• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 #undef CREATE_TRACE_POINTS
53 #include <trace/hooks/mm.h>
54 
55 /*
56  * FIXME: remove all knowledge of the buffer layer from the core VM
57  */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 
60 #include <asm/mman.h>
61 
62 /*
63  * Shared mappings implemented 30.11.1994. It's not fully working yet,
64  * though.
65  *
66  * Shared mappings now work. 15.8.1995  Bruno.
67  *
68  * finished 'unifying' the page and buffer cache and SMP-threaded the
69  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
70  *
71  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
72  */
73 
74 /*
75  * Lock ordering:
76  *
77  *  ->i_mmap_rwsem		(truncate_pagecache)
78  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
79  *      ->swap_lock		(exclusive_swap_page, others)
80  *        ->i_pages lock
81  *
82  *  ->i_mutex
83  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
84  *
85  *  ->mmap_lock
86  *    ->i_mmap_rwsem
87  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
88  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
89  *
90  *  ->mmap_lock
91  *    ->lock_page		(access_process_vm)
92  *
93  *  ->i_mutex			(generic_perform_write)
94  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
95  *
96  *  bdi->wb.list_lock
97  *    sb_lock			(fs/fs-writeback.c)
98  *    ->i_pages lock		(__sync_single_inode)
99  *
100  *  ->i_mmap_rwsem
101  *    ->anon_vma.lock		(vma_adjust)
102  *
103  *  ->anon_vma.lock
104  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
105  *
106  *  ->page_table_lock or pte_lock
107  *    ->swap_lock		(try_to_unmap_one)
108  *    ->private_lock		(try_to_unmap_one)
109  *    ->i_pages lock		(try_to_unmap_one)
110  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
111  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
112  *    ->private_lock		(page_remove_rmap->set_page_dirty)
113  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
114  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
115  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
116  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
117  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
118  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
119  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
120  *
121  * ->i_mmap_rwsem
122  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
123  */
124 
page_cache_delete(struct address_space * mapping,struct page * page,void * shadow)125 static void page_cache_delete(struct address_space *mapping,
126 				   struct page *page, void *shadow)
127 {
128 	XA_STATE(xas, &mapping->i_pages, page->index);
129 	unsigned int nr = 1;
130 
131 	mapping_set_update(&xas, mapping);
132 
133 	/* hugetlb pages are represented by a single entry in the xarray */
134 	if (!PageHuge(page)) {
135 		xas_set_order(&xas, page->index, compound_order(page));
136 		nr = compound_nr(page);
137 	}
138 
139 	VM_BUG_ON_PAGE(!PageLocked(page), page);
140 	VM_BUG_ON_PAGE(PageTail(page), page);
141 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
142 
143 	xas_store(&xas, shadow);
144 	xas_init_marks(&xas);
145 
146 	page->mapping = NULL;
147 	/* Leave page->index set: truncation lookup relies upon it */
148 
149 	if (shadow) {
150 		mapping->nrexceptional += nr;
151 		/*
152 		 * Make sure the nrexceptional update is committed before
153 		 * the nrpages update so that final truncate racing
154 		 * with reclaim does not see both counters 0 at the
155 		 * same time and miss a shadow entry.
156 		 */
157 		smp_wmb();
158 	}
159 	mapping->nrpages -= nr;
160 }
161 
unaccount_page_cache_page(struct address_space * mapping,struct page * page)162 static void unaccount_page_cache_page(struct address_space *mapping,
163 				      struct page *page)
164 {
165 	int nr;
166 
167 	/*
168 	 * if we're uptodate, flush out into the cleancache, otherwise
169 	 * invalidate any existing cleancache entries.  We can't leave
170 	 * stale data around in the cleancache once our page is gone
171 	 */
172 	if (PageUptodate(page) && PageMappedToDisk(page))
173 		cleancache_put_page(page);
174 	else
175 		cleancache_invalidate_page(mapping, page);
176 
177 	VM_BUG_ON_PAGE(PageTail(page), page);
178 	VM_BUG_ON_PAGE(page_mapped(page), page);
179 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
180 		int mapcount;
181 
182 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
183 			 current->comm, page_to_pfn(page));
184 		dump_page(page, "still mapped when deleted");
185 		dump_stack();
186 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
187 
188 		mapcount = page_mapcount(page);
189 		if (mapping_exiting(mapping) &&
190 		    page_count(page) >= mapcount + 2) {
191 			/*
192 			 * All vmas have already been torn down, so it's
193 			 * a good bet that actually the page is unmapped,
194 			 * and we'd prefer not to leak it: if we're wrong,
195 			 * some other bad page check should catch it later.
196 			 */
197 			page_mapcount_reset(page);
198 			page_ref_sub(page, mapcount);
199 		}
200 	}
201 
202 	/* hugetlb pages do not participate in page cache accounting. */
203 	if (PageHuge(page))
204 		return;
205 
206 	nr = thp_nr_pages(page);
207 
208 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
209 	if (PageSwapBacked(page)) {
210 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
211 		if (PageTransHuge(page))
212 			__dec_node_page_state(page, NR_SHMEM_THPS);
213 	} else if (PageTransHuge(page)) {
214 		__dec_node_page_state(page, NR_FILE_THPS);
215 		filemap_nr_thps_dec(mapping);
216 	}
217 
218 	/*
219 	 * At this point page must be either written or cleaned by
220 	 * truncate.  Dirty page here signals a bug and loss of
221 	 * unwritten data.
222 	 *
223 	 * This fixes dirty accounting after removing the page entirely
224 	 * but leaves PageDirty set: it has no effect for truncated
225 	 * page and anyway will be cleared before returning page into
226 	 * buddy allocator.
227 	 */
228 	if (WARN_ON_ONCE(PageDirty(page)))
229 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
230 }
231 
232 /*
233  * Delete a page from the page cache and free it. Caller has to make
234  * sure the page is locked and that nobody else uses it - or that usage
235  * is safe.  The caller must hold the i_pages lock.
236  */
__delete_from_page_cache(struct page * page,void * shadow)237 void __delete_from_page_cache(struct page *page, void *shadow)
238 {
239 	struct address_space *mapping = page->mapping;
240 
241 	trace_mm_filemap_delete_from_page_cache(page);
242 
243 	unaccount_page_cache_page(mapping, page);
244 	page_cache_delete(mapping, page, shadow);
245 }
246 
page_cache_free_page(struct address_space * mapping,struct page * page)247 static void page_cache_free_page(struct address_space *mapping,
248 				struct page *page)
249 {
250 	void (*freepage)(struct page *);
251 
252 	freepage = mapping->a_ops->freepage;
253 	if (freepage)
254 		freepage(page);
255 
256 	if (PageTransHuge(page) && !PageHuge(page)) {
257 		page_ref_sub(page, thp_nr_pages(page));
258 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
259 	} else {
260 		put_page(page);
261 	}
262 }
263 
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
delete_from_page_cache(struct page * page)272 void delete_from_page_cache(struct page *page)
273 {
274 	struct address_space *mapping = page_mapping(page);
275 	unsigned long flags;
276 
277 	BUG_ON(!PageLocked(page));
278 	xa_lock_irqsave(&mapping->i_pages, flags);
279 	__delete_from_page_cache(page, NULL);
280 	xa_unlock_irqrestore(&mapping->i_pages, flags);
281 
282 	page_cache_free_page(mapping, page);
283 }
284 EXPORT_SYMBOL(delete_from_page_cache);
285 
286 /*
287  * page_cache_delete_batch - delete several pages from page cache
288  * @mapping: the mapping to which pages belong
289  * @pvec: pagevec with pages to delete
290  *
291  * The function walks over mapping->i_pages and removes pages passed in @pvec
292  * from the mapping. The function expects @pvec to be sorted by page index
293  * and is optimised for it to be dense.
294  * It tolerates holes in @pvec (mapping entries at those indices are not
295  * modified). The function expects only THP head pages to be present in the
296  * @pvec.
297  *
298  * The function expects the i_pages lock to be held.
299  */
page_cache_delete_batch(struct address_space * mapping,struct pagevec * pvec)300 static void page_cache_delete_batch(struct address_space *mapping,
301 			     struct pagevec *pvec)
302 {
303 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
304 	int total_pages = 0;
305 	int i = 0;
306 	struct page *page;
307 
308 	mapping_set_update(&xas, mapping);
309 	xas_for_each(&xas, page, ULONG_MAX) {
310 		if (i >= pagevec_count(pvec))
311 			break;
312 
313 		/* A swap/dax/shadow entry got inserted? Skip it. */
314 		if (xa_is_value(page))
315 			continue;
316 		/*
317 		 * A page got inserted in our range? Skip it. We have our
318 		 * pages locked so they are protected from being removed.
319 		 * If we see a page whose index is higher than ours, it
320 		 * means our page has been removed, which shouldn't be
321 		 * possible because we're holding the PageLock.
322 		 */
323 		if (page != pvec->pages[i]) {
324 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
325 					page);
326 			continue;
327 		}
328 
329 		WARN_ON_ONCE(!PageLocked(page));
330 
331 		if (page->index == xas.xa_index)
332 			page->mapping = NULL;
333 		/* Leave page->index set: truncation lookup relies on it */
334 
335 		/*
336 		 * Move to the next page in the vector if this is a regular
337 		 * page or the index is of the last sub-page of this compound
338 		 * page.
339 		 */
340 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
341 			i++;
342 		xas_store(&xas, NULL);
343 		total_pages++;
344 	}
345 	mapping->nrpages -= total_pages;
346 }
347 
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)348 void delete_from_page_cache_batch(struct address_space *mapping,
349 				  struct pagevec *pvec)
350 {
351 	int i;
352 	unsigned long flags;
353 
354 	if (!pagevec_count(pvec))
355 		return;
356 
357 	xa_lock_irqsave(&mapping->i_pages, flags);
358 	for (i = 0; i < pagevec_count(pvec); i++) {
359 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
360 
361 		unaccount_page_cache_page(mapping, pvec->pages[i]);
362 	}
363 	page_cache_delete_batch(mapping, pvec);
364 	xa_unlock_irqrestore(&mapping->i_pages, flags);
365 
366 	for (i = 0; i < pagevec_count(pvec); i++)
367 		page_cache_free_page(mapping, pvec->pages[i]);
368 }
369 
filemap_check_errors(struct address_space * mapping)370 int filemap_check_errors(struct address_space *mapping)
371 {
372 	int ret = 0;
373 	/* Check for outstanding write errors */
374 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
375 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
376 		ret = -ENOSPC;
377 	if (test_bit(AS_EIO, &mapping->flags) &&
378 	    test_and_clear_bit(AS_EIO, &mapping->flags))
379 		ret = -EIO;
380 	return ret;
381 }
382 EXPORT_SYMBOL(filemap_check_errors);
383 
filemap_check_and_keep_errors(struct address_space * mapping)384 static int filemap_check_and_keep_errors(struct address_space *mapping)
385 {
386 	/* Check for outstanding write errors */
387 	if (test_bit(AS_EIO, &mapping->flags))
388 		return -EIO;
389 	if (test_bit(AS_ENOSPC, &mapping->flags))
390 		return -ENOSPC;
391 	return 0;
392 }
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	int ret;
415 	struct writeback_control wbc = {
416 		.sync_mode = sync_mode,
417 		.nr_to_write = LONG_MAX,
418 		.range_start = start,
419 		.range_end = end,
420 	};
421 
422 	if (!mapping_can_writeback(mapping) ||
423 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
424 		return 0;
425 
426 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
427 	ret = do_writepages(mapping, &wbc);
428 	wbc_detach_inode(&wbc);
429 	return ret;
430 }
431 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)432 static inline int __filemap_fdatawrite(struct address_space *mapping,
433 	int sync_mode)
434 {
435 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
436 }
437 
filemap_fdatawrite(struct address_space * mapping)438 int filemap_fdatawrite(struct address_space *mapping)
439 {
440 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
441 }
442 EXPORT_SYMBOL(filemap_fdatawrite);
443 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)444 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
445 				loff_t end)
446 {
447 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
448 }
449 EXPORT_SYMBOL(filemap_fdatawrite_range);
450 
451 /**
452  * filemap_flush - mostly a non-blocking flush
453  * @mapping:	target address_space
454  *
455  * This is a mostly non-blocking flush.  Not suitable for data-integrity
456  * purposes - I/O may not be started against all dirty pages.
457  *
458  * Return: %0 on success, negative error code otherwise.
459  */
filemap_flush(struct address_space * mapping)460 int filemap_flush(struct address_space *mapping)
461 {
462 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
463 }
464 EXPORT_SYMBOL(filemap_flush);
465 
466 /**
467  * filemap_range_has_page - check if a page exists in range.
468  * @mapping:           address space within which to check
469  * @start_byte:        offset in bytes where the range starts
470  * @end_byte:          offset in bytes where the range ends (inclusive)
471  *
472  * Find at least one page in the range supplied, usually used to check if
473  * direct writing in this range will trigger a writeback.
474  *
475  * Return: %true if at least one page exists in the specified range,
476  * %false otherwise.
477  */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)478 bool filemap_range_has_page(struct address_space *mapping,
479 			   loff_t start_byte, loff_t end_byte)
480 {
481 	struct page *page;
482 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
483 	pgoff_t max = end_byte >> PAGE_SHIFT;
484 
485 	if (end_byte < start_byte)
486 		return false;
487 
488 	rcu_read_lock();
489 	for (;;) {
490 		page = xas_find(&xas, max);
491 		if (xas_retry(&xas, page))
492 			continue;
493 		/* Shadow entries don't count */
494 		if (xa_is_value(page))
495 			continue;
496 		/*
497 		 * We don't need to try to pin this page; we're about to
498 		 * release the RCU lock anyway.  It is enough to know that
499 		 * there was a page here recently.
500 		 */
501 		break;
502 	}
503 	rcu_read_unlock();
504 
505 	return page != NULL;
506 }
507 EXPORT_SYMBOL(filemap_range_has_page);
508 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)509 static void __filemap_fdatawait_range(struct address_space *mapping,
510 				     loff_t start_byte, loff_t end_byte)
511 {
512 	pgoff_t index = start_byte >> PAGE_SHIFT;
513 	pgoff_t end = end_byte >> PAGE_SHIFT;
514 	struct pagevec pvec;
515 	int nr_pages;
516 
517 	if (end_byte < start_byte)
518 		return;
519 
520 	pagevec_init(&pvec);
521 	while (index <= end) {
522 		unsigned i;
523 
524 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
525 				end, PAGECACHE_TAG_WRITEBACK);
526 		if (!nr_pages)
527 			break;
528 
529 		for (i = 0; i < nr_pages; i++) {
530 			struct page *page = pvec.pages[i];
531 
532 			wait_on_page_writeback(page);
533 			ClearPageError(page);
534 		}
535 		pagevec_release(&pvec);
536 		cond_resched();
537 	}
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:		address space structure to wait for
543  * @start_byte:		offset in bytes where the range starts
544  * @end_byte:		offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 			    loff_t end_byte)
558 {
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:		address space structure to wait for
567  * @start_byte:		offset in bytes where the range starts
568  * @end_byte:		offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 		loff_t start_byte, loff_t end_byte)
580 {
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:		file pointing to address space structure to wait for
589  * @start_byte:		offset in bytes where the range starts
590  * @end_byte:		offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 	struct address_space *mapping = file->f_mapping;
605 
606 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607 	return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
filemap_fdatawait_keep_errors(struct address_space * mapping)625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 	return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 	if (dax_mapping(mapping))
636 		return mapping->nrexceptional;
637 
638 	return mapping->nrpages;
639 }
640 
641 /**
642  * filemap_write_and_wait_range - write out & wait on a file range
643  * @mapping:	the address_space for the pages
644  * @lstart:	offset in bytes where the range starts
645  * @lend:	offset in bytes where the range ends (inclusive)
646  *
647  * Write out and wait upon file offsets lstart->lend, inclusive.
