1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 #undef CREATE_TRACE_POINTS
31 #include <trace/hooks/mm.h>
32 #include "internal.h"
33
34 #include "slab.h"
35
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40
41 #ifdef CONFIG_HARDENED_USERCOPY
42 bool usercopy_fallback __ro_after_init =
43 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
44 module_param(usercopy_fallback, bool, 0400);
45 MODULE_PARM_DESC(usercopy_fallback,
46 "WARN instead of reject usercopy whitelist violations");
47 #endif
48
49 static LIST_HEAD(slab_caches_to_rcu_destroy);
50 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
51 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
52 slab_caches_to_rcu_destroy_workfn);
53
54 /*
55 * Set of flags that will prevent slab merging
56 */
57 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
58 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
59 SLAB_FAILSLAB | kasan_never_merge())
60
61 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
62 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
63
64 /*
65 * Merge control. If this is set then no merging of slab caches will occur.
66 */
67 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
68
setup_slab_nomerge(char * str)69 static int __init setup_slab_nomerge(char *str)
70 {
71 slab_nomerge = true;
72 return 1;
73 }
74
75 #ifdef CONFIG_SLUB
76 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
77 #endif
78
79 __setup("slab_nomerge", setup_slab_nomerge);
80
81 /*
82 * Determine the size of a slab object
83 */
kmem_cache_size(struct kmem_cache * s)84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89
90 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 return -EINVAL;
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
99 return 0;
100 }
101 #else
kmem_cache_sanity_check(const char * name,unsigned int size)102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 return 0;
105 }
106 #endif
107
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 size_t i;
111
112 for (i = 0; i < nr; i++) {
113 if (s)
114 kmem_cache_free(s, p[i]);
115 else
116 kfree(p[i]);
117 }
118 }
119
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 void **p)
122 {
123 size_t i;
124
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
127 if (!x) {
128 __kmem_cache_free_bulk(s, i, p);
129 return 0;
130 }
131 }
132 return i;
133 }
134
135 /*
136 * Figure out what the alignment of the objects will be given a set of
137 * flags, a user specified alignment and the size of the objects.
138 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)139 static unsigned int calculate_alignment(slab_flags_t flags,
140 unsigned int align, unsigned int size)
141 {
142 /*
143 * If the user wants hardware cache aligned objects then follow that
144 * suggestion if the object is sufficiently large.
145 *
146 * The hardware cache alignment cannot override the specified
147 * alignment though. If that is greater then use it.
148 */
149 if (flags & SLAB_HWCACHE_ALIGN) {
150 unsigned int ralign;
151
152 ralign = cache_line_size();
153 while (size <= ralign / 2)
154 ralign /= 2;
155 align = max(align, ralign);
156 }
157
158 align = max(align, arch_slab_minalign());
159
160 return ALIGN(align, sizeof(void *));
161 }
162
163 /*
164 * Find a mergeable slab cache
165 */
slab_unmergeable(struct kmem_cache * s)166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 return 1;
170
171 if (s->ctor)
172 return 1;
173
174 if (s->usersize)
175 return 1;
176
177 /*
178 * We may have set a slab to be unmergeable during bootstrap.
179 */
180 if (s->refcount < 0)
181 return 1;
182
183 return 0;
184 }
185
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 struct kmem_cache *s;
190
191 if (slab_nomerge)
192 return NULL;
193
194 if (ctor)
195 return NULL;
196
197 size = ALIGN(size, sizeof(void *));
198 align = calculate_alignment(flags, align, size);
199 size = ALIGN(size, align);
200 flags = kmem_cache_flags(size, flags, name);
201
202 if (flags & SLAB_NEVER_MERGE)
203 return NULL;
204
205 list_for_each_entry_reverse(s, &slab_caches, list) {
206 if (slab_unmergeable(s))
207 continue;
208
209 if (size > s->size)
210 continue;
211
212 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 continue;
214 /*
215 * Check if alignment is compatible.
