• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/fscrypt.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/bio.h>
34 #include <linux/wait.h>
35 #include <linux/err.h>
36 #include <linux/blkdev.h>
37 #include <linux/buffer_head.h>
38 #include <linux/rwsem.h>
39 #include <linux/uio.h>
40 #include <linux/atomic.h>
41 #include <linux/prefetch.h>
42 
43 #include "internal.h"
44 
45 /*
46  * How many user pages to map in one call to get_user_pages().  This determines
47  * the size of a structure in the slab cache
48  */
49 #define DIO_PAGES	64
50 
51 /*
52  * Flags for dio_complete()
53  */
54 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
55 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
56 
57 /*
58  * This code generally works in units of "dio_blocks".  A dio_block is
59  * somewhere between the hard sector size and the filesystem block size.  it
60  * is determined on a per-invocation basis.   When talking to the filesystem
61  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
62  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
63  * to bio_block quantities by shifting left by blkfactor.
64  *
65  * If blkfactor is zero then the user's request was aligned to the filesystem's
66  * blocksize.
67  */
68 
69 /* dio_state only used in the submission path */
70 
71 struct dio_submit {
72 	struct bio *bio;		/* bio under assembly */
73 	unsigned blkbits;		/* doesn't change */
74 	unsigned blkfactor;		/* When we're using an alignment which
75 					   is finer than the filesystem's soft
76 					   blocksize, this specifies how much
77 					   finer.  blkfactor=2 means 1/4-block
78 					   alignment.  Does not change */
79 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
80 					   been performed at the start of a
81 					   write */
82 	int pages_in_io;		/* approximate total IO pages */
83 	sector_t block_in_file;		/* Current offset into the underlying
84 					   file in dio_block units. */
85 	unsigned blocks_available;	/* At block_in_file.  changes */
86 	int reap_counter;		/* rate limit reaping */
87 	sector_t final_block_in_request;/* doesn't change */
88 	int boundary;			/* prev block is at a boundary */
89 	get_block_t *get_block;		/* block mapping function */
90 	dio_submit_t *submit_io;	/* IO submition function */
91 
92 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
93 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
94 	sector_t next_block_for_io;	/* next block to be put under IO,
95 					   in dio_blocks units */
96 
97 	/*
98 	 * Deferred addition of a page to the dio.  These variables are
99 	 * private to dio_send_cur_page(), submit_page_section() and
100 	 * dio_bio_add_page().
101 	 */
102 	struct page *cur_page;		/* The page */
103 	unsigned cur_page_offset;	/* Offset into it, in bytes */
104 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
105 	sector_t cur_page_block;	/* Where it starts */
106 	loff_t cur_page_fs_offset;	/* Offset in file */
107 
108 	struct iov_iter *iter;
109 	/*
110 	 * Page queue.  These variables belong to dio_refill_pages() and
111 	 * dio_get_page().
112 	 */
113 	unsigned head;			/* next page to process */
114 	unsigned tail;			/* last valid page + 1 */
115 	size_t from, to;
116 };
117 
118 /* dio_state communicated between submission path and end_io */
119 struct dio {
120 	int flags;			/* doesn't change */
121 	int op;
122 	int op_flags;
123 	blk_qc_t bio_cookie;
124 	struct gendisk *bio_disk;
125 	struct inode *inode;
126 	loff_t i_size;			/* i_size when submitted */
127 	dio_iodone_t *end_io;		/* IO completion function */
128 
129 	void *private;			/* copy from map_bh.b_private */
130 
131 	/* BIO completion state */
132 	spinlock_t bio_lock;		/* protects BIO fields below */
133 	int page_errors;		/* errno from get_user_pages() */
134 	int is_async;			/* is IO async ? */
135 	bool defer_completion;		/* defer AIO completion to workqueue? */
136 	bool should_dirty;		/* if pages should be dirtied */
137 	int io_error;			/* IO error in completion path */
138 	unsigned long refcount;		/* direct_io_worker() and bios */
139 	struct bio *bio_list;		/* singly linked via bi_private */
140 	struct task_struct *waiter;	/* waiting task (NULL if none) */
141 
142 	/* AIO related stuff */
143 	struct kiocb *iocb;		/* kiocb */
144 	ssize_t result;                 /* IO result */
145 
146 	/*
147 	 * pages[] (and any fields placed after it) are not zeroed out at
148 	 * allocation time.  Don't add new fields after pages[] unless you
149 	 * wish that they not be zeroed.
150 	 */
151 	union {
152 		struct page *pages[DIO_PAGES];	/* page buffer */
153 		struct work_struct complete_work;/* deferred AIO completion */
154 	};
155 } ____cacheline_aligned_in_smp;
156 
157 static struct kmem_cache *dio_cache __read_mostly;
158 
159 /*
160  * How many pages are in the queue?
161  */
dio_pages_present(struct dio_submit * sdio)162 static inline unsigned dio_pages_present(struct dio_submit *sdio)
163 {
164 	return sdio->tail - sdio->head;
165 }
166 
167 /*
168  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
169  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)170 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
171 {
172 	ssize_t ret;
173 
174 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
175 				&sdio->from);
176 
177 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
178 		struct page *page = ZERO_PAGE(0);
179 		/*
180 		 * A memory fault, but the filesystem has some outstanding
181 		 * mapped blocks.  We need to use those blocks up to avoid
182 		 * leaking stale data in the file.
