1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35
36 #define MAX_KEY_LEN 100
37
38 /*
39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41 * policy [un]register operations including cgroup file additions /
42 * removals. Putting cgroup file registration outside blkcg_pol_mutex
43 * allows grabbing it from cgroup callbacks.
44 */
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
47
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
50
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
53
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55
56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
57
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
60
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)61 static bool blkcg_policy_enabled(struct request_queue *q,
62 const struct blkcg_policy *pol)
63 {
64 return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66
67 /**
68 * blkg_free - free a blkg
69 * @blkg: blkg to free
70 *
71 * Free @blkg which may be partially allocated.
72 */
blkg_free(struct blkcg_gq * blkg)73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 int i;
76
77 if (!blkg)
78 return;
79
80 for (i = 0; i < BLKCG_MAX_POLS; i++)
81 if (blkg->pd[i])
82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83
84 free_percpu(blkg->iostat_cpu);
85 percpu_ref_exit(&blkg->refcnt);
86 kfree(blkg);
87 }
88
__blkg_release(struct rcu_head * rcu)89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92
93 WARN_ON(!bio_list_empty(&blkg->async_bios));
94
95 /* release the blkcg and parent blkg refs this blkg has been holding */
96 css_put(&blkg->blkcg->css);
97 if (blkg->parent)
98 blkg_put(blkg->parent);
99 blkg_free(blkg);
100 }
101
102 /*
103 * A group is RCU protected, but having an rcu lock does not mean that one
104 * can access all the fields of blkg and assume these are valid. For
105 * example, don't try to follow throtl_data and request queue links.
106 *
107 * Having a reference to blkg under an rcu allows accesses to only values
108 * local to groups like group stats and group rate limits.
109 */
blkg_release(struct percpu_ref * ref)110 static void blkg_release(struct percpu_ref *ref)
111 {
112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113
114 call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116
blkg_async_bio_workfn(struct work_struct * work)117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 async_bio_work);
121 struct bio_list bios = BIO_EMPTY_LIST;
122 struct bio *bio;
123 struct blk_plug plug;
124 bool need_plug = false;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 /* start plug only when bio_list contains at least 2 bios */
133 if (bios.head && bios.head->bi_next) {
134 need_plug = true;
135 blk_start_plug(&plug);
136 }
137 while ((bio = bio_list_pop(&bios)))
138 submit_bio(bio);
139 if (need_plug)
140 blk_finish_plug(&plug);
141 }
142
143 /**
144 * blkg_alloc - allocate a blkg
145 * @blkcg: block cgroup the new blkg is associated with
146 * @q: request_queue the new blkg is associated with
147 * @gfp_mask: allocation mask to use
148 *
149 * Allocate a new blkg assocating @blkcg and @q.
150 */
blkg_alloc(struct blkcg * blkcg,struct request_queue * q,gfp_t gfp_mask)151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 gfp_t gfp_mask)
153 {
154 struct blkcg_gq *blkg;
155 int i, cpu;
156
157 /* alloc and init base part */
158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 if (!blkg)
160 return NULL;
161
162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 goto err_free;
164
165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 if (!blkg->iostat_cpu)
167 goto err_free;
168
169 blkg->q = q;
170 INIT_LIST_HEAD(&blkg->q_node);
171 spin_lock_init(&blkg->async_bio_lock);
172 bio_list_init(&blkg->async_bios);
173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 blkg->blkcg = blkcg;
175
176 u64_stats_init(&blkg->iostat.sync);
177 for_each_possible_cpu(cpu)
178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179
180 for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 struct blkcg_policy *pol = blkcg_policy[i];
182 struct blkg_policy_data *pd;
183
184 if (!blkcg_policy_enabled(q, pol))
185 continue;
186
187 /* alloc per-policy data and attach it to blkg */
188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 if (!pd)
190 goto err_free;
191
192 blkg->pd[i] = pd;
193 pd->blkg = blkg;
194 pd->plid = i;
195 }
196
197 return blkg;
198
199 err_free:
200 blkg_free(blkg);
201 return NULL;
202 }
203
blkg_lookup_slowpath(struct blkcg * blkcg,struct request_queue * q,bool update_hint)204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 struct request_queue *q, bool update_hint)
206 {
207 struct blkcg_gq *blkg;
208
209 /*
210 * Hint didn't match. Look up from the radix tree. Note that the
211 * hint can only be updated under queue_lock as otherwise @blkg
212 * could have already been removed from blkg_tree. The caller is
213 * responsible for grabbing queue_lock if @update_hint.
214 */
215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 if (blkg && blkg->q == q) {
217 if (update_hint) {
218 lockdep_assert_held(&q->queue_lock);
219 rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 }
221 return blkg;
222 }
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227
228 /*
229 * If @new_blkg is %NULL, this function tries to allocate a new one as
230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
231 */
blkg_create(struct blkcg * blkcg,struct request_queue * q,struct blkcg_gq * new_blkg)232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 struct request_queue *q,
234 struct blkcg_gq *new_blkg)
235 {
236 struct blkcg_gq *blkg;
237 int i, ret;
238
239 WARN_ON_ONCE(!rcu_read_lock_held());
240 lockdep_assert_held(&q->queue_lock);
241
242 /* request_queue is dying, do not create/recreate a blkg */
243 if (blk_queue_dying(q)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 /* blkg holds a reference to blkcg */
249 if (!css_tryget_online(&blkcg->css)) {
250 ret = -ENODEV;
251 goto err_free_blkg;
252 }
253
254 /* allocate */
255 if (!new_blkg) {
256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!new_blkg)) {
258 ret = -ENOMEM;
259 goto err_put_css;
260 }
261 }
262 blkg = new_blkg;
263
264 /* link parent */
265 if (blkcg_parent(blkcg)) {
266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 if (WARN_ON_ONCE(!blkg->parent)) {
268 ret = -ENODEV;
269 goto err_put_css;
270 }
271 blkg_get(blkg->parent);
272 }
273
274 /* invoke per-policy init */
275 for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 struct blkcg_policy *pol = blkcg_policy[i];
277
278 if (blkg->pd[i] && pol->pd_init_fn)
279 pol->pd_init_fn(blkg->pd[i]);
280 }
281
282 /* insert */
283 spin_lock(&blkcg->lock);
284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 if (likely(!ret)) {
286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 list_add(&blkg->q_node, &q->blkg_list);
288
289 for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 struct blkcg_policy *pol = blkcg_policy[i];
291
292 if (blkg->pd[i] && pol->pd_online_fn)
293 pol->pd_online_fn(blkg->pd[i]);
294 }
295 }
296 blkg->online = true;
297 spin_unlock(&blkcg->lock);
298
299 if (!ret)
300 return blkg;
301
302 /* @blkg failed fully initialized, use the usual release path */
303 blkg_put(blkg);
304 return ERR_PTR(ret);
305
306 err_put_css:
307 css_put(&blkcg->css);
308 err_free_blkg:
309 blkg_free(new_blkg);
310 return ERR_PTR(ret);
311 }
312
313 /**
314 * blkg_lookup_create - lookup blkg, try to create one if not there
315 * @blkcg: blkcg of interest
316 * @q: request_queue of interest
317 *
318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
319 * create one. blkg creation is performed recursively from blkcg_root such
320 * that all non-root blkg's have access to the parent blkg. This function
321 * should be called under RCU read lock and takes @q->queue_lock.
322 *
323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324 * down from root.