216 * Courtesy of Adrian Drzewiecki
217 */
218 if ((s->size & ~(align - 1)) != s->size)
219 continue;
220
221 if (s->size - size >= sizeof(void *))
222 continue;
223
224 if (IS_ENABLED(CONFIG_SLAB) && align &&
225 (align > s->align || s->align % align))
226 continue;
227
228 return s;
229 }
230 return NULL;
231 }
232
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)233 static struct kmem_cache *create_cache(const char *name,
234 unsigned int object_size, unsigned int align,
235 slab_flags_t flags, unsigned int useroffset,
236 unsigned int usersize, void (*ctor)(void *),
237 struct kmem_cache *root_cache)
238 {
239 struct kmem_cache *s;
240 int err;
241
242 if (WARN_ON(useroffset + usersize > object_size))
243 useroffset = usersize = 0;
244
245 err = -ENOMEM;
246 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 if (!s)
248 goto out;
249
250 s->name = name;
251 s->size = s->object_size = object_size;
252 s->align = align;
253 s->ctor = ctor;
254 s->useroffset = useroffset;
255 s->usersize = usersize;
256
257 err = __kmem_cache_create(s, flags);
258 if (err)
259 goto out_free_cache;
260
261 s->refcount = 1;
262 list_add(&s->list, &slab_caches);
263 out:
264 if (err)
265 return ERR_PTR(err);
266 return s;
267
268 out_free_cache:
269 kmem_cache_free(kmem_cache, s);
270 goto out;
271 }
272
273 /**
274 * kmem_cache_create_usercopy - Create a cache with a region suitable
275 * for copying to userspace
276 * @name: A string which is used in /proc/slabinfo to identify this cache.
277 * @size: The size of objects to be created in this cache.
278 * @align: The required alignment for the objects.
279 * @flags: SLAB flags
280 * @useroffset: Usercopy region offset
281 * @usersize: Usercopy region size
282 * @ctor: A constructor for the objects.
283 *
284 * Cannot be called within a interrupt, but can be interrupted.
285 * The @ctor is run when new pages are allocated by the cache.
286 *
287 * The flags are
288 *
289 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290 * to catch references to uninitialised memory.
291 *
292 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293 * for buffer overruns.
294 *
295 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296 * cacheline. This can be beneficial if you're counting cycles as closely
297 * as davem.
298 *
299 * Return: a pointer to the cache on success, NULL on failure.
300 */
301 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))302 kmem_cache_create_usercopy(const char *name,
303 unsigned int size, unsigned int align,
304 slab_flags_t flags,
305 unsigned int useroffset, unsigned int usersize,
306 void (*ctor)(void *))
307 {
308 struct kmem_cache *s = NULL;
309 const char *cache_name;
310 int err;
311
312 get_online_cpus();
313 get_online_mems();
314
315 #ifdef CONFIG_SLUB_DEBUG
316 /*
317 * If no slub_debug was enabled globally, the static key is not yet
318 * enabled by setup_slub_debug(). Enable it if the cache is being
319 * created with any of the debugging flags passed explicitly.
320 */
321 if (flags & SLAB_DEBUG_FLAGS)
322 static_branch_enable(&slub_debug_enabled);
323 #endif
324
325 mutex_lock(&slab_mutex);
326
327 err = kmem_cache_sanity_check(name, size);
328 if (err) {
329 goto out_unlock;
330 }
331
332 /* Refuse requests with allocator specific flags */
333 if (flags & ~SLAB_FLAGS_PERMITTED) {
334 err = -EINVAL;
335 goto out_unlock;
336 }
337
338 /*
339 * Some allocators will constraint the set of valid flags to a subset
340 * of all flags. We expect them to define CACHE_CREATE_MASK in this
341 * case, and we'll just provide them with a sanitized version of the
342 * passed flags.
343 */
344 flags &= CACHE_CREATE_MASK;
345
346 /* Fail closed on bad usersize of useroffset values. */
347 if (WARN_ON(!usersize && useroffset) ||
348 WARN_ON(size < usersize || size - usersize < useroffset))
349 usersize = useroffset = 0;
350
351 if (!usersize)
352 s = __kmem_cache_alias(name, size, align, flags, ctor);
353 if (s)
354 goto out_unlock;
355
356 cache_name = kstrdup_const(name, GFP_KERNEL);
357 if (!cache_name) {
358 err = -ENOMEM;
359 goto out_unlock;
360 }
361
362 s = create_cache(cache_name, size,
363 calculate_alignment(flags, align, size),
364 flags, useroffset, usersize, ctor, NULL);
365 if (IS_ERR(s)) {
366 err = PTR_ERR(s);
367 kfree_const(cache_name);
368 }
369
370 out_unlock:
371 mutex_unlock(&slab_mutex);
372
373 put_online_mems();
374 put_online_cpus();
375
376 if (err) {
377 if (flags & SLAB_PANIC)
378 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
379 name, err);
380 else {
381 pr_warn("kmem_cache_create(%s) failed with error %d\n",
382 name, err);
383 dump_stack();
384 }
385 return NULL;
386 }
387 return s;
388 }
389 EXPORT_SYMBOL(kmem_cache_create_usercopy);
390
391 /**
392 * kmem_cache_create - Create a cache.