183 		 */
184 		if (dio->page_errors == 0)
185 			dio->page_errors = ret;
186 		get_page(page);
187 		dio->pages[0] = page;
188 		sdio->head = 0;
189 		sdio->tail = 1;
190 		sdio->from = 0;
191 		sdio->to = PAGE_SIZE;
192 		return 0;
193 	}
194 
195 	if (ret >= 0) {
196 		iov_iter_advance(sdio->iter, ret);
197 		ret += sdio->from;
198 		sdio->head = 0;
199 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
200 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
201 		return 0;
202 	}
203 	return ret;
204 }
205 
206 /*
207  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
208  * buffered inside the dio so that we can call get_user_pages() against a
209  * decent number of pages, less frequently.  To provide nicer use of the
210  * L1 cache.
211  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)212 static inline struct page *dio_get_page(struct dio *dio,
213 					struct dio_submit *sdio)
214 {
215 	if (dio_pages_present(sdio) == 0) {
216 		int ret;
217 
218 		ret = dio_refill_pages(dio, sdio);
219 		if (ret)
220 			return ERR_PTR(ret);
221 		BUG_ON(dio_pages_present(sdio) == 0);
222 	}
223 	return dio->pages[sdio->head];
224 }
225 
226 /*
227  * dio_complete() - called when all DIO BIO I/O has been completed
228  *
229  * This drops i_dio_count, lets interested parties know that a DIO operation
230  * has completed, and calculates the resulting return code for the operation.
231  *
232  * It lets the filesystem know if it registered an interest earlier via
233  * get_block.  Pass the private field of the map buffer_head so that
234  * filesystems can use it to hold additional state between get_block calls and
235  * dio_complete.
236  */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)237 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
238 {
239 	loff_t offset = dio->iocb->ki_pos;
240 	ssize_t transferred = 0;
241 	int err;
242 
243 	/*
244 	 * AIO submission can race with bio completion to get here while
245 	 * expecting to have the last io completed by bio completion.
246 	 * In that case -EIOCBQUEUED is in fact not an error we want
247 	 * to preserve through this call.
248 	 */
249 	if (ret == -EIOCBQUEUED)
250 		ret = 0;
251 
252 	if (dio->result) {
253 		transferred = dio->result;
254 
255 		/* Check for short read case */
256 		if ((dio->op == REQ_OP_READ) &&
257 		    ((offset + transferred) > dio->i_size))
258 			transferred = dio->i_size - offset;
259 		/* ignore EFAULT if some IO has been done */
260 		if (unlikely(ret == -EFAULT) && transferred)
261 			ret = 0;
262 	}
263 
264 	if (ret == 0)
265 		ret = dio->page_errors;
266 	if (ret == 0)
267 		ret = dio->io_error;
268 	if (ret == 0)
269 		ret = transferred;
270 
271 	if (dio->end_io) {
272 		// XXX: ki_pos??
273 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
274 		if (err)
275 			ret = err;
276 	}
277 
278 	/*
279 	 * Try again to invalidate clean pages which might have been cached by
280 	 * non-direct readahead, or faulted in by get_user_pages() if the source
281 	 * of the write was an mmap'ed region of the file we're writing.  Either
282 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
283 	 * this invalidation fails, tough, the write still worked...
284 	 *
285 	 * And this page cache invalidation has to be after dio->end_io(), as
286 	 * some filesystems convert unwritten extents to real allocations in
287 	 * end_io() when necessary, otherwise a racing buffer read would cache
288 	 * zeros from unwritten extents.
289 	 */
290 	if (flags & DIO_COMPLETE_INVALIDATE &&
291 	    ret > 0 && dio->op == REQ_OP_WRITE &&
292 	    dio->inode->i_mapping->nrpages) {
293 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
294 					offset >> PAGE_SHIFT,
295 					(offset + ret - 1) >> PAGE_SHIFT);
296 		if (err)
297 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
298 	}
299 
300 	inode_dio_end(dio->inode);
301 
302 	if (flags & DIO_COMPLETE_ASYNC) {
303 		/*
304 		 * generic_write_sync expects ki_pos to have been updated
305 		 * already, but the submission path only does this for
306 		 * synchronous I/O.
307 		 */
308 		dio->iocb->ki_pos += transferred;
309 
310 		if (ret > 0 && dio->op == REQ_OP_WRITE)
311 			ret = generic_write_sync(dio->iocb, ret);
312 		dio->iocb->ki_complete(dio->iocb, ret, 0);
313 	}
314 
315 	kmem_cache_free(dio_cache, dio);
316 	return ret;
317 }
318 
dio_aio_complete_work(struct work_struct * work)319 static void dio_aio_complete_work(struct work_struct *work)
320 {
321 	struct dio *dio = container_of(work, struct dio, complete_work);
322 
323 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
324 }
325 
326 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
327 
328 /*
329  * Asynchronous IO callback.
330  */
dio_bio_end_aio(struct bio * bio)331 static void dio_bio_end_aio(struct bio *bio)
332 {
333 	struct dio *dio = bio->bi_private;
334 	unsigned long remaining;
335 	unsigned long flags;
336 	bool defer_completion = false;
337 
338 	/* cleanup the bio */
339 	dio_bio_complete(dio, bio);
340 
341 	spin_lock_irqsave(&dio->bio_lock, flags);
342 	remaining = --dio->refcount;
343 	if (remaining == 1 && dio->waiter)
344 		wake_up_process(dio->waiter);
345 	spin_unlock_irqrestore(&dio->bio_lock, flags);
346 
347 	if (remaining == 0) {
348 		/*
349 		 * Defer completion when defer_completion is set or
350 		 * when the inode has pages mapped and this is AIO write.
351 		 * We need to invalidate those pages because there is a
352 		 * chance they contain stale data in the case buffered IO
353 		 * went in between AIO submission and completion into the
354 		 * same region.
