1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/fscrypt.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/bio.h>
34 #include <linux/wait.h>
35 #include <linux/err.h>
36 #include <linux/blkdev.h>
37 #include <linux/buffer_head.h>
38 #include <linux/rwsem.h>
39 #include <linux/uio.h>
40 #include <linux/atomic.h>
41 #include <linux/prefetch.h>
42
43 #include "internal.h"
44
45 /*
46 * How many user pages to map in one call to get_user_pages(). This determines
47 * the size of a structure in the slab cache
48 */
49 #define DIO_PAGES 64
50
51 /*
52 * Flags for dio_complete()
53 */
54 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
55 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
56
57 /*
58 * This code generally works in units of "dio_blocks". A dio_block is
59 * somewhere between the hard sector size and the filesystem block size. it
60 * is determined on a per-invocation basis. When talking to the filesystem
61 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
62 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
63 * to bio_block quantities by shifting left by blkfactor.
64 *
65 * If blkfactor is zero then the user's request was aligned to the filesystem's
66 * blocksize.
67 */
68
69 /* dio_state only used in the submission path */
70
71 struct dio_submit {
72 struct bio *bio; /* bio under assembly */
73 unsigned blkbits; /* doesn't change */
74 unsigned blkfactor; /* When we're using an alignment which
75 is finer than the filesystem's soft
76 blocksize, this specifies how much
77 finer. blkfactor=2 means 1/4-block
78 alignment. Does not change */
79 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
80 been performed at the start of a
81 write */
82 int pages_in_io; /* approximate total IO pages */
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 int reap_counter; /* rate limit reaping */
87 sector_t final_block_in_request;/* doesn't change */
88 int boundary; /* prev block is at a boundary */
89 get_block_t *get_block; /* block mapping function */
90 dio_submit_t *submit_io; /* IO submition function */
91
92 loff_t logical_offset_in_bio; /* current first logical block in bio */
93 sector_t final_block_in_bio; /* current final block in bio + 1 */
94 sector_t next_block_for_io; /* next block to be put under IO,
95 in dio_blocks units */
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106 loff_t cur_page_fs_offset; /* Offset in file */
107
108 struct iov_iter *iter;
109 /*
110 * Page queue. These variables belong to dio_refill_pages() and
111 * dio_get_page().
112 */
113 unsigned head; /* next page to process */
114 unsigned tail; /* last valid page + 1 */
115 size_t from, to;
116 };
117
118 /* dio_state communicated between submission path and end_io */
119 struct dio {
120 int flags; /* doesn't change */
121 int op;
122 int op_flags;
123 blk_qc_t bio_cookie;
124 struct gendisk *bio_disk;
125 struct inode *inode;
126 loff_t i_size; /* i_size when submitted */
127 dio_iodone_t *end_io; /* IO completion function */
128
129 void *private; /* copy from map_bh.b_private */
130
131 /* BIO completion state */
132 spinlock_t bio_lock; /* protects BIO fields below */
133 int page_errors; /* errno from get_user_pages() */
134 int is_async; /* is IO async ? */
135 bool defer_completion; /* defer AIO completion to workqueue? */
136 bool should_dirty; /* if pages should be dirtied */
137 int io_error; /* IO error in completion path */
138 unsigned long refcount; /* direct_io_worker() and bios */
139 struct bio *bio_list; /* singly linked via bi_private */
140 struct task_struct *waiter; /* waiting task (NULL if none) */
141
142 /* AIO related stuff */
143 struct kiocb *iocb; /* kiocb */
144 ssize_t result; /* IO result */
145
146 /*
147 * pages[] (and any fields placed after it) are not zeroed out at
148 * allocation time. Don't add new fields after pages[] unless you
149 * wish that they not be zeroed.
150 */
151 union {
152 struct page *pages[DIO_PAGES]; /* page buffer */
153 struct work_struct complete_work;/* deferred AIO completion */
154 };
155 } ____cacheline_aligned_in_smp;
156
157 static struct kmem_cache *dio_cache __read_mostly;
158
159 /*
160 * How many pages are in the queue?
161 */
dio_pages_present(struct dio_submit * sdio)162 static inline unsigned dio_pages_present(struct dio_submit *sdio)
163 {
164 return sdio->tail - sdio->head;
165 }
166
167 /*
168 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
169 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)170 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
171 {
172 ssize_t ret;
173
174 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
175 &sdio->from);
176
177 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
178 struct page *page = ZERO_PAGE(0);
179 /*
180 * A memory fault, but the filesystem has some outstanding
181 * mapped blocks. We need to use those blocks up to avoid
182 * leaking stale data in the file.
183 */
184 if (dio->page_errors == 0)
185 dio->page_errors = ret;
186 get_page(page);
187 dio->pages[0] = page;
188 sdio->head = 0;
189 sdio->tail = 1;
190 sdio->from = 0;
191 sdio->to = PAGE_SIZE;
192 return 0;
193 }
194
195 if (ret >= 0) {
196 iov_iter_advance(sdio->iter, ret);
197 ret += sdio->from;
198 sdio->head = 0;
199 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
200 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
201 return 0;
202 }
203 return ret;
204 }
205
206 /*
207 * Get another userspace page. Returns an ERR_PTR on error. Pages are
208 * buffered inside the dio so that we can call get_user_pages() against a
209 * decent number of pages, less frequently. To provide nicer use of the
210 * L1 cache.