393 * @name: A string which is used in /proc/slabinfo to identify this cache.
394 * @size: The size of objects to be created in this cache.
395 * @align: The required alignment for the objects.
396 * @flags: SLAB flags
397 * @ctor: A constructor for the objects.
398 *
399 * Cannot be called within a interrupt, but can be interrupted.
400 * The @ctor is run when new pages are allocated by the cache.
401 *
402 * The flags are
403 *
404 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
405 * to catch references to uninitialised memory.
406 *
407 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
408 * for buffer overruns.
409 *
410 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
411 * cacheline. This can be beneficial if you're counting cycles as closely
412 * as davem.
413 *
414 * Return: a pointer to the cache on success, NULL on failure.
415 */
416 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))417 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
418 slab_flags_t flags, void (*ctor)(void *))
419 {
420 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
421 ctor);
422 }
423 EXPORT_SYMBOL(kmem_cache_create);
424
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)425 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
426 {
427 LIST_HEAD(to_destroy);
428 struct kmem_cache *s, *s2;
429
430 /*
431 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
432 * @slab_caches_to_rcu_destroy list. The slab pages are freed
433 * through RCU and the associated kmem_cache are dereferenced
434 * while freeing the pages, so the kmem_caches should be freed only
435 * after the pending RCU operations are finished. As rcu_barrier()
436 * is a pretty slow operation, we batch all pending destructions
437 * asynchronously.
438 */
439 mutex_lock(&slab_mutex);
440 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
441 mutex_unlock(&slab_mutex);
442
443 if (list_empty(&to_destroy))
444 return;
445
446 rcu_barrier();
447
448 list_for_each_entry_safe(s, s2, &to_destroy, list) {
449 debugfs_slab_release(s);
450 kfence_shutdown_cache(s);
451 #ifdef SLAB_SUPPORTS_SYSFS
452 sysfs_slab_release(s);
453 #else
454 slab_kmem_cache_release(s);
455 #endif
456 }
457 }
458
shutdown_cache(struct kmem_cache * s)459 static int shutdown_cache(struct kmem_cache *s)
460 {
461 /* free asan quarantined objects */
462 kasan_cache_shutdown(s);
463
464 if (__kmem_cache_shutdown(s) != 0)
465 return -EBUSY;
466
467 list_del(&s->list);
468
469 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
470 #ifdef SLAB_SUPPORTS_SYSFS
471 sysfs_slab_unlink(s);
472 #endif
473 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
474 schedule_work(&slab_caches_to_rcu_destroy_work);
475 } else {
476 kfence_shutdown_cache(s);
477 debugfs_slab_release(s);
478 #ifdef SLAB_SUPPORTS_SYSFS
479 sysfs_slab_unlink(s);
480 sysfs_slab_release(s);
481 #else
482 slab_kmem_cache_release(s);
483 #endif
484 }
485
486 return 0;
487 }
488
slab_kmem_cache_release(struct kmem_cache * s)489 void slab_kmem_cache_release(struct kmem_cache *s)
490 {
491 __kmem_cache_release(s);
492 kfree_const(s->name);
493 kmem_cache_free(kmem_cache, s);
494 }
495
kmem_cache_destroy(struct kmem_cache * s)496 void kmem_cache_destroy(struct kmem_cache *s)
497 {
498 int err;
499
500 if (unlikely(!s))
501 return;
502
503 get_online_cpus();
504 get_online_mems();
505
506 mutex_lock(&slab_mutex);
507
508 s->refcount--;
509 if (s->refcount)
510 goto out_unlock;
511
512 err = shutdown_cache(s);
513 if (err) {
514 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
515 s->name);
516 dump_stack();
517 }
518 out_unlock:
519 mutex_unlock(&slab_mutex);
520
521 put_online_mems();
522 put_online_cpus();
523 }
524 EXPORT_SYMBOL(kmem_cache_destroy);
525
526 /**
527 * kmem_cache_shrink - Shrink a cache.
528 * @cachep: The cache to shrink.
529 *
530 * Releases as many slabs as possible for a cache.
