• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    Copyright (C) 2002 Richard Henderson
4    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 
6 */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65 
66 #undef CREATE_TRACE_POINTS
67 #include <trace/hooks/module.h>
68 #include <trace/hooks/memory.h>
69 
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73 
74 /*
75  * Modules' sections will be aligned on page boundaries
76  * to ensure complete separation of code and data, but
77  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
78  */
79 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84 
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87 
88 /*
89  * Mutex protects:
90  * 1) List of modules (also safely readable with preempt_disable),
91  * 2) module_use links,
92  * 3) module_addr_min/module_addr_max.
93  * (delete and add uses RCU list operations). */
94 DEFINE_MUTEX(module_mutex);
95 static LIST_HEAD(modules);
96 
97 /* Work queue for freeing init sections in success case */
98 static void do_free_init(struct work_struct *w);
99 static DECLARE_WORK(init_free_wq, do_free_init);
100 static LLIST_HEAD(init_free_list);
101 
102 #ifdef CONFIG_MODULES_TREE_LOOKUP
103 
104 /*
105  * Use a latched RB-tree for __module_address(); this allows us to use
106  * RCU-sched lookups of the address from any context.
107  *
108  * This is conditional on PERF_EVENTS || TRACING because those can really hit
109  * __module_address() hard by doing a lot of stack unwinding; potentially from
110  * NMI context.
111  */
112 
__mod_tree_val(struct latch_tree_node * n)113 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
114 {
115 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
116 
117 	return (unsigned long)layout->base;
118 }
119 
__mod_tree_size(struct latch_tree_node * n)120 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
121 {
122 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
123 
124 	return (unsigned long)layout->size;
125 }
126 
127 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)128 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
129 {
130 	return __mod_tree_val(a) < __mod_tree_val(b);
131 }
132 
133 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)134 mod_tree_comp(void *key, struct latch_tree_node *n)
135 {
136 	unsigned long val = (unsigned long)key;
137 	unsigned long start, end;
138 
139 	start = __mod_tree_val(n);
140 	if (val < start)
141 		return -1;
142 
143 	end = start + __mod_tree_size(n);
144 	if (val >= end)
145 		return 1;
146 
147 	return 0;
148 }
149 
150 static const struct latch_tree_ops mod_tree_ops = {
151 	.less = mod_tree_less,
152 	.comp = mod_tree_comp,
153 };
154 
155 static struct mod_tree_root {
156 	struct latch_tree_root root;
157 	unsigned long addr_min;
158 	unsigned long addr_max;
159 } mod_tree __cacheline_aligned = {
160 	.addr_min = -1UL,
161 };
162 
163 #define module_addr_min mod_tree.addr_min
164 #define module_addr_max mod_tree.addr_max
165 
__mod_tree_insert(struct mod_tree_node * node)166 static noinline void __mod_tree_insert(struct mod_tree_node *node)
167 {
168 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
169 }
170 
__mod_tree_remove(struct mod_tree_node * node)171 static void __mod_tree_remove(struct mod_tree_node *node)
172 {
173 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
174 }
175 
176 /*
177  * These modifications: insert, remove_init and remove; are serialized by the
178  * module_mutex.
179  */
mod_tree_insert(struct module * mod)180 static void mod_tree_insert(struct module *mod)
181 {
182 	mod->core_layout.mtn.mod = mod;
183 	mod->init_layout.mtn.mod = mod;
184 
185 	__mod_tree_insert(&mod->core_layout.mtn);
186 	if (mod->init_layout.size)
187 		__mod_tree_insert(&mod->init_layout.mtn);
188 }
189 
mod_tree_remove_init(struct module * mod)190 static void mod_tree_remove_init(struct module *mod)
191 {
192 	if (mod->init_layout.size)
193 		__mod_tree_remove(&mod->init_layout.mtn);
194 }
195 
mod_tree_remove(struct module * mod)196 static void mod_tree_remove(struct module *mod)
197 {
198 	__mod_tree_remove(&mod->core_layout.mtn);
199 	mod_tree_remove_init(mod);
200 }
201 
mod_find(unsigned long addr)202 static struct module *mod_find(unsigned long addr)
203 {
204 	struct latch_tree_node *ltn;
205 
206 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
207 	if (!ltn)
208 		return NULL;
209 
210 	return container_of(ltn, struct mod_tree_node, node)->mod;
211 }
212 
213 #else /* MODULES_TREE_LOOKUP */
214 
215 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
216 
mod_tree_insert(struct module * mod)217 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)218 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)219 static void mod_tree_remove(struct module *mod) { }
220 
mod_find(unsigned long addr)221 static struct module *mod_find(unsigned long addr)
222 {
223 	struct module *mod;
224 
225 	list_for_each_entry_rcu(mod, &modules, list,
226 				lockdep_is_held(&module_mutex)) {
227 		if (within_module(addr, mod))
228 			return mod;
229 	}
230 
231 	return NULL;
232 }
233 
234 #endif /* MODULES_TREE_LOOKUP */
235 
236 /*
237  * Bounds of module text, for speeding up __module_address.
238  * Protected by module_mutex.
239  */
__mod_update_bounds(void * base,unsigned int size)240 static void __mod_update_bounds(void *base, unsigned int size)
241 {
242 	unsigned long min = (unsigned long)base;
243 	unsigned long max = min + size;
244 
245 	if (min < module_addr_min)
246 		module_addr_min = min;
247 	if (max > module_addr_max)
248 		module_addr_max = max;
249 }
250 
mod_update_bounds(struct module * mod)251 static void mod_update_bounds(struct module *mod)
252 {
253 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
254 	if (mod->init_layout.size)
255 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
256 }
257 
258 #ifdef CONFIG_KGDB_KDB
259 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
260 #endif /* CONFIG_KGDB_KDB */
261 
module_assert_mutex(void)262 static void module_assert_mutex(void)
263 {
264 	lockdep_assert_held(&module_mutex);
265 }
266 
module_assert_mutex_or_preempt(void)267 static void module_assert_mutex_or_preempt(void)
268 {
269 #ifdef CONFIG_LOCKDEP
270 	if (unlikely(!debug_locks))
271 		return;
272 
273 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
274 		!lockdep_is_held(&module_mutex));
275 #endif
276 }
277 
278 #ifdef CONFIG_MODULE_SIG
279 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
280 module_param(sig_enforce, bool_enable_only, 0644);
281 
set_module_sig_enforced(void)282 void set_module_sig_enforced(void)
283 {
284 	sig_enforce = true;
285 }
286 #else
287 #define sig_enforce false
288 #endif
289 
290 /*
291  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
292  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
293  */
is_module_sig_enforced(void)294 bool is_module_sig_enforced(void)
295 {
296 	return sig_enforce;
297 }
298 EXPORT_SYMBOL(is_module_sig_enforced);
299 
300 /* Block module loading/unloading? */
301 int modules_disabled = 0;
302 core_param(nomodule, modules_disabled, bint, 0);
303 
304 /* Waiting for a module to finish initializing? */
305 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
306 
307 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
308 
register_module_notifier(struct notifier_block * nb)309 int register_module_notifier(struct notifier_block *nb)
310 {
311 	return blocking_notifier_chain_register(&module_notify_list, nb);
312 }
313 EXPORT_SYMBOL(register_module_notifier);
314 
unregister_module_notifier(struct notifier_block * nb)315 int unregister_module_notifier(struct notifier_block *nb)
316 {
317 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
318 }
319 EXPORT_SYMBOL(unregister_module_notifier);
320 
321 /*
322  * We require a truly strong try_module_get(): 0 means success.
323  * Otherwise an error is returned due to ongoing or failed
324  * initialization etc.
325  */
strong_try_module_get(struct module * mod)326 static inline int strong_try_module_get(struct module *mod)
327 {
328 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
329 	if (mod && mod->state == MODULE_STATE_COMING)
330 		return -EBUSY;
331 	if (try_module_get(mod))
332 		return 0;
333 	else
334 		return -ENOENT;
335 }
336 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)337 static inline void add_taint_module(struct module *mod, unsigned flag,
338 				    enum lockdep_ok lockdep_ok)
339 {
340 	add_taint(flag, lockdep_ok);
341 	set_bit(flag, &mod->taints);
342 }
343 
344 /*
345  * A thread that wants to hold a reference to a module only while it
346  * is running can call this to safely exit.  nfsd and lockd use this.
347  */
__module_put_and_exit(struct module * mod,long code)348 void __noreturn __module_put_and_exit(struct module *mod, long code)
349 {
350 	module_put(mod);
351 	do_exit(code);
352 }
353 EXPORT_SYMBOL(__module_put_and_exit);
354 
355 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)356 static unsigned int find_sec(const struct load_info *info, const char *name)
357 {
358 	unsigned int i;
359 
360 	for (i = 1; i < info->hdr->e_shnum; i++) {
361 		Elf_Shdr *shdr = &info->sechdrs[i];
362 		/* Alloc bit cleared means "ignore it." */
363 		if ((shdr->sh_flags & SHF_ALLOC)
364 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
365 			return i;
366 	}
367 	return 0;
368 }
369 
370 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)371 static void *section_addr(const struct load_info *info, const char *name)
372 {
373 	/* Section 0 has sh_addr 0. */
374 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
375 }
376 
377 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)378 static void *section_objs(const struct load_info *info,
379 			  const char *name,
380 			  size_t object_size,
381 			  unsigned int *num)
382 {
383 	unsigned int sec = find_sec(info, name);
384 
385 	/* Section 0 has sh_addr 0 and sh_size 0. */
386 	*num = info->sechdrs[sec].sh_size / object_size;
387 	return (void *)info->sechdrs[sec].sh_addr;
388 }
389 
390 /* Provided by the linker */
391 extern const struct kernel_symbol __start___ksymtab[];
392 extern const struct kernel_symbol __stop___ksymtab[];
393 extern const struct kernel_symbol __start___ksymtab_gpl[];
394 extern const struct kernel_symbol __stop___ksymtab_gpl[];
395 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
396 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
397 extern const s32 __start___kcrctab[];
398 extern const s32 __start___kcrctab_gpl[];
399 extern const s32 __start___kcrctab_gpl_future[];
400 #ifdef CONFIG_UNUSED_SYMBOLS
401 extern const struct kernel_symbol __start___ksymtab_unused[];
402 extern const struct kernel_symbol __stop___ksymtab_unused[];
403 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
404 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
405 extern const s32 __start___kcrctab_unused[];
406 extern const s32 __start___kcrctab_unused_gpl[];
407 #endif
408 
409 #ifndef CONFIG_MODVERSIONS
410 #define symversion(base, idx) NULL
411 #else
412 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
413 #endif
414 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)415 static bool each_symbol_in_section(const struct symsearch *arr,
416 				   unsigned int arrsize,
417 				   struct module *owner,
418 				   bool (*fn)(const struct symsearch *syms,
419 					      struct module *owner,
420 					      void *data),
421 				   void *data)
422 {
423 	unsigned int j;
424 
425 	for (j = 0; j < arrsize; j++) {
426 		if (fn(&arr[j], owner, data))
427 			return true;
428 	}
429 
430 	return false;
431 }
432 
433 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)434 static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
435 				    struct module *owner,
436 				    void *data),
437 			 void *data)
438 {
439 	struct module *mod;
440 	static const struct symsearch arr[] = {
441 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
442 		  NOT_GPL_ONLY, false },
443 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
444 		  __start___kcrctab_gpl,
445 		  GPL_ONLY, false },
446 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
447 		  __start___kcrctab_gpl_future,
448 		  WILL_BE_GPL_ONLY, false },
449 #ifdef CONFIG_UNUSED_SYMBOLS
450 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
451 		  __start___kcrctab_unused,
452 		  NOT_GPL_ONLY, true },
453 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
454 		  __start___kcrctab_unused_gpl,
455 		  GPL_ONLY, true },
456 #endif
457 	};
458 
459 	module_assert_mutex_or_preempt();
460 
461 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
462 		return true;
463 
464 	list_for_each_entry_rcu(mod, &modules, list,
465 				lockdep_is_held(&module_mutex)) {
466 		struct symsearch arr[] = {
467 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
468 			  NOT_GPL_ONLY, false },
469 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
470 			  mod->gpl_crcs,
471 			  GPL_ONLY, false },
472 			{ mod->gpl_future_syms,
473 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
474 			  mod->gpl_future_crcs,
475 			  WILL_BE_GPL_ONLY, false },
476 #ifdef CONFIG_UNUSED_SYMBOLS
477 			{ mod->unused_syms,
478 			  mod->unused_syms + mod->num_unused_syms,
479 			  mod->unused_crcs,
480 			  NOT_GPL_ONLY, true },
481 			{ mod->unused_gpl_syms,
482 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
483 			  mod->unused_gpl_crcs,
484 			  GPL_ONLY, true },
485 #endif
486 		};
487 
488 		if (mod->state == MODULE_STATE_UNFORMED)
489 			continue;
490 
491 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
492 			return true;
493 	}
494 	return false;
495 }
496 
497 struct find_symbol_arg {
498 	/* Input */
499 	const char *name;
500 	bool gplok;
501 	bool warn;
502 
503 	/* Output */
504 	struct module *owner;
505 	const s32 *crc;
506 	const struct kernel_symbol *sym;
507 	enum mod_license license;
508 };
509 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)510 static bool check_exported_symbol(const struct symsearch *syms,
511 				  struct module *owner,
512 				  unsigned int symnum, void *data)
513 {
514 	struct find_symbol_arg *fsa = data;
515 
516 	if (!fsa->gplok) {
517 		if (syms->license == GPL_ONLY)
518 			return false;
519 		if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
520 			pr_warn("Symbol %s is being used by a non-GPL module, "
521 				"which will not be allowed in the future\n",
522 				fsa->name);
523 		}
524 	}
525 
526 #ifdef CONFIG_UNUSED_SYMBOLS
527 	if (syms->unused && fsa->warn) {
528 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
529 			"using it.\n", fsa->name);
530 		pr_warn("This symbol will go away in the future.\n");
531 		pr_warn("Please evaluate if this is the right api to use and "
532 			"if it really is, submit a report to the linux kernel "
533 			"mailing list together with submitting your code for "
534 			"inclusion.\n");
535 	}
536 #endif
537 
538 	fsa->owner = owner;
539 	fsa->crc = symversion(syms->crcs, symnum);
540 	fsa->sym = &syms->start[symnum];
541 	fsa->license = syms->license;
542 	return true;
543 }
544 
kernel_symbol_value(const struct kernel_symbol * sym)545 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
546 {
547 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
548 	return (unsigned long)offset_to_ptr(&sym->value_offset);
549 #else
550 	return sym->value;
551 #endif
552 }
553 
kernel_symbol_name(const struct kernel_symbol * sym)554 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
555 {
556 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
557 	return offset_to_ptr(&sym->name_offset);
558 #else
559 	return sym->name;
560 #endif
561 }
562 
kernel_symbol_namespace(const struct kernel_symbol * sym)563 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
564 {
565 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
566 	if (!sym->namespace_offset)
567 		return NULL;
568 	return offset_to_ptr(&sym->namespace_offset);
569 #else
570 	return sym->namespace;
571 #endif
572 }
573 
cmp_name(const void * name,const void * sym)574 static int cmp_name(const void *name, const void *sym)
575 {
576 	return strcmp(name, kernel_symbol_name(sym));
577 }
578 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)579 static bool find_exported_symbol_in_section(const struct symsearch *syms,
580 					    struct module *owner,
581 					    void *data)
582 {
583 	struct find_symbol_arg *fsa = data;
584 	struct kernel_symbol *sym;
585 
586 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
587 			sizeof(struct kernel_symbol), cmp_name);
588 
589 	if (sym != NULL && check_exported_symbol(syms, owner,
590 						 sym - syms->start, data))
591 		return true;
592 
593 	return false;
594 }
595 
596 /* Find an exported symbol and return it, along with, (optional) crc and
597  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,enum mod_license * license,bool gplok,bool warn)598 static const struct kernel_symbol *find_symbol(const char *name,
599 					struct module **owner,
600 					const s32 **crc,
601 					enum mod_license *license,
602 					bool gplok,
603 					bool warn)
604 {
605 	struct find_symbol_arg fsa;
606 
607 	fsa.name = name;
608 	fsa.gplok = gplok;
609 	fsa.warn = warn;
610 
611 	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
612 		if (owner)
613 			*owner = fsa.owner;
614 		if (crc)
615 			*crc = fsa.crc;
616 		if (license)
617 			*license = fsa.license;
618 		return fsa.sym;
619 	}
620 
621 	pr_debug("Failed to find symbol %s\n", name);
622 	return NULL;
623 }
624 
625 /*
626  * Search for module by name: must hold module_mutex (or preempt disabled
627  * for read-only access).
628  */
find_module_all(const char * name,size_t len,bool even_unformed)629 static struct module *find_module_all(const char *name, size_t len,
630 				      bool even_unformed)
631 {
632 	struct module *mod;
633 
634 	module_assert_mutex_or_preempt();
635 
636 	list_for_each_entry_rcu(mod, &modules, list,
637 				lockdep_is_held(&module_mutex)) {
638 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
639 			continue;
640 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
641 			return mod;
642 	}
643 	return NULL;
644 }
645 
find_module(const char * name)646 struct module *find_module(const char *name)
647 {
648 	module_assert_mutex();
649 	return find_module_all(name, strlen(name), false);
650 }
651 
652 #ifdef CONFIG_SMP
653 
mod_percpu(struct module * mod)654 static inline void __percpu *mod_percpu(struct module *mod)
655 {
656 	return mod->percpu;
657 }
658 
percpu_modalloc(struct module * mod,struct load_info * info)659 static int percpu_modalloc(struct module *mod, struct load_info *info)
660 {
661 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
662 	unsigned long align = pcpusec->sh_addralign;
663 
664 	if (!pcpusec->sh_size)
665 		return 0;
666 
667 	if (align > PAGE_SIZE) {
668 		pr_warn("%s: per-cpu alignment %li > %li\n",
669 			mod->name, align, PAGE_SIZE);
670 		align = PAGE_SIZE;
671 	}
672 
673 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
674 	if (!mod->percpu) {
675 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
676 			mod->name, (unsigned long)pcpusec->sh_size);
677 		return -ENOMEM;
678 	}
679 	mod->percpu_size = pcpusec->sh_size;
680 	return 0;
681 }
682 
percpu_modfree(struct module * mod)683 static void percpu_modfree(struct module *mod)
684 {
685 	free_percpu(mod->percpu);
686 }
687 
find_pcpusec(struct load_info * info)688 static unsigned int find_pcpusec(struct load_info *info)
689 {
690 	return find_sec(info, ".data..percpu");
691 }
692 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)693 static void percpu_modcopy(struct module *mod,
694 			   const void *from, unsigned long size)
695 {
696 	int cpu;
697 
698 	for_each_possible_cpu(cpu)
699 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
700 }
701 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)702 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
703 {
704 	struct module *mod;
705 	unsigned int cpu;
706 
707 	preempt_disable();
708 
709 	list_for_each_entry_rcu(mod, &modules, list) {
710 		if (mod->state == MODULE_STATE_UNFORMED)
711 			continue;
712 		if (!mod->percpu_size)
713 			continue;
714 		for_each_possible_cpu(cpu) {
715 			void *start = per_cpu_ptr(mod->percpu, cpu);
716 			void *va = (void *)addr;
717 
718 			if (va >= start && va < start + mod->percpu_size) {
719 				if (can_addr) {
720 					*can_addr = (unsigned long) (va - start);
721 					*can_addr += (unsigned long)
722 						per_cpu_ptr(mod->percpu,
723 							    get_boot_cpu_id());
724 				}
725 				preempt_enable();
726 				return true;
727 			}
728 		}
729 	}
730 
731 	preempt_enable();
732 	return false;
733 }
734 
735 /**
736  * is_module_percpu_address - test whether address is from module static percpu
737  * @addr: address to test
738  *
739  * Test whether @addr belongs to module static percpu area.