355 		 */
356 		if (dio->result)
357 			defer_completion = dio->defer_completion ||
358 					   (dio->op == REQ_OP_WRITE &&
359 					    dio->inode->i_mapping->nrpages);
360 		if (defer_completion) {
361 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
362 			queue_work(dio->inode->i_sb->s_dio_done_wq,
363 				   &dio->complete_work);
364 		} else {
365 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
366 		}
367 	}
368 }
369 
370 /*
371  * The BIO completion handler simply queues the BIO up for the process-context
372  * handler.
373  *
374  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
375  * implement a singly-linked list of completed BIOs, at dio->bio_list.
376  */
dio_bio_end_io(struct bio * bio)377 static void dio_bio_end_io(struct bio *bio)
378 {
379 	struct dio *dio = bio->bi_private;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&dio->bio_lock, flags);
383 	bio->bi_private = dio->bio_list;
384 	dio->bio_list = bio;
385 	if (--dio->refcount == 1 && dio->waiter)
386 		wake_up_process(dio->waiter);
387 	spin_unlock_irqrestore(&dio->bio_lock, flags);
388 }
389 
390 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)391 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
392 	      struct block_device *bdev,
393 	      sector_t first_sector, int nr_vecs)
394 {
395 	struct bio *bio;
396 	struct inode *inode = dio->inode;
397 
398 	/*
399 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
400 	 * we request a valid number of vectors.
401 	 */
402 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
403 
404 	fscrypt_set_bio_crypt_ctx(bio, inode,
405 				  sdio->cur_page_fs_offset >> inode->i_blkbits,
406 				  GFP_KERNEL);
407 	bio_set_dev(bio, bdev);
408 	bio->bi_iter.bi_sector = first_sector;
409 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
410 	if (dio->is_async)
411 		bio->bi_end_io = dio_bio_end_aio;
412 	else
413 		bio->bi_end_io = dio_bio_end_io;
414 
415 	bio->bi_write_hint = dio->iocb->ki_hint;
416 
417 	sdio->bio = bio;
418 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
419 }
420 
421 /*
422  * In the AIO read case we speculatively dirty the pages before starting IO.
423  * During IO completion, any of these pages which happen to have been written
424  * back will be redirtied by bio_check_pages_dirty().
425  *
426  * bios hold a dio reference between submit_bio and ->end_io.
427  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)428 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
429 {
430 	struct bio *bio = sdio->bio;
431 	unsigned long flags;
432 
433 	bio->bi_private = dio;
434 
435 	spin_lock_irqsave(&dio->bio_lock, flags);
436 	dio->refcount++;
437 	spin_unlock_irqrestore(&dio->bio_lock, flags);
438 
439 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
440 		bio_set_pages_dirty(bio);
441 
442 	dio->bio_disk = bio->bi_disk;
443 
444 	if (sdio->submit_io) {
445 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
446 		dio->bio_cookie = BLK_QC_T_NONE;
447 	} else
448 		dio->bio_cookie = submit_bio(bio);
449 
450 	sdio->bio = NULL;
451 	sdio->boundary = 0;
452 	sdio->logical_offset_in_bio = 0;
453 }
454 
455 /*
456  * Release any resources in case of a failure
457  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)458 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
459 {
460 	while (sdio->head < sdio->tail)
461 		put_page(dio->pages[sdio->head++]);
462 }
463 
464 /*
465  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
466  * returned once all BIOs have been completed.  This must only be called once
467  * all bios have been issued so that dio->refcount can only decrease.  This
468  * requires that that the caller hold a reference on the dio.
469  */
dio_await_one(struct dio * dio)470 static struct bio *dio_await_one(struct dio *dio)
471 {
472 	unsigned long flags;
473 	struct bio *bio = NULL;
474 
475 	spin_lock_irqsave(&dio->bio_lock, flags);
476 
477 	/*
478 	 * Wait as long as the list is empty and there are bios in flight.  bio
479 	 * completion drops the count, maybe adds to the list, and wakes while
480 	 * holding the bio_lock so we don't need set_current_state()'s barrier
481 	 * and can call it after testing our condition.
482 	 */
483 	while (dio->refcount > 1 && dio->bio_list == NULL) {
484 		__set_current_state(TASK_UNINTERRUPTIBLE);
485 		dio->waiter = current;
486 		spin_unlock_irqrestore(&dio->bio_lock, flags);
487 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
488 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
489 			blk_io_schedule();
490 		/* wake up sets us TASK_RUNNING */
491 		spin_lock_irqsave(&dio->bio_lock, flags);
492 		dio->waiter = NULL;
493 	}
494 	if (dio->bio_list) {
495 		bio = dio->bio_list;
496 		dio->bio_list = bio->bi_private;
497 	}
498 	spin_unlock_irqrestore(&dio->bio_lock, flags);
499 	return bio;
500 }
501 
502 /*
503  * Process one completed BIO.  No locks are held.
504  */
dio_bio_complete(struct dio * dio,struct bio * bio)505 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
506 {
507 	blk_status_t err = bio->bi_status;
508 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
509 
510 	if (err) {
511 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
512 			dio->io_error = -EAGAIN;
513 		else
514 			dio->io_error = -EIO;
515 	}
516 
517 	if (dio->is_async && should_dirty) {
518 		bio_check_pages_dirty(bio);	/* transfers ownership */
519 	} else {
520 		bio_release_pages(bio, should_dirty);
521 		bio_put(bio);
522 	}
523 	return err;
524 }
525 
526 /*
527  * Wait on and process all in-flight BIOs.  This must only be called once
528  * all bios have been issued so that the refcount can only decrease.
529  * This just waits for all bios to make it through dio_bio_complete.  IO
530  * errors are propagated through dio->io_error and should be propagated via
531  * dio_complete().