325 */
blkg_lookup_create(struct blkcg * blkcg,struct request_queue * q)326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 struct request_queue *q)
328 {
329 struct blkcg_gq *blkg;
330 unsigned long flags;
331
332 WARN_ON_ONCE(!rcu_read_lock_held());
333
334 blkg = blkg_lookup(blkcg, q);
335 if (blkg)
336 return blkg;
337
338 spin_lock_irqsave(&q->queue_lock, flags);
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 goto found;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg)) {
366 blkg = ret_blkg;
367 break;
368 }
369 if (pos == blkcg)
370 break;
371 }
372
373 found:
374 spin_unlock_irqrestore(&q->queue_lock, flags);
375 return blkg;
376 }
377
blkg_destroy(struct blkcg_gq * blkg)378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 struct blkcg *blkcg = blkg->blkcg;
381 int i;
382
383 lockdep_assert_held(&blkg->q->queue_lock);
384 lockdep_assert_held(&blkcg->lock);
385
386 /* Something wrong if we are trying to remove same group twice */
387 WARN_ON_ONCE(list_empty(&blkg->q_node));
388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389
390 for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 struct blkcg_policy *pol = blkcg_policy[i];
392
393 if (blkg->pd[i] && pol->pd_offline_fn)
394 pol->pd_offline_fn(blkg->pd[i]);
395 }
396
397 blkg->online = false;
398
399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 list_del_init(&blkg->q_node);
401 hlist_del_init_rcu(&blkg->blkcg_node);
402
403 /*
404 * Both setting lookup hint to and clearing it from @blkg are done
405 * under queue_lock. If it's not pointing to @blkg now, it never
406 * will. Hint assignment itself can race safely.
407 */
408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 rcu_assign_pointer(blkcg->blkg_hint, NULL);
410
411 /*
412 * Put the reference taken at the time of creation so that when all
413 * queues are gone, group can be destroyed.
414 */
415 percpu_ref_kill(&blkg->refcnt);
416 }
417
418 /**
419 * blkg_destroy_all - destroy all blkgs associated with a request_queue
420 * @q: request_queue of interest
421 *
422 * Destroy all blkgs associated with @q.
423 */
blkg_destroy_all(struct request_queue * q)424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 struct blkcg_gq *blkg, *n;
427
428 spin_lock_irq(&q->queue_lock);
429 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
430 struct blkcg *blkcg = blkg->blkcg;
431
432 spin_lock(&blkcg->lock);
433 blkg_destroy(blkg);
434 spin_unlock(&blkcg->lock);
435 }
436
437 q->root_blkg = NULL;
438 spin_unlock_irq(&q->queue_lock);
439 }
440
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)441 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
442 struct cftype *cftype, u64 val)
443 {
444 struct blkcg *blkcg = css_to_blkcg(css);
445 struct blkcg_gq *blkg;
446 int i, cpu;
447
448 mutex_lock(&blkcg_pol_mutex);
449 spin_lock_irq(&blkcg->lock);
450
451 /*
452 * Note that stat reset is racy - it doesn't synchronize against
453 * stat updates. This is a debug feature which shouldn't exist
454 * anyway. If you get hit by a race, retry.
455 */
456 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
457 for_each_possible_cpu(cpu) {
458 struct blkg_iostat_set *bis =
459 per_cpu_ptr(blkg->iostat_cpu, cpu);
460 memset(bis, 0, sizeof(*bis));
461 }
462 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
463
464 for (i = 0; i < BLKCG_MAX_POLS; i++) {
465 struct blkcg_policy *pol = blkcg_policy[i];
466
467 if (blkg->pd[i] && pol->pd_reset_stats_fn)
468 pol->pd_reset_stats_fn(blkg->pd[i]);
469 }
470 }
471
472 spin_unlock_irq(&blkcg->lock);
473 mutex_unlock(&blkcg_pol_mutex);
474 return 0;
475 }
476
blkg_dev_name(struct blkcg_gq * blkg)477 const char *blkg_dev_name(struct blkcg_gq *blkg)
478 {
479 /* some drivers (floppy) instantiate a queue w/o disk registered */
480 if (blkg->q->backing_dev_info->dev)
481 return bdi_dev_name(blkg->q->backing_dev_info);
482 return NULL;
483 }
484
485 /**
486 * blkcg_print_blkgs - helper for printing per-blkg data
487 * @sf: seq_file to print to
488 * @blkcg: blkcg of interest
489 * @prfill: fill function to print out a blkg
490 * @pol: policy in question
491 * @data: data to be passed to @prfill
492 * @show_total: to print out sum of prfill return values or not
493 *
494 * This function invokes @prfill on each blkg of @blkcg if pd for the
495 * policy specified by @pol exists. @prfill is invoked with @sf, the
496 * policy data and @data and the matching queue lock held. If @show_total
497 * is %true, the sum of the return values from @prfill is printed with
498 * "Total" label at the end.
499 *
500 * This is to be used to construct print functions for
501 * cftype->read_seq_string method.
502 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)503 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
504 u64 (*prfill)(struct seq_file *,
505 struct blkg_policy_data *, int),
506 const struct blkcg_policy *pol, int data,
507 bool show_total)
508 {
509 struct blkcg_gq *blkg;
510 u64 total = 0;
511
512 rcu_read_lock();
513 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
514 spin_lock_irq(&blkg->q->queue_lock);
515 if (blkcg_policy_enabled(blkg->q, pol))
516 total += prfill(sf, blkg->pd[pol->plid], data);
517 spin_unlock_irq(&blkg->q->queue_lock);
518 }
519 rcu_read_unlock();
520
521 if (show_total)
522 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
523 }
524 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
525
526 /**
527 * __blkg_prfill_u64 - prfill helper for a single u64 value
528 * @sf: seq_file to print to
529 * @pd: policy private data of interest
530 * @v: value to print
531 *
532 * Print @v to @sf for the device assocaited with @pd.
533 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)534 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
535 {
536 const char *dname = blkg_dev_name(pd->blkg);
537
538 if (!dname)
539 return 0;
540
541 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
542 return v;
543 }
544 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
545
546 /* Performs queue bypass and policy enabled checks then looks up blkg. */
blkg_lookup_check(struct blkcg * blkcg,const struct blkcg_policy * pol,struct request_queue * q)547 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
548 const struct blkcg_policy *pol,
549 struct request_queue *q)
550 {
551 WARN_ON_ONCE(!rcu_read_lock_held());
552 lockdep_assert_held(&q->queue_lock);
553
554 if (!blkcg_policy_enabled(q, pol))
555 return ERR_PTR(-EOPNOTSUPP);
556 return __blkg_lookup(blkcg, q, true /* update_hint */);
557 }
558
559 /**
560 * blkg_conf_prep - parse and prepare for per-blkg config update
561 * @inputp: input string pointer
562 *
563 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
564 * from @input and get and return the matching gendisk. *@inputp is
565 * updated to point past the device node prefix. Returns an ERR_PTR()
566 * value on error.
567 *
568 * Use this function iff blkg_conf_prep() can't be used for some reason.