648  *
649  * Note that @lend is inclusive (describes the last byte to be written) so
650  * that this function can be used to write to the very end-of-file (end = -1).
651  *
652  * Return: error status of the address space.
653  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)654 int filemap_write_and_wait_range(struct address_space *mapping,
655 				 loff_t lstart, loff_t lend)
656 {
657 	int err = 0;
658 
659 	if (mapping_needs_writeback(mapping)) {
660 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
661 						 WB_SYNC_ALL);
662 		/*
663 		 * Even if the above returned error, the pages may be
664 		 * written partially (e.g. -ENOSPC), so we wait for it.
665 		 * But the -EIO is special case, it may indicate the worst
666 		 * thing (e.g. bug) happened, so we avoid waiting for it.
667 		 */
668 		if (err != -EIO) {
669 			int err2 = filemap_fdatawait_range(mapping,
670 						lstart, lend);
671 			if (!err)
672 				err = err2;
673 		} else {
674 			/* Clear any previously stored errors */
675 			filemap_check_errors(mapping);
676 		}
677 	} else {
678 		err = filemap_check_errors(mapping);
679 	}
680 	return err;
681 }
682 EXPORT_SYMBOL(filemap_write_and_wait_range);
683 
__filemap_set_wb_err(struct address_space * mapping,int err)684 void __filemap_set_wb_err(struct address_space *mapping, int err)
685 {
686 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
687 
688 	trace_filemap_set_wb_err(mapping, eseq);
689 }
690 EXPORT_SYMBOL(__filemap_set_wb_err);
691 
692 /**
693  * file_check_and_advance_wb_err - report wb error (if any) that was previously
694  * 				   and advance wb_err to current one
695  * @file: struct file on which the error is being reported
696  *
697  * When userland calls fsync (or something like nfsd does the equivalent), we
698  * want to report any writeback errors that occurred since the last fsync (or
699  * since the file was opened if there haven't been any).
700  *
701  * Grab the wb_err from the mapping. If it matches what we have in the file,
702  * then just quickly return 0. The file is all caught up.
703  *
704  * If it doesn't match, then take the mapping value, set the "seen" flag in
705  * it and try to swap it into place. If it works, or another task beat us
706  * to it with the new value, then update the f_wb_err and return the error
707  * portion. The error at this point must be reported via proper channels
708  * (a'la fsync, or NFS COMMIT operation, etc.).
709  *
710  * While we handle mapping->wb_err with atomic operations, the f_wb_err
711  * value is protected by the f_lock since we must ensure that it reflects
712  * the latest value swapped in for this file descriptor.
713  *
714  * Return: %0 on success, negative error code otherwise.
715  */
file_check_and_advance_wb_err(struct file * file)716 int file_check_and_advance_wb_err(struct file *file)
717 {
718 	int err = 0;
719 	errseq_t old = READ_ONCE(file->f_wb_err);
720 	struct address_space *mapping = file->f_mapping;
721 
722 	/* Locklessly handle the common case where nothing has changed */
723 	if (errseq_check(&mapping->wb_err, old)) {
724 		/* Something changed, must use slow path */
725 		spin_lock(&file->f_lock);
726 		old = file->f_wb_err;
727 		err = errseq_check_and_advance(&mapping->wb_err,
728 						&file->f_wb_err);
729 		trace_file_check_and_advance_wb_err(file, old);
730 		spin_unlock(&file->f_lock);
731 	}
732 
733 	/*
734 	 * We're mostly using this function as a drop in replacement for
735 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
736 	 * that the legacy code would have had on these flags.
737 	 */
738 	clear_bit(AS_EIO, &mapping->flags);
739 	clear_bit(AS_ENOSPC, &mapping->flags);
740 	return err;
741 }
742 EXPORT_SYMBOL(file_check_and_advance_wb_err);
743 
744 /**
745  * file_write_and_wait_range - write out & wait on a file range
746  * @file:	file pointing to address_space with pages
747  * @lstart:	offset in bytes where the range starts
748  * @lend:	offset in bytes where the range ends (inclusive)
749  *
750  * Write out and wait upon file offsets lstart->lend, inclusive.
751  *
752  * Note that @lend is inclusive (describes the last byte to be written) so
753  * that this function can be used to write to the very end-of-file (end = -1).
754  *
755  * After writing out and waiting on the data, we check and advance the
756  * f_wb_err cursor to the latest value, and return any errors detected there.
757  *
758  * Return: %0 on success, negative error code otherwise.
759  */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)760 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
761 {
762 	int err = 0, err2;
763 	struct address_space *mapping = file->f_mapping;
764 
765 	if (mapping_needs_writeback(mapping)) {
766 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
767 						 WB_SYNC_ALL);
768 		/* See comment of filemap_write_and_wait() */
769 		if (err != -EIO)
770 			__filemap_fdatawait_range(mapping, lstart, lend);
771 	}
772 	err2 = file_check_and_advance_wb_err(file);
773 	if (!err)
774 		err = err2;
775 	return err;
776 }
777 EXPORT_SYMBOL(file_write_and_wait_range);
778 
779 /**
780  * replace_page_cache_page - replace a pagecache page with a new one
781  * @old:	page to be replaced
782  * @new:	page to replace with
783  * @gfp_mask:	allocation mode
784  *
785  * This function replaces a page in the pagecache with a new one.  On
786  * success it acquires the pagecache reference for the new page and
787  * drops it for the old page.  Both the old and new pages must be
788  * locked.  This function does not add the new page to the LRU, the
789  * caller must do that.
790  *
791  * The remove + add is atomic.  This function cannot fail.
792  *
793  * Return: %0
794  */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)795 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
796 {
797 	struct address_space *mapping = old->mapping;
798 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
799 	pgoff_t offset = old->index;
800 	XA_STATE(xas, &mapping->i_pages, offset);
801 	unsigned long flags;
802 
803 	VM_BUG_ON_PAGE(!PageLocked(old), old);
804 	VM_BUG_ON_PAGE(!PageLocked(new), new);
805 	VM_BUG_ON_PAGE(new->mapping, new);
806 
807 	get_page(new);
808 	new->mapping = mapping;
809 	new->index = offset;
810 
811 	mem_cgroup_migrate(old, new);
812 
813 	xas_lock_irqsave(&xas, flags);
814 	xas_store(&xas, new);
815 
816 	old->mapping = NULL;
817 	/* hugetlb pages do not participate in page cache accounting. */
818 	if (!PageHuge(old))
819 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
820 	if (!PageHuge(new))
821 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
822 	if (PageSwapBacked(old))
823 		__dec_lruvec_page_state(old, NR_SHMEM);
824 	if (PageSwapBacked(new))
825 		__inc_lruvec_page_state(new, NR_SHMEM);
826 	xas_unlock_irqrestore(&xas, flags);
827 	if (freepage)
828 		freepage(old);
829 	put_page(old);
830 
831 	return 0;
832 }
833 EXPORT_SYMBOL_GPL(replace_page_cache_page);
834 
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp,void ** shadowp)835 noinline int __add_to_page_cache_locked(struct page *page,
836 					struct address_space *mapping,
837 					pgoff_t offset, gfp_t gfp,
838 					void **shadowp)
839 {
840 	XA_STATE(xas, &mapping->i_pages, offset);
841 	int huge = PageHuge(page);
842 	int error;
843 	bool charged = false;
844 
845 	VM_BUG_ON_PAGE(!PageLocked(page), page);
846 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
847 	mapping_set_update(&xas, mapping);
848 
849 	get_page(page);
850 	page->mapping = mapping;
851 	page->index = offset;
852 
853 	if (!huge) {
854 		error = mem_cgroup_charge(page, current->mm, gfp);
855 		if (error)
856 			goto error;
857 		charged = true;
858 	}
859 
860 	gfp &= GFP_RECLAIM_MASK;
861 
862 	do {
863 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
864 		void *entry, *old = NULL;
865 
866 		if (order > thp_order(page))
867 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
868 					order, gfp);
869 		xas_lock_irq(&xas);
870 		xas_for_each_conflict(&xas, entry) {
871 			old = entry;
872 			if (!xa_is_value(entry)) {
873 				xas_set_err(&xas, -EEXIST);
874 				goto unlock;
875 			}
876 		}
877 
878 		if (old) {
879 			if (shadowp)
880 				*shadowp = old;
881 			/* entry may have been split before we acquired lock */
882 			order = xa_get_order(xas.xa, xas.xa_index);
883 			if (order > thp_order(page)) {
884 				xas_split(&xas, old, order);
885 				xas_reset(&xas);
886 			}
887 		}
888 
889 		xas_store(&xas, page);
890 		if (xas_error(&xas))
891 			goto unlock;
892 
893 		if (old)
894 			mapping->nrexceptional--;
895 		mapping->nrpages++;
896 
897 		/* hugetlb pages do not participate in page cache accounting */
898 		if (!huge)
899 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
900 unlock:
901 		xas_unlock_irq(&xas);
902 	} while (xas_nomem(&xas, gfp));
903 
904 	if (xas_error(&xas)) {
905 		error = xas_error(&xas);
906 		if (charged)
907 			mem_cgroup_uncharge(page);
908 		goto error;
909 	}
910 
911 	trace_mm_filemap_add_to_page_cache(page);
912 	return 0;
913 error:
914 	page->mapping = NULL;
915 	/* Leave page->index set: truncation relies upon it */
916 	put_page(page);
917 	return error;
918 }
919 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
920 
921 /**
922  * add_to_page_cache_locked - add a locked page to the pagecache
923  * @page:	page to add
924  * @mapping:	the page's address_space
925  * @offset:	page index
926  * @gfp_mask:	page allocation mode
927  *
928  * This function is used to add a page to the pagecache. It must be locked.
929  * This function does not add the page to the LRU.  The caller must do that.
930  *
931  * Return: %0 on success, negative error code otherwise.
932  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)933 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
934 		pgoff_t offset, gfp_t gfp_mask)
935 {
936 	return __add_to_page_cache_locked(page, mapping, offset,
937 					  gfp_mask, NULL);
938 }
939 EXPORT_SYMBOL(add_to_page_cache_locked);
940 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)941 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
942 				pgoff_t offset, gfp_t gfp_mask)
943 {
944 	void *shadow = NULL;
945 	int ret;
946 
947 	__SetPageLocked(page);
948 	ret = __add_to_page_cache_locked(page, mapping, offset,
949 					 gfp_mask, &shadow);
950 	if (unlikely(ret))
951 		__ClearPageLocked(page);
952 	else {
953 		/*
954 		 * The page might have been evicted from cache only
955 		 * recently, in which case it should be activated like
956 		 * any other repeatedly accessed page.
957 		 * The exception is pages getting rewritten; evicting other
958 		 * data from the working set, only to cache data that will
959 		 * get overwritten with something else, is a waste of memory.
960 		 */
961 		WARN_ON_ONCE(PageActive(page));
962 		if (!(gfp_mask & __GFP_WRITE) && shadow)
963 			workingset_refault(page, shadow);
964 		lru_cache_add(page);
965 	}
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
969 
970 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)971 struct page *__page_cache_alloc(gfp_t gfp)
972 {
973 	int n;
974 	struct page *page;
975 
976 	if (cpuset_do_page_mem_spread()) {
977 		unsigned int cpuset_mems_cookie;
978 		do {
979 			cpuset_mems_cookie = read_mems_allowed_begin();
980 			n = cpuset_mem_spread_node();
981 			page = __alloc_pages_node(n, gfp, 0);
982 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
983 
984 		return page;
985 	}
986 	return alloc_pages(gfp, 0);
987 }
988 EXPORT_SYMBOL(__page_cache_alloc);
989 #endif
990 
991 /*
992  * In order to wait for pages to become available there must be
993  * waitqueues associated with pages. By using a hash table of
994  * waitqueues where the bucket discipline is to maintain all
995  * waiters on the same queue and wake all when any of the pages
996  * become available, and for the woken contexts to check to be
997  * sure the appropriate page became available, this saves space
998  * at a cost of "thundering herd" phenomena during rare hash
999  * collisions.
1000  */
1001 #define PAGE_WAIT_TABLE_BITS 8
1002 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1003 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1004 
page_waitqueue(struct page * page)1005 static wait_queue_head_t *page_waitqueue(struct page *page)
1006 {
1007 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1008 }
1009 
pagecache_init(void)1010 void __init pagecache_init(void)
1011 {
1012 	int i;
1013 
1014 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1015 		init_waitqueue_head(&page_wait_table[i]);
1016 
1017 	page_writeback_init();
1018 }
1019 
1020 /*
1021  * The page wait code treats the "wait->flags" somewhat unusually, because
1022  * we have multiple different kinds of waits, not just the usual "exclusive"
1023  * one.
1024  *
1025  * We have:
1026  *
1027  *  (a) no special bits set:
1028  *
1029  *	We're just waiting for the bit to be released, and when a waker
1030  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1031  *	and remove it from the wait queue.
1032  *
1033  *	Simple and straightforward.
1034  *
1035  *  (b) WQ_FLAG_EXCLUSIVE:
1036  *
1037  *	The waiter is waiting to get the lock, and only one waiter should
1038  *	be woken up to avoid any thundering herd behavior. We'll set the
1039  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1040  *
1041  *	This is the traditional exclusive wait.
1042  *
1043  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1044  *
1045  *	The waiter is waiting to get the bit, and additionally wants the
1046  *	lock to be transferred to it for fair lock behavior. If the lock
1047  *	cannot be taken, we stop walking the wait queue without waking
1048  *	the waiter.
1049  *
1050  *	This is the "fair lock handoff" case, and in addition to setting
1051  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1052  *	that it now has the lock.
1053  */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1054 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1055 {
1056 	unsigned int flags;
1057 	struct wait_page_key *key = arg;
1058 	struct wait_page_queue *wait_page
1059 		= container_of(wait, struct wait_page_queue, wait);
1060 
1061 	if (!wake_page_match(wait_page, key))
1062 		return 0;
1063 
1064 	/*
1065 	 * If it's a lock handoff wait, we get the bit for it, and
1066 	 * stop walking (and do not wake it up) if we can't.