532  */
dio_await_completion(struct dio * dio)533 static void dio_await_completion(struct dio *dio)
534 {
535 	struct bio *bio;
536 	do {
537 		bio = dio_await_one(dio);
538 		if (bio)
539 			dio_bio_complete(dio, bio);
540 	} while (bio);
541 }
542 
543 /*
544  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
545  * to keep the memory consumption sane we periodically reap any completed BIOs
546  * during the BIO generation phase.
547  *
548  * This also helps to limit the peak amount of pinned userspace memory.
549  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)550 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
551 {
552 	int ret = 0;
553 
554 	if (sdio->reap_counter++ >= 64) {
555 		while (dio->bio_list) {
556 			unsigned long flags;
557 			struct bio *bio;
558 			int ret2;
559 
560 			spin_lock_irqsave(&dio->bio_lock, flags);
561 			bio = dio->bio_list;
562 			dio->bio_list = bio->bi_private;
563 			spin_unlock_irqrestore(&dio->bio_lock, flags);
564 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
565 			if (ret == 0)
566 				ret = ret2;
567 		}
568 		sdio->reap_counter = 0;
569 	}
570 	return ret;
571 }
572 
573 /*
574  * Create workqueue for deferred direct IO completions. We allocate the
575  * workqueue when it's first needed. This avoids creating workqueue for
576  * filesystems that don't need it and also allows us to create the workqueue
577  * late enough so the we can include s_id in the name of the workqueue.
578  */
sb_init_dio_done_wq(struct super_block * sb)579 int sb_init_dio_done_wq(struct super_block *sb)
580 {
581 	struct workqueue_struct *old;
582 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
583 						      WQ_MEM_RECLAIM, 0,
584 						      sb->s_id);
585 	if (!wq)
586 		return -ENOMEM;
587 	/*
588 	 * This has to be atomic as more DIOs can race to create the workqueue
589 	 */
590 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
591 	/* Someone created workqueue before us? Free ours... */
592 	if (old)
593 		destroy_workqueue(wq);
594 	return 0;
595 }
596 
dio_set_defer_completion(struct dio * dio)597 static int dio_set_defer_completion(struct dio *dio)
598 {
599 	struct super_block *sb = dio->inode->i_sb;
600 
601 	if (dio->defer_completion)
602 		return 0;
603 	dio->defer_completion = true;
604 	if (!sb->s_dio_done_wq)
605 		return sb_init_dio_done_wq(sb);
606 	return 0;
607 }
608 
609 /*
610  * Call into the fs to map some more disk blocks.  We record the current number
611  * of available blocks at sdio->blocks_available.  These are in units of the
612  * fs blocksize, i_blocksize(inode).
613  *
614  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
615  * it uses the passed inode-relative block number as the file offset, as usual.
616  *
617  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
618  * has remaining to do.  The fs should not map more than this number of blocks.
619  *
620  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
621  * indicate how much contiguous disk space has been made available at
622  * bh->b_blocknr.
623  *
624  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
625  * This isn't very efficient...
626  *
627  * In the case of filesystem holes: the fs may return an arbitrarily-large
628  * hole by returning an appropriate value in b_size and by clearing
629  * buffer_mapped().  However the direct-io code will only process holes one
630  * block at a time - it will repeatedly call get_block() as it walks the hole.
631  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)632 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
633 			   struct buffer_head *map_bh)
634 {
635 	int ret;
636 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
637 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
638 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
639 	int create;
640 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
641 	loff_t i_size;
642 
643 	/*
644 	 * If there was a memory error and we've overwritten all the
645 	 * mapped blocks then we can now return that memory error
646 	 */
647 	ret = dio->page_errors;
648 	if (ret == 0) {
649 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
650 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
651 		fs_endblk = (sdio->final_block_in_request - 1) >>
652 					sdio->blkfactor;
653 		fs_count = fs_endblk - fs_startblk + 1;
654 
655 		map_bh->b_state = 0;
656 		map_bh->b_size = fs_count << i_blkbits;
657 
658 		/*
659 		 * For writes that could fill holes inside i_size on a
660 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
661 		 * overwrites are permitted. We will return early to the caller
662 		 * once we see an unmapped buffer head returned, and the caller
663 		 * will fall back to buffered I/O.
664 		 *
665 		 * Otherwise the decision is left to the get_blocks method,
666 		 * which may decide to handle it or also return an unmapped
667 		 * buffer head.
668 		 */
669 		create = dio->op == REQ_OP_WRITE;
670 		if (dio->flags & DIO_SKIP_HOLES) {
671 			i_size = i_size_read(dio->inode);
672 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
673 				create = 0;
674 		}
675 
676 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
677 						map_bh, create);
678 
679 		/* Store for completion */
680 		dio->private = map_bh->b_private;
681 
682 		if (ret == 0 && buffer_defer_completion(map_bh))
683 			ret = dio_set_defer_completion(dio);
684 	}
685 	return ret;
686 }
687 
688 /*
689  * There is no bio.  Make one now.
690  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)691 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
692 		sector_t start_sector, struct buffer_head *map_bh)
693 {
694 	sector_t sector;
695 	int ret, nr_pages;
696 
697 	ret = dio_bio_reap(dio, sdio);
698 	if (ret)
699 		goto out;
700 	sector = start_sector << (sdio->blkbits - 9);
701 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
702 	BUG_ON(nr_pages <= 0);
703 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
704 	sdio->boundary = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
711  * that was successful then update final_block_in_bio and take a ref against
712  * the just-added page.