211 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)212 static inline struct page *dio_get_page(struct dio *dio,
213 struct dio_submit *sdio)
214 {
215 if (dio_pages_present(sdio) == 0) {
216 int ret;
217
218 ret = dio_refill_pages(dio, sdio);
219 if (ret)
220 return ERR_PTR(ret);
221 BUG_ON(dio_pages_present(sdio) == 0);
222 }
223 return dio->pages[sdio->head];
224 }
225
226 /*
227 * dio_complete() - called when all DIO BIO I/O has been completed
228 *
229 * This drops i_dio_count, lets interested parties know that a DIO operation
230 * has completed, and calculates the resulting return code for the operation.
231 *
232 * It lets the filesystem know if it registered an interest earlier via
233 * get_block. Pass the private field of the map buffer_head so that
234 * filesystems can use it to hold additional state between get_block calls and
235 * dio_complete.
236 */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)237 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
238 {
239 loff_t offset = dio->iocb->ki_pos;
240 ssize_t transferred = 0;
241 int err;
242
243 /*
244 * AIO submission can race with bio completion to get here while
245 * expecting to have the last io completed by bio completion.
246 * In that case -EIOCBQUEUED is in fact not an error we want
247 * to preserve through this call.
248 */
249 if (ret == -EIOCBQUEUED)
250 ret = 0;
251
252 if (dio->result) {
253 transferred = dio->result;
254
255 /* Check for short read case */
256 if ((dio->op == REQ_OP_READ) &&
257 ((offset + transferred) > dio->i_size))
258 transferred = dio->i_size - offset;
259 /* ignore EFAULT if some IO has been done */
260 if (unlikely(ret == -EFAULT) && transferred)
261 ret = 0;
262 }
263
264 if (ret == 0)
265 ret = dio->page_errors;
266 if (ret == 0)
267 ret = dio->io_error;
268 if (ret == 0)
269 ret = transferred;
270
271 if (dio->end_io) {
272 // XXX: ki_pos??
273 err = dio->end_io(dio->iocb, offset, ret, dio->private);
274 if (err)
275 ret = err;
276 }
277
278 /*
279 * Try again to invalidate clean pages which might have been cached by
280 * non-direct readahead, or faulted in by get_user_pages() if the source
281 * of the write was an mmap'ed region of the file we're writing. Either
282 * one is a pretty crazy thing to do, so we don't support it 100%. If
283 * this invalidation fails, tough, the write still worked...
284 *
285 * And this page cache invalidation has to be after dio->end_io(), as
286 * some filesystems convert unwritten extents to real allocations in
287 * end_io() when necessary, otherwise a racing buffer read would cache
288 * zeros from unwritten extents.
289 */
290 if (flags & DIO_COMPLETE_INVALIDATE &&
291 ret > 0 && dio->op == REQ_OP_WRITE &&
292 dio->inode->i_mapping->nrpages) {
293 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
294 offset >> PAGE_SHIFT,
295 (offset + ret - 1) >> PAGE_SHIFT);
296 if (err)
297 dio_warn_stale_pagecache(dio->iocb->ki_filp);
298 }
299
300 inode_dio_end(dio->inode);
301
302 if (flags & DIO_COMPLETE_ASYNC) {
303 /*
304 * generic_write_sync expects ki_pos to have been updated
305 * already, but the submission path only does this for
306 * synchronous I/O.
307 */
308 dio->iocb->ki_pos += transferred;
309
310 if (ret > 0 && dio->op == REQ_OP_WRITE)
311 ret = generic_write_sync(dio->iocb, ret);
312 dio->iocb->ki_complete(dio->iocb, ret, 0);
313 }
314
315 kmem_cache_free(dio_cache, dio);
316 return ret;
317 }
318
dio_aio_complete_work(struct work_struct * work)319 static void dio_aio_complete_work(struct work_struct *work)
320 {
321 struct dio *dio = container_of(work, struct dio, complete_work);
322
323 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
324 }
325
326 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
327
328 /*
329 * Asynchronous IO callback.
330 */
dio_bio_end_aio(struct bio * bio)331 static void dio_bio_end_aio(struct bio *bio)
332 {
333 struct dio *dio = bio->bi_private;
334 unsigned long remaining;
335 unsigned long flags;
336 bool defer_completion = false;
337
338 /* cleanup the bio */
339 dio_bio_complete(dio, bio);
340
341 spin_lock_irqsave(&dio->bio_lock, flags);
342 remaining = --dio->refcount;
343 if (remaining == 1 && dio->waiter)
344 wake_up_process(dio->waiter);
345 spin_unlock_irqrestore(&dio->bio_lock, flags);
346
347 if (remaining == 0) {
348 /*
349 * Defer completion when defer_completion is set or
350 * when the inode has pages mapped and this is AIO write.
351 * We need to invalidate those pages because there is a
352 * chance they contain stale data in the case buffered IO
353 * went in between AIO submission and completion into the
354 * same region.
355 */
356 if (dio->result)
357 defer_completion = dio->defer_completion ||
358 (dio->op == REQ_OP_WRITE &&
359 dio->inode->i_mapping->nrpages);
360 if (defer_completion) {
361 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
362 queue_work(dio->inode->i_sb->s_dio_done_wq,
363 &dio->complete_work);
364 } else {
365 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
366 }
367 }
368 }
369
370 /*
371 * The BIO completion handler simply queues the BIO up for the process-context
372 * handler.
373 *
374 * During I/O bi_private points at the dio. After I/O, bi_private is used to
375 * implement a singly-linked list of completed BIOs, at dio->bio_list.