1067 	 */
1068 	flags = wait->flags;
1069 	if (flags & WQ_FLAG_EXCLUSIVE) {
1070 		if (test_bit(key->bit_nr, &key->page->flags))
1071 			return -1;
1072 		if (flags & WQ_FLAG_CUSTOM) {
1073 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1074 				return -1;
1075 			flags |= WQ_FLAG_DONE;
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * We are holding the wait-queue lock, but the waiter that
1081 	 * is waiting for this will be checking the flags without
1082 	 * any locking.
1083 	 *
1084 	 * So update the flags atomically, and wake up the waiter
1085 	 * afterwards to avoid any races. This store-release pairs
1086 	 * with the load-acquire in wait_on_page_bit_common().
1087 	 */
1088 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1089 	wake_up_state(wait->private, mode);
1090 
1091 	/*
1092 	 * Ok, we have successfully done what we're waiting for,
1093 	 * and we can unconditionally remove the wait entry.
1094 	 *
1095 	 * Note that this pairs with the "finish_wait()" in the
1096 	 * waiter, and has to be the absolute last thing we do.
1097 	 * After this list_del_init(&wait->entry) the wait entry
1098 	 * might be de-allocated and the process might even have
1099 	 * exited.
1100 	 */
1101 	list_del_init_careful(&wait->entry);
1102 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1103 }
1104 
wake_up_page_bit(struct page * page,int bit_nr)1105 static void wake_up_page_bit(struct page *page, int bit_nr)
1106 {
1107 	wait_queue_head_t *q = page_waitqueue(page);
1108 	struct wait_page_key key;
1109 	unsigned long flags;
1110 	wait_queue_entry_t bookmark;
1111 
1112 	key.page = page;
1113 	key.bit_nr = bit_nr;
1114 	key.page_match = 0;
1115 
1116 	bookmark.flags = 0;
1117 	bookmark.private = NULL;
1118 	bookmark.func = NULL;
1119 	INIT_LIST_HEAD(&bookmark.entry);
1120 
1121 	spin_lock_irqsave(&q->lock, flags);
1122 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1123 
1124 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1125 		/*
1126 		 * Take a breather from holding the lock,
1127 		 * allow pages that finish wake up asynchronously
1128 		 * to acquire the lock and remove themselves
1129 		 * from wait queue
1130 		 */
1131 		spin_unlock_irqrestore(&q->lock, flags);
1132 		cpu_relax();
1133 		spin_lock_irqsave(&q->lock, flags);
1134 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1135 	}
1136 
1137 	/*
1138 	 * It is possible for other pages to have collided on the waitqueue
1139 	 * hash, so in that case check for a page match. That prevents a long-
1140 	 * term waiter
1141 	 *
1142 	 * It is still possible to miss a case here, when we woke page waiters
1143 	 * and removed them from the waitqueue, but there are still other
1144 	 * page waiters.
1145 	 */
1146 	if (!waitqueue_active(q) || !key.page_match) {
1147 		ClearPageWaiters(page);
1148 		/*
1149 		 * It's possible to miss clearing Waiters here, when we woke
1150 		 * our page waiters, but the hashed waitqueue has waiters for
1151 		 * other pages on it.
1152 		 *
1153 		 * That's okay, it's a rare case. The next waker will clear it.
1154 		 */
1155 	}
1156 	spin_unlock_irqrestore(&q->lock, flags);
1157 }
1158 
wake_up_page(struct page * page,int bit)1159 static void wake_up_page(struct page *page, int bit)
1160 {
1161 	if (!PageWaiters(page))
1162 		return;
1163 	wake_up_page_bit(page, bit);
1164 }
1165 
1166 /*
1167  * A choice of three behaviors for wait_on_page_bit_common():
1168  */
1169 enum behavior {
1170 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1171 			 * __lock_page() waiting on then setting PG_locked.
1172 			 */
1173 	SHARED,		/* Hold ref to page and check the bit when woken, like
1174 			 * wait_on_page_writeback() waiting on PG_writeback.
1175 			 */
1176 	DROP,		/* Drop ref to page before wait, no check when woken,
1177 			 * like put_and_wait_on_page_locked() on PG_locked.
1178 			 */
1179 };
1180 
1181 /*
1182  * Attempt to check (or get) the page bit, and mark us done
1183  * if successful.
1184  */
trylock_page_bit_common(struct page * page,int bit_nr,struct wait_queue_entry * wait)1185 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1186 					struct wait_queue_entry *wait)
1187 {
1188 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1189 		if (test_and_set_bit(bit_nr, &page->flags))
1190 			return false;
1191 	} else if (test_bit(bit_nr, &page->flags))
1192 		return false;
1193 
1194 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1195 	return true;
1196 }
1197 
1198 /* How many times do we accept lock stealing from under a waiter? */
1199 int sysctl_page_lock_unfairness = 5;
1200 
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,enum behavior behavior)1201 static inline __sched int wait_on_page_bit_common(wait_queue_head_t *q,
1202 	struct page *page, int bit_nr, int state, enum behavior behavior)
1203 {
1204 	int unfairness = sysctl_page_lock_unfairness;
1205 	struct wait_page_queue wait_page;
1206 	wait_queue_entry_t *wait = &wait_page.wait;
1207 	bool thrashing = false;
1208 	bool delayacct = false;
1209 	unsigned long pflags;
1210 
1211 	if (bit_nr == PG_locked &&
1212 	    !PageUptodate(page) && PageWorkingset(page)) {
1213 		if (!PageSwapBacked(page)) {
1214 			delayacct_thrashing_start();
1215 			delayacct = true;
1216 		}
1217 		psi_memstall_enter(&pflags);
1218 		thrashing = true;
1219 	}
1220 
1221 	init_wait(wait);
1222 	wait->func = wake_page_function;
1223 	wait_page.page = page;
1224 	wait_page.bit_nr = bit_nr;
1225 
1226 repeat:
1227 	wait->flags = 0;
1228 	if (behavior == EXCLUSIVE) {
1229 		wait->flags = WQ_FLAG_EXCLUSIVE;
1230 		if (--unfairness < 0)
1231 			wait->flags |= WQ_FLAG_CUSTOM;
1232 	}
1233 
1234 	/*
1235 	 * Do one last check whether we can get the
1236 	 * page bit synchronously.
1237 	 *
1238 	 * Do the SetPageWaiters() marking before that
1239 	 * to let any waker we _just_ missed know they
1240 	 * need to wake us up (otherwise they'll never
1241 	 * even go to the slow case that looks at the
1242 	 * page queue), and add ourselves to the wait
1243 	 * queue if we need to sleep.
1244 	 *
1245 	 * This part needs to be done under the queue
1246 	 * lock to avoid races.
1247 	 */
1248 	spin_lock_irq(&q->lock);
1249 	SetPageWaiters(page);
1250 	if (!trylock_page_bit_common(page, bit_nr, wait))
1251 		__add_wait_queue_entry_tail(q, wait);
1252 	spin_unlock_irq(&q->lock);
1253 
1254 	/*
1255 	 * From now on, all the logic will be based on
1256 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1257 	 * see whether the page bit testing has already
1258 	 * been done by the wake function.
1259 	 *
1260 	 * We can drop our reference to the page.
1261 	 */
1262 	if (behavior == DROP)
1263 		put_page(page);
1264 
1265 	/*
1266 	 * Note that until the "finish_wait()", or until
1267 	 * we see the WQ_FLAG_WOKEN flag, we need to
1268 	 * be very careful with the 'wait->flags', because
1269 	 * we may race with a waker that sets them.
1270 	 */
1271 	for (;;) {
1272 		unsigned int flags;
1273 
1274 		set_current_state(state);
1275 
1276 		/* Loop until we've been woken or interrupted */
1277 		flags = smp_load_acquire(&wait->flags);
1278 		if (!(flags & WQ_FLAG_WOKEN)) {
1279 			if (signal_pending_state(state, current))
1280 				break;
1281 
1282 			io_schedule();
1283 			continue;
1284 		}
1285 
1286 		/* If we were non-exclusive, we're done */
1287 		if (behavior != EXCLUSIVE)
1288 			break;
1289 
1290 		/* If the waker got the lock for us, we're done */
1291 		if (flags & WQ_FLAG_DONE)
1292 			break;
1293 
1294 		/*
1295 		 * Otherwise, if we're getting the lock, we need to
1296 		 * try to get it ourselves.
1297 		 *
1298 		 * And if that fails, we'll have to retry this all.
1299 		 */
1300 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1301 			goto repeat;
1302 
1303 		wait->flags |= WQ_FLAG_DONE;
1304 		break;
1305 	}
1306 
1307 	/*
1308 	 * If a signal happened, this 'finish_wait()' may remove the last
1309 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1310 	 * set. That's ok. The next wakeup will take care of it, and trying
1311 	 * to do it here would be difficult and prone to races.
1312 	 */
1313 	finish_wait(q, wait);
1314 
1315 	if (thrashing) {
1316 		if (delayacct)
1317 			delayacct_thrashing_end();
1318 		psi_memstall_leave(&pflags);
1319 	}
1320 
1321 	/*
1322 	 * NOTE! The wait->flags weren't stable until we've done the
1323 	 * 'finish_wait()', and we could have exited the loop above due
1324 	 * to a signal, and had a wakeup event happen after the signal
1325 	 * test but before the 'finish_wait()'.
1326 	 *
1327 	 * So only after the finish_wait() can we reliably determine
1328 	 * if we got woken up or not, so we can now figure out the final
1329 	 * return value based on that state without races.
1330 	 *
1331 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333 	 */
1334 	if (behavior == EXCLUSIVE)
1335 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336 
1337 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338 }
1339 
wait_on_page_bit(struct page * page,int bit_nr)1340 __sched void wait_on_page_bit(struct page *page, int bit_nr)
1341 {
1342 	wait_queue_head_t *q = page_waitqueue(page);
1343 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1344 }
1345 EXPORT_SYMBOL(wait_on_page_bit);
1346 
wait_on_page_bit_killable(struct page * page,int bit_nr)1347 __sched int wait_on_page_bit_killable(struct page *page, int bit_nr)
1348 {
1349 	wait_queue_head_t *q = page_waitqueue(page);
1350 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1351 }
1352 EXPORT_SYMBOL(wait_on_page_bit_killable);
1353 
__wait_on_page_locked_async(struct page * page,struct wait_page_queue * wait,bool set)1354 static int __wait_on_page_locked_async(struct page *page,
1355 				       struct wait_page_queue *wait, bool set)
1356 {
1357 	struct wait_queue_head *q = page_waitqueue(page);
1358 	int ret = 0;
1359 
1360 	wait->page = page;
1361 	wait->bit_nr = PG_locked;
1362 
1363 	spin_lock_irq(&q->lock);
1364 	__add_wait_queue_entry_tail(q, &wait->wait);
1365 	SetPageWaiters(page);
1366 	if (set)
1367 		ret = !trylock_page(page);
1368 	else
1369 		ret = PageLocked(page);
1370 	/*
1371 	 * If we were succesful now, we know we're still on the
1372 	 * waitqueue as we're still under the lock. This means it's
1373 	 * safe to remove and return success, we know the callback
1374 	 * isn't going to trigger.
1375 	 */
1376 	if (!ret)
1377 		__remove_wait_queue(q, &wait->wait);
1378 	else
1379 		ret = -EIOCBQUEUED;
1380 	spin_unlock_irq(&q->lock);
1381 	return ret;
1382 }
1383 
wait_on_page_locked_async(struct page * page,struct wait_page_queue * wait)1384 static int wait_on_page_locked_async(struct page *page,
1385 				     struct wait_page_queue *wait)
1386 {
1387 	if (!PageLocked(page))
1388 		return 0;
1389 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1390 }
1391 
1392 /**
1393  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1394  * @page: The page to wait for.
1395  *
1396  * The caller should hold a reference on @page.  They expect the page to
1397  * become unlocked relatively soon, but do not wish to hold up migration
1398  * (for example) by holding the reference while waiting for the page to
1399  * come unlocked.  After this function returns, the caller should not
1400  * dereference @page.
1401  */
put_and_wait_on_page_locked(struct page * page)1402 void put_and_wait_on_page_locked(struct page *page)
1403 {
1404 	wait_queue_head_t *q;
1405 
1406 	page = compound_head(page);
1407 	q = page_waitqueue(page);
1408 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1409 }
1410 
1411 /**
1412  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1413  * @page: Page defining the wait queue of interest
1414  * @waiter: Waiter to add to the queue
1415  *
1416  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1417  */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1418 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1419 {
1420 	wait_queue_head_t *q = page_waitqueue(page);
1421 	unsigned long flags;
1422 
1423 	spin_lock_irqsave(&q->lock, flags);
1424 	__add_wait_queue_entry_tail(q, waiter);
1425 	SetPageWaiters(page);
1426 	spin_unlock_irqrestore(&q->lock, flags);
1427 }
1428 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1429 
1430 #ifndef clear_bit_unlock_is_negative_byte
1431 
1432 /*
1433  * PG_waiters is the high bit in the same byte as PG_lock.
1434  *
1435  * On x86 (and on many other architectures), we can clear PG_lock and
1436  * test the sign bit at the same time. But if the architecture does
1437  * not support that special operation, we just do this all by hand
1438  * instead.
1439  *
1440  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1441  * being cleared, but a memory barrier should be unnecessary since it is
1442  * in the same byte as PG_locked.
1443  */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1444 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1445 {
1446 	clear_bit_unlock(nr, mem);
1447 	/* smp_mb__after_atomic(); */
1448 	return test_bit(PG_waiters, mem);
1449 }
1450 
1451 #endif
1452 
1453 /**
1454  * unlock_page - unlock a locked page
1455  * @page: the page
1456  *
1457  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1458  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1459  * mechanism between PageLocked pages and PageWriteback pages is shared.
1460  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1461  *
1462  * Note that this depends on PG_waiters being the sign bit in the byte
1463  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1464  * clear the PG_locked bit and test PG_waiters at the same time fairly
1465  * portably (architectures that do LL/SC can test any bit, while x86 can
1466  * test the sign bit).
1467  */
unlock_page(struct page * page)1468 void unlock_page(struct page *page)
1469 {
1470 	BUILD_BUG_ON(PG_waiters != 7);
1471 	page = compound_head(page);
1472 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1473 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1474 		wake_up_page_bit(page, PG_locked);
1475 }
1476 EXPORT_SYMBOL(unlock_page);
1477 
1478 /**
1479  * end_page_writeback - end writeback against a page
1480  * @page: the page
1481  */
end_page_writeback(struct page * page)1482 void end_page_writeback(struct page *page)
1483 {
1484 	/*
1485 	 * TestClearPageReclaim could be used here but it is an atomic
1486 	 * operation and overkill in this particular case. Failing to
1487 	 * shuffle a page marked for immediate reclaim is too mild to
1488 	 * justify taking an atomic operation penalty at the end of
1489 	 * ever page writeback.