740  *
741  * RETURNS:
742  * %true if @addr is from module static percpu area
743  */
is_module_percpu_address(unsigned long addr)744 bool is_module_percpu_address(unsigned long addr)
745 {
746 	return __is_module_percpu_address(addr, NULL);
747 }
748 
749 #else /* ... !CONFIG_SMP */
750 
mod_percpu(struct module * mod)751 static inline void __percpu *mod_percpu(struct module *mod)
752 {
753 	return NULL;
754 }
percpu_modalloc(struct module * mod,struct load_info * info)755 static int percpu_modalloc(struct module *mod, struct load_info *info)
756 {
757 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
758 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
759 		return -ENOMEM;
760 	return 0;
761 }
percpu_modfree(struct module * mod)762 static inline void percpu_modfree(struct module *mod)
763 {
764 }
find_pcpusec(struct load_info * info)765 static unsigned int find_pcpusec(struct load_info *info)
766 {
767 	return 0;
768 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)769 static inline void percpu_modcopy(struct module *mod,
770 				  const void *from, unsigned long size)
771 {
772 	/* pcpusec should be 0, and size of that section should be 0. */
773 	BUG_ON(size != 0);
774 }
is_module_percpu_address(unsigned long addr)775 bool is_module_percpu_address(unsigned long addr)
776 {
777 	return false;
778 }
779 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)780 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
781 {
782 	return false;
783 }
784 
785 #endif /* CONFIG_SMP */
786 
787 #define MODINFO_ATTR(field)	\
788 static void setup_modinfo_##field(struct module *mod, const char *s)  \
789 {                                                                     \
790 	mod->field = kstrdup(s, GFP_KERNEL);                          \
791 }                                                                     \
792 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
793 			struct module_kobject *mk, char *buffer)      \
794 {                                                                     \
795 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
796 }                                                                     \
797 static int modinfo_##field##_exists(struct module *mod)               \
798 {                                                                     \
799 	return mod->field != NULL;                                    \
800 }                                                                     \
801 static void free_modinfo_##field(struct module *mod)                  \
802 {                                                                     \
803 	kfree(mod->field);                                            \
804 	mod->field = NULL;                                            \
805 }                                                                     \
806 static struct module_attribute modinfo_##field = {                    \
807 	.attr = { .name = __stringify(field), .mode = 0444 },         \
808 	.show = show_modinfo_##field,                                 \
809 	.setup = setup_modinfo_##field,                               \
810 	.test = modinfo_##field##_exists,                             \
811 	.free = free_modinfo_##field,                                 \
812 };
813 
814 MODINFO_ATTR(version);
815 MODINFO_ATTR(srcversion);
816 MODINFO_ATTR(scmversion);
817 
818 static char last_unloaded_module[MODULE_NAME_LEN+1];
819 
820 #ifdef CONFIG_MODULE_UNLOAD
821 
822 EXPORT_TRACEPOINT_SYMBOL(module_get);
823 
824 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
825 #define MODULE_REF_BASE	1
826 
827 /* Init the unload section of the module. */
module_unload_init(struct module * mod)828 static int module_unload_init(struct module *mod)
829 {
830 	/*
831 	 * Initialize reference counter to MODULE_REF_BASE.
832 	 * refcnt == 0 means module is going.
833 	 */
834 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
835 
836 	INIT_LIST_HEAD(&mod->source_list);
837 	INIT_LIST_HEAD(&mod->target_list);
838 
839 	/* Hold reference count during initialization. */
840 	atomic_inc(&mod->refcnt);
841 
842 	return 0;
843 }
844 
845 /* Does a already use b? */
already_uses(struct module * a,struct module * b)846 static int already_uses(struct module *a, struct module *b)
847 {
848 	struct module_use *use;
849 
850 	list_for_each_entry(use, &b->source_list, source_list) {
851 		if (use->source == a) {
852 			pr_debug("%s uses %s!\n", a->name, b->name);
853 			return 1;
854 		}
855 	}
856 	pr_debug("%s does not use %s!\n", a->name, b->name);
857 	return 0;
858 }
859 
860 /*
861  * Module a uses b
862  *  - we add 'a' as a "source", 'b' as a "target" of module use
863  *  - the module_use is added to the list of 'b' sources (so
864  *    'b' can walk the list to see who sourced them), and of 'a'
865  *    targets (so 'a' can see what modules it targets).
866  */
add_module_usage(struct module * a,struct module * b)867 static int add_module_usage(struct module *a, struct module *b)
868 {
869 	struct module_use *use;
870 
871 	pr_debug("Allocating new usage for %s.\n", a->name);
872 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
873 	if (!use)
874 		return -ENOMEM;
875 
876 	use->source = a;
877 	use->target = b;
878 	list_add(&use->source_list, &b->source_list);
879 	list_add(&use->target_list, &a->target_list);
880 	return 0;
881 }
882 
883 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)884 static int ref_module(struct module *a, struct module *b)
885 {
886 	int err;
887 
888 	if (b == NULL || already_uses(a, b))
889 		return 0;
890 
891 	/* If module isn't available, we fail. */
892 	err = strong_try_module_get(b);
893 	if (err)
894 		return err;
895 
896 	err = add_module_usage(a, b);
897 	if (err) {
898 		module_put(b);
899 		return err;
900 	}
901 	return 0;
902 }
903 
904 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)905 static void module_unload_free(struct module *mod)
906 {
907 	struct module_use *use, *tmp;
908 
909 	mutex_lock(&module_mutex);
910 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
911 		struct module *i = use->target;
912 		pr_debug("%s unusing %s\n", mod->name, i->name);
913 		module_put(i);
914 		list_del(&use->source_list);
915 		list_del(&use->target_list);
916 		kfree(use);
917 	}
918 	mutex_unlock(&module_mutex);
919 }
920 
921 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)922 static inline int try_force_unload(unsigned int flags)
923 {
924 	int ret = (flags & O_TRUNC);
925 	if (ret)
926 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
927 	return ret;
928 }
929 #else
try_force_unload(unsigned int flags)930 static inline int try_force_unload(unsigned int flags)
931 {
932 	return 0;
933 }
934 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
935 
936 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)937 static int try_release_module_ref(struct module *mod)
938 {
939 	int ret;
940 
941 	/* Try to decrement refcnt which we set at loading */
942 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
943 	BUG_ON(ret < 0);
944 	if (ret)
945 		/* Someone can put this right now, recover with checking */
946 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
947 
948 	return ret;
949 }
950 
try_stop_module(struct module * mod,int flags,int * forced)951 static int try_stop_module(struct module *mod, int flags, int *forced)
952 {
953 	/* If it's not unused, quit unless we're forcing. */
954 	if (try_release_module_ref(mod) != 0) {
955 		*forced = try_force_unload(flags);
956 		if (!(*forced))
957 			return -EWOULDBLOCK;
958 	}
959 
960 	/* Mark it as dying. */
961 	mod->state = MODULE_STATE_GOING;
962 
963 	return 0;
964 }
965 
966 /**
967  * module_refcount - return the refcount or -1 if unloading
968  *
969  * @mod:	the module we're checking
970  *
971  * Returns:
972  *	-1 if the module is in the process of unloading
973  *	otherwise the number of references in the kernel to the module
974  */
module_refcount(struct module * mod)975 int module_refcount(struct module *mod)
976 {
977 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
978 }
979 EXPORT_SYMBOL(module_refcount);
980 
981 /* This exists whether we can unload or not */
982 static void free_module(struct module *mod);
983 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)984 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
985 		unsigned int, flags)
986 {
987 	struct module *mod;
988 	char name[MODULE_NAME_LEN];
989 	int ret, forced = 0;
990 
991 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
992 		return -EPERM;
993 
994 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
995 		return -EFAULT;
996 	name[MODULE_NAME_LEN-1] = '\0';
997 
998 	audit_log_kern_module(name);
999 
1000 	if (mutex_lock_interruptible(&module_mutex) != 0)
1001 		return -EINTR;
1002 
1003 	mod = find_module(name);
1004 	if (!mod) {
1005 		ret = -ENOENT;
1006 		goto out;
1007 	}
1008 
1009 	if (!list_empty(&mod->source_list)) {
1010 		/* Other modules depend on us: get rid of them first. */
1011 		ret = -EWOULDBLOCK;
1012 		goto out;
1013 	}
1014 
1015 	/* Doing init or already dying? */
1016 	if (mod->state != MODULE_STATE_LIVE) {
1017 		/* FIXME: if (force), slam module count damn the torpedoes */
1018 		pr_debug("%s already dying\n", mod->name);
1019 		ret = -EBUSY;
1020 		goto out;
1021 	}
1022 
1023 	/* If it has an init func, it must have an exit func to unload */
1024 	if (mod->init && !mod->exit) {
1025 		forced = try_force_unload(flags);
1026 		if (!forced) {
1027 			/* This module can't be removed */
1028 			ret = -EBUSY;
1029 			goto out;
1030 		}
1031 	}
1032 
1033 	/* Stop the machine so refcounts can't move and disable module. */
1034 	ret = try_stop_module(mod, flags, &forced);
1035 	if (ret != 0)
1036 		goto out;
1037 
1038 	mutex_unlock(&module_mutex);
1039 	/* Final destruction now no one is using it. */
1040 	if (mod->exit != NULL)
1041 		mod->exit();
1042 	blocking_notifier_call_chain(&module_notify_list,
1043 				     MODULE_STATE_GOING, mod);
1044 	klp_module_going(mod);
1045 	ftrace_release_mod(mod);
1046 
1047 	async_synchronize_full();
1048 
1049 	/* Store the name of the last unloaded module for diagnostic purposes */
1050 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1051 
1052 	free_module(mod);
1053 	/* someone could wait for the module in add_unformed_module() */
1054 	wake_up_all(&module_wq);
1055 	return 0;
1056 out:
1057 	mutex_unlock(&module_mutex);
1058 	return ret;
1059 }
1060 
print_unload_info(struct seq_file * m,struct module * mod)1061 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1062 {
1063 	struct module_use *use;
1064 	int printed_something = 0;
1065 
1066 	seq_printf(m, " %i ", module_refcount(mod));
1067 
1068 	/*
1069 	 * Always include a trailing , so userspace can differentiate
1070 	 * between this and the old multi-field proc format.
1071 	 */
1072 	list_for_each_entry(use, &mod->source_list, source_list) {
1073 		printed_something = 1;
1074 		seq_printf(m, "%s,", use->source->name);
1075 	}
1076 
1077 	if (mod->init != NULL && mod->exit == NULL) {
1078 		printed_something = 1;
1079 		seq_puts(m, "[permanent],");
1080 	}
1081 
1082 	if (!printed_something)
1083 		seq_puts(m, "-");
1084 }
1085 
__symbol_put(const char * symbol)1086 void __symbol_put(const char *symbol)
1087 {
1088 	struct module *owner;
1089 
1090 	preempt_disable();
1091 	if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1092 		BUG();
1093 	module_put(owner);
1094 	preempt_enable();
1095 }
1096 EXPORT_SYMBOL(__symbol_put);
1097 
1098 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1099 void symbol_put_addr(void *addr)
1100 {
1101 	struct module *modaddr;
1102 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1103 
1104 	if (core_kernel_text(a))
1105 		return;
1106 
1107 	/*
1108 	 * Even though we hold a reference on the module; we still need to
1109 	 * disable preemption in order to safely traverse the data structure.
1110 	 */
1111 	preempt_disable();
1112 	modaddr = __module_text_address(a);
1113 	BUG_ON(!modaddr);
1114 	module_put(modaddr);
1115 	preempt_enable();
1116 }
1117 EXPORT_SYMBOL_GPL(symbol_put_addr);
1118 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1119 static ssize_t show_refcnt(struct module_attribute *mattr,
1120 			   struct module_kobject *mk, char *buffer)
1121 {
1122 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1123 }
1124 
1125 static struct module_attribute modinfo_refcnt =
1126 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1127 
__module_get(struct module * module)1128 void __module_get(struct module *module)
1129 {
1130 	if (module) {
1131 		preempt_disable();
1132 		atomic_inc(&module->refcnt);
1133 		trace_module_get(module, _RET_IP_);
1134 		preempt_enable();
1135 	}
1136 }
1137 EXPORT_SYMBOL(__module_get);
1138 
try_module_get(struct module * module)1139 bool try_module_get(struct module *module)
1140 {
1141 	bool ret = true;
1142 
1143 	if (module) {
1144 		preempt_disable();
1145 		/* Note: here, we can fail to get a reference */
1146 		if (likely(module_is_live(module) &&
1147 			   atomic_inc_not_zero(&module->refcnt) != 0))
1148 			trace_module_get(module, _RET_IP_);
1149 		else
1150 			ret = false;
1151 
1152 		preempt_enable();
1153 	}
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL(try_module_get);
1157 
module_put(struct module * module)1158 void module_put(struct module *module)
1159 {
1160 	int ret;
1161 
1162 	if (module) {
1163 		preempt_disable();
1164 		ret = atomic_dec_if_positive(&module->refcnt);
1165 		WARN_ON(ret < 0);	/* Failed to put refcount */
1166 		trace_module_put(module, _RET_IP_);
1167 		preempt_enable();
1168 	}
1169 }
1170 EXPORT_SYMBOL(module_put);
1171 
1172 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1173 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1174 {
1175 	/* We don't know the usage count, or what modules are using. */
1176 	seq_puts(m, " - -");
1177 }
1178 
module_unload_free(struct module * mod)1179 static inline void module_unload_free(struct module *mod)
1180 {
1181 }
1182 
ref_module(struct module * a,struct module * b)1183 static int ref_module(struct module *a, struct module *b)
1184 {
1185 	return strong_try_module_get(b);
1186 }
1187 
module_unload_init(struct module * mod)1188 static inline int module_unload_init(struct module *mod)
1189 {
1190 	return 0;
1191 }
1192 #endif /* CONFIG_MODULE_UNLOAD */
1193 
module_flags_taint(struct module * mod,char * buf)1194 static size_t module_flags_taint(struct module *mod, char *buf)
1195 {
1196 	size_t l = 0;
1197 	int i;
1198 
1199 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1200 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1201 			buf[l++] = taint_flags[i].c_true;
1202 	}
1203 
1204 	return l;
1205 }
1206 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1207 static ssize_t show_initstate(struct module_attribute *mattr,
1208 			      struct module_kobject *mk, char *buffer)
1209 {
1210 	const char *state = "unknown";
1211 
1212 	switch (mk->mod->state) {
1213 	case MODULE_STATE_LIVE:
1214 		state = "live";
1215 		break;
1216 	case MODULE_STATE_COMING:
1217 		state = "coming";
1218 		break;
1219 	case MODULE_STATE_GOING:
1220 		state = "going";
1221 		break;
1222 	default:
1223 		BUG();
1224 	}
1225 	return sprintf(buffer, "%s\n", state);
1226 }
1227 
1228 static struct module_attribute modinfo_initstate =
1229 	__ATTR(initstate, 0444, show_initstate, NULL);
1230 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1231 static ssize_t store_uevent(struct module_attribute *mattr,
1232 			    struct module_kobject *mk,
1233 			    const char *buffer, size_t count)
1234 {
1235 	int rc;
1236 
1237 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1238 	return rc ? rc : count;
1239 }
1240 
1241 struct module_attribute module_uevent =
1242 	__ATTR(uevent, 0200, NULL, store_uevent);
1243 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1244 static ssize_t show_coresize(struct module_attribute *mattr,
1245 			     struct module_kobject *mk, char *buffer)
1246 {
1247 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1248 }
1249 
1250 static struct module_attribute modinfo_coresize =
1251 	__ATTR(coresize, 0444, show_coresize, NULL);
1252 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1253 static ssize_t show_initsize(struct module_attribute *mattr,
1254 			     struct module_kobject *mk, char *buffer)
1255 {
1256 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1257 }
1258 
1259 static struct module_attribute modinfo_initsize =
1260 	__ATTR(initsize, 0444, show_initsize, NULL);
1261 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1262 static ssize_t show_taint(struct module_attribute *mattr,
1263 			  struct module_kobject *mk, char *buffer)
1264 {
1265 	size_t l;
1266 
1267 	l = module_flags_taint(mk->mod, buffer);
1268 	buffer[l++] = '\n';
1269 	return l;
1270 }
1271 
1272 static struct module_attribute modinfo_taint =
1273 	__ATTR(taint, 0444, show_taint, NULL);
1274 
1275 static struct module_attribute *modinfo_attrs[] = {
1276 	&module_uevent,
1277 	&modinfo_version,
1278 	&modinfo_srcversion,
1279 	&modinfo_scmversion,
1280 	&modinfo_initstate,
1281 	&modinfo_coresize,
1282 	&modinfo_initsize,
1283 	&modinfo_taint,
1284 #ifdef CONFIG_MODULE_UNLOAD
1285 	&modinfo_refcnt,
1286 #endif
1287 	NULL,
1288 };
1289 
1290 static const char vermagic[] = VERMAGIC_STRING;
1291 
try_to_force_load(struct module * mod,const char * reason)1292 static int try_to_force_load(struct module *mod, const char *reason)
1293 {
1294 #ifdef CONFIG_MODULE_FORCE_LOAD
1295 	if (!test_taint(TAINT_FORCED_MODULE))
1296 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1297 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1298 	return 0;
1299 #else
1300 	return -ENOEXEC;
1301 #endif
1302 }
1303 
1304 #ifdef CONFIG_MODVERSIONS
1305 
resolve_rel_crc(const s32 * crc)1306 static u32 resolve_rel_crc(const s32 *crc)
1307 {
1308 	return *(u32 *)((void *)crc + *crc);
1309 }
1310 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1311 static int check_version(const struct load_info *info,
1312 			 const char *symname,
1313 			 struct module *mod,
1314 			 const s32 *crc)
1315 {
1316 	Elf_Shdr *sechdrs = info->sechdrs;
1317 	unsigned int versindex = info->index.vers;
1318 	unsigned int i, num_versions;
1319 	struct modversion_info *versions;
1320 
1321 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1322 	if (!crc)
1323 		return 1;
1324 
1325 	/* No versions at all?  modprobe --force does this. */
1326 	if (versindex == 0)
1327 		return try_to_force_load(mod, symname) == 0;
1328 
1329 	versions = (void *) sechdrs[versindex].sh_addr;
1330 	num_versions = sechdrs[versindex].sh_size
1331 		/ sizeof(struct modversion_info);
1332 
1333 	for (i = 0; i < num_versions; i++) {
1334 		u32 crcval;
1335 
1336 		if (strcmp(versions[i].name, symname) != 0)
1337 			continue;
1338 
1339 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1340 			crcval = resolve_rel_crc(crc);
1341 		else
1342 			crcval = *crc;
1343 		if (versions[i].crc == crcval)
1344 			return 1;
1345 		pr_debug("Found checksum %X vs module %lX\n",
1346 			 crcval, versions[i].crc);
1347 		goto bad_version;
1348 	}
1349 
1350 	/* Broken toolchain. Warn once, then let it go.. */
1351 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1352 	return 1;
1353 
1354 bad_version:
1355 	pr_warn("%s: disagrees about version of symbol %s\n",
1356 	       info->name, symname);
1357 	return 0;
1358 }
1359 
check_modstruct_version(const struct load_info * info,struct module * mod)1360 static inline int check_modstruct_version(const struct load_info *info,
1361 					  struct module *mod)
1362 {
1363 	const s32 *crc;
1364 
1365 	/*
1366 	 * Since this should be found in kernel (which can't be removed), no
1367 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1368 	 */
1369 	preempt_disable();
1370 	if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1371 		preempt_enable();
1372 		BUG();
1373 	}
1374 	preempt_enable();
1375 	return check_version(info, "module_layout", mod, crc);
1376 }
1377 
1378 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1379 static inline int same_magic(const char *amagic, const char *bmagic,
1380 			     bool has_crcs)
1381 {
1382 	if (has_crcs) {
1383 		amagic += strcspn(amagic, " ");
1384 		bmagic += strcspn(bmagic, " ");
1385 	}
1386 	return strcmp(amagic, bmagic) == 0;
1387 }
1388 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1389 static inline int check_version(const struct load_info *info,
1390 				const char *symname,
1391 				struct module *mod,
1392 				const s32 *crc)
1393 {
1394 	return 1;
1395 }
1396 
check_modstruct_version(const struct load_info * info,struct module * mod)1397 static inline int check_modstruct_version(const struct load_info *info,
1398 					  struct module *mod)
1399 {
1400 	return 1;
1401 }
1402 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1403 static inline int same_magic(const char *amagic, const char *bmagic,
1404 			     bool has_crcs)
1405 {
1406 	return strcmp(amagic, bmagic) == 0;
1407 }
1408 #endif /* CONFIG_MODVERSIONS */
1409 
1410 static char *get_modinfo(const struct load_info *info, const char *tag);
1411 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1412 			      char *prev);
1413 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1414 static int verify_namespace_is_imported(const struct load_info *info,
1415 					const struct kernel_symbol *sym,
1416 					struct module *mod)
1417 {
1418 	const char *namespace;
1419 	char *imported_namespace;
1420 
1421 	namespace = kernel_symbol_namespace(sym);
1422 	if (namespace && namespace[0]) {
1423 		imported_namespace = get_modinfo(info, "import_ns");
1424 		while (imported_namespace) {
1425 			if (strcmp(namespace, imported_namespace) == 0)
1426 				return 0;
1427 			imported_namespace = get_next_modinfo(
1428 				info, "import_ns", imported_namespace);
1429 		}
1430 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1431 		pr_warn(
1432 #else
1433 		pr_err(
1434 #endif
1435 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1436 			mod->name, kernel_symbol_name(sym), namespace);
1437 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1438 		return -EINVAL;
1439 #endif
1440 	}
1441 	return 0;
1442 }
1443 
inherit_taint(struct module * mod,struct module * owner)1444 static bool inherit_taint(struct module *mod, struct module *owner)
1445 {
1446 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1447 		return true;
1448 
1449 	if (mod->using_gplonly_symbols) {
1450 		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1451 			mod->name, owner->name);
1452 		return false;
1453 	}
1454 
1455 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1456 		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1457 			mod->name, owner->name);
1458 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1459 	}
1460 	return true;
1461 }
1462 
1463 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1464 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1465 						  const struct load_info *info,
1466 						  const char *name,
1467 						  char ownername[])
1468 {
1469 	struct module *owner;
1470 	const struct kernel_symbol *sym;
1471 	const s32 *crc;
1472 	enum mod_license license;
1473 	int err;
1474 
1475 	/*
1476 	 * The module_mutex should not be a heavily contended lock;
1477 	 * if we get the occasional sleep here, we'll go an extra iteration
1478 	 * in the wait_event_interruptible(), which is harmless.