376 */
dio_bio_end_io(struct bio * bio)377 static void dio_bio_end_io(struct bio *bio)
378 {
379 struct dio *dio = bio->bi_private;
380 unsigned long flags;
381
382 spin_lock_irqsave(&dio->bio_lock, flags);
383 bio->bi_private = dio->bio_list;
384 dio->bio_list = bio;
385 if (--dio->refcount == 1 && dio->waiter)
386 wake_up_process(dio->waiter);
387 spin_unlock_irqrestore(&dio->bio_lock, flags);
388 }
389
390 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)391 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
392 struct block_device *bdev,
393 sector_t first_sector, int nr_vecs)
394 {
395 struct bio *bio;
396 struct inode *inode = dio->inode;
397
398 /*
399 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
400 * we request a valid number of vectors.
401 */
402 bio = bio_alloc(GFP_KERNEL, nr_vecs);
403
404 fscrypt_set_bio_crypt_ctx(bio, inode,
405 sdio->cur_page_fs_offset >> inode->i_blkbits,
406 GFP_KERNEL);
407 bio_set_dev(bio, bdev);
408 bio->bi_iter.bi_sector = first_sector;
409 bio_set_op_attrs(bio, dio->op, dio->op_flags);
410 if (dio->is_async)
411 bio->bi_end_io = dio_bio_end_aio;
412 else
413 bio->bi_end_io = dio_bio_end_io;
414
415 bio->bi_write_hint = dio->iocb->ki_hint;
416
417 sdio->bio = bio;
418 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
419 }
420
421 /*
422 * In the AIO read case we speculatively dirty the pages before starting IO.
423 * During IO completion, any of these pages which happen to have been written
424 * back will be redirtied by bio_check_pages_dirty().
425 *
426 * bios hold a dio reference between submit_bio and ->end_io.
427 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)428 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
429 {
430 struct bio *bio = sdio->bio;
431 unsigned long flags;
432
433 bio->bi_private = dio;
434
435 spin_lock_irqsave(&dio->bio_lock, flags);
436 dio->refcount++;
437 spin_unlock_irqrestore(&dio->bio_lock, flags);
438
439 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
440 bio_set_pages_dirty(bio);
441
442 dio->bio_disk = bio->bi_disk;
443
444 if (sdio->submit_io) {
445 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
446 dio->bio_cookie = BLK_QC_T_NONE;
447 } else
448 dio->bio_cookie = submit_bio(bio);
449
450 sdio->bio = NULL;
451 sdio->boundary = 0;
452 sdio->logical_offset_in_bio = 0;
453 }
454
455 /*
456 * Release any resources in case of a failure
457 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)458 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
459 {
460 while (sdio->head < sdio->tail)
461 put_page(dio->pages[sdio->head++]);
462 }
463
464 /*
465 * Wait for the next BIO to complete. Remove it and return it. NULL is
466 * returned once all BIOs have been completed. This must only be called once
467 * all bios have been issued so that dio->refcount can only decrease. This
468 * requires that that the caller hold a reference on the dio.
469 */
dio_await_one(struct dio * dio)470 static struct bio *dio_await_one(struct dio *dio)
471 {
472 unsigned long flags;
473 struct bio *bio = NULL;
474
475 spin_lock_irqsave(&dio->bio_lock, flags);
476
477 /*
478 * Wait as long as the list is empty and there are bios in flight. bio
479 * completion drops the count, maybe adds to the list, and wakes while
480 * holding the bio_lock so we don't need set_current_state()'s barrier
481 * and can call it after testing our condition.
482 */
483 while (dio->refcount > 1 && dio->bio_list == NULL) {
484 __set_current_state(TASK_UNINTERRUPTIBLE);
485 dio->waiter = current;
486 spin_unlock_irqrestore(&dio->bio_lock, flags);
487 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
488 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
489 blk_io_schedule();
490 /* wake up sets us TASK_RUNNING */
491 spin_lock_irqsave(&dio->bio_lock, flags);
492 dio->waiter = NULL;
493 }
494 if (dio->bio_list) {
495 bio = dio->bio_list;
496 dio->bio_list = bio->bi_private;
497 }
498 spin_unlock_irqrestore(&dio->bio_lock, flags);
499 return bio;
500 }
501
502 /*
503 * Process one completed BIO. No locks are held.
504 */
dio_bio_complete(struct dio * dio,struct bio * bio)505 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
506 {
507 blk_status_t err = bio->bi_status;
508 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
509
510 if (err) {
511 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
512 dio->io_error = -EAGAIN;
513 else
514 dio->io_error = -EIO;
515 }
516
517 if (dio->is_async && should_dirty) {
518 bio_check_pages_dirty(bio); /* transfers ownership */
519 } else {
520 bio_release_pages(bio, should_dirty);
521 bio_put(bio);
522 }
523 return err;
524 }
525
526 /*
527 * Wait on and process all in-flight BIOs. This must only be called once
528 * all bios have been issued so that the refcount can only decrease.
529 * This just waits for all bios to make it through dio_bio_complete. IO
530 * errors are propagated through dio->io_error and should be propagated via
531 * dio_complete().
532 */
dio_await_completion(struct dio * dio)533 static void dio_await_completion(struct dio *dio)
534 {
535 struct bio *bio;
536 do {
537 bio = dio_await_one(dio);
538 if (bio)
539 dio_bio_complete(dio, bio);
540 } while (bio);
541 }
542
543 /*
544 * A really large O_DIRECT read or write can generate a lot of BIOs. So
545 * to keep the memory consumption sane we periodically reap any completed BIOs
546 * during the BIO generation phase.