1490 	 */
1491 	if (PageReclaim(page)) {
1492 		ClearPageReclaim(page);
1493 		rotate_reclaimable_page(page);
1494 	}
1495 
1496 	/*
1497 	 * Writeback does not hold a page reference of its own, relying
1498 	 * on truncation to wait for the clearing of PG_writeback.
1499 	 * But here we must make sure that the page is not freed and
1500 	 * reused before the wake_up_page().
1501 	 */
1502 	get_page(page);
1503 	if (!test_clear_page_writeback(page))
1504 		BUG();
1505 
1506 	smp_mb__after_atomic();
1507 	wake_up_page(page, PG_writeback);
1508 	put_page(page);
1509 }
1510 EXPORT_SYMBOL(end_page_writeback);
1511 
1512 /*
1513  * After completing I/O on a page, call this routine to update the page
1514  * flags appropriately
1515  */
page_endio(struct page * page,bool is_write,int err)1516 void page_endio(struct page *page, bool is_write, int err)
1517 {
1518 	if (!is_write) {
1519 		if (!err) {
1520 			SetPageUptodate(page);
1521 		} else {
1522 			ClearPageUptodate(page);
1523 			SetPageError(page);
1524 		}
1525 		unlock_page(page);
1526 	} else {
1527 		if (err) {
1528 			struct address_space *mapping;
1529 
1530 			SetPageError(page);
1531 			mapping = page_mapping(page);
1532 			if (mapping)
1533 				mapping_set_error(mapping, err);
1534 		}
1535 		end_page_writeback(page);
1536 	}
1537 }
1538 EXPORT_SYMBOL_GPL(page_endio);
1539 
1540 /**
1541  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1542  * @__page: the page to lock
1543  */
__lock_page(struct page * __page)1544 __sched void __lock_page(struct page *__page)
1545 {
1546 	struct page *page = compound_head(__page);
1547 	wait_queue_head_t *q = page_waitqueue(page);
1548 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1549 				EXCLUSIVE);
1550 }
1551 EXPORT_SYMBOL(__lock_page);
1552 
__lock_page_killable(struct page * __page)1553 __sched int __lock_page_killable(struct page *__page)
1554 {
1555 	struct page *page = compound_head(__page);
1556 	wait_queue_head_t *q = page_waitqueue(page);
1557 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1558 					EXCLUSIVE);
1559 }
1560 EXPORT_SYMBOL_GPL(__lock_page_killable);
1561 
__lock_page_async(struct page * page,struct wait_page_queue * wait)1562 __sched int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1563 {
1564 	return __wait_on_page_locked_async(page, wait, true);
1565 }
1566 
1567 /*
1568  * Return values:
1569  * 1 - page is locked; mmap_lock is still held.
1570  * 0 - page is not locked.
1571  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1572  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1573  *     which case mmap_lock is still held.
1574  *
1575  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1576  * with the page locked and the mmap_lock unperturbed.
1577  */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1578 __sched int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1579 			 unsigned int flags)
1580 {
1581 	if (fault_flag_allow_retry_first(flags)) {
1582 		/*
1583 		 * CAUTION! In this case, mmap_lock is not released
1584 		 * even though return 0.
1585 		 */
1586 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1587 			return 0;
1588 
1589 		mmap_read_unlock(mm);
1590 		if (flags & FAULT_FLAG_KILLABLE)
1591 			wait_on_page_locked_killable(page);
1592 		else
1593 			wait_on_page_locked(page);
1594 		return 0;
1595 	} else {
1596 		if (flags & FAULT_FLAG_KILLABLE) {
1597 			int ret;
1598 
1599 			ret = __lock_page_killable(page);
1600 			if (ret) {
1601 				mmap_read_unlock(mm);
1602 				return 0;
1603 			}
1604 		} else
1605 			__lock_page(page);
1606 		return 1;
1607 	}
1608 }
1609 
1610 /**
1611  * page_cache_next_miss() - Find the next gap in the page cache.
1612  * @mapping: Mapping.
1613  * @index: Index.
1614  * @max_scan: Maximum range to search.
1615  *
1616  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1617  * gap with the lowest index.
1618  *
1619  * This function may be called under the rcu_read_lock.  However, this will
1620  * not atomically search a snapshot of the cache at a single point in time.
1621  * For example, if a gap is created at index 5, then subsequently a gap is
1622  * created at index 10, page_cache_next_miss covering both indices may
1623  * return 10 if called under the rcu_read_lock.
1624  *
1625  * Return: The index of the gap if found, otherwise an index outside the
1626  * range specified (in which case 'return - index >= max_scan' will be true).
1627  * In the rare case of index wrap-around, 0 will be returned.
1628  */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1629 pgoff_t page_cache_next_miss(struct address_space *mapping,
1630 			     pgoff_t index, unsigned long max_scan)
1631 {
1632 	XA_STATE(xas, &mapping->i_pages, index);
1633 
1634 	while (max_scan--) {
1635 		void *entry = xas_next(&xas);
1636 		if (!entry || xa_is_value(entry))
1637 			break;
1638 		if (xas.xa_index == 0)
1639 			break;
1640 	}
1641 
1642 	return xas.xa_index;
1643 }
1644 EXPORT_SYMBOL(page_cache_next_miss);
1645 
1646 /**
1647  * page_cache_prev_miss() - Find the previous gap in the page cache.
1648  * @mapping: Mapping.
1649  * @index: Index.
1650  * @max_scan: Maximum range to search.
1651  *
1652  * Search the range [max(index - max_scan + 1, 0), index] for the
1653  * gap with the highest index.
1654  *
1655  * This function may be called under the rcu_read_lock.  However, this will
1656  * not atomically search a snapshot of the cache at a single point in time.
1657  * For example, if a gap is created at index 10, then subsequently a gap is
1658  * created at index 5, page_cache_prev_miss() covering both indices may
1659  * return 5 if called under the rcu_read_lock.
1660  *
1661  * Return: The index of the gap if found, otherwise an index outside the
1662  * range specified (in which case 'index - return >= max_scan' will be true).
1663  * In the rare case of wrap-around, ULONG_MAX will be returned.
1664  */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1665 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1666 			     pgoff_t index, unsigned long max_scan)
1667 {
1668 	XA_STATE(xas, &mapping->i_pages, index);
1669 
1670 	while (max_scan--) {
1671 		void *entry = xas_prev(&xas);
1672 		if (!entry || xa_is_value(entry))
1673 			break;
1674 		if (xas.xa_index == ULONG_MAX)
1675 			break;
1676 	}
1677 
1678 	return xas.xa_index;
1679 }
1680 EXPORT_SYMBOL(page_cache_prev_miss);
1681 
1682 /**
1683  * find_get_entry - find and get a page cache entry
1684  * @mapping: the address_space to search
1685  * @index: The page cache index.
1686  *
1687  * Looks up the page cache slot at @mapping & @offset.  If there is a
1688  * page cache page, the head page is returned with an increased refcount.
1689  *
1690  * If the slot holds a shadow entry of a previously evicted page, or a
1691  * swap entry from shmem/tmpfs, it is returned.
1692  *
1693  * Return: The head page or shadow entry, %NULL if nothing is found.
1694  */
find_get_entry(struct address_space * mapping,pgoff_t index)1695 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1696 {
1697 	XA_STATE(xas, &mapping->i_pages, index);
1698 	struct page *page;
1699 
1700 	rcu_read_lock();
1701 repeat:
1702 	xas_reset(&xas);
1703 	page = xas_load(&xas);
1704 	if (xas_retry(&xas, page))
1705 		goto repeat;
1706 	/*
1707 	 * A shadow entry of a recently evicted page, or a swap entry from
1708 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1709 	 */
1710 	if (!page || xa_is_value(page))
1711 		goto out;
1712 
1713 	if (!page_cache_get_speculative(page))
1714 		goto repeat;
1715 
1716 	/*
1717 	 * Has the page moved or been split?
1718 	 * This is part of the lockless pagecache protocol. See
1719 	 * include/linux/pagemap.h for details.
1720 	 */
1721 	if (unlikely(page != xas_reload(&xas))) {
1722 		put_page(page);
1723 		goto repeat;
1724 	}
1725 out:
1726 	rcu_read_unlock();
1727 
1728 	return page;
1729 }
1730 
1731 /**
1732  * find_lock_entry - Locate and lock a page cache entry.
1733  * @mapping: The address_space to search.
1734  * @index: The page cache index.
1735  *
1736  * Looks up the page at @mapping & @index.  If there is a page in the
1737  * cache, the head page is returned locked and with an increased refcount.
1738  *
1739  * If the slot holds a shadow entry of a previously evicted page, or a
1740  * swap entry from shmem/tmpfs, it is returned.
1741  *
1742  * Context: May sleep.
1743  * Return: The head page or shadow entry, %NULL if nothing is found.
1744  */
find_lock_entry(struct address_space * mapping,pgoff_t index)1745 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1746 {
1747 	struct page *page;
1748 
1749 repeat:
1750 	page = find_get_entry(mapping, index);
1751 	if (page && !xa_is_value(page)) {
1752 		lock_page(page);
1753 		/* Has the page been truncated? */
1754 		if (unlikely(page->mapping != mapping)) {
1755 			unlock_page(page);
1756 			put_page(page);
1757 			goto repeat;
1758 		}
1759 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1760 	}
1761 	return page;
1762 }
1763 
1764 /**
1765  * pagecache_get_page - Find and get a reference to a page.
1766  * @mapping: The address_space to search.
1767  * @index: The page index.
1768  * @fgp_flags: %FGP flags modify how the page is returned.
1769  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1770  *
1771  * Looks up the page cache entry at @mapping & @index.
1772  *
1773  * @fgp_flags can be zero or more of these flags:
1774  *
1775  * * %FGP_ACCESSED - The page will be marked accessed.
1776  * * %FGP_LOCK - The page is returned locked.
1777  * * %FGP_HEAD - If the page is present and a THP, return the head page
1778  *   rather than the exact page specified by the index.
1779  * * %FGP_CREAT - If no page is present then a new page is allocated using
1780  *   @gfp_mask and added to the page cache and the VM's LRU list.
1781  *   The page is returned locked and with an increased refcount.
1782  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1783  *   page is already in cache.  If the page was allocated, unlock it before
1784  *   returning so the caller can do the same dance.
1785  * * %FGP_WRITE - The page will be written
1786  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1787  * * %FGP_NOWAIT - Don't get blocked by page lock
1788  *
1789  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1790  * if the %GFP flags specified for %FGP_CREAT are atomic.
1791  *
1792  * If there is a page cache page, it is returned with an increased refcount.
1793  *
1794  * Return: The found page or %NULL otherwise.
1795  */
pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1796 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1797 		int fgp_flags, gfp_t gfp_mask)
1798 {
1799 	struct page *page;
1800 
1801 repeat:
1802 	page = find_get_entry(mapping, index);
1803 	if (xa_is_value(page))
1804 		page = NULL;
1805 
1806 	trace_android_vh_pagecache_get_page(mapping, index, fgp_flags,
1807 					gfp_mask, page);
1808 	if (!page)
1809 		goto no_page;
1810 
1811 	if (fgp_flags & FGP_LOCK) {
1812 		if (fgp_flags & FGP_NOWAIT) {
1813 			if (!trylock_page(page)) {
1814 				put_page(page);
1815 				return NULL;
1816 			}
1817 		} else {
1818 			lock_page(page);
1819 		}
1820 
1821 		/* Has the page been truncated? */
1822 		if (unlikely(page->mapping != mapping)) {
1823 			unlock_page(page);
1824 			put_page(page);
1825 			goto repeat;
1826 		}
1827 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1828 	}
1829 
1830 	if (fgp_flags & FGP_ACCESSED)
1831 		mark_page_accessed(page);
1832 	else if (fgp_flags & FGP_WRITE) {
1833 		/* Clear idle flag for buffer write */
1834 		if (page_is_idle(page))
1835 			clear_page_idle(page);
1836 	}
1837 	if (!(fgp_flags & FGP_HEAD))
1838 		page = find_subpage(page, index);
1839 
1840 no_page:
1841 	if (!page && (fgp_flags & FGP_CREAT)) {
1842 		int err;
1843 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1844 			gfp_mask |= __GFP_WRITE;
1845 		if (fgp_flags & FGP_NOFS)
1846 			gfp_mask &= ~__GFP_FS;
1847 
1848 		page = __page_cache_alloc(gfp_mask);
1849 		if (!page)
1850 			return NULL;
1851 
1852 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1853 			fgp_flags |= FGP_LOCK;
1854 
1855 		/* Init accessed so avoid atomic mark_page_accessed later */
1856 		if (fgp_flags & FGP_ACCESSED)
1857 			__SetPageReferenced(page);
1858 
1859 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1860 		if (unlikely(err)) {
1861 			put_page(page);
1862 			page = NULL;
1863 			if (err == -EEXIST)
1864 				goto repeat;
1865 		}
1866 
1867 		/*
1868 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1869 		 * an unlocked page.
1870 		 */
1871 		if (page && (fgp_flags & FGP_FOR_MMAP))
1872 			unlock_page(page);
1873 	}
1874 
1875 	return page;
1876 }
1877 EXPORT_SYMBOL(pagecache_get_page);
1878 
1879 /**
1880  * find_get_entries - gang pagecache lookup
1881  * @mapping:	The address_space to search
1882  * @start:	The starting page cache index
1883  * @nr_entries:	The maximum number of entries
1884  * @entries:	Where the resulting entries are placed
1885  * @indices:	The cache indices corresponding to the entries in @entries
1886  *
1887  * find_get_entries() will search for and return a group of up to
1888  * @nr_entries entries in the mapping.  The entries are placed at
1889  * @entries.  find_get_entries() takes a reference against any actual
1890  * pages it returns.
1891  *
1892  * The search returns a group of mapping-contiguous page cache entries
1893  * with ascending indexes.  There may be holes in the indices due to
1894  * not-present pages.
1895  *
1896  * Any shadow entries of evicted pages, or swap entries from
1897  * shmem/tmpfs, are included in the returned array.
1898  *
1899  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1900  * stops at that page: the caller is likely to have a better way to handle
1901  * the compound page as a whole, and then skip its extent, than repeatedly
1902  * calling find_get_entries() to return all its tails.
1903  *
1904  * Return: the number of pages and shadow entries which were found.
1905  */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1906 unsigned find_get_entries(struct address_space *mapping,
1907 			  pgoff_t start, unsigned int nr_entries,
1908 			  struct page **entries, pgoff_t *indices)
1909 {
1910 	XA_STATE(xas, &mapping->i_pages, start);
1911 	struct page *page;
1912 	unsigned int ret = 0;
1913 
1914 	if (!nr_entries)
1915 		return 0;
1916 
1917 	rcu_read_lock();
1918 	xas_for_each(&xas, page, ULONG_MAX) {
1919 		if (xas_retry(&xas, page))
1920 			continue;
1921 		/*
1922 		 * A shadow entry of a recently evicted page, a swap
1923 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1924 		 * without attempting to raise page count.