1479 	 */
1480 	sched_annotate_sleep();
1481 	mutex_lock(&module_mutex);
1482 	sym = find_symbol(name, &owner, &crc, &license,
1483 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1484 	if (!sym)
1485 		goto unlock;
1486 
1487 	if (license == GPL_ONLY)
1488 		mod->using_gplonly_symbols = true;
1489 
1490 	if (!inherit_taint(mod, owner)) {
1491 		sym = NULL;
1492 		goto getname;
1493 	}
1494 
1495 	if (!check_version(info, name, mod, crc)) {
1496 		sym = ERR_PTR(-EINVAL);
1497 		goto getname;
1498 	}
1499 
1500 	err = verify_namespace_is_imported(info, sym, mod);
1501 	if (err) {
1502 		sym = ERR_PTR(err);
1503 		goto getname;
1504 	}
1505 
1506 	err = ref_module(mod, owner);
1507 	if (err) {
1508 		sym = ERR_PTR(err);
1509 		goto getname;
1510 	}
1511 
1512 getname:
1513 	/* We must make copy under the lock if we failed to get ref. */
1514 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1515 unlock:
1516 	mutex_unlock(&module_mutex);
1517 	return sym;
1518 }
1519 
1520 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1521 resolve_symbol_wait(struct module *mod,
1522 		    const struct load_info *info,
1523 		    const char *name)
1524 {
1525 	const struct kernel_symbol *ksym;
1526 	char owner[MODULE_NAME_LEN];
1527 
1528 	if (wait_event_interruptible_timeout(module_wq,
1529 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1530 			|| PTR_ERR(ksym) != -EBUSY,
1531 					     30 * HZ) <= 0) {
1532 		pr_warn("%s: gave up waiting for init of module %s.\n",
1533 			mod->name, owner);
1534 	}
1535 	return ksym;
1536 }
1537 
1538 /*
1539  * /sys/module/foo/sections stuff
1540  * J. Corbet <corbet@lwn.net>
1541  */
1542 #ifdef CONFIG_SYSFS
1543 
1544 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1545 static inline bool sect_empty(const Elf_Shdr *sect)
1546 {
1547 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1548 }
1549 
1550 struct module_sect_attr {
1551 	struct bin_attribute battr;
1552 	unsigned long address;
1553 };
1554 
1555 struct module_sect_attrs {
1556 	struct attribute_group grp;
1557 	unsigned int nsections;
1558 	struct module_sect_attr attrs[];
1559 };
1560 
1561 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1562 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1563 				struct bin_attribute *battr,
1564 				char *buf, loff_t pos, size_t count)
1565 {
1566 	struct module_sect_attr *sattr =
1567 		container_of(battr, struct module_sect_attr, battr);
1568 	char bounce[MODULE_SECT_READ_SIZE + 1];
1569 	size_t wrote;
1570 
1571 	if (pos != 0)
1572 		return -EINVAL;
1573 
1574 	/*
1575 	 * Since we're a binary read handler, we must account for the
1576 	 * trailing NUL byte that sprintf will write: if "buf" is
1577 	 * too small to hold the NUL, or the NUL is exactly the last
1578 	 * byte, the read will look like it got truncated by one byte.
1579 	 * Since there is no way to ask sprintf nicely to not write
1580 	 * the NUL, we have to use a bounce buffer.
1581 	 */
1582 	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1583 			 kallsyms_show_value(file->f_cred)
1584 				? (void *)sattr->address : NULL);
1585 	count = min(count, wrote);
1586 	memcpy(buf, bounce, count);
1587 
1588 	return count;
1589 }
1590 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1591 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1592 {
1593 	unsigned int section;
1594 
1595 	for (section = 0; section < sect_attrs->nsections; section++)
1596 		kfree(sect_attrs->attrs[section].battr.attr.name);
1597 	kfree(sect_attrs);
1598 }
1599 
add_sect_attrs(struct module * mod,const struct load_info * info)1600 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1601 {
1602 	unsigned int nloaded = 0, i, size[2];
1603 	struct module_sect_attrs *sect_attrs;
1604 	struct module_sect_attr *sattr;
1605 	struct bin_attribute **gattr;
1606 
1607 	/* Count loaded sections and allocate structures */
1608 	for (i = 0; i < info->hdr->e_shnum; i++)
1609 		if (!sect_empty(&info->sechdrs[i]))
1610 			nloaded++;
1611 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1612 			sizeof(sect_attrs->grp.bin_attrs[0]));
1613 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1614 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1615 	if (sect_attrs == NULL)
1616 		return;
1617 
1618 	/* Setup section attributes. */
1619 	sect_attrs->grp.name = "sections";
1620 	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1621 
1622 	sect_attrs->nsections = 0;
1623 	sattr = &sect_attrs->attrs[0];
1624 	gattr = &sect_attrs->grp.bin_attrs[0];
1625 	for (i = 0; i < info->hdr->e_shnum; i++) {
1626 		Elf_Shdr *sec = &info->sechdrs[i];
1627 		if (sect_empty(sec))
1628 			continue;
1629 		sysfs_bin_attr_init(&sattr->battr);
1630 		sattr->address = sec->sh_addr;
1631 		sattr->battr.attr.name =
1632 			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1633 		if (sattr->battr.attr.name == NULL)
1634 			goto out;
1635 		sect_attrs->nsections++;
1636 		sattr->battr.read = module_sect_read;
1637 		sattr->battr.size = MODULE_SECT_READ_SIZE;
1638 		sattr->battr.attr.mode = 0400;
1639 		*(gattr++) = &(sattr++)->battr;
1640 	}
1641 	*gattr = NULL;
1642 
1643 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1644 		goto out;
1645 
1646 	mod->sect_attrs = sect_attrs;
1647 	return;
1648   out:
1649 	free_sect_attrs(sect_attrs);
1650 }
1651 
remove_sect_attrs(struct module * mod)1652 static void remove_sect_attrs(struct module *mod)
1653 {
1654 	if (mod->sect_attrs) {
1655 		sysfs_remove_group(&mod->mkobj.kobj,
1656 				   &mod->sect_attrs->grp);
1657 		/* We are positive that no one is using any sect attrs
1658 		 * at this point.  Deallocate immediately. */
1659 		free_sect_attrs(mod->sect_attrs);
1660 		mod->sect_attrs = NULL;
1661 	}
1662 }
1663 
1664 /*
1665  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1666  */
1667 
1668 struct module_notes_attrs {
1669 	struct kobject *dir;
1670 	unsigned int notes;
1671 	struct bin_attribute attrs[];
1672 };
1673 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1674 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1675 				 struct bin_attribute *bin_attr,
1676 				 char *buf, loff_t pos, size_t count)
1677 {
1678 	/*
1679 	 * The caller checked the pos and count against our size.
1680 	 */
1681 	memcpy(buf, bin_attr->private + pos, count);
1682 	return count;
1683 }
1684 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1685 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1686 			     unsigned int i)
1687 {
1688 	if (notes_attrs->dir) {
1689 		while (i-- > 0)
1690 			sysfs_remove_bin_file(notes_attrs->dir,
1691 					      &notes_attrs->attrs[i]);
1692 		kobject_put(notes_attrs->dir);
1693 	}
1694 	kfree(notes_attrs);
1695 }
1696 
add_notes_attrs(struct module * mod,const struct load_info * info)1697 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1698 {
1699 	unsigned int notes, loaded, i;
1700 	struct module_notes_attrs *notes_attrs;
1701 	struct bin_attribute *nattr;
1702 
1703 	/* failed to create section attributes, so can't create notes */
1704 	if (!mod->sect_attrs)
1705 		return;
1706 
1707 	/* Count notes sections and allocate structures.  */
1708 	notes = 0;
1709 	for (i = 0; i < info->hdr->e_shnum; i++)
1710 		if (!sect_empty(&info->sechdrs[i]) &&
1711 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1712 			++notes;
1713 
1714 	if (notes == 0)
1715 		return;
1716 
1717 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1718 			      GFP_KERNEL);
1719 	if (notes_attrs == NULL)
1720 		return;
1721 
1722 	notes_attrs->notes = notes;
1723 	nattr = &notes_attrs->attrs[0];
1724 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1725 		if (sect_empty(&info->sechdrs[i]))
1726 			continue;
1727 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1728 			sysfs_bin_attr_init(nattr);
1729 			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1730 			nattr->attr.mode = S_IRUGO;
1731 			nattr->size = info->sechdrs[i].sh_size;
1732 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1733 			nattr->read = module_notes_read;
1734 			++nattr;
1735 		}
1736 		++loaded;
1737 	}
1738 
1739 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1740 	if (!notes_attrs->dir)
1741 		goto out;
1742 
1743 	for (i = 0; i < notes; ++i)
1744 		if (sysfs_create_bin_file(notes_attrs->dir,
1745 					  &notes_attrs->attrs[i]))
1746 			goto out;
1747 
1748 	mod->notes_attrs = notes_attrs;
1749 	return;
1750 
1751   out:
1752 	free_notes_attrs(notes_attrs, i);
1753 }
1754 
remove_notes_attrs(struct module * mod)1755 static void remove_notes_attrs(struct module *mod)
1756 {
1757 	if (mod->notes_attrs)
1758 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1759 }
1760 
1761 #else
1762 
add_sect_attrs(struct module * mod,const struct load_info * info)1763 static inline void add_sect_attrs(struct module *mod,
1764 				  const struct load_info *info)
1765 {
1766 }
1767 
remove_sect_attrs(struct module * mod)1768 static inline void remove_sect_attrs(struct module *mod)
1769 {
1770 }
1771 
add_notes_attrs(struct module * mod,const struct load_info * info)1772 static inline void add_notes_attrs(struct module *mod,
1773 				   const struct load_info *info)
1774 {
1775 }
1776 
remove_notes_attrs(struct module * mod)1777 static inline void remove_notes_attrs(struct module *mod)
1778 {
1779 }
1780 #endif /* CONFIG_KALLSYMS */
1781 
del_usage_links(struct module * mod)1782 static void del_usage_links(struct module *mod)
1783 {
1784 #ifdef CONFIG_MODULE_UNLOAD
1785 	struct module_use *use;
1786 
1787 	mutex_lock(&module_mutex);
1788 	list_for_each_entry(use, &mod->target_list, target_list)
1789 		sysfs_remove_link(use->target->holders_dir, mod->name);
1790 	mutex_unlock(&module_mutex);
1791 #endif
1792 }
1793 
add_usage_links(struct module * mod)1794 static int add_usage_links(struct module *mod)
1795 {
1796 	int ret = 0;
1797 #ifdef CONFIG_MODULE_UNLOAD
1798 	struct module_use *use;
1799 
1800 	mutex_lock(&module_mutex);
1801 	list_for_each_entry(use, &mod->target_list, target_list) {
1802 		ret = sysfs_create_link(use->target->holders_dir,
1803 					&mod->mkobj.kobj, mod->name);
1804 		if (ret)
1805 			break;
1806 	}
1807 	mutex_unlock(&module_mutex);
1808 	if (ret)
1809 		del_usage_links(mod);
1810 #endif
1811 	return ret;
1812 }
1813 
1814 static void module_remove_modinfo_attrs(struct module *mod, int end);
1815 
module_add_modinfo_attrs(struct module * mod)1816 static int module_add_modinfo_attrs(struct module *mod)
1817 {
1818 	struct module_attribute *attr;
1819 	struct module_attribute *temp_attr;
1820 	int error = 0;
1821 	int i;
1822 
1823 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1824 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1825 					GFP_KERNEL);
1826 	if (!mod->modinfo_attrs)
1827 		return -ENOMEM;
1828 
1829 	temp_attr = mod->modinfo_attrs;
1830 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1831 		if (!attr->test || attr->test(mod)) {
1832 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1833 			sysfs_attr_init(&temp_attr->attr);
1834 			error = sysfs_create_file(&mod->mkobj.kobj,
1835 					&temp_attr->attr);
1836 			if (error)
1837 				goto error_out;
1838 			++temp_attr;
1839 		}
1840 	}
1841 
1842 	return 0;
1843 
1844 error_out:
1845 	if (i > 0)
1846 		module_remove_modinfo_attrs(mod, --i);
1847 	else
1848 		kfree(mod->modinfo_attrs);
1849 	return error;
1850 }
1851 
module_remove_modinfo_attrs(struct module * mod,int end)1852 static void module_remove_modinfo_attrs(struct module *mod, int end)
1853 {
1854 	struct module_attribute *attr;
1855 	int i;
1856 
1857 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1858 		if (end >= 0 && i > end)
1859 			break;
1860 		/* pick a field to test for end of list */
1861 		if (!attr->attr.name)
1862 			break;
1863 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1864 		if (attr->free)
1865 			attr->free(mod);
1866 	}
1867 	kfree(mod->modinfo_attrs);
1868 }
1869 
mod_kobject_put(struct module * mod)1870 static void mod_kobject_put(struct module *mod)
1871 {
1872 	DECLARE_COMPLETION_ONSTACK(c);
1873 	mod->mkobj.kobj_completion = &c;
1874 	kobject_put(&mod->mkobj.kobj);
1875 	wait_for_completion(&c);
1876 }
1877 
mod_sysfs_init(struct module * mod)1878 static int mod_sysfs_init(struct module *mod)
1879 {
1880 	int err;
1881 	struct kobject *kobj;
1882 
1883 	if (!module_sysfs_initialized) {
1884 		pr_err("%s: module sysfs not initialized\n", mod->name);
1885 		err = -EINVAL;
1886 		goto out;
1887 	}
1888 
1889 	kobj = kset_find_obj(module_kset, mod->name);
1890 	if (kobj) {
1891 		pr_err("%s: module is already loaded\n", mod->name);
1892 		kobject_put(kobj);
1893 		err = -EINVAL;
1894 		goto out;
1895 	}
1896 
1897 	mod->mkobj.mod = mod;
1898 
1899 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1900 	mod->mkobj.kobj.kset = module_kset;
1901 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1902 				   "%s", mod->name);
1903 	if (err)
1904 		mod_kobject_put(mod);
1905 
1906 out:
1907 	return err;
1908 }
1909 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1910 static int mod_sysfs_setup(struct module *mod,
1911 			   const struct load_info *info,
1912 			   struct kernel_param *kparam,
1913 			   unsigned int num_params)
1914 {
1915 	int err;
1916 
1917 	err = mod_sysfs_init(mod);
1918 	if (err)
1919 		goto out;
1920 
1921 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1922 	if (!mod->holders_dir) {
1923 		err = -ENOMEM;
1924 		goto out_unreg;
1925 	}
1926 
1927 	err = module_param_sysfs_setup(mod, kparam, num_params);
1928 	if (err)
1929 		goto out_unreg_holders;
1930 
1931 	err = module_add_modinfo_attrs(mod);
1932 	if (err)
1933 		goto out_unreg_param;
1934 
1935 	err = add_usage_links(mod);
1936 	if (err)
1937 		goto out_unreg_modinfo_attrs;
1938 
1939 	add_sect_attrs(mod, info);
1940 	add_notes_attrs(mod, info);
1941 
1942 	return 0;
1943 
1944 out_unreg_modinfo_attrs:
1945 	module_remove_modinfo_attrs(mod, -1);
1946 out_unreg_param:
1947 	module_param_sysfs_remove(mod);
1948 out_unreg_holders:
1949 	kobject_put(mod->holders_dir);
1950 out_unreg:
1951 	mod_kobject_put(mod);
1952 out:
1953 	return err;
1954 }
1955 
mod_sysfs_fini(struct module * mod)1956 static void mod_sysfs_fini(struct module *mod)
1957 {
1958 	remove_notes_attrs(mod);
1959 	remove_sect_attrs(mod);
1960 	mod_kobject_put(mod);
1961 }
1962 
init_param_lock(struct module * mod)1963 static void init_param_lock(struct module *mod)
1964 {
1965 	mutex_init(&mod->param_lock);
1966 }
1967 #else /* !CONFIG_SYSFS */
1968 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1969 static int mod_sysfs_setup(struct module *mod,
1970 			   const struct load_info *info,
1971 			   struct kernel_param *kparam,
1972 			   unsigned int num_params)
1973 {
1974 	return 0;
1975 }
1976 
mod_sysfs_fini(struct module * mod)1977 static void mod_sysfs_fini(struct module *mod)
1978 {
1979 }
1980 
module_remove_modinfo_attrs(struct module * mod,int end)1981 static void module_remove_modinfo_attrs(struct module *mod, int end)
1982 {
1983 }
1984 
del_usage_links(struct module * mod)1985 static void del_usage_links(struct module *mod)
1986 {
1987 }
1988 
init_param_lock(struct module * mod)1989 static void init_param_lock(struct module *mod)
1990 {
1991 }
1992 #endif /* CONFIG_SYSFS */
1993 
mod_sysfs_teardown(struct module * mod)1994 static void mod_sysfs_teardown(struct module *mod)
1995 {
1996 	del_usage_links(mod);
1997 	module_remove_modinfo_attrs(mod, -1);
1998 	module_param_sysfs_remove(mod);
1999 	kobject_put(mod->mkobj.drivers_dir);
2000 	kobject_put(mod->holders_dir);
2001 	mod_sysfs_fini(mod);
2002 }
2003 
2004 /*
2005  * LKM RO/NX protection: protect module's text/ro-data
2006  * from modification and any data from execution.