547 *
548 * This also helps to limit the peak amount of pinned userspace memory.
549 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)550 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
551 {
552 int ret = 0;
553
554 if (sdio->reap_counter++ >= 64) {
555 while (dio->bio_list) {
556 unsigned long flags;
557 struct bio *bio;
558 int ret2;
559
560 spin_lock_irqsave(&dio->bio_lock, flags);
561 bio = dio->bio_list;
562 dio->bio_list = bio->bi_private;
563 spin_unlock_irqrestore(&dio->bio_lock, flags);
564 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
565 if (ret == 0)
566 ret = ret2;
567 }
568 sdio->reap_counter = 0;
569 }
570 return ret;
571 }
572
573 /*
574 * Create workqueue for deferred direct IO completions. We allocate the
575 * workqueue when it's first needed. This avoids creating workqueue for
576 * filesystems that don't need it and also allows us to create the workqueue
577 * late enough so the we can include s_id in the name of the workqueue.
578 */
sb_init_dio_done_wq(struct super_block * sb)579 int sb_init_dio_done_wq(struct super_block *sb)
580 {
581 struct workqueue_struct *old;
582 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
583 WQ_MEM_RECLAIM, 0,
584 sb->s_id);
585 if (!wq)
586 return -ENOMEM;
587 /*
588 * This has to be atomic as more DIOs can race to create the workqueue
589 */
590 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
591 /* Someone created workqueue before us? Free ours... */
592 if (old)
593 destroy_workqueue(wq);
594 return 0;
595 }
596
dio_set_defer_completion(struct dio * dio)597 static int dio_set_defer_completion(struct dio *dio)
598 {
599 struct super_block *sb = dio->inode->i_sb;
600
601 if (dio->defer_completion)
602 return 0;
603 dio->defer_completion = true;
604 if (!sb->s_dio_done_wq)
605 return sb_init_dio_done_wq(sb);
606 return 0;
607 }
608
609 /*
610 * Call into the fs to map some more disk blocks. We record the current number
611 * of available blocks at sdio->blocks_available. These are in units of the
612 * fs blocksize, i_blocksize(inode).
613 *
614 * The fs is allowed to map lots of blocks at once. If it wants to do that,
615 * it uses the passed inode-relative block number as the file offset, as usual.
616 *
617 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
618 * has remaining to do. The fs should not map more than this number of blocks.
619 *
620 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
621 * indicate how much contiguous disk space has been made available at
622 * bh->b_blocknr.
623 *
624 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
625 * This isn't very efficient...
626 *
627 * In the case of filesystem holes: the fs may return an arbitrarily-large
628 * hole by returning an appropriate value in b_size and by clearing
629 * buffer_mapped(). However the direct-io code will only process holes one
630 * block at a time - it will repeatedly call get_block() as it walks the hole.
631 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)632 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
633 struct buffer_head *map_bh)
634 {
635 int ret;
636 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
637 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
638 unsigned long fs_count; /* Number of filesystem-sized blocks */
639 int create;
640 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
641 loff_t i_size;
642
643 /*
644 * If there was a memory error and we've overwritten all the
645 * mapped blocks then we can now return that memory error
646 */
647 ret = dio->page_errors;
648 if (ret == 0) {
649 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
650 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
651 fs_endblk = (sdio->final_block_in_request - 1) >>
652 sdio->blkfactor;
653 fs_count = fs_endblk - fs_startblk + 1;
654
655 map_bh->b_state = 0;
656 map_bh->b_size = fs_count << i_blkbits;
657
658 /*
659 * For writes that could fill holes inside i_size on a
660 * DIO_SKIP_HOLES filesystem we forbid block creations: only
661 * overwrites are permitted. We will return early to the caller
662 * once we see an unmapped buffer head returned, and the caller
663 * will fall back to buffered I/O.
664 *
665 * Otherwise the decision is left to the get_blocks method,
666 * which may decide to handle it or also return an unmapped
667 * buffer head.
668 */
669 create = dio->op == REQ_OP_WRITE;
670 if (dio->flags & DIO_SKIP_HOLES) {
671 i_size = i_size_read(dio->inode);
672 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
673 create = 0;
674 }
675
676 ret = (*sdio->get_block)(dio->inode, fs_startblk,
677 map_bh, create);
678
679 /* Store for completion */
680 dio->private = map_bh->b_private;
681
682 if (ret == 0 && buffer_defer_completion(map_bh))
683 ret = dio_set_defer_completion(dio);
684 }
685 return ret;
686 }
687
688 /*
689 * There is no bio. Make one now.
690 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)691 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
692 sector_t start_sector, struct buffer_head *map_bh)
693 {
694 sector_t sector;
695 int ret, nr_pages;
696
697 ret = dio_bio_reap(dio, sdio);
698 if (ret)
699 goto out;
700 sector = start_sector << (sdio->blkbits - 9);
701 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
702 BUG_ON(nr_pages <= 0);
703 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
704 sdio->boundary = 0;
705 out:
706 return ret;
707 }
708
709 /*
710 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
711 * that was successful then update final_block_in_bio and take a ref against
712 * the just-added page.
713 *
714 * Return zero on success. Non-zero means the caller needs to start a new BIO.