1925 		 */
1926 		if (xa_is_value(page))
1927 			goto export;
1928 
1929 		if (!page_cache_get_speculative(page))
1930 			goto retry;
1931 
1932 		/* Has the page moved or been split? */
1933 		if (unlikely(page != xas_reload(&xas)))
1934 			goto put_page;
1935 
1936 		/*
1937 		 * Terminate early on finding a THP, to allow the caller to
1938 		 * handle it all at once; but continue if this is hugetlbfs.
1939 		 */
1940 		if (PageTransHuge(page) && !PageHuge(page)) {
1941 			page = find_subpage(page, xas.xa_index);
1942 			nr_entries = ret + 1;
1943 		}
1944 export:
1945 		indices[ret] = xas.xa_index;
1946 		entries[ret] = page;
1947 		if (++ret == nr_entries)
1948 			break;
1949 		continue;
1950 put_page:
1951 		put_page(page);
1952 retry:
1953 		xas_reset(&xas);
1954 	}
1955 	rcu_read_unlock();
1956 	return ret;
1957 }
1958 
1959 /**
1960  * find_get_pages_range - gang pagecache lookup
1961  * @mapping:	The address_space to search
1962  * @start:	The starting page index
1963  * @end:	The final page index (inclusive)
1964  * @nr_pages:	The maximum number of pages
1965  * @pages:	Where the resulting pages are placed
1966  *
1967  * find_get_pages_range() will search for and return a group of up to @nr_pages
1968  * pages in the mapping starting at index @start and up to index @end
1969  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1970  * a reference against the returned pages.
1971  *
1972  * The search returns a group of mapping-contiguous pages with ascending
1973  * indexes.  There may be holes in the indices due to not-present pages.
1974  * We also update @start to index the next page for the traversal.
1975  *
1976  * Return: the number of pages which were found. If this number is
1977  * smaller than @nr_pages, the end of specified range has been
1978  * reached.
1979  */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)1980 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1981 			      pgoff_t end, unsigned int nr_pages,
1982 			      struct page **pages)
1983 {
1984 	XA_STATE(xas, &mapping->i_pages, *start);
1985 	struct page *page;
1986 	unsigned ret = 0;
1987 
1988 	if (unlikely(!nr_pages))
1989 		return 0;
1990 
1991 	rcu_read_lock();
1992 	xas_for_each(&xas, page, end) {
1993 		if (xas_retry(&xas, page))
1994 			continue;
1995 		/* Skip over shadow, swap and DAX entries */
1996 		if (xa_is_value(page))
1997 			continue;
1998 
1999 		if (!page_cache_get_speculative(page))
2000 			goto retry;
2001 
2002 		/* Has the page moved or been split? */
2003 		if (unlikely(page != xas_reload(&xas)))
2004 			goto put_page;
2005 
2006 		pages[ret] = find_subpage(page, xas.xa_index);
2007 		if (++ret == nr_pages) {
2008 			*start = xas.xa_index + 1;
2009 			goto out;
2010 		}
2011 		continue;
2012 put_page:
2013 		put_page(page);
2014 retry:
2015 		xas_reset(&xas);
2016 	}
2017 
2018 	/*
2019 	 * We come here when there is no page beyond @end. We take care to not
2020 	 * overflow the index @start as it confuses some of the callers. This
2021 	 * breaks the iteration when there is a page at index -1 but that is
2022 	 * already broken anyway.
2023 	 */
2024 	if (end == (pgoff_t)-1)
2025 		*start = (pgoff_t)-1;
2026 	else
2027 		*start = end + 1;
2028 out:
2029 	rcu_read_unlock();
2030 
2031 	return ret;
2032 }
2033 
2034 /**
2035  * find_get_pages_contig - gang contiguous pagecache lookup
2036  * @mapping:	The address_space to search
2037  * @index:	The starting page index
2038  * @nr_pages:	The maximum number of pages
2039  * @pages:	Where the resulting pages are placed
2040  *
2041  * find_get_pages_contig() works exactly like find_get_pages(), except
2042  * that the returned number of pages are guaranteed to be contiguous.
2043  *
2044  * Return: the number of pages which were found.
2045  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)2046 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2047 			       unsigned int nr_pages, struct page **pages)
2048 {
2049 	XA_STATE(xas, &mapping->i_pages, index);
2050 	struct page *page;
2051 	unsigned int ret = 0;
2052 
2053 	if (unlikely(!nr_pages))
2054 		return 0;
2055 
2056 	rcu_read_lock();
2057 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2058 		if (xas_retry(&xas, page))
2059 			continue;
2060 		/*
2061 		 * If the entry has been swapped out, we can stop looking.
2062 		 * No current caller is looking for DAX entries.
2063 		 */
2064 		if (xa_is_value(page))
2065 			break;
2066 
2067 		if (!page_cache_get_speculative(page))
2068 			goto retry;
2069 
2070 		/* Has the page moved or been split? */
2071 		if (unlikely(page != xas_reload(&xas)))
2072 			goto put_page;
2073 
2074 		pages[ret] = find_subpage(page, xas.xa_index);
2075 		if (++ret == nr_pages)
2076 			break;
2077 		continue;
2078 put_page:
2079 		put_page(page);
2080 retry:
2081 		xas_reset(&xas);
2082 	}
2083 	rcu_read_unlock();
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(find_get_pages_contig);
2087 
2088 /**
2089  * find_get_pages_range_tag - find and return pages in given range matching @tag
2090  * @mapping:	the address_space to search
2091  * @index:	the starting page index
2092  * @end:	The final page index (inclusive)
2093  * @tag:	the tag index
2094  * @nr_pages:	the maximum number of pages
2095  * @pages:	where the resulting pages are placed
2096  *
2097  * Like find_get_pages, except we only return pages which are tagged with
2098  * @tag.   We update @index to index the next page for the traversal.
2099  *
2100  * Return: the number of pages which were found.
2101  */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)2102 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2103 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2104 			struct page **pages)
2105 {
2106 	XA_STATE(xas, &mapping->i_pages, *index);
2107 	struct page *page;
2108 	unsigned ret = 0;
2109 
2110 	if (unlikely(!nr_pages))
2111 		return 0;
2112 
2113 	rcu_read_lock();
2114 	xas_for_each_marked(&xas, page, end, tag) {
2115 		if (xas_retry(&xas, page))
2116 			continue;
2117 		/*
2118 		 * Shadow entries should never be tagged, but this iteration
2119 		 * is lockless so there is a window for page reclaim to evict
2120 		 * a page we saw tagged.  Skip over it.
2121 		 */
2122 		if (xa_is_value(page))
2123 			continue;
2124 
2125 		if (!page_cache_get_speculative(page))
2126 			goto retry;
2127 
2128 		/* Has the page moved or been split? */
2129 		if (unlikely(page != xas_reload(&xas)))
2130 			goto put_page;
2131 
2132 		pages[ret] = find_subpage(page, xas.xa_index);
2133 		if (++ret == nr_pages) {
2134 			*index = xas.xa_index + 1;
2135 			goto out;
2136 		}
2137 		continue;
2138 put_page:
2139 		put_page(page);
2140 retry:
2141 		xas_reset(&xas);
2142 	}
2143 
2144 	/*
2145 	 * We come here when we got to @end. We take care to not overflow the
2146 	 * index @index as it confuses some of the callers. This breaks the
2147 	 * iteration when there is a page at index -1 but that is already
2148 	 * broken anyway.
2149 	 */
2150 	if (end == (pgoff_t)-1)
2151 		*index = (pgoff_t)-1;
2152 	else
2153 		*index = end + 1;
2154 out:
2155 	rcu_read_unlock();
2156 
2157 	return ret;
2158 }
2159 EXPORT_SYMBOL(find_get_pages_range_tag);
2160 
2161 /*
2162  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2163  * a _large_ part of the i/o request. Imagine the worst scenario:
2164  *
2165  *      ---R__________________________________________B__________
2166  *         ^ reading here                             ^ bad block(assume 4k)
2167  *
2168  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2169  * => failing the whole request => read(R) => read(R+1) =>
2170  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2171  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2172  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2173  *
2174  * It is going insane. Fix it by quickly scaling down the readahead size.
2175  */
shrink_readahead_size_eio(struct file_ra_state * ra)2176 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2177 {
2178 	ra->ra_pages /= 4;
2179 }
2180 
2181 /**
2182  * generic_file_buffered_read - generic file read routine
2183  * @iocb:	the iocb to read
2184  * @iter:	data destination
2185  * @written:	already copied
2186  *
2187  * This is a generic file read routine, and uses the
2188  * mapping->a_ops->readpage() function for the actual low-level stuff.
2189  *
2190  * This is really ugly. But the goto's actually try to clarify some
2191  * of the logic when it comes to error handling etc.
2192  *
2193  * Return:
2194  * * total number of bytes copied, including those the were already @written
2195  * * negative error code if nothing was copied
2196  */
generic_file_buffered_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t written)2197 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2198 		struct iov_iter *iter, ssize_t written)
2199 {
2200 	struct file *filp = iocb->ki_filp;
2201 	struct address_space *mapping = filp->f_mapping;
2202 	struct inode *inode = mapping->host;
2203 	struct file_ra_state *ra = &filp->f_ra;
2204 	loff_t *ppos = &iocb->ki_pos;
2205 	pgoff_t index;
2206 	pgoff_t last_index;
2207 	pgoff_t prev_index;
2208 	unsigned long offset;      /* offset into pagecache page */
2209 	unsigned int prev_offset;
2210 	int error = 0;
2211 
2212 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2213 		return 0;
2214 	if (unlikely(!iov_iter_count(iter)))
2215 		return 0;
2216 
2217 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2218 
2219 	index = *ppos >> PAGE_SHIFT;
2220 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2221 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2222 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2223 	offset = *ppos & ~PAGE_MASK;
2224 
2225 	/*
2226 	 * If we've already successfully copied some data, then we
2227 	 * can no longer safely return -EIOCBQUEUED. Hence mark
2228 	 * an async read NOWAIT at that point.
2229 	 */
2230 	if (written && (iocb->ki_flags & IOCB_WAITQ))
2231 		iocb->ki_flags |= IOCB_NOWAIT;
2232 
2233 	for (;;) {
2234 		struct page *page;
2235 		pgoff_t end_index;
2236 		loff_t isize;
2237 		unsigned long nr, ret;
2238 
2239 		cond_resched();
2240 find_page:
2241 		if (fatal_signal_pending(current)) {
2242 			error = -EINTR;
2243 			goto out;
2244 		}
2245 
2246 		page = find_get_page(mapping, index);
2247 		if (!page) {
2248 			if (iocb->ki_flags & IOCB_NOIO)
2249 				goto would_block;
2250 			page_cache_sync_readahead(mapping,
2251 					ra, filp,
2252 					index, last_index - index);
2253 			page = find_get_page(mapping, index);
2254 			if (unlikely(page == NULL))
2255 				goto no_cached_page;
2256 		}
2257 		if (PageReadahead(page)) {
2258 			if (iocb->ki_flags & IOCB_NOIO) {
2259 				put_page(page);
2260 				goto out;
2261 			}
2262 			page_cache_async_readahead(mapping,
2263 					ra, filp, page,
2264 					index, last_index - index);
2265 		}
2266 		if (!PageUptodate(page)) {
2267 			/*
2268 			 * See comment in do_read_cache_page on why
2269 			 * wait_on_page_locked is used to avoid unnecessarily
2270 			 * serialisations and why it's safe.
2271 			 */
2272 			if (iocb->ki_flags & IOCB_WAITQ) {
2273 				if (written) {
2274 					put_page(page);
2275 					goto out;
2276 				}
2277 				error = wait_on_page_locked_async(page,
2278 								iocb->ki_waitq);
2279 			} else {
2280 				if (iocb->ki_flags & IOCB_NOWAIT) {
2281 					put_page(page);
2282 					goto would_block;
2283 				}
2284 				error = wait_on_page_locked_killable(page);
2285 			}
2286 			if (unlikely(error))
2287 				goto readpage_error;
2288 			if (PageUptodate(page))
2289 				goto page_ok;
2290 
2291 			if (inode->i_blkbits == PAGE_SHIFT ||
2292 					!mapping->a_ops->is_partially_uptodate)
2293 				goto page_not_up_to_date;
2294 			/* pipes can't handle partially uptodate pages */
2295 			if (unlikely(iov_iter_is_pipe(iter)))
2296 				goto page_not_up_to_date;
2297 			if (!trylock_page(page))
2298 				goto page_not_up_to_date;
2299 			/* Did it get truncated before we got the lock? */
2300 			if (!page->mapping)
2301 				goto page_not_up_to_date_locked;
2302 			if (!mapping->a_ops->is_partially_uptodate(page,
2303 							offset, iter->count))
2304 				goto page_not_up_to_date_locked;
2305 			unlock_page(page);
2306 		}
2307 page_ok:
2308 		/*
2309 		 * i_size must be checked after we know the page is Uptodate.
2310 		 *
2311 		 * Checking i_size after the check allows us to calculate
2312 		 * the correct value for "nr", which means the zero-filled
2313 		 * part of the page is not copied back to userspace (unless
2314 		 * another truncate extends the file - this is desired though).
2315 		 */
2316 
2317 		isize = i_size_read(inode);
2318 		end_index = (isize - 1) >> PAGE_SHIFT;
2319 		if (unlikely(!isize || index > end_index)) {
2320 			put_page(page);
2321 			goto out;
2322 		}
2323 
2324 		/* nr is the maximum number of bytes to copy from this page */
2325 		nr = PAGE_SIZE;
2326 		if (index == end_index) {
2327 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2328 			if (nr <= offset) {
2329 				put_page(page);
2330 				goto out;
2331 			}
2332 		}
2333 		nr = nr - offset;
2334 
2335 		/* If users can be writing to this page using arbitrary
2336 		 * virtual addresses, take care about potential aliasing
2337 		 * before reading the page on the kernel side.
2338 		 */
2339 		if (mapping_writably_mapped(mapping))
2340 			flush_dcache_page(page);
2341 
2342 		/*
2343 		 * When a sequential read accesses a page several times,
2344 		 * only mark it as accessed the first time.
2345 		 */
2346 		if (prev_index != index || offset != prev_offset)
2347 			mark_page_accessed(page);
2348 		prev_index = index;
2349 
2350 		/*
2351 		 * Ok, we have the page, and it's up-to-date, so
2352 		 * now we can copy it to user space...