2007  *
2008  * General layout of module is:
2009  *          [text] [read-only-data] [ro-after-init] [writable data]
2010  * text_size -----^                ^               ^               ^
2011  * ro_size ------------------------|               |               |
2012  * ro_after_init_size -----------------------------|               |
2013  * size -----------------------------------------------------------|
2014  *
2015  * These values are always page-aligned (as is base)
2016  */
2017 
2018 /*
2019  * Since some arches are moving towards PAGE_KERNEL module allocations instead
2020  * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2021  * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2022  * whether we are strict.
2023  */
2024 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2025 static void frob_text(const struct module_layout *layout,
2026 		      int (*set_memory)(unsigned long start, int num_pages))
2027 {
2028 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2029 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2030 	set_memory((unsigned long)layout->base,
2031 		   layout->text_size >> PAGE_SHIFT);
2032 }
2033 
module_enable_x(const struct module * mod)2034 static void module_enable_x(const struct module *mod)
2035 {
2036 	frob_text(&mod->core_layout, set_memory_x);
2037 	frob_text(&mod->init_layout, set_memory_x);
2038 }
2039 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)2040 static void module_enable_x(const struct module *mod) { }
2041 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2042 
2043 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2044 static void frob_rodata(const struct module_layout *layout,
2045 			int (*set_memory)(unsigned long start, int num_pages))
2046 {
2047 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2048 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2049 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2050 	set_memory((unsigned long)layout->base + layout->text_size,
2051 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2052 }
2053 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2054 static void frob_ro_after_init(const struct module_layout *layout,
2055 				int (*set_memory)(unsigned long start, int num_pages))
2056 {
2057 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2058 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2059 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2060 	set_memory((unsigned long)layout->base + layout->ro_size,
2061 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2062 }
2063 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2064 static void frob_writable_data(const struct module_layout *layout,
2065 			       int (*set_memory)(unsigned long start, int num_pages))
2066 {
2067 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2068 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2069 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2070 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2071 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2072 }
2073 
module_enable_ro(const struct module * mod,bool after_init)2074 static void module_enable_ro(const struct module *mod, bool after_init)
2075 {
2076 	if (!rodata_enabled)
2077 		return;
2078 
2079 	set_vm_flush_reset_perms(mod->core_layout.base);
2080 	set_vm_flush_reset_perms(mod->init_layout.base);
2081 	frob_text(&mod->core_layout, set_memory_ro);
2082 
2083 	frob_rodata(&mod->core_layout, set_memory_ro);
2084 	frob_text(&mod->init_layout, set_memory_ro);
2085 	frob_rodata(&mod->init_layout, set_memory_ro);
2086 
2087 	if (after_init)
2088 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2089 }
2090 
module_enable_nx(const struct module * mod)2091 static void module_enable_nx(const struct module *mod)
2092 {
2093 	frob_rodata(&mod->core_layout, set_memory_nx);
2094 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2095 	frob_writable_data(&mod->core_layout, set_memory_nx);
2096 	frob_rodata(&mod->init_layout, set_memory_nx);
2097 	frob_writable_data(&mod->init_layout, set_memory_nx);
2098 }
2099 
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2100 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2101 				       char *secstrings, struct module *mod)
2102 {
2103 	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2104 	int i;
2105 
2106 	for (i = 0; i < hdr->e_shnum; i++) {
2107 		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2108 			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2109 				mod->name, secstrings + sechdrs[i].sh_name, i);
2110 			return -ENOEXEC;
2111 		}
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2118 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2119 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2120 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2121 				       char *secstrings, struct module *mod)
2122 {
2123 	return 0;
2124 }
2125 #endif /*  CONFIG_STRICT_MODULE_RWX */
2126 
2127 #ifdef CONFIG_LIVEPATCH
2128 /*
2129  * Persist Elf information about a module. Copy the Elf header,
2130  * section header table, section string table, and symtab section
2131  * index from info to mod->klp_info.
2132  */
copy_module_elf(struct module * mod,struct load_info * info)2133 static int copy_module_elf(struct module *mod, struct load_info *info)
2134 {
2135 	unsigned int size, symndx;
2136 	int ret;
2137 
2138 	size = sizeof(*mod->klp_info);
2139 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2140 	if (mod->klp_info == NULL)
2141 		return -ENOMEM;
2142 
2143 	/* Elf header */
2144 	size = sizeof(mod->klp_info->hdr);
2145 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2146 
2147 	/* Elf section header table */
2148 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2149 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2150 	if (mod->klp_info->sechdrs == NULL) {
2151 		ret = -ENOMEM;
2152 		goto free_info;
2153 	}
2154 
2155 	/* Elf section name string table */
2156 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2157 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2158 	if (mod->klp_info->secstrings == NULL) {
2159 		ret = -ENOMEM;
2160 		goto free_sechdrs;
2161 	}
2162 
2163 	/* Elf symbol section index */
2164 	symndx = info->index.sym;
2165 	mod->klp_info->symndx = symndx;
2166 
2167 	/*
2168 	 * For livepatch modules, core_kallsyms.symtab is a complete
2169 	 * copy of the original symbol table. Adjust sh_addr to point
2170 	 * to core_kallsyms.symtab since the copy of the symtab in module
2171 	 * init memory is freed at the end of do_init_module().
2172 	 */
2173 	mod->klp_info->sechdrs[symndx].sh_addr = \
2174 		(unsigned long) mod->core_kallsyms.symtab;
2175 
2176 	return 0;
2177 
2178 free_sechdrs:
2179 	kfree(mod->klp_info->sechdrs);
2180 free_info:
2181 	kfree(mod->klp_info);
2182 	return ret;
2183 }
2184 
free_module_elf(struct module * mod)2185 static void free_module_elf(struct module *mod)
2186 {
2187 	kfree(mod->klp_info->sechdrs);
2188 	kfree(mod->klp_info->secstrings);
2189 	kfree(mod->klp_info);
2190 }
2191 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2192 static int copy_module_elf(struct module *mod, struct load_info *info)
2193 {
2194 	return 0;
2195 }
2196 
free_module_elf(struct module * mod)2197 static void free_module_elf(struct module *mod)
2198 {
2199 }
2200 #endif /* CONFIG_LIVEPATCH */
2201 
module_memfree(void * module_region)2202 void __weak module_memfree(void *module_region)
2203 {
2204 	/*
2205 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2206 	 * supported by vmalloc.
2207 	 */
2208 	WARN_ON(in_interrupt());
2209 	vfree(module_region);
2210 }
2211 
module_arch_cleanup(struct module * mod)2212 void __weak module_arch_cleanup(struct module *mod)
2213 {
2214 }
2215 
module_arch_freeing_init(struct module * mod)2216 void __weak module_arch_freeing_init(struct module *mod)
2217 {
2218 }
2219 
2220 static void cfi_cleanup(struct module *mod);
2221 
2222 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2223 static void free_module(struct module *mod)
2224 {
2225 	trace_module_free(mod);
2226 
2227 	mod_sysfs_teardown(mod);
2228 
2229 	/* We leave it in list to prevent duplicate loads, but make sure
2230 	 * that noone uses it while it's being deconstructed. */
2231 	mutex_lock(&module_mutex);
2232 	mod->state = MODULE_STATE_UNFORMED;
2233 	mutex_unlock(&module_mutex);
2234 
2235 	/* Remove dynamic debug info */
2236 	ddebug_remove_module(mod->name);
2237 
2238 	/* Arch-specific cleanup. */
2239 	module_arch_cleanup(mod);
2240 
2241 	/* Module unload stuff */
2242 	module_unload_free(mod);
2243 
2244 	/* Free any allocated parameters. */
2245 	destroy_params(mod->kp, mod->num_kp);
2246 
2247 	if (is_livepatch_module(mod))
2248 		free_module_elf(mod);
2249 
2250 	/* Now we can delete it from the lists */
2251 	mutex_lock(&module_mutex);
2252 	/* Unlink carefully: kallsyms could be walking list. */
2253 	list_del_rcu(&mod->list);
2254 	mod_tree_remove(mod);
2255 	/* Remove this module from bug list, this uses list_del_rcu */
2256 	module_bug_cleanup(mod);
2257 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2258 	synchronize_rcu();
2259 	mutex_unlock(&module_mutex);
2260 
2261 	/* Clean up CFI for the module. */
2262 	cfi_cleanup(mod);
2263 
2264 	/* This may be empty, but that's OK */
2265 	module_arch_freeing_init(mod);
2266 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
2267 		(mod->init_layout.size)>>PAGE_SHIFT);
2268 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
2269 		(mod->init_layout.size)>>PAGE_SHIFT);
2270 	module_memfree(mod->init_layout.base);
2271 	kfree(mod->args);
2272 	percpu_modfree(mod);
2273 
2274 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2275 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2276 
2277 	/* Finally, free the core (containing the module structure) */
2278 	trace_android_vh_set_memory_rw((unsigned long)mod->core_layout.base,
2279 		(mod->core_layout.size)>>PAGE_SHIFT);
2280 	trace_android_vh_set_memory_nx((unsigned long)mod->core_layout.base,
2281 		(mod->core_layout.size)>>PAGE_SHIFT);
2282 	module_memfree(mod->core_layout.base);
2283 }
2284 
__symbol_get(const char * symbol)2285 void *__symbol_get(const char *symbol)
2286 {
2287 	struct module *owner;
2288 	enum mod_license license;
2289 	const struct kernel_symbol *sym;
2290 
2291 	preempt_disable();
2292 	sym = find_symbol(symbol, &owner, NULL, &license, true, true);
2293 	if (!sym)
2294 		goto fail;
2295 	if (license != GPL_ONLY) {
2296 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
2297 			symbol);
2298 		goto fail;
2299 	}
2300 	if (strong_try_module_get(owner))
2301 		sym = NULL;
2302 	preempt_enable();
2303 
2304 	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2305 fail:
2306 	preempt_enable();
2307 	return NULL;
2308 }
2309 EXPORT_SYMBOL_GPL(__symbol_get);
2310 
module_init_layout_section(const char * sname)2311 bool module_init_layout_section(const char *sname)
2312 {
2313 #ifndef CONFIG_MODULE_UNLOAD
2314 	if (module_exit_section(sname))
2315 		return true;
2316 #endif
2317 	return module_init_section(sname);
2318 }
2319 
2320 /*
2321  * Ensure that an exported symbol [global namespace] does not already exist
2322  * in the kernel or in some other module's exported symbol table.
2323  *
2324  * You must hold the module_mutex.
2325  */
verify_exported_symbols(struct module * mod)2326 static int verify_exported_symbols(struct module *mod)
2327 {
2328 	unsigned int i;
2329 	struct module *owner;
2330 	const struct kernel_symbol *s;
2331 	struct {
2332 		const struct kernel_symbol *sym;
2333 		unsigned int num;
2334 	} arr[] = {
2335 		{ mod->syms, mod->num_syms },
2336 		{ mod->gpl_syms, mod->num_gpl_syms },
2337 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2338 #ifdef CONFIG_UNUSED_SYMBOLS
2339 		{ mod->unused_syms, mod->num_unused_syms },
2340 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2341 #endif
2342 	};
2343 
2344 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2345 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2346 			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2347 					NULL, true, false)) {
2348 				pr_err("%s: exports duplicate symbol %s"
2349 				       " (owned by %s)\n",
2350 				       mod->name, kernel_symbol_name(s),
2351 				       module_name(owner));
2352 				return -ENOEXEC;
2353 			}
2354 		}
2355 	}
2356 	return 0;
2357 }
2358 
ignore_undef_symbol(Elf_Half emachine,const char * name)2359 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2360 {
2361 	/*
2362 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2363 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2364 	 * i386 has a similar problem but may not deserve a fix.
2365 	 *
2366 	 * If we ever have to ignore many symbols, consider refactoring the code to
2367 	 * only warn if referenced by a relocation.
