1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 #include <linux/android_kabi.h>
44 #include <linux/android_vendor.h>
45
46 /* The interface for checksum offload between the stack and networking drivers
47 * is as follows...
48 *
49 * A. IP checksum related features
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * The checksum related features are:
57 *
58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
59 * IP (one's complement) checksum for any combination
60 * of protocols or protocol layering. The checksum is
61 * computed and set in a packet per the CHECKSUM_PARTIAL
62 * interface (see below).
63 *
64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65 * TCP or UDP packets over IPv4. These are specifically
66 * unencapsulated packets of the form IPv4|TCP or
67 * IPv4|UDP where the Protocol field in the IPv4 header
68 * is TCP or UDP. The IPv4 header may contain IP options.
69 * This feature cannot be set in features for a device
70 * with NETIF_F_HW_CSUM also set. This feature is being
71 * DEPRECATED (see below).
72 *
73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv6. These are specifically
75 * unencapsulated packets of the form IPv6|TCP or
76 * IPv6|UDP where the Next Header field in the IPv6
77 * header is either TCP or UDP. IPv6 extension headers
78 * are not supported with this feature. This feature
79 * cannot be set in features for a device with
80 * NETIF_F_HW_CSUM also set. This feature is being
81 * DEPRECATED (see below).
82 *
83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84 * This flag is only used to disable the RX checksum
85 * feature for a device. The stack will accept receive
86 * checksum indication in packets received on a device
87 * regardless of whether NETIF_F_RXCSUM is set.
88 *
89 * B. Checksumming of received packets by device. Indication of checksum
90 * verification is set in skb->ip_summed. Possible values are:
91 *
92 * CHECKSUM_NONE:
93 *
94 * Device did not checksum this packet e.g. due to lack of capabilities.
95 * The packet contains full (though not verified) checksum in packet but
96 * not in skb->csum. Thus, skb->csum is undefined in this case.
97 *
98 * CHECKSUM_UNNECESSARY:
99 *
100 * The hardware you're dealing with doesn't calculate the full checksum
101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103 * if their checksums are okay. skb->csum is still undefined in this case
104 * though. A driver or device must never modify the checksum field in the
105 * packet even if checksum is verified.
106 *
107 * CHECKSUM_UNNECESSARY is applicable to following protocols:
108 * TCP: IPv6 and IPv4.
109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110 * zero UDP checksum for either IPv4 or IPv6, the networking stack
111 * may perform further validation in this case.
112 * GRE: only if the checksum is present in the header.
113 * SCTP: indicates the CRC in SCTP header has been validated.
114 * FCOE: indicates the CRC in FC frame has been validated.
115 *
116 * skb->csum_level indicates the number of consecutive checksums found in
117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119 * and a device is able to verify the checksums for UDP (possibly zero),
120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121 * two. If the device were only able to verify the UDP checksum and not
122 * GRE, either because it doesn't support GRE checksum or because GRE
123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124 * not considered in this case).
125 *
126 * CHECKSUM_COMPLETE:
127 *
128 * This is the most generic way. The device supplied checksum of the _whole_
129 * packet as seen by netif_rx() and fills in skb->csum. This means the
130 * hardware doesn't need to parse L3/L4 headers to implement this.
131 *
132 * Notes:
133 * - Even if device supports only some protocols, but is able to produce
134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136 *
137 * CHECKSUM_PARTIAL:
138 *
139 * A checksum is set up to be offloaded to a device as described in the
140 * output description for CHECKSUM_PARTIAL. This may occur on a packet
141 * received directly from another Linux OS, e.g., a virtualized Linux kernel
142 * on the same host, or it may be set in the input path in GRO or remote
143 * checksum offload. For the purposes of checksum verification, the checksum
144 * referred to by skb->csum_start + skb->csum_offset and any preceding
145 * checksums in the packet are considered verified. Any checksums in the
146 * packet that are after the checksum being offloaded are not considered to
147 * be verified.
148 *
149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150 * in the skb->ip_summed for a packet. Values are:
151 *
152 * CHECKSUM_PARTIAL:
153 *
154 * The driver is required to checksum the packet as seen by hard_start_xmit()
155 * from skb->csum_start up to the end, and to record/write the checksum at
156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
157 * csum_start and csum_offset values are valid values given the length and
158 * offset of the packet, but it should not attempt to validate that the
159 * checksum refers to a legitimate transport layer checksum -- it is the
160 * purview of the stack to validate that csum_start and csum_offset are set
161 * correctly.
162 *
163 * When the stack requests checksum offload for a packet, the driver MUST
164 * ensure that the checksum is set correctly. A driver can either offload the
165 * checksum calculation to the device, or call skb_checksum_help (in the case
166 * that the device does not support offload for a particular checksum).
167 *
168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170 * checksum offload capability.
171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172 * on network device checksumming capabilities: if a packet does not match
173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
174 * csum_not_inet, see item D.) is called to resolve the checksum.
175 *
176 * CHECKSUM_NONE:
177 *
178 * The skb was already checksummed by the protocol, or a checksum is not
179 * required.
180 *
181 * CHECKSUM_UNNECESSARY:
182 *
183 * This has the same meaning as CHECKSUM_NONE for checksum offload on
184 * output.
185 *
186 * CHECKSUM_COMPLETE:
187 * Not used in checksum output. If a driver observes a packet with this value
188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189 *
190 * D. Non-IP checksum (CRC) offloads
191 *
192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193 * offloading the SCTP CRC in a packet. To perform this offload the stack
194 * will set csum_start and csum_offset accordingly, set ip_summed to
195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197 * A driver that supports both IP checksum offload and SCTP CRC32c offload
198 * must verify which offload is configured for a packet by testing the
199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201 *
202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203 * offloading the FCOE CRC in a packet. To perform this offload the stack
204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205 * accordingly. Note that there is no indication in the skbuff that the
206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207 * both IP checksum offload and FCOE CRC offload must verify which offload
208 * is configured for a packet, presumably by inspecting packet headers.
209 *
210 * E. Checksumming on output with GSO.
211 *
212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215 * part of the GSO operation is implied. If a checksum is being offloaded
216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217 * csum_offset are set to refer to the outermost checksum being offloaded
218 * (two offloaded checksums are possible with UDP encapsulation).
219 */
220
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE 0
223 #define CHECKSUM_UNNECESSARY 1
224 #define CHECKSUM_COMPLETE 2
225 #define CHECKSUM_PARTIAL 3
226
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL 3
229
230 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X) \
232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
237
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) + \
240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 enum {
256 BRNF_PROTO_UNCHANGED,
257 BRNF_PROTO_8021Q,
258 BRNF_PROTO_PPPOE
259 } orig_proto:8;
260 u8 pkt_otherhost:1;
261 u8 in_prerouting:1;
262 u8 bridged_dnat:1;
263 u8 sabotage_in_done:1;
264 __u16 frag_max_size;
265 struct net_device *physindev;
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
269 union {
270 /* prerouting: detect dnat in orig/reply direction */
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
279 };
280 };
281 #endif
282
283 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
284 /* Chain in tc_skb_ext will be used to share the tc chain with
285 * ovs recirc_id. It will be set to the current chain by tc
286 * and read by ovs to recirc_id.
287 */
288 struct tc_skb_ext {
289 __u32 chain;
290 __u16 mru;
291 };
292 #endif
293
294 struct sk_buff_head {
295 /* These two members must be first. */
296 struct sk_buff *next;
297 struct sk_buff *prev;
298
299 __u32 qlen;
300 spinlock_t lock;
301 };
302
303 struct sk_buff;
304
305 /* To allow 64K frame to be packed as single skb without frag_list we
306 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
307 * buffers which do not start on a page boundary.
308 *
309 * Since GRO uses frags we allocate at least 16 regardless of page
310 * size.
311 */
312 #if (65536/PAGE_SIZE + 1) < 16
313 #define MAX_SKB_FRAGS 16UL
314 #else
315 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
316 #endif
317 extern int sysctl_max_skb_frags;
318
319 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
320 * segment using its current segmentation instead.
321 */
322 #define GSO_BY_FRAGS 0xFFFF
323
324 typedef struct bio_vec skb_frag_t;
325
326 /**
327 * skb_frag_size() - Returns the size of a skb fragment
328 * @frag: skb fragment
329 */
skb_frag_size(const skb_frag_t * frag)330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 return frag->bv_len;
333 }
334
335 /**
336 * skb_frag_size_set() - Sets the size of a skb fragment
337 * @frag: skb fragment
338 * @size: size of fragment
339 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 frag->bv_len = size;
343 }
344
345 /**
346 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
347 * @frag: skb fragment
348 * @delta: value to add
349 */
skb_frag_size_add(skb_frag_t * frag,int delta)350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 frag->bv_len += delta;
353 }
354
355 /**
356 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
357 * @frag: skb fragment
358 * @delta: value to subtract
359 */
skb_frag_size_sub(skb_frag_t * frag,int delta)360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 frag->bv_len -= delta;
363 }
364
365 /**
366 * skb_frag_must_loop - Test if %p is a high memory page
367 * @p: fragment's page
368 */
skb_frag_must_loop(struct page * p)369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 if (PageHighMem(p))
373 return true;
374 #endif
375 return false;
376 }
377
378 /**
379 * skb_frag_foreach_page - loop over pages in a fragment
380 *
381 * @f: skb frag to operate on
382 * @f_off: offset from start of f->bv_page
383 * @f_len: length from f_off to loop over
384 * @p: (temp var) current page
385 * @p_off: (temp var) offset from start of current page,
386 * non-zero only on first page.
387 * @p_len: (temp var) length in current page,
388 * < PAGE_SIZE only on first and last page.
389 * @copied: (temp var) length so far, excluding current p_len.
390 *
391 * A fragment can hold a compound page, in which case per-page
392 * operations, notably kmap_atomic, must be called for each
393 * regular page.
394 */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
397 p_off = (f_off) & (PAGE_SIZE - 1), \
398 p_len = skb_frag_must_loop(p) ? \
399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
400 copied = 0; \
401 copied < f_len; \
402 copied += p_len, p++, p_off = 0, \
403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
404
405 #define HAVE_HW_TIME_STAMP
406
407 /**
408 * struct skb_shared_hwtstamps - hardware time stamps
409 * @hwtstamp: hardware time stamp transformed into duration
410 * since arbitrary point in time
411 *
412 * Software time stamps generated by ktime_get_real() are stored in
413 * skb->tstamp.
414 *
415 * hwtstamps can only be compared against other hwtstamps from
416 * the same device.
417 *
418 * This structure is attached to packets as part of the
419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420 */
421 struct skb_shared_hwtstamps {
422 ktime_t hwtstamp;
423 };
424
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 /* generate hardware time stamp */
428 SKBTX_HW_TSTAMP = 1 << 0,
429
430 /* generate software time stamp when queueing packet to NIC */
431 SKBTX_SW_TSTAMP = 1 << 1,
432
433 /* device driver is going to provide hardware time stamp */
434 SKBTX_IN_PROGRESS = 1 << 2,
435
436 /* device driver supports TX zero-copy buffers */
437 SKBTX_DEV_ZEROCOPY = 1 << 3,
438
439 /* generate wifi status information (where possible) */
440 SKBTX_WIFI_STATUS = 1 << 4,
441
442 /* This indicates at least one fragment might be overwritten
443 * (as in vmsplice(), sendfile() ...)
444 * If we need to compute a TX checksum, we'll need to copy
445 * all frags to avoid possible bad checksum
446 */
447 SKBTX_SHARED_FRAG = 1 << 5,
448
449 /* generate software time stamp when entering packet scheduling */
450 SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452
453 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
455 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457
458 /*
459 * The callback notifies userspace to release buffers when skb DMA is done in
460 * lower device, the skb last reference should be 0 when calling this.
461 * The zerocopy_success argument is true if zero copy transmit occurred,
462 * false on data copy or out of memory error caused by data copy attempt.
463 * The ctx field is used to track device context.
464 * The desc field is used to track userspace buffer index.
465 */
466 struct ubuf_info {
467 void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 union {
469 struct {
470 unsigned long desc;
471 void *ctx;
472 };
473 struct {
474 u32 id;
475 u16 len;
476 u16 zerocopy:1;
477 u32 bytelen;
478 };
479 };
480 refcount_t refcnt;
481
482 struct mmpin {
483 struct user_struct *user;
484 unsigned int num_pg;
485 } mmp;
486 };
487
488 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 struct ubuf_info *uarg);
496
sock_zerocopy_get(struct ubuf_info * uarg)497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 refcount_inc(&uarg->refcnt);
500 }
501
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 struct msghdr *msg, int len,
510 struct ubuf_info *uarg);
511
512 /* This data is invariant across clones and lives at
513 * the end of the header data, ie. at skb->end.
514 */
515 struct skb_shared_info {
516 __u8 __unused;
517 __u8 meta_len;
518 __u8 nr_frags;
519 __u8 tx_flags;
520 unsigned short gso_size;
521 /* Warning: this field is not always filled in (UFO)! */
522 unsigned short gso_segs;
523 struct sk_buff *frag_list;
524 struct skb_shared_hwtstamps hwtstamps;
525 unsigned int gso_type;
526 u32 tskey;
527
528 /*
529 * Warning : all fields before dataref are cleared in __alloc_skb()
530 */
531 atomic_t dataref;
532
533 /* Intermediate layers must ensure that destructor_arg
534 * remains valid until skb destructor */
535 void * destructor_arg;
536
537 ANDROID_OEM_DATA_ARRAY(1, 3);
538
539 /* must be last field, see pskb_expand_head() */
540 skb_frag_t frags[MAX_SKB_FRAGS];
541 };
542
543 /* We divide dataref into two halves. The higher 16 bits hold references
544 * to the payload part of skb->data. The lower 16 bits hold references to
545 * the entire skb->data. A clone of a headerless skb holds the length of
546 * the header in skb->hdr_len.
547 *
548 * All users must obey the rule that the skb->data reference count must be
549 * greater than or equal to the payload reference count.
550 *
551 * Holding a reference to the payload part means that the user does not
552 * care about modifications to the header part of skb->data.
553 */
554 #define SKB_DATAREF_SHIFT 16
555 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
556
557
558 enum {
559 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
560 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
561 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
562 };
563
564 enum {
565 SKB_GSO_TCPV4 = 1 << 0,
566
567 /* This indicates the skb is from an untrusted source. */
568 SKB_GSO_DODGY = 1 << 1,
569
570 /* This indicates the tcp segment has CWR set. */
571 SKB_GSO_TCP_ECN = 1 << 2,
572
573 SKB_GSO_TCP_FIXEDID = 1 << 3,
574
575 SKB_GSO_TCPV6 = 1 << 4,
576
577 SKB_GSO_FCOE = 1 << 5,
578
579 SKB_GSO_GRE = 1 << 6,
580
581 SKB_GSO_GRE_CSUM = 1 << 7,
582
583 SKB_GSO_IPXIP4 = 1 << 8,
584
585 SKB_GSO_IPXIP6 = 1 << 9,
586
587 SKB_GSO_UDP_TUNNEL = 1 << 10,
588
589 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
590
591 SKB_GSO_PARTIAL = 1 << 12,
592
593 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
594
595 SKB_GSO_SCTP = 1 << 14,
596
597 SKB_GSO_ESP = 1 << 15,
598
599 SKB_GSO_UDP = 1 << 16,
600
601 SKB_GSO_UDP_L4 = 1 << 17,
602
603 SKB_GSO_FRAGLIST = 1 << 18,
604 };
605
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615
616 /**
617 * struct sk_buff - socket buffer
618 * @next: Next buffer in list
619 * @prev: Previous buffer in list
620 * @tstamp: Time we arrived/left
621 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
622 * for retransmit timer
623 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
624 * @list: queue head
625 * @sk: Socket we are owned by
626 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
627 * fragmentation management
628 * @dev: Device we arrived on/are leaving by
629 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
630 * @cb: Control buffer. Free for use by every layer. Put private vars here
631 * @_skb_refdst: destination entry (with norefcount bit)
632 * @sp: the security path, used for xfrm
633 * @len: Length of actual data
634 * @data_len: Data length
635 * @mac_len: Length of link layer header
636 * @hdr_len: writable header length of cloned skb
637 * @csum: Checksum (must include start/offset pair)
638 * @csum_start: Offset from skb->head where checksumming should start
639 * @csum_offset: Offset from csum_start where checksum should be stored
640 * @priority: Packet queueing priority
641 * @ignore_df: allow local fragmentation
642 * @cloned: Head may be cloned (check refcnt to be sure)
643 * @ip_summed: Driver fed us an IP checksum
644 * @nohdr: Payload reference only, must not modify header
645 * @pkt_type: Packet class
646 * @fclone: skbuff clone status
647 * @ipvs_property: skbuff is owned by ipvs
648 * @inner_protocol_type: whether the inner protocol is
649 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
650 * @remcsum_offload: remote checksum offload is enabled
651 * @offload_fwd_mark: Packet was L2-forwarded in hardware
652 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
653 * @tc_skip_classify: do not classify packet. set by IFB device
654 * @tc_at_ingress: used within tc_classify to distinguish in/egress
655 * @redirected: packet was redirected by packet classifier
656 * @from_ingress: packet was redirected from the ingress path
657 * @peeked: this packet has been seen already, so stats have been
658 * done for it, don't do them again
659 * @nf_trace: netfilter packet trace flag
660 * @protocol: Packet protocol from driver
661 * @destructor: Destruct function
662 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
663 * @_nfct: Associated connection, if any (with nfctinfo bits)
664 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
665 * @skb_iif: ifindex of device we arrived on
666 * @tc_index: Traffic control index
667 * @hash: the packet hash
668 * @queue_mapping: Queue mapping for multiqueue devices
669 * @head_frag: skb was allocated from page fragments,
670 * not allocated by kmalloc() or vmalloc().