569 */
blkcg_conf_get_disk(char ** inputp)570 struct gendisk *blkcg_conf_get_disk(char **inputp)
571 {
572 char *input = *inputp;
573 unsigned int major, minor;
574 struct gendisk *disk;
575 int key_len, part;
576
577 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
578 return ERR_PTR(-EINVAL);
579
580 input += key_len;
581 if (!isspace(*input))
582 return ERR_PTR(-EINVAL);
583 input = skip_spaces(input);
584
585 disk = get_gendisk(MKDEV(major, minor), &part);
586 if (!disk)
587 return ERR_PTR(-ENODEV);
588 if (part) {
589 put_disk_and_module(disk);
590 return ERR_PTR(-ENODEV);
591 }
592
593 *inputp = input;
594 return disk;
595 }
596
597 /**
598 * blkg_conf_prep - parse and prepare for per-blkg config update
599 * @blkcg: target block cgroup
600 * @pol: target policy
601 * @input: input string
602 * @ctx: blkg_conf_ctx to be filled
603 *
604 * Parse per-blkg config update from @input and initialize @ctx with the
605 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
606 * part of @input following MAJ:MIN. This function returns with RCU read
607 * lock and queue lock held and must be paired with blkg_conf_finish().
608 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,char * input,struct blkg_conf_ctx * ctx)609 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
610 char *input, struct blkg_conf_ctx *ctx)
611 __acquires(rcu) __acquires(&disk->queue->queue_lock)
612 {
613 struct gendisk *disk;
614 struct request_queue *q;
615 struct blkcg_gq *blkg;
616 int ret;
617
618 disk = blkcg_conf_get_disk(&input);
619 if (IS_ERR(disk))
620 return PTR_ERR(disk);
621
622 q = disk->queue;
623
624 rcu_read_lock();
625 spin_lock_irq(&q->queue_lock);
626
627 blkg = blkg_lookup_check(blkcg, pol, q);
628 if (IS_ERR(blkg)) {
629 ret = PTR_ERR(blkg);
630 goto fail_unlock;
631 }
632
633 if (blkg)
634 goto success;
635
636 /*
637 * Create blkgs walking down from blkcg_root to @blkcg, so that all
638 * non-root blkgs have access to their parents.
639 */
640 while (true) {
641 struct blkcg *pos = blkcg;
642 struct blkcg *parent;
643 struct blkcg_gq *new_blkg;
644
645 parent = blkcg_parent(blkcg);
646 while (parent && !__blkg_lookup(parent, q, false)) {
647 pos = parent;
648 parent = blkcg_parent(parent);
649 }
650
651 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
652 spin_unlock_irq(&q->queue_lock);
653 rcu_read_unlock();
654
655 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
656 if (unlikely(!new_blkg)) {
657 ret = -ENOMEM;
658 goto fail;
659 }
660
661 if (radix_tree_preload(GFP_KERNEL)) {
662 blkg_free(new_blkg);
663 ret = -ENOMEM;
664 goto fail;
665 }
666
667 rcu_read_lock();
668 spin_lock_irq(&q->queue_lock);
669
670 blkg = blkg_lookup_check(pos, pol, q);
671 if (IS_ERR(blkg)) {
672 ret = PTR_ERR(blkg);
673 blkg_free(new_blkg);
674 goto fail_preloaded;
675 }
676
677 if (blkg) {
678 blkg_free(new_blkg);
679 } else {
680 blkg = blkg_create(pos, q, new_blkg);
681 if (IS_ERR(blkg)) {
682 ret = PTR_ERR(blkg);
683 goto fail_preloaded;
684 }
685 }
686
687 radix_tree_preload_end();
688
689 if (pos == blkcg)
690 goto success;
691 }
692 success:
693 ctx->disk = disk;
694 ctx->blkg = blkg;
695 ctx->body = input;
696 return 0;
697
698 fail_preloaded:
699 radix_tree_preload_end();
700 fail_unlock:
701 spin_unlock_irq(&q->queue_lock);
702 rcu_read_unlock();
703 fail:
704 put_disk_and_module(disk);
705 /*
706 * If queue was bypassing, we should retry. Do so after a
707 * short msleep(). It isn't strictly necessary but queue
708 * can be bypassing for some time and it's always nice to
709 * avoid busy looping.
710 */
711 if (ret == -EBUSY) {
712 msleep(10);
713 ret = restart_syscall();
714 }
715 return ret;
716 }
717 EXPORT_SYMBOL_GPL(blkg_conf_prep);
718
719 /**
720 * blkg_conf_finish - finish up per-blkg config update
721 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
722 *
723 * Finish up after per-blkg config update. This function must be paired
724 * with blkg_conf_prep().
725 */
blkg_conf_finish(struct blkg_conf_ctx * ctx)726 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
727 __releases(&ctx->disk->queue->queue_lock) __releases(rcu)
728 {
729 spin_unlock_irq(&ctx->disk->queue->queue_lock);
730 rcu_read_unlock();
731 put_disk_and_module(ctx->disk);
732 }
733 EXPORT_SYMBOL_GPL(blkg_conf_finish);
734
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)735 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
736 {
737 int i;
738
739 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
740 dst->bytes[i] = src->bytes[i];
741 dst->ios[i] = src->ios[i];
742 }
743 }
744
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)745 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
746 {
747 int i;
748
749 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
750 dst->bytes[i] += src->bytes[i];
751 dst->ios[i] += src->ios[i];
752 }
753 }
754
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)755 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
756 {
757 int i;
758
759 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
760 dst->bytes[i] -= src->bytes[i];
761 dst->ios[i] -= src->ios[i];
762 }
763 }
764
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)765 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
766 {
767 struct blkcg *blkcg = css_to_blkcg(css);
768 struct blkcg_gq *blkg;
769
770 rcu_read_lock();
771
772 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
773 struct blkcg_gq *parent = blkg->parent;
774 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
775 struct blkg_iostat cur, delta;
776 unsigned int seq;
777
778 /* fetch the current per-cpu values */
779 do {
780 seq = u64_stats_fetch_begin(&bisc->sync);
781 blkg_iostat_set(&cur, &bisc->cur);
782 } while (u64_stats_fetch_retry(&bisc->sync, seq));
783
784 /* propagate percpu delta to global */
785 u64_stats_update_begin(&blkg->iostat.sync);
786 blkg_iostat_set(&delta, &cur);
787 blkg_iostat_sub(&delta, &bisc->last);
788 blkg_iostat_add(&blkg->iostat.cur, &delta);
789 blkg_iostat_add(&bisc->last, &delta);
790 u64_stats_update_end(&blkg->iostat.sync);
791
792 /* propagate global delta to parent */
793 if (parent) {
794 u64_stats_update_begin(&parent->iostat.sync);
795 blkg_iostat_set(&delta, &blkg->iostat.cur);
796 blkg_iostat_sub(&delta, &blkg->iostat.last);
797 blkg_iostat_add(&parent->iostat.cur, &delta);
798 blkg_iostat_add(&blkg->iostat.last, &delta);
799 u64_stats_update_end(&parent->iostat.sync);
800 }
801 }
802
803 rcu_read_unlock();
804 }
805
806 /*
807 * The rstat algorithms intentionally don't handle the root cgroup to avoid
808 * incurring overhead when no cgroups are defined. For that reason,
809 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the
810 * iostat in the root cgroup's blkcg_gq.
811 *
812 * However, we would like to re-use the printing code between the root and
813 * non-root cgroups to the extent possible. For that reason, we simulate
814 * flushing the root cgroup's stats by explicitly filling in the iostat
815 * with disk level statistics.