2368 	 */
2369 	if (emachine == EM_386 || emachine == EM_X86_64)
2370 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2371 	return false;
2372 }
2373 
2374 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2375 static int simplify_symbols(struct module *mod, const struct load_info *info)
2376 {
2377 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2378 	Elf_Sym *sym = (void *)symsec->sh_addr;
2379 	unsigned long secbase;
2380 	unsigned int i;
2381 	int ret = 0;
2382 	const struct kernel_symbol *ksym;
2383 
2384 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2385 		const char *name = info->strtab + sym[i].st_name;
2386 
2387 		switch (sym[i].st_shndx) {
2388 		case SHN_COMMON:
2389 			/* Ignore common symbols */
2390 			if (!strncmp(name, "__gnu_lto", 9))
2391 				break;
2392 
2393 			/* We compiled with -fno-common.  These are not
2394 			   supposed to happen.  */
2395 			pr_debug("Common symbol: %s\n", name);
2396 			pr_warn("%s: please compile with -fno-common\n",
2397 			       mod->name);
2398 			ret = -ENOEXEC;
2399 			break;
2400 
2401 		case SHN_ABS:
2402 			/* Don't need to do anything */
2403 			pr_debug("Absolute symbol: 0x%08lx\n",
2404 			       (long)sym[i].st_value);
2405 			break;
2406 
2407 		case SHN_LIVEPATCH:
2408 			/* Livepatch symbols are resolved by livepatch */
2409 			break;
2410 
2411 		case SHN_UNDEF:
2412 			ksym = resolve_symbol_wait(mod, info, name);
2413 			/* Ok if resolved.  */
2414 			if (ksym && !IS_ERR(ksym)) {
2415 				sym[i].st_value = kernel_symbol_value(ksym);
2416 				break;
2417 			}
2418 
2419 			/* Ok if weak or ignored.  */
2420 			if (!ksym &&
2421 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2422 			     ignore_undef_symbol(info->hdr->e_machine, name)))
2423 				break;
2424 
2425 			ret = PTR_ERR(ksym) ?: -ENOENT;
2426 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2427 				mod->name, name, ret);
2428 			break;
2429 
2430 		default:
2431 			/* Divert to percpu allocation if a percpu var. */
2432 			if (sym[i].st_shndx == info->index.pcpu)
2433 				secbase = (unsigned long)mod_percpu(mod);
2434 			else
2435 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2436 			sym[i].st_value += secbase;
2437 			break;
2438 		}
2439 	}
2440 
2441 	return ret;
2442 }
2443 
apply_relocations(struct module * mod,const struct load_info * info)2444 static int apply_relocations(struct module *mod, const struct load_info *info)
2445 {
2446 	unsigned int i;
2447 	int err = 0;
2448 
2449 	/* Now do relocations. */
2450 	for (i = 1; i < info->hdr->e_shnum; i++) {
2451 		unsigned int infosec = info->sechdrs[i].sh_info;
2452 
2453 		/* Not a valid relocation section? */
2454 		if (infosec >= info->hdr->e_shnum)
2455 			continue;
2456 
2457 		/* Don't bother with non-allocated sections */
2458 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2459 			continue;
2460 
2461 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2462 			err = klp_apply_section_relocs(mod, info->sechdrs,
2463 						       info->secstrings,
2464 						       info->strtab,
2465 						       info->index.sym, i,
2466 						       NULL);
2467 		else if (info->sechdrs[i].sh_type == SHT_REL)
2468 			err = apply_relocate(info->sechdrs, info->strtab,
2469 					     info->index.sym, i, mod);
2470 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2471 			err = apply_relocate_add(info->sechdrs, info->strtab,
2472 						 info->index.sym, i, mod);
2473 		if (err < 0)
2474 			break;
2475 	}
2476 	return err;
2477 }
2478 
2479 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2480 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2481 					     unsigned int section)
2482 {
2483 	/* default implementation just returns zero */
2484 	return 0;
2485 }
2486 
2487 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2488 static long get_offset(struct module *mod, unsigned int *size,
2489 		       Elf_Shdr *sechdr, unsigned int section)
2490 {
2491 	long ret;
2492 
2493 	*size += arch_mod_section_prepend(mod, section);
2494 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2495 	*size = ret + sechdr->sh_size;
2496 	return ret;
2497 }
2498 
2499 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2500    might -- code, read-only data, read-write data, small data.  Tally
2501    sizes, and place the offsets into sh_entsize fields: high bit means it
2502    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2503 static void layout_sections(struct module *mod, struct load_info *info)
2504 {
2505 	static unsigned long const masks[][2] = {
2506 		/* NOTE: all executable code must be the first section
2507 		 * in this array; otherwise modify the text_size
2508 		 * finder in the two loops below */
2509 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2510 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2511 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2512 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2513 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2514 	};
2515 	unsigned int m, i;
2516 
2517 	for (i = 0; i < info->hdr->e_shnum; i++)
2518 		info->sechdrs[i].sh_entsize = ~0UL;
2519 
2520 	pr_debug("Core section allocation order:\n");
2521 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2522 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2523 			Elf_Shdr *s = &info->sechdrs[i];
2524 			const char *sname = info->secstrings + s->sh_name;
2525 
2526 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2527 			    || (s->sh_flags & masks[m][1])
2528 			    || s->sh_entsize != ~0UL
2529 			    || module_init_layout_section(sname))
2530 				continue;
2531 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2532 			pr_debug("\t%s\n", sname);
2533 		}
2534 		switch (m) {
2535 		case 0: /* executable */
2536 			mod->core_layout.size = debug_align(mod->core_layout.size);
2537 			mod->core_layout.text_size = mod->core_layout.size;
2538 			break;
2539 		case 1: /* RO: text and ro-data */
2540 			mod->core_layout.size = debug_align(mod->core_layout.size);
2541 			mod->core_layout.ro_size = mod->core_layout.size;
2542 			break;
2543 		case 2: /* RO after init */
2544 			mod->core_layout.size = debug_align(mod->core_layout.size);
2545 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2546 			break;
2547 		case 4: /* whole core */
2548 			mod->core_layout.size = debug_align(mod->core_layout.size);
2549 			break;
2550 		}
2551 	}
2552 
2553 	pr_debug("Init section allocation order:\n");
2554 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2555 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2556 			Elf_Shdr *s = &info->sechdrs[i];
2557 			const char *sname = info->secstrings + s->sh_name;
2558 
2559 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2560 			    || (s->sh_flags & masks[m][1])
2561 			    || s->sh_entsize != ~0UL
2562 			    || !module_init_layout_section(sname))
2563 				continue;
2564 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2565 					 | INIT_OFFSET_MASK);
2566 			pr_debug("\t%s\n", sname);
2567 		}
2568 		switch (m) {
2569 		case 0: /* executable */
2570 			mod->init_layout.size = debug_align(mod->init_layout.size);
2571 			mod->init_layout.text_size = mod->init_layout.size;
2572 			break;
2573 		case 1: /* RO: text and ro-data */
2574 			mod->init_layout.size = debug_align(mod->init_layout.size);
2575 			mod->init_layout.ro_size = mod->init_layout.size;
2576 			break;
2577 		case 2:
2578 			/*
2579 			 * RO after init doesn't apply to init_layout (only
2580 			 * core_layout), so it just takes the value of ro_size.
2581 			 */
2582 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2583 			break;
2584 		case 4: /* whole init */
2585 			mod->init_layout.size = debug_align(mod->init_layout.size);
2586 			break;
2587 		}
2588 	}
2589 }
2590 
set_license(struct module * mod,const char * license)2591 static void set_license(struct module *mod, const char *license)
2592 {
2593 	if (!license)
2594 		license = "unspecified";
2595 
2596 	if (!license_is_gpl_compatible(license)) {
2597 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2598 			pr_warn("%s: module license '%s' taints kernel.\n",
2599 				mod->name, license);
2600 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2601 				 LOCKDEP_NOW_UNRELIABLE);
2602 	}
2603 }
2604 
2605 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2606 static char *next_string(char *string, unsigned long *secsize)
2607 {
2608 	/* Skip non-zero chars */
2609 	while (string[0]) {
2610 		string++;
2611 		if ((*secsize)-- <= 1)
2612 			return NULL;
2613 	}
2614 
2615 	/* Skip any zero padding. */
2616 	while (!string[0]) {
2617 		string++;
2618 		if ((*secsize)-- <= 1)
2619 			return NULL;
2620 	}
2621 	return string;
2622 }
2623 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2624 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2625 			      char *prev)
2626 {
2627 	char *p;
2628 	unsigned int taglen = strlen(tag);
2629 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2630 	unsigned long size = infosec->sh_size;
2631 
2632 	/*
2633 	 * get_modinfo() calls made before rewrite_section_headers()
2634 	 * must use sh_offset, as sh_addr isn't set!
2635 	 */
2636 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2637 
2638 	if (prev) {
2639 		size -= prev - modinfo;
2640 		modinfo = next_string(prev, &size);
2641 	}
2642 
2643 	for (p = modinfo; p; p = next_string(p, &size)) {
2644 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2645 			return p + taglen + 1;
2646 	}
2647 	return NULL;
2648 }
2649 
get_modinfo(const struct load_info * info,const char * tag)2650 static char *get_modinfo(const struct load_info *info, const char *tag)
2651 {
2652 	return get_next_modinfo(info, tag, NULL);
2653 }
2654 
setup_modinfo(struct module * mod,struct load_info * info)2655 static void setup_modinfo(struct module *mod, struct load_info *info)
2656 {
2657 	struct module_attribute *attr;
2658 	int i;
2659 
2660 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2661 		if (attr->setup)
2662 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2663 	}
2664 }
2665 
free_modinfo(struct module * mod)2666 static void free_modinfo(struct module *mod)
2667 {
2668 	struct module_attribute *attr;
2669 	int i;
2670 
2671 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2672 		if (attr->free)
2673 			attr->free(mod);
2674 	}
2675 }
2676 
2677 #ifdef CONFIG_KALLSYMS
2678 
2679 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2680 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2681 							  const struct kernel_symbol *start,
2682 							  const struct kernel_symbol *stop)
2683 {
2684 	return bsearch(name, start, stop - start,
2685 			sizeof(struct kernel_symbol), cmp_name);
2686 }
2687 
is_exported(const char * name,unsigned long value,const struct module * mod)2688 static int is_exported(const char *name, unsigned long value,
2689 		       const struct module *mod)
2690 {
2691 	const struct kernel_symbol *ks;
2692 	if (!mod)
2693 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2694 	else
2695 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2696 
2697 	return ks != NULL && kernel_symbol_value(ks) == value;
2698 }
2699 
2700 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2701 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2702 {
2703 	const Elf_Shdr *sechdrs = info->sechdrs;
2704 
2705 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2706 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2707 			return 'v';
2708 		else
2709 			return 'w';
2710 	}
2711 	if (sym->st_shndx == SHN_UNDEF)
2712 		return 'U';
2713 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2714 		return 'a';
2715 	if (sym->st_shndx >= SHN_LORESERVE)
2716 		return '?';
2717 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2718 		return 't';
2719 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2720 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2721 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2722 			return 'r';
2723 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2724 			return 'g';
2725 		else
2726 			return 'd';
2727 	}
2728 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2729 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2730 			return 's';
2731 		else
2732 			return 'b';
2733 	}
2734 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2735 		      ".debug")) {
2736 		return 'n';
2737 	}
2738 	return '?';
2739 }
2740 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2741 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2742 			unsigned int shnum, unsigned int pcpundx)
2743 {
2744 	const Elf_Shdr *sec;
2745 
2746 	if (src->st_shndx == SHN_UNDEF
2747 	    || src->st_shndx >= shnum
2748 	    || !src->st_name)
2749 		return false;
2750 
2751 #ifdef CONFIG_KALLSYMS_ALL
2752 	if (src->st_shndx == pcpundx)
2753 		return true;
2754 #endif
2755 
2756 	sec = sechdrs + src->st_shndx;
2757 	if (!(sec->sh_flags & SHF_ALLOC)
2758 #ifndef CONFIG_KALLSYMS_ALL
2759 	    || !(sec->sh_flags & SHF_EXECINSTR)
2760 #endif
2761 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2762 		return false;
2763 
2764 	return true;
2765 }
2766 
2767 /*
2768  * We only allocate and copy the strings needed by the parts of symtab
2769  * we keep.  This is simple, but has the effect of making multiple
2770  * copies of duplicates.  We could be more sophisticated, see
2771  * linux-kernel thread starting with
2772  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2773  */
layout_symtab(struct module * mod,struct load_info * info)2774 static void layout_symtab(struct module *mod, struct load_info *info)
2775 {
2776 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2777 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2778 	const Elf_Sym *src;
2779 	unsigned int i, nsrc, ndst, strtab_size = 0;
2780 
2781 	/* Put symbol section at end of init part of module. */
2782 	symsect->sh_flags |= SHF_ALLOC;
2783 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2784 					 info->index.sym) | INIT_OFFSET_MASK;
2785 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2786 
2787 	src = (void *)info->hdr + symsect->sh_offset;
2788 	nsrc = symsect->sh_size / sizeof(*src);
2789 
2790 	/* Compute total space required for the core symbols' strtab. */
2791 	for (ndst = i = 0; i < nsrc; i++) {
2792 		if (i == 0 || is_livepatch_module(mod) ||
2793 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2794 				   info->index.pcpu)) {
2795 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2796 			ndst++;
2797 		}
2798 	}
2799 
2800 	/* Append room for core symbols at end of core part. */
2801 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2802 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2803 	mod->core_layout.size += strtab_size;
2804 	info->core_typeoffs = mod->core_layout.size;
2805 	mod->core_layout.size += ndst * sizeof(char);
2806 	mod->core_layout.size = debug_align(mod->core_layout.size);
2807 
2808 	/* Put string table section at end of init part of module. */
2809 	strsect->sh_flags |= SHF_ALLOC;
2810 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2811 					 info->index.str) | INIT_OFFSET_MASK;
2812 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2813 
2814 	/* We'll tack temporary mod_kallsyms on the end. */
2815 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2816 				      __alignof__(struct mod_kallsyms));
2817 	info->mod_kallsyms_init_off = mod->init_layout.size;
2818 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2819 	info->init_typeoffs = mod->init_layout.size;
2820 	mod->init_layout.size += nsrc * sizeof(char);
2821 	mod->init_layout.size = debug_align(mod->init_layout.size);
2822 }
2823 
2824 /*
2825  * We use the full symtab and strtab which layout_symtab arranged to
2826  * be appended to the init section.  Later we switch to the cut-down
2827  * core-only ones.
2828  */
add_kallsyms(struct module * mod,const struct load_info * info)2829 static void add_kallsyms(struct module *mod, const struct load_info *info)
2830 {
2831 	unsigned int i, ndst;
2832 	const Elf_Sym *src;
2833 	Elf_Sym *dst;
2834 	char *s;
2835 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2836 
2837 	/* Set up to point into init section. */
2838 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2839 
2840 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2841 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2842 	/* Make sure we get permanent strtab: don't use info->strtab. */
2843 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2844 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2845 
2846 	/*
2847 	 * Now populate the cut down core kallsyms for after init
2848 	 * and set types up while we still have access to sections.
2849 	 */
2850 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2851 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2852 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2853 	src = mod->kallsyms->symtab;
2854 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2855 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2856 		if (i == 0 || is_livepatch_module(mod) ||
2857 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2858 				   info->index.pcpu)) {
2859 			mod->core_kallsyms.typetab[ndst] =
2860 			    mod->kallsyms->typetab[i];
2861 			dst[ndst] = src[i];
2862 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2863 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2864 				     KSYM_NAME_LEN) + 1;
2865 		}
2866 	}
2867 	mod->core_kallsyms.num_symtab = ndst;
2868 }
2869 #else
layout_symtab(struct module * mod,struct load_info * info)2870 static inline void layout_symtab(struct module *mod, struct load_info *info)
2871 {
2872 }
2873 
add_kallsyms(struct module * mod,const struct load_info * info)2874 static void add_kallsyms(struct module *mod, const struct load_info *info)
2875 {
2876 }
2877 #endif /* CONFIG_KALLSYMS */
2878 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2879 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2880 {
2881 	if (!debug)
2882 		return;
2883 	ddebug_add_module(debug, num, mod->name);
2884 }
2885 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2886 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2887 {
2888 	if (debug)
2889 		ddebug_remove_module(mod->name);
2890 }
2891 
module_alloc(unsigned long size)2892 void * __weak module_alloc(unsigned long size)
2893 {
2894 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2895 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2896 			NUMA_NO_NODE, __builtin_return_address(0));
2897 }
2898 
module_init_section(const char * name)2899 bool __weak module_init_section(const char *name)
2900 {
2901 	return strstarts(name, ".init");
2902 }
2903 
module_exit_section(const char * name)2904 bool __weak module_exit_section(const char *name)
2905 {
2906 	return strstarts(name, ".exit");
2907 }
2908 
2909 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2910 static void kmemleak_load_module(const struct module *mod,
2911 				 const struct load_info *info)
2912 {
2913 	unsigned int i;
2914 
2915 	/* only scan the sections containing data */
2916 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2917 
2918 	for (i = 1; i < info->hdr->e_shnum; i++) {
2919 		/* Scan all writable sections that's not executable */
2920 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2921 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2922 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2923 			continue;
2924 
2925 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2926 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2927 	}
2928 }
2929 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2930 static inline void kmemleak_load_module(const struct module *mod,
2931 					const struct load_info *info)
2932 {
2933 }
2934 #endif
2935 
2936 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2937 static int module_sig_check(struct load_info *info, int flags)
2938 {
2939 	int err = -ENODATA;
2940 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2941 	const char *reason;
2942 	const void *mod = info->hdr;
2943 
2944 	/*
2945 	 * Require flags == 0, as a module with version information
2946 	 * removed is no longer the module that was signed
2947 	 */
2948 	if (flags == 0 &&
2949 	    info->len > markerlen &&
2950 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2951 		/* We truncate the module to discard the signature */
2952 		info->len -= markerlen;
2953 		err = mod_verify_sig(mod, info);
2954 	}
2955 
2956 	switch (err) {
2957 	case 0:
2958 		info->sig_ok = true;
2959 		return 0;
2960 
2961 		/* We don't permit modules to be loaded into trusted kernels
2962 		 * without a valid signature on them, but if we're not
2963 		 * enforcing, certain errors are non-fatal.
2964 		 */
2965 	case -ENODATA:
2966 		reason = "unsigned module";
2967 		break;
2968 	case -ENOPKG:
2969 		reason = "module with unsupported crypto";
2970 		break;
2971 	case -ENOKEY:
2972 		reason = "module with unavailable key";
2973 		break;
2974 
2975 		/* All other errors are fatal, including nomem, unparseable
2976 		 * signatures and signature check failures - even if signatures
2977 		 * aren't required.
2978 		 */
2979 	default:
2980 		return err;
2981 	}
2982 
2983 	if (is_module_sig_enforced()) {
2984 		pr_notice("Loading of %s is rejected\n", reason);
2985 		return -EKEYREJECTED;
2986 	}
2987 
2988 	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2989 }
2990 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2991 static int module_sig_check(struct load_info *info, int flags)
2992 {
2993 	return 0;
2994 }
2995 #endif /* !CONFIG_MODULE_SIG */
2996 
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)2997 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2998 {
2999 	unsigned long secend;
3000 
3001 	/*
3002 	 * Check for both overflow and offset/size being
3003 	 * too large.
3004 	 */
3005 	secend = shdr->sh_offset + shdr->sh_size;
3006 	if (secend < shdr->sh_offset || secend > info->len)
3007 		return -ENOEXEC;
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Sanity checks against invalid binaries, wrong arch, weird elf version.
3014  *
3015  * Also do basic validity checks against section offsets and sizes, the
3016  * section name string table, and the indices used for it (sh_name).
3017  */
elf_validity_check(struct load_info * info)3018 static int elf_validity_check(struct load_info *info)
3019 {
3020 	unsigned int i;
3021 	Elf_Shdr *shdr, *strhdr;
3022 	int err;
3023 
3024 	if (info->len < sizeof(*(info->hdr)))
3025 		return -ENOEXEC;
3026 
3027 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
3028 	    || info->hdr->e_type != ET_REL
3029 	    || !elf_check_arch(info->hdr)
3030 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
3031 		return -ENOEXEC;
3032 
3033 	/*
3034 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3035 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
3036 	 * will not overflow unsigned long on any platform.
3037 	 */
3038 	if (info->hdr->e_shoff >= info->len
3039 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3040 		info->len - info->hdr->e_shoff))
3041 		return -ENOEXEC;
3042 
3043 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3044 
3045 	/*
3046 	 * Verify if the section name table index is valid.
3047 	 */
3048 	if (info->hdr->e_shstrndx == SHN_UNDEF
3049 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum)
3050 		return -ENOEXEC;
3051 
3052 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3053 	err = validate_section_offset(info, strhdr);
3054 	if (err < 0)
3055 		return err;
3056 
3057 	/*
3058 	 * The section name table must be NUL-terminated, as required
3059 	 * by the spec. This makes strcmp and pr_* calls that access
3060 	 * strings in the section safe.
3061 	 */
3062 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3063 	if (info->secstrings[strhdr->sh_size - 1] != '\0')
3064 		return -ENOEXEC;
3065 
3066 	/*
3067 	 * The code assumes that section 0 has a length of zero and
3068 	 * an addr of zero, so check for it.
