 bp->link_params.req_duplex[idx] =
11379 DUPLEX_HALF;
11380 bp->port.advertising[idx] |=
11381 (ADVERTISED_100baseT_Half |
11382 ADVERTISED_TP);
11383 } else {
11384 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11385 link_config,
11386 bp->link_params.speed_cap_mask[idx]);
11387 return;
11388 }
11389 break;
11390
11391 case PORT_FEATURE_LINK_SPEED_1G:
11392 if (bp->port.supported[idx] &
11393 SUPPORTED_1000baseT_Full) {
11394 bp->link_params.req_line_speed[idx] =
11395 SPEED_1000;
11396 bp->port.advertising[idx] |=
11397 (ADVERTISED_1000baseT_Full |
11398 ADVERTISED_TP);
11399 } else if (bp->port.supported[idx] &
11400 SUPPORTED_1000baseKX_Full) {
11401 bp->link_params.req_line_speed[idx] =
11402 SPEED_1000;
11403 bp->port.advertising[idx] |=
11404 ADVERTISED_1000baseKX_Full;
11405 } else {
11406 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11407 link_config,
11408 bp->link_params.speed_cap_mask[idx]);
11409 return;
11410 }
11411 break;
11412
11413 case PORT_FEATURE_LINK_SPEED_2_5G:
11414 if (bp->port.supported[idx] &
11415 SUPPORTED_2500baseX_Full) {
11416 bp->link_params.req_line_speed[idx] =
11417 SPEED_2500;
11418 bp->port.advertising[idx] |=
11419 (ADVERTISED_2500baseX_Full |
11420 ADVERTISED_TP);
11421 } else {
11422 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11423 link_config,
11424 bp->link_params.speed_cap_mask[idx]);
11425 return;
11426 }
11427 break;
11428
11429 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11430 if (bp->port.supported[idx] &
11431 SUPPORTED_10000baseT_Full) {
11432 bp->link_params.req_line_speed[idx] =
11433 SPEED_10000;
11434 bp->port.advertising[idx] |=
11435 (ADVERTISED_10000baseT_Full |
11436 ADVERTISED_FIBRE);
11437 } else if (bp->port.supported[idx] &
11438 SUPPORTED_10000baseKR_Full) {
11439 bp->link_params.req_line_speed[idx] =
11440 SPEED_10000;
11441 bp->port.advertising[idx] |=
11442 (ADVERTISED_10000baseKR_Full |
11443 ADVERTISED_FIBRE);
11444 } else {
11445 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11446 link_config,
11447 bp->link_params.speed_cap_mask[idx]);
11448 return;
11449 }
11450 break;
11451 case PORT_FEATURE_LINK_SPEED_20G:
11452 bp->link_params.req_line_speed[idx] = SPEED_20000;
11453
11454 break;
11455 default:
11456 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11457 link_config);
11458 bp->link_params.req_line_speed[idx] =
11459 SPEED_AUTO_NEG;
11460 bp->port.advertising[idx] =
11461 bp->port.supported[idx];
11462 break;
11463 }
11464
11465 bp->link_params.req_flow_ctrl[idx] = (link_config &
11466 PORT_FEATURE_FLOW_CONTROL_MASK);
11467 if (bp->link_params.req_flow_ctrl[idx] ==
11468 BNX2X_FLOW_CTRL_AUTO) {
11469 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11470 bp->link_params.req_flow_ctrl[idx] =
11471 BNX2X_FLOW_CTRL_NONE;
11472 else
11473 bnx2x_set_requested_fc(bp);
11474 }
11475
11476 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11477 bp->link_params.req_line_speed[idx],
11478 bp->link_params.req_duplex[idx],
11479 bp->link_params.req_flow_ctrl[idx],
11480 bp->port.advertising[idx]);
11481 }
11482 }
11483
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11484 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11485 {
11486 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11487 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11488 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11489 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11490 }
11491
bnx2x_get_port_hwinfo(struct bnx2x * bp)11492 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11493 {
11494 int port = BP_PORT(bp);
11495 u32 config;
11496 u32 ext_phy_type, ext_phy_config, eee_mode;
11497
11498 bp->link_params.bp = bp;
11499 bp->link_params.port = port;
11500
11501 bp->link_params.lane_config =
11502 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11503
11504 bp->link_params.speed_cap_mask[0] =
11505 SHMEM_RD(bp,
11506 dev_info.port_hw_config[port].speed_capability_mask) &
11507 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11508 bp->link_params.speed_cap_mask[1] =
11509 SHMEM_RD(bp,
11510 dev_info.port_hw_config[port].speed_capability_mask2) &
11511 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11512 bp->port.link_config[0] =
11513 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11514
11515 bp->port.link_config[1] =
11516 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11517
11518 bp->link_params.multi_phy_config =
11519 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11520 /* If the device is capable of WoL, set the default state according
11521 * to the HW
11522 */
11523 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11524 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11525 (config & PORT_FEATURE_WOL_ENABLED));
11526
11527 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11529 bp->flags |= NO_ISCSI_FLAG;
11530 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11531 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11532 bp->flags |= NO_FCOE_FLAG;
11533
11534 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11535 bp->link_params.lane_config,
11536 bp->link_params.speed_cap_mask[0],
11537 bp->port.link_config[0]);
11538
11539 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11540 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11541 bnx2x_phy_probe(&bp->link_params);
11542 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11543
11544 bnx2x_link_settings_requested(bp);
11545
11546 /*
11547 * If connected directly, work with the internal PHY, otherwise, work
11548 * with the external PHY
11549 */
11550 ext_phy_config =
11551 SHMEM_RD(bp,
11552 dev_info.port_hw_config[port].external_phy_config);
11553 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11554 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11555 bp->mdio.prtad = bp->port.phy_addr;
11556
11557 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11558 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11559 bp->mdio.prtad =
11560 XGXS_EXT_PHY_ADDR(ext_phy_config);
11561
11562 /* Configure link feature according to nvram value */
11563 eee_mode = (((SHMEM_RD(bp, dev_info.
11564 port_feature_config[port].eee_power_mode)) &
11565 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11566 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11567 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11568 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11569 EEE_MODE_ENABLE_LPI |
11570 EEE_MODE_OUTPUT_TIME;
11571 } else {
11572 bp->link_params.eee_mode = 0;
11573 }
11574 }
11575
bnx2x_get_iscsi_info(struct bnx2x * bp)11576 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11577 {
11578 u32 no_flags = NO_ISCSI_FLAG;
11579 int port = BP_PORT(bp);
11580 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11581 drv_lic_key[port].max_iscsi_conn);
11582
11583 if (!CNIC_SUPPORT(bp)) {
11584 bp->flags |= no_flags;
11585 return;
11586 }
11587
11588 /* Get the number of maximum allowed iSCSI connections */
11589 bp->cnic_eth_dev.max_iscsi_conn =
11590 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11591 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11592
11593 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11594 bp->cnic_eth_dev.max_iscsi_conn);
11595
11596 /*
11597 * If maximum allowed number of connections is zero -
11598 * disable the feature.
11599 */
11600 if (!bp->cnic_eth_dev.max_iscsi_conn)
11601 bp->flags |= no_flags;
11602 }
11603
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11604 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11605 {
11606 /* Port info */
11607 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11608 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11609 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11610 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11611
11612 /* Node info */
11613 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11614 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11615 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11616 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11617 }
11618
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11619 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11620 {
11621 u8 count = 0;
11622
11623 if (IS_MF(bp)) {
11624 u8 fid;
11625
11626 /* iterate over absolute function ids for this path: */
11627 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11628 if (IS_MF_SD(bp)) {
11629 u32 cfg = MF_CFG_RD(bp,
11630 func_mf_config[fid].config);
11631
11632 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11633 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11634 FUNC_MF_CFG_PROTOCOL_FCOE))
11635 count++;
11636 } else {
11637 u32 cfg = MF_CFG_RD(bp,
11638 func_ext_config[fid].
11639 func_cfg);
11640
11641 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11642 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11643 count++;
11644 }
11645 }
11646 } else { /* SF */
11647 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11648
11649 for (port = 0; port < port_cnt; port++) {
11650 u32 lic = SHMEM_RD(bp,
11651 drv_lic_key[port].max_fcoe_conn) ^
11652 FW_ENCODE_32BIT_PATTERN;
11653 if (lic)
11654 count++;
11655 }
11656 }
11657
11658 return count;
11659 }
11660
bnx2x_get_fcoe_info(struct bnx2x * bp)11661 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11662 {
11663 int port = BP_PORT(bp);
11664 int func = BP_ABS_FUNC(bp);
11665 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11666 drv_lic_key[port].max_fcoe_conn);
11667 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11668
11669 if (!CNIC_SUPPORT(bp)) {
11670 bp->flags |= NO_FCOE_FLAG;
11671 return;
11672 }
11673
11674 /* Get the number of maximum allowed FCoE connections */
11675 bp->cnic_eth_dev.max_fcoe_conn =
11676 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11677 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11678
11679 /* Calculate the number of maximum allowed FCoE tasks */
11680 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11681
11682 /* check if FCoE resources must be shared between different functions */
11683 if (num_fcoe_func)
11684 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11685
11686 /* Read the WWN: */
11687 if (!IS_MF(bp)) {
11688 /* Port info */
11689 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11690 SHMEM_RD(bp,
11691 dev_info.port_hw_config[port].
11692 fcoe_wwn_port_name_upper);
11693 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11694 SHMEM_RD(bp,
11695 dev_info.port_hw_config[port].
11696 fcoe_wwn_port_name_lower);
11697
11698 /* Node info */
11699 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11700 SHMEM_RD(bp,
11701 dev_info.port_hw_config[port].
11702 fcoe_wwn_node_name_upper);
11703 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11704 SHMEM_RD(bp,
11705 dev_info.port_hw_config[port].
11706 fcoe_wwn_node_name_lower);
11707 } else if (!IS_MF_SD(bp)) {
11708 /* Read the WWN info only if the FCoE feature is enabled for
11709 * this function.
11710 */
11711 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11712 bnx2x_get_ext_wwn_info(bp, func);
11713 } else {
11714 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11715 bnx2x_get_ext_wwn_info(bp, func);
11716 }
11717
11718 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11719
11720 /*
11721 * If maximum allowed number of connections is zero -
11722 * disable the feature.
11723 */
11724 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11725 bp->flags |= NO_FCOE_FLAG;
11726 eth_zero_addr(bp->fip_mac);
11727 }
11728 }
11729
bnx2x_get_cnic_info(struct bnx2x * bp)11730 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731 {
11732 /*
11733 * iSCSI may be dynamically disabled but reading
11734 * info here we will decrease memory usage by driver
11735 * if the feature is disabled for good
11736 */
11737 bnx2x_get_iscsi_info(bp);
11738 bnx2x_get_fcoe_info(bp);
11739 }
11740
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11741 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742 {
11743 u32 val, val2;
11744 int func = BP_ABS_FUNC(bp);
11745 int port = BP_PORT(bp);
11746 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11747 u8 *fip_mac = bp->fip_mac;
11748
11749 if (IS_MF(bp)) {
11750 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11751 * FCoE MAC then the appropriate feature should be disabled.
11752 * In non SD mode features configuration comes from struct
11753 * func_ext_config.
11754 */
11755 if (!IS_MF_SD(bp)) {
11756 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11757 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11758 val2 = MF_CFG_RD(bp, func_ext_config[func].
11759 iscsi_mac_addr_upper);
11760 val = MF_CFG_RD(bp, func_ext_config[func].
11761 iscsi_mac_addr_lower);
11762 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11763 BNX2X_DEV_INFO
11764 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11765 } else {
11766 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767 }
11768
11769 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11770 val2 = MF_CFG_RD(bp, func_ext_config[func].
11771 fcoe_mac_addr_upper);
11772 val = MF_CFG_RD(bp, func_ext_config[func].
11773 fcoe_mac_addr_lower);
11774 bnx2x_set_mac_buf(fip_mac, val, val2);
11775 BNX2X_DEV_INFO
11776 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11777 } else {
11778 bp->flags |= NO_FCOE_FLAG;
11779 }
11780
11781 bp->mf_ext_config = cfg;
11782
11783 } else { /* SD MODE */
11784 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11785 /* use primary mac as iscsi mac */
11786 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11787
11788 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11789 BNX2X_DEV_INFO
11790 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11791 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11792 /* use primary mac as fip mac */
11793 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11794 BNX2X_DEV_INFO("SD FCoE MODE\n");
11795 BNX2X_DEV_INFO
11796 ("Read FIP MAC: %pM\n", fip_mac);
11797 }
11798 }
11799
11800 /* If this is a storage-only interface, use SAN mac as
11801 * primary MAC. Notice that for SD this is already the case,
11802 * as the SAN mac was copied from the primary MAC.