816 */
blkcg_fill_root_iostats(void)817 static void blkcg_fill_root_iostats(void)
818 {
819 struct class_dev_iter iter;
820 struct device *dev;
821
822 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
823 while ((dev = class_dev_iter_next(&iter))) {
824 struct gendisk *disk = dev_to_disk(dev);
825 struct hd_struct *part = disk_get_part(disk, 0);
826 struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue);
827 struct blkg_iostat tmp;
828 int cpu;
829
830 memset(&tmp, 0, sizeof(tmp));
831 for_each_possible_cpu(cpu) {
832 struct disk_stats *cpu_dkstats;
833
834 cpu_dkstats = per_cpu_ptr(part->dkstats, cpu);
835 tmp.ios[BLKG_IOSTAT_READ] +=
836 cpu_dkstats->ios[STAT_READ];
837 tmp.ios[BLKG_IOSTAT_WRITE] +=
838 cpu_dkstats->ios[STAT_WRITE];
839 tmp.ios[BLKG_IOSTAT_DISCARD] +=
840 cpu_dkstats->ios[STAT_DISCARD];
841 // convert sectors to bytes
842 tmp.bytes[BLKG_IOSTAT_READ] +=
843 cpu_dkstats->sectors[STAT_READ] << 9;
844 tmp.bytes[BLKG_IOSTAT_WRITE] +=
845 cpu_dkstats->sectors[STAT_WRITE] << 9;
846 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
847 cpu_dkstats->sectors[STAT_DISCARD] << 9;
848
849 u64_stats_update_begin(&blkg->iostat.sync);
850 blkg_iostat_set(&blkg->iostat.cur, &tmp);
851 u64_stats_update_end(&blkg->iostat.sync);
852 }
853 disk_put_part(part);
854 }
855 }
856
blkcg_print_stat(struct seq_file * sf,void * v)857 static int blkcg_print_stat(struct seq_file *sf, void *v)
858 {
859 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
860 struct blkcg_gq *blkg;
861
862 if (!seq_css(sf)->parent)
863 blkcg_fill_root_iostats();
864 else
865 cgroup_rstat_flush(blkcg->css.cgroup);
866
867 rcu_read_lock();
868
869 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
870 struct blkg_iostat_set *bis = &blkg->iostat;
871 const char *dname;
872 char *buf;
873 u64 rbytes, wbytes, rios, wios, dbytes, dios;
874 size_t size = seq_get_buf(sf, &buf), off = 0;
875 int i;
876 bool has_stats = false;
877 unsigned seq;
878
879 spin_lock_irq(&blkg->q->queue_lock);
880
881 if (!blkg->online)
882 goto skip;
883
884 dname = blkg_dev_name(blkg);
885 if (!dname)
886 goto skip;
887
888 /*
889 * Hooray string manipulation, count is the size written NOT
890 * INCLUDING THE \0, so size is now count+1 less than what we
891 * had before, but we want to start writing the next bit from
892 * the \0 so we only add count to buf.
893 */
894 off += scnprintf(buf+off, size-off, "%s ", dname);
895
896 do {
897 seq = u64_stats_fetch_begin(&bis->sync);
898
899 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
900 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
901 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
902 rios = bis->cur.ios[BLKG_IOSTAT_READ];
903 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
904 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
905 } while (u64_stats_fetch_retry(&bis->sync, seq));
906
907 if (rbytes || wbytes || rios || wios) {
908 has_stats = true;
909 off += scnprintf(buf+off, size-off,
910 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
911 rbytes, wbytes, rios, wios,
912 dbytes, dios);
913 }
914
915 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
916 has_stats = true;
917 off += scnprintf(buf+off, size-off,
918 " use_delay=%d delay_nsec=%llu",
919 atomic_read(&blkg->use_delay),
920 (unsigned long long)atomic64_read(&blkg->delay_nsec));
921 }
922
923 for (i = 0; i < BLKCG_MAX_POLS; i++) {
924 struct blkcg_policy *pol = blkcg_policy[i];
925 size_t written;
926
927 if (!blkg->pd[i] || !pol->pd_stat_fn)
928 continue;
929
930 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
931 if (written)
932 has_stats = true;
933 off += written;
934 }
935
936 if (has_stats) {
937 if (off < size - 1) {
938 off += scnprintf(buf+off, size-off, "\n");
939 seq_commit(sf, off);
940 } else {
941 seq_commit(sf, -1);
942 }
943 }
944 skip:
945 spin_unlock_irq(&blkg->q->queue_lock);
946 }
947
948 rcu_read_unlock();
949 return 0;
950 }
951
952 static struct cftype blkcg_files[] = {
953 {
954 .name = "stat",
955 .seq_show = blkcg_print_stat,
956 },
957 { } /* terminate */
958 };
959
960 static struct cftype blkcg_legacy_files[] = {
961 {
962 .name = "reset_stats",
963 .write_u64 = blkcg_reset_stats,
964 },
965 { } /* terminate */
966 };
967
968 /*
969 * blkcg destruction is a three-stage process.
970 *
971 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
972 * which offlines writeback. Here we tie the next stage of blkg destruction
973 * to the completion of writeback associated with the blkcg. This lets us
974 * avoid punting potentially large amounts of outstanding writeback to root
975 * while maintaining any ongoing policies. The next stage is triggered when
976 * the nr_cgwbs count goes to zero.
977 *
978 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
979 * and handles the destruction of blkgs. Here the css reference held by
980 * the blkg is put back eventually allowing blkcg_css_free() to be called.
981 * This work may occur in cgwb_release_workfn() on the cgwb_release
982 * workqueue. Any submitted ios that fail to get the blkg ref will be
983 * punted to the root_blkg.
984 *
985 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
986 * This finally frees the blkcg.
987 */
988
989 /**
990 * blkcg_css_offline - cgroup css_offline callback
991 * @css: css of interest
992 *
993 * This function is called when @css is about to go away. Here the cgwbs are
994 * offlined first and only once writeback associated with the blkcg has
995 * finished do we start step 2 (see above).
996 */
blkcg_css_offline(struct cgroup_subsys_state * css)997 static void blkcg_css_offline(struct cgroup_subsys_state *css)
998 {
999 struct blkcg *blkcg = css_to_blkcg(css);
1000
1001 /* this prevents anyone from attaching or migrating to this blkcg */
1002 wb_blkcg_offline(blkcg);
1003
1004 /* put the base online pin allowing step 2 to be triggered */
1005 blkcg_unpin_online(blkcg);
1006 }
1007
1008 /**
1009 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1010 * @blkcg: blkcg of interest
1011 *
1012 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1013 * is nested inside q lock, this function performs reverse double lock dancing.
1014 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1015 * blkcg_css_free to eventually be called.
1016 *
1017 * This is the blkcg counterpart of ioc_release_fn().
1018 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1019 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1020 {
1021 might_sleep();
1022
1023 spin_lock_irq(&blkcg->lock);
1024
1025 while (!hlist_empty(&blkcg->blkg_list)) {
1026 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1027 struct blkcg_gq, blkcg_node);
1028 struct request_queue *q = blkg->q;
1029
1030 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1031 /*
1032 * Given that the system can accumulate a huge number
1033 * of blkgs in pathological cases, check to see if we
1034 * need to rescheduling to avoid softlockup.
