1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4
5 #include <linux/rculist.h>
6 #include <linux/wait.h>
7 #include <linux/refcount.h>
8
9 enum pid_type
10 {
11 PIDTYPE_PID,
12 PIDTYPE_TGID,
13 PIDTYPE_PGID,
14 PIDTYPE_SID,
15 PIDTYPE_MAX,
16 };
17
18 /*
19 * What is struct pid?
20 *
21 * A struct pid is the kernel's internal notion of a process identifier.
22 * It refers to individual tasks, process groups, and sessions. While
23 * there are processes attached to it the struct pid lives in a hash
24 * table, so it and then the processes that it refers to can be found
25 * quickly from the numeric pid value. The attached processes may be
26 * quickly accessed by following pointers from struct pid.
27 *
28 * Storing pid_t values in the kernel and referring to them later has a
29 * problem. The process originally with that pid may have exited and the
30 * pid allocator wrapped, and another process could have come along
31 * and been assigned that pid.
32 *
33 * Referring to user space processes by holding a reference to struct
34 * task_struct has a problem. When the user space process exits
35 * the now useless task_struct is still kept. A task_struct plus a
36 * stack consumes around 10K of low kernel memory. More precisely
37 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
38 * a struct pid is about 64 bytes.
39 *
40 * Holding a reference to struct pid solves both of these problems.
41 * It is small so holding a reference does not consume a lot of
42 * resources, and since a new struct pid is allocated when the numeric pid
43 * value is reused (when pids wrap around) we don't mistakenly refer to new
44 * processes.
45 */
46
47
48 /*
49 * struct upid is used to get the id of the struct pid, as it is
50 * seen in particular namespace. Later the struct pid is found with
51 * find_pid_ns() using the int nr and struct pid_namespace *ns.
52 */
53
54 struct upid {
55 int nr;
56 struct pid_namespace *ns;
57 };
58
59 struct pid
60 {
61 refcount_t count;
62 unsigned int level;
63 spinlock_t lock;
64 /* lists of tasks that use this pid */
65 struct hlist_head tasks[PIDTYPE_MAX];
66 struct hlist_head inodes;
67 /* wait queue for pidfd notifications */
68 wait_queue_head_t wait_pidfd;
69 struct rcu_head rcu;
70 struct upid numbers[1];
71 };
72
73 extern struct pid init_struct_pid;
74
75 extern const struct file_operations pidfd_fops;
76
77 struct file;
78
79 extern struct pid *pidfd_pid(const struct file *file);
80 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
81
get_pid(struct pid * pid)82 static inline struct pid *get_pid(struct pid *pid)
83 {
84 if (pid)
85 refcount_inc(&pid->count);
86 return pid;
87 }
88
89 extern void put_pid(struct pid *pid);
90 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
pid_has_task(struct pid * pid,enum pid_type type)91 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
92 {
93 return !hlist_empty(&pid->tasks[type]);
94 }
95 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
96
97 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
98
99 /*
100 * these helpers must be called with the tasklist_lock write-held.
101 */
102 extern void attach_pid(struct task_struct *task, enum pid_type);
103 extern void detach_pid(struct task_struct *task, enum pid_type);
104 extern void change_pid(struct task_struct *task, enum pid_type,
105 struct pid *pid);
106 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
107 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
108 enum pid_type);
109
110 struct pid_namespace;
111 extern struct pid_namespace init_pid_ns;
112
113 extern int pid_max;
114 extern int pid_max_min, pid_max_max;
115
116 /*
117 * look up a PID in the hash table. Must be called with the tasklist_lock
118 * or rcu_read_lock() held.
119 *
120 * find_pid_ns() finds the pid in the namespace specified
121 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
122 *
123 * see also find_task_by_vpid() set in include/linux/sched.h
124 */
125 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
126 extern struct pid *find_vpid(int nr);
127
128 /*
129 * Lookup a PID in the hash table, and return with it's count elevated.
130 */
131 extern struct pid *find_get_pid(int nr);
132 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
133
134 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
135 size_t set_tid_size);
136 extern void free_pid(struct pid *pid);
137 extern void disable_pid_allocation(struct pid_namespace *ns);
138
139 /*
140 * ns_of_pid() returns the pid namespace in which the specified pid was
141 * allocated.
142 *
143 * NOTE:
144 * ns_of_pid() is expected to be called for a process (task) that has
145 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
146 * is expected to be non-NULL. If @pid is NULL, caller should handle
147 * the resulting NULL pid-ns.
148 */
ns_of_pid(struct pid * pid)149 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
150 {
151 struct pid_namespace *ns = NULL;
152 if (pid)
153 ns = pid->numbers[pid->level].ns;
154 return ns;
155 }
156
157 /*
158 * is_child_reaper returns true if the pid is the init process
159 * of the current namespace. As this one could be checked before
160 * pid_ns->child_reaper is assigned in copy_process, we check
161 * with the pid number.
162 */
is_child_reaper(struct pid * pid)163 static inline bool is_child_reaper(struct pid *pid)
164 {
165 return pid->numbers[pid->level].nr == 1;
166 }
167
168 /*
169 * the helpers to get the pid's id seen from different namespaces
170 *
171 * pid_nr() : global id, i.e. the id seen from the init namespace;
172 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
173 * current.
174 * pid_nr_ns() : id seen from the ns specified.
175 *
176 * see also task_xid_nr() etc in include/linux/sched.h
177 */
178
pid_nr(struct pid * pid)179 static inline pid_t pid_nr(struct pid *pid)
180 {
181 pid_t nr = 0;
182 if (pid)
183 nr = pid->numbers[0].nr;
184 return nr;
185 }
186
187 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
188 pid_t pid_vnr(struct pid *pid);
189
190 #define do_each_pid_task(pid, type, task) \
191 do { \
192 if ((pid) != NULL) \
193 hlist_for_each_entry_rcu((task), \
194 &(pid)->tasks[type], pid_links[type]) {
195
196 /*
197 * Both old and new leaders may be attached to
198 * the same pid in the middle of de_thread().
199 */
200 #define while_each_pid_task(pid, type, task) \
201 if (type == PIDTYPE_PID) \
202 break; \
203 } \
204 } while (0)
205
206 #define do_each_pid_thread(pid, type, task) \
207 do_each_pid_task(pid, type, task) { \
208 struct task_struct *tg___ = task; \
209 for_each_thread(tg___, task) {
210
211 #define while_each_pid_thread(pid, type, task) \
212 } \
213 task = tg___; \
214 } while_each_pid_task(pid, type, task)
215 #endif /* _LINUX_PID_H */
216