3069 	 */
3070 	if (info->sechdrs[0].sh_type != SHT_NULL
3071 	    || info->sechdrs[0].sh_size != 0
3072 	    || info->sechdrs[0].sh_addr != 0)
3073 		return -ENOEXEC;
3074 
3075 	for (i = 1; i < info->hdr->e_shnum; i++) {
3076 		shdr = &info->sechdrs[i];
3077 		switch (shdr->sh_type) {
3078 		case SHT_NULL:
3079 		case SHT_NOBITS:
3080 			continue;
3081 		case SHT_SYMTAB:
3082 			if (shdr->sh_link == SHN_UNDEF
3083 			    || shdr->sh_link >= info->hdr->e_shnum)
3084 				return -ENOEXEC;
3085 			fallthrough;
3086 		default:
3087 			err = validate_section_offset(info, shdr);
3088 			if (err < 0) {
3089 				pr_err("Invalid ELF section in module (section %u type %u)\n",
3090 					i, shdr->sh_type);
3091 				return err;
3092 			}
3093 
3094 			if (shdr->sh_flags & SHF_ALLOC) {
3095 				if (shdr->sh_name >= strhdr->sh_size) {
3096 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3097 					       i, shdr->sh_type);
3098 					return -ENOEXEC;
3099 				}
3100 			}
3101 			break;
3102 		}
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3109 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3110 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3111 {
3112 	do {
3113 		unsigned long n = min(len, COPY_CHUNK_SIZE);
3114 
3115 		if (copy_from_user(dst, usrc, n) != 0)
3116 			return -EFAULT;
3117 		cond_resched();
3118 		dst += n;
3119 		usrc += n;
3120 		len -= n;
3121 	} while (len);
3122 	return 0;
3123 }
3124 
3125 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3126 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3127 {
3128 	if (get_modinfo(info, "livepatch")) {
3129 		mod->klp = true;
3130 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3131 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3132 			       mod->name);
3133 	}
3134 
3135 	return 0;
3136 }
3137 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3138 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3139 {
3140 	if (get_modinfo(info, "livepatch")) {
3141 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3142 		       mod->name);
3143 		return -ENOEXEC;
3144 	}
3145 
3146 	return 0;
3147 }
3148 #endif /* CONFIG_LIVEPATCH */
3149 
check_modinfo_retpoline(struct module * mod,struct load_info * info)3150 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3151 {
3152 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3153 		return;
3154 
3155 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3156 		mod->name);
3157 }
3158 
3159 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3160 static int copy_module_from_user(const void __user *umod, unsigned long len,
3161 				  struct load_info *info)
3162 {
3163 	int err;
3164 
3165 	info->len = len;
3166 	if (info->len < sizeof(*(info->hdr)))
3167 		return -ENOEXEC;
3168 
3169 	err = security_kernel_load_data(LOADING_MODULE, true);
3170 	if (err)
3171 		return err;
3172 
3173 	/* Suck in entire file: we'll want most of it. */
3174 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3175 	if (!info->hdr)
3176 		return -ENOMEM;
3177 
3178 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3179 		err = -EFAULT;
3180 		goto out;
3181 	}
3182 
3183 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3184 					     LOADING_MODULE, "init_module");
3185 out:
3186 	if (err)
3187 		vfree(info->hdr);
3188 
3189 	return err;
3190 }
3191 
free_copy(struct load_info * info)3192 static void free_copy(struct load_info *info)
3193 {
3194 	vfree(info->hdr);
3195 }
3196 
rewrite_section_headers(struct load_info * info,int flags)3197 static int rewrite_section_headers(struct load_info *info, int flags)
3198 {
3199 	unsigned int i;
3200 
3201 	/* This should always be true, but let's be sure. */
3202 	info->sechdrs[0].sh_addr = 0;
3203 
3204 	for (i = 1; i < info->hdr->e_shnum; i++) {
3205 		Elf_Shdr *shdr = &info->sechdrs[i];
3206 
3207 		/* Mark all sections sh_addr with their address in the
3208 		   temporary image. */
3209 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3210 
3211 	}
3212 
3213 	/* Track but don't keep modinfo and version sections. */
3214 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3215 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Set up our basic convenience variables (pointers to section headers,
3222  * search for module section index etc), and do some basic section
3223  * verification.
3224  *
3225  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3226  * will be allocated in move_module().
3227  */
setup_load_info(struct load_info * info,int flags)3228 static int setup_load_info(struct load_info *info, int flags)
3229 {
3230 	unsigned int i;
3231 
3232 	/* Try to find a name early so we can log errors with a module name */
3233 	info->index.info = find_sec(info, ".modinfo");
3234 	if (info->index.info)
3235 		info->name = get_modinfo(info, "name");
3236 
3237 	/* Find internal symbols and strings. */
3238 	for (i = 1; i < info->hdr->e_shnum; i++) {
3239 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3240 			info->index.sym = i;
3241 			info->index.str = info->sechdrs[i].sh_link;
3242 			info->strtab = (char *)info->hdr
3243 				+ info->sechdrs[info->index.str].sh_offset;
3244 			break;
3245 		}
3246 	}
3247 
3248 	if (info->index.sym == 0) {
3249 		pr_warn("%s: module has no symbols (stripped?)\n",
3250 			info->name ?: "(missing .modinfo section or name field)");
3251 		return -ENOEXEC;
3252 	}
3253 
3254 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3255 	if (!info->index.mod) {
3256 		pr_warn("%s: No module found in object\n",
3257 			info->name ?: "(missing .modinfo section or name field)");
3258 		return -ENOEXEC;
3259 	}
3260 	/* This is temporary: point mod into copy of data. */
3261 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3262 
3263 	/*
3264 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3265 	 * on-disk struct mod 'name' field.
3266 	 */
3267 	if (!info->name)
3268 		info->name = info->mod->name;
3269 
3270 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3271 		info->index.vers = 0; /* Pretend no __versions section! */
3272 	else
3273 		info->index.vers = find_sec(info, "__versions");
3274 
3275 	info->index.pcpu = find_pcpusec(info);
3276 
3277 	return 0;
3278 }
3279 
check_modinfo(struct module * mod,struct load_info * info,int flags)3280 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3281 {
3282 	const char *modmagic = get_modinfo(info, "vermagic");
3283 	int err;
3284 
3285 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3286 		modmagic = NULL;
3287 
3288 	/* This is allowed: modprobe --force will invalidate it. */
3289 	if (!modmagic) {
3290 		err = try_to_force_load(mod, "bad vermagic");
3291 		if (err)
3292 			return err;
3293 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3294 		pr_err("%s: version magic '%s' should be '%s'\n",
3295 		       info->name, modmagic, vermagic);
3296 		return -ENOEXEC;
3297 	}
3298 
3299 	if (!get_modinfo(info, "intree")) {
3300 		if (!test_taint(TAINT_OOT_MODULE))
3301 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3302 				mod->name);
3303 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3304 	}
3305 
3306 	check_modinfo_retpoline(mod, info);
3307 
3308 	if (get_modinfo(info, "staging")) {
3309 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3310 		pr_warn("%s: module is from the staging directory, the quality "
3311 			"is unknown, you have been warned.\n", mod->name);
3312 	}
3313 
3314 	err = check_modinfo_livepatch(mod, info);
3315 	if (err)
3316 		return err;
3317 
3318 	/* Set up license info based on the info section */
3319 	set_license(mod, get_modinfo(info, "license"));
3320 
3321 	return 0;
3322 }
3323 
find_module_sections(struct module * mod,struct load_info * info)3324 static int find_module_sections(struct module *mod, struct load_info *info)
3325 {
3326 	mod->kp = section_objs(info, "__param",
3327 			       sizeof(*mod->kp), &mod->num_kp);
3328 	mod->syms = section_objs(info, "__ksymtab",
3329 				 sizeof(*mod->syms), &mod->num_syms);
3330 	mod->crcs = section_addr(info, "__kcrctab");
3331 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3332 				     sizeof(*mod->gpl_syms),
3333 				     &mod->num_gpl_syms);
3334 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3335 	mod->gpl_future_syms = section_objs(info,
3336 					    "__ksymtab_gpl_future",
3337 					    sizeof(*mod->gpl_future_syms),
3338 					    &mod->num_gpl_future_syms);
3339 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3340 
3341 #ifdef CONFIG_UNUSED_SYMBOLS
3342 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3343 					sizeof(*mod->unused_syms),
3344 					&mod->num_unused_syms);
3345 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3346 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3347 					    sizeof(*mod->unused_gpl_syms),
3348 					    &mod->num_unused_gpl_syms);
3349 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3350 #endif
3351 #ifdef CONFIG_CONSTRUCTORS
3352 	mod->ctors = section_objs(info, ".ctors",
3353 				  sizeof(*mod->ctors), &mod->num_ctors);
3354 	if (!mod->ctors)
3355 		mod->ctors = section_objs(info, ".init_array",
3356 				sizeof(*mod->ctors), &mod->num_ctors);
3357 	else if (find_sec(info, ".init_array")) {
3358 		/*
3359 		 * This shouldn't happen with same compiler and binutils
3360 		 * building all parts of the module.
3361 		 */
3362 		pr_warn("%s: has both .ctors and .init_array.\n",
3363 		       mod->name);
3364 		return -EINVAL;
3365 	}
3366 #endif
3367 
3368 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3369 						&mod->noinstr_text_size);
3370 
3371 #ifdef CONFIG_TRACEPOINTS
3372 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3373 					     sizeof(*mod->tracepoints_ptrs),
3374 					     &mod->num_tracepoints);
3375 #endif
3376 #ifdef CONFIG_TREE_SRCU
3377 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3378 					     sizeof(*mod->srcu_struct_ptrs),
3379 					     &mod->num_srcu_structs);
3380 #endif
3381 #ifdef CONFIG_BPF_EVENTS
3382 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3383 					   sizeof(*mod->bpf_raw_events),
3384 					   &mod->num_bpf_raw_events);
3385 #endif
3386 #ifdef CONFIG_JUMP_LABEL
3387 	mod->jump_entries = section_objs(info, "__jump_table",
3388 					sizeof(*mod->jump_entries),
3389 					&mod->num_jump_entries);
3390 #endif
3391 #ifdef CONFIG_EVENT_TRACING
3392 	mod->trace_events = section_objs(info, "_ftrace_events",
3393 					 sizeof(*mod->trace_events),
3394 					 &mod->num_trace_events);
3395 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3396 					sizeof(*mod->trace_evals),
3397 					&mod->num_trace_evals);
3398 #endif
3399 #ifdef CONFIG_TRACING
3400 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3401 					 sizeof(*mod->trace_bprintk_fmt_start),
3402 					 &mod->num_trace_bprintk_fmt);
3403 #endif
3404 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3405 	/* sechdrs[0].sh_size is always zero */
3406 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3407 					     sizeof(*mod->ftrace_callsites),
3408 					     &mod->num_ftrace_callsites);
3409 #endif
3410 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3411 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3412 					    sizeof(*mod->ei_funcs),
3413 					    &mod->num_ei_funcs);
3414 #endif
3415 #ifdef CONFIG_KPROBES
3416 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3417 						&mod->kprobes_text_size);
3418 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3419 						sizeof(unsigned long),
3420 						&mod->num_kprobe_blacklist);
3421 #endif
3422 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3423 	mod->static_call_sites = section_objs(info, ".static_call_sites",
3424 					      sizeof(*mod->static_call_sites),
3425 					      &mod->num_static_call_sites);
3426 #endif
3427 	mod->extable = section_objs(info, "__ex_table",
3428 				    sizeof(*mod->extable), &mod->num_exentries);
3429 
3430 	if (section_addr(info, "__obsparm"))
3431 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3432 
3433 	info->debug = section_objs(info, "__dyndbg",
3434 				   sizeof(*info->debug), &info->num_debug);
3435 
3436 	return 0;
3437 }
3438 
move_module(struct module * mod,struct load_info * info)3439 static int move_module(struct module *mod, struct load_info *info)
3440 {
3441 	int i;
3442 	void *ptr;
3443 
3444 	/* Do the allocs. */
3445 	ptr = module_alloc(mod->core_layout.size);
3446 	/*
3447 	 * The pointer to this block is stored in the module structure
3448 	 * which is inside the block. Just mark it as not being a
3449 	 * leak.
3450 	 */
3451 	kmemleak_not_leak(ptr);
3452 	if (!ptr)
3453 		return -ENOMEM;
3454 
3455 	memset(ptr, 0, mod->core_layout.size);
3456 	mod->core_layout.base = ptr;
3457 
3458 	if (mod->init_layout.size) {
3459 		ptr = module_alloc(mod->init_layout.size);
3460 		/*
3461 		 * The pointer to this block is stored in the module structure
3462 		 * which is inside the block. This block doesn't need to be
3463 		 * scanned as it contains data and code that will be freed
3464 		 * after the module is initialized.
3465 		 */
3466 		kmemleak_ignore(ptr);
3467 		if (!ptr) {
3468 			module_memfree(mod->core_layout.base);
3469 			return -ENOMEM;
3470 		}
3471 		memset(ptr, 0, mod->init_layout.size);
3472 		mod->init_layout.base = ptr;
3473 	} else
3474 		mod->init_layout.base = NULL;
3475 
3476 	/* Transfer each section which specifies SHF_ALLOC */
3477 	pr_debug("final section addresses:\n");
3478 	for (i = 0; i < info->hdr->e_shnum; i++) {
3479 		void *dest;
3480 		Elf_Shdr *shdr = &info->sechdrs[i];
3481 
3482 		if (!(shdr->sh_flags & SHF_ALLOC))
3483 			continue;
3484 
3485 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3486 			dest = mod->init_layout.base
3487 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3488 		else
3489 			dest = mod->core_layout.base + shdr->sh_entsize;
3490 
3491 		if (shdr->sh_type != SHT_NOBITS)
3492 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3493 		/* Update sh_addr to point to copy in image. */
3494 		shdr->sh_addr = (unsigned long)dest;
3495 		pr_debug("\t0x%lx %s\n",
3496 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3497 	}
3498 
3499 	return 0;
3500 }
3501 
check_module_license_and_versions(struct module * mod)3502 static int check_module_license_and_versions(struct module *mod)
3503 {
3504 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3505 
3506 	/*
3507 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3508 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3509 	 * using GPL-only symbols it needs.
3510 	 */
3511 	if (strcmp(mod->name, "ndiswrapper") == 0)
3512 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3513 
3514 	/* driverloader was caught wrongly pretending to be under GPL */
3515 	if (strcmp(mod->name, "driverloader") == 0)
3516 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3517 				 LOCKDEP_NOW_UNRELIABLE);
3518 
3519 	/* lve claims to be GPL but upstream won't provide source */
3520 	if (strcmp(mod->name, "lve") == 0)
3521 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3522 				 LOCKDEP_NOW_UNRELIABLE);
3523 
3524 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3525 		pr_warn("%s: module license taints kernel.\n", mod->name);
3526 
3527 #ifdef CONFIG_MODVERSIONS
3528 	if ((mod->num_syms && !mod->crcs)
3529 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3530 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3531 #ifdef CONFIG_UNUSED_SYMBOLS
3532 	    || (mod->num_unused_syms && !mod->unused_crcs)
3533 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3534 #endif
3535 		) {
3536 		return try_to_force_load(mod,
3537 					 "no versions for exported symbols");
3538 	}
3539 #endif
3540 	return 0;
3541 }
3542 
flush_module_icache(const struct module * mod)3543 static void flush_module_icache(const struct module *mod)
3544 {
3545 	/*
3546 	 * Flush the instruction cache, since we've played with text.
3547 	 * Do it before processing of module parameters, so the module
3548 	 * can provide parameter accessor functions of its own.
3549 	 */
3550 	if (mod->init_layout.base)
3551 		flush_icache_range((unsigned long)mod->init_layout.base,
3552 				   (unsigned long)mod->init_layout.base
3553 				   + mod->init_layout.size);
3554 	flush_icache_range((unsigned long)mod->core_layout.base,
3555 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3556 }
3557 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3558 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3559 				     Elf_Shdr *sechdrs,
3560 				     char *secstrings,
3561 				     struct module *mod)
3562 {
3563 	return 0;
3564 }
3565 
3566 /* module_blacklist is a comma-separated list of module names */
3567 static char *module_blacklist;
blacklisted(const char * module_name)3568 static bool blacklisted(const char *module_name)
3569 {
3570 	const char *p;
3571 	size_t len;
3572 
3573 	if (!module_blacklist)
3574 		return false;
3575 
3576 	for (p = module_blacklist; *p; p += len) {
3577 		len = strcspn(p, ",");
3578 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3579 			return true;
3580 		if (p[len] == ',')
3581 			len++;
3582 	}
3583 	return false;
3584 }
3585 core_param(module_blacklist, module_blacklist, charp, 0400);
3586 
layout_and_allocate(struct load_info * info,int flags)3587 static struct module *layout_and_allocate(struct load_info *info, int flags)
3588 {
3589 	struct module *mod;
3590 	unsigned int ndx;
3591 	int err;
3592 
3593 	err = check_modinfo(info->mod, info, flags);
3594 	if (err)
3595 		return ERR_PTR(err);
3596 
3597 	/* Allow arches to frob section contents and sizes.  */
3598 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3599 					info->secstrings, info->mod);
3600 	if (err < 0)
3601 		return ERR_PTR(err);
3602 
3603 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3604 					  info->secstrings, info->mod);
3605 	if (err < 0)
3606 		return ERR_PTR(err);
3607 
3608 	/* We will do a special allocation for per-cpu sections later. */
3609 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3610 
3611 	/*
3612 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3613 	 * layout_sections() can put it in the right place.
3614 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3615 	 */
3616 	ndx = find_sec(info, ".data..ro_after_init");
3617 	if (ndx)
3618 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3619 	/*
3620 	 * Mark the __jump_table section as ro_after_init as well: these data
3621 	 * structures are never modified, with the exception of entries that
3622 	 * refer to code in the __init section, which are annotated as such
3623 	 * at module load time.
3624 	 */
3625 	ndx = find_sec(info, "__jump_table");
3626 	if (ndx)
3627 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3628 
3629 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3630 	   this is done generically; there doesn't appear to be any
3631 	   special cases for the architectures. */
3632 	layout_sections(info->mod, info);
3633 	layout_symtab(info->mod, info);
3634 
3635 	/* Allocate and move to the final place */
3636 	err = move_module(info->mod, info);
3637 	if (err)
3638 		return ERR_PTR(err);
3639 
3640 	/* Module has been copied to its final place now: return it. */
3641 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3642 	kmemleak_load_module(mod, info);
3643 	return mod;
3644 }
3645 
3646 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3647 static void module_deallocate(struct module *mod, struct load_info *info)
3648 {
3649 	percpu_modfree(mod);
3650 	module_arch_freeing_init(mod);
3651 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
3652 		(mod->init_layout.size)>>PAGE_SHIFT);
3653 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
3654 		(mod->init_layout.size)>>PAGE_SHIFT);
3655 	module_memfree(mod->init_layout.base);
3656 	trace_android_vh_set_memory_rw((unsigned long)mod->core_layout.base,
3657 		(mod->core_layout.size)>>PAGE_SHIFT);
3658 	trace_android_vh_set_memory_nx((unsigned long)mod->core_layout.base,
3659 		(mod->core_layout.size)>>PAGE_SHIFT);
3660 	module_memfree(mod->core_layout.base);
3661 }
3662 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3663 int __weak module_finalize(const Elf_Ehdr *hdr,
3664 			   const Elf_Shdr *sechdrs,
3665 			   struct module *me)
3666 {
3667 	return 0;
3668 }
3669 
post_relocation(struct module * mod,const struct load_info * info)3670 static int post_relocation(struct module *mod, const struct load_info *info)
3671 {
3672 	/* Sort exception table now relocations are done. */
3673 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3674 
3675 	/* Copy relocated percpu area over. */
3676 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3677 		       info->sechdrs[info->index.pcpu].sh_size);
3678 
3679 	/* Setup kallsyms-specific fields. */
3680 	add_kallsyms(mod, info);
3681 
3682 	/* Arch-specific module finalizing. */
3683 	return module_finalize(info->hdr, info->sechdrs, mod);
3684 }
3685 
3686 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3687 static bool finished_loading(const char *name)
3688 {
3689 	struct module *mod;
3690 	bool ret;
3691 
3692 	/*
3693 	 * The module_mutex should not be a heavily contended lock;
3694 	 * if we get the occasional sleep here, we'll go an extra iteration
3695 	 * in the wait_event_interruptible(), which is harmless.