1035 */
1036 spin_unlock_irq(&blkcg->lock);
1037 cond_resched();
1038 spin_lock_irq(&blkcg->lock);
1039 continue;
1040 }
1041
1042 blkg_destroy(blkg);
1043 spin_unlock(&q->queue_lock);
1044 }
1045
1046 spin_unlock_irq(&blkcg->lock);
1047 }
1048
blkcg_css_free(struct cgroup_subsys_state * css)1049 static void blkcg_css_free(struct cgroup_subsys_state *css)
1050 {
1051 struct blkcg *blkcg = css_to_blkcg(css);
1052 int i;
1053
1054 mutex_lock(&blkcg_pol_mutex);
1055
1056 list_del(&blkcg->all_blkcgs_node);
1057
1058 for (i = 0; i < BLKCG_MAX_POLS; i++)
1059 if (blkcg->cpd[i])
1060 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1061
1062 mutex_unlock(&blkcg_pol_mutex);
1063
1064 kfree(blkcg);
1065 }
1066
1067 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1068 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1069 {
1070 struct blkcg *blkcg;
1071 struct cgroup_subsys_state *ret;
1072 int i;
1073
1074 mutex_lock(&blkcg_pol_mutex);
1075
1076 if (!parent_css) {
1077 blkcg = &blkcg_root;
1078 } else {
1079 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1080 if (!blkcg) {
1081 ret = ERR_PTR(-ENOMEM);
1082 goto unlock;
1083 }
1084 }
1085
1086 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1087 struct blkcg_policy *pol = blkcg_policy[i];
1088 struct blkcg_policy_data *cpd;
1089
1090 /*
1091 * If the policy hasn't been attached yet, wait for it
1092 * to be attached before doing anything else. Otherwise,
1093 * check if the policy requires any specific per-cgroup
1094 * data: if it does, allocate and initialize it.
1095 */
1096 if (!pol || !pol->cpd_alloc_fn)
1097 continue;
1098
1099 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1100 if (!cpd) {
1101 ret = ERR_PTR(-ENOMEM);
1102 goto free_pd_blkcg;
1103 }
1104 blkcg->cpd[i] = cpd;
1105 cpd->blkcg = blkcg;
1106 cpd->plid = i;
1107 if (pol->cpd_init_fn)
1108 pol->cpd_init_fn(cpd);
1109 }
1110
1111 spin_lock_init(&blkcg->lock);
1112 refcount_set(&blkcg->online_pin, 1);
1113 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1114 INIT_HLIST_HEAD(&blkcg->blkg_list);
1115 #ifdef CONFIG_CGROUP_WRITEBACK
1116 INIT_LIST_HEAD(&blkcg->cgwb_list);
1117 #endif
1118 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1119
1120 mutex_unlock(&blkcg_pol_mutex);
1121 return &blkcg->css;
1122
1123 free_pd_blkcg:
1124 for (i--; i >= 0; i--)
1125 if (blkcg->cpd[i])
1126 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1127
1128 if (blkcg != &blkcg_root)
1129 kfree(blkcg);
1130 unlock:
1131 mutex_unlock(&blkcg_pol_mutex);
1132 return ret;
1133 }
1134
blkcg_css_online(struct cgroup_subsys_state * css)1135 static int blkcg_css_online(struct cgroup_subsys_state *css)
1136 {
1137 struct blkcg *blkcg = css_to_blkcg(css);
1138 struct blkcg *parent = blkcg_parent(blkcg);
1139
1140 /*
1141 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1142 * don't go offline while cgwbs are still active on them. Pin the
1143 * parent so that offline always happens towards the root.
1144 */
1145 if (parent)
1146 blkcg_pin_online(parent);
1147 return 0;
1148 }
1149
1150 /**
1151 * blkcg_init_queue - initialize blkcg part of request queue
1152 * @q: request_queue to initialize
1153 *
1154 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1155 * part of new request_queue @q.
1156 *
1157 * RETURNS:
1158 * 0 on success, -errno on failure.
1159 */
blkcg_init_queue(struct request_queue * q)1160 int blkcg_init_queue(struct request_queue *q)
1161 {
1162 struct blkcg_gq *new_blkg, *blkg;
1163 bool preloaded;
1164 int ret;
1165
1166 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1167 if (!new_blkg)
1168 return -ENOMEM;
1169
1170 preloaded = !radix_tree_preload(GFP_KERNEL);
1171
1172 /* Make sure the root blkg exists. */
1173 rcu_read_lock();
1174 spin_lock_irq(&q->queue_lock);
1175 blkg = blkg_create(&blkcg_root, q, new_blkg);
1176 if (IS_ERR(blkg))
1177 goto err_unlock;
1178 q->root_blkg = blkg;
1179 spin_unlock_irq(&q->queue_lock);
1180 rcu_read_unlock();
1181
1182 if (preloaded)
1183 radix_tree_preload_end();
1184
1185 ret = blk_ioprio_init(q);
1186 if (ret)
1187 goto err_destroy_all;
1188
1189 ret = blk_throtl_init(q);
1190 if (ret)
1191 goto err_destroy_all;
1192
1193 ret = blk_iolatency_init(q);
1194 if (ret) {
1195 blk_throtl_exit(q);
1196 goto err_destroy_all;
1197 }
1198
1199 return 0;
1200
1201 err_destroy_all:
1202 blkg_destroy_all(q);
1203 return ret;
1204 err_unlock:
1205 spin_unlock_irq(&q->queue_lock);
1206 rcu_read_unlock();
1207 if (preloaded)
1208 radix_tree_preload_end();
1209 return PTR_ERR(blkg);
1210 }
1211
1212 /**
1213 * blkcg_exit_queue - exit and release blkcg part of request_queue
1214 * @q: request_queue being released
1215 *
1216 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1217 */
blkcg_exit_queue(struct request_queue * q)1218 void blkcg_exit_queue(struct request_queue *q)
1219 {
1220 blkg_destroy_all(q);
1221 blk_throtl_exit(q);
1222 }
1223
1224 /*
1225 * We cannot support shared io contexts, as we have no mean to support
1226 * two tasks with the same ioc in two different groups without major rework
1227 * of the main cic data structures. For now we allow a task to change
1228 * its cgroup only if it's the only owner of its ioc.
1229 */
blkcg_can_attach(struct cgroup_taskset * tset)1230 static int blkcg_can_attach(struct cgroup_taskset *tset)
1231 {
1232 struct task_struct *task;
1233 struct cgroup_subsys_state *dst_css;
1234 struct io_context *ioc;
1235 int ret = 0;
1236
1237 /* task_lock() is needed to avoid races with exit_io_context() */
1238 cgroup_taskset_for_each(task, dst_css, tset) {
1239 task_lock(task);
1240 ioc = task->io_context;
1241 if (ioc && atomic_read(&ioc->nr_tasks) > 1)
1242 ret = -EINVAL;
1243 task_unlock(task);
1244 if (ret)
1245 break;
1246 }
1247 return ret;
1248 }
1249
blkcg_bind(struct cgroup_subsys_state * root_css)1250 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1251 {
1252 int i;
1253
1254 mutex_lock(&blkcg_pol_mutex);
1255
1256 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1257 struct blkcg_policy *pol = blkcg_policy[i];
1258 struct blkcg *blkcg;
1259
1260 if (!pol || !pol->cpd_bind_fn)
1261 continue;
1262
1263 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1264 if (blkcg->cpd[pol->plid])
1265 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1266 }
1267 mutex_unlock(&blkcg_pol_mutex);
1268 }
1269
blkcg_exit(struct task_struct * tsk)1270 static void blkcg_exit(struct task_struct *tsk)
1271 {
1272 if (tsk->throttle_queue)
1273 blk_put_queue(tsk->throttle_queue);
1274 tsk->throttle_queue = NULL;
1275 }
1276
1277 struct cgroup_subsys io_cgrp_subsys = {
1278 .css_alloc = blkcg_css_alloc,
1279 .css_online = blkcg_css_online,
1280 .css_offline = blkcg_css_offline,
1281 .css_free = blkcg_css_free,
1282 .can_attach = blkcg_can_attach,
1283 .css_rstat_flush = blkcg_rstat_flush,
1284 .bind = blkcg_bind,
1285 .dfl_cftypes = blkcg_files,
1286 .legacy_cftypes = blkcg_legacy_files,
1287 .legacy_name = "blkio",
1288 .exit = blkcg_exit,
1289 #ifdef CONFIG_MEMCG
1290 /*
1291 * This ensures that, if available, memcg is automatically enabled
1292 * together on the default hierarchy so that the owner cgroup can
1293 * be retrieved from writeback pages.