2353 		 */
2354 
2355 		ret = copy_page_to_iter(page, offset, nr, iter);
2356 		offset += ret;
2357 		index += offset >> PAGE_SHIFT;
2358 		offset &= ~PAGE_MASK;
2359 		prev_offset = offset;
2360 
2361 		put_page(page);
2362 		written += ret;
2363 		if (!iov_iter_count(iter))
2364 			goto out;
2365 		if (ret < nr) {
2366 			error = -EFAULT;
2367 			goto out;
2368 		}
2369 		continue;
2370 
2371 page_not_up_to_date:
2372 		/* Get exclusive access to the page ... */
2373 		if (iocb->ki_flags & IOCB_WAITQ) {
2374 			if (written) {
2375 				put_page(page);
2376 				goto out;
2377 			}
2378 			error = lock_page_async(page, iocb->ki_waitq);
2379 		} else {
2380 			error = lock_page_killable(page);
2381 		}
2382 		if (unlikely(error))
2383 			goto readpage_error;
2384 
2385 page_not_up_to_date_locked:
2386 		/* Did it get truncated before we got the lock? */
2387 		if (!page->mapping) {
2388 			unlock_page(page);
2389 			put_page(page);
2390 			continue;
2391 		}
2392 
2393 		/* Did somebody else fill it already? */
2394 		if (PageUptodate(page)) {
2395 			unlock_page(page);
2396 			goto page_ok;
2397 		}
2398 
2399 readpage:
2400 		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2401 			unlock_page(page);
2402 			put_page(page);
2403 			goto would_block;
2404 		}
2405 		/*
2406 		 * A previous I/O error may have been due to temporary
2407 		 * failures, eg. multipath errors.
2408 		 * PG_error will be set again if readpage fails.
2409 		 */
2410 		ClearPageError(page);
2411 		/* Start the actual read. The read will unlock the page. */
2412 		error = mapping->a_ops->readpage(filp, page);
2413 
2414 		if (unlikely(error)) {
2415 			if (error == AOP_TRUNCATED_PAGE) {
2416 				put_page(page);
2417 				error = 0;
2418 				goto find_page;
2419 			}
2420 			goto readpage_error;
2421 		}
2422 
2423 		if (!PageUptodate(page)) {
2424 			if (iocb->ki_flags & IOCB_WAITQ) {
2425 				if (written) {
2426 					put_page(page);
2427 					goto out;
2428 				}
2429 				error = lock_page_async(page, iocb->ki_waitq);
2430 			} else {
2431 				error = lock_page_killable(page);
2432 			}
2433 
2434 			if (unlikely(error))
2435 				goto readpage_error;
2436 			if (!PageUptodate(page)) {
2437 				if (page->mapping == NULL) {
2438 					/*
2439 					 * invalidate_mapping_pages got it
2440 					 */
2441 					unlock_page(page);
2442 					put_page(page);
2443 					goto find_page;
2444 				}
2445 				unlock_page(page);
2446 				shrink_readahead_size_eio(ra);
2447 				error = -EIO;
2448 				goto readpage_error;
2449 			}
2450 			unlock_page(page);
2451 		}
2452 
2453 		goto page_ok;
2454 
2455 readpage_error:
2456 		/* UHHUH! A synchronous read error occurred. Report it */
2457 		put_page(page);
2458 		goto out;
2459 
2460 no_cached_page:
2461 		/*
2462 		 * Ok, it wasn't cached, so we need to create a new
2463 		 * page..
2464 		 */
2465 		page = page_cache_alloc(mapping);
2466 		if (!page) {
2467 			error = -ENOMEM;
2468 			goto out;
2469 		}
2470 		error = add_to_page_cache_lru(page, mapping, index,
2471 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2472 		if (error) {
2473 			put_page(page);
2474 			if (error == -EEXIST) {
2475 				error = 0;
2476 				goto find_page;
2477 			}
2478 			goto out;
2479 		}
2480 		goto readpage;
2481 	}
2482 
2483 would_block:
2484 	error = -EAGAIN;
2485 out:
2486 	ra->prev_pos = prev_index;
2487 	ra->prev_pos <<= PAGE_SHIFT;
2488 	ra->prev_pos |= prev_offset;
2489 
2490 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2491 	file_accessed(filp);
2492 	return written ? written : error;
2493 }
2494 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2495 
2496 /**
2497  * generic_file_read_iter - generic filesystem read routine
2498  * @iocb:	kernel I/O control block
2499  * @iter:	destination for the data read
2500  *
2501  * This is the "read_iter()" routine for all filesystems
2502  * that can use the page cache directly.
2503  *
2504  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2505  * be returned when no data can be read without waiting for I/O requests
2506  * to complete; it doesn't prevent readahead.
2507  *
2508  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2509  * requests shall be made for the read or for readahead.  When no data
2510  * can be read, -EAGAIN shall be returned.  When readahead would be
2511  * triggered, a partial, possibly empty read shall be returned.
2512  *
2513  * Return:
2514  * * number of bytes copied, even for partial reads
2515  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2516  */
2517 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2518 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2519 {
2520 	size_t count = iov_iter_count(iter);
2521 	ssize_t retval = 0;
2522 
2523 	if (!count)
2524 		goto out; /* skip atime */
2525 
2526 	if (iocb->ki_flags & IOCB_DIRECT) {
2527 		struct file *file = iocb->ki_filp;
2528 		struct address_space *mapping = file->f_mapping;
2529 		struct inode *inode = mapping->host;
2530 		loff_t size;
2531 
2532 		size = i_size_read(inode);
2533 		if (iocb->ki_flags & IOCB_NOWAIT) {
2534 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2535 						   iocb->ki_pos + count - 1))
2536 				return -EAGAIN;
2537 		} else {
2538 			retval = filemap_write_and_wait_range(mapping,
2539 						iocb->ki_pos,
2540 					        iocb->ki_pos + count - 1);
2541 			if (retval < 0)
2542 				goto out;
2543 		}
2544 
2545 		file_accessed(file);
2546 
2547 		retval = mapping->a_ops->direct_IO(iocb, iter);
2548 		if (retval >= 0) {
2549 			iocb->ki_pos += retval;
2550 			count -= retval;
2551 		}
2552 		iov_iter_revert(iter, count - iov_iter_count(iter));
2553 
2554 		/*
2555 		 * Btrfs can have a short DIO read if we encounter
2556 		 * compressed extents, so if there was an error, or if
2557 		 * we've already read everything we wanted to, or if
2558 		 * there was a short read because we hit EOF, go ahead
2559 		 * and return.  Otherwise fallthrough to buffered io for
2560 		 * the rest of the read.  Buffered reads will not work for
2561 		 * DAX files, so don't bother trying.
2562 		 */
2563 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2564 		    IS_DAX(inode))
2565 			goto out;
2566 	}
2567 
2568 	retval = generic_file_buffered_read(iocb, iter, retval);
2569 out:
2570 	return retval;
2571 }
2572 EXPORT_SYMBOL(generic_file_read_iter);
2573 
2574 #ifdef CONFIG_MMU
2575 #define MMAP_LOTSAMISS  (100)
2576 /*
2577  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2578  * @vmf - the vm_fault for this fault.
2579  * @page - the page to lock.
2580  * @fpin - the pointer to the file we may pin (or is already pinned).
2581  *
2582  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2583  * It differs in that it actually returns the page locked if it returns 1 and 0
2584  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2585  * will point to the pinned file and needs to be fput()'ed at a later point.
2586  */
lock_page_maybe_drop_mmap(struct vm_fault * vmf,struct page * page,struct file ** fpin)2587 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2588 				     struct file **fpin)
2589 {
2590 	if (trylock_page(page))
2591 		return 1;
2592 
2593 	/*
2594 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2595 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2596 	 * is supposed to work. We have way too many special cases..
2597 	 */
2598 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2599 		return 0;
2600 
2601 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2602 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2603 		if (__lock_page_killable(page)) {
2604 			/*
2605 			 * We didn't have the right flags to drop the mmap_lock,
2606 			 * but all fault_handlers only check for fatal signals
2607 			 * if we return VM_FAULT_RETRY, so we need to drop the
2608 			 * mmap_lock here and return 0 if we don't have a fpin.
2609 			 */
2610 			if (*fpin == NULL)
2611 				mmap_read_unlock(vmf->vma->vm_mm);
2612 			return 0;
2613 		}
2614 	} else
2615 		__lock_page(page);
2616 	return 1;
2617 }
2618 
2619 
2620 /*
2621  * Synchronous readahead happens when we don't even find a page in the page
2622  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2623  * to drop the mmap sem we return the file that was pinned in order for us to do
2624  * that.  If we didn't pin a file then we return NULL.  The file that is
2625  * returned needs to be fput()'ed when we're done with it.
2626  */
do_sync_mmap_readahead(struct vm_fault * vmf)2627 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2628 {
2629 	struct file *file = vmf->vma->vm_file;
2630 	struct file_ra_state *ra = &file->f_ra;
2631 	struct address_space *mapping = file->f_mapping;
2632 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2633 	struct file *fpin = NULL;
2634 	unsigned int mmap_miss;
2635 
2636 	/* If we don't want any read-ahead, don't bother */
2637 	if (vmf->vma->vm_flags & VM_RAND_READ)
2638 		return fpin;
2639 	if (!ra->ra_pages)
2640 		return fpin;
2641 
2642 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2643 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2644 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2645 		return fpin;
2646 	}
2647 
2648 	/* Avoid banging the cache line if not needed */
2649 	mmap_miss = READ_ONCE(ra->mmap_miss);
2650 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2651 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2652 
2653 	/*
2654 	 * Do we miss much more than hit in this file? If so,
2655 	 * stop bothering with read-ahead. It will only hurt.
2656 	 */
2657 	if (mmap_miss > MMAP_LOTSAMISS)
2658 		return fpin;
2659 
2660 	/*
2661 	 * mmap read-around
2662 	 */
2663 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2664 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2665 	ra->size = ra->ra_pages;
2666 	ra->async_size = ra->ra_pages / 4;
2667 	trace_android_vh_tune_mmap_readaround(ra->ra_pages, vmf->pgoff,
2668 			&ra->start, &ra->size, &ra->async_size);
2669 	ractl._index = ra->start;
2670 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2671 	return fpin;
2672 }
2673 
2674 /*
2675  * Asynchronous readahead happens when we find the page and PG_readahead,
2676  * so we want to possibly extend the readahead further.  We return the file that
2677  * was pinned if we have to drop the mmap_lock in order to do IO.
2678  */
do_async_mmap_readahead(struct vm_fault * vmf,struct page * page)2679 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2680 					    struct page *page)
2681 {
2682 	struct file *file = vmf->vma->vm_file;
2683 	struct file_ra_state *ra = &file->f_ra;
2684 	struct address_space *mapping = file->f_mapping;
2685 	struct file *fpin = NULL;
2686 	unsigned int mmap_miss;
2687 	pgoff_t offset = vmf->pgoff;
2688 
2689 	/* If we don't want any read-ahead, don't bother */
2690 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2691 		return fpin;
2692 	mmap_miss = READ_ONCE(ra->mmap_miss);
2693 	if (mmap_miss)
2694 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2695 	if (PageReadahead(page)) {
2696 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2697 		page_cache_async_readahead(mapping, ra, file,
2698 					   page, offset, ra->ra_pages);
2699 	}
2700 	return fpin;
2701 }
2702 
2703 /**
2704  * filemap_fault - read in file data for page fault handling
2705  * @vmf:	struct vm_fault containing details of the fault
2706  *
2707  * filemap_fault() is invoked via the vma operations vector for a
2708  * mapped memory region to read in file data during a page fault.
2709  *
2710  * The goto's are kind of ugly, but this streamlines the normal case of having
2711  * it in the page cache, and handles the special cases reasonably without
2712  * having a lot of duplicated code.
2713  *
2714  * If FAULT_FLAG_SPECULATIVE is set, this function runs with elevated vma
2715  * refcount and with mmap lock not held.
2716  * Otherwise, vma->vm_mm->mmap_lock must be held on entry.
2717  *
2718  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2719  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2720  *
2721  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2722  * has not been released.
2723  *
2724  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2725  *
2726  * Return: bitwise-OR of %VM_FAULT_ codes.
2727  */
filemap_fault(struct vm_fault * vmf)2728 vm_fault_t filemap_fault(struct vm_fault *vmf)
2729 {
2730 	int error;
2731 	struct file *file = vmf->vma->vm_file;
2732 	struct file *fpin = NULL;
2733 	struct address_space *mapping = file->f_mapping;
2734 	struct file_ra_state *ra = &file->f_ra;
2735 	struct inode *inode = mapping->host;
2736 	pgoff_t offset = vmf->pgoff;
2737 	pgoff_t max_off;
2738 	struct page *page = NULL;
2739 	vm_fault_t ret = 0;
2740 	bool retry = false;
2741 
2742 	if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
2743 		page = find_get_page(mapping, offset);
2744 		if (unlikely(!page))
2745 			return VM_FAULT_RETRY;
2746 
2747 		if (unlikely(PageReadahead(page)))
2748 			goto page_put;
2749 
2750 		if (!trylock_page(page))
2751 			goto page_put;
2752 
2753 		if (unlikely(compound_head(page)->mapping != mapping))
2754 			goto page_unlock;
2755 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2756 		if (unlikely(!PageUptodate(page)))
2757 			goto page_unlock;
2758 
2759 		max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2760 		if (unlikely(offset >= max_off))
2761 			goto page_unlock;
2762 
2763 		/*
2764 		 * Update readahead mmap_miss statistic.
2765 		 *
2766 		 * Note that we are not sure if finish_fault() will
2767 		 * manage to complete the transaction. If it fails,
2768 		 * we'll come back to filemap_fault() non-speculative
2769 		 * case which will update mmap_miss a second time.
2770 		 * This is not ideal, we would prefer to guarantee the
2771 		 * update will happen exactly once.
2772 		 */
2773 		if (!(vmf->vma->vm_flags & VM_RAND_READ) && ra->ra_pages) {
2774 			unsigned int mmap_miss = READ_ONCE(ra->mmap_miss);
2775 			if (mmap_miss)
2776 				WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2777 		}
2778 
2779 		vmf->page = page;
2780 		return VM_FAULT_LOCKED;
2781 page_unlock:
2782 		unlock_page(page);
2783 page_put:
2784 		put_page(page);
2785 		return VM_FAULT_RETRY;
2786 	}
2787 
2788 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2789 	if (unlikely(offset >= max_off))
2790 		return VM_FAULT_SIGBUS;
2791 
2792 	trace_android_vh_filemap_fault_get_page(vmf, &page, &retry);
2793 	if (unlikely(retry))
2794 		goto out_retry;
2795 	if (unlikely(page))
2796 		goto page_ok;
2797 
2798 	/*
2799 	 * Do we have something in the page cache already?
2800 	 */
2801 	page = find_get_page(mapping, offset);
2802 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2803 		/*
2804 		 * We found the page, so try async readahead before
2805 		 * waiting for the lock.
2806 		 */
2807 		fpin = do_async_mmap_readahead(vmf, page);
2808 	} else if (!page) {
2809 		/* No page in the page cache at all */
2810 		count_vm_event(PGMAJFAULT);
2811 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2812 		ret = VM_FAULT_MAJOR;
2813 		fpin = do_sync_mmap_readahead(vmf);
2814 retry_find:
2815 		page = pagecache_get_page(mapping, offset,
2816 					  FGP_CREAT|FGP_FOR_MMAP,
2817 					  vmf->gfp_mask);
2818 		if (!page) {
2819 			if (fpin)
2820 				goto out_retry;
2821 			return VM_FAULT_OOM;
2822 		}
2823 	}
2824 
2825 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2826 		goto out_retry;
2827 
2828 	/* Did it get truncated? */
2829 	if (unlikely(compound_head(page)->mapping != mapping)) {
2830 		unlock_page(page);
2831 		put_page(page);
2832 		goto retry_find;
2833 	}
2834 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2835 
2836 	/*
2837 	 * We have a locked page in the page cache, now we need to check
2838 	 * that it's up-to-date. If not, it is going to be due to an error.