11803 */
11804 if (IS_MF_FCOE_AFEX(bp))
11805 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11806 } else {
11807 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808 iscsi_mac_upper);
11809 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11810 iscsi_mac_lower);
11811 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11812
11813 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814 fcoe_fip_mac_upper);
11815 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11816 fcoe_fip_mac_lower);
11817 bnx2x_set_mac_buf(fip_mac, val, val2);
11818 }
11819
11820 /* Disable iSCSI OOO if MAC configuration is invalid. */
11821 if (!is_valid_ether_addr(iscsi_mac)) {
11822 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11823 eth_zero_addr(iscsi_mac);
11824 }
11825
11826 /* Disable FCoE if MAC configuration is invalid. */
11827 if (!is_valid_ether_addr(fip_mac)) {
11828 bp->flags |= NO_FCOE_FLAG;
11829 eth_zero_addr(bp->fip_mac);
11830 }
11831 }
11832
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11833 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834 {
11835 u32 val, val2;
11836 int func = BP_ABS_FUNC(bp);
11837 int port = BP_PORT(bp);
11838
11839 /* Zero primary MAC configuration */
11840 eth_zero_addr(bp->dev->dev_addr);
11841
11842 if (BP_NOMCP(bp)) {
11843 BNX2X_ERROR("warning: random MAC workaround active\n");
11844 eth_hw_addr_random(bp->dev);
11845 } else if (IS_MF(bp)) {
11846 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11850 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11851
11852 if (CNIC_SUPPORT(bp))
11853 bnx2x_get_cnic_mac_hwinfo(bp);
11854 } else {
11855 /* in SF read MACs from port configuration */
11856 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11857 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11858 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11859
11860 if (CNIC_SUPPORT(bp))
11861 bnx2x_get_cnic_mac_hwinfo(bp);
11862 }
11863
11864 if (!BP_NOMCP(bp)) {
11865 /* Read physical port identifier from shmem */
11866 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11867 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11868 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11869 bp->flags |= HAS_PHYS_PORT_ID;
11870 }
11871
11872 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11873
11874 if (!is_valid_ether_addr(bp->dev->dev_addr))
11875 dev_err(&bp->pdev->dev,
11876 "bad Ethernet MAC address configuration: %pM\n"
11877 "change it manually before bringing up the appropriate network interface\n",
11878 bp->dev->dev_addr);
11879 }
11880
bnx2x_get_dropless_info(struct bnx2x * bp)11881 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11882 {
11883 int tmp;
11884 u32 cfg;
11885
11886 if (IS_VF(bp))
11887 return false;
11888
11889 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11890 /* Take function: tmp = func */
11891 tmp = BP_ABS_FUNC(bp);
11892 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11893 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11894 } else {
11895 /* Take port: tmp = port */
11896 tmp = BP_PORT(bp);
11897 cfg = SHMEM_RD(bp,
11898 dev_info.port_hw_config[tmp].generic_features);
11899 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11900 }
11901 return cfg;
11902 }
11903
validate_set_si_mode(struct bnx2x * bp)11904 static void validate_set_si_mode(struct bnx2x *bp)
11905 {
11906 u8 func = BP_ABS_FUNC(bp);
11907 u32 val;
11908
11909 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11910
11911 /* check for legal mac (upper bytes) */
11912 if (val != 0xffff) {
11913 bp->mf_mode = MULTI_FUNCTION_SI;
11914 bp->mf_config[BP_VN(bp)] =
11915 MF_CFG_RD(bp, func_mf_config[func].config);
11916 } else
11917 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11918 }
11919
bnx2x_get_hwinfo(struct bnx2x * bp)11920 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11921 {
11922 int /*abs*/func = BP_ABS_FUNC(bp);
11923 int vn;
11924 u32 val = 0, val2 = 0;
11925 int rc = 0;
11926
11927 /* Validate that chip access is feasible */
11928 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11929 dev_err(&bp->pdev->dev,
11930 "Chip read returns all Fs. Preventing probe from continuing\n");
11931 return -EINVAL;
11932 }
11933
11934 bnx2x_get_common_hwinfo(bp);
11935
11936 /*
11937 * initialize IGU parameters
11938 */
11939 if (CHIP_IS_E1x(bp)) {
11940 bp->common.int_block = INT_BLOCK_HC;
11941
11942 bp->igu_dsb_id = DEF_SB_IGU_ID;
11943 bp->igu_base_sb = 0;
11944 } else {
11945 bp->common.int_block = INT_BLOCK_IGU;
11946
11947 /* do not allow device reset during IGU info processing */
11948 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11949
11950 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11951
11952 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11953 int tout = 5000;
11954
11955 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11956
11957 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11958 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11959 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11960
11961 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962 tout--;
11963 usleep_range(1000, 2000);
11964 }
11965
11966 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967 dev_err(&bp->pdev->dev,
11968 "FORCING Normal Mode failed!!!\n");
11969 bnx2x_release_hw_lock(bp,
11970 HW_LOCK_RESOURCE_RESET);
11971 return -EPERM;
11972 }
11973 }
11974
11975 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11976 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11977 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11978 } else
11979 BNX2X_DEV_INFO("IGU Normal Mode\n");
11980
11981 rc = bnx2x_get_igu_cam_info(bp);
11982 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11983 if (rc)
11984 return rc;
11985 }
11986
11987 /*
11988 * set base FW non-default (fast path) status block id, this value is
11989 * used to initialize the fw_sb_id saved on the fp/queue structure to
11990 * determine the id used by the FW.
11991 */
11992 if (CHIP_IS_E1x(bp))
11993 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11994 else /*
11995 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11996 * the same queue are indicated on the same IGU SB). So we prefer
11997 * FW and IGU SBs to be the same value.
11998 */
11999 bp->base_fw_ndsb = bp->igu_base_sb;
12000
12001 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
12002 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12003 bp->igu_sb_cnt, bp->base_fw_ndsb);
12004
12005 /*
12006 * Initialize MF configuration
12007 */
12008 bp->mf_ov = 0;
12009 bp->mf_mode = 0;
12010 bp->mf_sub_mode = 0;
12011 vn = BP_VN(bp);
12012
12013 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12014 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12015 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12016 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12017
12018 if (SHMEM2_HAS(bp, mf_cfg_addr))
12019 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12020 else
12021 bp->common.mf_cfg_base = bp->common.shmem_base +
12022 offsetof(struct shmem_region, func_mb) +
12023 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12024 /*
12025 * get mf configuration:
12026 * 1. Existence of MF configuration
12027 * 2. MAC address must be legal (check only upper bytes)
12028 * for Switch-Independent mode;
12029 * OVLAN must be legal for Switch-Dependent mode
12030 * 3. SF_MODE configures specific MF mode
12031 */
12032 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12033 /* get mf configuration */
12034 val = SHMEM_RD(bp,
12035 dev_info.shared_feature_config.config);
12036 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12037
12038 switch (val) {
12039 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12040 validate_set_si_mode(bp);
12041 break;
12042 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12043 if ((!CHIP_IS_E1x(bp)) &&
12044 (MF_CFG_RD(bp, func_mf_config[func].
12045 mac_upper) != 0xffff) &&
12046 (SHMEM2_HAS(bp,
12047 afex_driver_support))) {
12048 bp->mf_mode = MULTI_FUNCTION_AFEX;
12049 bp->mf_config[vn] = MF_CFG_RD(bp,
12050 func_mf_config[func].config);
12051 } else {
12052 BNX2X_DEV_INFO("can not configure afex mode\n");
12053 }
12054 break;
12055 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12056 /* get OV configuration */
12057 val = MF_CFG_RD(bp,
12058 func_mf_config[FUNC_0].e1hov_tag);
12059 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12060
12061 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12062 bp->mf_mode = MULTI_FUNCTION_SD;
12063 bp->mf_config[vn] = MF_CFG_RD(bp,
12064 func_mf_config[func].config);
12065 } else
12066 BNX2X_DEV_INFO("illegal OV for SD\n");
12067 break;
12068 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12069 bp->mf_mode = MULTI_FUNCTION_SD;
12070 bp->mf_sub_mode = SUB_MF_MODE_BD;
12071 bp->mf_config[vn] =
12072 MF_CFG_RD(bp,
12073 func_mf_config[func].config);
12074
12075 if (SHMEM2_HAS(bp, mtu_size)) {
12076 int mtu_idx = BP_FW_MB_IDX(bp);
12077 u16 mtu_size;
12078 u32 mtu;
12079
12080 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12081 mtu_size = (u16)mtu;
12082 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12083 mtu_size, mtu);
12084
12085 /* if valid: update device mtu */
12086 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12087 (mtu_size <=
12088 ETH_MAX_JUMBO_PACKET_SIZE))
12089 bp->dev->mtu = mtu_size;
12090 }
12091 break;
12092 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12093 bp->mf_mode = MULTI_FUNCTION_SD;
12094 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12095 bp->mf_config[vn] =
12096 MF_CFG_RD(bp,
12097 func_mf_config[func].config);
12098 break;
12099 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12100 bp->mf_config[vn] = 0;
12101 break;
12102 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12103 val2 = SHMEM_RD(bp,
12104 dev_info.shared_hw_config.config_3);
12105 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12106 switch (val2) {
12107 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12108 validate_set_si_mode(bp);
12109 bp->mf_sub_mode =
12110 SUB_MF_MODE_NPAR1_DOT_5;
12111 break;
12112 default:
12113 /* Unknown configuration */
12114 bp->mf_config[vn] = 0;
12115 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12116 val);
12117 }
12118 break;
12119 default:
12120 /* Unknown configuration: reset mf_config */
12121 bp->mf_config[vn] = 0;
12122 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12123 }
12124 }
12125
12126 BNX2X_DEV_INFO("%s function mode\n",
12127 IS_MF(bp) ? "multi" : "single");
12128
12129 switch (bp->mf_mode) {
12130 case MULTI_FUNCTION_SD:
12131 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12132 FUNC_MF_CFG_E1HOV_TAG_MASK;
12133 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12134 bp->mf_ov = val;
12135 bp->path_has_ovlan = true;
12136
12137 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12138 func, bp->mf_ov, bp->mf_ov);
12139 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12140 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12141 dev_err(&bp->pdev->dev,
12142 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12143 func);
12144 bp->path_has_ovlan = true;
12145 } else {
12146 dev_err(&bp->pdev->dev,
12147 "No valid MF OV for func %d, aborting\n",
12148 func);
12149 return -EPERM;
12150 }
12151 break;
12152 case MULTI_FUNCTION_AFEX:
12153 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12154 break;
12155 case MULTI_FUNCTION_SI:
12156 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12157 func);
12158 break;
12159 default:
12160 if (vn) {
12161 dev_err(&bp->pdev->dev,
12162 "VN %d is in a single function mode, aborting\n",
12163 vn);
12164 return -EPERM;
12165 }
12166 break;
12167 }
12168
12169 /* check if other port on the path needs ovlan:
12170 * Since MF configuration is shared between ports
12171 * Possible mixed modes are only
12172 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12173 */
12174 if (CHIP_MODE_IS_4_PORT(bp) &&
12175 !bp->path_has_ovlan &&
12176 !IS_MF(bp) &&
12177 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12178 u8 other_port = !BP_PORT(bp);
12179 u8 other_func = BP_PATH(bp) + 2*other_port;
12180 val = MF_CFG_RD(bp,
12181 func_mf_config[other_func].e1hov_tag);
12182 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12183 bp->path_has_ovlan = true;
12184 }
12185 }
12186
12187 /* adjust igu_sb_cnt to MF for E1H */
12188 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12189 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12190
12191 /* port info */
12192 bnx2x_get_port_hwinfo(bp);
12193
12194 /* Get MAC addresses */
12195 bnx2x_get_mac_hwinfo(bp);
12196
12197 bnx2x_get_cnic_info(bp);
12198
12199 return rc;
12200 }
12201
bnx2x_read_fwinfo(struct bnx2x * bp)12202 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12203 {
12204 int cnt, i, block_end, rodi;
12205 char vpd_start[BNX2X_VPD_LEN+1];
12206 char str_id_reg[VENDOR_ID_LEN+1];
12207 char str_id_cap[VENDOR_ID_LEN+1];
12208 char *vpd_data;
12209 char *vpd_extended_data = NULL;
12210 u8 len;
12211
12212 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12213 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12214
12215 if (cnt < BNX2X_VPD_LEN)
12216 goto out_not_found;
12217
12218 /* VPD RO tag should be first tag after identifier string, hence
12219 * we should be able to find it in first BNX2X_VPD_LEN chars
12220 */
12221 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12222 PCI_VPD_LRDT_RO_DATA);
12223 if (i < 0)
12224 goto out_not_found;
12225
12226 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12227 pci_vpd_lrdt_size(&vpd_start[i]);
12228
12229 i += PCI_VPD_LRDT_TAG_SIZE;
12230
12231 if (block_end > BNX2X_VPD_LEN) {
12232 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12233 if (vpd_extended_data == NULL)
12234 goto out_not_found;
12235
12236 /* read rest of vpd image into vpd_extended_data */
12237 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12238 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12239 block_end - BNX2X_VPD_LEN,
12240 vpd_extended_data + BNX2X_VPD_LEN);
12241 if (cnt < (block_end - BNX2X_VPD_LEN))
12242 goto out_not_found;
12243 vpd_data = vpd_extended_data;
12244 } else
12245 vpd_data = vpd_start;
12246
12247 /* now vpd_data holds full vpd content in both cases */
12248
12249 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12250 PCI_VPD_RO_KEYWORD_MFR_ID);
12251 if (rodi < 0)
12252 goto out_not_found;
12253
12254 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12255
12256 if (len != VENDOR_ID_LEN)
12257 goto out_not_found;
12258
12259 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260
12261 /* vendor specific info */
12262 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12263 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12264 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12265 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12266
12267 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12268 PCI_VPD_RO_KEYWORD_VENDOR0);
12269 if (rodi >= 0) {
12270 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12271
12272 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12273
12274 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12275 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12276 bp->fw_ver[len] = ' ';
12277 }
12278 }
12279 kfree(vpd_extended_data);
12280 return;
12281 }
12282 out_not_found:
12283 kfree(vpd_extended_data);
12284 return;
12285 }
12286
bnx2x_set_modes_bitmap(struct bnx2x * bp)12287 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12288 {
12289 u32 flags = 0;
12290
12291 if (CHIP_REV_IS_FPGA(bp))
12292 SET_FLAGS(flags, MODE_FPGA);
12293 else if (CHIP_REV_IS_EMUL(bp))
12294 SET_FLAGS(flags, MODE_EMUL);
12295 else
12296 SET_FLAGS(flags, MODE_ASIC);
12297
12298 if (CHIP_MODE_IS_4_PORT(bp))
12299 SET_FLAGS(flags, MODE_PORT4);
12300 else
12301 SET_FLAGS(flags, MODE_PORT2);
12302
12303 if (CHIP_IS_E2(bp))
12304 SET_FLAGS(flags, MODE_E2);
12305 else if (CHIP_IS_E3(bp)) {
12306 SET_FLAGS(flags, MODE_E3);
12307 if (CHIP_REV(bp) == CHIP_REV_Ax)
12308 SET_FLAGS(flags, MODE_E3_A0);
12309 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12310 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12311 }
12312
12313 if (IS_MF(bp)) {
12314 SET_FLAGS(flags, MODE_MF);
12315 switch (bp->mf_mode) {
12316 case MULTI_FUNCTION_SD:
12317 SET_FLAGS(flags, MODE_MF_SD);
12318 break;
12319 case MULTI_FUNCTION_SI:
12320 SET_FLAGS(flags, MODE_MF_SI);
12321 break;
12322 case MULTI_FUNCTION_AFEX:
12323 SET_FLAGS(flags, MODE_MF_AFEX);
12324 break;
12325 }
12326 } else
12327 SET_FLAGS(flags, MODE_SF);
12328
12329 #if defined(__LITTLE_ENDIAN)
12330 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12331 #else /*(__BIG_ENDIAN)*/
12332 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12333 #endif
12334 INIT_MODE_FLAGS(bp) = flags;
12335 }
12336
bnx2x_init_bp(struct bnx2x * bp)12337 static int bnx2x_init_bp(struct bnx2x *bp)
12338 {
12339 int func;
12340 int rc;
12341
12342 mutex_init(&bp->port.phy_mutex);
12343 mutex_init(&bp->fw_mb_mutex);
12344 mutex_init(&bp->drv_info_mutex);
12345 sema_init(&bp->stats_lock, 1);
12346 bp->drv_info_mng_owner = false;
12347 INIT_LIST_HEAD(&bp->vlan_reg);
12348
12349 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12350 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12351 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12352 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12353 if (IS_PF(bp)) {
12354 rc = bnx2x_get_hwinfo(bp);
12355 if (rc)
12356 return rc;
12357 } else {
12358 eth_zero_addr(bp->dev->dev_addr);
12359 }
12360
12361 bnx2x_set_modes_bitmap(bp);
12362
12363 rc = bnx2x_alloc_mem_bp(bp);
12364 if (rc)
12365 return rc;
12366
12367 bnx2x_read_fwinfo(bp);
12368
12369 func = BP_FUNC(bp);
12370
12371 /* need to reset chip if undi was active */
12372 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12373 /* init fw_seq */
12374 bp->fw_seq =
12375 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12376 DRV_MSG_SEQ_NUMBER_MASK;
12377 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12378
12379 rc = bnx2x_prev_unload(bp);
12380 if (rc) {
12381 bnx2x_free_mem_bp(bp);
12382 return rc;
12383 }
12384 }
12385
12386 if (CHIP_REV_IS_FPGA(bp))
12387 dev_err(&bp->pdev->dev, "FPGA detected\n");
12388
12389 if (BP_NOMCP(bp) && (func == 0))
12390 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12391
12392 bp->disable_tpa = disable_tpa;
12393 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12394 /* Reduce memory usage in kdump environment by disabling TPA */
12395 bp->disable_tpa |= is_kdump_kernel();
12396
12397 /* Set TPA flags */
12398 if (bp->disable_tpa) {
12399 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12400 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12401 }
12402
12403 if (CHIP_IS_E1(bp))
12404 bp->dropless_fc = false;
12405 else
12406 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12407
12408 bp->mrrs = mrrs;
12409
12410 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12411 if (IS_VF(bp))
12412 bp->rx_ring_size = MAX_RX_AVAIL;
12413
12414 /* make sure that the numbers are in the right granularity */
12415 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12416 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12417
12418 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12419
12420 timer_setup(&bp->timer, bnx2x_timer, 0);
12421 bp->timer.expires = jiffies + bp->current_interval;
12422
12423 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12424 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12425 SHMEM2_HAS(bp, dcbx_en) &&
12426 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12427 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12428 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12429 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12430 bnx2x_dcbx_init_params(bp);
12431 } else {
12432 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12433 }
12434
12435 if (CHIP_IS_E1x(bp))
12436 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12437 else
12438 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12439
12440 /* multiple tx priority */
12441 if (IS_VF(bp))
12442 bp->max_cos = 1;
12443 else if (CHIP_IS_E1x(bp))
12444 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12445 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12446 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12447 else if (CHIP_IS_E3B0(bp))
12448 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12449 else
12450 BNX2X_ERR("unknown chip %x revision %x\n",
12451 CHIP_NUM(bp), CHIP_REV(bp));
12452 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12453
12454 /* We need at least one default status block for slow-path events,
12455 * second status block for the L2 queue, and a third status block for
12456 * CNIC if supported.