531 * To help debugging, a zero exit status indicates all slabs were released.
532 *
533 * Return: %0 if all slabs were released, non-zero otherwise
534 */
kmem_cache_shrink(struct kmem_cache * cachep)535 int kmem_cache_shrink(struct kmem_cache *cachep)
536 {
537 int ret;
538
539 get_online_cpus();
540 get_online_mems();
541 kasan_cache_shrink(cachep);
542 ret = __kmem_cache_shrink(cachep);
543 put_online_mems();
544 put_online_cpus();
545 return ret;
546 }
547 EXPORT_SYMBOL(kmem_cache_shrink);
548
slab_is_available(void)549 bool slab_is_available(void)
550 {
551 return slab_state >= UP;
552 }
553
554 #ifndef CONFIG_SLOB
555 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)556 void __init create_boot_cache(struct kmem_cache *s, const char *name,
557 unsigned int size, slab_flags_t flags,
558 unsigned int useroffset, unsigned int usersize)
559 {
560 int err;
561 unsigned int align = ARCH_KMALLOC_MINALIGN;
562
563 s->name = name;
564 s->size = s->object_size = size;
565
566 /*
567 * For power of two sizes, guarantee natural alignment for kmalloc
568 * caches, regardless of SL*B debugging options.
569 */
570 if (is_power_of_2(size))
571 align = max(align, size);
572 s->align = calculate_alignment(flags, align, size);
573
574 s->useroffset = useroffset;
575 s->usersize = usersize;
576
577 err = __kmem_cache_create(s, flags);
578
579 if (err)
580 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
581 name, size, err);
582
583 s->refcount = -1; /* Exempt from merging for now */
584 }
585
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)586 struct kmem_cache *__init create_kmalloc_cache(const char *name,
587 unsigned int size, slab_flags_t flags,
588 unsigned int useroffset, unsigned int usersize)
589 {
590 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
591
592 if (!s)
593 panic("Out of memory when creating slab %s\n", name);
594
595 create_boot_cache(s, name, size, flags, useroffset, usersize);
596 kasan_cache_create_kmalloc(s);
597 list_add(&s->list, &slab_caches);
598 s->refcount = 1;
599 return s;
600 }
601
602 struct kmem_cache *
603 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
604 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
605 EXPORT_SYMBOL(kmalloc_caches);
606
607 /*
608 * Conversion table for small slabs sizes / 8 to the index in the
609 * kmalloc array. This is necessary for slabs < 192 since we have non power
610 * of two cache sizes there. The size of larger slabs can be determined using
611 * fls.
612 */
613 static u8 size_index[24] __ro_after_init = {
614 3, /* 8 */
615 4, /* 16 */
616 5, /* 24 */
617 5, /* 32 */
618 6, /* 40 */
619 6, /* 48 */
620 6, /* 56 */
621 6, /* 64 */
622 1, /* 72 */
623 1, /* 80 */
624 1, /* 88 */
625 1, /* 96 */
626 7, /* 104 */
627 7, /* 112 */
628 7, /* 120 */
629 7, /* 128 */
630 2, /* 136 */
631 2, /* 144 */
632 2, /* 152 */
633 2, /* 160 */
634 2, /* 168 */
635 2, /* 176 */
636 2, /* 184 */
637 2 /* 192 */
638 };
639
size_index_elem(unsigned int bytes)640 static inline unsigned int size_index_elem(unsigned int bytes)
641 {
642 return (bytes - 1) / 8;
643 }
644
645 /*
646 * Find the kmem_cache structure that serves a given size of
647 * allocation
648 */
kmalloc_slab(size_t size,gfp_t flags)649 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
650 {
651 unsigned int index;
652 struct kmem_cache *s = NULL;
653
654 if (size <= 192) {
655 if (!size)
656 return ZERO_SIZE_PTR;
657
658 index = size_index[size_index_elem(size)];
659 } else {
660 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
661 return NULL;
662 index = fls(size - 1);
663 }
664
665 trace_android_vh_kmalloc_slab(index, flags, &s);
666 if (s)
667 return s;
668
669 return kmalloc_caches[kmalloc_type(flags)][index];
670 }
671
672 #ifdef CONFIG_ZONE_DMA
673 #define INIT_KMALLOC_INFO(__size, __short_size) \
674 { \
675 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
676 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
677 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
678 .size = __size, \
679 }
680 #else
681 #define INIT_KMALLOC_INFO(__size, __short_size) \
682 { \
683 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
684 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
685 .size = __size, \
686 }
687 #endif
688
689 /*
690 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
691 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
692 * kmalloc-67108864.