671 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
672 * @active_extensions: active extensions (skb_ext_id types)
673 * @ndisc_nodetype: router type (from link layer)
674 * @ooo_okay: allow the mapping of a socket to a queue to be changed
675 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
676 * ports.
677 * @sw_hash: indicates hash was computed in software stack
678 * @wifi_acked_valid: wifi_acked was set
679 * @wifi_acked: whether frame was acked on wifi or not
680 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
681 * @encapsulation: indicates the inner headers in the skbuff are valid
682 * @encap_hdr_csum: software checksum is needed
683 * @csum_valid: checksum is already valid
684 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
685 * @csum_complete_sw: checksum was completed by software
686 * @csum_level: indicates the number of consecutive checksums found in
687 * the packet minus one that have been verified as
688 * CHECKSUM_UNNECESSARY (max 3)
689 * @scm_io_uring: SKB holds io_uring registered files
690 * @dst_pending_confirm: need to confirm neighbour
691 * @decrypted: Decrypted SKB
692 * @napi_id: id of the NAPI struct this skb came from
693 * @sender_cpu: (aka @napi_id) source CPU in XPS
694 * @secmark: security marking
695 * @mark: Generic packet mark
696 * @reserved_tailroom: (aka @mark) number of bytes of free space available
697 * at the tail of an sk_buff
698 * @vlan_present: VLAN tag is present
699 * @vlan_proto: vlan encapsulation protocol
700 * @vlan_tci: vlan tag control information
701 * @inner_protocol: Protocol (encapsulation)
702 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
703 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
704 * @inner_transport_header: Inner transport layer header (encapsulation)
705 * @inner_network_header: Network layer header (encapsulation)
706 * @inner_mac_header: Link layer header (encapsulation)
707 * @transport_header: Transport layer header
708 * @network_header: Network layer header
709 * @mac_header: Link layer header
710 * @kcov_handle: KCOV remote handle for remote coverage collection
711 * @tail: Tail pointer
712 * @end: End pointer
713 * @head: Head of buffer
714 * @data: Data head pointer
715 * @truesize: Buffer size
716 * @users: User count - see {datagram,tcp}.c
717 * @extensions: allocated extensions, valid if active_extensions is nonzero
718 */
719
720 struct sk_buff {
721 union {
722 struct {
723 /* These two members must be first. */
724 struct sk_buff *next;
725 struct sk_buff *prev;
726
727 union {
728 struct net_device *dev;
729 /* Some protocols might use this space to store information,
730 * while device pointer would be NULL.
731 * UDP receive path is one user.
732 */
733 unsigned long dev_scratch;
734 };
735 };
736 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
737 struct list_head list;
738 };
739
740 union {
741 struct sock *sk;
742 int ip_defrag_offset;
743 };
744
745 union {
746 ktime_t tstamp;
747 u64 skb_mstamp_ns; /* earliest departure time */
748 };
749 /*
750 * This is the control buffer. It is free to use for every
751 * layer. Please put your private variables there. If you
752 * want to keep them across layers you have to do a skb_clone()
753 * first. This is owned by whoever has the skb queued ATM.
754 */
755 char cb[48] __aligned(8);
756
757 union {
758 struct {
759 unsigned long _skb_refdst;
760 void (*destructor)(struct sk_buff *skb);
761 };
762 struct list_head tcp_tsorted_anchor;
763 };
764
765 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
766 unsigned long _nfct;
767 #endif
768 unsigned int len,
769 data_len;
770 __u16 mac_len,
771 hdr_len;
772
773 /* Following fields are _not_ copied in __copy_skb_header()
774 * Note that queue_mapping is here mostly to fill a hole.
775 */
776 __u16 queue_mapping;
777
778 /* if you move cloned around you also must adapt those constants */
779 #ifdef __BIG_ENDIAN_BITFIELD
780 #define CLONED_MASK (1 << 7)
781 #else
782 #define CLONED_MASK 1
783 #endif
784 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
785
786 /* private: */
787 __u8 __cloned_offset[0];
788 /* public: */
789 __u8 cloned:1,
790 nohdr:1,
791 fclone:2,
792 peeked:1,
793 head_frag:1,
794 pfmemalloc:1;
795 #ifdef CONFIG_SKB_EXTENSIONS
796 __u8 active_extensions;
797 #endif
798 /* fields enclosed in headers_start/headers_end are copied
799 * using a single memcpy() in __copy_skb_header()
800 */
801 /* private: */
802 __u32 headers_start[0];
803 /* public: */
804
805 /* if you move pkt_type around you also must adapt those constants */
806 #ifdef __BIG_ENDIAN_BITFIELD
807 #define PKT_TYPE_MAX (7 << 5)
808 #else
809 #define PKT_TYPE_MAX 7
810 #endif
811 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
812
813 /* private: */
814 __u8 __pkt_type_offset[0];
815 /* public: */
816 __u8 pkt_type:3;
817 __u8 ignore_df:1;
818 __u8 nf_trace:1;
819 __u8 ip_summed:2;
820 __u8 ooo_okay:1;
821
822 __u8 l4_hash:1;
823 __u8 sw_hash:1;
824 __u8 wifi_acked_valid:1;
825 __u8 wifi_acked:1;
826 __u8 no_fcs:1;
827 /* Indicates the inner headers are valid in the skbuff. */
828 __u8 encapsulation:1;
829 __u8 encap_hdr_csum:1;
830 __u8 csum_valid:1;
831
832 #ifdef __BIG_ENDIAN_BITFIELD
833 #define PKT_VLAN_PRESENT_BIT 7
834 #else
835 #define PKT_VLAN_PRESENT_BIT 0
836 #endif
837 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
838 /* private: */
839 __u8 __pkt_vlan_present_offset[0];
840 /* public: */
841 __u8 vlan_present:1;
842 __u8 csum_complete_sw:1;
843 __u8 csum_level:2;
844 __u8 csum_not_inet:1;
845 __u8 dst_pending_confirm:1;
846 #ifdef CONFIG_IPV6_NDISC_NODETYPE
847 __u8 ndisc_nodetype:2;
848 #endif
849
850 __u8 ipvs_property:1;
851 __u8 inner_protocol_type:1;
852 __u8 remcsum_offload:1;
853 #ifdef CONFIG_NET_SWITCHDEV
854 __u8 offload_fwd_mark:1;
855 __u8 offload_l3_fwd_mark:1;
856 #endif
857 #ifdef CONFIG_NET_CLS_ACT
858 __u8 tc_skip_classify:1;
859 __u8 tc_at_ingress:1;
860 #endif
861 #ifdef CONFIG_NET_REDIRECT
862 __u8 redirected:1;
863 __u8 from_ingress:1;
864 #endif
865 #ifdef CONFIG_TLS_DEVICE
866 __u8 decrypted:1;
867 #endif
868
869 #ifdef CONFIG_NET_SCHED
870 __u16 tc_index; /* traffic control index */
871 #endif
872
873 union {
874 __wsum csum;
875 struct {
876 __u16 csum_start;
877 __u16 csum_offset;
878 };
879 };
880 __u32 priority;
881 int skb_iif;
882 __u32 hash;
883 __be16 vlan_proto;
884 __u16 vlan_tci;
885 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
886 union {
887 unsigned int napi_id;
888 unsigned int sender_cpu;
889 };
890 #endif
891 #ifdef CONFIG_NETWORK_SECMARK
892 __u32 secmark;
893 #endif
894
895 union {
896 __u32 mark;
897 __u32 reserved_tailroom;
898 };
899
900 union {
901 __be16 inner_protocol;
902 __u8 inner_ipproto;
903 };
904
905 __u16 inner_transport_header;
906 __u16 inner_network_header;
907 __u16 inner_mac_header;
908
909 __be16 protocol;
910 __u16 transport_header;
911 __u16 network_header;
912 __u16 mac_header;
913
914 #ifdef CONFIG_KCOV
915 u64 kcov_handle;
916 #endif
917
918 /* private: */
919 __u32 headers_end[0];
920 /* public: */
921
922 /* Android KABI preservation.
923 *
924 * "open coded" version of ANDROID_KABI_USE() to pack more
925 * fields/variables into the space that we have.
926 *
927 * scm_io_uring is from 04df9719df18 ("io_uring/af_unix: defer
928 * registered files gc to io_uring release")
929 */
930 _ANDROID_KABI_REPLACE(_ANDROID_KABI_RESERVE(1),
931 struct {
932 __u8 scm_io_uring:1;
933 __u8 android_kabi_reserved1_padding1;
934 __u16 android_kabi_reserved1_padding2;
935 __u32 android_kabi_reserved1_padding3;
936 });
937 ANDROID_KABI_RESERVE(2);
938
939 /* These elements must be at the end, see alloc_skb() for details. */
940 sk_buff_data_t tail;
941 sk_buff_data_t end;
942 unsigned char *head,
943 *data;
944 unsigned int truesize;
945 refcount_t users;
946
947 #ifdef CONFIG_SKB_EXTENSIONS
948 /* only useable after checking ->active_extensions != 0 */
949 struct skb_ext *extensions;
950 #endif
951 };
952
953 #ifdef __KERNEL__
954 /*
955 * Handling routines are only of interest to the kernel
956 */
957
958 #define SKB_ALLOC_FCLONE 0x01
959 #define SKB_ALLOC_RX 0x02
960 #define SKB_ALLOC_NAPI 0x04
961
962 /**
963 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
964 * @skb: buffer
965 */
skb_pfmemalloc(const struct sk_buff * skb)966 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
967 {
968 return unlikely(skb->pfmemalloc);
969 }
970
971 /*
972 * skb might have a dst pointer attached, refcounted or not.
973 * _skb_refdst low order bit is set if refcount was _not_ taken
974 */
975 #define SKB_DST_NOREF 1UL
976 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
977
978 /**
979 * skb_dst - returns skb dst_entry
980 * @skb: buffer
981 *
982 * Returns skb dst_entry, regardless of reference taken or not.
983 */
skb_dst(const struct sk_buff * skb)984 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
985 {
986 /* If refdst was not refcounted, check we still are in a
987 * rcu_read_lock section
988 */
989 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
990 !rcu_read_lock_held() &&
991 !rcu_read_lock_bh_held());
992 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
993 }
994
995 /**
996 * skb_dst_set - sets skb dst
997 * @skb: buffer
998 * @dst: dst entry
999 *
1000 * Sets skb dst, assuming a reference was taken on dst and should
1001 * be released by skb_dst_drop()
1002 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1003 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1004 {
1005 skb->_skb_refdst = (unsigned long)dst;
1006 }
1007
1008 /**
1009 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1010 * @skb: buffer
1011 * @dst: dst entry
1012 *
1013 * Sets skb dst, assuming a reference was not taken on dst.
1014 * If dst entry is cached, we do not take reference and dst_release
1015 * will be avoided by refdst_drop. If dst entry is not cached, we take
1016 * reference, so that last dst_release can destroy the dst immediately.
1017 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1018 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1019 {
1020 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1021 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1022 }
1023
1024 /**
1025 * skb_dst_is_noref - Test if skb dst isn't refcounted
1026 * @skb: buffer
1027 */
skb_dst_is_noref(const struct sk_buff * skb)1028 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1029 {
1030 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1031 }
1032
1033 /**
1034 * skb_rtable - Returns the skb &rtable
1035 * @skb: buffer
1036 */
skb_rtable(const struct sk_buff * skb)1037 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1038 {
1039 return (struct rtable *)skb_dst(skb);
1040 }
1041
1042 /* For mangling skb->pkt_type from user space side from applications
1043 * such as nft, tc, etc, we only allow a conservative subset of
1044 * possible pkt_types to be set.
1045 */
skb_pkt_type_ok(u32 ptype)1046 static inline bool skb_pkt_type_ok(u32 ptype)
1047 {
1048 return ptype <= PACKET_OTHERHOST;
1049 }
1050
1051 /**
1052 * skb_napi_id - Returns the skb's NAPI id
1053 * @skb: buffer
1054 */
skb_napi_id(const struct sk_buff * skb)1055 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1056 {
1057 #ifdef CONFIG_NET_RX_BUSY_POLL
1058 return skb->napi_id;
1059 #else
1060 return 0;
1061 #endif
1062 }
1063
1064 /**
1065 * skb_unref - decrement the skb's reference count
1066 * @skb: buffer
1067 *
1068 * Returns true if we can free the skb.
1069 */
skb_unref(struct sk_buff * skb)1070 static inline bool skb_unref(struct sk_buff *skb)
1071 {
1072 if (unlikely(!skb))
1073 return false;
1074 if (likely(refcount_read(&skb->users) == 1))
1075 smp_rmb();
1076 else if (likely(!refcount_dec_and_test(&skb->users)))
1077 return false;
1078
1079 return true;
1080 }
1081
1082 void skb_release_head_state(struct sk_buff *skb);
1083 void kfree_skb(struct sk_buff *skb);
1084 void kfree_skb_list(struct sk_buff *segs);
1085 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1086 void skb_tx_error(struct sk_buff *skb);
1087
1088 #ifdef CONFIG_TRACEPOINTS
1089 void consume_skb(struct sk_buff *skb);
1090 #else
consume_skb(struct sk_buff * skb)1091 static inline void consume_skb(struct sk_buff *skb)
1092 {
1093 return kfree_skb(skb);
1094 }
1095 #endif
1096
1097 void __consume_stateless_skb(struct sk_buff *skb);
1098 void __kfree_skb(struct sk_buff *skb);
1099 extern struct kmem_cache *skbuff_head_cache;
1100
1101 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1102 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1103 bool *fragstolen, int *delta_truesize);
1104
1105 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1106 int node);
1107 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1108 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1109 struct sk_buff *build_skb_around(struct sk_buff *skb,
1110 void *data, unsigned int frag_size);
1111
1112 /**
1113 * alloc_skb - allocate a network buffer
1114 * @size: size to allocate
1115 * @priority: allocation mask
1116 *
1117 * This function is a convenient wrapper around __alloc_skb().
1118 */
alloc_skb(unsigned int size,gfp_t priority)1119 static inline struct sk_buff *alloc_skb(unsigned int size,
1120 gfp_t priority)
1121 {
1122 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1123 }
1124
1125 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1126 unsigned long data_len,
1127 int max_page_order,
1128 int *errcode,
1129 gfp_t gfp_mask);
1130 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1131
1132 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1133 struct sk_buff_fclones {
1134 struct sk_buff skb1;
1135
1136 struct sk_buff skb2;
1137
1138 refcount_t fclone_ref;
1139 };
1140
1141 /**
1142 * skb_fclone_busy - check if fclone is busy
1143 * @sk: socket
1144 * @skb: buffer
1145 *
1146 * Returns true if skb is a fast clone, and its clone is not freed.
1147 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1148 * so we also check that this didnt happen.
1149 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1150 static inline bool skb_fclone_busy(const struct sock *sk,
1151 const struct sk_buff *skb)
1152 {
1153 const struct sk_buff_fclones *fclones;
1154
1155 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1156
1157 return skb->fclone == SKB_FCLONE_ORIG &&
1158 refcount_read(&fclones->fclone_ref) > 1 &&
1159 fclones->skb2.sk == sk;
1160 }
1161
1162 /**
1163 * alloc_skb_fclone - allocate a network buffer from fclone cache
1164 * @size: size to allocate
1165 * @priority: allocation mask
1166 *
1167 * This function is a convenient wrapper around __alloc_skb().
1168 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1169 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1170 gfp_t priority)
1171 {
1172 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1173 }
1174
1175 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1176 void skb_headers_offset_update(struct sk_buff *skb, int off);
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1178 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1179 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1180 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1181 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1182 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1183 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1184 gfp_t gfp_mask)
1185 {
1186 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1187 }
1188
1189 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1190 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1191 unsigned int headroom);
1192 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1193 int newtailroom, gfp_t priority);
1194 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1195 int offset, int len);
1196 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1197 int offset, int len);
1198 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1199 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1200
1201 /**
1202 * skb_pad - zero pad the tail of an skb
1203 * @skb: buffer to pad
1204 * @pad: space to pad
1205 *
1206 * Ensure that a buffer is followed by a padding area that is zero
1207 * filled. Used by network drivers which may DMA or transfer data
1208 * beyond the buffer end onto the wire.