12457 */
12458 if (IS_VF(bp))
12459 bp->min_msix_vec_cnt = 1;
12460 else if (CNIC_SUPPORT(bp))
12461 bp->min_msix_vec_cnt = 3;
12462 else /* PF w/o cnic */
12463 bp->min_msix_vec_cnt = 2;
12464 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12465
12466 bp->dump_preset_idx = 1;
12467
12468 return rc;
12469 }
12470
12471 /****************************************************************************
12472 * General service functions
12473 ****************************************************************************/
12474
12475 /*
12476 * net_device service functions
12477 */
12478
12479 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12480 static int bnx2x_open(struct net_device *dev)
12481 {
12482 struct bnx2x *bp = netdev_priv(dev);
12483 int rc;
12484
12485 bp->stats_init = true;
12486
12487 netif_carrier_off(dev);
12488
12489 bnx2x_set_power_state(bp, PCI_D0);
12490
12491 /* If parity had happen during the unload, then attentions
12492 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12493 * want the first function loaded on the current engine to
12494 * complete the recovery.
12495 * Parity recovery is only relevant for PF driver.
12496 */
12497 if (IS_PF(bp)) {
12498 int other_engine = BP_PATH(bp) ? 0 : 1;
12499 bool other_load_status, load_status;
12500 bool global = false;
12501
12502 other_load_status = bnx2x_get_load_status(bp, other_engine);
12503 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12504 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12505 bnx2x_chk_parity_attn(bp, &global, true)) {
12506 do {
12507 /* If there are attentions and they are in a
12508 * global blocks, set the GLOBAL_RESET bit
12509 * regardless whether it will be this function
12510 * that will complete the recovery or not.
12511 */
12512 if (global)
12513 bnx2x_set_reset_global(bp);
12514
12515 /* Only the first function on the current
12516 * engine should try to recover in open. In case
12517 * of attentions in global blocks only the first
12518 * in the chip should try to recover.
12519 */
12520 if ((!load_status &&
12521 (!global || !other_load_status)) &&
12522 bnx2x_trylock_leader_lock(bp) &&
12523 !bnx2x_leader_reset(bp)) {
12524 netdev_info(bp->dev,
12525 "Recovered in open\n");
12526 break;
12527 }
12528
12529 /* recovery has failed... */
12530 bnx2x_set_power_state(bp, PCI_D3hot);
12531 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12532
12533 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12534 "If you still see this message after a few retries then power cycle is required.\n");
12535
12536 return -EAGAIN;
12537 } while (0);
12538 }
12539 }
12540
12541 bp->recovery_state = BNX2X_RECOVERY_DONE;
12542 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12543 if (rc)
12544 return rc;
12545
12546 return 0;
12547 }
12548
12549 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12550 static int bnx2x_close(struct net_device *dev)
12551 {
12552 struct bnx2x *bp = netdev_priv(dev);
12553
12554 /* Unload the driver, release IRQs */
12555 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12556
12557 return 0;
12558 }
12559
12560 struct bnx2x_mcast_list_elem_group
12561 {
12562 struct list_head mcast_group_link;
12563 struct bnx2x_mcast_list_elem mcast_elems[];
12564 };
12565
12566 #define MCAST_ELEMS_PER_PG \
12567 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12568 sizeof(struct bnx2x_mcast_list_elem))
12569
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12570 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12571 {
12572 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12573
12574 while (!list_empty(mcast_group_list)) {
12575 current_mcast_group = list_first_entry(mcast_group_list,
12576 struct bnx2x_mcast_list_elem_group,
12577 mcast_group_link);
12578 list_del(¤t_mcast_group->mcast_group_link);
12579 free_page((unsigned long)current_mcast_group);
12580 }
12581 }
12582
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12583 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12584 struct bnx2x_mcast_ramrod_params *p,
12585 struct list_head *mcast_group_list)
12586 {
12587 struct bnx2x_mcast_list_elem *mc_mac;
12588 struct netdev_hw_addr *ha;
12589 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12590 int mc_count = netdev_mc_count(bp->dev);
12591 int offset = 0;
12592
12593 INIT_LIST_HEAD(&p->mcast_list);
12594 netdev_for_each_mc_addr(ha, bp->dev) {
12595 if (!offset) {
12596 current_mcast_group =
12597 (struct bnx2x_mcast_list_elem_group *)
12598 __get_free_page(GFP_ATOMIC);
12599 if (!current_mcast_group) {
12600 bnx2x_free_mcast_macs_list(mcast_group_list);
12601 BNX2X_ERR("Failed to allocate mc MAC list\n");
12602 return -ENOMEM;
12603 }
12604 list_add(¤t_mcast_group->mcast_group_link,
12605 mcast_group_list);
12606 }
12607 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12608 mc_mac->mac = bnx2x_mc_addr(ha);
12609 list_add_tail(&mc_mac->link, &p->mcast_list);
12610 offset++;
12611 if (offset == MCAST_ELEMS_PER_PG)
12612 offset = 0;
12613 }
12614 p->mcast_list_len = mc_count;
12615 return 0;
12616 }
12617
12618 /**
12619 * bnx2x_set_uc_list - configure a new unicast MACs list.
12620 *
12621 * @bp: driver handle
12622 *
12623 * We will use zero (0) as a MAC type for these MACs.
12624 */
bnx2x_set_uc_list(struct bnx2x * bp)12625 static int bnx2x_set_uc_list(struct bnx2x *bp)
12626 {
12627 int rc;
12628 struct net_device *dev = bp->dev;
12629 struct netdev_hw_addr *ha;
12630 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12631 unsigned long ramrod_flags = 0;
12632
12633 /* First schedule a cleanup up of old configuration */
12634 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12635 if (rc < 0) {
12636 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12637 return rc;
12638 }
12639
12640 netdev_for_each_uc_addr(ha, dev) {
12641 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12642 BNX2X_UC_LIST_MAC, &ramrod_flags);
12643 if (rc == -EEXIST) {
12644 DP(BNX2X_MSG_SP,
12645 "Failed to schedule ADD operations: %d\n", rc);
12646 /* do not treat adding same MAC as error */
12647 rc = 0;
12648
12649 } else if (rc < 0) {
12650
12651 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12652 rc);
12653 return rc;
12654 }
12655 }
12656
12657 /* Execute the pending commands */
12658 __set_bit(RAMROD_CONT, &ramrod_flags);
12659 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12660 BNX2X_UC_LIST_MAC, &ramrod_flags);
12661 }
12662
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12663 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12664 {
12665 LIST_HEAD(mcast_group_list);
12666 struct net_device *dev = bp->dev;
12667 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12668 int rc = 0;
12669
12670 rparam.mcast_obj = &bp->mcast_obj;
12671
12672 /* first, clear all configured multicast MACs */
12673 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12674 if (rc < 0) {
12675 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12676 return rc;
12677 }
12678
12679 /* then, configure a new MACs list */
12680 if (netdev_mc_count(dev)) {
12681 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12682 if (rc)
12683 return rc;
12684
12685 /* Now add the new MACs */
12686 rc = bnx2x_config_mcast(bp, &rparam,
12687 BNX2X_MCAST_CMD_ADD);
12688 if (rc < 0)
12689 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12690 rc);
12691
12692 bnx2x_free_mcast_macs_list(&mcast_group_list);
12693 }
12694
12695 return rc;
12696 }
12697
bnx2x_set_mc_list(struct bnx2x * bp)12698 static int bnx2x_set_mc_list(struct bnx2x *bp)
12699 {
12700 LIST_HEAD(mcast_group_list);
12701 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12702 struct net_device *dev = bp->dev;
12703 int rc = 0;
12704
12705 /* On older adapters, we need to flush and re-add filters */
12706 if (CHIP_IS_E1x(bp))
12707 return bnx2x_set_mc_list_e1x(bp);
12708
12709 rparam.mcast_obj = &bp->mcast_obj;
12710
12711 if (netdev_mc_count(dev)) {
12712 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12713 if (rc)
12714 return rc;
12715
12716 /* Override the curently configured set of mc filters */
12717 rc = bnx2x_config_mcast(bp, &rparam,
12718 BNX2X_MCAST_CMD_SET);
12719 if (rc < 0)
12720 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12721 rc);
12722
12723 bnx2x_free_mcast_macs_list(&mcast_group_list);
12724 } else {
12725 /* If no mc addresses are required, flush the configuration */
12726 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12727 if (rc < 0)
12728 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12729 rc);
12730 }
12731
12732 return rc;
12733 }
12734
12735 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12736 static void bnx2x_set_rx_mode(struct net_device *dev)
12737 {
12738 struct bnx2x *bp = netdev_priv(dev);
12739
12740 if (bp->state != BNX2X_STATE_OPEN) {
12741 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12742 return;
12743 } else {
12744 /* Schedule an SP task to handle rest of change */
12745 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12746 NETIF_MSG_IFUP);
12747 }
12748 }
12749
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12750 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12751 {
12752 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12753
12754 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12755
12756 netif_addr_lock_bh(bp->dev);
12757
12758 if (bp->dev->flags & IFF_PROMISC) {
12759 rx_mode = BNX2X_RX_MODE_PROMISC;
12760 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12761 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12762 CHIP_IS_E1(bp))) {
12763 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12764 } else {
12765 if (IS_PF(bp)) {
12766 /* some multicasts */
12767 if (bnx2x_set_mc_list(bp) < 0)
12768 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12769
12770 /* release bh lock, as bnx2x_set_uc_list might sleep */
12771 netif_addr_unlock_bh(bp->dev);
12772 if (bnx2x_set_uc_list(bp) < 0)
12773 rx_mode = BNX2X_RX_MODE_PROMISC;
12774 netif_addr_lock_bh(bp->dev);
12775 } else {
12776 /* configuring mcast to a vf involves sleeping (when we
12777 * wait for the pf's response).
12778 */
12779 bnx2x_schedule_sp_rtnl(bp,
12780 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12781 }
12782 }
12783
12784 bp->rx_mode = rx_mode;
12785 /* handle ISCSI SD mode */
12786 if (IS_MF_ISCSI_ONLY(bp))
12787 bp->rx_mode = BNX2X_RX_MODE_NONE;
12788
12789 /* Schedule the rx_mode command */
12790 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12791 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12792 netif_addr_unlock_bh(bp->dev);
12793 return;
12794 }
12795
12796 if (IS_PF(bp)) {
12797 bnx2x_set_storm_rx_mode(bp);
12798 netif_addr_unlock_bh(bp->dev);
12799 } else {
12800 /* VF will need to request the PF to make this change, and so
12801 * the VF needs to release the bottom-half lock prior to the
12802 * request (as it will likely require sleep on the VF side)
12803 */
12804 netif_addr_unlock_bh(bp->dev);
12805 bnx2x_vfpf_storm_rx_mode(bp);
12806 }
12807 }
12808
12809 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12810 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12811 int devad, u16 addr)
12812 {
12813 struct bnx2x *bp = netdev_priv(netdev);
12814 u16 value;
12815 int rc;
12816
12817 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12818 prtad, devad, addr);
12819
12820 /* The HW expects different devad if CL22 is used */
12821 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12822
12823 bnx2x_acquire_phy_lock(bp);
12824 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12825 bnx2x_release_phy_lock(bp);
12826 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12827
12828 if (!rc)
12829 rc = value;
12830 return rc;
12831 }
12832
12833 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12834 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12835 u16 addr, u16 value)
12836 {
12837 struct bnx2x *bp = netdev_priv(netdev);
12838 int rc;
12839
12840 DP(NETIF_MSG_LINK,
12841 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12842 prtad, devad, addr, value);
12843
12844 /* The HW expects different devad if CL22 is used */
12845 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12846
12847 bnx2x_acquire_phy_lock(bp);
12848 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12849 bnx2x_release_phy_lock(bp);
12850 return rc;
12851 }
12852
12853 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12854 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12855 {
12856 struct bnx2x *bp = netdev_priv(dev);
12857 struct mii_ioctl_data *mdio = if_mii(ifr);
12858
12859 if (!netif_running(dev))
12860 return -EAGAIN;
12861
12862 switch (cmd) {
12863 case SIOCSHWTSTAMP:
12864 return bnx2x_hwtstamp_ioctl(bp, ifr);
12865 default:
12866 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12867 mdio->phy_id, mdio->reg_num, mdio->val_in);
12868 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12869 }
12870 }
12871
bnx2x_validate_addr(struct net_device * dev)12872 static int bnx2x_validate_addr(struct net_device *dev)
12873 {
12874 struct bnx2x *bp = netdev_priv(dev);
12875
12876 /* query the bulletin board for mac address configured by the PF */
12877 if (IS_VF(bp))
12878 bnx2x_sample_bulletin(bp);
12879
12880 if (!is_valid_ether_addr(dev->dev_addr)) {
12881 BNX2X_ERR("Non-valid Ethernet address\n");
12882 return -EADDRNOTAVAIL;
12883 }
12884 return 0;
12885 }
12886
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12887 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12888 struct netdev_phys_item_id *ppid)
12889 {
12890 struct bnx2x *bp = netdev_priv(netdev);
12891
12892 if (!(bp->flags & HAS_PHYS_PORT_ID))
12893 return -EOPNOTSUPP;
12894
12895 ppid->id_len = sizeof(bp->phys_port_id);
12896 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12897
12898 return 0;
12899 }
12900
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12901 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12902 struct net_device *dev,
12903 netdev_features_t features)
12904 {
12905 /*
12906 * A skb with gso_size + header length > 9700 will cause a
12907 * firmware panic. Drop GSO support.