693 */
694 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
695 INIT_KMALLOC_INFO(0, 0),
696 INIT_KMALLOC_INFO(96, 96),
697 INIT_KMALLOC_INFO(192, 192),
698 INIT_KMALLOC_INFO(8, 8),
699 INIT_KMALLOC_INFO(16, 16),
700 INIT_KMALLOC_INFO(32, 32),
701 INIT_KMALLOC_INFO(64, 64),
702 INIT_KMALLOC_INFO(128, 128),
703 INIT_KMALLOC_INFO(256, 256),
704 INIT_KMALLOC_INFO(512, 512),
705 INIT_KMALLOC_INFO(1024, 1k),
706 INIT_KMALLOC_INFO(2048, 2k),
707 INIT_KMALLOC_INFO(4096, 4k),
708 INIT_KMALLOC_INFO(8192, 8k),
709 INIT_KMALLOC_INFO(16384, 16k),
710 INIT_KMALLOC_INFO(32768, 32k),
711 INIT_KMALLOC_INFO(65536, 64k),
712 INIT_KMALLOC_INFO(131072, 128k),
713 INIT_KMALLOC_INFO(262144, 256k),
714 INIT_KMALLOC_INFO(524288, 512k),
715 INIT_KMALLOC_INFO(1048576, 1M),
716 INIT_KMALLOC_INFO(2097152, 2M),
717 INIT_KMALLOC_INFO(4194304, 4M),
718 INIT_KMALLOC_INFO(8388608, 8M),
719 INIT_KMALLOC_INFO(16777216, 16M),
720 INIT_KMALLOC_INFO(33554432, 32M),
721 INIT_KMALLOC_INFO(67108864, 64M)
722 };
723
724 /*
725 * Patch up the size_index table if we have strange large alignment
726 * requirements for the kmalloc array. This is only the case for
727 * MIPS it seems. The standard arches will not generate any code here.
728 *
729 * Largest permitted alignment is 256 bytes due to the way we
730 * handle the index determination for the smaller caches.
731 *
732 * Make sure that nothing crazy happens if someone starts tinkering
733 * around with ARCH_KMALLOC_MINALIGN
734 */
setup_kmalloc_cache_index_table(void)735 void __init setup_kmalloc_cache_index_table(void)
736 {
737 unsigned int i;
738
739 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
740 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
741
742 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
743 unsigned int elem = size_index_elem(i);
744
745 if (elem >= ARRAY_SIZE(size_index))
746 break;
747 size_index[elem] = KMALLOC_SHIFT_LOW;
748 }
749
750 if (KMALLOC_MIN_SIZE >= 64) {
751 /*
752 * The 96 byte size cache is not used if the alignment
753 * is 64 byte.
754 */
755 for (i = 64 + 8; i <= 96; i += 8)
756 size_index[size_index_elem(i)] = 7;
757
758 }
759
760 if (KMALLOC_MIN_SIZE >= 128) {
761 /*
762 * The 192 byte sized cache is not used if the alignment
763 * is 128 byte. Redirect kmalloc to use the 256 byte cache
764 * instead.
765 */
766 for (i = 128 + 8; i <= 192; i += 8)
767 size_index[size_index_elem(i)] = 8;
768 }
769 }
770
771 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)772 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
773 {
774 if (type == KMALLOC_RECLAIM)
775 flags |= SLAB_RECLAIM_ACCOUNT;
776
777 kmalloc_caches[type][idx] = create_kmalloc_cache(
778 kmalloc_info[idx].name[type],
779 kmalloc_info[idx].size, flags, 0,
780 kmalloc_info[idx].size);
781 }
782
783 /*
784 * Create the kmalloc array. Some of the regular kmalloc arrays
785 * may already have been created because they were needed to
786 * enable allocations for slab creation.
787 */
create_kmalloc_caches(slab_flags_t flags)788 void __init create_kmalloc_caches(slab_flags_t flags)
789 {
790 int i;
791 enum kmalloc_cache_type type;
792
793 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
794 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
795 if (!kmalloc_caches[type][i])
796 new_kmalloc_cache(i, type, flags);
797
798 /*
799 * Caches that are not of the two-to-the-power-of size.