715 */
dio_bio_add_page(struct dio_submit * sdio)716 static inline int dio_bio_add_page(struct dio_submit *sdio)
717 {
718 int ret;
719
720 ret = bio_add_page(sdio->bio, sdio->cur_page,
721 sdio->cur_page_len, sdio->cur_page_offset);
722 if (ret == sdio->cur_page_len) {
723 /*
724 * Decrement count only, if we are done with this page
725 */
726 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
727 sdio->pages_in_io--;
728 get_page(sdio->cur_page);
729 sdio->final_block_in_bio = sdio->cur_page_block +
730 (sdio->cur_page_len >> sdio->blkbits);
731 ret = 0;
732 } else {
733 ret = 1;
734 }
735 return ret;
736 }
737
738 /*
739 * Put cur_page under IO. The section of cur_page which is described by
740 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
741 * starts on-disk at cur_page_block.
742 *
743 * We take a ref against the page here (on behalf of its presence in the bio).
744 *
745 * The caller of this function is responsible for removing cur_page from the
746 * dio, and for dropping the refcount which came from that presence.
747 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)748 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
749 struct buffer_head *map_bh)
750 {
751 int ret = 0;
752
753 if (sdio->bio) {
754 loff_t cur_offset = sdio->cur_page_fs_offset;
755 loff_t bio_next_offset = sdio->logical_offset_in_bio +
756 sdio->bio->bi_iter.bi_size;
757
758 /*
759 * See whether this new request is contiguous with the old.
760 *
761 * Btrfs cannot handle having logically non-contiguous requests
762 * submitted. For example if you have
763 *
764 * Logical: [0-4095][HOLE][8192-12287]
765 * Physical: [0-4095] [4096-8191]
766 *
767 * We cannot submit those pages together as one BIO. So if our
768 * current logical offset in the file does not equal what would
769 * be the next logical offset in the bio, submit the bio we
770 * have.
771 *
772 * When fscrypt inline encryption is used, data unit number
773 * (DUN) contiguity is also required. Normally that's implied
774 * by logical contiguity. However, certain IV generation
775 * methods (e.g. IV_INO_LBLK_32) don't guarantee it. So, we
776 * must explicitly check fscrypt_mergeable_bio() too.
777 */
778 if (sdio->final_block_in_bio != sdio->cur_page_block ||
779 cur_offset != bio_next_offset ||
780 !fscrypt_mergeable_bio(sdio->bio, dio->inode,
781 cur_offset >> dio->inode->i_blkbits))
782 dio_bio_submit(dio, sdio);
783 }
784
785 if (sdio->bio == NULL) {
786 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
787 if (ret)
788 goto out;
789 }
790
791 if (dio_bio_add_page(sdio) != 0) {
792 dio_bio_submit(dio, sdio);
793 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
794 if (ret == 0) {
795 ret = dio_bio_add_page(sdio);
796 BUG_ON(ret != 0);
797 }
798 }
799 out:
800 return ret;
801 }
802
803 /*
804 * An autonomous function to put a chunk of a page under deferred IO.
805 *
806 * The caller doesn't actually know (or care) whether this piece of page is in
807 * a BIO, or is under IO or whatever. We just take care of all possible
808 * situations here. The separation between the logic of do_direct_IO() and
809 * that of submit_page_section() is important for clarity. Please don't break.
810 *
811 * The chunk of page starts on-disk at blocknr.
812 *
813 * We perform deferred IO, by recording the last-submitted page inside our
814 * private part of the dio structure. If possible, we just expand the IO
815 * across that page here.
816 *
817 * If that doesn't work out then we put the old page into the bio and add this
818 * page to the dio instead.
819 */
820 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)821 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
822 unsigned offset, unsigned len, sector_t blocknr,
823 struct buffer_head *map_bh)
824 {
825 int ret = 0;
826 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
827
828 if (dio->op == REQ_OP_WRITE) {
829 /*
830 * Read accounting is performed in submit_bio()
831 */
832 task_io_account_write(len);
833 }
834
835 /*
836 * Can we just grow the current page's presence in the dio?
837 */
838 if (sdio->cur_page == page &&
839 sdio->cur_page_offset + sdio->cur_page_len == offset &&
840 sdio->cur_page_block +
841 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
842 sdio->cur_page_len += len;
843 goto out;
844 }
845
846 /*
847 * If there's a deferred page already there then send it.
848 */
849 if (sdio->cur_page) {
850 ret = dio_send_cur_page(dio, sdio, map_bh);
851 put_page(sdio->cur_page);
852 sdio->cur_page = NULL;
853 if (ret)
854 return ret;
855 }
856
857 get_page(page); /* It is in dio */
858 sdio->cur_page = page;
859 sdio->cur_page_offset = offset;
860 sdio->cur_page_len = len;
861 sdio->cur_page_block = blocknr;
862 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
863 out:
864 /*
865 * If boundary then we want to schedule the IO now to
866 * avoid metadata seeks.
867 */
868 if (boundary) {
869 ret = dio_send_cur_page(dio, sdio, map_bh);
870 if (sdio->bio)
871 dio_bio_submit(dio, sdio);
872 put_page(sdio->cur_page);
873 sdio->cur_page = NULL;
874 }
875 return ret;
876 }
877
878 /*
879 * If we are not writing the entire block and get_block() allocated
880 * the block for us, we need to fill-in the unused portion of the
881 * block with zeros. This happens only if user-buffer, fileoffset or
882 * io length is not filesystem block-size multiple.
883 *
884 * `end' is zero if we're doing the start of the IO, 1 at the end of the
885 * IO.