12908 *
12909 * Eventually the upper layer should not pass these packets down.
12910 *
12911 * For speed, if the gso_size is <= 9000, assume there will
12912 * not be 700 bytes of headers and pass it through. Only do a
12913 * full (slow) validation if the gso_size is > 9000.
12914 *
12915 * (Due to the way SKB_BY_FRAGS works this will also do a full
12916 * validation in that case.)
12917 */
12918 if (unlikely(skb_is_gso(skb) &&
12919 (skb_shinfo(skb)->gso_size > 9000) &&
12920 !skb_gso_validate_mac_len(skb, 9700)))
12921 features &= ~NETIF_F_GSO_MASK;
12922
12923 features = vlan_features_check(skb, features);
12924 return vxlan_features_check(skb, features);
12925 }
12926
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12927 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12928 {
12929 int rc;
12930
12931 if (IS_PF(bp)) {
12932 unsigned long ramrod_flags = 0;
12933
12934 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12935 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12936 add, &ramrod_flags);
12937 } else {
12938 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12939 }
12940
12941 return rc;
12942 }
12943
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)12944 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12945 {
12946 struct bnx2x_vlan_entry *vlan;
12947 int rc = 0;
12948
12949 /* Configure all non-configured entries */
12950 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12951 if (vlan->hw)
12952 continue;
12953
12954 if (bp->vlan_cnt >= bp->vlan_credit)
12955 return -ENOBUFS;
12956
12957 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12958 if (rc) {
12959 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12960 return rc;
12961 }
12962
12963 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12964 vlan->hw = true;
12965 bp->vlan_cnt++;
12966 }
12967
12968 return 0;
12969 }
12970
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)12971 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12972 {
12973 bool need_accept_any_vlan;
12974
12975 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12976
12977 if (bp->accept_any_vlan != need_accept_any_vlan) {
12978 bp->accept_any_vlan = need_accept_any_vlan;
12979 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12980 bp->accept_any_vlan ? "raised" : "cleared");
12981 if (set_rx_mode) {
12982 if (IS_PF(bp))
12983 bnx2x_set_rx_mode_inner(bp);
12984 else
12985 bnx2x_vfpf_storm_rx_mode(bp);
12986 }
12987 }
12988 }
12989
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)12990 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12991 {
12992 /* Don't set rx mode here. Our caller will do it. */
12993 bnx2x_vlan_configure(bp, false);
12994
12995 return 0;
12996 }
12997
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)12998 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12999 {
13000 struct bnx2x *bp = netdev_priv(dev);
13001 struct bnx2x_vlan_entry *vlan;
13002
13003 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13004
13005 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13006 if (!vlan)
13007 return -ENOMEM;
13008
13009 vlan->vid = vid;
13010 vlan->hw = false;
13011 list_add_tail(&vlan->link, &bp->vlan_reg);
13012
13013 if (netif_running(dev))
13014 bnx2x_vlan_configure(bp, true);
13015
13016 return 0;
13017 }
13018
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13019 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13020 {
13021 struct bnx2x *bp = netdev_priv(dev);
13022 struct bnx2x_vlan_entry *vlan;
13023 bool found = false;
13024 int rc = 0;
13025
13026 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13027
13028 list_for_each_entry(vlan, &bp->vlan_reg, link)
13029 if (vlan->vid == vid) {
13030 found = true;
13031 break;
13032 }
13033
13034 if (!found) {
13035 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13036 return -EINVAL;
13037 }
13038
13039 if (netif_running(dev) && vlan->hw) {
13040 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13041 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13042 bp->vlan_cnt--;
13043 }
13044
13045 list_del(&vlan->link);
13046 kfree(vlan);
13047
13048 if (netif_running(dev))
13049 bnx2x_vlan_configure(bp, true);
13050
13051 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13052
13053 return rc;
13054 }
13055
13056 static const struct net_device_ops bnx2x_netdev_ops = {
13057 .ndo_open = bnx2x_open,
13058 .ndo_stop = bnx2x_close,
13059 .ndo_start_xmit = bnx2x_start_xmit,
13060 .ndo_select_queue = bnx2x_select_queue,
13061 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13062 .ndo_set_mac_address = bnx2x_change_mac_addr,
13063 .ndo_validate_addr = bnx2x_validate_addr,
13064 .ndo_do_ioctl = bnx2x_ioctl,
13065 .ndo_change_mtu = bnx2x_change_mtu,
13066 .ndo_fix_features = bnx2x_fix_features,
13067 .ndo_set_features = bnx2x_set_features,
13068 .ndo_tx_timeout = bnx2x_tx_timeout,
13069 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13070 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13071 .ndo_setup_tc = __bnx2x_setup_tc,
13072 #ifdef CONFIG_BNX2X_SRIOV
13073 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13074 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13075 .ndo_get_vf_config = bnx2x_get_vf_config,
13076 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13077 #endif
13078 #ifdef NETDEV_FCOE_WWNN
13079 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13080 #endif
13081
13082 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13083 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13084 .ndo_features_check = bnx2x_features_check,
13085 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
13086 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
13087 };
13088
bnx2x_set_coherency_mask(struct bnx2x * bp)13089 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13090 {
13091 struct device *dev = &bp->pdev->dev;
13092
13093 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13094 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13095 dev_err(dev, "System does not support DMA, aborting\n");
13096 return -EIO;
13097 }
13098
13099 return 0;
13100 }
13101
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13102 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13103 {
13104 if (bp->flags & AER_ENABLED) {
13105 pci_disable_pcie_error_reporting(bp->pdev);
13106 bp->flags &= ~AER_ENABLED;
13107 }
13108 }
13109
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13110 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13111 struct net_device *dev, unsigned long board_type)
13112 {
13113 int rc;
13114 u32 pci_cfg_dword;
13115 bool chip_is_e1x = (board_type == BCM57710 ||
13116 board_type == BCM57711 ||
13117 board_type == BCM57711E);
13118
13119 SET_NETDEV_DEV(dev, &pdev->dev);
13120
13121 bp->dev = dev;
13122 bp->pdev = pdev;
13123
13124 rc = pci_enable_device(pdev);
13125 if (rc) {
13126 dev_err(&bp->pdev->dev,
13127 "Cannot enable PCI device, aborting\n");
13128 goto err_out;
13129 }
13130
13131 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13132 dev_err(&bp->pdev->dev,
13133 "Cannot find PCI device base address, aborting\n");
13134 rc = -ENODEV;
13135 goto err_out_disable;
13136 }
13137
13138 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13139 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13140 rc = -ENODEV;
13141 goto err_out_disable;
13142 }
13143
13144 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13145 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13146 PCICFG_REVESION_ID_ERROR_VAL) {
13147 pr_err("PCI device error, probably due to fan failure, aborting\n");
13148 rc = -ENODEV;
13149 goto err_out_disable;
13150 }
13151
13152 if (atomic_read(&pdev->enable_cnt) == 1) {
13153 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13154 if (rc) {
13155 dev_err(&bp->pdev->dev,
13156 "Cannot obtain PCI resources, aborting\n");
13157 goto err_out_disable;
13158 }
13159
13160 pci_set_master(pdev);
13161 pci_save_state(pdev);
13162 }
13163
13164 if (IS_PF(bp)) {
13165 if (!pdev->pm_cap) {
13166 dev_err(&bp->pdev->dev,
13167 "Cannot find power management capability, aborting\n");
13168 rc = -EIO;
13169 goto err_out_release;
13170 }
13171 }
13172
13173 if (!pci_is_pcie(pdev)) {
13174 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13175 rc = -EIO;
13176 goto err_out_release;
13177 }
13178
13179 rc = bnx2x_set_coherency_mask(bp);
13180 if (rc)
13181 goto err_out_release;
13182
13183 dev->mem_start = pci_resource_start(pdev, 0);
13184 dev->base_addr = dev->mem_start;
13185 dev->mem_end = pci_resource_end(pdev, 0);
13186
13187 dev->irq = pdev->irq;
13188
13189 bp->regview = pci_ioremap_bar(pdev, 0);
13190 if (!bp->regview) {
13191 dev_err(&bp->pdev->dev,
13192 "Cannot map register space, aborting\n");
13193 rc = -ENOMEM;
13194 goto err_out_release;
13195 }
13196
13197 /* In E1/E1H use pci device function given by kernel.
13198 * In E2/E3 read physical function from ME register since these chips
13199 * support Physical Device Assignment where kernel BDF maybe arbitrary
13200 * (depending on hypervisor).
13201 */
13202 if (chip_is_e1x) {
13203 bp->pf_num = PCI_FUNC(pdev->devfn);
13204 } else {
13205 /* chip is E2/3*/
13206 pci_read_config_dword(bp->pdev,
13207 PCICFG_ME_REGISTER, &pci_cfg_dword);
13208 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13209 ME_REG_ABS_PF_NUM_SHIFT);
13210 }
13211 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13212
13213 /* clean indirect addresses */
13214 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13215 PCICFG_VENDOR_ID_OFFSET);
13216
13217 /* Set PCIe reset type to fundamental for EEH recovery */
13218 pdev->needs_freset = 1;
13219
13220 /* AER (Advanced Error reporting) configuration */
13221 rc = pci_enable_pcie_error_reporting(pdev);
13222 if (!rc)
13223 bp->flags |= AER_ENABLED;
13224 else
13225 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13226
13227 /*
13228 * Clean the following indirect addresses for all functions since it
13229 * is not used by the driver.
13230 */
13231 if (IS_PF(bp)) {
13232 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13233 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13234 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13235 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13236
13237 if (chip_is_e1x) {
13238 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13239 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13240 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13241 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13242 }
13243
13244 /* Enable internal target-read (in case we are probed after PF
13245 * FLR). Must be done prior to any BAR read access. Only for
13246 * 57712 and up
13247 */
13248 if (!chip_is_e1x)
13249 REG_WR(bp,
13250 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13251 }
13252
13253 dev->watchdog_timeo = TX_TIMEOUT;
13254
13255 dev->netdev_ops = &bnx2x_netdev_ops;
13256 bnx2x_set_ethtool_ops(bp, dev);
13257
13258 dev->priv_flags |= IFF_UNICAST_FLT;
13259
13260 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13261 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13262 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13263 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13264 if (!chip_is_e1x) {
13265 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13266 NETIF_F_GSO_IPXIP4 |
13267 NETIF_F_GSO_UDP_TUNNEL |
13268 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13269 NETIF_F_GSO_PARTIAL;
13270
13271 dev->hw_enc_features =
13272 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13273 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13274 NETIF_F_GSO_IPXIP4 |
13275 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13276 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13277 NETIF_F_GSO_PARTIAL;
13278
13279 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13280 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13281
13282 if (IS_PF(bp))
13283 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13284 }
13285
13286 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13287 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13288
13289 if (IS_PF(bp)) {
13290 if (chip_is_e1x)
13291 bp->accept_any_vlan = true;
13292 else
13293 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13294 }
13295 /* For VF we'll know whether to enable VLAN filtering after
13296 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13297 */
13298
13299 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13300 dev->features |= NETIF_F_HIGHDMA;
13301 if (dev->features & NETIF_F_LRO)
13302 dev->features &= ~NETIF_F_GRO_HW;
13303
13304 /* Add Loopback capability to the device */
13305 dev->hw_features |= NETIF_F_LOOPBACK;
13306
13307 #ifdef BCM_DCBNL
13308 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13309 #endif
13310
13311 /* MTU range, 46 - 9600 */
13312 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13313 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13314
13315 /* get_port_hwinfo() will set prtad and mmds properly */
13316 bp->mdio.prtad = MDIO_PRTAD_NONE;
13317 bp->mdio.mmds = 0;
13318 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13319 bp->mdio.dev = dev;
13320 bp->mdio.mdio_read = bnx2x_mdio_read;
13321 bp->mdio.mdio_write = bnx2x_mdio_write;
13322
13323 return 0;
13324
13325 err_out_release:
13326 if (atomic_read(&pdev->enable_cnt) == 1)
13327 pci_release_regions(pdev);
13328
13329 err_out_disable:
13330 pci_disable_device(pdev);
13331
13332 err_out:
13333 return rc;
13334 }
13335
bnx2x_check_firmware(struct bnx2x * bp)13336 static int bnx2x_check_firmware(struct bnx2x *bp)
13337 {
13338 const struct firmware *firmware = bp->firmware;
13339 struct bnx2x_fw_file_hdr *fw_hdr;
13340 struct bnx2x_fw_file_section *sections;
13341 u32 offset, len, num_ops;
13342 __be16 *ops_offsets;
13343 int i;
13344 const u8 *fw_ver;
13345
13346 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13347 BNX2X_ERR("Wrong FW size\n");
13348 return -EINVAL;
13349 }
13350
13351 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13352 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13353
13354 /* Make sure none of the offsets and sizes make us read beyond
13355 * the end of the firmware data */
13356 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13357 offset = be32_to_cpu(sections[i].offset);
13358 len = be32_to_cpu(sections[i].len);
13359 if (offset + len > firmware->size) {
13360 BNX2X_ERR("Section %d length is out of bounds\n", i);
13361 return -EINVAL;
13362 }
13363 }
13364
13365 /* Likewise for the init_ops offsets */
13366 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13367 ops_offsets = (__force __be16 *)(firmware->data + offset);
13368 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13369
13370 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13371 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13372 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13373 return -EINVAL;
13374 }
13375 }
13376
13377 /* Check FW version */
13378 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13379 fw_ver = firmware->data + offset;
13380 if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13381 fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13382 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13383 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13384 bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13385 return -EINVAL;
13386 }
13387
13388 return 0;
13389 }
13390
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13391 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13392 {
13393 const __be32 *source = (const __be32 *)_source;
13394 u32 *target = (u32 *)_target;
13395 u32 i;
13396
13397 for (i = 0; i < n/4; i++)
13398 target[i] = be32_to_cpu(source[i]);
13399 }
13400
13401 /*
13402 Ops array is stored in the following format:
13403 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13404 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13405 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13406 {
13407 const __be32 *source = (const __be32 *)_source;
13408 struct raw_op *target = (struct raw_op *)_target;
13409 u32 i, j, tmp;
13410
13411 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13412 tmp = be32_to_cpu(source[j]);
13413 target[i].op = (tmp >> 24) & 0xff;