800 * These have to be created immediately after the
801 * earlier power of two caches
802 */
803 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
804 !kmalloc_caches[type][1])
805 new_kmalloc_cache(1, type, flags);
806 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
807 !kmalloc_caches[type][2])
808 new_kmalloc_cache(2, type, flags);
809 }
810 }
811
812 /* Kmalloc array is now usable */
813 slab_state = UP;
814
815 #ifdef CONFIG_ZONE_DMA
816 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
817 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
818
819 if (s) {
820 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
821 kmalloc_info[i].name[KMALLOC_DMA],
822 kmalloc_info[i].size,
823 SLAB_CACHE_DMA | flags, 0,
824 kmalloc_info[i].size);
825 }
826 }
827 #endif
828 }
829 #endif /* !CONFIG_SLOB */
830
kmalloc_fix_flags(gfp_t flags)831 gfp_t kmalloc_fix_flags(gfp_t flags)
832 {
833 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
834
835 flags &= ~GFP_SLAB_BUG_MASK;
836 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
837 invalid_mask, &invalid_mask, flags, &flags);
838 dump_stack();
839
840 return flags;
841 }
842
843 /*
844 * To avoid unnecessary overhead, we pass through large allocation requests
845 * directly to the page allocator. We use __GFP_COMP, because we will need to
846 * know the allocation order to free the pages properly in kfree.
847 */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)848 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
849 {
850 void *ret = NULL;
851 struct page *page;
852
853 if (unlikely(flags & GFP_SLAB_BUG_MASK))
854 flags = kmalloc_fix_flags(flags);
855
856 flags |= __GFP_COMP;
857 page = alloc_pages(flags, order);
858 if (likely(page)) {
859 ret = page_address(page);
860 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
861 PAGE_SIZE << order);
862 }
863 ret = kasan_kmalloc_large(ret, size, flags);
864 /* As ret might get tagged, call kmemleak hook after KASAN. */
865 kmemleak_alloc(ret, size, 1, flags);
866 return ret;
867 }
868 EXPORT_SYMBOL(kmalloc_order);
869
870 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)871 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
872 {
873 void *ret = kmalloc_order(size, flags, order);
874 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
875 return ret;
876 }
877 EXPORT_SYMBOL(kmalloc_order_trace);
878 #endif
879
880 #ifdef CONFIG_SLAB_FREELIST_RANDOM
881 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)882 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
883 unsigned int count)
884 {
885 unsigned int rand;
886 unsigned int i;
887
888 for (i = 0; i < count; i++)
889 list[i] = i;
890
891 /* Fisher-Yates shuffle */
892 for (i = count - 1; i > 0; i--) {
893 rand = prandom_u32_state(state);
894 rand %= (i + 1);
895 swap(list[i], list[rand]);
896 }
897 }
898
899 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)900 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
901 gfp_t gfp)
902 {
903 struct rnd_state state;
904
905 if (count < 2 || cachep->random_seq)
906 return 0;
907
908 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
909 if (!cachep->random_seq)
910 return -ENOMEM;
911
912 /* Get best entropy at this stage of boot */
913 prandom_seed_state(&state, get_random_long());
914
915 freelist_randomize(&state, cachep->random_seq, count);
916 return 0;
917 }
918
919 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)920 void cache_random_seq_destroy(struct kmem_cache *cachep)
921 {
922 kfree(cachep->random_seq);
923 cachep->random_seq = NULL;
924 }
925 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
926
927 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
928 #ifdef CONFIG_SLAB
929 #define SLABINFO_RIGHTS (0600)
930 #else
931 #define SLABINFO_RIGHTS (0400)
932 #endif
933
print_slabinfo_header(struct seq_file * m)934 static void print_slabinfo_header(struct seq_file *m)
935 {
936 /*
937 * Output format version, so at least we can change it
938 * without _too_ many complaints.