886 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)887 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
888 int end, struct buffer_head *map_bh)
889 {
890 unsigned dio_blocks_per_fs_block;
891 unsigned this_chunk_blocks; /* In dio_blocks */
892 unsigned this_chunk_bytes;
893 struct page *page;
894
895 sdio->start_zero_done = 1;
896 if (!sdio->blkfactor || !buffer_new(map_bh))
897 return;
898
899 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
900 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
901
902 if (!this_chunk_blocks)
903 return;
904
905 /*
906 * We need to zero out part of an fs block. It is either at the
907 * beginning or the end of the fs block.
908 */
909 if (end)
910 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
911
912 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
913
914 page = ZERO_PAGE(0);
915 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
916 sdio->next_block_for_io, map_bh))
917 return;
918
919 sdio->next_block_for_io += this_chunk_blocks;
920 }
921
922 /*
923 * Walk the user pages, and the file, mapping blocks to disk and generating
924 * a sequence of (page,offset,len,block) mappings. These mappings are injected
925 * into submit_page_section(), which takes care of the next stage of submission
926 *
927 * Direct IO against a blockdev is different from a file. Because we can
928 * happily perform page-sized but 512-byte aligned IOs. It is important that
929 * blockdev IO be able to have fine alignment and large sizes.
930 *
931 * So what we do is to permit the ->get_block function to populate bh.b_size
932 * with the size of IO which is permitted at this offset and this i_blkbits.
933 *
934 * For best results, the blockdev should be set up with 512-byte i_blkbits and
935 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
936 * fine alignment but still allows this function to work in PAGE_SIZE units.
937 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)938 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
939 struct buffer_head *map_bh)
940 {
941 const unsigned blkbits = sdio->blkbits;
942 const unsigned i_blkbits = blkbits + sdio->blkfactor;
943 int ret = 0;
944
945 while (sdio->block_in_file < sdio->final_block_in_request) {
946 struct page *page;
947 size_t from, to;
948
949 page = dio_get_page(dio, sdio);
950 if (IS_ERR(page)) {
951 ret = PTR_ERR(page);
952 goto out;
953 }
954 from = sdio->head ? 0 : sdio->from;
955 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
956 sdio->head++;
957
958 while (from < to) {
959 unsigned this_chunk_bytes; /* # of bytes mapped */
960 unsigned this_chunk_blocks; /* # of blocks */
961 unsigned u;
962
963 if (sdio->blocks_available == 0) {
964 /*
965 * Need to go and map some more disk
966 */
967 unsigned long blkmask;
968 unsigned long dio_remainder;
969
970 ret = get_more_blocks(dio, sdio, map_bh);
971 if (ret) {
972 put_page(page);
973 goto out;
974 }
975 if (!buffer_mapped(map_bh))
976 goto do_holes;
977
978 sdio->blocks_available =
979 map_bh->b_size >> blkbits;
980 sdio->next_block_for_io =
981 map_bh->b_blocknr << sdio->blkfactor;
982 if (buffer_new(map_bh)) {
983 clean_bdev_aliases(
984 map_bh->b_bdev,
985 map_bh->b_blocknr,
986 map_bh->b_size >> i_blkbits);
987 }
988
989 if (!sdio->blkfactor)
990 goto do_holes;
991
992 blkmask = (1 << sdio->blkfactor) - 1;
993 dio_remainder = (sdio->block_in_file & blkmask);
994
995 /*
996 * If we are at the start of IO and that IO
997 * starts partway into a fs-block,
998 * dio_remainder will be non-zero. If the IO
999 * is a read then we can simply advance the IO
1000 * cursor to the first block which is to be
1001 * read. But if the IO is a write and the
1002 * block was newly allocated we cannot do that;
1003 * the start of the fs block must be zeroed out
1004 * on-disk
1005 */
1006 if (!buffer_new(map_bh))
1007 sdio->next_block_for_io += dio_remainder;
1008 sdio->blocks_available -= dio_remainder;
1009 }
1010 do_holes:
1011 /* Handle holes */
1012 if (!buffer_mapped(map_bh)) {
1013 loff_t i_size_aligned;
1014
1015 /* AKPM: eargh, -ENOTBLK is a hack */
1016 if (dio->op == REQ_OP_WRITE) {
1017 put_page(page);
1018 return -ENOTBLK;
1019 }
1020
1021 /*
1022 * Be sure to account for a partial block as the
1023 * last block in the file
1024 */
1025 i_size_aligned = ALIGN(i_size_read(dio->inode),
1026 1 << blkbits);
1027 if (sdio->block_in_file >=
1028 i_size_aligned >> blkbits) {
1029 /* We hit eof */
1030 put_page(page);
1031 goto out;
1032 }
1033 zero_user(page, from, 1 << blkbits);
1034 sdio->block_in_file++;
1035 from += 1 << blkbits;
1036 dio->result += 1 << blkbits;
1037 goto next_block;
1038 }
1039
1040 /*
1041 * If we're performing IO which has an alignment which
1042 * is finer than the underlying fs, go check to see if
1043 * we must zero out the start of this block.