3696 	 */
3697 	sched_annotate_sleep();
3698 	mutex_lock(&module_mutex);
3699 	mod = find_module_all(name, strlen(name), true);
3700 	ret = !mod || mod->state == MODULE_STATE_LIVE
3701 		|| mod->state == MODULE_STATE_GOING;
3702 	mutex_unlock(&module_mutex);
3703 
3704 	return ret;
3705 }
3706 
3707 /* Call module constructors. */
do_mod_ctors(struct module * mod)3708 static void do_mod_ctors(struct module *mod)
3709 {
3710 #ifdef CONFIG_CONSTRUCTORS
3711 	unsigned long i;
3712 
3713 	for (i = 0; i < mod->num_ctors; i++)
3714 		mod->ctors[i]();
3715 #endif
3716 }
3717 
3718 /* For freeing module_init on success, in case kallsyms traversing */
3719 struct mod_initfree {
3720 	struct llist_node node;
3721 	void *module_init;
3722 };
3723 
do_free_init(struct work_struct * w)3724 static void do_free_init(struct work_struct *w)
3725 {
3726 	struct llist_node *pos, *n, *list;
3727 	struct mod_initfree *initfree;
3728 
3729 	list = llist_del_all(&init_free_list);
3730 
3731 	synchronize_rcu();
3732 
3733 	llist_for_each_safe(pos, n, list) {
3734 		initfree = container_of(pos, struct mod_initfree, node);
3735 		module_memfree(initfree->module_init);
3736 		kfree(initfree);
3737 	}
3738 }
3739 
3740 /*
3741  * This is where the real work happens.
3742  *
3743  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3744  * helper command 'lx-symbols'.
3745  */
do_init_module(struct module * mod)3746 static noinline int do_init_module(struct module *mod)
3747 {
3748 	int ret = 0;
3749 	struct mod_initfree *freeinit;
3750 
3751 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3752 	if (!freeinit) {
3753 		ret = -ENOMEM;
3754 		goto fail;
3755 	}
3756 	freeinit->module_init = mod->init_layout.base;
3757 
3758 	do_mod_ctors(mod);
3759 	/* Start the module */
3760 	if (mod->init != NULL)
3761 		ret = do_one_initcall(mod->init);
3762 	if (ret < 0) {
3763 		goto fail_free_freeinit;
3764 	}
3765 	if (ret > 0) {
3766 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3767 			"follow 0/-E convention\n"
3768 			"%s: loading module anyway...\n",
3769 			__func__, mod->name, ret, __func__);
3770 		dump_stack();
3771 	}
3772 
3773 	/* Now it's a first class citizen! */
3774 	mod->state = MODULE_STATE_LIVE;
3775 	blocking_notifier_call_chain(&module_notify_list,
3776 				     MODULE_STATE_LIVE, mod);
3777 
3778 	/* Delay uevent until module has finished its init routine */
3779 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3780 
3781 	/*
3782 	 * We need to finish all async code before the module init sequence
3783 	 * is done. This has potential to deadlock if synchronous module
3784 	 * loading is requested from async (which is not allowed!).
3785 	 *
3786 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3787 	 * request_module() from async workers") for more details.
3788 	 */
3789 	if (!mod->async_probe_requested)
3790 		async_synchronize_full();
3791 
3792 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3793 			mod->init_layout.size);
3794 	mutex_lock(&module_mutex);
3795 	/* Drop initial reference. */
3796 	module_put(mod);
3797 	trim_init_extable(mod);
3798 #ifdef CONFIG_KALLSYMS
3799 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3800 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3801 #endif
3802 	module_enable_ro(mod, true);
3803 	trace_android_vh_set_module_permit_after_init(mod);
3804 	mod_tree_remove_init(mod);
3805 	module_arch_freeing_init(mod);
3806 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
3807 		(mod->init_layout.size)>>PAGE_SHIFT);
3808 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
3809 		(mod->init_layout.size)>>PAGE_SHIFT);
3810 	mod->init_layout.base = NULL;
3811 	mod->init_layout.size = 0;
3812 	mod->init_layout.ro_size = 0;
3813 	mod->init_layout.ro_after_init_size = 0;
3814 	mod->init_layout.text_size = 0;
3815 	/*
3816 	 * We want to free module_init, but be aware that kallsyms may be
3817 	 * walking this with preempt disabled.  In all the failure paths, we
3818 	 * call synchronize_rcu(), but we don't want to slow down the success
3819 	 * path. module_memfree() cannot be called in an interrupt, so do the
3820 	 * work and call synchronize_rcu() in a work queue.
3821 	 *
3822 	 * Note that module_alloc() on most architectures creates W+X page
3823 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3824 	 * code such as mark_rodata_ro() which depends on those mappings to
3825 	 * be cleaned up needs to sync with the queued work - ie
3826 	 * rcu_barrier()
3827 	 */
3828 	if (llist_add(&freeinit->node, &init_free_list))
3829 		schedule_work(&init_free_wq);
3830 
3831 	mutex_unlock(&module_mutex);
3832 	wake_up_all(&module_wq);
3833 
3834 	return 0;
3835 
3836 fail_free_freeinit:
3837 	kfree(freeinit);
3838 fail:
3839 	/* Try to protect us from buggy refcounters. */
3840 	mod->state = MODULE_STATE_GOING;
3841 	synchronize_rcu();
3842 	module_put(mod);
3843 	blocking_notifier_call_chain(&module_notify_list,
3844 				     MODULE_STATE_GOING, mod);
3845 	klp_module_going(mod);
3846 	ftrace_release_mod(mod);
3847 	free_module(mod);
3848 	wake_up_all(&module_wq);
3849 	return ret;
3850 }
3851 
may_init_module(void)3852 static int may_init_module(void)
3853 {
3854 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3855 		return -EPERM;
3856 
3857 	return 0;
3858 }
3859 
3860 /*
3861  * We try to place it in the list now to make sure it's unique before
3862  * we dedicate too many resources.  In particular, temporary percpu
3863  * memory exhaustion.
3864  */
add_unformed_module(struct module * mod)3865 static int add_unformed_module(struct module *mod)
3866 {
3867 	int err;
3868 	struct module *old;
3869 
3870 	mod->state = MODULE_STATE_UNFORMED;
3871 
3872 	mutex_lock(&module_mutex);
3873 	old = find_module_all(mod->name, strlen(mod->name), true);
3874 	if (old != NULL) {
3875 		if (old->state == MODULE_STATE_COMING
3876 		    || old->state == MODULE_STATE_UNFORMED) {
3877 			/* Wait in case it fails to load. */
3878 			mutex_unlock(&module_mutex);
3879 			err = wait_event_interruptible(module_wq,
3880 					       finished_loading(mod->name));
3881 			if (err)
3882 				goto out_unlocked;
3883 
3884 			/* The module might have gone in the meantime. */
3885 			mutex_lock(&module_mutex);
3886 			old = find_module_all(mod->name, strlen(mod->name),
3887 					      true);
3888 		}
3889 
3890 		/*
3891 		 * We are here only when the same module was being loaded. Do
3892 		 * not try to load it again right now. It prevents long delays
3893 		 * caused by serialized module load failures. It might happen
3894 		 * when more devices of the same type trigger load of
3895 		 * a particular module.
3896 		 */
3897 		if (old && old->state == MODULE_STATE_LIVE)
3898 			err = -EEXIST;
3899 		else
3900 			err = -EBUSY;
3901 		goto out;
3902 	}
3903 	mod_update_bounds(mod);
3904 	list_add_rcu(&mod->list, &modules);
3905 	mod_tree_insert(mod);
3906 	err = 0;
3907 
3908 out:
3909 	mutex_unlock(&module_mutex);
3910 out_unlocked:
3911 	return err;
3912 }
3913 
complete_formation(struct module * mod,struct load_info * info)3914 static int complete_formation(struct module *mod, struct load_info *info)
3915 {
3916 	int err;
3917 
3918 	mutex_lock(&module_mutex);
3919 
3920 	/* Find duplicate symbols (must be called under lock). */
3921 	err = verify_exported_symbols(mod);
3922 	if (err < 0)
3923 		goto out;
3924 
3925 	/* This relies on module_mutex for list integrity. */
3926 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3927 
3928 	module_enable_ro(mod, false);
3929 	module_enable_nx(mod);
3930 	module_enable_x(mod);
3931 	trace_android_vh_set_module_permit_before_init(mod);
3932 
3933 	/* Mark state as coming so strong_try_module_get() ignores us,
3934 	 * but kallsyms etc. can see us. */
3935 	mod->state = MODULE_STATE_COMING;
3936 	mutex_unlock(&module_mutex);
3937 
3938 	return 0;
3939 
3940 out:
3941 	mutex_unlock(&module_mutex);
3942 	return err;
3943 }
3944 
prepare_coming_module(struct module * mod)3945 static int prepare_coming_module(struct module *mod)
3946 {
3947 	int err;
3948 
3949 	ftrace_module_enable(mod);
3950 	err = klp_module_coming(mod);
3951 	if (err)
3952 		return err;
3953 
3954 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3955 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3956 	err = notifier_to_errno(err);
3957 	if (err)
3958 		klp_module_going(mod);
3959 
3960 	return err;
3961 }
3962 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3963 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3964 				   void *arg)
3965 {
3966 	struct module *mod = arg;
3967 	int ret;
3968 
3969 	if (strcmp(param, "async_probe") == 0) {
3970 		mod->async_probe_requested = true;
3971 		return 0;
3972 	}
3973 
3974 	/* Check for magic 'dyndbg' arg */
3975 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3976 	if (ret != 0)
3977 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3978 	return 0;
3979 }
3980 
3981 static void cfi_init(struct module *mod);
3982 
3983 /* Allocate and load the module: note that size of section 0 is always
3984    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3985 static int load_module(struct load_info *info, const char __user *uargs,
3986 		       int flags)
3987 {
3988 	struct module *mod;
3989 	long err = 0;
3990 	char *after_dashes;
3991 
3992 	/*
3993 	 * Do the signature check (if any) first. All that
3994 	 * the signature check needs is info->len, it does
3995 	 * not need any of the section info. That can be
3996 	 * set up later. This will minimize the chances
3997 	 * of a corrupt module causing problems before
3998 	 * we even get to the signature check.
3999 	 *
4000 	 * The check will also adjust info->len by stripping
4001 	 * off the sig length at the end of the module, making
4002 	 * checks against info->len more correct.
4003 	 */
4004 	err = module_sig_check(info, flags);
4005 	if (err)
4006 		goto free_copy;
4007 
4008 	/*
4009 	 * Do basic sanity checks against the ELF header and
4010 	 * sections.
4011 	 */
4012 	err = elf_validity_check(info);
4013 	if (err) {
4014 		pr_err("Module has invalid ELF structures\n");
4015 		goto free_copy;
4016 	}
4017 
4018 	/*
4019 	 * Everything checks out, so set up the section info
4020 	 * in the info structure.
4021 	 */
4022 	err = setup_load_info(info, flags);
4023 	if (err)
4024 		goto free_copy;
4025 
4026 	/*
4027 	 * Now that we know we have the correct module name, check
4028 	 * if it's blacklisted.
4029 	 */
4030 	if (blacklisted(info->name)) {
4031 		err = -EPERM;
4032 		pr_err("Module %s is blacklisted\n", info->name);
4033 		goto free_copy;
4034 	}
4035 
4036 	err = rewrite_section_headers(info, flags);
4037 	if (err)
4038 		goto free_copy;
4039 
4040 	/* Check module struct version now, before we try to use module. */
4041 	if (!check_modstruct_version(info, info->mod)) {
4042 		err = -ENOEXEC;
4043 		goto free_copy;
4044 	}
4045 
4046 	/* Figure out module layout, and allocate all the memory. */
4047 	mod = layout_and_allocate(info, flags);
4048 	if (IS_ERR(mod)) {
4049 		err = PTR_ERR(mod);
4050 		goto free_copy;
4051 	}
4052 
4053 	audit_log_kern_module(mod->name);
4054 
4055 	/* Reserve our place in the list. */
4056 	err = add_unformed_module(mod);
4057 	if (err)
4058 		goto free_module;
4059 
4060 #ifdef CONFIG_MODULE_SIG
4061 	mod->sig_ok = info->sig_ok;
4062 	if (!mod->sig_ok) {
4063 		pr_notice_once("%s: module verification failed: signature "
4064 			       "and/or required key missing - tainting "
4065 			       "kernel\n", mod->name);
4066 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4067 	}
4068 #endif
4069 
4070 	/* To avoid stressing percpu allocator, do this once we're unique. */
4071 	err = percpu_modalloc(mod, info);
4072 	if (err)
4073 		goto unlink_mod;
4074 
4075 	/* Now module is in final location, initialize linked lists, etc. */
4076 	err = module_unload_init(mod);
4077 	if (err)
4078 		goto unlink_mod;
4079 
4080 	init_param_lock(mod);
4081 
4082 	/* Now we've got everything in the final locations, we can
4083 	 * find optional sections. */
4084 	err = find_module_sections(mod, info);
4085 	if (err)
4086 		goto free_unload;
4087 
4088 	err = check_module_license_and_versions(mod);
4089 	if (err)
4090 		goto free_unload;
4091 
4092 	/* Set up MODINFO_ATTR fields */
4093 	setup_modinfo(mod, info);
4094 
4095 	/* Fix up syms, so that st_value is a pointer to location. */
4096 	err = simplify_symbols(mod, info);
4097 	if (err < 0)
4098 		goto free_modinfo;
4099 
4100 	err = apply_relocations(mod, info);
4101 	if (err < 0)
4102 		goto free_modinfo;
4103 
4104 	err = post_relocation(mod, info);
4105 	if (err < 0)
4106 		goto free_modinfo;
4107 
4108 	flush_module_icache(mod);
4109 
4110 	/* Setup CFI for the module. */
4111 	cfi_init(mod);
4112 
4113 	/* Now copy in args */
4114 	mod->args = strndup_user(uargs, ~0UL >> 1);
4115 	if (IS_ERR(mod->args)) {
4116 		err = PTR_ERR(mod->args);
4117 		goto free_arch_cleanup;
4118 	}
4119 
4120 	dynamic_debug_setup(mod, info->debug, info->num_debug);
4121 
4122 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4123 	ftrace_module_init(mod);
4124 
4125 	/* Finally it's fully formed, ready to start executing. */
4126 	err = complete_formation(mod, info);
4127 	if (err)
4128 		goto ddebug_cleanup;
4129 
4130 	err = prepare_coming_module(mod);
4131 	if (err)
4132 		goto bug_cleanup;
4133 
4134 	/* Module is ready to execute: parsing args may do that. */
4135 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4136 				  -32768, 32767, mod,
4137 				  unknown_module_param_cb);
4138 	if (IS_ERR(after_dashes)) {
4139 		err = PTR_ERR(after_dashes);
4140 		goto coming_cleanup;
4141 	} else if (after_dashes) {
4142 		pr_warn("%s: parameters '%s' after `--' ignored\n",
4143 		       mod->name, after_dashes);
4144 	}
4145 
4146 	/* Link in to sysfs. */
4147 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4148 	if (err < 0)
4149 		goto coming_cleanup;
4150 
4151 	if (is_livepatch_module(mod)) {
4152 		err = copy_module_elf(mod, info);
4153 		if (err < 0)
4154 			goto sysfs_cleanup;
4155 	}
4156 
4157 	/* Get rid of temporary copy. */
4158 	free_copy(info);
4159 
4160 	/* Done! */
4161 	trace_module_load(mod);
4162 
4163 	return do_init_module(mod);
4164 
4165  sysfs_cleanup:
4166 	mod_sysfs_teardown(mod);
4167  coming_cleanup:
4168 	mod->state = MODULE_STATE_GOING;
4169 	destroy_params(mod->kp, mod->num_kp);
4170 	blocking_notifier_call_chain(&module_notify_list,
4171 				     MODULE_STATE_GOING, mod);
4172 	klp_module_going(mod);
4173  bug_cleanup:
4174 	mod->state = MODULE_STATE_GOING;
4175 	/* module_bug_cleanup needs module_mutex protection */
4176 	mutex_lock(&module_mutex);
4177 	module_bug_cleanup(mod);
4178 	mutex_unlock(&module_mutex);
4179 
4180  ddebug_cleanup:
4181 	ftrace_release_mod(mod);
4182 	dynamic_debug_remove(mod, info->debug);
4183 	synchronize_rcu();
4184 	kfree(mod->args);
4185  free_arch_cleanup:
4186 	cfi_cleanup(mod);
4187 	module_arch_cleanup(mod);
4188  free_modinfo:
4189 	free_modinfo(mod);
4190  free_unload:
4191 	module_unload_free(mod);
4192  unlink_mod:
4193 	mutex_lock(&module_mutex);
4194 	/* Unlink carefully: kallsyms could be walking list. */
4195 	list_del_rcu(&mod->list);
4196 	mod_tree_remove(mod);
4197 	wake_up_all(&module_wq);
4198 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4199 	synchronize_rcu();
4200 	mutex_unlock(&module_mutex);
4201  free_module:
4202 	/* Free lock-classes; relies on the preceding sync_rcu() */
4203 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4204 
4205 	module_deallocate(mod, info);
4206  free_copy:
4207 	free_copy(info);
4208 	return err;
4209 }
4210 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4211 SYSCALL_DEFINE3(init_module, void __user *, umod,
4212 		unsigned long, len, const char __user *, uargs)
4213 {
4214 	int err;
4215 	struct load_info info = { };
4216 
4217 	err = may_init_module();
4218 	if (err)
4219 		return err;
4220 
4221 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4222 	       umod, len, uargs);
4223 
4224 	err = copy_module_from_user(umod, len, &info);
4225 	if (err)
4226 		return err;
4227 
4228 	return load_module(&info, uargs, 0);
4229 }
4230 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4231 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4232 {
4233 	struct load_info info = { };
4234 	void *hdr = NULL;
4235 	int err;
4236 
4237 	err = may_init_module();
4238 	if (err)
4239 		return err;
4240 
4241 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4242 
4243 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4244 		      |MODULE_INIT_IGNORE_VERMAGIC))
4245 		return -EINVAL;
4246 
4247 	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4248 				       READING_MODULE);
4249 	if (err < 0)
4250 		return err;
4251 	info.hdr = hdr;
4252 	info.len = err;
4253 
4254 	return load_module(&info, uargs, flags);
4255 }
4256 
within(unsigned long addr,void * start,unsigned long size)4257 static inline int within(unsigned long addr, void *start, unsigned long size)
4258 {
4259 	return ((void *)addr >= start && (void *)addr < start + size);
4260 }
4261 
4262 #ifdef CONFIG_KALLSYMS
4263 /*
4264  * This ignores the intensely annoying "mapping symbols" found
4265  * in ARM ELF files: $a, $t and $d.