1209 *
1210 * May return error in out of memory cases. The skb is freed on error.
1211 */
skb_pad(struct sk_buff * skb,int pad)1212 static inline int skb_pad(struct sk_buff *skb, int pad)
1213 {
1214 return __skb_pad(skb, pad, true);
1215 }
1216 #define dev_kfree_skb(a) consume_skb(a)
1217
1218 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1219 int offset, size_t size);
1220
1221 struct skb_seq_state {
1222 __u32 lower_offset;
1223 __u32 upper_offset;
1224 __u32 frag_idx;
1225 __u32 stepped_offset;
1226 struct sk_buff *root_skb;
1227 struct sk_buff *cur_skb;
1228 __u8 *frag_data;
1229 };
1230
1231 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1232 unsigned int to, struct skb_seq_state *st);
1233 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1234 struct skb_seq_state *st);
1235 void skb_abort_seq_read(struct skb_seq_state *st);
1236
1237 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1238 unsigned int to, struct ts_config *config);
1239
1240 /*
1241 * Packet hash types specify the type of hash in skb_set_hash.
1242 *
1243 * Hash types refer to the protocol layer addresses which are used to
1244 * construct a packet's hash. The hashes are used to differentiate or identify
1245 * flows of the protocol layer for the hash type. Hash types are either
1246 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1247 *
1248 * Properties of hashes:
1249 *
1250 * 1) Two packets in different flows have different hash values
1251 * 2) Two packets in the same flow should have the same hash value
1252 *
1253 * A hash at a higher layer is considered to be more specific. A driver should
1254 * set the most specific hash possible.
1255 *
1256 * A driver cannot indicate a more specific hash than the layer at which a hash
1257 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1258 *
1259 * A driver may indicate a hash level which is less specific than the
1260 * actual layer the hash was computed on. For instance, a hash computed
1261 * at L4 may be considered an L3 hash. This should only be done if the
1262 * driver can't unambiguously determine that the HW computed the hash at
1263 * the higher layer. Note that the "should" in the second property above
1264 * permits this.
1265 */
1266 enum pkt_hash_types {
1267 PKT_HASH_TYPE_NONE, /* Undefined type */
1268 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1269 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1270 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1271 };
1272
skb_clear_hash(struct sk_buff * skb)1273 static inline void skb_clear_hash(struct sk_buff *skb)
1274 {
1275 skb->hash = 0;
1276 skb->sw_hash = 0;
1277 skb->l4_hash = 0;
1278 }
1279
skb_clear_hash_if_not_l4(struct sk_buff * skb)1280 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1281 {
1282 if (!skb->l4_hash)
1283 skb_clear_hash(skb);
1284 }
1285
1286 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1287 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1288 {
1289 skb->l4_hash = is_l4;
1290 skb->sw_hash = is_sw;
1291 skb->hash = hash;
1292 }
1293
1294 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1295 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1296 {
1297 /* Used by drivers to set hash from HW */
1298 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1299 }
1300
1301 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1302 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1303 {
1304 __skb_set_hash(skb, hash, true, is_l4);
1305 }
1306
1307 void __skb_get_hash(struct sk_buff *skb);
1308 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1309 u32 skb_get_poff(const struct sk_buff *skb);
1310 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1311 const struct flow_keys_basic *keys, int hlen);
1312 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1313 void *data, int hlen_proto);
1314
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1315 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1316 int thoff, u8 ip_proto)
1317 {
1318 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1319 }
1320
1321 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1322 const struct flow_dissector_key *key,
1323 unsigned int key_count);
1324
1325 struct bpf_flow_dissector;
1326 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1327 __be16 proto, int nhoff, int hlen, unsigned int flags);
1328
1329 bool __skb_flow_dissect(const struct net *net,
1330 const struct sk_buff *skb,
1331 struct flow_dissector *flow_dissector,
1332 void *target_container,
1333 void *data, __be16 proto, int nhoff, int hlen,
1334 unsigned int flags);
1335
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1336 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1337 struct flow_dissector *flow_dissector,
1338 void *target_container, unsigned int flags)
1339 {
1340 return __skb_flow_dissect(NULL, skb, flow_dissector,
1341 target_container, NULL, 0, 0, 0, flags);
1342 }
1343
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1344 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1345 struct flow_keys *flow,
1346 unsigned int flags)
1347 {
1348 memset(flow, 0, sizeof(*flow));
1349 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1350 flow, NULL, 0, 0, 0, flags);
1351 }
1352
1353 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1354 skb_flow_dissect_flow_keys_basic(const struct net *net,
1355 const struct sk_buff *skb,
1356 struct flow_keys_basic *flow, void *data,
1357 __be16 proto, int nhoff, int hlen,
1358 unsigned int flags)
1359 {
1360 memset(flow, 0, sizeof(*flow));
1361 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1362 data, proto, nhoff, hlen, flags);
1363 }
1364
1365 void skb_flow_dissect_meta(const struct sk_buff *skb,
1366 struct flow_dissector *flow_dissector,
1367 void *target_container);
1368
1369 /* Gets a skb connection tracking info, ctinfo map should be a
1370 * map of mapsize to translate enum ip_conntrack_info states
1371 * to user states.
1372 */
1373 void
1374 skb_flow_dissect_ct(const struct sk_buff *skb,
1375 struct flow_dissector *flow_dissector,
1376 void *target_container,
1377 u16 *ctinfo_map,
1378 size_t mapsize);
1379 void
1380 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1381 struct flow_dissector *flow_dissector,
1382 void *target_container);
1383
1384 void skb_flow_dissect_hash(const struct sk_buff *skb,
1385 struct flow_dissector *flow_dissector,
1386 void *target_container);
1387
skb_get_hash(struct sk_buff * skb)1388 static inline __u32 skb_get_hash(struct sk_buff *skb)
1389 {
1390 if (!skb->l4_hash && !skb->sw_hash)
1391 __skb_get_hash(skb);
1392
1393 return skb->hash;
1394 }
1395
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1396 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1397 {
1398 if (!skb->l4_hash && !skb->sw_hash) {
1399 struct flow_keys keys;
1400 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1401
1402 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1403 }
1404
1405 return skb->hash;
1406 }
1407
1408 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1409 const siphash_key_t *perturb);
1410
skb_get_hash_raw(const struct sk_buff * skb)1411 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1412 {
1413 return skb->hash;
1414 }
1415
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1416 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1417 {
1418 to->hash = from->hash;
1419 to->sw_hash = from->sw_hash;
1420 to->l4_hash = from->l4_hash;
1421 };
1422
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1423 static inline void skb_copy_decrypted(struct sk_buff *to,
1424 const struct sk_buff *from)
1425 {
1426 #ifdef CONFIG_TLS_DEVICE
1427 to->decrypted = from->decrypted;
1428 #endif
1429 }
1430
1431 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1433 {
1434 return skb->head + skb->end;
1435 }
1436
skb_end_offset(const struct sk_buff * skb)1437 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1438 {
1439 return skb->end;
1440 }
1441
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1442 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1443 {
1444 skb->end = offset;
1445 }
1446 #else
skb_end_pointer(const struct sk_buff * skb)1447 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1448 {
1449 return skb->end;
1450 }
1451
skb_end_offset(const struct sk_buff * skb)1452 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1453 {
1454 return skb->end - skb->head;
1455 }
1456
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1457 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1458 {
1459 skb->end = skb->head + offset;
1460 }
1461 #endif
1462
1463 /* Internal */
1464 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1465
skb_hwtstamps(struct sk_buff * skb)1466 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1467 {
1468 return &skb_shinfo(skb)->hwtstamps;
1469 }
1470
skb_zcopy(struct sk_buff * skb)1471 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1472 {
1473 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1474
1475 return is_zcopy ? skb_uarg(skb) : NULL;
1476 }
1477
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1478 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1479 bool *have_ref)
1480 {
1481 if (skb && uarg && !skb_zcopy(skb)) {
1482 if (unlikely(have_ref && *have_ref))
1483 *have_ref = false;
1484 else
1485 sock_zerocopy_get(uarg);
1486 skb_shinfo(skb)->destructor_arg = uarg;
1487 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1488 }
1489 }
1490
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1491 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1492 {
1493 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1494 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1495 }
1496
skb_zcopy_is_nouarg(struct sk_buff * skb)1497 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1498 {
1499 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1500 }
1501
skb_zcopy_get_nouarg(struct sk_buff * skb)1502 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1503 {
1504 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1505 }
1506
1507 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1508 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1509 {
1510 struct ubuf_info *uarg = skb_zcopy(skb);
1511
1512 if (uarg) {
1513 if (skb_zcopy_is_nouarg(skb)) {
1514 /* no notification callback */
1515 } else if (uarg->callback == sock_zerocopy_callback) {
1516 uarg->zerocopy = uarg->zerocopy && zerocopy;
1517 sock_zerocopy_put(uarg);
1518 } else {
1519 uarg->callback(uarg, zerocopy);
1520 }
1521
1522 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1523 }
1524 }
1525
1526 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1527 static inline void skb_zcopy_abort(struct sk_buff *skb)
1528 {
1529 struct ubuf_info *uarg = skb_zcopy(skb);
1530
1531 if (uarg) {
1532 sock_zerocopy_put_abort(uarg, false);
1533 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1534 }
1535 }
1536
skb_mark_not_on_list(struct sk_buff * skb)1537 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1538 {
1539 skb->next = NULL;
1540 }
1541
1542 /* Iterate through singly-linked GSO fragments of an skb. */
1543 #define skb_list_walk_safe(first, skb, next_skb) \
1544 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1545 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1546
skb_list_del_init(struct sk_buff * skb)1547 static inline void skb_list_del_init(struct sk_buff *skb)
1548 {
1549 __list_del_entry(&skb->list);
1550 skb_mark_not_on_list(skb);
1551 }
1552
1553 /**
1554 * skb_queue_empty - check if a queue is empty
1555 * @list: queue head
1556 *
1557 * Returns true if the queue is empty, false otherwise.
1558 */
skb_queue_empty(const struct sk_buff_head * list)1559 static inline int skb_queue_empty(const struct sk_buff_head *list)
1560 {
1561 return list->next == (const struct sk_buff *) list;
1562 }
1563
1564 /**
1565 * skb_queue_empty_lockless - check if a queue is empty
1566 * @list: queue head
1567 *
1568 * Returns true if the queue is empty, false otherwise.
1569 * This variant can be used in lockless contexts.
1570 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1571 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1572 {
1573 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1574 }
1575
1576
1577 /**
1578 * skb_queue_is_last - check if skb is the last entry in the queue
1579 * @list: queue head
1580 * @skb: buffer
1581 *
1582 * Returns true if @skb is the last buffer on the list.
1583 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1584 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1585 const struct sk_buff *skb)
1586 {
1587 return skb->next == (const struct sk_buff *) list;
1588 }
1589
1590 /**
1591 * skb_queue_is_first - check if skb is the first entry in the queue
1592 * @list: queue head
1593 * @skb: buffer
1594 *
1595 * Returns true if @skb is the first buffer on the list.
1596 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1597 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1598 const struct sk_buff *skb)
1599 {
1600 return skb->prev == (const struct sk_buff *) list;
1601 }
1602
1603 /**
1604 * skb_queue_next - return the next packet in the queue
1605 * @list: queue head
1606 * @skb: current buffer
1607 *
1608 * Return the next packet in @list after @skb. It is only valid to
1609 * call this if skb_queue_is_last() evaluates to false.
1610 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1611 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1612 const struct sk_buff *skb)
1613 {
1614 /* This BUG_ON may seem severe, but if we just return then we
1615 * are going to dereference garbage.
1616 */
1617 BUG_ON(skb_queue_is_last(list, skb));
1618 return skb->next;
1619 }
1620
1621 /**
1622 * skb_queue_prev - return the prev packet in the queue
1623 * @list: queue head
1624 * @skb: current buffer
1625 *
1626 * Return the prev packet in @list before @skb. It is only valid to
1627 * call this if skb_queue_is_first() evaluates to false.
1628 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1629 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1630 const struct sk_buff *skb)
1631 {
1632 /* This BUG_ON may seem severe, but if we just return then we
1633 * are going to dereference garbage.
1634 */
1635 BUG_ON(skb_queue_is_first(list, skb));
1636 return skb->prev;
1637 }
1638
1639 /**
1640 * skb_get - reference buffer
1641 * @skb: buffer to reference
1642 *
1643 * Makes another reference to a socket buffer and returns a pointer
1644 * to the buffer.
1645 */
skb_get(struct sk_buff * skb)1646 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1647 {
1648 refcount_inc(&skb->users);
1649 return skb;
1650 }
1651
1652 /*
1653 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1654 */
1655
1656 /**
1657 * skb_cloned - is the buffer a clone
1658 * @skb: buffer to check
1659 *
1660 * Returns true if the buffer was generated with skb_clone() and is
1661 * one of multiple shared copies of the buffer. Cloned buffers are
1662 * shared data so must not be written to under normal circumstances.
1663 */
skb_cloned(const struct sk_buff * skb)1664 static inline int skb_cloned(const struct sk_buff *skb)
1665 {
1666 return skb->cloned &&
1667 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1668 }
1669
skb_unclone(struct sk_buff * skb,gfp_t pri)1670 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1671 {
1672 might_sleep_if(gfpflags_allow_blocking(pri));
1673
1674 if (skb_cloned(skb))
1675 return pskb_expand_head(skb, 0, 0, pri);
1676
1677 return 0;
1678 }
1679
1680 /* This variant of skb_unclone() makes sure skb->truesize
1681 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1682 *
1683 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1684 * when various debugging features are in place.
1685 */
1686 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1687 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1688 {
1689 might_sleep_if(gfpflags_allow_blocking(pri));
1690
1691 if (skb_cloned(skb))
1692 return __skb_unclone_keeptruesize(skb, pri);
1693 return 0;
1694 }
1695
1696 /**
1697 * skb_header_cloned - is the header a clone
1698 * @skb: buffer to check
1699 *
1700 * Returns true if modifying the header part of the buffer requires
1701 * the data to be copied.
1702 */
skb_header_cloned(const struct sk_buff * skb)1703 static inline int skb_header_cloned(const struct sk_buff *skb)
1704 {
1705 int dataref;
1706
1707 if (!skb->cloned)
1708 return 0;
1709
1710 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1711 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1712 return dataref != 1;
1713 }
1714
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1715 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1716 {
1717 might_sleep_if(gfpflags_allow_blocking(pri));
1718
1719 if (skb_header_cloned(skb))
1720 return pskb_expand_head(skb, 0, 0, pri);
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * __skb_header_release - release reference to header
1727 * @skb: buffer to operate on
1728 */
__skb_header_release(struct sk_buff * skb)1729 static inline void __skb_header_release(struct sk_buff *skb)
1730 {
1731 skb->nohdr = 1;
1732 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1733 }
1734
1735
1736 /**
1737 * skb_shared - is the buffer shared
1738 * @skb: buffer to check
1739 *
1740 * Returns true if more than one person has a reference to this
1741 * buffer.
1742 */
skb_shared(const struct sk_buff * skb)1743 static inline int skb_shared(const struct sk_buff *skb)
1744 {
1745 return refcount_read(&skb->users) != 1;
1746 }
1747
1748 /**
1749 * skb_share_check - check if buffer is shared and if so clone it
1750 * @skb: buffer to check
1751 * @pri: priority for memory allocation
1752 *
1753 * If the buffer is shared the buffer is cloned and the old copy
1754 * drops a reference. A new clone with a single reference is returned.
1755 * If the buffer is not shared the original buffer is returned. When
1756 * being called from interrupt status or with spinlocks held pri must
1757 * be GFP_ATOMIC.
1758 *
1759 * NULL is returned on a memory allocation failure.
1760 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1761 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1762 {
1763 might_sleep_if(gfpflags_allow_blocking(pri));
1764 if (skb_shared(skb)) {
1765 struct sk_buff *nskb = skb_clone(skb, pri);
1766
1767 if (likely(nskb))
1768 consume_skb(skb);
1769 else
1770 kfree_skb(skb);
1771 skb = nskb;
1772 }
1773 return skb;
1774 }
1775
1776 /*
1777 * Copy shared buffers into a new sk_buff. We effectively do COW on
1778 * packets to handle cases where we have a local reader and forward
1779 * and a couple of other messy ones. The normal one is tcpdumping
1780 * a packet thats being forwarded.
1781 */
1782
1783 /**
1784 * skb_unshare - make a copy of a shared buffer
1785 * @skb: buffer to check
1786 * @pri: priority for memory allocation
1787 *
1788 * If the socket buffer is a clone then this function creates a new
1789 * copy of the data, drops a reference count on the old copy and returns
1790 * the new copy with the reference count at 1. If the buffer is not a clone
1791 * the original buffer is returned. When called with a spinlock held or
1792 * from interrupt state @pri must be %GFP_ATOMIC
1793 *
1794 * %NULL is returned on a memory allocation failure.