1294 */
1295 .depends_on = 1 << memory_cgrp_id,
1296 #endif
1297 };
1298 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1299
1300 /**
1301 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1302 * @q: request_queue of interest
1303 * @pol: blkcg policy to activate
1304 *
1305 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1306 * bypass mode to populate its blkgs with policy_data for @pol.
1307 *
1308 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1309 * from IO path. Update of each blkg is protected by both queue and blkcg
1310 * locks so that holding either lock and testing blkcg_policy_enabled() is
1311 * always enough for dereferencing policy data.
1312 *
1313 * The caller is responsible for synchronizing [de]activations and policy
1314 * [un]registerations. Returns 0 on success, -errno on failure.
1315 */
blkcg_activate_policy(struct request_queue * q,const struct blkcg_policy * pol)1316 int blkcg_activate_policy(struct request_queue *q,
1317 const struct blkcg_policy *pol)
1318 {
1319 struct blkg_policy_data *pd_prealloc = NULL;
1320 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1321 int ret;
1322
1323 if (blkcg_policy_enabled(q, pol))
1324 return 0;
1325
1326 if (queue_is_mq(q))
1327 blk_mq_freeze_queue(q);
1328 retry:
1329 spin_lock_irq(&q->queue_lock);
1330
1331 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1332 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1333 struct blkg_policy_data *pd;
1334
1335 if (blkg->pd[pol->plid])
1336 continue;
1337
1338 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1339 if (blkg == pinned_blkg) {
1340 pd = pd_prealloc;
1341 pd_prealloc = NULL;
1342 } else {
1343 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1344 blkg->blkcg);
1345 }
1346
1347 if (!pd) {
1348 /*
1349 * GFP_NOWAIT failed. Free the existing one and
1350 * prealloc for @blkg w/ GFP_KERNEL.
1351 */
1352 if (pinned_blkg)
1353 blkg_put(pinned_blkg);
1354 blkg_get(blkg);
1355 pinned_blkg = blkg;
1356
1357 spin_unlock_irq(&q->queue_lock);
1358
1359 if (pd_prealloc)
1360 pol->pd_free_fn(pd_prealloc);
1361 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1362 blkg->blkcg);
1363 if (pd_prealloc)
1364 goto retry;
1365 else
1366 goto enomem;
1367 }
1368
1369 blkg->pd[pol->plid] = pd;
1370 pd->blkg = blkg;
1371 pd->plid = pol->plid;
1372 }
1373
1374 /* all allocated, init in the same order */
1375 if (pol->pd_init_fn)
1376 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1377 pol->pd_init_fn(blkg->pd[pol->plid]);
1378
1379 if (pol->pd_online_fn)
1380 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1381 pol->pd_online_fn(blkg->pd[pol->plid]);
1382
1383 __set_bit(pol->plid, q->blkcg_pols);
1384 ret = 0;
1385
1386 spin_unlock_irq(&q->queue_lock);
1387 out:
1388 if (queue_is_mq(q))
1389 blk_mq_unfreeze_queue(q);
1390 if (pinned_blkg)
1391 blkg_put(pinned_blkg);
1392 if (pd_prealloc)
1393 pol->pd_free_fn(pd_prealloc);
1394 return ret;
1395
1396 enomem:
1397 /* alloc failed, nothing's initialized yet, free everything */
1398 spin_lock_irq(&q->queue_lock);
1399 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1400 struct blkcg *blkcg = blkg->blkcg;
1401
1402 spin_lock(&blkcg->lock);
1403 if (blkg->pd[pol->plid]) {
1404 pol->pd_free_fn(blkg->pd[pol->plid]);
1405 blkg->pd[pol->plid] = NULL;
1406 }
1407 spin_unlock(&blkcg->lock);
1408 }
1409 spin_unlock_irq(&q->queue_lock);
1410 ret = -ENOMEM;
1411 goto out;
1412 }
1413 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1414
1415 /**
1416 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1417 * @q: request_queue of interest
1418 * @pol: blkcg policy to deactivate
1419 *
1420 * Deactivate @pol on @q. Follows the same synchronization rules as
1421 * blkcg_activate_policy().
1422 */
blkcg_deactivate_policy(struct request_queue * q,const struct blkcg_policy * pol)1423 void blkcg_deactivate_policy(struct request_queue *q,
1424 const struct blkcg_policy *pol)
1425 {
1426 struct blkcg_gq *blkg;
1427
1428 if (!blkcg_policy_enabled(q, pol))
1429 return;
1430
1431 if (queue_is_mq(q))
1432 blk_mq_freeze_queue(q);
1433
1434 spin_lock_irq(&q->queue_lock);
1435
1436 __clear_bit(pol->plid, q->blkcg_pols);
1437
1438 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1439 struct blkcg *blkcg = blkg->blkcg;
1440
1441 spin_lock(&blkcg->lock);
1442 if (blkg->pd[pol->plid]) {
1443 if (pol->pd_offline_fn)
1444 pol->pd_offline_fn(blkg->pd[pol->plid]);
1445 pol->pd_free_fn(blkg->pd[pol->plid]);
1446 blkg->pd[pol->plid] = NULL;
1447 }
1448 spin_unlock(&blkcg->lock);
1449 }
1450
1451 spin_unlock_irq(&q->queue_lock);
1452
1453 if (queue_is_mq(q))
1454 blk_mq_unfreeze_queue(q);
1455 }
1456 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1457
1458 /**
1459 * blkcg_policy_register - register a blkcg policy
1460 * @pol: blkcg policy to register
1461 *
1462 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1463 * successful registration. Returns 0 on success and -errno on failure.
1464 */
blkcg_policy_register(struct blkcg_policy * pol)1465 int blkcg_policy_register(struct blkcg_policy *pol)
1466 {
1467 struct blkcg *blkcg;
1468 int i, ret;
1469
1470 mutex_lock(&blkcg_pol_register_mutex);
1471 mutex_lock(&blkcg_pol_mutex);
1472
1473 /* find an empty slot */
1474 ret = -ENOSPC;
1475 for (i = 0; i < BLKCG_MAX_POLS; i++)
1476 if (!blkcg_policy[i])
1477 break;
1478 if (i >= BLKCG_MAX_POLS) {
1479 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1480 goto err_unlock;
1481 }
1482
1483 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1484 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1485 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1486 goto err_unlock;
1487
1488 /* register @pol */
1489 pol->plid = i;
1490 blkcg_policy[pol->plid] = pol;
1491
1492 /* allocate and install cpd's */
1493 if (pol->cpd_alloc_fn) {
1494 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1495 struct blkcg_policy_data *cpd;
1496
1497 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1498 if (!cpd)
1499 goto err_free_cpds;
1500
1501 blkcg->cpd[pol->plid] = cpd;
1502 cpd->blkcg = blkcg;
1503 cpd->plid = pol->plid;
1504 if (pol->cpd_init_fn)
1505 pol->cpd_init_fn(cpd);
1506 }
1507 }
1508
1509 mutex_unlock(&blkcg_pol_mutex);
1510
1511 /* everything is in place, add intf files for the new policy */
1512 if (pol->dfl_cftypes)
1513 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1514 pol->dfl_cftypes));
1515 if (pol->legacy_cftypes)
1516 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1517 pol->legacy_cftypes));
1518 mutex_unlock(&blkcg_pol_register_mutex);
1519 return 0;
1520
1521 err_free_cpds:
1522 if (pol->cpd_free_fn) {
1523 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1524 if (blkcg->cpd[pol->plid]) {
1525 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1526 blkcg->cpd[pol->plid] = NULL;
1527 }
1528 }
1529 }
1530 blkcg_policy[pol->plid] = NULL;
1531 err_unlock:
1532 mutex_unlock(&blkcg_pol_mutex);
1533 mutex_unlock(&blkcg_pol_register_mutex);
1534 return ret;
1535 }
1536 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1537
1538 /**
1539 * blkcg_policy_unregister - unregister a blkcg policy
1540 * @pol: blkcg policy to unregister
1541 *
1542 * Undo blkcg_policy_register(@pol). Might sleep.