13414 target[i].offset = tmp & 0xffffff;
13415 target[i].raw_data = be32_to_cpu(source[j + 1]);
13416 }
13417 }
13418
13419 /* IRO array is stored in the following format:
13420 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13421 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13422 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13423 {
13424 const __be32 *source = (const __be32 *)_source;
13425 struct iro *target = (struct iro *)_target;
13426 u32 i, j, tmp;
13427
13428 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13429 target[i].base = be32_to_cpu(source[j]);
13430 j++;
13431 tmp = be32_to_cpu(source[j]);
13432 target[i].m1 = (tmp >> 16) & 0xffff;
13433 target[i].m2 = tmp & 0xffff;
13434 j++;
13435 tmp = be32_to_cpu(source[j]);
13436 target[i].m3 = (tmp >> 16) & 0xffff;
13437 target[i].size = tmp & 0xffff;
13438 j++;
13439 }
13440 }
13441
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13442 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13443 {
13444 const __be16 *source = (const __be16 *)_source;
13445 u16 *target = (u16 *)_target;
13446 u32 i;
13447
13448 for (i = 0; i < n/2; i++)
13449 target[i] = be16_to_cpu(source[i]);
13450 }
13451
13452 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13453 do { \
13454 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13455 bp->arr = kmalloc(len, GFP_KERNEL); \
13456 if (!bp->arr) \
13457 goto lbl; \
13458 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13459 (u8 *)bp->arr, len); \
13460 } while (0)
13461
bnx2x_init_firmware(struct bnx2x * bp)13462 static int bnx2x_init_firmware(struct bnx2x *bp)
13463 {
13464 const char *fw_file_name, *fw_file_name_v15;
13465 struct bnx2x_fw_file_hdr *fw_hdr;
13466 int rc;
13467
13468 if (bp->firmware)
13469 return 0;
13470
13471 if (CHIP_IS_E1(bp)) {
13472 fw_file_name = FW_FILE_NAME_E1;
13473 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13474 } else if (CHIP_IS_E1H(bp)) {
13475 fw_file_name = FW_FILE_NAME_E1H;
13476 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13477 } else if (!CHIP_IS_E1x(bp)) {
13478 fw_file_name = FW_FILE_NAME_E2;
13479 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13480 } else {
13481 BNX2X_ERR("Unsupported chip revision\n");
13482 return -EINVAL;
13483 }
13484
13485 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13486
13487 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13488 if (rc) {
13489 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13490
13491 /* try to load prev version */
13492 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13493
13494 if (rc)
13495 goto request_firmware_exit;
13496
13497 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13498 } else {
13499 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13500 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13501 }
13502
13503 bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13504 bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13505 bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13506
13507 rc = bnx2x_check_firmware(bp);
13508 if (rc) {
13509 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13510 goto request_firmware_exit;
13511 }
13512
13513 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13514
13515 /* Initialize the pointers to the init arrays */
13516 /* Blob */
13517 rc = -ENOMEM;
13518 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13519
13520 /* Opcodes */
13521 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13522
13523 /* Offsets */
13524 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13525 be16_to_cpu_n);
13526
13527 /* STORMs firmware */
13528 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13529 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13530 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13531 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13532 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13533 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13534 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13535 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13536 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13537 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13538 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13539 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13540 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13541 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13542 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13543 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13544 /* IRO */
13545 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13546
13547 return 0;
13548
13549 iro_alloc_err:
13550 kfree(bp->init_ops_offsets);
13551 init_offsets_alloc_err:
13552 kfree(bp->init_ops);
13553 init_ops_alloc_err:
13554 kfree(bp->init_data);
13555 request_firmware_exit:
13556 release_firmware(bp->firmware);
13557 bp->firmware = NULL;
13558
13559 return rc;
13560 }
13561
bnx2x_release_firmware(struct bnx2x * bp)13562 static void bnx2x_release_firmware(struct bnx2x *bp)
13563 {
13564 kfree(bp->init_ops_offsets);
13565 kfree(bp->init_ops);
13566 kfree(bp->init_data);
13567 release_firmware(bp->firmware);
13568 bp->firmware = NULL;
13569 }
13570
13571 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13572 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13573 .init_hw_cmn = bnx2x_init_hw_common,
13574 .init_hw_port = bnx2x_init_hw_port,
13575 .init_hw_func = bnx2x_init_hw_func,
13576
13577 .reset_hw_cmn = bnx2x_reset_common,
13578 .reset_hw_port = bnx2x_reset_port,
13579 .reset_hw_func = bnx2x_reset_func,
13580
13581 .gunzip_init = bnx2x_gunzip_init,
13582 .gunzip_end = bnx2x_gunzip_end,
13583
13584 .init_fw = bnx2x_init_firmware,
13585 .release_fw = bnx2x_release_firmware,
13586 };
13587
bnx2x__init_func_obj(struct bnx2x * bp)13588 void bnx2x__init_func_obj(struct bnx2x *bp)
13589 {
13590 /* Prepare DMAE related driver resources */
13591 bnx2x_setup_dmae(bp);
13592
13593 bnx2x_init_func_obj(bp, &bp->func_obj,
13594 bnx2x_sp(bp, func_rdata),
13595 bnx2x_sp_mapping(bp, func_rdata),
13596 bnx2x_sp(bp, func_afex_rdata),
13597 bnx2x_sp_mapping(bp, func_afex_rdata),
13598 &bnx2x_func_sp_drv);
13599 }
13600
13601 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13602 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13603 {
13604 int cid_count = BNX2X_L2_MAX_CID(bp);
13605
13606 if (IS_SRIOV(bp))
13607 cid_count += BNX2X_VF_CIDS;
13608
13609 if (CNIC_SUPPORT(bp))
13610 cid_count += CNIC_CID_MAX;
13611
13612 return roundup(cid_count, QM_CID_ROUND);
13613 }
13614
13615 /**
13616 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13617 * @pdev: pci device
13618 * @cnic_cnt: count
13619 *
13620 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13621 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13622 {
13623 int index;
13624 u16 control = 0;
13625
13626 /*
13627 * If MSI-X is not supported - return number of SBs needed to support
13628 * one fast path queue: one FP queue + SB for CNIC
13629 */
13630 if (!pdev->msix_cap) {
13631 dev_info(&pdev->dev, "no msix capability found\n");
13632 return 1 + cnic_cnt;
13633 }
13634 dev_info(&pdev->dev, "msix capability found\n");
13635
13636 /*
13637 * The value in the PCI configuration space is the index of the last
13638 * entry, namely one less than the actual size of the table, which is
13639 * exactly what we want to return from this function: number of all SBs
13640 * without the default SB.
13641 * For VFs there is no default SB, then we return (index+1).
13642 */
13643 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13644
13645 index = control & PCI_MSIX_FLAGS_QSIZE;
13646
13647 return index;
13648 }
13649
set_max_cos_est(int chip_id)13650 static int set_max_cos_est(int chip_id)
13651 {
13652 switch (chip_id) {
13653 case BCM57710:
13654 case BCM57711:
13655 case BCM57711E:
13656 return BNX2X_MULTI_TX_COS_E1X;
13657 case BCM57712:
13658 case BCM57712_MF:
13659 return BNX2X_MULTI_TX_COS_E2_E3A0;
13660 case BCM57800:
13661 case BCM57800_MF:
13662 case BCM57810:
13663 case BCM57810_MF:
13664 case BCM57840_4_10:
13665 case BCM57840_2_20:
13666 case BCM57840_O:
13667 case BCM57840_MFO:
13668 case BCM57840_MF:
13669 case BCM57811:
13670 case BCM57811_MF:
13671 return BNX2X_MULTI_TX_COS_E3B0;
13672 case BCM57712_VF:
13673 case BCM57800_VF:
13674 case BCM57810_VF:
13675 case BCM57840_VF:
13676 case BCM57811_VF:
13677 return 1;
13678 default:
13679 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13680 return -ENODEV;
13681 }
13682 }
13683
set_is_vf(int chip_id)13684 static int set_is_vf(int chip_id)
13685 {
13686 switch (chip_id) {
13687 case BCM57712_VF:
13688 case BCM57800_VF:
13689 case BCM57810_VF:
13690 case BCM57840_VF:
13691 case BCM57811_VF:
13692 return true;
13693 default:
13694 return false;
13695 }
13696 }
13697
13698 /* nig_tsgen registers relative address */
13699 #define tsgen_ctrl 0x0
13700 #define tsgen_freecount 0x10
13701 #define tsgen_synctime_t0 0x20
13702 #define tsgen_offset_t0 0x28
13703 #define tsgen_drift_t0 0x30
13704 #define tsgen_synctime_t1 0x58
13705 #define tsgen_offset_t1 0x60
13706 #define tsgen_drift_t1 0x68
13707
13708 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13709 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13710 int best_val, int best_period)
13711 {
13712 struct bnx2x_func_state_params func_params = {NULL};
13713 struct bnx2x_func_set_timesync_params *set_timesync_params =
13714 &func_params.params.set_timesync;
13715
13716 /* Prepare parameters for function state transitions */
13717 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13718 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13719
13720 func_params.f_obj = &bp->func_obj;
13721 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13722
13723 /* Function parameters */
13724 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13725 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13726 set_timesync_params->add_sub_drift_adjust_value =
13727 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13728 set_timesync_params->drift_adjust_value = best_val;
13729 set_timesync_params->drift_adjust_period = best_period;
13730
13731 return bnx2x_func_state_change(bp, &func_params);
13732 }
13733
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13734 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13735 {
13736 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13737 int rc;
13738 int drift_dir = 1;
13739 int val, period, period1, period2, dif, dif1, dif2;
13740 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13741
13742 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13743
13744 if (!netif_running(bp->dev)) {
13745 DP(BNX2X_MSG_PTP,
13746 "PTP adjfreq called while the interface is down\n");
13747 return -ENETDOWN;
13748 }
13749
13750 if (ppb < 0) {
13751 ppb = -ppb;
13752 drift_dir = 0;
13753 }
13754
13755 if (ppb == 0) {
13756 best_val = 1;
13757 best_period = 0x1FFFFFF;
13758 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13759 best_val = 31;
13760 best_period = 1;
13761 } else {
13762 /* Changed not to allow val = 8, 16, 24 as these values
13763 * are not supported in workaround.
13764 */
13765 for (val = 0; val <= 31; val++) {
13766 if ((val & 0x7) == 0)
13767 continue;
13768 period1 = val * 1000000 / ppb;
13769 period2 = period1 + 1;
13770 if (period1 != 0)
13771 dif1 = ppb - (val * 1000000 / period1);
13772 else
13773 dif1 = BNX2X_MAX_PHC_DRIFT;
13774 if (dif1 < 0)
13775 dif1 = -dif1;
13776 dif2 = ppb - (val * 1000000 / period2);
13777 if (dif2 < 0)
13778 dif2 = -dif2;
13779 dif = (dif1 < dif2) ? dif1 : dif2;
13780 period = (dif1 < dif2) ? period1 : period2;
13781 if (dif < best_dif) {
13782 best_dif = dif;
13783 best_val = val;
13784 best_period = period;
13785 }
13786 }
13787 }
13788
13789 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13790 best_period);
13791 if (rc) {
13792 BNX2X_ERR("Failed to set drift\n");
13793 return -EFAULT;
13794 }
13795
13796 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13797 best_period);
13798
13799 return 0;
13800 }
13801
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13802 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13803 {
13804 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13805
13806 if (!netif_running(bp->dev)) {
13807 DP(BNX2X_MSG_PTP,
13808 "PTP adjtime called while the interface is down\n");
13809 return -ENETDOWN;
13810 }
13811
13812 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13813
13814 timecounter_adjtime(&bp->timecounter, delta);
13815
13816 return 0;
13817 }
13818
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13819 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13820 {
13821 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13822 u64 ns;
13823
13824 if (!netif_running(bp->dev)) {
13825 DP(BNX2X_MSG_PTP,
13826 "PTP gettime called while the interface is down\n");
13827 return -ENETDOWN;
13828 }
13829
13830 ns = timecounter_read(&bp->timecounter);
13831
13832 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13833
13834 *ts = ns_to_timespec64(ns);
13835
13836 return 0;
13837 }
13838
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13839 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13840 const struct timespec64 *ts)
13841 {
13842 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13843 u64 ns;
13844
13845 if (!netif_running(bp->dev)) {
13846 DP(BNX2X_MSG_PTP,
13847 "PTP settime called while the interface is down\n");
13848 return -ENETDOWN;
13849 }
13850
13851 ns = timespec64_to_ns(ts);
13852
13853 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13854
13855 /* Re-init the timecounter */
13856 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13857
13858 return 0;
13859 }
13860
13861 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13862 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13863 struct ptp_clock_request *rq, int on)
13864 {
13865 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13866
13867 BNX2X_ERR("PHC ancillary features are not supported\n");
13868 return -ENOTSUPP;
13869 }
13870
bnx2x_register_phc(struct bnx2x * bp)13871 void bnx2x_register_phc(struct bnx2x *bp)
13872 {
13873 /* Fill the ptp_clock_info struct and register PTP clock*/
13874 bp->ptp_clock_info.owner = THIS_MODULE;
13875 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13876 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13877 bp->ptp_clock_info.n_alarm = 0;
13878 bp->ptp_clock_info.n_ext_ts = 0;
13879 bp->ptp_clock_info.n_per_out = 0;
13880 bp->ptp_clock_info.pps = 0;
13881 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13882 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13883 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13884 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13885 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13886
13887 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13888 if (IS_ERR(bp->ptp_clock)) {
13889 bp->ptp_clock = NULL;
13890 BNX2X_ERR("PTP clock registration failed\n");
13891 }
13892 }
13893
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13894 static int bnx2x_init_one(struct pci_dev *pdev,
13895 const struct pci_device_id *ent)
13896 {
13897 struct net_device *dev = NULL;
13898 struct bnx2x *bp;
13899 int rc, max_non_def_sbs;
13900 int rx_count, tx_count, rss_count, doorbell_size;
13901 int max_cos_est;
13902 bool is_vf;
13903 int cnic_cnt;
13904
13905 /* Management FW 'remembers' living interfaces. Allow it some time
13906 * to forget previously living interfaces, allowing a proper re-load.
13907 */
13908 if (is_kdump_kernel()) {
13909 ktime_t now = ktime_get_boottime();
13910 ktime_t fw_ready_time = ktime_set(5, 0);
13911
13912 if (ktime_before(now, fw_ready_time))
13913 msleep(ktime_ms_delta(fw_ready_time, now));
13914 }
13915
13916 /* An estimated maximum supported CoS number according to the chip
13917 * version.
13918 * We will try to roughly estimate the maximum number of CoSes this chip
13919 * may support in order to minimize the memory allocated for Tx
13920 * netdev_queue's. This number will be accurately calculated during the
13921 * initialization of bp->max_cos based on the chip versions AND chip
13922 * revision in the bnx2x_init_bp().