1795 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1796 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1797 gfp_t pri)
1798 {
1799 might_sleep_if(gfpflags_allow_blocking(pri));
1800 if (skb_cloned(skb)) {
1801 struct sk_buff *nskb = skb_copy(skb, pri);
1802
1803 /* Free our shared copy */
1804 if (likely(nskb))
1805 consume_skb(skb);
1806 else
1807 kfree_skb(skb);
1808 skb = nskb;
1809 }
1810 return skb;
1811 }
1812
1813 /**
1814 * skb_peek - peek at the head of an &sk_buff_head
1815 * @list_: list to peek at
1816 *
1817 * Peek an &sk_buff. Unlike most other operations you _MUST_
1818 * be careful with this one. A peek leaves the buffer on the
1819 * list and someone else may run off with it. You must hold
1820 * the appropriate locks or have a private queue to do this.
1821 *
1822 * Returns %NULL for an empty list or a pointer to the head element.
1823 * The reference count is not incremented and the reference is therefore
1824 * volatile. Use with caution.
1825 */
skb_peek(const struct sk_buff_head * list_)1826 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1827 {
1828 struct sk_buff *skb = list_->next;
1829
1830 if (skb == (struct sk_buff *)list_)
1831 skb = NULL;
1832 return skb;
1833 }
1834
1835 /**
1836 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1837 * @list_: list to peek at
1838 *
1839 * Like skb_peek(), but the caller knows that the list is not empty.
1840 */
__skb_peek(const struct sk_buff_head * list_)1841 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1842 {
1843 return list_->next;
1844 }
1845
1846 /**
1847 * skb_peek_next - peek skb following the given one from a queue
1848 * @skb: skb to start from
1849 * @list_: list to peek at
1850 *
1851 * Returns %NULL when the end of the list is met or a pointer to the
1852 * next element. The reference count is not incremented and the
1853 * reference is therefore volatile. Use with caution.
1854 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1855 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1856 const struct sk_buff_head *list_)
1857 {
1858 struct sk_buff *next = skb->next;
1859
1860 if (next == (struct sk_buff *)list_)
1861 next = NULL;
1862 return next;
1863 }
1864
1865 /**
1866 * skb_peek_tail - peek at the tail of an &sk_buff_head
1867 * @list_: list to peek at
1868 *
1869 * Peek an &sk_buff. Unlike most other operations you _MUST_
1870 * be careful with this one. A peek leaves the buffer on the
1871 * list and someone else may run off with it. You must hold
1872 * the appropriate locks or have a private queue to do this.
1873 *
1874 * Returns %NULL for an empty list or a pointer to the tail element.
1875 * The reference count is not incremented and the reference is therefore
1876 * volatile. Use with caution.
1877 */
skb_peek_tail(const struct sk_buff_head * list_)1878 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1879 {
1880 struct sk_buff *skb = READ_ONCE(list_->prev);
1881
1882 if (skb == (struct sk_buff *)list_)
1883 skb = NULL;
1884 return skb;
1885
1886 }
1887
1888 /**
1889 * skb_queue_len - get queue length
1890 * @list_: list to measure
1891 *
1892 * Return the length of an &sk_buff queue.
1893 */
skb_queue_len(const struct sk_buff_head * list_)1894 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1895 {
1896 return list_->qlen;
1897 }
1898
1899 /**
1900 * skb_queue_len_lockless - get queue length
1901 * @list_: list to measure
1902 *
1903 * Return the length of an &sk_buff queue.
1904 * This variant can be used in lockless contexts.
1905 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1906 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1907 {
1908 return READ_ONCE(list_->qlen);
1909 }
1910
1911 /**
1912 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1913 * @list: queue to initialize
1914 *
1915 * This initializes only the list and queue length aspects of
1916 * an sk_buff_head object. This allows to initialize the list
1917 * aspects of an sk_buff_head without reinitializing things like
1918 * the spinlock. It can also be used for on-stack sk_buff_head
1919 * objects where the spinlock is known to not be used.
1920 */
__skb_queue_head_init(struct sk_buff_head * list)1921 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1922 {
1923 list->prev = list->next = (struct sk_buff *)list;
1924 list->qlen = 0;
1925 }
1926
1927 /*
1928 * This function creates a split out lock class for each invocation;
1929 * this is needed for now since a whole lot of users of the skb-queue
1930 * infrastructure in drivers have different locking usage (in hardirq)
1931 * than the networking core (in softirq only). In the long run either the
1932 * network layer or drivers should need annotation to consolidate the
1933 * main types of usage into 3 classes.
1934 */
skb_queue_head_init(struct sk_buff_head * list)1935 static inline void skb_queue_head_init(struct sk_buff_head *list)
1936 {
1937 spin_lock_init(&list->lock);
1938 __skb_queue_head_init(list);
1939 }
1940
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1941 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1942 struct lock_class_key *class)
1943 {
1944 skb_queue_head_init(list);
1945 lockdep_set_class(&list->lock, class);
1946 }
1947
1948 /*
1949 * Insert an sk_buff on a list.
1950 *
1951 * The "__skb_xxxx()" functions are the non-atomic ones that
1952 * can only be called with interrupts disabled.
1953 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1954 static inline void __skb_insert(struct sk_buff *newsk,
1955 struct sk_buff *prev, struct sk_buff *next,
1956 struct sk_buff_head *list)
1957 {
1958 /* See skb_queue_empty_lockless() and skb_peek_tail()
1959 * for the opposite READ_ONCE()
1960 */
1961 WRITE_ONCE(newsk->next, next);
1962 WRITE_ONCE(newsk->prev, prev);
1963 WRITE_ONCE(next->prev, newsk);
1964 WRITE_ONCE(prev->next, newsk);
1965 WRITE_ONCE(list->qlen, list->qlen + 1);
1966 }
1967
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1968 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1969 struct sk_buff *prev,
1970 struct sk_buff *next)
1971 {
1972 struct sk_buff *first = list->next;
1973 struct sk_buff *last = list->prev;
1974
1975 WRITE_ONCE(first->prev, prev);
1976 WRITE_ONCE(prev->next, first);
1977
1978 WRITE_ONCE(last->next, next);
1979 WRITE_ONCE(next->prev, last);
1980 }
1981
1982 /**
1983 * skb_queue_splice - join two skb lists, this is designed for stacks
1984 * @list: the new list to add
1985 * @head: the place to add it in the first list
1986 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1987 static inline void skb_queue_splice(const struct sk_buff_head *list,
1988 struct sk_buff_head *head)
1989 {
1990 if (!skb_queue_empty(list)) {
1991 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1992 head->qlen += list->qlen;
1993 }
1994 }
1995
1996 /**
1997 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1998 * @list: the new list to add
1999 * @head: the place to add it in the first list
2000 *
2001 * The list at @list is reinitialised
2002 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2003 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2004 struct sk_buff_head *head)
2005 {
2006 if (!skb_queue_empty(list)) {
2007 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2008 head->qlen += list->qlen;
2009 __skb_queue_head_init(list);
2010 }
2011 }
2012
2013 /**
2014 * skb_queue_splice_tail - join two skb lists, each list being a queue
2015 * @list: the new list to add
2016 * @head: the place to add it in the first list
2017 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2018 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2019 struct sk_buff_head *head)
2020 {
2021 if (!skb_queue_empty(list)) {
2022 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2023 head->qlen += list->qlen;
2024 }
2025 }
2026
2027 /**
2028 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2029 * @list: the new list to add
2030 * @head: the place to add it in the first list
2031 *
2032 * Each of the lists is a queue.
2033 * The list at @list is reinitialised
2034 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2035 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2036 struct sk_buff_head *head)
2037 {
2038 if (!skb_queue_empty(list)) {
2039 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2040 head->qlen += list->qlen;
2041 __skb_queue_head_init(list);
2042 }
2043 }
2044
2045 /**
2046 * __skb_queue_after - queue a buffer at the list head
2047 * @list: list to use
2048 * @prev: place after this buffer
2049 * @newsk: buffer to queue
2050 *
2051 * Queue a buffer int the middle of a list. This function takes no locks
2052 * and you must therefore hold required locks before calling it.
2053 *
2054 * A buffer cannot be placed on two lists at the same time.
2055 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2056 static inline void __skb_queue_after(struct sk_buff_head *list,
2057 struct sk_buff *prev,
2058 struct sk_buff *newsk)
2059 {
2060 __skb_insert(newsk, prev, prev->next, list);
2061 }
2062
2063 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2064 struct sk_buff_head *list);
2065
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2066 static inline void __skb_queue_before(struct sk_buff_head *list,
2067 struct sk_buff *next,
2068 struct sk_buff *newsk)
2069 {
2070 __skb_insert(newsk, next->prev, next, list);
2071 }
2072
2073 /**
2074 * __skb_queue_head - queue a buffer at the list head
2075 * @list: list to use
2076 * @newsk: buffer to queue
2077 *
2078 * Queue a buffer at the start of a list. This function takes no locks
2079 * and you must therefore hold required locks before calling it.
2080 *
2081 * A buffer cannot be placed on two lists at the same time.
2082 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2083 static inline void __skb_queue_head(struct sk_buff_head *list,
2084 struct sk_buff *newsk)
2085 {
2086 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2087 }
2088 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2089
2090 /**
2091 * __skb_queue_tail - queue a buffer at the list tail
2092 * @list: list to use
2093 * @newsk: buffer to queue
2094 *
2095 * Queue a buffer at the end of a list. This function takes no locks
2096 * and you must therefore hold required locks before calling it.
2097 *
2098 * A buffer cannot be placed on two lists at the same time.
2099 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2100 static inline void __skb_queue_tail(struct sk_buff_head *list,
2101 struct sk_buff *newsk)
2102 {
2103 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2104 }
2105 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2106
2107 /*
2108 * remove sk_buff from list. _Must_ be called atomically, and with
2109 * the list known..
2110 */
2111 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2112 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2113 {
2114 struct sk_buff *next, *prev;
2115
2116 WRITE_ONCE(list->qlen, list->qlen - 1);
2117 next = skb->next;
2118 prev = skb->prev;
2119 skb->next = skb->prev = NULL;
2120 WRITE_ONCE(next->prev, prev);
2121 WRITE_ONCE(prev->next, next);
2122 }
2123
2124 /**
2125 * __skb_dequeue - remove from the head of the queue
2126 * @list: list to dequeue from
2127 *
2128 * Remove the head of the list. This function does not take any locks
2129 * so must be used with appropriate locks held only. The head item is
2130 * returned or %NULL if the list is empty.
2131 */
__skb_dequeue(struct sk_buff_head * list)2132 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2133 {
2134 struct sk_buff *skb = skb_peek(list);
2135 if (skb)
2136 __skb_unlink(skb, list);
2137 return skb;
2138 }
2139 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2140
2141 /**
2142 * __skb_dequeue_tail - remove from the tail of the queue
2143 * @list: list to dequeue from
2144 *
2145 * Remove the tail of the list. This function does not take any locks
2146 * so must be used with appropriate locks held only. The tail item is
2147 * returned or %NULL if the list is empty.
2148 */
__skb_dequeue_tail(struct sk_buff_head * list)2149 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2150 {
2151 struct sk_buff *skb = skb_peek_tail(list);
2152 if (skb)
2153 __skb_unlink(skb, list);
2154 return skb;
2155 }
2156 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2157
2158
skb_is_nonlinear(const struct sk_buff * skb)2159 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2160 {
2161 return skb->data_len;
2162 }
2163
skb_headlen(const struct sk_buff * skb)2164 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2165 {
2166 return skb->len - skb->data_len;
2167 }
2168
__skb_pagelen(const struct sk_buff * skb)2169 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2170 {
2171 unsigned int i, len = 0;
2172
2173 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2174 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2175 return len;
2176 }
2177
skb_pagelen(const struct sk_buff * skb)2178 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2179 {
2180 return skb_headlen(skb) + __skb_pagelen(skb);
2181 }
2182
2183 /**
2184 * __skb_fill_page_desc - initialise a paged fragment in an skb
2185 * @skb: buffer containing fragment to be initialised
2186 * @i: paged fragment index to initialise
2187 * @page: the page to use for this fragment
2188 * @off: the offset to the data with @page
2189 * @size: the length of the data
2190 *
2191 * Initialises the @i'th fragment of @skb to point to &size bytes at
2192 * offset @off within @page.
2193 *
2194 * Does not take any additional reference on the fragment.
2195 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2196 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2197 struct page *page, int off, int size)
2198 {
2199 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200
2201 /*
2202 * Propagate page pfmemalloc to the skb if we can. The problem is
2203 * that not all callers have unique ownership of the page but rely
2204 * on page_is_pfmemalloc doing the right thing(tm).
2205 */
2206 frag->bv_page = page;
2207 frag->bv_offset = off;
2208 skb_frag_size_set(frag, size);
2209
2210 page = compound_head(page);
2211 if (page_is_pfmemalloc(page))
2212 skb->pfmemalloc = true;
2213 }
2214
2215 /**
2216 * skb_fill_page_desc - initialise a paged fragment in an skb
2217 * @skb: buffer containing fragment to be initialised
2218 * @i: paged fragment index to initialise
2219 * @page: the page to use for this fragment
2220 * @off: the offset to the data with @page
2221 * @size: the length of the data
2222 *
2223 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2224 * @skb to point to @size bytes at offset @off within @page. In
2225 * addition updates @skb such that @i is the last fragment.
2226 *
2227 * Does not take any additional reference on the fragment.
2228 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2229 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2230 struct page *page, int off, int size)
2231 {
2232 __skb_fill_page_desc(skb, i, page, off, size);
2233 skb_shinfo(skb)->nr_frags = i + 1;
2234 }
2235
2236 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2237 int size, unsigned int truesize);
2238
2239 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2240 unsigned int truesize);
2241
2242 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2243
2244 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2245 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2246 {
2247 return skb->head + skb->tail;
2248 }
2249
skb_reset_tail_pointer(struct sk_buff * skb)2250 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2251 {
2252 skb->tail = skb->data - skb->head;
2253 }
2254
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2255 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2256 {
2257 skb_reset_tail_pointer(skb);
2258 skb->tail += offset;
2259 }
2260
2261 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2262 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2263 {
2264 return skb->tail;
2265 }
2266
skb_reset_tail_pointer(struct sk_buff * skb)2267 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2268 {
2269 skb->tail = skb->data;
2270 }
2271
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2272 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2273 {
2274 skb->tail = skb->data + offset;
2275 }
2276
2277 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2278
skb_assert_len(struct sk_buff * skb)2279 static inline void skb_assert_len(struct sk_buff *skb)
2280 {
2281 #ifdef CONFIG_DEBUG_NET
2282 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2283 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2284 #endif /* CONFIG_DEBUG_NET */
2285 }
2286
2287 /*
2288 * Add data to an sk_buff
2289 */
2290 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2291 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2292 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2293 {
2294 void *tmp = skb_tail_pointer(skb);
2295 SKB_LINEAR_ASSERT(skb);
2296 skb->tail += len;
2297 skb->len += len;
2298 return tmp;
2299 }
2300
__skb_put_zero(struct sk_buff * skb,unsigned int len)2301 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2302 {
2303 void *tmp = __skb_put(skb, len);
2304
2305 memset(tmp, 0, len);
2306 return tmp;
2307 }
2308
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2309 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2310 unsigned int len)
2311 {
2312 void *tmp = __skb_put(skb, len);
2313
2314 memcpy(tmp, data, len);
2315 return tmp;
2316 }
2317
__skb_put_u8(struct sk_buff * skb,u8 val)2318 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2319 {
2320 *(u8 *)__skb_put(skb, 1) = val;
2321 }
2322
skb_put_zero(struct sk_buff * skb,unsigned int len)2323 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2324 {
2325 void *tmp = skb_put(skb, len);
2326
2327 memset(tmp, 0, len);
2328
2329 return tmp;
2330 }
2331
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2332 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2333 unsigned int len)
2334 {
2335 void *tmp = skb_put(skb, len);
2336
2337 memcpy(tmp, data, len);
2338
2339 return tmp;
2340 }
2341
skb_put_u8(struct sk_buff * skb,u8 val)2342 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2343 {
2344 *(u8 *)skb_put(skb, 1) = val;
2345 }
2346
2347 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2348 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2349 {
2350 skb->data -= len;
2351 skb->len += len;
2352 return skb->data;
2353 }
2354
2355 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2356 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2357 {
2358 skb->len -= len;
2359 BUG_ON(skb->len < skb->data_len);
2360 return skb->data += len;
2361 }
2362
skb_pull_inline(struct sk_buff * skb,unsigned int len)2363 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2364 {
2365 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2366 }
2367
2368 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2369
__pskb_pull(struct sk_buff * skb,unsigned int len)2370 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2371 {
2372 if (len > skb_headlen(skb) &&
2373 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2374 return NULL;
2375 skb->len -= len;
2376 return skb->data += len;
2377 }
2378
pskb_pull(struct sk_buff * skb,unsigned int len)2379 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2380 {
2381 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2382 }
2383
pskb_may_pull(struct sk_buff * skb,unsigned int len)2384 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2385 {
2386 if (likely(len <= skb_headlen(skb)))
2387 return true;
2388 if (unlikely(len > skb->len))
2389 return false;
2390 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2391 }
2392
2393 void skb_condense(struct sk_buff *skb);
2394
2395 /**
2396 * skb_headroom - bytes at buffer head
2397 * @skb: buffer to check
2398 *
2399 * Return the number of bytes of free space at the head of an &sk_buff.