1543 */
blkcg_policy_unregister(struct blkcg_policy * pol)1544 void blkcg_policy_unregister(struct blkcg_policy *pol)
1545 {
1546 struct blkcg *blkcg;
1547
1548 mutex_lock(&blkcg_pol_register_mutex);
1549
1550 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1551 goto out_unlock;
1552
1553 /* kill the intf files first */
1554 if (pol->dfl_cftypes)
1555 cgroup_rm_cftypes(pol->dfl_cftypes);
1556 if (pol->legacy_cftypes)
1557 cgroup_rm_cftypes(pol->legacy_cftypes);
1558
1559 /* remove cpds and unregister */
1560 mutex_lock(&blkcg_pol_mutex);
1561
1562 if (pol->cpd_free_fn) {
1563 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1564 if (blkcg->cpd[pol->plid]) {
1565 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1566 blkcg->cpd[pol->plid] = NULL;
1567 }
1568 }
1569 }
1570 blkcg_policy[pol->plid] = NULL;
1571
1572 mutex_unlock(&blkcg_pol_mutex);
1573 out_unlock:
1574 mutex_unlock(&blkcg_pol_register_mutex);
1575 }
1576 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1577
__blkcg_punt_bio_submit(struct bio * bio)1578 bool __blkcg_punt_bio_submit(struct bio *bio)
1579 {
1580 struct blkcg_gq *blkg = bio->bi_blkg;
1581
1582 /* consume the flag first */
1583 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1584
1585 /* never bounce for the root cgroup */
1586 if (!blkg->parent)
1587 return false;
1588
1589 spin_lock_bh(&blkg->async_bio_lock);
1590 bio_list_add(&blkg->async_bios, bio);
1591 spin_unlock_bh(&blkg->async_bio_lock);
1592
1593 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1594 return true;
1595 }
1596
1597 /*
1598 * Scale the accumulated delay based on how long it has been since we updated
1599 * the delay. We only call this when we are adding delay, in case it's been a
1600 * while since we added delay, and when we are checking to see if we need to
1601 * delay a task, to account for any delays that may have occurred.
1602 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1603 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1604 {
1605 u64 old = atomic64_read(&blkg->delay_start);
1606
1607 /* negative use_delay means no scaling, see blkcg_set_delay() */
1608 if (atomic_read(&blkg->use_delay) < 0)
1609 return;
1610
1611 /*
1612 * We only want to scale down every second. The idea here is that we
1613 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1614 * time window. We only want to throttle tasks for recent delay that
1615 * has occurred, in 1 second time windows since that's the maximum
1616 * things can be throttled. We save the current delay window in
1617 * blkg->last_delay so we know what amount is still left to be charged
1618 * to the blkg from this point onward. blkg->last_use keeps track of
1619 * the use_delay counter. The idea is if we're unthrottling the blkg we
1620 * are ok with whatever is happening now, and we can take away more of
1621 * the accumulated delay as we've already throttled enough that
1622 * everybody is happy with their IO latencies.
1623 */
1624 if (time_before64(old + NSEC_PER_SEC, now) &&
1625 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1626 u64 cur = atomic64_read(&blkg->delay_nsec);
1627 u64 sub = min_t(u64, blkg->last_delay, now - old);
1628 int cur_use = atomic_read(&blkg->use_delay);
1629
1630 /*
1631 * We've been unthrottled, subtract a larger chunk of our
1632 * accumulated delay.
1633 */
1634 if (cur_use < blkg->last_use)
1635 sub = max_t(u64, sub, blkg->last_delay >> 1);
1636
1637 /*
1638 * This shouldn't happen, but handle it anyway. Our delay_nsec
1639 * should only ever be growing except here where we subtract out
1640 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1641 * rather not end up with negative numbers.
1642 */
1643 if (unlikely(cur < sub)) {
1644 atomic64_set(&blkg->delay_nsec, 0);
1645 blkg->last_delay = 0;
1646 } else {
1647 atomic64_sub(sub, &blkg->delay_nsec);
1648 blkg->last_delay = cur - sub;
1649 }
1650 blkg->last_use = cur_use;
1651 }
1652 }
1653
1654 /*
1655 * This is called when we want to actually walk up the hierarchy and check to
1656 * see if we need to throttle, and then actually throttle if there is some
1657 * accumulated delay. This should only be called upon return to user space so
1658 * we're not holding some lock that would induce a priority inversion.
1659 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1660 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1661 {
1662 unsigned long pflags;
1663 bool clamp;
1664 u64 now = ktime_to_ns(ktime_get());
1665 u64 exp;
1666 u64 delay_nsec = 0;
1667 int tok;
1668
1669 while (blkg->parent) {
1670 int use_delay = atomic_read(&blkg->use_delay);
1671
1672 if (use_delay) {
1673 u64 this_delay;
1674
1675 blkcg_scale_delay(blkg, now);
1676 this_delay = atomic64_read(&blkg->delay_nsec);
1677 if (this_delay > delay_nsec) {
1678 delay_nsec = this_delay;
1679 clamp = use_delay > 0;
1680 }
1681 }
1682 blkg = blkg->parent;
1683 }
1684
1685 if (!delay_nsec)
1686 return;
1687
1688 /*
1689 * Let's not sleep for all eternity if we've amassed a huge delay.
1690 * Swapping or metadata IO can accumulate 10's of seconds worth of
1691 * delay, and we want userspace to be able to do _something_ so cap the
1692 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1693 * tasks will be delayed for 0.25 second for every syscall. If
1694 * blkcg_set_delay() was used as indicated by negative use_delay, the
1695 * caller is responsible for regulating the range.
1696 */
1697 if (clamp)
1698 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1699
1700 if (use_memdelay)
1701 psi_memstall_enter(&pflags);
1702
1703 exp = ktime_add_ns(now, delay_nsec);
1704 tok = io_schedule_prepare();
1705 do {
1706 __set_current_state(TASK_KILLABLE);
1707 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1708 break;
1709 } while (!fatal_signal_pending(current));
1710 io_schedule_finish(tok);
1711
1712 if (use_memdelay)
1713 psi_memstall_leave(&pflags);
1714 }
1715
1716 /**
1717 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1718 *
1719 * This is only called if we've been marked with set_notify_resume(). Obviously
1720 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1721 * check to see if current->throttle_queue is set and if not this doesn't do
1722 * anything. This should only ever be called by the resume code, it's not meant
1723 * to be called by people willy-nilly as it will actually do the work to
1724 * throttle the task if it is setup for throttling.