1044 */
1045 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1046 dio_zero_block(dio, sdio, 0, map_bh);
1047
1048 /*
1049 * Work out, in this_chunk_blocks, how much disk we
1050 * can add to this page
1051 */
1052 this_chunk_blocks = sdio->blocks_available;
1053 u = (to - from) >> blkbits;
1054 if (this_chunk_blocks > u)
1055 this_chunk_blocks = u;
1056 u = sdio->final_block_in_request - sdio->block_in_file;
1057 if (this_chunk_blocks > u)
1058 this_chunk_blocks = u;
1059 this_chunk_bytes = this_chunk_blocks << blkbits;
1060 BUG_ON(this_chunk_bytes == 0);
1061
1062 if (this_chunk_blocks == sdio->blocks_available)
1063 sdio->boundary = buffer_boundary(map_bh);
1064 ret = submit_page_section(dio, sdio, page,
1065 from,
1066 this_chunk_bytes,
1067 sdio->next_block_for_io,
1068 map_bh);
1069 if (ret) {
1070 put_page(page);
1071 goto out;
1072 }
1073 sdio->next_block_for_io += this_chunk_blocks;
1074
1075 sdio->block_in_file += this_chunk_blocks;
1076 from += this_chunk_bytes;
1077 dio->result += this_chunk_bytes;
1078 sdio->blocks_available -= this_chunk_blocks;
1079 next_block:
1080 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1081 if (sdio->block_in_file == sdio->final_block_in_request)
1082 break;
1083 }
1084
1085 /* Drop the ref which was taken in get_user_pages() */
1086 put_page(page);
1087 }
1088 out:
1089 return ret;
1090 }
1091
drop_refcount(struct dio * dio)1092 static inline int drop_refcount(struct dio *dio)
1093 {
1094 int ret2;
1095 unsigned long flags;
1096
1097 /*
1098 * Sync will always be dropping the final ref and completing the
1099 * operation. AIO can if it was a broken operation described above or
1100 * in fact if all the bios race to complete before we get here. In
1101 * that case dio_complete() translates the EIOCBQUEUED into the proper
1102 * return code that the caller will hand to ->complete().
1103 *
1104 * This is managed by the bio_lock instead of being an atomic_t so that
1105 * completion paths can drop their ref and use the remaining count to
1106 * decide to wake the submission path atomically.
1107 */
1108 spin_lock_irqsave(&dio->bio_lock, flags);
1109 ret2 = --dio->refcount;
1110 spin_unlock_irqrestore(&dio->bio_lock, flags);
1111 return ret2;
1112 }
1113
1114 /*
1115 * This is a library function for use by filesystem drivers.
1116 *
1117 * The locking rules are governed by the flags parameter:
1118 * - if the flags value contains DIO_LOCKING we use a fancy locking
1119 * scheme for dumb filesystems.
1120 * For writes this function is called under i_mutex and returns with
1121 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1122 * taken and dropped again before returning.
1123 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1124 * internal locking but rather rely on the filesystem to synchronize
1125 * direct I/O reads/writes versus each other and truncate.
1126 *
1127 * To help with locking against truncate we incremented the i_dio_count
1128 * counter before starting direct I/O, and decrement it once we are done.
1129 * Truncate can wait for it to reach zero to provide exclusion. It is
1130 * expected that filesystem provide exclusion between new direct I/O
1131 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1132 * but other filesystems need to take care of this on their own.
1133 *
1134 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1135 * is always inlined. Otherwise gcc is unable to split the structure into
1136 * individual fields and will generate much worse code. This is important
1137 * for the whole file.
1138 */
1139 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1140 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1141 struct block_device *bdev, struct iov_iter *iter,
1142 get_block_t get_block, dio_iodone_t end_io,
1143 dio_submit_t submit_io, int flags)
1144 {
1145 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1146 unsigned blkbits = i_blkbits;
1147 unsigned blocksize_mask = (1 << blkbits) - 1;
1148 ssize_t retval = -EINVAL;
1149 const size_t count = iov_iter_count(iter);
1150 loff_t offset = iocb->ki_pos;
1151 const loff_t end = offset + count;
1152 struct dio *dio;
1153 struct dio_submit sdio = { 0, };
1154 struct buffer_head map_bh = { 0, };
1155 struct blk_plug plug;
1156 unsigned long align = offset | iov_iter_alignment(iter);
1157
1158 /*
1159 * Avoid references to bdev if not absolutely needed to give
1160 * the early prefetch in the caller enough time.
1161 */
1162
1163 /* watch out for a 0 len io from a tricksy fs */
1164 if (iov_iter_rw(iter) == READ && !count)
1165 return 0;
1166
1167 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1168 if (!dio)
1169 return -ENOMEM;
1170 /*
1171 * Believe it or not, zeroing out the page array caused a .5%
1172 * performance regression in a database benchmark. So, we take
1173 * care to only zero out what's needed.
1174 */
1175 memset(dio, 0, offsetof(struct dio, pages));
1176
1177 dio->flags = flags;
1178 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1179 /* will be released by direct_io_worker */
1180 inode_lock(inode);
1181 }
1182
1183 /* Once we sampled i_size check for reads beyond EOF */
1184 dio->i_size = i_size_read(inode);
1185 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1186 retval = 0;
1187 goto fail_dio;
1188 }
1189
1190 if (align & blocksize_mask) {
1191 if (bdev)
1192 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1193 blocksize_mask = (1 << blkbits) - 1;
1194 if (align & blocksize_mask)
1195 goto fail_dio;
1196 }
1197
1198 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1199 struct address_space *mapping = iocb->ki_filp->f_mapping;
1200
1201 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1202 if (retval)
1203 goto fail_dio;
1204 }
1205
1206 /*
1207 * For file extending writes updating i_size before data writeouts
1208 * complete can expose uninitialized blocks in dumb filesystems.
1209 * In that case we need to wait for I/O completion even if asked
1210 * for an asynchronous write.