939 */
940 #ifdef CONFIG_DEBUG_SLAB
941 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
942 #else
943 seq_puts(m, "slabinfo - version: 2.1\n");
944 #endif
945 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
946 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
947 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
948 #ifdef CONFIG_DEBUG_SLAB
949 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
950 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
951 #endif
952 seq_putc(m, '\n');
953 }
954
slab_start(struct seq_file * m,loff_t * pos)955 void *slab_start(struct seq_file *m, loff_t *pos)
956 {
957 mutex_lock(&slab_mutex);
958 return seq_list_start(&slab_caches, *pos);
959 }
960
slab_next(struct seq_file * m,void * p,loff_t * pos)961 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
962 {
963 return seq_list_next(p, &slab_caches, pos);
964 }
965
slab_stop(struct seq_file * m,void * p)966 void slab_stop(struct seq_file *m, void *p)
967 {
968 mutex_unlock(&slab_mutex);
969 }
970
cache_show(struct kmem_cache * s,struct seq_file * m)971 static void cache_show(struct kmem_cache *s, struct seq_file *m)
972 {
973 struct slabinfo sinfo;
974
975 memset(&sinfo, 0, sizeof(sinfo));
976 get_slabinfo(s, &sinfo);
977
978 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
979 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
980 sinfo.objects_per_slab, (1 << sinfo.cache_order));
981
982 seq_printf(m, " : tunables %4u %4u %4u",
983 sinfo.limit, sinfo.batchcount, sinfo.shared);
984 seq_printf(m, " : slabdata %6lu %6lu %6lu",
985 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
986 slabinfo_show_stats(m, s);
987 seq_putc(m, '\n');
988 }
989
slab_show(struct seq_file * m,void * p)990 static int slab_show(struct seq_file *m, void *p)
991 {
992 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
993
994 if (p == slab_caches.next)
995 print_slabinfo_header(m);
996 cache_show(s, m);
997 return 0;
998 }
999
dump_unreclaimable_slab(void)1000 void dump_unreclaimable_slab(void)
1001 {
1002 struct kmem_cache *s, *s2;
1003 struct slabinfo sinfo;
1004
1005 /*
1006 * Here acquiring slab_mutex is risky since we don't prefer to get
1007 * sleep in oom path. But, without mutex hold, it may introduce a
1008 * risk of crash.
1009 * Use mutex_trylock to protect the list traverse, dump nothing
1010 * without acquiring the mutex.
1011 */
1012 if (!mutex_trylock(&slab_mutex)) {
1013 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1014 return;
1015 }
1016
1017 pr_info("Unreclaimable slab info:\n");
1018 pr_info("Name Used Total\n");
1019
1020 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1021 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1022 continue;
1023
1024 get_slabinfo(s, &sinfo);
1025
1026 if (sinfo.num_objs > 0)
1027 pr_info("%-17s %10luKB %10luKB\n", s->name,
1028 (sinfo.active_objs * s->size) / 1024,
1029 (sinfo.num_objs * s->size) / 1024);
1030 }
1031 mutex_unlock(&slab_mutex);
1032 }
1033
1034 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1035 int memcg_slab_show(struct seq_file *m, void *p)
1036 {
1037 /*
1038 * Deprecated.
1039 * Please, take a look at tools/cgroup/slabinfo.py .
1040 */
1041 return 0;
1042 }
1043 #endif
1044
1045 /*
1046 * slabinfo_op - iterator that generates /proc/slabinfo
1047 *
1048 * Output layout:
1049 * cache-name
1050 * num-active-objs
1051 * total-objs
1052 * object size
1053 * num-active-slabs
1054 * total-slabs
1055 * num-pages-per-slab
1056 * + further values on SMP and with statistics enabled
1057 */
1058 static const struct seq_operations slabinfo_op = {
1059 .start = slab_start,
1060 .next = slab_next,
1061 .stop = slab_stop,
1062 .show = slab_show,
1063 };
1064
slabinfo_open(struct inode * inode,struct file * file)1065 static int slabinfo_open(struct inode *inode, struct file *file)
1066 {
1067 return seq_open(file, &slabinfo_op);
1068 }
1069
1070 static const struct proc_ops slabinfo_proc_ops = {
1071 .proc_flags = PROC_ENTRY_PERMANENT,
1072 .proc_open = slabinfo_open,
1073 .proc_read = seq_read,
1074 .proc_write = slabinfo_write,
1075 .proc_lseek = seq_lseek,
1076 .proc_release = seq_release,
1077 };
1078
slab_proc_init(void)1079 static int __init slab_proc_init(void)
1080 {
1081 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1082 return 0;
1083 }
1084 module_init(slab_proc_init);
1085
1086 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1087
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1088 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1089 gfp_t flags)
1090 {
1091 void *ret;
1092 size_t ks;
1093
1094 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1095 if (likely(!ZERO_OR_NULL_PTR(p))) {
1096 if (!kasan_check_byte(p))
1097 return NULL;
1098 ks = kfence_ksize(p) ?: __ksize(p);
1099 } else
1100 ks = 0;
1101
1102 /* If the object still fits, repoison it precisely. */
1103 if (ks >= new_size) {
1104 p = kasan_krealloc((void *)p, new_size, flags);
1105 return (void *)p;
1106 }
1107
1108 ret = kmalloc_track_caller(new_size, flags);
1109 if (ret && p) {
1110 /* Disable KASAN checks as the object's redzone is accessed. */
1111 kasan_disable_current();
1112 memcpy(ret, kasan_reset_tag(p), ks);
1113 kasan_enable_current();
1114 }
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * krealloc - reallocate memory. The contents will remain unchanged.