713  *
714  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
715  */
dio_bio_add_page(struct dio_submit * sdio)716 static inline int dio_bio_add_page(struct dio_submit *sdio)
717 {
718 	int ret;
719 
720 	ret = bio_add_page(sdio->bio, sdio->cur_page,
721 			sdio->cur_page_len, sdio->cur_page_offset);
722 	if (ret == sdio->cur_page_len) {
723 		/*
724 		 * Decrement count only, if we are done with this page
725 		 */
726 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
727 			sdio->pages_in_io--;
728 		get_page(sdio->cur_page);
729 		sdio->final_block_in_bio = sdio->cur_page_block +
730 			(sdio->cur_page_len >> sdio->blkbits);
731 		ret = 0;
732 	} else {
733 		ret = 1;
734 	}
735 	return ret;
736 }
737 
738 /*
739  * Put cur_page under IO.  The section of cur_page which is described by
740  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
741  * starts on-disk at cur_page_block.
742  *
743  * We take a ref against the page here (on behalf of its presence in the bio).
744  *
745  * The caller of this function is responsible for removing cur_page from the
746  * dio, and for dropping the refcount which came from that presence.
747  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)748 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
749 		struct buffer_head *map_bh)
750 {
751 	int ret = 0;
752 
753 	if (sdio->bio) {
754 		loff_t cur_offset = sdio->cur_page_fs_offset;
755 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
756 			sdio->bio->bi_iter.bi_size;
757 
758 		/*
759 		 * See whether this new request is contiguous with the old.
760 		 *
761 		 * Btrfs cannot handle having logically non-contiguous requests
762 		 * submitted.  For example if you have
763 		 *
764 		 * Logical:  [0-4095][HOLE][8192-12287]
765 		 * Physical: [0-4095]      [4096-8191]
766 		 *
767 		 * We cannot submit those pages together as one BIO.  So if our
768 		 * current logical offset in the file does not equal what would
769 		 * be the next logical offset in the bio, submit the bio we
770 		 * have.
771 		 *
772 		 * When fscrypt inline encryption is used, data unit number
773 		 * (DUN) contiguity is also required.  Normally that's implied
774 		 * by logical contiguity.  However, certain IV generation
775 		 * methods (e.g. IV_INO_LBLK_32) don't guarantee it.  So, we
776 		 * must explicitly check fscrypt_mergeable_bio() too.
777 		 */
778 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
779 		    cur_offset != bio_next_offset ||
780 		    !fscrypt_mergeable_bio(sdio->bio, dio->inode,
781 					   cur_offset >> dio->inode->i_blkbits))
782 			dio_bio_submit(dio, sdio);
783 	}
784 
785 	if (sdio->bio == NULL) {
786 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
787 		if (ret)
788 			goto out;
789 	}
790 
791 	if (dio_bio_add_page(sdio) != 0) {
792 		dio_bio_submit(dio, sdio);
793 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
794 		if (ret == 0) {
795 			ret = dio_bio_add_page(sdio);
796 			BUG_ON(ret != 0);
797 		}
798 	}
799 out:
800 	return ret;
801 }
802 
803 /*
804  * An autonomous function to put a chunk of a page under deferred IO.
805  *
806  * The caller doesn't actually know (or care) whether this piece of page is in
807  * a BIO, or is under IO or whatever.  We just take care of all possible
808  * situations here.  The separation between the logic of do_direct_IO() and
809  * that of submit_page_section() is important for clarity.  Please don't break.
810  *
811  * The chunk of page starts on-disk at blocknr.
812  *
813  * We perform deferred IO, by recording the last-submitted page inside our
814  * private part of the dio structure.  If possible, we just expand the IO
815  * across that page here.
816  *
817  * If that doesn't work out then we put the old page into the bio and add this
818  * page to the dio instead.
819  */
820 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)821 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
822 		    unsigned offset, unsigned len, sector_t blocknr,
823 		    struct buffer_head *map_bh)
824 {
825 	int ret = 0;
826 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
827 
828 	if (dio->op == REQ_OP_WRITE) {
829 		/*
830 		 * Read accounting is performed in submit_bio()
831 		 */
832 		task_io_account_write(len);
833 	}
834 
835 	/*
836 	 * Can we just grow the current page's presence in the dio?
837 	 */
838 	if (sdio->cur_page == page &&
839 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
840 	    sdio->cur_page_block +
841 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
842 		sdio->cur_page_len += len;
843 		goto out;
844 	}
845 
846 	/*
847 	 * If there's a deferred page already there then send it.
848 	 */
849 	if (sdio->cur_page) {
850 		ret = dio_send_cur_page(dio, sdio, map_bh);
851 		put_page(sdio->cur_page);
852 		sdio->cur_page = NULL;
853 		if (ret)
854 			return ret;
855 	}
856 
857 	get_page(page);		/* It is in dio */
858 	sdio->cur_page = page;
859 	sdio->cur_page_offset = offset;
860 	sdio->cur_page_len = len;
861 	sdio->cur_page_block = blocknr;
862 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
863 out:
864 	/*
865 	 * If boundary then we want to schedule the IO now to
866 	 * avoid metadata seeks.
867 	 */
868 	if (boundary) {
869 		ret = dio_send_cur_page(dio, sdio, map_bh);
870 		if (sdio->bio)
871 			dio_bio_submit(dio, sdio);
872 		put_page(sdio->cur_page);
873 		sdio->cur_page = NULL;
874 	}
875 	return ret;
876 }
877 
878 /*
879  * If we are not writing the entire block and get_block() allocated
880  * the block for us, we need to fill-in the unused portion of the
881  * block with zeros. This happens only if user-buffer, fileoffset or
882  * io length is not filesystem block-size multiple.
883  *
884  * `end' is zero if we're doing the start of the IO, 1 at the end of the
885  * IO.