13923 */
13924 max_cos_est = set_max_cos_est(ent->driver_data);
13925 if (max_cos_est < 0)
13926 return max_cos_est;
13927 is_vf = set_is_vf(ent->driver_data);
13928 cnic_cnt = is_vf ? 0 : 1;
13929
13930 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13931
13932 /* add another SB for VF as it has no default SB */
13933 max_non_def_sbs += is_vf ? 1 : 0;
13934
13935 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13936 rss_count = max_non_def_sbs - cnic_cnt;
13937
13938 if (rss_count < 1)
13939 return -EINVAL;
13940
13941 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13942 rx_count = rss_count + cnic_cnt;
13943
13944 /* Maximum number of netdev Tx queues:
13945 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13946 */
13947 tx_count = rss_count * max_cos_est + cnic_cnt;
13948
13949 /* dev zeroed in init_etherdev */
13950 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13951 if (!dev)
13952 return -ENOMEM;
13953
13954 bp = netdev_priv(dev);
13955
13956 bp->flags = 0;
13957 if (is_vf)
13958 bp->flags |= IS_VF_FLAG;
13959
13960 bp->igu_sb_cnt = max_non_def_sbs;
13961 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13962 bp->msg_enable = debug;
13963 bp->cnic_support = cnic_cnt;
13964 bp->cnic_probe = bnx2x_cnic_probe;
13965
13966 pci_set_drvdata(pdev, dev);
13967
13968 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13969 if (rc < 0) {
13970 free_netdev(dev);
13971 return rc;
13972 }
13973
13974 BNX2X_DEV_INFO("This is a %s function\n",
13975 IS_PF(bp) ? "physical" : "virtual");
13976 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13977 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13978 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13979 tx_count, rx_count);
13980
13981 rc = bnx2x_init_bp(bp);
13982 if (rc)
13983 goto init_one_exit;
13984
13985 /* Map doorbells here as we need the real value of bp->max_cos which
13986 * is initialized in bnx2x_init_bp() to determine the number of
13987 * l2 connections.
13988 */
13989 if (IS_VF(bp)) {
13990 bp->doorbells = bnx2x_vf_doorbells(bp);
13991 rc = bnx2x_vf_pci_alloc(bp);
13992 if (rc)
13993 goto init_one_freemem;
13994 } else {
13995 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13996 if (doorbell_size > pci_resource_len(pdev, 2)) {
13997 dev_err(&bp->pdev->dev,
13998 "Cannot map doorbells, bar size too small, aborting\n");
13999 rc = -ENOMEM;
14000 goto init_one_freemem;
14001 }
14002 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
14003 doorbell_size);
14004 }
14005 if (!bp->doorbells) {
14006 dev_err(&bp->pdev->dev,
14007 "Cannot map doorbell space, aborting\n");
14008 rc = -ENOMEM;
14009 goto init_one_freemem;
14010 }
14011
14012 if (IS_VF(bp)) {
14013 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14014 if (rc)
14015 goto init_one_freemem;
14016
14017 #ifdef CONFIG_BNX2X_SRIOV
14018 /* VF with OLD Hypervisor or old PF do not support filtering */
14019 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14020 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14021 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14022 }
14023 #endif
14024 }
14025
14026 /* Enable SRIOV if capability found in configuration space */
14027 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14028 if (rc)
14029 goto init_one_freemem;
14030
14031 /* calc qm_cid_count */
14032 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14033 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14034
14035 /* disable FCOE L2 queue for E1x*/
14036 if (CHIP_IS_E1x(bp))
14037 bp->flags |= NO_FCOE_FLAG;
14038
14039 /* Set bp->num_queues for MSI-X mode*/
14040 bnx2x_set_num_queues(bp);
14041
14042 /* Configure interrupt mode: try to enable MSI-X/MSI if
14043 * needed.
14044 */
14045 rc = bnx2x_set_int_mode(bp);
14046 if (rc) {
14047 dev_err(&pdev->dev, "Cannot set interrupts\n");
14048 goto init_one_freemem;
14049 }
14050 BNX2X_DEV_INFO("set interrupts successfully\n");
14051
14052 /* register the net device */
14053 rc = register_netdev(dev);
14054 if (rc) {
14055 dev_err(&pdev->dev, "Cannot register net device\n");
14056 goto init_one_freemem;
14057 }
14058 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14059
14060 if (!NO_FCOE(bp)) {
14061 /* Add storage MAC address */
14062 rtnl_lock();
14063 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14064 rtnl_unlock();
14065 }
14066 BNX2X_DEV_INFO(
14067 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14068 board_info[ent->driver_data].name,
14069 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14070 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14071 pcie_print_link_status(bp->pdev);
14072
14073 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14074 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14075
14076 return 0;
14077
14078 init_one_freemem:
14079 bnx2x_free_mem_bp(bp);
14080
14081 init_one_exit:
14082 bnx2x_disable_pcie_error_reporting(bp);
14083
14084 if (bp->regview)
14085 iounmap(bp->regview);
14086
14087 if (IS_PF(bp) && bp->doorbells)
14088 iounmap(bp->doorbells);
14089
14090 free_netdev(dev);
14091
14092 if (atomic_read(&pdev->enable_cnt) == 1)
14093 pci_release_regions(pdev);
14094
14095 pci_disable_device(pdev);
14096
14097 return rc;
14098 }
14099
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14100 static void __bnx2x_remove(struct pci_dev *pdev,
14101 struct net_device *dev,
14102 struct bnx2x *bp,
14103 bool remove_netdev)
14104 {
14105 /* Delete storage MAC address */
14106 if (!NO_FCOE(bp)) {
14107 rtnl_lock();
14108 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14109 rtnl_unlock();
14110 }
14111
14112 #ifdef BCM_DCBNL
14113 /* Delete app tlvs from dcbnl */
14114 bnx2x_dcbnl_update_applist(bp, true);
14115 #endif
14116
14117 if (IS_PF(bp) &&
14118 !BP_NOMCP(bp) &&
14119 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14120 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14121
14122 /* Close the interface - either directly or implicitly */
14123 if (remove_netdev) {
14124 unregister_netdev(dev);
14125 } else {
14126 rtnl_lock();
14127 dev_close(dev);
14128 rtnl_unlock();
14129 }
14130
14131 bnx2x_iov_remove_one(bp);
14132
14133 /* Power on: we can't let PCI layer write to us while we are in D3 */
14134 if (IS_PF(bp)) {
14135 bnx2x_set_power_state(bp, PCI_D0);
14136 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14137
14138 /* Set endianity registers to reset values in case next driver
14139 * boots in different endianty environment.
14140 */
14141 bnx2x_reset_endianity(bp);
14142 }
14143
14144 /* Disable MSI/MSI-X */
14145 bnx2x_disable_msi(bp);
14146
14147 /* Power off */
14148 if (IS_PF(bp))
14149 bnx2x_set_power_state(bp, PCI_D3hot);
14150
14151 /* Make sure RESET task is not scheduled before continuing */
14152 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14153
14154 /* send message via vfpf channel to release the resources of this vf */
14155 if (IS_VF(bp))
14156 bnx2x_vfpf_release(bp);
14157
14158 /* Assumes no further PCIe PM changes will occur */
14159 if (system_state == SYSTEM_POWER_OFF) {
14160 pci_wake_from_d3(pdev, bp->wol);
14161 pci_set_power_state(pdev, PCI_D3hot);
14162 }
14163
14164 bnx2x_disable_pcie_error_reporting(bp);
14165 if (remove_netdev) {
14166 if (bp->regview)
14167 iounmap(bp->regview);
14168
14169 /* For vfs, doorbells are part of the regview and were unmapped
14170 * along with it. FW is only loaded by PF.
14171 */
14172 if (IS_PF(bp)) {
14173 if (bp->doorbells)
14174 iounmap(bp->doorbells);
14175
14176 bnx2x_release_firmware(bp);
14177 } else {
14178 bnx2x_vf_pci_dealloc(bp);
14179 }
14180 bnx2x_free_mem_bp(bp);
14181
14182 free_netdev(dev);
14183
14184 if (atomic_read(&pdev->enable_cnt) == 1)
14185 pci_release_regions(pdev);
14186
14187 pci_disable_device(pdev);
14188 }
14189 }
14190
bnx2x_remove_one(struct pci_dev * pdev)14191 static void bnx2x_remove_one(struct pci_dev *pdev)
14192 {
14193 struct net_device *dev = pci_get_drvdata(pdev);
14194 struct bnx2x *bp;
14195
14196 if (!dev) {
14197 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14198 return;
14199 }
14200 bp = netdev_priv(dev);
14201
14202 __bnx2x_remove(pdev, dev, bp, true);
14203 }
14204
bnx2x_eeh_nic_unload(struct bnx2x * bp)14205 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14206 {
14207 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14208
14209 bp->rx_mode = BNX2X_RX_MODE_NONE;
14210
14211 if (CNIC_LOADED(bp))
14212 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14213
14214 /* Stop Tx */
14215 bnx2x_tx_disable(bp);
14216 netdev_reset_tc(bp->dev);
14217
14218 del_timer_sync(&bp->timer);
14219 cancel_delayed_work_sync(&bp->sp_task);
14220 cancel_delayed_work_sync(&bp->period_task);
14221
14222 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14223 bp->stats_state = STATS_STATE_DISABLED;
14224 up(&bp->stats_lock);
14225 }
14226
14227 bnx2x_save_statistics(bp);
14228
14229 netif_carrier_off(bp->dev);
14230
14231 return 0;
14232 }
14233
14234 /**
14235 * bnx2x_io_error_detected - called when PCI error is detected
14236 * @pdev: Pointer to PCI device
14237 * @state: The current pci connection state
14238 *
14239 * This function is called after a PCI bus error affecting
14240 * this device has been detected.
14241 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14242 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14243 pci_channel_state_t state)
14244 {
14245 struct net_device *dev = pci_get_drvdata(pdev);
14246 struct bnx2x *bp = netdev_priv(dev);
14247
14248 rtnl_lock();
14249
14250 BNX2X_ERR("IO error detected\n");
14251
14252 netif_device_detach(dev);
14253
14254 if (state == pci_channel_io_perm_failure) {
14255 rtnl_unlock();
14256 return PCI_ERS_RESULT_DISCONNECT;
14257 }
14258
14259 if (netif_running(dev))
14260 bnx2x_eeh_nic_unload(bp);
14261
14262 bnx2x_prev_path_mark_eeh(bp);
14263
14264 pci_disable_device(pdev);
14265
14266 rtnl_unlock();
14267
14268 /* Request a slot reset */
14269 return PCI_ERS_RESULT_NEED_RESET;
14270 }
14271
14272 /**
14273 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14274 * @pdev: Pointer to PCI device
14275 *
14276 * Restart the card from scratch, as if from a cold-boot.
14277 */
bnx2x_io_slot_reset(struct pci_dev * pdev)14278 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14279 {
14280 struct net_device *dev = pci_get_drvdata(pdev);
14281 struct bnx2x *bp = netdev_priv(dev);
14282 int i;
14283
14284 rtnl_lock();
14285 BNX2X_ERR("IO slot reset initializing...\n");
14286 if (pci_enable_device(pdev)) {
14287 dev_err(&pdev->dev,
14288 "Cannot re-enable PCI device after reset\n");
14289 rtnl_unlock();
14290 return PCI_ERS_RESULT_DISCONNECT;
14291 }
14292
14293 pci_set_master(pdev);
14294 pci_restore_state(pdev);
14295 pci_save_state(pdev);
14296
14297 if (netif_running(dev))
14298 bnx2x_set_power_state(bp, PCI_D0);
14299
14300 if (netif_running(dev)) {
14301 BNX2X_ERR("IO slot reset --> driver unload\n");
14302
14303 /* MCP should have been reset; Need to wait for validity */
14304 if (bnx2x_init_shmem(bp)) {
14305 rtnl_unlock();
14306 return PCI_ERS_RESULT_DISCONNECT;
14307 }
14308
14309 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14310 u32 v;
14311
14312 v = SHMEM2_RD(bp,
14313 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14314 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14315 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14316 }
14317 bnx2x_drain_tx_queues(bp);
14318 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14319 bnx2x_netif_stop(bp, 1);
14320 bnx2x_del_all_napi(bp);
14321
14322 if (CNIC_LOADED(bp))
14323 bnx2x_del_all_napi_cnic(bp);
14324
14325 bnx2x_free_irq(bp);
14326
14327 /* Report UNLOAD_DONE to MCP */
14328 bnx2x_send_unload_done(bp, true);
14329
14330 bp->sp_state = 0;
14331 bp->port.pmf = 0;
14332
14333 bnx2x_prev_unload(bp);
14334
14335 /* We should have reseted the engine, so It's fair to
14336 * assume the FW will no longer write to the bnx2x driver.
14337 */
14338 bnx2x_squeeze_objects(bp);
14339 bnx2x_free_skbs(bp);
14340 for_each_rx_queue(bp, i)
14341 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14342 bnx2x_free_fp_mem(bp);
14343 bnx2x_free_mem(bp);
14344
14345 bp->state = BNX2X_STATE_CLOSED;
14346 }
14347
14348 rtnl_unlock();
14349
14350 return PCI_ERS_RESULT_RECOVERED;
14351 }
14352
14353 /**
14354 * bnx2x_io_resume - called when traffic can start flowing again
14355 * @pdev: Pointer to PCI device
14356 *
14357 * This callback is called when the error recovery driver tells us that
14358 * its OK to resume normal operation.
14359 */
bnx2x_io_resume(struct pci_dev * pdev)14360 static void bnx2x_io_resume(struct pci_dev *pdev)
14361 {
14362 struct net_device *dev = pci_get_drvdata(pdev);
14363 struct bnx2x *bp = netdev_priv(dev);
14364
14365 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14366 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14367 return;
14368 }
14369
14370 rtnl_lock();
14371
14372 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14373 DRV_MSG_SEQ_NUMBER_MASK;
14374
14375 if (netif_running(dev)) {
14376 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14377 netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14378 goto done;
14379 }
14380 }
14381
14382 netif_device_attach(dev);
14383
14384 done:
14385 rtnl_unlock();
14386 }
14387
14388 static const struct pci_error_handlers bnx2x_err_handler = {
14389 .error_detected = bnx2x_io_error_detected,
14390 .slot_reset = bnx2x_io_slot_reset,
14391 .resume = bnx2x_io_resume,
14392 };
14393
bnx2x_shutdown(struct pci_dev * pdev)14394 static void bnx2x_shutdown(struct pci_dev *pdev)
14395 {
14396 struct net_device *dev = pci_get_drvdata(pdev);
14397 struct bnx2x *bp;
14398
14399 if (!dev)
14400 return;
14401
14402 bp = netdev_priv(dev);
14403 if (!bp)
14404 return;
14405
14406 rtnl_lock();
14407 netif_device_detach(dev);
14408 rtnl_unlock();
14409
14410 /* Don't remove the netdevice, as there are scenarios which will cause
14411 * the kernel to hang, e.g., when trying to remove bnx2i while the
14412 * rootfs is mounted from SAN.