1121 * @p: object to reallocate memory for.
1122 * @new_size: how many bytes of memory are required.
1123 * @flags: the type of memory to allocate.
1124 *
1125 * The contents of the object pointed to are preserved up to the
1126 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1127 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1128 * %NULL pointer, the object pointed to is freed.
1129 *
1130 * Return: pointer to the allocated memory or %NULL in case of error
1131 */
krealloc(const void * p,size_t new_size,gfp_t flags)1132 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1133 {
1134 void *ret;
1135
1136 if (unlikely(!new_size)) {
1137 kfree(p);
1138 return ZERO_SIZE_PTR;
1139 }
1140
1141 ret = __do_krealloc(p, new_size, flags);
1142 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1143 kfree(p);
1144
1145 return ret;
1146 }
1147 EXPORT_SYMBOL(krealloc);
1148
1149 /**
1150 * kfree_sensitive - Clear sensitive information in memory before freeing
1151 * @p: object to free memory of
1152 *
1153 * The memory of the object @p points to is zeroed before freed.
1154 * If @p is %NULL, kfree_sensitive() does nothing.
1155 *
1156 * Note: this function zeroes the whole allocated buffer which can be a good
1157 * deal bigger than the requested buffer size passed to kmalloc(). So be
1158 * careful when using this function in performance sensitive code.
1159 */
kfree_sensitive(const void * p)1160 void kfree_sensitive(const void *p)
1161 {
1162 size_t ks;
1163 void *mem = (void *)p;
1164
1165 ks = ksize(mem);
1166 if (ks)
1167 memzero_explicit(mem, ks);
1168 kfree(mem);
1169 }
1170 EXPORT_SYMBOL(kfree_sensitive);
1171
1172 /**
1173 * ksize - get the actual amount of memory allocated for a given object
1174 * @objp: Pointer to the object
1175 *
1176 * kmalloc may internally round up allocations and return more memory
1177 * than requested. ksize() can be used to determine the actual amount of
1178 * memory allocated. The caller may use this additional memory, even though
1179 * a smaller amount of memory was initially specified with the kmalloc call.
1180 * The caller must guarantee that objp points to a valid object previously
1181 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1182 * must not be freed during the duration of the call.
1183 *
1184 * Return: size of the actual memory used by @objp in bytes
1185 */
ksize(const void * objp)1186 size_t ksize(const void *objp)
1187 {
1188 size_t size;
1189
1190 /*
1191 * We need to first check that the pointer to the object is valid, and
1192 * only then unpoison the memory. The report printed from ksize() is
1193 * more useful, then when it's printed later when the behaviour could
1194 * be undefined due to a potential use-after-free or double-free.
1195 *
1196 * We use kasan_check_byte(), which is supported for the hardware
1197 * tag-based KASAN mode, unlike kasan_check_read/write().
1198 *
1199 * If the pointed to memory is invalid, we return 0 to avoid users of
1200 * ksize() writing to and potentially corrupting the memory region.
1201 *
1202 * We want to perform the check before __ksize(), to avoid potentially
1203 * crashing in __ksize() due to accessing invalid metadata.
1204 */
1205 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1206 return 0;
1207
1208 size = kfence_ksize(objp) ?: __ksize(objp);
1209 /*
1210 * We assume that ksize callers could use whole allocated area,
1211 * so we need to unpoison this area.
1212 */
1213 kasan_unpoison_range(objp, size);
1214 return size;
1215 }
1216 EXPORT_SYMBOL(ksize);
1217
1218 /* Tracepoints definitions. */
1219 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1220 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1221 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1222 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1223 EXPORT_TRACEPOINT_SYMBOL(kfree);
1224 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1225
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1226 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1227 {
1228 if (__should_failslab(s, gfpflags))
1229 return -ENOMEM;
1230 return 0;
1231 }
1232 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1233