886  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)887 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
888 		int end, struct buffer_head *map_bh)
889 {
890 	unsigned dio_blocks_per_fs_block;
891 	unsigned this_chunk_blocks;	/* In dio_blocks */
892 	unsigned this_chunk_bytes;
893 	struct page *page;
894 
895 	sdio->start_zero_done = 1;
896 	if (!sdio->blkfactor || !buffer_new(map_bh))
897 		return;
898 
899 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
900 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
901 
902 	if (!this_chunk_blocks)
903 		return;
904 
905 	/*
906 	 * We need to zero out part of an fs block.  It is either at the
907 	 * beginning or the end of the fs block.
908 	 */
909 	if (end)
910 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
911 
912 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
913 
914 	page = ZERO_PAGE(0);
915 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
916 				sdio->next_block_for_io, map_bh))
917 		return;
918 
919 	sdio->next_block_for_io += this_chunk_blocks;
920 }
921 
922 /*
923  * Walk the user pages, and the file, mapping blocks to disk and generating
924  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
925  * into submit_page_section(), which takes care of the next stage of submission
926  *
927  * Direct IO against a blockdev is different from a file.  Because we can
928  * happily perform page-sized but 512-byte aligned IOs.  It is important that
929  * blockdev IO be able to have fine alignment and large sizes.
930  *
931  * So what we do is to permit the ->get_block function to populate bh.b_size
932  * with the size of IO which is permitted at this offset and this i_blkbits.
933  *
934  * For best results, the blockdev should be set up with 512-byte i_blkbits and
935  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
936  * fine alignment but still allows this function to work in PAGE_SIZE units.
937  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)938 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
939 			struct buffer_head *map_bh)
940 {
941 	const unsigned blkbits = sdio->blkbits;
942 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
943 	int ret = 0;
944 
945 	while (sdio->block_in_file < sdio->final_block_in_request) {
946 		struct page *page;
947 		size_t from, to;
948 
949 		page = dio_get_page(dio, sdio);
950 		if (IS_ERR(page)) {
951 			ret = PTR_ERR(page);
952 			goto out;
953 		}
954 		from = sdio->head ? 0 : sdio->from;
955 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
956 		sdio->head++;
957 
958 		while (from < to) {
959 			unsigned this_chunk_bytes;	/* # of bytes mapped */
960 			unsigned this_chunk_blocks;	/* # of blocks */
961 			unsigned u;
962 
963 			if (sdio->blocks_available == 0) {
964 				/*
965 				 * Need to go and map some more disk
966 				 */
967 				unsigned long blkmask;
968 				unsigned long dio_remainder;
969 
970 				ret = get_more_blocks(dio, sdio, map_bh);
971 				if (ret) {
972 					put_page(page);
973 					goto out;
974 				}
975 				if (!buffer_mapped(map_bh))
976 					goto do_holes;
977 
978 				sdio->blocks_available =
979 						map_bh->b_size >> blkbits;
980 				sdio->next_block_for_io =
981 					map_bh->b_blocknr << sdio->blkfactor;
982 				if (buffer_new(map_bh)) {
983 					clean_bdev_aliases(
984 						map_bh->b_bdev,
985 						map_bh->b_blocknr,
986 						map_bh->b_size >> i_blkbits);
987 				}
988 
989 				if (!sdio->blkfactor)
990 					goto do_holes;
991 
992 				blkmask = (1 << sdio->blkfactor) - 1;
993 				dio_remainder = (sdio->block_in_file & blkmask);
994 
995 				/*
996 				 * If we are at the start of IO and that IO
997 				 * starts partway into a fs-block,
998 				 * dio_remainder will be non-zero.  If the IO
999 				 * is a read then we can simply advance the IO
1000 				 * cursor to the first block which is to be
1001 				 * read.  But if the IO is a write and the
1002 				 * block was newly allocated we cannot do that;
1003 				 * the start of the fs block must be zeroed out
1004 				 * on-disk
1005 				 */
1006 				if (!buffer_new(map_bh))
1007 					sdio->next_block_for_io += dio_remainder;
1008 				sdio->blocks_available -= dio_remainder;
1009 			}
1010 do_holes:
1011 			/* Handle holes */
1012 			if (!buffer_mapped(map_bh)) {
1013 				loff_t i_size_aligned;
1014 
1015 				/* AKPM: eargh, -ENOTBLK is a hack */
1016 				if (dio->op == REQ_OP_WRITE) {
1017 					put_page(page);
1018 					return -ENOTBLK;
1019 				}
1020 
1021 				/*
1022 				 * Be sure to account for a partial block as the
1023 				 * last block in the file
1024 				 */
1025 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1026 							1 << blkbits);
1027 				if (sdio->block_in_file >=
1028 						i_size_aligned >> blkbits) {
1029 					/* We hit eof */
1030 					put_page(page);
1031 					goto out;
1032 				}
1033 				zero_user(page, from, 1 << blkbits);
1034 				sdio->block_in_file++;
1035 				from += 1 << blkbits;
1036 				dio->result += 1 << blkbits;
1037 				goto next_block;
1038 			}
1039 
1040 			/*
1041 			 * If we're performing IO which has an alignment which
1042 			 * is finer than the underlying fs, go check to see if
1043 			 * we must zero out the start of this block.