2400 */
skb_headroom(const struct sk_buff * skb)2401 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2402 {
2403 return skb->data - skb->head;
2404 }
2405
2406 /**
2407 * skb_tailroom - bytes at buffer end
2408 * @skb: buffer to check
2409 *
2410 * Return the number of bytes of free space at the tail of an sk_buff
2411 */
skb_tailroom(const struct sk_buff * skb)2412 static inline int skb_tailroom(const struct sk_buff *skb)
2413 {
2414 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2415 }
2416
2417 /**
2418 * skb_availroom - bytes at buffer end
2419 * @skb: buffer to check
2420 *
2421 * Return the number of bytes of free space at the tail of an sk_buff
2422 * allocated by sk_stream_alloc()
2423 */
skb_availroom(const struct sk_buff * skb)2424 static inline int skb_availroom(const struct sk_buff *skb)
2425 {
2426 if (skb_is_nonlinear(skb))
2427 return 0;
2428
2429 return skb->end - skb->tail - skb->reserved_tailroom;
2430 }
2431
2432 /**
2433 * skb_reserve - adjust headroom
2434 * @skb: buffer to alter
2435 * @len: bytes to move
2436 *
2437 * Increase the headroom of an empty &sk_buff by reducing the tail
2438 * room. This is only allowed for an empty buffer.
2439 */
skb_reserve(struct sk_buff * skb,int len)2440 static inline void skb_reserve(struct sk_buff *skb, int len)
2441 {
2442 skb->data += len;
2443 skb->tail += len;
2444 }
2445
2446 /**
2447 * skb_tailroom_reserve - adjust reserved_tailroom
2448 * @skb: buffer to alter
2449 * @mtu: maximum amount of headlen permitted
2450 * @needed_tailroom: minimum amount of reserved_tailroom
2451 *
2452 * Set reserved_tailroom so that headlen can be as large as possible but
2453 * not larger than mtu and tailroom cannot be smaller than
2454 * needed_tailroom.
2455 * The required headroom should already have been reserved before using
2456 * this function.
2457 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2458 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2459 unsigned int needed_tailroom)
2460 {
2461 SKB_LINEAR_ASSERT(skb);
2462 if (mtu < skb_tailroom(skb) - needed_tailroom)
2463 /* use at most mtu */
2464 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2465 else
2466 /* use up to all available space */
2467 skb->reserved_tailroom = needed_tailroom;
2468 }
2469
2470 #define ENCAP_TYPE_ETHER 0
2471 #define ENCAP_TYPE_IPPROTO 1
2472
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2473 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2474 __be16 protocol)
2475 {
2476 skb->inner_protocol = protocol;
2477 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2478 }
2479
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2480 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2481 __u8 ipproto)
2482 {
2483 skb->inner_ipproto = ipproto;
2484 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2485 }
2486
skb_reset_inner_headers(struct sk_buff * skb)2487 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2488 {
2489 skb->inner_mac_header = skb->mac_header;
2490 skb->inner_network_header = skb->network_header;
2491 skb->inner_transport_header = skb->transport_header;
2492 }
2493
skb_reset_mac_len(struct sk_buff * skb)2494 static inline void skb_reset_mac_len(struct sk_buff *skb)
2495 {
2496 skb->mac_len = skb->network_header - skb->mac_header;
2497 }
2498
skb_inner_transport_header(const struct sk_buff * skb)2499 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2500 *skb)
2501 {
2502 return skb->head + skb->inner_transport_header;
2503 }
2504
skb_inner_transport_offset(const struct sk_buff * skb)2505 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2506 {
2507 return skb_inner_transport_header(skb) - skb->data;
2508 }
2509
skb_reset_inner_transport_header(struct sk_buff * skb)2510 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2511 {
2512 skb->inner_transport_header = skb->data - skb->head;
2513 }
2514
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2515 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2516 const int offset)
2517 {
2518 skb_reset_inner_transport_header(skb);
2519 skb->inner_transport_header += offset;
2520 }
2521
skb_inner_network_header(const struct sk_buff * skb)2522 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2523 {
2524 return skb->head + skb->inner_network_header;
2525 }
2526
skb_reset_inner_network_header(struct sk_buff * skb)2527 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2528 {
2529 skb->inner_network_header = skb->data - skb->head;
2530 }
2531
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2532 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2533 const int offset)
2534 {
2535 skb_reset_inner_network_header(skb);
2536 skb->inner_network_header += offset;
2537 }
2538
skb_inner_mac_header(const struct sk_buff * skb)2539 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2540 {
2541 return skb->head + skb->inner_mac_header;
2542 }
2543
skb_reset_inner_mac_header(struct sk_buff * skb)2544 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2545 {
2546 skb->inner_mac_header = skb->data - skb->head;
2547 }
2548
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2549 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2550 const int offset)
2551 {
2552 skb_reset_inner_mac_header(skb);
2553 skb->inner_mac_header += offset;
2554 }
skb_transport_header_was_set(const struct sk_buff * skb)2555 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2556 {
2557 return skb->transport_header != (typeof(skb->transport_header))~0U;
2558 }
2559
skb_transport_header(const struct sk_buff * skb)2560 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2561 {
2562 return skb->head + skb->transport_header;
2563 }
2564
skb_reset_transport_header(struct sk_buff * skb)2565 static inline void skb_reset_transport_header(struct sk_buff *skb)
2566 {
2567 skb->transport_header = skb->data - skb->head;
2568 }
2569
skb_set_transport_header(struct sk_buff * skb,const int offset)2570 static inline void skb_set_transport_header(struct sk_buff *skb,
2571 const int offset)
2572 {
2573 skb_reset_transport_header(skb);
2574 skb->transport_header += offset;
2575 }
2576
skb_network_header(const struct sk_buff * skb)2577 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2578 {
2579 return skb->head + skb->network_header;
2580 }
2581
skb_reset_network_header(struct sk_buff * skb)2582 static inline void skb_reset_network_header(struct sk_buff *skb)
2583 {
2584 skb->network_header = skb->data - skb->head;
2585 }
2586
skb_set_network_header(struct sk_buff * skb,const int offset)2587 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2588 {
2589 skb_reset_network_header(skb);
2590 skb->network_header += offset;
2591 }
2592
skb_mac_header(const struct sk_buff * skb)2593 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2594 {
2595 return skb->head + skb->mac_header;
2596 }
2597
skb_mac_offset(const struct sk_buff * skb)2598 static inline int skb_mac_offset(const struct sk_buff *skb)
2599 {
2600 return skb_mac_header(skb) - skb->data;
2601 }
2602
skb_mac_header_len(const struct sk_buff * skb)2603 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2604 {
2605 return skb->network_header - skb->mac_header;
2606 }
2607
skb_mac_header_was_set(const struct sk_buff * skb)2608 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2609 {
2610 return skb->mac_header != (typeof(skb->mac_header))~0U;
2611 }
2612
skb_unset_mac_header(struct sk_buff * skb)2613 static inline void skb_unset_mac_header(struct sk_buff *skb)
2614 {
2615 skb->mac_header = (typeof(skb->mac_header))~0U;
2616 }
2617
skb_reset_mac_header(struct sk_buff * skb)2618 static inline void skb_reset_mac_header(struct sk_buff *skb)
2619 {
2620 skb->mac_header = skb->data - skb->head;
2621 }
2622
skb_set_mac_header(struct sk_buff * skb,const int offset)2623 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2624 {
2625 skb_reset_mac_header(skb);
2626 skb->mac_header += offset;
2627 }
2628
skb_pop_mac_header(struct sk_buff * skb)2629 static inline void skb_pop_mac_header(struct sk_buff *skb)
2630 {
2631 skb->mac_header = skb->network_header;
2632 }
2633
skb_probe_transport_header(struct sk_buff * skb)2634 static inline void skb_probe_transport_header(struct sk_buff *skb)
2635 {
2636 struct flow_keys_basic keys;
2637
2638 if (skb_transport_header_was_set(skb))
2639 return;
2640
2641 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2642 NULL, 0, 0, 0, 0))
2643 skb_set_transport_header(skb, keys.control.thoff);
2644 }
2645
skb_mac_header_rebuild(struct sk_buff * skb)2646 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2647 {
2648 if (skb_mac_header_was_set(skb)) {
2649 const unsigned char *old_mac = skb_mac_header(skb);
2650
2651 skb_set_mac_header(skb, -skb->mac_len);
2652 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2653 }
2654 }
2655
skb_checksum_start_offset(const struct sk_buff * skb)2656 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2657 {
2658 return skb->csum_start - skb_headroom(skb);
2659 }
2660
skb_checksum_start(const struct sk_buff * skb)2661 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2662 {
2663 return skb->head + skb->csum_start;
2664 }
2665
skb_transport_offset(const struct sk_buff * skb)2666 static inline int skb_transport_offset(const struct sk_buff *skb)
2667 {
2668 return skb_transport_header(skb) - skb->data;
2669 }
2670
skb_network_header_len(const struct sk_buff * skb)2671 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2672 {
2673 return skb->transport_header - skb->network_header;
2674 }
2675
skb_inner_network_header_len(const struct sk_buff * skb)2676 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2677 {
2678 return skb->inner_transport_header - skb->inner_network_header;
2679 }
2680
skb_network_offset(const struct sk_buff * skb)2681 static inline int skb_network_offset(const struct sk_buff *skb)
2682 {
2683 return skb_network_header(skb) - skb->data;
2684 }
2685
skb_inner_network_offset(const struct sk_buff * skb)2686 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2687 {
2688 return skb_inner_network_header(skb) - skb->data;
2689 }
2690
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2691 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2692 {
2693 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2694 }
2695
2696 /*
2697 * CPUs often take a performance hit when accessing unaligned memory
2698 * locations. The actual performance hit varies, it can be small if the
2699 * hardware handles it or large if we have to take an exception and fix it
2700 * in software.
2701 *
2702 * Since an ethernet header is 14 bytes network drivers often end up with
2703 * the IP header at an unaligned offset. The IP header can be aligned by
2704 * shifting the start of the packet by 2 bytes. Drivers should do this
2705 * with:
2706 *
2707 * skb_reserve(skb, NET_IP_ALIGN);
2708 *
2709 * The downside to this alignment of the IP header is that the DMA is now
2710 * unaligned. On some architectures the cost of an unaligned DMA is high
2711 * and this cost outweighs the gains made by aligning the IP header.
2712 *
2713 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2714 * to be overridden.
2715 */
2716 #ifndef NET_IP_ALIGN
2717 #define NET_IP_ALIGN 2
2718 #endif
2719
2720 /*
2721 * The networking layer reserves some headroom in skb data (via
2722 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2723 * the header has to grow. In the default case, if the header has to grow
2724 * 32 bytes or less we avoid the reallocation.
2725 *
2726 * Unfortunately this headroom changes the DMA alignment of the resulting
2727 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2728 * on some architectures. An architecture can override this value,
2729 * perhaps setting it to a cacheline in size (since that will maintain
2730 * cacheline alignment of the DMA). It must be a power of 2.
2731 *
2732 * Various parts of the networking layer expect at least 32 bytes of
2733 * headroom, you should not reduce this.
2734 *
2735 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2736 * to reduce average number of cache lines per packet.
2737 * get_rps_cpu() for example only access one 64 bytes aligned block :
2738 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2739 */
2740 #ifndef NET_SKB_PAD
2741 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2742 #endif
2743
2744 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2745
__skb_set_length(struct sk_buff * skb,unsigned int len)2746 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2747 {
2748 if (WARN_ON(skb_is_nonlinear(skb)))
2749 return;
2750 skb->len = len;
2751 skb_set_tail_pointer(skb, len);
2752 }
2753
__skb_trim(struct sk_buff * skb,unsigned int len)2754 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2755 {
2756 __skb_set_length(skb, len);
2757 }
2758
2759 void skb_trim(struct sk_buff *skb, unsigned int len);
2760
__pskb_trim(struct sk_buff * skb,unsigned int len)2761 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2762 {
2763 if (skb->data_len)
2764 return ___pskb_trim(skb, len);
2765 __skb_trim(skb, len);
2766 return 0;
2767 }
2768
pskb_trim(struct sk_buff * skb,unsigned int len)2769 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2770 {
2771 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2772 }
2773
2774 /**
2775 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2776 * @skb: buffer to alter
2777 * @len: new length
2778 *
2779 * This is identical to pskb_trim except that the caller knows that
2780 * the skb is not cloned so we should never get an error due to out-
2781 * of-memory.
2782 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2783 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2784 {
2785 int err = pskb_trim(skb, len);
2786 BUG_ON(err);
2787 }
2788
__skb_grow(struct sk_buff * skb,unsigned int len)2789 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2790 {
2791 unsigned int diff = len - skb->len;
2792
2793 if (skb_tailroom(skb) < diff) {
2794 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2795 GFP_ATOMIC);
2796 if (ret)
2797 return ret;
2798 }
2799 __skb_set_length(skb, len);
2800 return 0;
2801 }
2802
2803 /**
2804 * skb_orphan - orphan a buffer
2805 * @skb: buffer to orphan
2806 *
2807 * If a buffer currently has an owner then we call the owner's
2808 * destructor function and make the @skb unowned. The buffer continues
2809 * to exist but is no longer charged to its former owner.
2810 */
skb_orphan(struct sk_buff * skb)2811 static inline void skb_orphan(struct sk_buff *skb)
2812 {
2813 if (skb->destructor) {
2814 skb->destructor(skb);
2815 skb->destructor = NULL;
2816 skb->sk = NULL;
2817 } else {
2818 BUG_ON(skb->sk);
2819 }
2820 }
2821
2822 /**
2823 * skb_orphan_frags - orphan the frags contained in a buffer
2824 * @skb: buffer to orphan frags from
2825 * @gfp_mask: allocation mask for replacement pages
2826 *
2827 * For each frag in the SKB which needs a destructor (i.e. has an
2828 * owner) create a copy of that frag and release the original
2829 * page by calling the destructor.
2830 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2831 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2832 {
2833 if (likely(!skb_zcopy(skb)))
2834 return 0;
2835 if (!skb_zcopy_is_nouarg(skb) &&
2836 skb_uarg(skb)->callback == sock_zerocopy_callback)
2837 return 0;
2838 return skb_copy_ubufs(skb, gfp_mask);
2839 }
2840
2841 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2842 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2843 {
2844 if (likely(!skb_zcopy(skb)))
2845 return 0;
2846 return skb_copy_ubufs(skb, gfp_mask);
2847 }
2848
2849 /**
2850 * __skb_queue_purge - empty a list
2851 * @list: list to empty
2852 *
2853 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2854 * the list and one reference dropped. This function does not take the
2855 * list lock and the caller must hold the relevant locks to use it.
2856 */
__skb_queue_purge(struct sk_buff_head * list)2857 static inline void __skb_queue_purge(struct sk_buff_head *list)
2858 {
2859 struct sk_buff *skb;
2860 while ((skb = __skb_dequeue(list)) != NULL)
2861 kfree_skb(skb);
2862 }
2863 void skb_queue_purge(struct sk_buff_head *list);
2864
2865 unsigned int skb_rbtree_purge(struct rb_root *root);
2866
2867 void *netdev_alloc_frag(unsigned int fragsz);
2868
2869 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2870 gfp_t gfp_mask);
2871
2872 /**
2873 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2874 * @dev: network device to receive on
2875 * @length: length to allocate
2876 *
2877 * Allocate a new &sk_buff and assign it a usage count of one. The
2878 * buffer has unspecified headroom built in. Users should allocate
2879 * the headroom they think they need without accounting for the
2880 * built in space. The built in space is used for optimisations.
2881 *
2882 * %NULL is returned if there is no free memory. Although this function
2883 * allocates memory it can be called from an interrupt.
