1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22 #include <trace/hooks/dtask.h>
23
24 #include "rtmutex_common.h"
25
26 /*
27 * lock->owner state tracking:
28 *
29 * lock->owner holds the task_struct pointer of the owner. Bit 0
30 * is used to keep track of the "lock has waiters" state.
31 *
32 * owner bit0
33 * NULL 0 lock is free (fast acquire possible)
34 * NULL 1 lock is free and has waiters and the top waiter
35 * is going to take the lock*
36 * taskpointer 0 lock is held (fast release possible)
37 * taskpointer 1 lock is held and has waiters**
38 *
39 * The fast atomic compare exchange based acquire and release is only
40 * possible when bit 0 of lock->owner is 0.
41 *
42 * (*) It also can be a transitional state when grabbing the lock
43 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
44 * we need to set the bit0 before looking at the lock, and the owner may be
45 * NULL in this small time, hence this can be a transitional state.
46 *
47 * (**) There is a small time when bit 0 is set but there are no
48 * waiters. This can happen when grabbing the lock in the slow path.
49 * To prevent a cmpxchg of the owner releasing the lock, we need to
50 * set this bit before looking at the lock.
51 */
52
53 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)54 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
55 {
56 unsigned long val = (unsigned long)owner;
57
58 if (rt_mutex_has_waiters(lock))
59 val |= RT_MUTEX_HAS_WAITERS;
60
61 WRITE_ONCE(lock->owner, (struct task_struct *)val);
62 }
63
clear_rt_mutex_waiters(struct rt_mutex * lock)64 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
65 {
66 lock->owner = (struct task_struct *)
67 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
68 }
69
fixup_rt_mutex_waiters(struct rt_mutex * lock)70 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
71 {
72 unsigned long owner, *p = (unsigned long *) &lock->owner;
73
74 if (rt_mutex_has_waiters(lock))
75 return;
76
77 /*
78 * The rbtree has no waiters enqueued, now make sure that the
79 * lock->owner still has the waiters bit set, otherwise the
80 * following can happen:
81 *
82 * CPU 0 CPU 1 CPU2
83 * l->owner=T1
84 * rt_mutex_lock(l)
85 * lock(l->lock)
86 * l->owner = T1 | HAS_WAITERS;
87 * enqueue(T2)
88 * boost()
89 * unlock(l->lock)
90 * block()
91 *
92 * rt_mutex_lock(l)
93 * lock(l->lock)
94 * l->owner = T1 | HAS_WAITERS;
95 * enqueue(T3)
96 * boost()
97 * unlock(l->lock)
98 * block()
99 * signal(->T2) signal(->T3)
100 * lock(l->lock)
101 * dequeue(T2)
102 * deboost()
103 * unlock(l->lock)
104 * lock(l->lock)
105 * dequeue(T3)
106 * ==> wait list is empty
107 * deboost()
108 * unlock(l->lock)
109 * lock(l->lock)
110 * fixup_rt_mutex_waiters()
111 * if (wait_list_empty(l) {
112 * l->owner = owner
113 * owner = l->owner & ~HAS_WAITERS;
114 * ==> l->owner = T1
115 * }
116 * lock(l->lock)
117 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
118 * if (wait_list_empty(l) {
119 * owner = l->owner & ~HAS_WAITERS;
120 * cmpxchg(l->owner, T1, NULL)
121 * ===> Success (l->owner = NULL)
122 *
123 * l->owner = owner
124 * ==> l->owner = T1
125 * }
126 *
127 * With the check for the waiter bit in place T3 on CPU2 will not
128 * overwrite. All tasks fiddling with the waiters bit are
129 * serialized by l->lock, so nothing else can modify the waiters
130 * bit. If the bit is set then nothing can change l->owner either
131 * so the simple RMW is safe. The cmpxchg() will simply fail if it
132 * happens in the middle of the RMW because the waiters bit is
133 * still set.
134 */
135 owner = READ_ONCE(*p);
136 if (owner & RT_MUTEX_HAS_WAITERS)
137 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
138 }
139
140 /*
141 * We can speed up the acquire/release, if there's no debugging state to be
142 * set up.
143 */
144 #ifndef CONFIG_DEBUG_RT_MUTEXES
145 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
146 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
147
148 /*
149 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
150 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
151 * relaxed semantics suffice.