1044 			 */
1045 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1046 				dio_zero_block(dio, sdio, 0, map_bh);
1047 
1048 			/*
1049 			 * Work out, in this_chunk_blocks, how much disk we
1050 			 * can add to this page
1051 			 */
1052 			this_chunk_blocks = sdio->blocks_available;
1053 			u = (to - from) >> blkbits;
1054 			if (this_chunk_blocks > u)
1055 				this_chunk_blocks = u;
1056 			u = sdio->final_block_in_request - sdio->block_in_file;
1057 			if (this_chunk_blocks > u)
1058 				this_chunk_blocks = u;
1059 			this_chunk_bytes = this_chunk_blocks << blkbits;
1060 			BUG_ON(this_chunk_bytes == 0);
1061 
1062 			if (this_chunk_blocks == sdio->blocks_available)
1063 				sdio->boundary = buffer_boundary(map_bh);
1064 			ret = submit_page_section(dio, sdio, page,
1065 						  from,
1066 						  this_chunk_bytes,
1067 						  sdio->next_block_for_io,
1068 						  map_bh);
1069 			if (ret) {
1070 				put_page(page);
1071 				goto out;
1072 			}
1073 			sdio->next_block_for_io += this_chunk_blocks;
1074 
1075 			sdio->block_in_file += this_chunk_blocks;
1076 			from += this_chunk_bytes;
1077 			dio->result += this_chunk_bytes;
1078 			sdio->blocks_available -= this_chunk_blocks;
1079 next_block:
1080 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1081 			if (sdio->block_in_file == sdio->final_block_in_request)
1082 				break;
1083 		}
1084 
1085 		/* Drop the ref which was taken in get_user_pages() */
1086 		put_page(page);
1087 	}
1088 out:
1089 	return ret;
1090 }
1091 
drop_refcount(struct dio * dio)1092 static inline int drop_refcount(struct dio *dio)
1093 {
1094 	int ret2;
1095 	unsigned long flags;
1096 
1097 	/*
1098 	 * Sync will always be dropping the final ref and completing the
1099 	 * operation.  AIO can if it was a broken operation described above or
1100 	 * in fact if all the bios race to complete before we get here.  In
1101 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1102 	 * return code that the caller will hand to ->complete().
1103 	 *
1104 	 * This is managed by the bio_lock instead of being an atomic_t so that
1105 	 * completion paths can drop their ref and use the remaining count to
1106 	 * decide to wake the submission path atomically.
1107 	 */
1108 	spin_lock_irqsave(&dio->bio_lock, flags);
1109 	ret2 = --dio->refcount;
1110 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1111 	return ret2;
1112 }
1113 
1114 /*
1115  * This is a library function for use by filesystem drivers.
1116  *
1117  * The locking rules are governed by the flags parameter:
1118  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1119  *    scheme for dumb filesystems.
1120  *    For writes this function is called under i_mutex and returns with
1121  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1122  *    taken and dropped again before returning.
1123  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1124  *    internal locking but rather rely on the filesystem to synchronize
1125  *    direct I/O reads/writes versus each other and truncate.
1126  *
1127  * To help with locking against truncate we incremented the i_dio_count
1128  * counter before starting direct I/O, and decrement it once we are done.
1129  * Truncate can wait for it to reach zero to provide exclusion.  It is
1130  * expected that filesystem provide exclusion between new direct I/O
1131  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1132  * but other filesystems need to take care of this on their own.
1133  *
1134  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1135  * is always inlined. Otherwise gcc is unable to split the structure into
1136  * individual fields and will generate much worse code. This is important
1137  * for the whole file.
1138  */
1139 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1140 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1141 		      struct block_device *bdev, struct iov_iter *iter,
1142 		      get_block_t get_block, dio_iodone_t end_io,
1143 		      dio_submit_t submit_io, int flags)
1144 {
1145 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1146 	unsigned blkbits = i_blkbits;
1147 	unsigned blocksize_mask = (1 << blkbits) - 1;
1148 	ssize_t retval = -EINVAL;
1149 	const size_t count = iov_iter_count(iter);
1150 	loff_t offset = iocb->ki_pos;
1151 	const loff_t end = offset + count;
1152 	struct dio *dio;
1153 	struct dio_submit sdio = { 0, };
1154 	struct buffer_head map_bh = { 0, };
1155 	struct blk_plug plug;
1156 	unsigned long align = offset | iov_iter_alignment(iter);
1157 
1158 	/*
1159 	 * Avoid references to bdev if not absolutely needed to give
1160 	 * the early prefetch in the caller enough time.
1161 	 */
1162 
1163 	/* watch out for a 0 len io from a tricksy fs */
1164 	if (iov_iter_rw(iter) == READ && !count)
1165 		return 0;
1166 
1167 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1168 	if (!dio)
1169 		return -ENOMEM;
1170 	/*
1171 	 * Believe it or not, zeroing out the page array caused a .5%
1172 	 * performance regression in a database benchmark.  So, we take
1173 	 * care to only zero out what's needed.
1174 	 */
1175 	memset(dio, 0, offsetof(struct dio, pages));
1176 
1177 	dio->flags = flags;
1178 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1179 		/* will be released by direct_io_worker */
1180 		inode_lock(inode);
1181 	}
1182 
1183 	/* Once we sampled i_size check for reads beyond EOF */
1184 	dio->i_size = i_size_read(inode);
1185 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1186 		retval = 0;
1187 		goto fail_dio;
1188 	}
1189 
1190 	if (align & blocksize_mask) {
1191 		if (bdev)
1192 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1193 		blocksize_mask = (1 << blkbits) - 1;
1194 		if (align & blocksize_mask)
1195 			goto fail_dio;
1196 	}
1197 
1198 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1199 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1200 
1201 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1202 		if (retval)
1203 			goto fail_dio;
1204 	}
1205 
1206 	/*
1207 	 * For file extending writes updating i_size before data writeouts
1208 	 * complete can expose uninitialized blocks in dumb filesystems.
1209 	 * In that case we need to wait for I/O completion even if asked
1210 	 * for an asynchronous write.