2884 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2885 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2886 unsigned int length)
2887 {
2888 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2889 }
2890
2891 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2892 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2893 gfp_t gfp_mask)
2894 {
2895 return __netdev_alloc_skb(NULL, length, gfp_mask);
2896 }
2897
2898 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2899 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2900 {
2901 return netdev_alloc_skb(NULL, length);
2902 }
2903
2904
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2905 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2906 unsigned int length, gfp_t gfp)
2907 {
2908 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2909
2910 if (NET_IP_ALIGN && skb)
2911 skb_reserve(skb, NET_IP_ALIGN);
2912 return skb;
2913 }
2914
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2915 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2916 unsigned int length)
2917 {
2918 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2919 }
2920
skb_free_frag(void * addr)2921 static inline void skb_free_frag(void *addr)
2922 {
2923 page_frag_free(addr);
2924 }
2925
2926 void *napi_alloc_frag(unsigned int fragsz);
2927 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2928 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2929 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2930 unsigned int length)
2931 {
2932 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2933 }
2934 void napi_consume_skb(struct sk_buff *skb, int budget);
2935
2936 void __kfree_skb_flush(void);
2937 void __kfree_skb_defer(struct sk_buff *skb);
2938
2939 /**
2940 * __dev_alloc_pages - allocate page for network Rx
2941 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2942 * @order: size of the allocation
2943 *
2944 * Allocate a new page.
2945 *
2946 * %NULL is returned if there is no free memory.
2947 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2948 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2949 unsigned int order)
2950 {
2951 /* This piece of code contains several assumptions.
2952 * 1. This is for device Rx, therefor a cold page is preferred.
2953 * 2. The expectation is the user wants a compound page.
2954 * 3. If requesting a order 0 page it will not be compound
2955 * due to the check to see if order has a value in prep_new_page
2956 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2957 * code in gfp_to_alloc_flags that should be enforcing this.
2958 */
2959 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2960
2961 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2962 }
2963
dev_alloc_pages(unsigned int order)2964 static inline struct page *dev_alloc_pages(unsigned int order)
2965 {
2966 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2967 }
2968
2969 /**
2970 * __dev_alloc_page - allocate a page for network Rx
2971 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2972 *
2973 * Allocate a new page.
2974 *
2975 * %NULL is returned if there is no free memory.
2976 */
__dev_alloc_page(gfp_t gfp_mask)2977 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2978 {
2979 return __dev_alloc_pages(gfp_mask, 0);
2980 }
2981
dev_alloc_page(void)2982 static inline struct page *dev_alloc_page(void)
2983 {
2984 return dev_alloc_pages(0);
2985 }
2986
2987 /**
2988 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2989 * @page: The page that was allocated from skb_alloc_page
2990 * @skb: The skb that may need pfmemalloc set
2991 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2992 static inline void skb_propagate_pfmemalloc(struct page *page,
2993 struct sk_buff *skb)
2994 {
2995 if (page_is_pfmemalloc(page))
2996 skb->pfmemalloc = true;
2997 }
2998
2999 /**
3000 * skb_frag_off() - Returns the offset of a skb fragment
3001 * @frag: the paged fragment
3002 */
skb_frag_off(const skb_frag_t * frag)3003 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3004 {
3005 return frag->bv_offset;
3006 }
3007
3008 /**
3009 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3010 * @frag: skb fragment
3011 * @delta: value to add
3012 */
skb_frag_off_add(skb_frag_t * frag,int delta)3013 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3014 {
3015 frag->bv_offset += delta;
3016 }
3017
3018 /**
3019 * skb_frag_off_set() - Sets the offset of a skb fragment
3020 * @frag: skb fragment
3021 * @offset: offset of fragment
3022 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3023 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3024 {
3025 frag->bv_offset = offset;
3026 }
3027
3028 /**
3029 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3030 * @fragto: skb fragment where offset is set
3031 * @fragfrom: skb fragment offset is copied from
3032 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3033 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3034 const skb_frag_t *fragfrom)
3035 {
3036 fragto->bv_offset = fragfrom->bv_offset;
3037 }
3038
3039 /**
3040 * skb_frag_page - retrieve the page referred to by a paged fragment
3041 * @frag: the paged fragment
3042 *
3043 * Returns the &struct page associated with @frag.
3044 */
skb_frag_page(const skb_frag_t * frag)3045 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3046 {
3047 return frag->bv_page;
3048 }
3049
3050 /**
3051 * __skb_frag_ref - take an addition reference on a paged fragment.
3052 * @frag: the paged fragment
3053 *
3054 * Takes an additional reference on the paged fragment @frag.
3055 */
__skb_frag_ref(skb_frag_t * frag)3056 static inline void __skb_frag_ref(skb_frag_t *frag)
3057 {
3058 get_page(skb_frag_page(frag));
3059 }
3060
3061 /**
3062 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3063 * @skb: the buffer
3064 * @f: the fragment offset.
3065 *
3066 * Takes an additional reference on the @f'th paged fragment of @skb.
3067 */
skb_frag_ref(struct sk_buff * skb,int f)3068 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3069 {
3070 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3071 }
3072
3073 /**
3074 * __skb_frag_unref - release a reference on a paged fragment.
3075 * @frag: the paged fragment
3076 *
3077 * Releases a reference on the paged fragment @frag.
3078 */
__skb_frag_unref(skb_frag_t * frag)3079 static inline void __skb_frag_unref(skb_frag_t *frag)
3080 {
3081 put_page(skb_frag_page(frag));
3082 }
3083
3084 /**
3085 * skb_frag_unref - release a reference on a paged fragment of an skb.
3086 * @skb: the buffer
3087 * @f: the fragment offset
3088 *
3089 * Releases a reference on the @f'th paged fragment of @skb.
3090 */
skb_frag_unref(struct sk_buff * skb,int f)3091 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3092 {
3093 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3094 }
3095
3096 /**
3097 * skb_frag_address - gets the address of the data contained in a paged fragment
3098 * @frag: the paged fragment buffer
3099 *
3100 * Returns the address of the data within @frag. The page must already
3101 * be mapped.
3102 */
skb_frag_address(const skb_frag_t * frag)3103 static inline void *skb_frag_address(const skb_frag_t *frag)
3104 {
3105 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3106 }
3107
3108 /**
3109 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3110 * @frag: the paged fragment buffer
3111 *
3112 * Returns the address of the data within @frag. Checks that the page
3113 * is mapped and returns %NULL otherwise.
3114 */
skb_frag_address_safe(const skb_frag_t * frag)3115 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3116 {
3117 void *ptr = page_address(skb_frag_page(frag));
3118 if (unlikely(!ptr))
3119 return NULL;
3120
3121 return ptr + skb_frag_off(frag);
3122 }
3123
3124 /**
3125 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3126 * @fragto: skb fragment where page is set
3127 * @fragfrom: skb fragment page is copied from
3128 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3129 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3130 const skb_frag_t *fragfrom)
3131 {
3132 fragto->bv_page = fragfrom->bv_page;
3133 }
3134
3135 /**
3136 * __skb_frag_set_page - sets the page contained in a paged fragment
3137 * @frag: the paged fragment
3138 * @page: the page to set
3139 *
3140 * Sets the fragment @frag to contain @page.
3141 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3142 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3143 {
3144 frag->bv_page = page;
3145 }
3146
3147 /**
3148 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3149 * @skb: the buffer
3150 * @f: the fragment offset
3151 * @page: the page to set
3152 *
3153 * Sets the @f'th fragment of @skb to contain @page.
3154 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3155 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3156 struct page *page)
3157 {
3158 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3159 }
3160
3161 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3162
3163 /**
3164 * skb_frag_dma_map - maps a paged fragment via the DMA API
3165 * @dev: the device to map the fragment to
3166 * @frag: the paged fragment to map
3167 * @offset: the offset within the fragment (starting at the
3168 * fragment's own offset)
3169 * @size: the number of bytes to map
3170 * @dir: the direction of the mapping (``PCI_DMA_*``)
3171 *
3172 * Maps the page associated with @frag to @device.
3173 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3174 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3175 const skb_frag_t *frag,
3176 size_t offset, size_t size,
3177 enum dma_data_direction dir)
3178 {
3179 return dma_map_page(dev, skb_frag_page(frag),
3180 skb_frag_off(frag) + offset, size, dir);
3181 }
3182
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3183 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3184 gfp_t gfp_mask)
3185 {
3186 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3187 }
3188
3189
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3190 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3191 gfp_t gfp_mask)
3192 {
3193 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3194 }
3195
3196
3197 /**
3198 * skb_clone_writable - is the header of a clone writable
3199 * @skb: buffer to check
3200 * @len: length up to which to write
3201 *
3202 * Returns true if modifying the header part of the cloned buffer
3203 * does not requires the data to be copied.
3204 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3205 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3206 {
3207 return !skb_header_cloned(skb) &&
3208 skb_headroom(skb) + len <= skb->hdr_len;
3209 }
3210
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3211 static inline int skb_try_make_writable(struct sk_buff *skb,
3212 unsigned int write_len)
3213 {
3214 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3215 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3216 }
3217
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3218 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3219 int cloned)
3220 {
3221 int delta = 0;
3222
3223 if (headroom > skb_headroom(skb))
3224 delta = headroom - skb_headroom(skb);
3225
3226 if (delta || cloned)
3227 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3228 GFP_ATOMIC);
3229 return 0;
3230 }
3231
3232 /**
3233 * skb_cow - copy header of skb when it is required
3234 * @skb: buffer to cow
3235 * @headroom: needed headroom
3236 *
3237 * If the skb passed lacks sufficient headroom or its data part
3238 * is shared, data is reallocated. If reallocation fails, an error
3239 * is returned and original skb is not changed.
3240 *
3241 * The result is skb with writable area skb->head...skb->tail
3242 * and at least @headroom of space at head.
3243 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3244 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3245 {
3246 return __skb_cow(skb, headroom, skb_cloned(skb));
3247 }
3248
3249 /**
3250 * skb_cow_head - skb_cow but only making the head writable
3251 * @skb: buffer to cow
3252 * @headroom: needed headroom
3253 *
3254 * This function is identical to skb_cow except that we replace the
3255 * skb_cloned check by skb_header_cloned. It should be used when
3256 * you only need to push on some header and do not need to modify
3257 * the data.
3258 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3259 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3260 {
3261 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3262 }
3263
3264 /**
3265 * skb_padto - pad an skbuff up to a minimal size
3266 * @skb: buffer to pad
3267 * @len: minimal length
3268 *
3269 * Pads up a buffer to ensure the trailing bytes exist and are
3270 * blanked. If the buffer already contains sufficient data it
3271 * is untouched. Otherwise it is extended. Returns zero on
3272 * success. The skb is freed on error.
3273 */
skb_padto(struct sk_buff * skb,unsigned int len)3274 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3275 {
3276 unsigned int size = skb->len;
3277 if (likely(size >= len))
3278 return 0;
3279 return skb_pad(skb, len - size);
3280 }
3281
3282 /**
3283 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3284 * @skb: buffer to pad
3285 * @len: minimal length
3286 * @free_on_error: free buffer on error
3287 *
3288 * Pads up a buffer to ensure the trailing bytes exist and are
3289 * blanked. If the buffer already contains sufficient data it
3290 * is untouched. Otherwise it is extended. Returns zero on
3291 * success. The skb is freed on error if @free_on_error is true.
3292 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3293 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3294 unsigned int len,
3295 bool free_on_error)
3296 {
3297 unsigned int size = skb->len;
3298
3299 if (unlikely(size < len)) {
3300 len -= size;
3301 if (__skb_pad(skb, len, free_on_error))
3302 return -ENOMEM;
3303 __skb_put(skb, len);
3304 }
3305 return 0;
3306 }
3307
3308 /**
3309 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3310 * @skb: buffer to pad
3311 * @len: minimal length
3312 *
3313 * Pads up a buffer to ensure the trailing bytes exist and are
3314 * blanked. If the buffer already contains sufficient data it
3315 * is untouched. Otherwise it is extended. Returns zero on
3316 * success. The skb is freed on error.
3317 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3318 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3319 {
3320 return __skb_put_padto(skb, len, true);
3321 }
3322
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3323 static inline int skb_add_data(struct sk_buff *skb,
3324 struct iov_iter *from, int copy)
3325 {
3326 const int off = skb->len;
3327
3328 if (skb->ip_summed == CHECKSUM_NONE) {
3329 __wsum csum = 0;
3330 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3331 &csum, from)) {
3332 skb->csum = csum_block_add(skb->csum, csum, off);
3333 return 0;
3334 }
3335 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3336 return 0;
3337
3338 __skb_trim(skb, off);
3339 return -EFAULT;
3340 }
3341
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3342 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3343 const struct page *page, int off)
3344 {
3345 if (skb_zcopy(skb))
3346 return false;
3347 if (i) {
3348 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3349
3350 return page == skb_frag_page(frag) &&
3351 off == skb_frag_off(frag) + skb_frag_size(frag);
3352 }
3353 return false;
3354 }
3355
__skb_linearize(struct sk_buff * skb)3356 static inline int __skb_linearize(struct sk_buff *skb)
3357 {
3358 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3359 }
3360
3361 /**
3362 * skb_linearize - convert paged skb to linear one
3363 * @skb: buffer to linarize
3364 *
3365 * If there is no free memory -ENOMEM is returned, otherwise zero
3366 * is returned and the old skb data released.
3367 */
skb_linearize(struct sk_buff * skb)3368 static inline int skb_linearize(struct sk_buff *skb)
3369 {
3370 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3371 }
3372
3373 /**
3374 * skb_has_shared_frag - can any frag be overwritten
3375 * @skb: buffer to test
3376 *
3377 * Return true if the skb has at least one frag that might be modified
3378 * by an external entity (as in vmsplice()/sendfile())
3379 */
skb_has_shared_frag(const struct sk_buff * skb)3380 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3381 {
3382 return skb_is_nonlinear(skb) &&
3383 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3384 }
3385
3386 /**
3387 * skb_linearize_cow - make sure skb is linear and writable
3388 * @skb: buffer to process
3389 *
3390 * If there is no free memory -ENOMEM is returned, otherwise zero
3391 * is returned and the old skb data released.
3392 */
skb_linearize_cow(struct sk_buff * skb)3393 static inline int skb_linearize_cow(struct sk_buff *skb)
3394 {
3395 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3396 __skb_linearize(skb) : 0;
3397 }
3398
3399 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3400 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3401 unsigned int off)
3402 {
3403 if (skb->ip_summed == CHECKSUM_COMPLETE)
3404 skb->csum = csum_block_sub(skb->csum,
3405 csum_partial(start, len, 0), off);
3406 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3407 skb_checksum_start_offset(skb) < 0)
3408 skb->ip_summed = CHECKSUM_NONE;
3409 }
3410
3411 /**
3412 * skb_postpull_rcsum - update checksum for received skb after pull
3413 * @skb: buffer to update
3414 * @start: start of data before pull
3415 * @len: length of data pulled
3416 *
3417 * After doing a pull on a received packet, you need to call this to
3418 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3419 * CHECKSUM_NONE so that it can be recomputed from scratch.
3420 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3421 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3422 const void *start, unsigned int len)
3423 {
3424 __skb_postpull_rcsum(skb, start, len, 0);
3425 }
3426
3427 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3428 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3429 unsigned int off)
3430 {
3431 if (skb->ip_summed == CHECKSUM_COMPLETE)
3432 skb->csum = csum_block_add(skb->csum,
3433 csum_partial(start, len, 0), off);
3434 }
3435
3436 /**
3437 * skb_postpush_rcsum - update checksum for received skb after push
3438 * @skb: buffer to update
3439 * @start: start of data after push
3440 * @len: length of data pushed
3441 *
3442 * After doing a push on a received packet, you need to call this to
3443 * update the CHECKSUM_COMPLETE checksum.
3444 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3445 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3446 const void *start, unsigned int len)
3447 {
3448 __skb_postpush_rcsum(skb, start, len, 0);
3449 }
3450
3451 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3452
3453 /**
3454 * skb_push_rcsum - push skb and update receive checksum
3455 * @skb: buffer to update
3456 * @len: length of data pulled
3457 *
3458 * This function performs an skb_push on the packet and updates
3459 * the CHECKSUM_COMPLETE checksum. It should be used on
3460 * receive path processing instead of skb_push unless you know
3461 * that the checksum difference is zero (e.g., a valid IP header)
3462 * or you are setting ip_summed to CHECKSUM_NONE.
3463 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3464 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3465 {
3466 skb_push(skb, len);
3467 skb_postpush_rcsum(skb, skb->data, len);
3468 return skb->data;
3469 }
3470
3471 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3472 /**
3473 * pskb_trim_rcsum - trim received skb and update checksum
3474 * @skb: buffer to trim
3475 * @len: new length
3476 *
3477 * This is exactly the same as pskb_trim except that it ensures the
3478 * checksum of received packets are still valid after the operation.
3479 * It can change skb pointers.