4266  */
is_arm_mapping_symbol(const char * str)4267 static inline int is_arm_mapping_symbol(const char *str)
4268 {
4269 	if (str[0] == '.' && str[1] == 'L')
4270 		return true;
4271 	return str[0] == '$' && strchr("axtd", str[1])
4272 	       && (str[2] == '\0' || str[2] == '.');
4273 }
4274 
is_cfi_typeid_symbol(const char * str)4275 static inline int is_cfi_typeid_symbol(const char *str)
4276 {
4277 	return !strncmp(str, "__typeid__", 10);
4278 }
4279 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4280 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4281 {
4282 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4283 }
4284 
4285 /*
4286  * Given a module and address, find the corresponding symbol and return its name
4287  * while providing its size and offset if needed.
4288  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4289 static const char *find_kallsyms_symbol(struct module *mod,
4290 					unsigned long addr,
4291 					unsigned long *size,
4292 					unsigned long *offset)
4293 {
4294 	unsigned int i, best = 0;
4295 	unsigned long nextval, bestval;
4296 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4297 
4298 	/* At worse, next value is at end of module */
4299 	if (within_module_init(addr, mod))
4300 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4301 	else
4302 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4303 
4304 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4305 
4306 	/* Scan for closest preceding symbol, and next symbol. (ELF
4307 	   starts real symbols at 1). */
4308 	for (i = 1; i < kallsyms->num_symtab; i++) {
4309 		const Elf_Sym *sym = &kallsyms->symtab[i];
4310 		unsigned long thisval = kallsyms_symbol_value(sym);
4311 
4312 		if (sym->st_shndx == SHN_UNDEF)
4313 			continue;
4314 
4315 		/* We ignore unnamed symbols: they're uninformative
4316 		 * and inserted at a whim. */
4317 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4318 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i))
4319 		    || is_cfi_typeid_symbol(kallsyms_symbol_name(kallsyms, i)))
4320 			continue;
4321 
4322 		if (thisval <= addr && thisval > bestval) {
4323 			best = i;
4324 			bestval = thisval;
4325 		}
4326 		if (thisval > addr && thisval < nextval)
4327 			nextval = thisval;
4328 	}
4329 
4330 	if (!best)
4331 		return NULL;
4332 
4333 	if (size)
4334 		*size = nextval - bestval;
4335 	if (offset)
4336 		*offset = addr - bestval;
4337 
4338 	return kallsyms_symbol_name(kallsyms, best);
4339 }
4340 
dereference_module_function_descriptor(struct module * mod,void * ptr)4341 void * __weak dereference_module_function_descriptor(struct module *mod,
4342 						     void *ptr)
4343 {
4344 	return ptr;
4345 }
4346 
4347 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4348  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)4349 const char *module_address_lookup(unsigned long addr,
4350 			    unsigned long *size,
4351 			    unsigned long *offset,
4352 			    char **modname,
4353 			    char *namebuf)
4354 {
4355 	const char *ret = NULL;
4356 	struct module *mod;
4357 
4358 	preempt_disable();
4359 	mod = __module_address(addr);
4360 	if (mod) {
4361 		if (modname)
4362 			*modname = mod->name;
4363 
4364 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4365 	}
4366 	/* Make a copy in here where it's safe */
4367 	if (ret) {
4368 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4369 		ret = namebuf;
4370 	}
4371 	preempt_enable();
4372 
4373 	return ret;
4374 }
4375 
lookup_module_symbol_name(unsigned long addr,char * symname)4376 int lookup_module_symbol_name(unsigned long addr, char *symname)
4377 {
4378 	struct module *mod;
4379 
4380 	preempt_disable();
4381 	list_for_each_entry_rcu(mod, &modules, list) {
4382 		if (mod->state == MODULE_STATE_UNFORMED)
4383 			continue;
4384 		if (within_module(addr, mod)) {
4385 			const char *sym;
4386 
4387 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4388 			if (!sym)
4389 				goto out;
4390 
4391 			strlcpy(symname, sym, KSYM_NAME_LEN);
4392 			preempt_enable();
4393 			return 0;
4394 		}
4395 	}
4396 out:
4397 	preempt_enable();
4398 	return -ERANGE;
4399 }
4400 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4401 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4402 			unsigned long *offset, char *modname, char *name)
4403 {
4404 	struct module *mod;
4405 
4406 	preempt_disable();
4407 	list_for_each_entry_rcu(mod, &modules, list) {
4408 		if (mod->state == MODULE_STATE_UNFORMED)
4409 			continue;
4410 		if (within_module(addr, mod)) {
4411 			const char *sym;
4412 
4413 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4414 			if (!sym)
4415 				goto out;
4416 			if (modname)
4417 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4418 			if (name)
4419 				strlcpy(name, sym, KSYM_NAME_LEN);
4420 			preempt_enable();
4421 			return 0;
4422 		}
4423 	}
4424 out:
4425 	preempt_enable();
4426 	return -ERANGE;
4427 }
4428 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4429 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4430 			char *name, char *module_name, int *exported)
4431 {
4432 	struct module *mod;
4433 
4434 	preempt_disable();
4435 	list_for_each_entry_rcu(mod, &modules, list) {
4436 		struct mod_kallsyms *kallsyms;
4437 
4438 		if (mod->state == MODULE_STATE_UNFORMED)
4439 			continue;
4440 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4441 		if (symnum < kallsyms->num_symtab) {
4442 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4443 
4444 			*value = kallsyms_symbol_value(sym);
4445 			*type = kallsyms->typetab[symnum];
4446 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4447 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4448 			*exported = is_exported(name, *value, mod);
4449 			preempt_enable();
4450 			return 0;
4451 		}
4452 		symnum -= kallsyms->num_symtab;
4453 	}
4454 	preempt_enable();
4455 	return -ERANGE;
4456 }
4457 
4458 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4459 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4460 {
4461 	unsigned int i;
4462 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4463 
4464 	for (i = 0; i < kallsyms->num_symtab; i++) {
4465 		const Elf_Sym *sym = &kallsyms->symtab[i];
4466 
4467 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4468 		    sym->st_shndx != SHN_UNDEF)
4469 			return kallsyms_symbol_value(sym);
4470 	}
4471 	return 0;
4472 }
4473 
4474 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4475 unsigned long module_kallsyms_lookup_name(const char *name)
4476 {
4477 	struct module *mod;
4478 	char *colon;
4479 	unsigned long ret = 0;
4480 
4481 	/* Don't lock: we're in enough trouble already. */
4482 	preempt_disable();
4483 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4484 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4485 			ret = find_kallsyms_symbol_value(mod, colon+1);
4486 	} else {
4487 		list_for_each_entry_rcu(mod, &modules, list) {
4488 			if (mod->state == MODULE_STATE_UNFORMED)
4489 				continue;
4490 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4491 				break;
4492 		}
4493 	}
4494 	preempt_enable();
4495 	return ret;
4496 }
4497 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4498 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4499 					     struct module *, unsigned long),
4500 				   void *data)
4501 {
4502 	struct module *mod;
4503 	unsigned int i;
4504 	int ret;
4505 
4506 	module_assert_mutex();
4507 
4508 	list_for_each_entry(mod, &modules, list) {
4509 		/* We hold module_mutex: no need for rcu_dereference_sched */
4510 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4511 
4512 		if (mod->state == MODULE_STATE_UNFORMED)
4513 			continue;
4514 		for (i = 0; i < kallsyms->num_symtab; i++) {
4515 			const Elf_Sym *sym = &kallsyms->symtab[i];
4516 
4517 			if (sym->st_shndx == SHN_UNDEF)
4518 				continue;
4519 
4520 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4521 				 mod, kallsyms_symbol_value(sym));
4522 			if (ret != 0)
4523 				return ret;
4524 		}
4525 	}
4526 	return 0;
4527 }
4528 #endif /* CONFIG_KALLSYMS */
4529 
cfi_init(struct module * mod)4530 static void cfi_init(struct module *mod)
4531 {
4532 #ifdef CONFIG_CFI_CLANG
4533 	initcall_t *init;
4534 	exitcall_t *exit;
4535 
4536 	rcu_read_lock_sched();
4537 	mod->cfi_check = (cfi_check_fn)
4538 		find_kallsyms_symbol_value(mod, "__cfi_check");
4539 	init = (initcall_t *)
4540 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4541 	exit = (exitcall_t *)
4542 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4543 	rcu_read_unlock_sched();
4544 
4545 	/* Fix init/exit functions to point to the CFI jump table */
4546 	if (init) mod->init = *init;
4547 	if (exit) mod->exit = *exit;
4548 
4549 	cfi_module_add(mod, module_addr_min);
4550 #endif
4551 }
4552 
cfi_cleanup(struct module * mod)4553 static void cfi_cleanup(struct module *mod)
4554 {
4555 #ifdef CONFIG_CFI_CLANG
4556 	cfi_module_remove(mod, module_addr_min);
4557 #endif
4558 }
4559 
4560 /* Maximum number of characters written by module_flags() */
4561 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4562 
4563 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4564 static char *module_flags(struct module *mod, char *buf)
4565 {
4566 	int bx = 0;
4567 
4568 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4569 	if (mod->taints ||
4570 	    mod->state == MODULE_STATE_GOING ||
4571 	    mod->state == MODULE_STATE_COMING) {
4572 		buf[bx++] = '(';
4573 		bx += module_flags_taint(mod, buf + bx);
4574 		/* Show a - for module-is-being-unloaded */
4575 		if (mod->state == MODULE_STATE_GOING)
4576 			buf[bx++] = '-';
4577 		/* Show a + for module-is-being-loaded */
4578 		if (mod->state == MODULE_STATE_COMING)
4579 			buf[bx++] = '+';
4580 		buf[bx++] = ')';
4581 	}
4582 	buf[bx] = '\0';
4583 
4584 	return buf;
4585 }
4586 
4587 #ifdef CONFIG_PROC_FS
4588 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4589 static void *m_start(struct seq_file *m, loff_t *pos)
4590 {
4591 	mutex_lock(&module_mutex);
4592 	return seq_list_start(&modules, *pos);
4593 }
4594 
m_next(struct seq_file * m,void * p,loff_t * pos)4595 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4596 {
4597 	return seq_list_next(p, &modules, pos);
4598 }
4599 
m_stop(struct seq_file * m,void * p)4600 static void m_stop(struct seq_file *m, void *p)
4601 {
4602 	mutex_unlock(&module_mutex);
4603 }
4604 
m_show(struct seq_file * m,void * p)4605 static int m_show(struct seq_file *m, void *p)
4606 {
4607 	struct module *mod = list_entry(p, struct module, list);
4608 	char buf[MODULE_FLAGS_BUF_SIZE];
4609 	void *value;
4610 
4611 	/* We always ignore unformed modules. */
4612 	if (mod->state == MODULE_STATE_UNFORMED)
4613 		return 0;
4614 
4615 	seq_printf(m, "%s %u",
4616 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4617 	print_unload_info(m, mod);
4618 
4619 	/* Informative for users. */
4620 	seq_printf(m, " %s",
4621 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4622 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4623 		   "Live");
4624 	/* Used by oprofile and other similar tools. */
4625 	value = m->private ? NULL : mod->core_layout.base;
4626 	seq_printf(m, " 0x%px", value);
4627 
4628 	/* Taints info */
4629 	if (mod->taints)
4630 		seq_printf(m, " %s", module_flags(mod, buf));
4631 
4632 	seq_puts(m, "\n");
4633 	return 0;
4634 }
4635 
4636 /* Format: modulename size refcount deps address
4637 
4638    Where refcount is a number or -, and deps is a comma-separated list
4639    of depends or -.
4640 */
4641 static const struct seq_operations modules_op = {
4642 	.start	= m_start,
4643 	.next	= m_next,
4644 	.stop	= m_stop,
4645 	.show	= m_show
4646 };
4647 
4648 /*
4649  * This also sets the "private" pointer to non-NULL if the
4650  * kernel pointers should be hidden (so you can just test
4651  * "m->private" to see if you should keep the values private).
4652  *
4653  * We use the same logic as for /proc/kallsyms.
4654  */
modules_open(struct inode * inode,struct file * file)4655 static int modules_open(struct inode *inode, struct file *file)
4656 {
4657 	int err = seq_open(file, &modules_op);
4658 
4659 	if (!err) {
4660 		struct seq_file *m = file->private_data;
4661 		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4662 	}
4663 
4664 	return err;
4665 }
4666 
4667 static const struct proc_ops modules_proc_ops = {
4668 	.proc_flags	= PROC_ENTRY_PERMANENT,
4669 	.proc_open	= modules_open,
4670 	.proc_read	= seq_read,
4671 	.proc_lseek	= seq_lseek,
4672 	.proc_release	= seq_release,
4673 };
4674 
proc_modules_init(void)4675 static int __init proc_modules_init(void)
4676 {
4677 	proc_create("modules", 0, NULL, &modules_proc_ops);
4678 	return 0;
4679 }
4680 module_init(proc_modules_init);
4681 #endif
4682 
4683 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4684 const struct exception_table_entry *search_module_extables(unsigned long addr)
4685 {
4686 	const struct exception_table_entry *e = NULL;
4687 	struct module *mod;
4688 
4689 	preempt_disable();
4690 	mod = __module_address(addr);
4691 	if (!mod)
4692 		goto out;
4693 
4694 	if (!mod->num_exentries)
4695 		goto out;
4696 
4697 	e = search_extable(mod->extable,
4698 			   mod->num_exentries,
4699 			   addr);
4700 out:
4701 	preempt_enable();
4702 
4703 	/*
4704 	 * Now, if we found one, we are running inside it now, hence
4705 	 * we cannot unload the module, hence no refcnt needed.
4706 	 */
4707 	return e;
4708 }
4709 
4710 /*
4711  * is_module_address - is this address inside a module?
4712  * @addr: the address to check.
4713  *
4714  * See is_module_text_address() if you simply want to see if the address
4715  * is code (not data).
4716  */
is_module_address(unsigned long addr)4717 bool is_module_address(unsigned long addr)
4718 {
4719 	bool ret;
4720 
4721 	preempt_disable();
4722 	ret = __module_address(addr) != NULL;
4723 	preempt_enable();
4724 
4725 	return ret;
4726 }
4727 
4728 /*
4729  * __module_address - get the module which contains an address.
4730  * @addr: the address.
4731  *
4732  * Must be called with preempt disabled or module mutex held so that
4733  * module doesn't get freed during this.
4734  */
__module_address(unsigned long addr)4735 struct module *__module_address(unsigned long addr)
4736 {
4737 	struct module *mod;
4738 
4739 	if (addr < module_addr_min || addr > module_addr_max)
4740 		return NULL;
4741 
4742 	module_assert_mutex_or_preempt();
4743 
4744 	mod = mod_find(addr);
4745 	if (mod) {
4746 		BUG_ON(!within_module(addr, mod));
4747 		if (mod->state == MODULE_STATE_UNFORMED)
4748 			mod = NULL;
4749 	}
4750 	return mod;
4751 }
4752 
4753 /*
4754  * is_module_text_address - is this address inside module code?
4755  * @addr: the address to check.
4756  *
4757  * See is_module_address() if you simply want to see if the address is
4758  * anywhere in a module.  See kernel_text_address() for testing if an
4759  * address corresponds to kernel or module code.
4760  */
is_module_text_address(unsigned long addr)4761 bool is_module_text_address(unsigned long addr)
4762 {
4763 	bool ret;
4764 
4765 	preempt_disable();
4766 	ret = __module_text_address(addr) != NULL;
4767 	preempt_enable();
4768 
4769 	return ret;
4770 }
4771 
4772 /*
4773  * __module_text_address - get the module whose code contains an address.
4774  * @addr: the address.
4775  *
4776  * Must be called with preempt disabled or module mutex held so that
4777  * module doesn't get freed during this.
4778  */
__module_text_address(unsigned long addr)4779 struct module *__module_text_address(unsigned long addr)
4780 {
4781 	struct module *mod = __module_address(addr);
4782 	if (mod) {
4783 		/* Make sure it's within the text section. */
4784 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4785 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4786 			mod = NULL;
4787 	}
4788 	return mod;
4789 }
4790 
4791 /* Don't grab lock, we're oopsing. */
print_modules(void)4792 void print_modules(void)
4793 {
4794 	struct module *mod;
4795 	char buf[MODULE_FLAGS_BUF_SIZE];
4796 
4797 	printk(KERN_DEFAULT "Modules linked in:");
4798 	/* Most callers should already have preempt disabled, but make sure */
4799 	preempt_disable();
4800 	list_for_each_entry_rcu(mod, &modules, list) {
4801 		if (mod->state == MODULE_STATE_UNFORMED)
4802 			continue;
4803 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4804 	}
4805 	preempt_enable();
4806 	if (last_unloaded_module[0])
4807 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4808 	pr_cont("\n");
4809 }
4810 
4811 #ifdef CONFIG_ANDROID_DEBUG_SYMBOLS
android_debug_for_each_module(int (* fn)(const char * mod_name,void * mod_addr,void * data),void * data)4812 void android_debug_for_each_module(int (*fn)(const char *mod_name, void *mod_addr, void *data),
4813 	void *data)
4814 {
4815 	struct module *module;
4816 
4817 	preempt_disable();
4818 	list_for_each_entry_rcu(module, &modules, list) {
4819 		if (fn(module->name, module->core_layout.base, data))
4820 			goto out;
4821 	}
4822 out:
4823 	preempt_enable();
4824 }
4825 EXPORT_SYMBOL_GPL(android_debug_for_each_module);
4826 #endif
4827 
4828 #ifdef CONFIG_MODVERSIONS
4829 /* Generate the signature for all relevant module structures here.
4830  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4831 void module_layout(struct module *mod,
4832 		   struct modversion_info *ver,
4833 		   struct kernel_param *kp,
4834 		   struct kernel_symbol *ks,
4835 		   struct tracepoint * const *tp)
4836 {
4837 }
4838 EXPORT_SYMBOL(module_layout);
4839 #endif
4840