14413 */
14414 __bnx2x_remove(pdev, dev, bp, false);
14415 }
14416
14417 static struct pci_driver bnx2x_pci_driver = {
14418 .name = DRV_MODULE_NAME,
14419 .id_table = bnx2x_pci_tbl,
14420 .probe = bnx2x_init_one,
14421 .remove = bnx2x_remove_one,
14422 .driver.pm = &bnx2x_pm_ops,
14423 .err_handler = &bnx2x_err_handler,
14424 #ifdef CONFIG_BNX2X_SRIOV
14425 .sriov_configure = bnx2x_sriov_configure,
14426 #endif
14427 .shutdown = bnx2x_shutdown,
14428 };
14429
bnx2x_init(void)14430 static int __init bnx2x_init(void)
14431 {
14432 int ret;
14433
14434 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14435 if (bnx2x_wq == NULL) {
14436 pr_err("Cannot create workqueue\n");
14437 return -ENOMEM;
14438 }
14439 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14440 if (!bnx2x_iov_wq) {
14441 pr_err("Cannot create iov workqueue\n");
14442 destroy_workqueue(bnx2x_wq);
14443 return -ENOMEM;
14444 }
14445
14446 ret = pci_register_driver(&bnx2x_pci_driver);
14447 if (ret) {
14448 pr_err("Cannot register driver\n");
14449 destroy_workqueue(bnx2x_wq);
14450 destroy_workqueue(bnx2x_iov_wq);
14451 }
14452 return ret;
14453 }
14454
bnx2x_cleanup(void)14455 static void __exit bnx2x_cleanup(void)
14456 {
14457 struct list_head *pos, *q;
14458
14459 pci_unregister_driver(&bnx2x_pci_driver);
14460
14461 destroy_workqueue(bnx2x_wq);
14462 destroy_workqueue(bnx2x_iov_wq);
14463
14464 /* Free globally allocated resources */
14465 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14466 struct bnx2x_prev_path_list *tmp =
14467 list_entry(pos, struct bnx2x_prev_path_list, list);
14468 list_del(pos);
14469 kfree(tmp);
14470 }
14471 }
14472
bnx2x_notify_link_changed(struct bnx2x * bp)14473 void bnx2x_notify_link_changed(struct bnx2x *bp)
14474 {
14475 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14476 }
14477
14478 module_init(bnx2x_init);
14479 module_exit(bnx2x_cleanup);
14480
14481 /**
14482 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14483 * @bp: driver handle
14484 *
14485 * This function will wait until the ramrod completion returns.
14486 * Return 0 if success, -ENODEV if ramrod doesn't return.
14487 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14488 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14489 {
14490 unsigned long ramrod_flags = 0;
14491
14492 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14493 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14494 &bp->iscsi_l2_mac_obj, true,
14495 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14496 }
14497
14498 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14499 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14500 {
14501 struct eth_spe *spe;
14502 int cxt_index, cxt_offset;
14503
14504 #ifdef BNX2X_STOP_ON_ERROR
14505 if (unlikely(bp->panic))
14506 return;
14507 #endif
14508
14509 spin_lock_bh(&bp->spq_lock);
14510 BUG_ON(bp->cnic_spq_pending < count);
14511 bp->cnic_spq_pending -= count;
14512
14513 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14514 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14515 & SPE_HDR_CONN_TYPE) >>
14516 SPE_HDR_CONN_TYPE_SHIFT;
14517 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14518 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14519
14520 /* Set validation for iSCSI L2 client before sending SETUP
14521 * ramrod
14522 */
14523 if (type == ETH_CONNECTION_TYPE) {
14524 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14525 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14526 ILT_PAGE_CIDS;
14527 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14528 (cxt_index * ILT_PAGE_CIDS);
14529 bnx2x_set_ctx_validation(bp,
14530 &bp->context[cxt_index].
14531 vcxt[cxt_offset].eth,
14532 BNX2X_ISCSI_ETH_CID(bp));
14533 }
14534 }
14535
14536 /*
14537 * There may be not more than 8 L2, not more than 8 L5 SPEs
14538 * and in the air. We also check that number of outstanding
14539 * COMMON ramrods is not more than the EQ and SPQ can
14540 * accommodate.
14541 */
14542 if (type == ETH_CONNECTION_TYPE) {
14543 if (!atomic_read(&bp->cq_spq_left))
14544 break;
14545 else
14546 atomic_dec(&bp->cq_spq_left);
14547 } else if (type == NONE_CONNECTION_TYPE) {
14548 if (!atomic_read(&bp->eq_spq_left))
14549 break;
14550 else
14551 atomic_dec(&bp->eq_spq_left);
14552 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14553 (type == FCOE_CONNECTION_TYPE)) {
14554 if (bp->cnic_spq_pending >=
14555 bp->cnic_eth_dev.max_kwqe_pending)
14556 break;
14557 else
14558 bp->cnic_spq_pending++;
14559 } else {
14560 BNX2X_ERR("Unknown SPE type: %d\n", type);
14561 bnx2x_panic();
14562 break;
14563 }
14564
14565 spe = bnx2x_sp_get_next(bp);
14566 *spe = *bp->cnic_kwq_cons;
14567
14568 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14569 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14570
14571 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14572 bp->cnic_kwq_cons = bp->cnic_kwq;
14573 else
14574 bp->cnic_kwq_cons++;
14575 }
14576 bnx2x_sp_prod_update(bp);
14577 spin_unlock_bh(&bp->spq_lock);
14578 }
14579
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14580 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14581 struct kwqe_16 *kwqes[], u32 count)
14582 {
14583 struct bnx2x *bp = netdev_priv(dev);
14584 int i;
14585
14586 #ifdef BNX2X_STOP_ON_ERROR
14587 if (unlikely(bp->panic)) {
14588 BNX2X_ERR("Can't post to SP queue while panic\n");
14589 return -EIO;
14590 }
14591 #endif
14592
14593 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14594 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14595 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14596 return -EAGAIN;
14597 }
14598
14599 spin_lock_bh(&bp->spq_lock);
14600
14601 for (i = 0; i < count; i++) {
14602 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14603
14604 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14605 break;
14606
14607 *bp->cnic_kwq_prod = *spe;
14608
14609 bp->cnic_kwq_pending++;
14610
14611 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14612 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14613 spe->data.update_data_addr.hi,
14614 spe->data.update_data_addr.lo,
14615 bp->cnic_kwq_pending);
14616
14617 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14618 bp->cnic_kwq_prod = bp->cnic_kwq;
14619 else
14620 bp->cnic_kwq_prod++;
14621 }
14622
14623 spin_unlock_bh(&bp->spq_lock);
14624
14625 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14626 bnx2x_cnic_sp_post(bp, 0);
14627
14628 return i;
14629 }
14630
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14631 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14632 {
14633 struct cnic_ops *c_ops;
14634 int rc = 0;
14635
14636 mutex_lock(&bp->cnic_mutex);
14637 c_ops = rcu_dereference_protected(bp->cnic_ops,
14638 lockdep_is_held(&bp->cnic_mutex));
14639 if (c_ops)
14640 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14641 mutex_unlock(&bp->cnic_mutex);
14642
14643 return rc;
14644 }
14645
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14646 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14647 {
14648 struct cnic_ops *c_ops;
14649 int rc = 0;
14650
14651 rcu_read_lock();
14652 c_ops = rcu_dereference(bp->cnic_ops);
14653 if (c_ops)
14654 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14655 rcu_read_unlock();
14656
14657 return rc;
14658 }
14659
14660 /*
14661 * for commands that have no data
14662 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14663 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14664 {
14665 struct cnic_ctl_info ctl = {0};
14666
14667 ctl.cmd = cmd;
14668
14669 return bnx2x_cnic_ctl_send(bp, &ctl);
14670 }
14671
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14672 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14673 {
14674 struct cnic_ctl_info ctl = {0};
14675
14676 /* first we tell CNIC and only then we count this as a completion */
14677 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14678 ctl.data.comp.cid = cid;
14679 ctl.data.comp.error = err;
14680
14681 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14682 bnx2x_cnic_sp_post(bp, 0);
14683 }
14684
14685 /* Called with netif_addr_lock_bh() taken.
14686 * Sets an rx_mode config for an iSCSI ETH client.
14687 * Doesn't block.
14688 * Completion should be checked outside.
14689 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14690 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14691 {
14692 unsigned long accept_flags = 0, ramrod_flags = 0;
14693 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14694 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14695
14696 if (start) {
14697 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14698 * because it's the only way for UIO Queue to accept
14699 * multicasts (in non-promiscuous mode only one Queue per
14700 * function will receive multicast packets (leading in our
14701 * case).
14702 */
14703 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14704 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14705 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14706 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14707
14708 /* Clear STOP_PENDING bit if START is requested */
14709 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14710
14711 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14712 } else
14713 /* Clear START_PENDING bit if STOP is requested */
14714 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14715
14716 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14717 set_bit(sched_state, &bp->sp_state);
14718 else {
14719 __set_bit(RAMROD_RX, &ramrod_flags);
14720 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14721 ramrod_flags);
14722 }
14723 }
14724
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14725 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14726 {
14727 struct bnx2x *bp = netdev_priv(dev);
14728 int rc = 0;
14729
14730 switch (ctl->cmd) {
14731 case DRV_CTL_CTXTBL_WR_CMD: {
14732 u32 index = ctl->data.io.offset;
14733 dma_addr_t addr = ctl->data.io.dma_addr;
14734
14735 bnx2x_ilt_wr(bp, index, addr);
14736 break;
14737 }
14738
14739 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14740 int count = ctl->data.credit.credit_count;
14741
14742 bnx2x_cnic_sp_post(bp, count);
14743 break;
14744 }
14745
14746 /* rtnl_lock is held. */
14747 case DRV_CTL_START_L2_CMD: {
14748 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14749 unsigned long sp_bits = 0;
14750
14751 /* Configure the iSCSI classification object */
14752 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14753 cp->iscsi_l2_client_id,
14754 cp->iscsi_l2_cid, BP_FUNC(bp),
14755 bnx2x_sp(bp, mac_rdata),
14756 bnx2x_sp_mapping(bp, mac_rdata),
14757 BNX2X_FILTER_MAC_PENDING,
14758 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14759 &bp->macs_pool);
14760
14761 /* Set iSCSI MAC address */
14762 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14763 if (rc)
14764 break;
14765
14766 barrier();
14767
14768 /* Start accepting on iSCSI L2 ring */
14769
14770 netif_addr_lock_bh(dev);
14771 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14772 netif_addr_unlock_bh(dev);
14773
14774 /* bits to wait on */
14775 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14776 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14777
14778 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14779 BNX2X_ERR("rx_mode completion timed out!\n");
14780
14781 break;
14782 }
14783
14784 /* rtnl_lock is held. */
14785 case DRV_CTL_STOP_L2_CMD: {
14786 unsigned long sp_bits = 0;
14787
14788 /* Stop accepting on iSCSI L2 ring */
14789 netif_addr_lock_bh(dev);
14790 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14791 netif_addr_unlock_bh(dev);
14792
14793 /* bits to wait on */
14794 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14795 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14796
14797 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14798 BNX2X_ERR("rx_mode completion timed out!\n");
14799
14800 barrier();
14801
14802 /* Unset iSCSI L2 MAC */
14803 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14804 BNX2X_ISCSI_ETH_MAC, true);
14805 break;
14806 }
14807 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14808 int count = ctl->data.credit.credit_count;
14809
14810 smp_mb__before_atomic();
14811 atomic_add(count, &bp->cq_spq_left);
14812 smp_mb__after_atomic();
14813 break;
14814 }
14815 case DRV_CTL_ULP_REGISTER_CMD: {
14816 int ulp_type = ctl->data.register_data.ulp_type;
14817
14818 if (CHIP_IS_E3(bp)) {
14819 int idx = BP_FW_MB_IDX(bp);
14820 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14821 int path = BP_PATH(bp);
14822 int port = BP_PORT(bp);
14823 int i;
14824 u32 scratch_offset;
14825 u32 *host_addr;
14826
14827 /* first write capability to shmem2 */
14828 if (ulp_type == CNIC_ULP_ISCSI)
14829 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14830 else if (ulp_type == CNIC_ULP_FCOE)
14831 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14832 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14833
14834 if ((ulp_type != CNIC_ULP_FCOE) ||
14835 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14836 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14837 break;
14838
14839 /* if reached here - should write fcoe capabilities */
14840 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14841 if (!scratch_offset)
14842 break;
14843 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14844 fcoe_features[path][port]);
14845 host_addr = (u32 *) &(ctl->data.register_data.
14846 fcoe_features);
14847 for (i = 0; i < sizeof(struct fcoe_capabilities);
14848 i += 4)
14849 REG_WR(bp, scratch_offset + i,
14850 *(host_addr + i/4));
14851 }
14852 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14853 break;
14854 }
14855
14856 case DRV_CTL_ULP_UNREGISTER_CMD: {
14857 int ulp_type = ctl->data.ulp_type;
14858
14859 if (CHIP_IS_E3(bp)) {
14860 int idx = BP_FW_MB_IDX(bp);
14861 u32 cap;
14862
14863 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14864 if (ulp_type == CNIC_ULP_ISCSI)
14865 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14866 else if (ulp_type == CNIC_ULP_FCOE)
14867 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14868 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14869 }
14870 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14871 break;
14872 }
14873
14874 default:
14875 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14876 rc = -EINVAL;
14877 }
14878
14879 /* For storage-only interfaces, change driver state */
14880 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14881 switch (ctl->drv_state) {
14882 case DRV_NOP:
14883 break;
14884 case DRV_ACTIVE:
14885 bnx2x_set_os_driver_state(bp,
14886 OS_DRIVER_STATE_ACTIVE);
14887 break;
14888 case DRV_INACTIVE:
14889 bnx2x_set_os_driver_state(bp,
14890 OS_DRIVER_STATE_DISABLED);
14891 break;
14892 case DRV_UNLOADED:
14893 bnx2x_set_os_driver_state(bp,
14894 OS_DRIVER_STATE_NOT_LOADED);
14895 break;
14896 default:
14897 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14898 }
14899 }
14900
14901 return rc;
14902 }
14903
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14904 static int bnx2x_get_fc_npiv(struct net_device *dev,
14905 struct cnic_fc_npiv_tbl *cnic_tbl)
14906 {
14907 struct bnx2x *bp = netdev_priv(dev);
14908 struct bdn_fc_npiv_tbl *tbl = NULL;
14909 u32 offset, entries;
14910 int rc = -EINVAL;
14911 int i;
14912
14913 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14914 goto out;
14915
14916 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14917
14918 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14919 if (!tbl) {
14920 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14921 goto out;
14922 }
14923
14924 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14925 if (!offset) {
14926 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14927 goto out;
14928 }
14929 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14930
14931 /* Read the table contents from nvram */
14932 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14933 BNX2X_ERR("Failed to read FC-NPIV table\n");
14934 goto out;
14935 }
14936
14937 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14938 * the number of entries back to cpu endianness.