3480 */
3481
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3482 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3483 {
3484 if (likely(len >= skb->len))
3485 return 0;
3486 return pskb_trim_rcsum_slow(skb, len);
3487 }
3488
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3489 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3490 {
3491 if (skb->ip_summed == CHECKSUM_COMPLETE)
3492 skb->ip_summed = CHECKSUM_NONE;
3493 __skb_trim(skb, len);
3494 return 0;
3495 }
3496
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3497 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3498 {
3499 if (skb->ip_summed == CHECKSUM_COMPLETE)
3500 skb->ip_summed = CHECKSUM_NONE;
3501 return __skb_grow(skb, len);
3502 }
3503
3504 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3505 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3506 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3507 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3508 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3509
3510 #define skb_queue_walk(queue, skb) \
3511 for (skb = (queue)->next; \
3512 skb != (struct sk_buff *)(queue); \
3513 skb = skb->next)
3514
3515 #define skb_queue_walk_safe(queue, skb, tmp) \
3516 for (skb = (queue)->next, tmp = skb->next; \
3517 skb != (struct sk_buff *)(queue); \
3518 skb = tmp, tmp = skb->next)
3519
3520 #define skb_queue_walk_from(queue, skb) \
3521 for (; skb != (struct sk_buff *)(queue); \
3522 skb = skb->next)
3523
3524 #define skb_rbtree_walk(skb, root) \
3525 for (skb = skb_rb_first(root); skb != NULL; \
3526 skb = skb_rb_next(skb))
3527
3528 #define skb_rbtree_walk_from(skb) \
3529 for (; skb != NULL; \
3530 skb = skb_rb_next(skb))
3531
3532 #define skb_rbtree_walk_from_safe(skb, tmp) \
3533 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3534 skb = tmp)
3535
3536 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3537 for (tmp = skb->next; \
3538 skb != (struct sk_buff *)(queue); \
3539 skb = tmp, tmp = skb->next)
3540
3541 #define skb_queue_reverse_walk(queue, skb) \
3542 for (skb = (queue)->prev; \
3543 skb != (struct sk_buff *)(queue); \
3544 skb = skb->prev)
3545
3546 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3547 for (skb = (queue)->prev, tmp = skb->prev; \
3548 skb != (struct sk_buff *)(queue); \
3549 skb = tmp, tmp = skb->prev)
3550
3551 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3552 for (tmp = skb->prev; \
3553 skb != (struct sk_buff *)(queue); \
3554 skb = tmp, tmp = skb->prev)
3555
skb_has_frag_list(const struct sk_buff * skb)3556 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3557 {
3558 return skb_shinfo(skb)->frag_list != NULL;
3559 }
3560
skb_frag_list_init(struct sk_buff * skb)3561 static inline void skb_frag_list_init(struct sk_buff *skb)
3562 {
3563 skb_shinfo(skb)->frag_list = NULL;
3564 }
3565
3566 #define skb_walk_frags(skb, iter) \
3567 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3568
3569
3570 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3571 int *err, long *timeo_p,
3572 const struct sk_buff *skb);
3573 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3574 struct sk_buff_head *queue,
3575 unsigned int flags,
3576 int *off, int *err,
3577 struct sk_buff **last);
3578 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3579 struct sk_buff_head *queue,
3580 unsigned int flags, int *off, int *err,
3581 struct sk_buff **last);
3582 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3583 struct sk_buff_head *sk_queue,
3584 unsigned int flags, int *off, int *err);
3585 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3586 int *err);
3587 __poll_t datagram_poll(struct file *file, struct socket *sock,
3588 struct poll_table_struct *wait);
3589 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3590 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3591 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3592 struct msghdr *msg, int size)
3593 {
3594 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3595 }
3596 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3597 struct msghdr *msg);
3598 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3599 struct iov_iter *to, int len,
3600 struct ahash_request *hash);
3601 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3602 struct iov_iter *from, int len);
3603 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3604 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3605 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3606 static inline void skb_free_datagram_locked(struct sock *sk,
3607 struct sk_buff *skb)
3608 {
3609 __skb_free_datagram_locked(sk, skb, 0);
3610 }
3611 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3612 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3613 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3614 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3615 int len);
3616 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3617 struct pipe_inode_info *pipe, unsigned int len,
3618 unsigned int flags);
3619 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3620 int len);
3621 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3622 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3623 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3624 int len, int hlen);
3625 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3626 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3627 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3628 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3629 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3630 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3631 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3632 unsigned int offset);
3633 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3634 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3635 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3636 int skb_vlan_pop(struct sk_buff *skb);
3637 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3638 int skb_eth_pop(struct sk_buff *skb);
3639 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3640 const unsigned char *src);
3641 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3642 int mac_len, bool ethernet);
3643 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3644 bool ethernet);
3645 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3646 int skb_mpls_dec_ttl(struct sk_buff *skb);
3647 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3648 gfp_t gfp);
3649
memcpy_from_msg(void * data,struct msghdr * msg,int len)3650 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3651 {
3652 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3653 }
3654
memcpy_to_msg(struct msghdr * msg,void * data,int len)3655 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3656 {
3657 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3658 }
3659
3660 struct skb_checksum_ops {
3661 __wsum (*update)(const void *mem, int len, __wsum wsum);
3662 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3663 };
3664
3665 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3666
3667 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3668 __wsum csum, const struct skb_checksum_ops *ops);
3669 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3670 __wsum csum);
3671
3672 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3673 __skb_header_pointer(const struct sk_buff *skb, int offset,
3674 int len, void *data, int hlen, void *buffer)
3675 {
3676 if (hlen - offset >= len)
3677 return data + offset;
3678
3679 if (!skb ||
3680 skb_copy_bits(skb, offset, buffer, len) < 0)
3681 return NULL;
3682
3683 return buffer;
3684 }
3685
3686 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3687 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3688 {
3689 return __skb_header_pointer(skb, offset, len, skb->data,
3690 skb_headlen(skb), buffer);
3691 }
3692
3693 /**
3694 * skb_needs_linearize - check if we need to linearize a given skb
3695 * depending on the given device features.
3696 * @skb: socket buffer to check
3697 * @features: net device features
3698 *
3699 * Returns true if either:
3700 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3701 * 2. skb is fragmented and the device does not support SG.
3702 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3703 static inline bool skb_needs_linearize(struct sk_buff *skb,
3704 netdev_features_t features)
3705 {
3706 return skb_is_nonlinear(skb) &&
3707 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3708 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3709 }
3710
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3711 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3712 void *to,
3713 const unsigned int len)
3714 {
3715 memcpy(to, skb->data, len);
3716 }
3717
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3718 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3719 const int offset, void *to,
3720 const unsigned int len)
3721 {
3722 memcpy(to, skb->data + offset, len);
3723 }
3724
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3725 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3726 const void *from,
3727 const unsigned int len)
3728 {
3729 memcpy(skb->data, from, len);
3730 }
3731
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3732 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3733 const int offset,
3734 const void *from,
3735 const unsigned int len)
3736 {
3737 memcpy(skb->data + offset, from, len);
3738 }
3739
3740 void skb_init(void);
3741
skb_get_ktime(const struct sk_buff * skb)3742 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3743 {
3744 return skb->tstamp;
3745 }
3746
3747 /**
3748 * skb_get_timestamp - get timestamp from a skb
3749 * @skb: skb to get stamp from
3750 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3751 *
3752 * Timestamps are stored in the skb as offsets to a base timestamp.
3753 * This function converts the offset back to a struct timeval and stores
3754 * it in stamp.
3755 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3756 static inline void skb_get_timestamp(const struct sk_buff *skb,
3757 struct __kernel_old_timeval *stamp)
3758 {
3759 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3760 }
3761
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3762 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3763 struct __kernel_sock_timeval *stamp)
3764 {
3765 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3766
3767 stamp->tv_sec = ts.tv_sec;
3768 stamp->tv_usec = ts.tv_nsec / 1000;
3769 }
3770
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3771 static inline void skb_get_timestampns(const struct sk_buff *skb,
3772 struct __kernel_old_timespec *stamp)
3773 {
3774 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3775
3776 stamp->tv_sec = ts.tv_sec;
3777 stamp->tv_nsec = ts.tv_nsec;
3778 }
3779
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3780 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3781 struct __kernel_timespec *stamp)
3782 {
3783 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3784
3785 stamp->tv_sec = ts.tv_sec;
3786 stamp->tv_nsec = ts.tv_nsec;
3787 }
3788
__net_timestamp(struct sk_buff * skb)3789 static inline void __net_timestamp(struct sk_buff *skb)
3790 {
3791 skb->tstamp = ktime_get_real();
3792 }
3793
net_timedelta(ktime_t t)3794 static inline ktime_t net_timedelta(ktime_t t)
3795 {
3796 return ktime_sub(ktime_get_real(), t);
3797 }
3798
net_invalid_timestamp(void)3799 static inline ktime_t net_invalid_timestamp(void)
3800 {
3801 return 0;
3802 }
3803
skb_metadata_len(const struct sk_buff * skb)3804 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3805 {
3806 return skb_shinfo(skb)->meta_len;
3807 }
3808
skb_metadata_end(const struct sk_buff * skb)3809 static inline void *skb_metadata_end(const struct sk_buff *skb)
3810 {
3811 return skb_mac_header(skb);
3812 }
3813
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3814 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3815 const struct sk_buff *skb_b,
3816 u8 meta_len)
3817 {
3818 const void *a = skb_metadata_end(skb_a);
3819 const void *b = skb_metadata_end(skb_b);
3820 /* Using more efficient varaiant than plain call to memcmp(). */
3821 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3822 u64 diffs = 0;
3823
3824 switch (meta_len) {
3825 #define __it(x, op) (x -= sizeof(u##op))
3826 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3827 case 32: diffs |= __it_diff(a, b, 64);
3828 fallthrough;
3829 case 24: diffs |= __it_diff(a, b, 64);
3830 fallthrough;
3831 case 16: diffs |= __it_diff(a, b, 64);
3832 fallthrough;
3833 case 8: diffs |= __it_diff(a, b, 64);
3834 break;
3835 case 28: diffs |= __it_diff(a, b, 64);
3836 fallthrough;
3837 case 20: diffs |= __it_diff(a, b, 64);
3838 fallthrough;
3839 case 12: diffs |= __it_diff(a, b, 64);
3840 fallthrough;
3841 case 4: diffs |= __it_diff(a, b, 32);
3842 break;
3843 }
3844 return diffs;
3845 #else
3846 return memcmp(a - meta_len, b - meta_len, meta_len);
3847 #endif
3848 }
3849
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3850 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3851 const struct sk_buff *skb_b)
3852 {
3853 u8 len_a = skb_metadata_len(skb_a);
3854 u8 len_b = skb_metadata_len(skb_b);
3855
3856 if (!(len_a | len_b))
3857 return false;
3858
3859 return len_a != len_b ?
3860 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3861 }
3862
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3863 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3864 {
3865 skb_shinfo(skb)->meta_len = meta_len;
3866 }
3867
skb_metadata_clear(struct sk_buff * skb)3868 static inline void skb_metadata_clear(struct sk_buff *skb)
3869 {
3870 skb_metadata_set(skb, 0);
3871 }
3872
3873 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3874
3875 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3876
3877 void skb_clone_tx_timestamp(struct sk_buff *skb);
3878 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3879
3880 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3881
skb_clone_tx_timestamp(struct sk_buff * skb)3882 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3883 {
3884 }
3885
skb_defer_rx_timestamp(struct sk_buff * skb)3886 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3887 {
3888 return false;
3889 }
3890
3891 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3892
3893 /**
3894 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3895 *
3896 * PHY drivers may accept clones of transmitted packets for
3897 * timestamping via their phy_driver.txtstamp method. These drivers
3898 * must call this function to return the skb back to the stack with a
3899 * timestamp.
3900 *
3901 * @skb: clone of the original outgoing packet
3902 * @hwtstamps: hardware time stamps
3903 *
3904 */
3905 void skb_complete_tx_timestamp(struct sk_buff *skb,
3906 struct skb_shared_hwtstamps *hwtstamps);
3907
3908 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3909 struct skb_shared_hwtstamps *hwtstamps,
3910 struct sock *sk, int tstype);
3911
3912 /**
3913 * skb_tstamp_tx - queue clone of skb with send time stamps
3914 * @orig_skb: the original outgoing packet
3915 * @hwtstamps: hardware time stamps, may be NULL if not available
3916 *
3917 * If the skb has a socket associated, then this function clones the
3918 * skb (thus sharing the actual data and optional structures), stores
3919 * the optional hardware time stamping information (if non NULL) or
3920 * generates a software time stamp (otherwise), then queues the clone
3921 * to the error queue of the socket. Errors are silently ignored.
3922 */
3923 void skb_tstamp_tx(struct sk_buff *orig_skb,
3924 struct skb_shared_hwtstamps *hwtstamps);
3925
3926 /**
3927 * skb_tx_timestamp() - Driver hook for transmit timestamping
3928 *
3929 * Ethernet MAC Drivers should call this function in their hard_xmit()
3930 * function immediately before giving the sk_buff to the MAC hardware.
3931 *
3932 * Specifically, one should make absolutely sure that this function is
3933 * called before TX completion of this packet can trigger. Otherwise
3934 * the packet could potentially already be freed.
3935 *
3936 * @skb: A socket buffer.
3937 */
skb_tx_timestamp(struct sk_buff * skb)3938 static inline void skb_tx_timestamp(struct sk_buff *skb)
3939 {
3940 skb_clone_tx_timestamp(skb);
3941 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3942 skb_tstamp_tx(skb, NULL);
3943 }
3944
3945 /**
3946 * skb_complete_wifi_ack - deliver skb with wifi status
3947 *
3948 * @skb: the original outgoing packet
3949 * @acked: ack status
3950 *
3951 */
3952 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3953
3954 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3955 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3956
skb_csum_unnecessary(const struct sk_buff * skb)3957 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3958 {
3959 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3960 skb->csum_valid ||
3961 (skb->ip_summed == CHECKSUM_PARTIAL &&
3962 skb_checksum_start_offset(skb) >= 0));
3963 }
3964
3965 /**
3966 * skb_checksum_complete - Calculate checksum of an entire packet
3967 * @skb: packet to process
3968 *
3969 * This function calculates the checksum over the entire packet plus
3970 * the value of skb->csum. The latter can be used to supply the
3971 * checksum of a pseudo header as used by TCP/UDP. It returns the
3972 * checksum.
3973 *
3974 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3975 * this function can be used to verify that checksum on received
3976 * packets. In that case the function should return zero if the
3977 * checksum is correct. In particular, this function will return zero
3978 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3979 * hardware has already verified the correctness of the checksum.
3980 */
skb_checksum_complete(struct sk_buff * skb)3981 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3982 {
3983 return skb_csum_unnecessary(skb) ?
3984 0 : __skb_checksum_complete(skb);
3985 }
3986
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3987 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3988 {
3989 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3990 if (skb->csum_level == 0)
3991 skb->ip_summed = CHECKSUM_NONE;
3992 else
3993 skb->csum_level--;
3994 }
3995 }
3996
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3997 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3998 {
3999 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4000 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4001 skb->csum_level++;
4002 } else if (skb->ip_summed == CHECKSUM_NONE) {
4003 skb->ip_summed = CHECKSUM_UNNECESSARY;
4004 skb->csum_level = 0;
4005 }
4006 }
4007
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4008 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4009 {
4010 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4011 skb->ip_summed = CHECKSUM_NONE;
4012 skb->csum_level = 0;
4013 }
4014 }
4015
4016 /* Check if we need to perform checksum complete validation.
4017 *
4018 * Returns true if checksum complete is needed, false otherwise
4019 * (either checksum is unnecessary or zero checksum is allowed).
4020 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4021 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4022 bool zero_okay,
4023 __sum16 check)
4024 {
4025 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4026 skb->csum_valid = 1;
4027 __skb_decr_checksum_unnecessary(skb);
4028 return false;
4029 }
4030
4031 return true;
4032 }
4033
4034 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4035 * in checksum_init.
4036 */
4037 #define CHECKSUM_BREAK 76
4038
4039 /* Unset checksum-complete
4040 *
4041 * Unset checksum complete can be done when packet is being modified
4042 * (uncompressed for instance) and checksum-complete value is
4043 * invalidated.
4044 */
skb_checksum_complete_unset(struct sk_buff * skb)4045 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4046 {
4047 if (skb->ip_summed == CHECKSUM_COMPLETE)
4048 skb->ip_summed = CHECKSUM_NONE;
4049 }
4050
4051 /* Validate (init) checksum based on checksum complete.
4052 *
4053 * Return values:
4054 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4055 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4056 * checksum is stored in skb->csum for use in __skb_checksum_complete
4057 * non-zero: value of invalid checksum
4058 *
4059 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4060 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4061 bool complete,
4062 __wsum psum)
4063 {
4064 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4065 if (!csum_fold(csum_add(psum, skb->csum))) {
4066 skb->csum_valid = 1;
4067 return 0;
4068 }
4069 }
4070
4071 skb->csum = psum;
4072
4073 if (complete || skb->len <= CHECKSUM_BREAK) {
4074 __sum16 csum;
4075
4076 csum = __skb_checksum_complete(skb);
4077 skb->csum_valid = !csum;
4078 return csum;
4079 }
4080
4081 return 0;
4082 }
4083
null_compute_pseudo(struct sk_buff * skb,int proto)4084 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4085 {
4086 return 0;
4087 }
4088
4089 /* Perform checksum validate (init). Note that this is a macro since we only
4090 * want to calculate the pseudo header which is an input function if necessary.