1725 */
blkcg_maybe_throttle_current(void)1726 void blkcg_maybe_throttle_current(void)
1727 {
1728 struct request_queue *q = current->throttle_queue;
1729 struct cgroup_subsys_state *css;
1730 struct blkcg *blkcg;
1731 struct blkcg_gq *blkg;
1732 bool use_memdelay = current->use_memdelay;
1733
1734 if (!q)
1735 return;
1736
1737 current->throttle_queue = NULL;
1738 current->use_memdelay = false;
1739
1740 rcu_read_lock();
1741 css = kthread_blkcg();
1742 if (css)
1743 blkcg = css_to_blkcg(css);
1744 else
1745 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1746
1747 if (!blkcg)
1748 goto out;
1749 blkg = blkg_lookup(blkcg, q);
1750 if (!blkg)
1751 goto out;
1752 if (!blkg_tryget(blkg))
1753 goto out;
1754 rcu_read_unlock();
1755
1756 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1757 blkg_put(blkg);
1758 blk_put_queue(q);
1759 return;
1760 out:
1761 rcu_read_unlock();
1762 blk_put_queue(q);
1763 }
1764
1765 /**
1766 * blkcg_schedule_throttle - this task needs to check for throttling
1767 * @q: the request queue IO was submitted on
1768 * @use_memdelay: do we charge this to memory delay for PSI
1769 *
1770 * This is called by the IO controller when we know there's delay accumulated
1771 * for the blkg for this task. We do not pass the blkg because there are places
1772 * we call this that may not have that information, the swapping code for
1773 * instance will only have a request_queue at that point. This set's the
1774 * notify_resume for the task to check and see if it requires throttling before
1775 * returning to user space.
1776 *
1777 * We will only schedule once per syscall. You can call this over and over
1778 * again and it will only do the check once upon return to user space, and only
1779 * throttle once. If the task needs to be throttled again it'll need to be
1780 * re-set at the next time we see the task.
1781 */
blkcg_schedule_throttle(struct request_queue * q,bool use_memdelay)1782 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1783 {
1784 if (unlikely(current->flags & PF_KTHREAD))
1785 return;
1786
1787 if (!blk_get_queue(q))
1788 return;
1789
1790 if (current->throttle_queue)
1791 blk_put_queue(current->throttle_queue);
1792 current->throttle_queue = q;
1793 if (use_memdelay)
1794 current->use_memdelay = use_memdelay;
1795 set_notify_resume(current);
1796 }
1797 EXPORT_SYMBOL_GPL(blkcg_schedule_throttle);
1798
1799 /**
1800 * blkcg_add_delay - add delay to this blkg
1801 * @blkg: blkg of interest
1802 * @now: the current time in nanoseconds
1803 * @delta: how many nanoseconds of delay to add
1804 *
1805 * Charge @delta to the blkg's current delay accumulation. This is used to
1806 * throttle tasks if an IO controller thinks we need more throttling.
1807 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1808 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1809 {
1810 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1811 return;
1812 blkcg_scale_delay(blkg, now);
1813 atomic64_add(delta, &blkg->delay_nsec);
1814 }
1815
1816 /**
1817 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1818 * @bio: target bio
1819 * @css: target css
1820 *
1821 * As the failure mode here is to walk up the blkg tree, this ensure that the
1822 * blkg->parent pointers are always valid. This returns the blkg that it ended
1823 * up taking a reference on or %NULL if no reference was taken.
1824 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1825 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1826 struct cgroup_subsys_state *css)
1827 {
1828 struct blkcg_gq *blkg, *ret_blkg = NULL;
1829
1830 rcu_read_lock();
1831 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue);
1832 while (blkg) {
1833 if (blkg_tryget(blkg)) {
1834 ret_blkg = blkg;
1835 break;
1836 }
1837 blkg = blkg->parent;
1838 }
1839 rcu_read_unlock();
1840
1841 return ret_blkg;
1842 }
1843
1844 /**
1845 * bio_associate_blkg_from_css - associate a bio with a specified css
1846 * @bio: target bio
1847 * @css: target css
1848 *
1849 * Associate @bio with the blkg found by combining the css's blkg and the
1850 * request_queue of the @bio. An association failure is handled by walking up
1851 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1852 * and q->root_blkg. This situation only happens when a cgroup is dying and
1853 * then the remaining bios will spill to the closest alive blkg.
1854 *
1855 * A reference will be taken on the blkg and will be released when @bio is
1856 * freed.
1857 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)1858 void bio_associate_blkg_from_css(struct bio *bio,
1859 struct cgroup_subsys_state *css)
1860 {
1861 if (bio->bi_blkg)
1862 blkg_put(bio->bi_blkg);
1863
1864 if (css && css->parent) {
1865 bio->bi_blkg = blkg_tryget_closest(bio, css);
1866 } else {
1867 blkg_get(bio->bi_disk->queue->root_blkg);
1868 bio->bi_blkg = bio->bi_disk->queue->root_blkg;
1869 }
1870 }
1871 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1872
1873 /**
1874 * bio_associate_blkg - associate a bio with a blkg
1875 * @bio: target bio
1876 *
1877 * Associate @bio with the blkg found from the bio's css and request_queue.
1878 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1879 * already associated, the css is reused and association redone as the
1880 * request_queue may have changed.
1881 */
bio_associate_blkg(struct bio * bio)1882 void bio_associate_blkg(struct bio *bio)
1883 {
1884 struct cgroup_subsys_state *css;
1885
1886 rcu_read_lock();
1887
1888 if (bio->bi_blkg)
1889 css = &bio_blkcg(bio)->css;
1890 else
1891 css = blkcg_css();
1892
1893 bio_associate_blkg_from_css(bio, css);
1894
1895 rcu_read_unlock();
1896 }
1897 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1898
1899 /**
1900 * bio_clone_blkg_association - clone blkg association from src to dst bio
1901 * @dst: destination bio
1902 * @src: source bio
1903 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)1904 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1905 {
1906 if (src->bi_blkg)
1907 bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
1908 }
1909 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1910
blk_cgroup_io_type(struct bio * bio)1911 static int blk_cgroup_io_type(struct bio *bio)
1912 {
1913 if (op_is_discard(bio->bi_opf))
1914 return BLKG_IOSTAT_DISCARD;
1915 if (op_is_write(bio->bi_opf))
1916 return BLKG_IOSTAT_WRITE;
1917 return BLKG_IOSTAT_READ;
1918 }
1919
blk_cgroup_bio_start(struct bio * bio)1920 void blk_cgroup_bio_start(struct bio *bio)
1921 {
1922 int rwd = blk_cgroup_io_type(bio), cpu;
1923 struct blkg_iostat_set *bis;
1924
1925 cpu = get_cpu();
1926 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1927 u64_stats_update_begin(&bis->sync);
1928
1929 /*
1930 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1931 * bio and we would have already accounted for the size of the bio.
1932 */
1933 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1934 bio_set_flag(bio, BIO_CGROUP_ACCT);
1935 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1936 }
1937 bis->cur.ios[rwd]++;
1938
1939 u64_stats_update_end(&bis->sync);
1940 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1941 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1942 put_cpu();
1943 }
1944
blkcg_init(void)1945 static int __init blkcg_init(void)
1946 {
1947 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1948 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1949 WQ_UNBOUND | WQ_SYSFS, 0);
1950 if (!blkcg_punt_bio_wq)
1951 return -ENOMEM;
1952 return 0;
1953 }
1954 subsys_initcall(blkcg_init);
1955
1956 module_param(blkcg_debug_stats, bool, 0644);
1957 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1958