152 */
mark_rt_mutex_waiters(struct rt_mutex * lock)153 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
154 {
155 unsigned long owner, *p = (unsigned long *) &lock->owner;
156
157 do {
158 owner = *p;
159 } while (cmpxchg_relaxed(p, owner,
160 owner | RT_MUTEX_HAS_WAITERS) != owner);
161 }
162
163 /*
164 * Safe fastpath aware unlock:
165 * 1) Clear the waiters bit
166 * 2) Drop lock->wait_lock
167 * 3) Try to unlock the lock with cmpxchg
168 */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)169 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
170 unsigned long flags)
171 __releases(lock->wait_lock)
172 {
173 struct task_struct *owner = rt_mutex_owner(lock);
174
175 clear_rt_mutex_waiters(lock);
176 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
177 /*
178 * If a new waiter comes in between the unlock and the cmpxchg
179 * we have two situations:
180 *
181 * unlock(wait_lock);
182 * lock(wait_lock);
183 * cmpxchg(p, owner, 0) == owner
184 * mark_rt_mutex_waiters(lock);
185 * acquire(lock);
186 * or:
187 *
188 * unlock(wait_lock);
189 * lock(wait_lock);
190 * mark_rt_mutex_waiters(lock);
191 *
192 * cmpxchg(p, owner, 0) != owner
193 * enqueue_waiter();
194 * unlock(wait_lock);
195 * lock(wait_lock);
196 * wake waiter();
197 * unlock(wait_lock);
198 * lock(wait_lock);
199 * acquire(lock);
200 */
201 return rt_mutex_cmpxchg_release(lock, owner, NULL);
202 }
203
204 #else
205 # define rt_mutex_cmpxchg_acquire(l,c,n) (0)
206 # define rt_mutex_cmpxchg_release(l,c,n) (0)
207
mark_rt_mutex_waiters(struct rt_mutex * lock)208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209 {
210 lock->owner = (struct task_struct *)
211 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212 }
213
214 /*
215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216 */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 unsigned long flags)
219 __releases(lock->wait_lock)
220 {
221 lock->owner = NULL;
222 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 return true;
224 }
225 #endif
226
227 /*
228 * Only use with rt_mutex_waiter_{less,equal}()
229 */
230 #define task_to_waiter(p) \
231 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
232
233 static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)234 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
235 struct rt_mutex_waiter *right)
236 {
237 if (left->prio < right->prio)
238 return 1;
239
240 /*
241 * If both waiters have dl_prio(), we check the deadlines of the
242 * associated tasks.
243 * If left waiter has a dl_prio(), and we didn't return 1 above,
244 * then right waiter has a dl_prio() too.
245 */
246 if (dl_prio(left->prio))
247 return dl_time_before(left->deadline, right->deadline);
248
249 return 0;
250 }
251
252 static inline int
rt_mutex_waiter_equal(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)253 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
254 struct rt_mutex_waiter *right)
255 {
256 if (left->prio != right->prio)
257 return 0;
258
259 /*
260 * If both waiters have dl_prio(), we check the deadlines of the
261 * associated tasks.
262 * If left waiter has a dl_prio(), and we didn't return 0 above,
263 * then right waiter has a dl_prio() too.
264 */
265 if (dl_prio(left->prio))
266 return left->deadline == right->deadline;
267
268 return 1;
269 }
270
271 static void
rt_mutex_enqueue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)272 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274 struct rb_node **link = &lock->waiters.rb_root.rb_node;
275 struct rb_node *parent = NULL;
276 struct rt_mutex_waiter *entry;
277 bool leftmost = true;
278
279 while (*link) {
280 parent = *link;
281 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
282 if (rt_mutex_waiter_less(waiter, entry)) {
283 link = &parent->rb_left;
284 } else {
285 link = &parent->rb_right;
286 leftmost = false;
287 }
288 }
289
290 rb_link_node(&waiter->tree_entry, parent, link);
291 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
292 }
293
294 static void
rt_mutex_dequeue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)295 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
296 {
297 if (RB_EMPTY_NODE(&waiter->tree_entry))
298 return;
299
300 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
301 RB_CLEAR_NODE(&waiter->tree_entry);
302 }
303
304 static void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)305 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
306 {
307 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
308 struct rb_node *parent = NULL;
309 struct rt_mutex_waiter *entry;
310 bool leftmost = true;
311
312 while (*link) {
313 parent = *link;
314 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
315 if (rt_mutex_waiter_less(waiter, entry)) {
316 link = &parent->rb_left;
317 } else {
318 link = &parent->rb_right;
319 leftmost = false;
320 }
321 }
322
323 rb_link_node(&waiter->pi_tree_entry, parent, link);
324 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
325 }
326
327 static void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)328 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
329 {
330 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
331 return;
332
333 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
334 RB_CLEAR_NODE(&waiter->pi_tree_entry);
335 }
336
rt_mutex_adjust_prio(struct task_struct * p)337 static void rt_mutex_adjust_prio(struct task_struct *p)
338 {
339 struct task_struct *pi_task = NULL;
340
341 lockdep_assert_held(&p->pi_lock);
342
343 if (task_has_pi_waiters(p))
344 pi_task = task_top_pi_waiter(p)->task;
345
346 rt_mutex_setprio(p, pi_task);
347 }
348
349 /*
350 * Deadlock detection is conditional:
351 *
352 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
353 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
354 *
355 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
356 * conducted independent of the detect argument.