14939 */
14940 entries = tbl->fc_npiv_cfg.num_of_npiv;
14941 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14942 tbl->fc_npiv_cfg.num_of_npiv = entries;
14943
14944 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14945 DP(BNX2X_MSG_MCP,
14946 "No FC-NPIV table [valid, simply not present]\n");
14947 goto out;
14948 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14949 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14950 tbl->fc_npiv_cfg.num_of_npiv);
14951 goto out;
14952 } else {
14953 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14954 tbl->fc_npiv_cfg.num_of_npiv);
14955 }
14956
14957 /* Copy the data into cnic-provided struct */
14958 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14959 for (i = 0; i < cnic_tbl->count; i++) {
14960 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14961 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14962 }
14963
14964 rc = 0;
14965 out:
14966 kfree(tbl);
14967 return rc;
14968 }
14969
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)14970 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14971 {
14972 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14973
14974 if (bp->flags & USING_MSIX_FLAG) {
14975 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14976 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14977 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14978 } else {
14979 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14980 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14981 }
14982 if (!CHIP_IS_E1x(bp))
14983 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14984 else
14985 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14986
14987 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14988 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14989 cp->irq_arr[1].status_blk = bp->def_status_blk;
14990 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14991 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14992
14993 cp->num_irq = 2;
14994 }
14995
bnx2x_setup_cnic_info(struct bnx2x * bp)14996 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14997 {
14998 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14999
15000 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15001 bnx2x_cid_ilt_lines(bp);
15002 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15003 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15004 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15005
15006 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15007 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15008 cp->iscsi_l2_cid);
15009
15010 if (NO_ISCSI_OOO(bp))
15011 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15012 }
15013
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15014 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15015 void *data)
15016 {
15017 struct bnx2x *bp = netdev_priv(dev);
15018 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15019 int rc;
15020
15021 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15022
15023 if (ops == NULL) {
15024 BNX2X_ERR("NULL ops received\n");
15025 return -EINVAL;
15026 }
15027
15028 if (!CNIC_SUPPORT(bp)) {
15029 BNX2X_ERR("Can't register CNIC when not supported\n");
15030 return -EOPNOTSUPP;
15031 }
15032
15033 if (!CNIC_LOADED(bp)) {
15034 rc = bnx2x_load_cnic(bp);
15035 if (rc) {
15036 BNX2X_ERR("CNIC-related load failed\n");
15037 return rc;
15038 }
15039 }
15040
15041 bp->cnic_enabled = true;
15042
15043 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15044 if (!bp->cnic_kwq)
15045 return -ENOMEM;
15046
15047 bp->cnic_kwq_cons = bp->cnic_kwq;
15048 bp->cnic_kwq_prod = bp->cnic_kwq;
15049 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15050
15051 bp->cnic_spq_pending = 0;
15052 bp->cnic_kwq_pending = 0;
15053
15054 bp->cnic_data = data;
15055
15056 cp->num_irq = 0;
15057 cp->drv_state |= CNIC_DRV_STATE_REGD;
15058 cp->iro_arr = bp->iro_arr;
15059
15060 bnx2x_setup_cnic_irq_info(bp);
15061
15062 rcu_assign_pointer(bp->cnic_ops, ops);
15063
15064 /* Schedule driver to read CNIC driver versions */
15065 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15066
15067 return 0;
15068 }
15069
bnx2x_unregister_cnic(struct net_device * dev)15070 static int bnx2x_unregister_cnic(struct net_device *dev)
15071 {
15072 struct bnx2x *bp = netdev_priv(dev);
15073 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15074
15075 mutex_lock(&bp->cnic_mutex);
15076 cp->drv_state = 0;
15077 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15078 mutex_unlock(&bp->cnic_mutex);
15079 synchronize_rcu();
15080 bp->cnic_enabled = false;
15081 kfree(bp->cnic_kwq);
15082 bp->cnic_kwq = NULL;
15083
15084 return 0;
15085 }
15086
bnx2x_cnic_probe(struct net_device * dev)15087 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15088 {
15089 struct bnx2x *bp = netdev_priv(dev);
15090 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15091
15092 /* If both iSCSI and FCoE are disabled - return NULL in
15093 * order to indicate CNIC that it should not try to work
15094 * with this device.
15095 */
15096 if (NO_ISCSI(bp) && NO_FCOE(bp))
15097 return NULL;
15098
15099 cp->drv_owner = THIS_MODULE;
15100 cp->chip_id = CHIP_ID(bp);
15101 cp->pdev = bp->pdev;
15102 cp->io_base = bp->regview;
15103 cp->io_base2 = bp->doorbells;
15104 cp->max_kwqe_pending = 8;
15105 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15106 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15107 bnx2x_cid_ilt_lines(bp);
15108 cp->ctx_tbl_len = CNIC_ILT_LINES;
15109 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15110 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15111 cp->drv_ctl = bnx2x_drv_ctl;
15112 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15113 cp->drv_register_cnic = bnx2x_register_cnic;
15114 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15115 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15116 cp->iscsi_l2_client_id =
15117 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15118 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15119
15120 if (NO_ISCSI_OOO(bp))
15121 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15122
15123 if (NO_ISCSI(bp))
15124 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15125
15126 if (NO_FCOE(bp))
15127 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15128
15129 BNX2X_DEV_INFO(
15130 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15131 cp->ctx_blk_size,
15132 cp->ctx_tbl_offset,
15133 cp->ctx_tbl_len,
15134 cp->starting_cid);
15135 return cp;
15136 }
15137
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15138 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15139 {
15140 struct bnx2x *bp = fp->bp;
15141 u32 offset = BAR_USTRORM_INTMEM;
15142
15143 if (IS_VF(bp))
15144 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15145 else if (!CHIP_IS_E1x(bp))
15146 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15147 else
15148 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15149
15150 return offset;
15151 }
15152
15153 /* called only on E1H or E2.
15154 * When pretending to be PF, the pretend value is the function number 0...7
15155 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15156 * combination
15157 */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15158 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15159 {
15160 u32 pretend_reg;
15161
15162 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15163 return -1;
15164
15165 /* get my own pretend register */
15166 pretend_reg = bnx2x_get_pretend_reg(bp);
15167 REG_WR(bp, pretend_reg, pretend_func_val);
15168 REG_RD(bp, pretend_reg);
15169 return 0;
15170 }
15171
bnx2x_ptp_task(struct work_struct * work)15172 static void bnx2x_ptp_task(struct work_struct *work)
15173 {
15174 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15175 int port = BP_PORT(bp);
15176 u32 val_seq;
15177 u64 timestamp, ns;
15178 struct skb_shared_hwtstamps shhwtstamps;
15179 bool bail = true;
15180 int i;
15181
15182 /* FW may take a while to complete timestamping; try a bit and if it's
15183 * still not complete, may indicate an error state - bail out then.
15184 */
15185 for (i = 0; i < 10; i++) {
15186 /* Read Tx timestamp registers */
15187 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15188 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15189 if (val_seq & 0x10000) {
15190 bail = false;
15191 break;
15192 }
15193 msleep(1 << i);
15194 }
15195
15196 if (!bail) {
15197 /* There is a valid timestamp value */
15198 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15199 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15200 timestamp <<= 32;
15201 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15202 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15203 /* Reset timestamp register to allow new timestamp */
15204 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15205 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15206 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15207
15208 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15209 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15210 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15211
15212 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15213 timestamp, ns);
15214 } else {
15215 DP(BNX2X_MSG_PTP,
15216 "Tx timestamp is not recorded (register read=%u)\n",
15217 val_seq);
15218 bp->eth_stats.ptp_skip_tx_ts++;
15219 }
15220
15221 dev_kfree_skb_any(bp->ptp_tx_skb);
15222 bp->ptp_tx_skb = NULL;
15223 }
15224
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15225 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15226 {
15227 int port = BP_PORT(bp);
15228 u64 timestamp, ns;
15229
15230 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15231 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15232 timestamp <<= 32;
15233 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15234 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15235
15236 /* Reset timestamp register to allow new timestamp */
15237 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15238 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15239
15240 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15241
15242 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15243
15244 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15245 timestamp, ns);
15246 }
15247
15248 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15249 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15250 {
15251 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15252 int port = BP_PORT(bp);
15253 u32 wb_data[2];
15254 u64 phc_cycles;
15255
15256 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15257 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15258 phc_cycles = wb_data[1];
15259 phc_cycles = (phc_cycles << 32) + wb_data[0];
15260
15261 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15262
15263 return phc_cycles;
15264 }
15265
bnx2x_init_cyclecounter(struct bnx2x * bp)15266 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15267 {
15268 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15269 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15270 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15271 bp->cyclecounter.shift = 0;
15272 bp->cyclecounter.mult = 1;
15273 }
15274
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15275 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15276 {
15277 struct bnx2x_func_state_params func_params = {NULL};
15278 struct bnx2x_func_set_timesync_params *set_timesync_params =
15279 &func_params.params.set_timesync;
15280
15281 /* Prepare parameters for function state transitions */
15282 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15283 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15284
15285 func_params.f_obj = &bp->func_obj;
15286 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15287
15288 /* Function parameters */
15289 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15290 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15291
15292 return bnx2x_func_state_change(bp, &func_params);
15293 }
15294
bnx2x_enable_ptp_packets(struct bnx2x * bp)15295 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15296 {
15297 struct bnx2x_queue_state_params q_params;
15298 int rc, i;
15299
15300 /* send queue update ramrod to enable PTP packets */
15301 memset(&q_params, 0, sizeof(q_params));
15302 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15303 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15304 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15305 &q_params.params.update.update_flags);
15306 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15307 &q_params.params.update.update_flags);
15308
15309 /* send the ramrod on all the queues of the PF */
15310 for_each_eth_queue(bp, i) {
15311 struct bnx2x_fastpath *fp = &bp->fp[i];
15312
15313 /* Set the appropriate Queue object */
15314 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15315
15316 /* Update the Queue state */
15317 rc = bnx2x_queue_state_change(bp, &q_params);
15318 if (rc) {
15319 BNX2X_ERR("Failed to enable PTP packets\n");
15320 return rc;
15321 }
15322 }
15323
15324 return 0;
15325 }
15326
15327 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15328 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15329 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15330 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15331 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15332 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15333 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15334 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15335 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15336 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15337 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15338 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15339
bnx2x_configure_ptp_filters(struct bnx2x * bp)15340 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15341 {
15342 int port = BP_PORT(bp);
15343 u32 param, rule;
15344 int rc;
15345
15346 if (!bp->hwtstamp_ioctl_called)
15347 return 0;
15348
15349 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15350 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15351 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15352 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15353 switch (bp->tx_type) {
15354 case HWTSTAMP_TX_ON:
15355 bp->flags |= TX_TIMESTAMPING_EN;
15356 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15357 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15358 break;
15359 case HWTSTAMP_TX_ONESTEP_SYNC:
15360 case HWTSTAMP_TX_ONESTEP_P2P:
15361 BNX2X_ERR("One-step timestamping is not supported\n");
15362 return -ERANGE;
15363 }
15364
15365 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15366 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15367 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15368 NIG_REG_P0_LLH_PTP_RULE_MASK;
15369 switch (bp->rx_filter) {
15370 case HWTSTAMP_FILTER_NONE:
15371 break;
15372 case HWTSTAMP_FILTER_ALL:
15373 case HWTSTAMP_FILTER_SOME:
15374 case HWTSTAMP_FILTER_NTP_ALL:
15375 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15376 break;
15377 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15378 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15379 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15380 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15381 /* Initialize PTP detection for UDP/IPv4 events */
15382 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15383 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15384 break;
15385 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15386 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15387 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15388 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15389 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15390 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15391 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15392 break;
15393 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15394 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15395 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15396 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15397 /* Initialize PTP detection L2 events */
15398 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15399 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15400
15401 break;
15402 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15403 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15404 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15405 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15406 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15407 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15408 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15409 break;
15410 }
15411
15412 /* Indicate to FW that this PF expects recorded PTP packets */
15413 rc = bnx2x_enable_ptp_packets(bp);
15414 if (rc)
15415 return rc;
15416
15417 /* Enable sending PTP packets to host */
15418 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15419 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15420
15421 return 0;
15422 }
15423
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15424 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15425 {
15426 struct hwtstamp_config config;
15427 int rc;
15428
15429 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15430
15431 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15432 return -EFAULT;
15433
15434 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15435 config.tx_type, config.rx_filter);
15436
15437 if (config.flags) {
15438 BNX2X_ERR("config.flags is reserved for future use\n");
15439 return -EINVAL;
15440 }
15441
15442 bp->hwtstamp_ioctl_called = true;
15443 bp->tx_type = config.tx_type;
15444 bp->rx_filter = config.rx_filter;
15445
15446 rc = bnx2x_configure_ptp_filters(bp);
15447 if (rc)
15448 return rc;
15449
15450 config.rx_filter = bp->rx_filter;
15451
15452 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15453 -EFAULT : 0;
15454 }
15455
15456 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15457 static int bnx2x_configure_ptp(struct bnx2x *bp)
15458 {
15459 int rc, port = BP_PORT(bp);
15460 u32 wb_data[2];
15461
15462 /* Reset PTP event detection rules - will be configured in the IOCTL */
15463 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15464 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15465 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15466 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15467 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15468 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15469 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15470 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15471
15472 /* Disable PTP packets to host - will be configured in the IOCTL*/
15473 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15474 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15475
15476 /* Enable the PTP feature */
15477 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15478 NIG_REG_P0_PTP_EN, 0x3F);
15479
15480 /* Enable the free-running counter */
15481 wb_data[0] = 0;
15482 wb_data[1] = 0;
15483 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15484
15485 /* Reset drift register (offset register is not reset) */
15486 rc = bnx2x_send_reset_timesync_ramrod(bp);
15487 if (rc) {
15488 BNX2X_ERR("Failed to reset PHC drift register\n");
15489 return -EFAULT;
15490 }
15491
15492 /* Reset possibly old timestamps */
15493 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15494 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15495 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15496 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15497
15498 return 0;
15499 }
15500
15501 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15502 void bnx2x_init_ptp(struct bnx2x *bp)
15503 {
15504 int rc;
15505
15506 /* Configure PTP in HW */
15507 rc = bnx2x_configure_ptp(bp);
15508 if (rc) {
15509 BNX2X_ERR("Stopping PTP initialization\n");
15510 return;
15511 }
15512
15513 /* Init work queue for Tx timestamping */
15514 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15515
15516 /* Init cyclecounter and timecounter. This is done only in the first
15517 * load. If done in every load, PTP application will fail when doing
15518 * unload / load (e.g. MTU change) while it is running.
15519 */
15520 if (!bp->timecounter_init_done) {
15521 bnx2x_init_cyclecounter(bp);
15522 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15523 ktime_to_ns(ktime_get_real()));
15524 bp->timecounter_init_done = true;
15525 }
15526
15527 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15528 }
15529