1211 	 */
1212 	if (is_sync_kiocb(iocb))
1213 		dio->is_async = false;
1214 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1215 		dio->is_async = false;
1216 	else
1217 		dio->is_async = true;
1218 
1219 	dio->inode = inode;
1220 	if (iov_iter_rw(iter) == WRITE) {
1221 		dio->op = REQ_OP_WRITE;
1222 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1223 		if (iocb->ki_flags & IOCB_NOWAIT)
1224 			dio->op_flags |= REQ_NOWAIT;
1225 	} else {
1226 		dio->op = REQ_OP_READ;
1227 	}
1228 	if (iocb->ki_flags & IOCB_HIPRI)
1229 		dio->op_flags |= REQ_HIPRI;
1230 
1231 	/*
1232 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1233 	 * so that we can call ->fsync.
1234 	 */
1235 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1236 		retval = 0;
1237 		if (iocb->ki_flags & IOCB_DSYNC)
1238 			retval = dio_set_defer_completion(dio);
1239 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1240 			/*
1241 			 * In case of AIO write racing with buffered read we
1242 			 * need to defer completion. We can't decide this now,
1243 			 * however the workqueue needs to be initialized here.
1244 			 */
1245 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1246 		}
1247 		if (retval)
1248 			goto fail_dio;
1249 	}
1250 
1251 	/*
1252 	 * Will be decremented at I/O completion time.
1253 	 */
1254 	inode_dio_begin(inode);
1255 
1256 	retval = 0;
1257 	sdio.blkbits = blkbits;
1258 	sdio.blkfactor = i_blkbits - blkbits;
1259 	sdio.block_in_file = offset >> blkbits;
1260 
1261 	sdio.get_block = get_block;
1262 	dio->end_io = end_io;
1263 	sdio.submit_io = submit_io;
1264 	sdio.final_block_in_bio = -1;
1265 	sdio.next_block_for_io = -1;
1266 
1267 	dio->iocb = iocb;
1268 
1269 	spin_lock_init(&dio->bio_lock);
1270 	dio->refcount = 1;
1271 
1272 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1273 	sdio.iter = iter;
1274 	sdio.final_block_in_request = end >> blkbits;
1275 
1276 	/*
1277 	 * In case of non-aligned buffers, we may need 2 more
1278 	 * pages since we need to zero out first and last block.
1279 	 */
1280 	if (unlikely(sdio.blkfactor))
1281 		sdio.pages_in_io = 2;
1282 
1283 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1284 
1285 	blk_start_plug(&plug);
1286 
1287 	retval = do_direct_IO(dio, &sdio, &map_bh);
1288 	if (retval)
1289 		dio_cleanup(dio, &sdio);
1290 
1291 	if (retval == -ENOTBLK) {
1292 		/*
1293 		 * The remaining part of the request will be
1294 		 * be handled by buffered I/O when we return
1295 		 */
1296 		retval = 0;
1297 	}
1298 	/*
1299 	 * There may be some unwritten disk at the end of a part-written
1300 	 * fs-block-sized block.  Go zero that now.
1301 	 */
1302 	dio_zero_block(dio, &sdio, 1, &map_bh);
1303 
1304 	if (sdio.cur_page) {
1305 		ssize_t ret2;
1306 
1307 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1308 		if (retval == 0)
1309 			retval = ret2;
1310 		put_page(sdio.cur_page);
1311 		sdio.cur_page = NULL;
1312 	}
1313 	if (sdio.bio)
1314 		dio_bio_submit(dio, &sdio);
1315 
1316 	blk_finish_plug(&plug);
1317 
1318 	/*
1319 	 * It is possible that, we return short IO due to end of file.
1320 	 * In that case, we need to release all the pages we got hold on.
1321 	 */
1322 	dio_cleanup(dio, &sdio);
1323 
1324 	/*
1325 	 * All block lookups have been performed. For READ requests
1326 	 * we can let i_mutex go now that its achieved its purpose
1327 	 * of protecting us from looking up uninitialized blocks.
1328 	 */
1329 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1330 		inode_unlock(dio->inode);
1331 
1332 	/*
1333 	 * The only time we want to leave bios in flight is when a successful
1334 	 * partial aio read or full aio write have been setup.  In that case
1335 	 * bio completion will call aio_complete.  The only time it's safe to
1336 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1337 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1338 	 */
1339 	BUG_ON(retval == -EIOCBQUEUED);
1340 	if (dio->is_async && retval == 0 && dio->result &&
1341 	    (iov_iter_rw(iter) == READ || dio->result == count))
1342 		retval = -EIOCBQUEUED;
1343 	else
1344 		dio_await_completion(dio);
1345 
1346 	if (drop_refcount(dio) == 0) {
1347 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1348 	} else
1349 		BUG_ON(retval != -EIOCBQUEUED);
1350 
1351 	return retval;
1352 
1353 fail_dio:
1354 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1355 		inode_unlock(inode);
1356 
1357 	kmem_cache_free(dio_cache, dio);
1358 	return retval;
1359 }
1360 
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1361 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1362 			     struct block_device *bdev, struct iov_iter *iter,
1363 			     get_block_t get_block,
1364 			     dio_iodone_t end_io, dio_submit_t submit_io,
1365 			     int flags)
1366 {
1367 	/*
1368 	 * The block device state is needed in the end to finally
1369 	 * submit everything.  Since it's likely to be cache cold
1370 	 * prefetch it here as first thing to hide some of the
1371 	 * latency.
1372 	 *
1373 	 * Attempt to prefetch the pieces we likely need later.
1374 	 */
1375 	prefetch(&bdev->bd_disk->part_tbl);
1376 	prefetch(bdev->bd_disk->queue);
1377 	prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1378 
1379 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1380 				     end_io, submit_io, flags);
1381 }
1382 
1383 EXPORT_SYMBOL_NS(__blockdev_direct_IO, ANDROID_GKI_VFS_EXPORT_ONLY);
1384 
dio_init(void)1385 static __init int dio_init(void)
1386 {
1387 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1388 	return 0;
1389 }
1390 module_init(dio_init)
1391