1211 */
1212 if (is_sync_kiocb(iocb))
1213 dio->is_async = false;
1214 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1215 dio->is_async = false;
1216 else
1217 dio->is_async = true;
1218
1219 dio->inode = inode;
1220 if (iov_iter_rw(iter) == WRITE) {
1221 dio->op = REQ_OP_WRITE;
1222 dio->op_flags = REQ_SYNC | REQ_IDLE;
1223 if (iocb->ki_flags & IOCB_NOWAIT)
1224 dio->op_flags |= REQ_NOWAIT;
1225 } else {
1226 dio->op = REQ_OP_READ;
1227 }
1228 if (iocb->ki_flags & IOCB_HIPRI)
1229 dio->op_flags |= REQ_HIPRI;
1230
1231 /*
1232 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1233 * so that we can call ->fsync.
1234 */
1235 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1236 retval = 0;
1237 if (iocb->ki_flags & IOCB_DSYNC)
1238 retval = dio_set_defer_completion(dio);
1239 else if (!dio->inode->i_sb->s_dio_done_wq) {
1240 /*
1241 * In case of AIO write racing with buffered read we
1242 * need to defer completion. We can't decide this now,
1243 * however the workqueue needs to be initialized here.
1244 */
1245 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1246 }
1247 if (retval)
1248 goto fail_dio;
1249 }
1250
1251 /*
1252 * Will be decremented at I/O completion time.
1253 */
1254 inode_dio_begin(inode);
1255
1256 retval = 0;
1257 sdio.blkbits = blkbits;
1258 sdio.blkfactor = i_blkbits - blkbits;
1259 sdio.block_in_file = offset >> blkbits;
1260
1261 sdio.get_block = get_block;
1262 dio->end_io = end_io;
1263 sdio.submit_io = submit_io;
1264 sdio.final_block_in_bio = -1;
1265 sdio.next_block_for_io = -1;
1266
1267 dio->iocb = iocb;
1268
1269 spin_lock_init(&dio->bio_lock);
1270 dio->refcount = 1;
1271
1272 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1273 sdio.iter = iter;
1274 sdio.final_block_in_request = end >> blkbits;
1275
1276 /*
1277 * In case of non-aligned buffers, we may need 2 more
1278 * pages since we need to zero out first and last block.
1279 */
1280 if (unlikely(sdio.blkfactor))
1281 sdio.pages_in_io = 2;
1282
1283 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1284
1285 blk_start_plug(&plug);
1286
1287 retval = do_direct_IO(dio, &sdio, &map_bh);
1288 if (retval)
1289 dio_cleanup(dio, &sdio);
1290
1291 if (retval == -ENOTBLK) {
1292 /*
1293 * The remaining part of the request will be
1294 * be handled by buffered I/O when we return
1295 */
1296 retval = 0;
1297 }
1298 /*
1299 * There may be some unwritten disk at the end of a part-written
1300 * fs-block-sized block. Go zero that now.
1301 */
1302 dio_zero_block(dio, &sdio, 1, &map_bh);
1303
1304 if (sdio.cur_page) {
1305 ssize_t ret2;
1306
1307 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1308 if (retval == 0)
1309 retval = ret2;
1310 put_page(sdio.cur_page);
1311 sdio.cur_page = NULL;
1312 }
1313 if (sdio.bio)
1314 dio_bio_submit(dio, &sdio);
1315
1316 blk_finish_plug(&plug);
1317
1318 /*
1319 * It is possible that, we return short IO due to end of file.
1320 * In that case, we need to release all the pages we got hold on.
1321 */
1322 dio_cleanup(dio, &sdio);
1323
1324 /*
1325 * All block lookups have been performed. For READ requests
1326 * we can let i_mutex go now that its achieved its purpose
1327 * of protecting us from looking up uninitialized blocks.
1328 */
1329 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1330 inode_unlock(dio->inode);
1331
1332 /*
1333 * The only time we want to leave bios in flight is when a successful
1334 * partial aio read or full aio write have been setup. In that case
1335 * bio completion will call aio_complete. The only time it's safe to
1336 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1337 * This had *better* be the only place that raises -EIOCBQUEUED.
1338 */
1339 BUG_ON(retval == -EIOCBQUEUED);
1340 if (dio->is_async && retval == 0 && dio->result &&
1341 (iov_iter_rw(iter) == READ || dio->result == count))
1342 retval = -EIOCBQUEUED;
1343 else
1344 dio_await_completion(dio);
1345
1346 if (drop_refcount(dio) == 0) {
1347 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1348 } else
1349 BUG_ON(retval != -EIOCBQUEUED);
1350
1351 return retval;
1352
1353 fail_dio:
1354 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1355 inode_unlock(inode);
1356
1357 kmem_cache_free(dio_cache, dio);
1358 return retval;
1359 }
1360
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1361 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1362 struct block_device *bdev, struct iov_iter *iter,
1363 get_block_t get_block,
1364 dio_iodone_t end_io, dio_submit_t submit_io,
1365 int flags)
1366 {
1367 /*
1368 * The block device state is needed in the end to finally
1369 * submit everything. Since it's likely to be cache cold
1370 * prefetch it here as first thing to hide some of the
1371 * latency.
1372 *
1373 * Attempt to prefetch the pieces we likely need later.
1374 */
1375 prefetch(&bdev->bd_disk->part_tbl);
1376 prefetch(bdev->bd_disk->queue);
1377 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1378
1379 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1380 end_io, submit_io, flags);
1381 }
1382
1383 EXPORT_SYMBOL_NS(__blockdev_direct_IO, ANDROID_GKI_VFS_EXPORT_ONLY);
1384
dio_init(void)1385 static __init int dio_init(void)
1386 {
1387 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1388 return 0;
1389 }
1390 module_init(dio_init)
1391