2839 	 */
2840 	if (unlikely(!PageUptodate(page)))
2841 		goto page_not_uptodate;
2842 
2843 	/*
2844 	 * We've made it this far and we had to drop our mmap_lock, now is the
2845 	 * time to return to the upper layer and have it re-find the vma and
2846 	 * redo the fault.
2847 	 */
2848 	if (fpin) {
2849 		unlock_page(page);
2850 		goto out_retry;
2851 	}
2852 
2853 page_ok:
2854 	/*
2855 	 * Found the page and have a reference on it.
2856 	 * We must recheck i_size under page lock.
2857 	 */
2858 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2859 	if (unlikely(offset >= max_off)) {
2860 		unlock_page(page);
2861 		put_page(page);
2862 		return VM_FAULT_SIGBUS;
2863 	}
2864 
2865 	vmf->page = page;
2866 	return ret | VM_FAULT_LOCKED;
2867 
2868 page_not_uptodate:
2869 	/*
2870 	 * Umm, take care of errors if the page isn't up-to-date.
2871 	 * Try to re-read it _once_. We do this synchronously,
2872 	 * because there really aren't any performance issues here
2873 	 * and we need to check for errors.
2874 	 */
2875 	ClearPageError(page);
2876 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2877 	error = mapping->a_ops->readpage(file, page);
2878 	if (!error) {
2879 		wait_on_page_locked(page);
2880 		if (!PageUptodate(page))
2881 			error = -EIO;
2882 	}
2883 	if (fpin)
2884 		goto out_retry;
2885 	put_page(page);
2886 
2887 	if (!error || error == AOP_TRUNCATED_PAGE)
2888 		goto retry_find;
2889 
2890 	shrink_readahead_size_eio(ra);
2891 	return VM_FAULT_SIGBUS;
2892 
2893 out_retry:
2894 	/*
2895 	 * We dropped the mmap_lock, we need to return to the fault handler to
2896 	 * re-find the vma and come back and find our hopefully still populated
2897 	 * page.
2898 	 */
2899 	if (page) {
2900 		trace_android_vh_filemap_fault_cache_page(vmf, page);
2901 		put_page(page);
2902 	}
2903 	if (fpin)
2904 		fput(fpin);
2905 	return ret | VM_FAULT_RETRY;
2906 }
2907 EXPORT_SYMBOL(filemap_fault);
2908 
filemap_map_pmd(struct vm_fault * vmf,struct page * page)2909 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2910 {
2911 	struct mm_struct *mm = vmf->vma->vm_mm;
2912 
2913 	/* Huge page is mapped? No need to proceed. */
2914 	if (pmd_trans_huge(*vmf->pmd)) {
2915 		unlock_page(page);
2916 		put_page(page);
2917 		return true;
2918 	}
2919 
2920 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
2921 	    vm_fault_t ret = do_set_pmd(vmf, page);
2922 	    if (!ret) {
2923 		    /* The page is mapped successfully, reference consumed. */
2924 		    unlock_page(page);
2925 		    return true;
2926 	    }
2927 	}
2928 
2929 	if (pmd_none(*vmf->pmd)) {
2930 		vmf->ptl = pmd_lock(mm, vmf->pmd);
2931 		if (likely(pmd_none(*vmf->pmd))) {
2932 			mm_inc_nr_ptes(mm);
2933 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
2934 			vmf->prealloc_pte = NULL;
2935 		}
2936 		spin_unlock(vmf->ptl);
2937 	}
2938 
2939 	/* See comment in handle_pte_fault() */
2940 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
2941 		unlock_page(page);
2942 		put_page(page);
2943 		return true;
2944 	}
2945 
2946 	return false;
2947 }
2948 
next_uptodate_page(struct page * page,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)2949 static struct page *next_uptodate_page(struct page *page,
2950 				       struct address_space *mapping,
2951 				       struct xa_state *xas, pgoff_t end_pgoff)
2952 {
2953 	unsigned long max_idx;
2954 
2955 	do {
2956 		if (!page)
2957 			return NULL;
2958 		if (xas_retry(xas, page))
2959 			continue;
2960 		if (xa_is_value(page))
2961 			continue;
2962 		if (PageLocked(page))
2963 			continue;
2964 		if (!page_cache_get_speculative(page))
2965 			continue;
2966 		/* Has the page moved or been split? */
2967 		if (unlikely(page != xas_reload(xas)))
2968 			goto skip;
2969 		if (!PageUptodate(page) || PageReadahead(page))
2970 			goto skip;
2971 		if (PageHWPoison(page))
2972 			goto skip;
2973 		if (!trylock_page(page))
2974 			goto skip;
2975 		if (page->mapping != mapping)
2976 			goto unlock;
2977 		if (!PageUptodate(page))
2978 			goto unlock;
2979 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2980 		if (xas->xa_index >= max_idx)
2981 			goto unlock;
2982 		return page;
2983 unlock:
2984 		unlock_page(page);
2985 skip:
2986 		put_page(page);
2987 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
2988 
2989 	return NULL;
2990 }
2991 
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)2992 static inline struct page *first_map_page(struct address_space *mapping,
2993 					  struct xa_state *xas,
2994 					  pgoff_t end_pgoff)
2995 {
2996 	return next_uptodate_page(xas_find(xas, end_pgoff),
2997 				  mapping, xas, end_pgoff);
2998 }
2999 
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3000 static inline struct page *next_map_page(struct address_space *mapping,
3001 					 struct xa_state *xas,
3002 					 pgoff_t end_pgoff)
3003 {
3004 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3005 				  mapping, xas, end_pgoff);
3006 }
3007 
3008 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
filemap_allow_speculation(void)3009 bool filemap_allow_speculation(void)
3010 {
3011 	return true;
3012 }
3013 EXPORT_SYMBOL_GPL(filemap_allow_speculation);
3014 #endif
3015 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3016 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3017 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3018 {
3019 	struct vm_area_struct *vma = vmf->vma;
3020 	struct file *file = vma->vm_file;
3021 	struct address_space *mapping = file->f_mapping;
3022 	pgoff_t last_pgoff = start_pgoff;
3023 	unsigned long addr;
3024 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3025 	struct page *head, *page;
3026 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3027 	vm_fault_t ret = (vmf->flags & FAULT_FLAG_SPECULATIVE) ?
3028 		VM_FAULT_RETRY : 0;
3029 
3030 	rcu_read_lock();
3031 	head = first_map_page(mapping, &xas, end_pgoff);
3032 	if (!head)
3033 		goto out;
3034 
3035 	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3036 	    filemap_map_pmd(vmf, head)) {
3037 		ret = VM_FAULT_NOPAGE;
3038 		goto out;
3039 	}
3040 
3041 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3042 	if (!pte_map_lock_addr(vmf, addr)) {
3043 		unlock_page(head);
3044 		put_page(head);
3045 		goto out;
3046 	}
3047 
3048 	do {
3049 		page = find_subpage(head, xas.xa_index);
3050 		if (PageHWPoison(page))
3051 			goto unlock;
3052 
3053 		if (mmap_miss > 0)
3054 			mmap_miss--;
3055 
3056 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3057 		vmf->pte += xas.xa_index - last_pgoff;
3058 		last_pgoff = xas.xa_index;
3059 
3060 		if (!pte_none(*vmf->pte))
3061 			goto unlock;
3062 
3063 		/* We're about to handle the fault */
3064 		if (vmf->address == addr)
3065 			ret = VM_FAULT_NOPAGE;
3066 
3067 		do_set_pte(vmf, page, addr);
3068 		/* no need to invalidate: a not-present page won't be cached */
3069 		update_mmu_cache(vma, addr, vmf->pte);
3070 		unlock_page(head);
3071 		continue;
3072 unlock:
3073 		unlock_page(head);
3074 		put_page(head);
3075 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3076 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 out:
3078 	rcu_read_unlock();
3079 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL(filemap_map_pages);
3083 
filemap_page_mkwrite(struct vm_fault * vmf)3084 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3085 {
3086 	struct page *page = vmf->page;
3087 	struct inode *inode = file_inode(vmf->vma->vm_file);
3088 	vm_fault_t ret = VM_FAULT_LOCKED;
3089 
3090 	sb_start_pagefault(inode->i_sb);
3091 	file_update_time(vmf->vma->vm_file);
3092 	lock_page(page);
3093 	if (page->mapping != inode->i_mapping) {
3094 		unlock_page(page);
3095 		ret = VM_FAULT_NOPAGE;
3096 		goto out;
3097 	}
3098 	/*
3099 	 * We mark the page dirty already here so that when freeze is in
3100 	 * progress, we are guaranteed that writeback during freezing will
3101 	 * see the dirty page and writeprotect it again.
3102 	 */
3103 	set_page_dirty(page);
3104 	wait_for_stable_page(page);
3105 out:
3106 	sb_end_pagefault(inode->i_sb);
3107 	return ret;
3108 }
3109 
3110 const struct vm_operations_struct generic_file_vm_ops = {
3111 	.fault		= filemap_fault,
3112 	.map_pages	= filemap_map_pages,
3113 	.page_mkwrite	= filemap_page_mkwrite,
3114 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3115 	.allow_speculation = filemap_allow_speculation,
3116 #endif
3117 };
3118 
3119 /* This is used for a general mmap of a disk file */
3120 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3121 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3122 {
3123 	struct address_space *mapping = file->f_mapping;
3124 
3125 	if (!mapping->a_ops->readpage)
3126 		return -ENOEXEC;
3127 	file_accessed(file);
3128 	vma->vm_ops = &generic_file_vm_ops;
3129 	return 0;
3130 }
3131 
3132 /*
3133  * This is for filesystems which do not implement ->writepage.
3134  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3135 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3136 {
3137 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3138 		return -EINVAL;
3139 	return generic_file_mmap(file, vma);
3140 }
3141 #else
filemap_page_mkwrite(struct vm_fault * vmf)3142 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3143 {
3144 	return VM_FAULT_SIGBUS;
3145 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3146 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3147 {
3148 	return -ENOSYS;
3149 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3150 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3151 {
3152 	return -ENOSYS;
3153 }
3154 #endif /* CONFIG_MMU */
3155 
3156 EXPORT_SYMBOL(filemap_page_mkwrite);
3157 EXPORT_SYMBOL(generic_file_mmap);
3158 EXPORT_SYMBOL(generic_file_readonly_mmap);
3159 
wait_on_page_read(struct page * page)3160 static struct page *wait_on_page_read(struct page *page)
3161 {
3162 	if (!IS_ERR(page)) {
3163 		wait_on_page_locked(page);
3164 		if (!PageUptodate(page)) {
3165 			put_page(page);
3166 			page = ERR_PTR(-EIO);
3167 		}
3168 	}
3169 	return page;
3170 }
3171 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)3172 static struct page *do_read_cache_page(struct address_space *mapping,
3173 				pgoff_t index,
3174 				int (*filler)(void *, struct page *),
3175 				void *data,
3176 				gfp_t gfp)
3177 {
3178 	struct page *page;
3179 	int err;
3180 repeat:
3181 	page = find_get_page(mapping, index);
3182 	if (!page) {
3183 		page = __page_cache_alloc(gfp);
3184 		if (!page)
3185 			return ERR_PTR(-ENOMEM);
3186 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3187 		if (unlikely(err)) {
3188 			put_page(page);
3189 			if (err == -EEXIST)
3190 				goto repeat;
3191 			/* Presumably ENOMEM for xarray node */
3192 			return ERR_PTR(err);
3193 		}
3194 
3195 filler:
3196 		if (filler)
3197 			err = filler(data, page);
3198 		else
3199 			err = mapping->a_ops->readpage(data, page);
3200 
3201 		if (err < 0) {
3202 			put_page(page);
3203 			return ERR_PTR(err);
3204 		}
3205 
3206 		page = wait_on_page_read(page);
3207 		if (IS_ERR(page))
3208 			return page;
3209 		goto out;
3210 	}
3211 	if (PageUptodate(page))
3212 		goto out;
3213 
3214 	/*
3215 	 * Page is not up to date and may be locked due to one of the following
3216 	 * case a: Page is being filled and the page lock is held
3217 	 * case b: Read/write error clearing the page uptodate status
3218 	 * case c: Truncation in progress (page locked)
3219 	 * case d: Reclaim in progress
3220 	 *
3221 	 * Case a, the page will be up to date when the page is unlocked.
3222 	 *    There is no need to serialise on the page lock here as the page
3223 	 *    is pinned so the lock gives no additional protection. Even if the
3224 	 *    page is truncated, the data is still valid if PageUptodate as
3225 	 *    it's a race vs truncate race.
3226 	 * Case b, the page will not be up to date
3227 	 * Case c, the page may be truncated but in itself, the data may still
3228 	 *    be valid after IO completes as it's a read vs truncate race. The
3229 	 *    operation must restart if the page is not uptodate on unlock but
3230 	 *    otherwise serialising on page lock to stabilise the mapping gives
3231 	 *    no additional guarantees to the caller as the page lock is
3232 	 *    released before return.
3233 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3234 	 *    will be a race with remove_mapping that determines if the mapping
3235 	 *    is valid on unlock but otherwise the data is valid and there is
3236 	 *    no need to serialise with page lock.
3237 	 *
3238 	 * As the page lock gives no additional guarantee, we optimistically
3239 	 * wait on the page to be unlocked and check if it's up to date and
3240 	 * use the page if it is. Otherwise, the page lock is required to
3241 	 * distinguish between the different cases. The motivation is that we
3242 	 * avoid spurious serialisations and wakeups when multiple processes
3243 	 * wait on the same page for IO to complete.
3244 	 */
3245 	wait_on_page_locked(page);
3246 	if (PageUptodate(page))
3247 		goto out;
3248 
3249 	/* Distinguish between all the cases under the safety of the lock */
3250 	lock_page(page);
3251 
3252 	/* Case c or d, restart the operation */
3253 	if (!page->mapping) {
3254 		unlock_page(page);
3255 		put_page(page);
3256 		goto repeat;
3257 	}
3258 
3259 	/* Someone else locked and filled the page in a very small window */
3260 	if (PageUptodate(page)) {
3261 		unlock_page(page);
3262 		goto out;
3263 	}
3264 
3265 	/*
3266 	 * A previous I/O error may have been due to temporary
3267 	 * failures.
3268 	 * Clear page error before actual read, PG_error will be
3269 	 * set again if read page fails.