4091 * First we try to validate without any computation (checksum unnecessary) and
4092 * then calculate based on checksum complete calling the function to compute
4093 * pseudo header.
4094 *
4095 * Return values:
4096 * 0: checksum is validated or try to in skb_checksum_complete
4097 * non-zero: value of invalid checksum
4098 */
4099 #define __skb_checksum_validate(skb, proto, complete, \
4100 zero_okay, check, compute_pseudo) \
4101 ({ \
4102 __sum16 __ret = 0; \
4103 skb->csum_valid = 0; \
4104 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4105 __ret = __skb_checksum_validate_complete(skb, \
4106 complete, compute_pseudo(skb, proto)); \
4107 __ret; \
4108 })
4109
4110 #define skb_checksum_init(skb, proto, compute_pseudo) \
4111 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4112
4113 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4114 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4115
4116 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4117 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4118
4119 #define skb_checksum_validate_zero_check(skb, proto, check, \
4120 compute_pseudo) \
4121 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4122
4123 #define skb_checksum_simple_validate(skb) \
4124 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4125
__skb_checksum_convert_check(struct sk_buff * skb)4126 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4127 {
4128 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4129 }
4130
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4131 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4132 {
4133 skb->csum = ~pseudo;
4134 skb->ip_summed = CHECKSUM_COMPLETE;
4135 }
4136
4137 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4138 do { \
4139 if (__skb_checksum_convert_check(skb)) \
4140 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4141 } while (0)
4142
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4143 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4144 u16 start, u16 offset)
4145 {
4146 skb->ip_summed = CHECKSUM_PARTIAL;
4147 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4148 skb->csum_offset = offset - start;
4149 }
4150
4151 /* Update skbuf and packet to reflect the remote checksum offload operation.
4152 * When called, ptr indicates the starting point for skb->csum when
4153 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4154 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4155 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4156 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4157 int start, int offset, bool nopartial)
4158 {
4159 __wsum delta;
4160
4161 if (!nopartial) {
4162 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4163 return;
4164 }
4165
4166 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4167 __skb_checksum_complete(skb);
4168 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4169 }
4170
4171 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4172
4173 /* Adjust skb->csum since we changed the packet */
4174 skb->csum = csum_add(skb->csum, delta);
4175 }
4176
skb_nfct(const struct sk_buff * skb)4177 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4178 {
4179 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4180 return (void *)(skb->_nfct & NFCT_PTRMASK);
4181 #else
4182 return NULL;
4183 #endif
4184 }
4185
skb_get_nfct(const struct sk_buff * skb)4186 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4187 {
4188 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4189 return skb->_nfct;
4190 #else
4191 return 0UL;
4192 #endif
4193 }
4194
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4195 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4196 {
4197 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4198 skb->_nfct = nfct;
4199 #endif
4200 }
4201
4202 #ifdef CONFIG_SKB_EXTENSIONS
4203 enum skb_ext_id {
4204 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4205 SKB_EXT_BRIDGE_NF,
4206 #endif
4207 #ifdef CONFIG_XFRM
4208 SKB_EXT_SEC_PATH,
4209 #endif
4210 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4211 TC_SKB_EXT,
4212 #endif
4213 #if IS_ENABLED(CONFIG_MPTCP)
4214 SKB_EXT_MPTCP,
4215 #endif
4216 SKB_EXT_NUM, /* must be last */
4217 };
4218
4219 /**
4220 * struct skb_ext - sk_buff extensions
4221 * @refcnt: 1 on allocation, deallocated on 0
4222 * @offset: offset to add to @data to obtain extension address
4223 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4224 * @data: start of extension data, variable sized
4225 *
4226 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4227 * to use 'u8' types while allowing up to 2kb worth of extension data.
4228 */
4229 struct skb_ext {
4230 refcount_t refcnt;
4231 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4232 u8 chunks; /* same */
4233 char data[] __aligned(8);
4234 };
4235
4236 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4237 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4238 struct skb_ext *ext);
4239 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4240 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4241 void __skb_ext_put(struct skb_ext *ext);
4242
skb_ext_put(struct sk_buff * skb)4243 static inline void skb_ext_put(struct sk_buff *skb)
4244 {
4245 if (skb->active_extensions)
4246 __skb_ext_put(skb->extensions);
4247 }
4248
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4249 static inline void __skb_ext_copy(struct sk_buff *dst,
4250 const struct sk_buff *src)
4251 {
4252 dst->active_extensions = src->active_extensions;
4253
4254 if (src->active_extensions) {
4255 struct skb_ext *ext = src->extensions;
4256
4257 refcount_inc(&ext->refcnt);
4258 dst->extensions = ext;
4259 }
4260 }
4261
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4262 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4263 {
4264 skb_ext_put(dst);
4265 __skb_ext_copy(dst, src);
4266 }
4267
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4268 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4269 {
4270 return !!ext->offset[i];
4271 }
4272
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4273 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4274 {
4275 return skb->active_extensions & (1 << id);
4276 }
4277
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4278 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4279 {
4280 if (skb_ext_exist(skb, id))
4281 __skb_ext_del(skb, id);
4282 }
4283
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4284 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4285 {
4286 if (skb_ext_exist(skb, id)) {
4287 struct skb_ext *ext = skb->extensions;
4288
4289 return (void *)ext + (ext->offset[id] << 3);
4290 }
4291
4292 return NULL;
4293 }
4294
skb_ext_reset(struct sk_buff * skb)4295 static inline void skb_ext_reset(struct sk_buff *skb)
4296 {
4297 if (unlikely(skb->active_extensions)) {
4298 __skb_ext_put(skb->extensions);
4299 skb->active_extensions = 0;
4300 }
4301 }
4302
skb_has_extensions(struct sk_buff * skb)4303 static inline bool skb_has_extensions(struct sk_buff *skb)
4304 {
4305 return unlikely(skb->active_extensions);
4306 }
4307 #else
skb_ext_put(struct sk_buff * skb)4308 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4309 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4310 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4311 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4312 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4313 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4314 #endif /* CONFIG_SKB_EXTENSIONS */
4315
nf_reset_ct(struct sk_buff * skb)4316 static inline void nf_reset_ct(struct sk_buff *skb)
4317 {
4318 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4319 nf_conntrack_put(skb_nfct(skb));
4320 skb->_nfct = 0;
4321 #endif
4322 }
4323
nf_reset_trace(struct sk_buff * skb)4324 static inline void nf_reset_trace(struct sk_buff *skb)
4325 {
4326 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4327 skb->nf_trace = 0;
4328 #endif
4329 }
4330
ipvs_reset(struct sk_buff * skb)4331 static inline void ipvs_reset(struct sk_buff *skb)
4332 {
4333 #if IS_ENABLED(CONFIG_IP_VS)
4334 skb->ipvs_property = 0;
4335 #endif
4336 }
4337
4338 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4339 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4340 bool copy)
4341 {
4342 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4343 dst->_nfct = src->_nfct;
4344 nf_conntrack_get(skb_nfct(src));
4345 #endif
4346 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4347 if (copy)
4348 dst->nf_trace = src->nf_trace;
4349 #endif
4350 }
4351
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4352 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4353 {
4354 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4355 nf_conntrack_put(skb_nfct(dst));
4356 #endif
4357 __nf_copy(dst, src, true);
4358 }
4359
4360 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4361 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4362 {
4363 to->secmark = from->secmark;
4364 }
4365
skb_init_secmark(struct sk_buff * skb)4366 static inline void skb_init_secmark(struct sk_buff *skb)
4367 {
4368 skb->secmark = 0;
4369 }
4370 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4371 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4372 { }
4373
skb_init_secmark(struct sk_buff * skb)4374 static inline void skb_init_secmark(struct sk_buff *skb)
4375 { }
4376 #endif
4377
secpath_exists(const struct sk_buff * skb)4378 static inline int secpath_exists(const struct sk_buff *skb)
4379 {
4380 #ifdef CONFIG_XFRM
4381 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4382 #else
4383 return 0;
4384 #endif
4385 }
4386
skb_irq_freeable(const struct sk_buff * skb)4387 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4388 {
4389 return !skb->destructor &&
4390 !secpath_exists(skb) &&
4391 !skb_nfct(skb) &&
4392 !skb->_skb_refdst &&
4393 !skb_has_frag_list(skb);
4394 }
4395
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4396 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4397 {
4398 skb->queue_mapping = queue_mapping;
4399 }
4400
skb_get_queue_mapping(const struct sk_buff * skb)4401 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4402 {
4403 return skb->queue_mapping;
4404 }
4405
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4406 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4407 {
4408 to->queue_mapping = from->queue_mapping;
4409 }
4410
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4411 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4412 {
4413 skb->queue_mapping = rx_queue + 1;
4414 }
4415
skb_get_rx_queue(const struct sk_buff * skb)4416 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4417 {
4418 return skb->queue_mapping - 1;
4419 }
4420
skb_rx_queue_recorded(const struct sk_buff * skb)4421 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4422 {
4423 return skb->queue_mapping != 0;
4424 }
4425
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4426 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4427 {
4428 skb->dst_pending_confirm = val;
4429 }
4430
skb_get_dst_pending_confirm(const struct sk_buff * skb)4431 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4432 {
4433 return skb->dst_pending_confirm != 0;
4434 }
4435
skb_sec_path(const struct sk_buff * skb)4436 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4437 {
4438 #ifdef CONFIG_XFRM
4439 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4440 #else
4441 return NULL;
4442 #endif
4443 }
4444
4445 /* Keeps track of mac header offset relative to skb->head.
4446 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4447 * For non-tunnel skb it points to skb_mac_header() and for
4448 * tunnel skb it points to outer mac header.
4449 * Keeps track of level of encapsulation of network headers.
4450 */
4451 struct skb_gso_cb {
4452 union {
4453 int mac_offset;
4454 int data_offset;
4455 };
4456 int encap_level;
4457 __wsum csum;
4458 __u16 csum_start;
4459 };
4460 #define SKB_GSO_CB_OFFSET 32
4461 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4462
skb_tnl_header_len(const struct sk_buff * inner_skb)4463 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4464 {
4465 return (skb_mac_header(inner_skb) - inner_skb->head) -
4466 SKB_GSO_CB(inner_skb)->mac_offset;
4467 }
4468
gso_pskb_expand_head(struct sk_buff * skb,int extra)4469 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4470 {
4471 int new_headroom, headroom;
4472 int ret;
4473
4474 headroom = skb_headroom(skb);
4475 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4476 if (ret)
4477 return ret;
4478
4479 new_headroom = skb_headroom(skb);
4480 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4481 return 0;
4482 }
4483
gso_reset_checksum(struct sk_buff * skb,__wsum res)4484 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4485 {
4486 /* Do not update partial checksums if remote checksum is enabled. */
4487 if (skb->remcsum_offload)
4488 return;
4489
4490 SKB_GSO_CB(skb)->csum = res;
4491 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4492 }
4493
4494 /* Compute the checksum for a gso segment. First compute the checksum value
4495 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4496 * then add in skb->csum (checksum from csum_start to end of packet).
4497 * skb->csum and csum_start are then updated to reflect the checksum of the
4498 * resultant packet starting from the transport header-- the resultant checksum
4499 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4500 * header.
4501 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4502 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4503 {
4504 unsigned char *csum_start = skb_transport_header(skb);
4505 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4506 __wsum partial = SKB_GSO_CB(skb)->csum;
4507
4508 SKB_GSO_CB(skb)->csum = res;
4509 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4510
4511 return csum_fold(csum_partial(csum_start, plen, partial));
4512 }
4513
skb_is_gso(const struct sk_buff * skb)4514 static inline bool skb_is_gso(const struct sk_buff *skb)
4515 {
4516 return skb_shinfo(skb)->gso_size;
4517 }
4518
4519 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4520 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4521 {
4522 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4523 }
4524
4525 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4526 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4527 {
4528 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4529 }
4530
4531 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4532 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4533 {
4534 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4535 }
4536
skb_gso_reset(struct sk_buff * skb)4537 static inline void skb_gso_reset(struct sk_buff *skb)
4538 {
4539 skb_shinfo(skb)->gso_size = 0;
4540 skb_shinfo(skb)->gso_segs = 0;
4541 skb_shinfo(skb)->gso_type = 0;
4542 }
4543
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4544 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4545 u16 increment)
4546 {
4547 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4548 return;
4549 shinfo->gso_size += increment;
4550 }
4551
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4552 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4553 u16 decrement)
4554 {
4555 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4556 return;
4557 shinfo->gso_size -= decrement;
4558 }
4559
4560 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4561
skb_warn_if_lro(const struct sk_buff * skb)4562 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4563 {
4564 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4565 * wanted then gso_type will be set. */
4566 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4567
4568 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4569 unlikely(shinfo->gso_type == 0)) {
4570 __skb_warn_lro_forwarding(skb);
4571 return true;
4572 }
4573 return false;
4574 }
4575
skb_forward_csum(struct sk_buff * skb)4576 static inline void skb_forward_csum(struct sk_buff *skb)
4577 {
4578 /* Unfortunately we don't support this one. Any brave souls? */
4579 if (skb->ip_summed == CHECKSUM_COMPLETE)
4580 skb->ip_summed = CHECKSUM_NONE;
4581 }
4582
4583 /**
4584 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4585 * @skb: skb to check
4586 *
4587 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4588 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4589 * use this helper, to document places where we make this assertion.
4590 */
skb_checksum_none_assert(const struct sk_buff * skb)4591 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4592 {
4593 #ifdef DEBUG
4594 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4595 #endif
4596 }
4597
4598 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4599
4600 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4601 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4602 unsigned int transport_len,
4603 __sum16(*skb_chkf)(struct sk_buff *skb));
4604
4605 /**
4606 * skb_head_is_locked - Determine if the skb->head is locked down
4607 * @skb: skb to check
4608 *
4609 * The head on skbs build around a head frag can be removed if they are
4610 * not cloned. This function returns true if the skb head is locked down
4611 * due to either being allocated via kmalloc, or by being a clone with
4612 * multiple references to the head.
4613 */
skb_head_is_locked(const struct sk_buff * skb)4614 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4615 {
4616 return !skb->head_frag || skb_cloned(skb);
4617 }
4618
4619 /* Local Checksum Offload.
4620 * Compute outer checksum based on the assumption that the
4621 * inner checksum will be offloaded later.
4622 * See Documentation/networking/checksum-offloads.rst for
4623 * explanation of how this works.
4624 * Fill in outer checksum adjustment (e.g. with sum of outer
4625 * pseudo-header) before calling.
4626 * Also ensure that inner checksum is in linear data area.
4627 */
lco_csum(struct sk_buff * skb)4628 static inline __wsum lco_csum(struct sk_buff *skb)
4629 {
4630 unsigned char *csum_start = skb_checksum_start(skb);
4631 unsigned char *l4_hdr = skb_transport_header(skb);
4632 __wsum partial;
4633
4634 /* Start with complement of inner checksum adjustment */
4635 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4636 skb->csum_offset));
4637
4638 /* Add in checksum of our headers (incl. outer checksum
4639 * adjustment filled in by caller) and return result.
4640 */
4641 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4642 }
4643
skb_is_redirected(const struct sk_buff * skb)4644 static inline bool skb_is_redirected(const struct sk_buff *skb)
4645 {
4646 #ifdef CONFIG_NET_REDIRECT
4647 return skb->redirected;
4648 #else
4649 return false;
4650 #endif
4651 }
4652
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4653 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4654 {
4655 #ifdef CONFIG_NET_REDIRECT
4656 skb->redirected = 1;
4657 skb->from_ingress = from_ingress;
4658 if (skb->from_ingress)
4659 skb->tstamp = 0;
4660 #endif
4661 }
4662
skb_reset_redirect(struct sk_buff * skb)4663 static inline void skb_reset_redirect(struct sk_buff *skb)
4664 {
4665 #ifdef CONFIG_NET_REDIRECT
4666 skb->redirected = 0;
4667 #endif
4668 }
4669
skb_csum_is_sctp(struct sk_buff * skb)4670 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4671 {
4672 return skb->csum_not_inet;
4673 }
4674
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4675 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4676 const u64 kcov_handle)
4677 {
4678 #ifdef CONFIG_KCOV
4679 skb->kcov_handle = kcov_handle;
4680 #endif
4681 }
4682
skb_get_kcov_handle(struct sk_buff * skb)4683 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4684 {
4685 #ifdef CONFIG_KCOV
4686 return skb->kcov_handle;
4687 #else
4688 return 0;
4689 #endif
4690 }
4691
4692 #endif /* __KERNEL__ */
4693 #endif /* _LINUX_SKBUFF_H */
4694