3270 	 */
3271 	ClearPageError(page);
3272 	goto filler;
3273 
3274 out:
3275 	mark_page_accessed(page);
3276 	return page;
3277 }
3278 
3279 /**
3280  * read_cache_page - read into page cache, fill it if needed
3281  * @mapping:	the page's address_space
3282  * @index:	the page index
3283  * @filler:	function to perform the read
3284  * @data:	first arg to filler(data, page) function, often left as NULL
3285  *
3286  * Read into the page cache. If a page already exists, and PageUptodate() is
3287  * not set, try to fill the page and wait for it to become unlocked.
3288  *
3289  * If the page does not get brought uptodate, return -EIO.
3290  *
3291  * Return: up to date page on success, ERR_PTR() on failure.
3292  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)3293 struct page *read_cache_page(struct address_space *mapping,
3294 				pgoff_t index,
3295 				int (*filler)(void *, struct page *),
3296 				void *data)
3297 {
3298 	return do_read_cache_page(mapping, index, filler, data,
3299 			mapping_gfp_mask(mapping));
3300 }
3301 EXPORT_SYMBOL(read_cache_page);
3302 
3303 /**
3304  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3305  * @mapping:	the page's address_space
3306  * @index:	the page index
3307  * @gfp:	the page allocator flags to use if allocating
3308  *
3309  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3310  * any new page allocations done using the specified allocation flags.
3311  *
3312  * If the page does not get brought uptodate, return -EIO.
3313  *
3314  * Return: up to date page on success, ERR_PTR() on failure.
3315  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3316 struct page *read_cache_page_gfp(struct address_space *mapping,
3317 				pgoff_t index,
3318 				gfp_t gfp)
3319 {
3320 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3321 }
3322 EXPORT_SYMBOL(read_cache_page_gfp);
3323 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3324 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3325 				loff_t pos, unsigned len, unsigned flags,
3326 				struct page **pagep, void **fsdata)
3327 {
3328 	const struct address_space_operations *aops = mapping->a_ops;
3329 
3330 	return aops->write_begin(file, mapping, pos, len, flags,
3331 							pagep, fsdata);
3332 }
3333 EXPORT_SYMBOL(pagecache_write_begin);
3334 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3335 int pagecache_write_end(struct file *file, struct address_space *mapping,
3336 				loff_t pos, unsigned len, unsigned copied,
3337 				struct page *page, void *fsdata)
3338 {
3339 	const struct address_space_operations *aops = mapping->a_ops;
3340 
3341 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3342 }
3343 EXPORT_SYMBOL(pagecache_write_end);
3344 
3345 /*
3346  * Warn about a page cache invalidation failure during a direct I/O write.
3347  */
dio_warn_stale_pagecache(struct file * filp)3348 void dio_warn_stale_pagecache(struct file *filp)
3349 {
3350 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3351 	char pathname[128];
3352 	struct inode *inode = file_inode(filp);
3353 	char *path;
3354 
3355 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3356 	if (__ratelimit(&_rs)) {
3357 		path = file_path(filp, pathname, sizeof(pathname));
3358 		if (IS_ERR(path))
3359 			path = "(unknown)";
3360 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3361 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3362 			current->comm);
3363 	}
3364 }
3365 
3366 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3367 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3368 {
3369 	struct file	*file = iocb->ki_filp;
3370 	struct address_space *mapping = file->f_mapping;
3371 	struct inode	*inode = mapping->host;
3372 	loff_t		pos = iocb->ki_pos;
3373 	ssize_t		written;
3374 	size_t		write_len;
3375 	pgoff_t		end;
3376 
3377 	write_len = iov_iter_count(from);
3378 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3379 
3380 	if (iocb->ki_flags & IOCB_NOWAIT) {
3381 		/* If there are pages to writeback, return */
3382 		if (filemap_range_has_page(inode->i_mapping, pos,
3383 					   pos + write_len - 1))
3384 			return -EAGAIN;
3385 	} else {
3386 		written = filemap_write_and_wait_range(mapping, pos,
3387 							pos + write_len - 1);
3388 		if (written)
3389 			goto out;
3390 	}
3391 
3392 	/*
3393 	 * After a write we want buffered reads to be sure to go to disk to get
3394 	 * the new data.  We invalidate clean cached page from the region we're
3395 	 * about to write.  We do this *before* the write so that we can return
3396 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3397 	 */
3398 	written = invalidate_inode_pages2_range(mapping,
3399 					pos >> PAGE_SHIFT, end);
3400 	/*
3401 	 * If a page can not be invalidated, return 0 to fall back
3402 	 * to buffered write.
3403 	 */
3404 	if (written) {
3405 		if (written == -EBUSY)
3406 			return 0;
3407 		goto out;
3408 	}
3409 
3410 	written = mapping->a_ops->direct_IO(iocb, from);
3411 
3412 	/*
3413 	 * Finally, try again to invalidate clean pages which might have been
3414 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3415 	 * if the source of the write was an mmap'ed region of the file
3416 	 * we're writing.  Either one is a pretty crazy thing to do,
3417 	 * so we don't support it 100%.  If this invalidation
3418 	 * fails, tough, the write still worked...
3419 	 *
3420 	 * Most of the time we do not need this since dio_complete() will do
3421 	 * the invalidation for us. However there are some file systems that
3422 	 * do not end up with dio_complete() being called, so let's not break
3423 	 * them by removing it completely.
3424 	 *
3425 	 * Noticeable example is a blkdev_direct_IO().
3426 	 *
3427 	 * Skip invalidation for async writes or if mapping has no pages.
3428 	 */
3429 	if (written > 0 && mapping->nrpages &&
3430 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3431 		dio_warn_stale_pagecache(file);
3432 
3433 	if (written > 0) {
3434 		pos += written;
3435 		write_len -= written;
3436 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3437 			i_size_write(inode, pos);
3438 			mark_inode_dirty(inode);
3439 		}
3440 		iocb->ki_pos = pos;
3441 	}
3442 	iov_iter_revert(from, write_len - iov_iter_count(from));
3443 out:
3444 	return written;
3445 }
3446 EXPORT_SYMBOL(generic_file_direct_write);
3447 
3448 /*
3449  * Find or create a page at the given pagecache position. Return the locked
3450  * page. This function is specifically for buffered writes.
3451  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3452 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3453 					pgoff_t index, unsigned flags)
3454 {
3455 	struct page *page;
3456 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3457 
3458 	if (flags & AOP_FLAG_NOFS)
3459 		fgp_flags |= FGP_NOFS;
3460 
3461 	page = pagecache_get_page(mapping, index, fgp_flags,
3462 			mapping_gfp_mask(mapping));
3463 	if (page)
3464 		wait_for_stable_page(page);
3465 
3466 	return page;
3467 }
3468 EXPORT_SYMBOL(grab_cache_page_write_begin);
3469 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3470 ssize_t generic_perform_write(struct file *file,
3471 				struct iov_iter *i, loff_t pos)
3472 {
3473 	struct address_space *mapping = file->f_mapping;
3474 	const struct address_space_operations *a_ops = mapping->a_ops;
3475 	long status = 0;
3476 	ssize_t written = 0;
3477 	unsigned int flags = 0;
3478 
3479 	do {
3480 		struct page *page;
3481 		unsigned long offset;	/* Offset into pagecache page */
3482 		unsigned long bytes;	/* Bytes to write to page */
3483 		size_t copied;		/* Bytes copied from user */
3484 		void *fsdata = NULL;
3485 
3486 		offset = (pos & (PAGE_SIZE - 1));
3487 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3488 						iov_iter_count(i));
3489 
3490 again:
3491 		/*
3492 		 * Bring in the user page that we will copy from _first_.
3493 		 * Otherwise there's a nasty deadlock on copying from the
3494 		 * same page as we're writing to, without it being marked
3495 		 * up-to-date.
3496 		 *
3497 		 * Not only is this an optimisation, but it is also required
3498 		 * to check that the address is actually valid, when atomic
3499 		 * usercopies are used, below.
3500 		 */
3501 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3502 			status = -EFAULT;
3503 			break;
3504 		}
3505 
3506 		if (fatal_signal_pending(current)) {
3507 			status = -EINTR;
3508 			break;
3509 		}
3510 
3511 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3512 						&page, &fsdata);
3513 		if (unlikely(status < 0))
3514 			break;
3515 
3516 		if (mapping_writably_mapped(mapping))
3517 			flush_dcache_page(page);
3518 
3519 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3520 		flush_dcache_page(page);
3521 
3522 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3523 						page, fsdata);
3524 		if (unlikely(status < 0))
3525 			break;
3526 		copied = status;
3527 
3528 		cond_resched();
3529 
3530 		iov_iter_advance(i, copied);
3531 		if (unlikely(copied == 0)) {
3532 			/*
3533 			 * If we were unable to copy any data at all, we must
3534 			 * fall back to a single segment length write.
3535 			 *
3536 			 * If we didn't fallback here, we could livelock
3537 			 * because not all segments in the iov can be copied at
3538 			 * once without a pagefault.
3539 			 */
3540 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3541 						iov_iter_single_seg_count(i));
3542 			goto again;
3543 		}
3544 		pos += copied;
3545 		written += copied;
3546 
3547 		balance_dirty_pages_ratelimited(mapping);
3548 	} while (iov_iter_count(i));
3549 
3550 	return written ? written : status;
3551 }
3552 EXPORT_SYMBOL(generic_perform_write);
3553 
3554 /**
3555  * __generic_file_write_iter - write data to a file
3556  * @iocb:	IO state structure (file, offset, etc.)
3557  * @from:	iov_iter with data to write
3558  *
3559  * This function does all the work needed for actually writing data to a
3560  * file. It does all basic checks, removes SUID from the file, updates
3561  * modification times and calls proper subroutines depending on whether we
3562  * do direct IO or a standard buffered write.
3563  *
3564  * It expects i_mutex to be grabbed unless we work on a block device or similar
3565  * object which does not need locking at all.
3566  *
3567  * This function does *not* take care of syncing data in case of O_SYNC write.
3568  * A caller has to handle it. This is mainly due to the fact that we want to
3569  * avoid syncing under i_mutex.
3570  *
3571  * Return:
3572  * * number of bytes written, even for truncated writes
3573  * * negative error code if no data has been written at all
3574  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3575 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3576 {
3577 	struct file *file = iocb->ki_filp;
3578 	struct address_space * mapping = file->f_mapping;
3579 	struct inode 	*inode = mapping->host;
3580 	ssize_t		written = 0;
3581 	ssize_t		err;
3582 	ssize_t		status;
3583 
3584 	/* We can write back this queue in page reclaim */
3585 	current->backing_dev_info = inode_to_bdi(inode);
3586 	err = file_remove_privs(file);
3587 	if (err)
3588 		goto out;
3589 
3590 	err = file_update_time(file);
3591 	if (err)
3592 		goto out;
3593 
3594 	if (iocb->ki_flags & IOCB_DIRECT) {
3595 		loff_t pos, endbyte;
3596 
3597 		written = generic_file_direct_write(iocb, from);
3598 		/*
3599 		 * If the write stopped short of completing, fall back to
3600 		 * buffered writes.  Some filesystems do this for writes to
3601 		 * holes, for example.  For DAX files, a buffered write will
3602 		 * not succeed (even if it did, DAX does not handle dirty
3603 		 * page-cache pages correctly).
3604 		 */
3605 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3606 			goto out;
3607 
3608 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3609 		/*
3610 		 * If generic_perform_write() returned a synchronous error
3611 		 * then we want to return the number of bytes which were
3612 		 * direct-written, or the error code if that was zero.  Note
3613 		 * that this differs from normal direct-io semantics, which
3614 		 * will return -EFOO even if some bytes were written.
3615 		 */
3616 		if (unlikely(status < 0)) {
3617 			err = status;
3618 			goto out;
3619 		}
3620 		/*
3621 		 * We need to ensure that the page cache pages are written to
3622 		 * disk and invalidated to preserve the expected O_DIRECT
3623 		 * semantics.
3624 		 */
3625 		endbyte = pos + status - 1;
3626 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3627 		if (err == 0) {
3628 			iocb->ki_pos = endbyte + 1;
3629 			written += status;
3630 			invalidate_mapping_pages(mapping,
3631 						 pos >> PAGE_SHIFT,
3632 						 endbyte >> PAGE_SHIFT);
3633 		} else {
3634 			/*
3635 			 * We don't know how much we wrote, so just return
3636 			 * the number of bytes which were direct-written
3637 			 */
3638 		}
3639 	} else {
3640 		written = generic_perform_write(file, from, iocb->ki_pos);
3641 		if (likely(written > 0))
3642 			iocb->ki_pos += written;
3643 	}
3644 out:
3645 	current->backing_dev_info = NULL;
3646 	return written ? written : err;
3647 }
3648 EXPORT_SYMBOL(__generic_file_write_iter);
3649 
3650 /**
3651  * generic_file_write_iter - write data to a file
3652  * @iocb:	IO state structure
3653  * @from:	iov_iter with data to write
3654  *
3655  * This is a wrapper around __generic_file_write_iter() to be used by most
3656  * filesystems. It takes care of syncing the file in case of O_SYNC file
3657  * and acquires i_mutex as needed.
3658  * Return:
3659  * * negative error code if no data has been written at all of
3660  *   vfs_fsync_range() failed for a synchronous write
3661  * * number of bytes written, even for truncated writes
3662  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3663 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3664 {
3665 	struct file *file = iocb->ki_filp;
3666 	struct inode *inode = file->f_mapping->host;
3667 	ssize_t ret;
3668 
3669 	inode_lock(inode);
3670 	ret = generic_write_checks(iocb, from);
3671 	if (ret > 0)
3672 		ret = __generic_file_write_iter(iocb, from);
3673 	inode_unlock(inode);
3674 
3675 	if (ret > 0)
3676 		ret = generic_write_sync(iocb, ret);
3677 	return ret;
3678 }
3679 EXPORT_SYMBOL(generic_file_write_iter);
3680 
3681 /**
3682  * try_to_release_page() - release old fs-specific metadata on a page
3683  *
3684  * @page: the page which the kernel is trying to free
3685  * @gfp_mask: memory allocation flags (and I/O mode)
3686  *
3687  * The address_space is to try to release any data against the page
3688  * (presumably at page->private).
3689  *
3690  * This may also be called if PG_fscache is set on a page, indicating that the
3691  * page is known to the local caching routines.
3692  *
3693  * The @gfp_mask argument specifies whether I/O may be performed to release
3694  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3695  *
3696  * Return: %1 if the release was successful, otherwise return zero.
3697  */
try_to_release_page(struct page * page,gfp_t gfp_mask)3698 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3699 {
3700 	struct address_space * const mapping = page->mapping;
3701 
3702 	BUG_ON(!PageLocked(page));
3703 	if (PageWriteback(page))
3704 		return 0;
3705 
3706 	if (mapping && mapping->a_ops->releasepage)
3707 		return mapping->a_ops->releasepage(page, gfp_mask);
3708 	return try_to_free_buffers(page);
3709 }
3710 
3711 EXPORT_SYMBOL(try_to_release_page);
3712