357 *
358 * If the waiter argument is NULL this indicates the deboost path and
359 * deadlock detection is disabled independent of the detect argument
360 * and the config settings.
361 */
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)362 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
363 enum rtmutex_chainwalk chwalk)
364 {
365 /*
366 * This is just a wrapper function for the following call,
367 * because debug_rt_mutex_detect_deadlock() smells like a magic
368 * debug feature and I wanted to keep the cond function in the
369 * main source file along with the comments instead of having
370 * two of the same in the headers.
371 */
372 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
373 }
374
375 /*
376 * Max number of times we'll walk the boosting chain:
377 */
378 int max_lock_depth = 1024;
379
task_blocked_on_lock(struct task_struct * p)380 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
381 {
382 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
383 }
384
385 /*
386 * Adjust the priority chain. Also used for deadlock detection.
387 * Decreases task's usage by one - may thus free the task.
388 *
389 * @task: the task owning the mutex (owner) for which a chain walk is
390 * probably needed
391 * @chwalk: do we have to carry out deadlock detection?
392 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
393 * things for a task that has just got its priority adjusted, and
394 * is waiting on a mutex)
395 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
396 * we dropped its pi_lock. Is never dereferenced, only used for
397 * comparison to detect lock chain changes.
398 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
399 * its priority to the mutex owner (can be NULL in the case
400 * depicted above or if the top waiter is gone away and we are
401 * actually deboosting the owner)
402 * @top_task: the current top waiter
403 *
404 * Returns 0 or -EDEADLK.
405 *
406 * Chain walk basics and protection scope
407 *
408 * [R] refcount on task
409 * [P] task->pi_lock held
410 * [L] rtmutex->wait_lock held
411 *
412 * Step Description Protected by
413 * function arguments:
414 * @task [R]
415 * @orig_lock if != NULL @top_task is blocked on it
416 * @next_lock Unprotected. Cannot be
417 * dereferenced. Only used for
418 * comparison.
419 * @orig_waiter if != NULL @top_task is blocked on it
420 * @top_task current, or in case of proxy
421 * locking protected by calling
422 * code
423 * again:
424 * loop_sanity_check();
425 * retry:
426 * [1] lock(task->pi_lock); [R] acquire [P]
427 * [2] waiter = task->pi_blocked_on; [P]
428 * [3] check_exit_conditions_1(); [P]
429 * [4] lock = waiter->lock; [P]
430 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
431 * unlock(task->pi_lock); release [P]
432 * goto retry;
433 * }
434 * [6] check_exit_conditions_2(); [P] + [L]
435 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
436 * [8] unlock(task->pi_lock); release [P]
437 * put_task_struct(task); release [R]
438 * [9] check_exit_conditions_3(); [L]
439 * [10] task = owner(lock); [L]
440 * get_task_struct(task); [L] acquire [R]
441 * lock(task->pi_lock); [L] acquire [P]
442 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
443 * [12] check_exit_conditions_4(); [P] + [L]
444 * [13] unlock(task->pi_lock); release [P]
445 * unlock(lock->wait_lock); release [L]
446 * goto again;
447 */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex * orig_lock,struct rt_mutex * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)448 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
449 enum rtmutex_chainwalk chwalk,
450 struct rt_mutex *orig_lock,
451 struct rt_mutex *next_lock,
452 struct rt_mutex_waiter *orig_waiter,
453 struct task_struct *top_task)
454 {
455 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
456 struct rt_mutex_waiter *prerequeue_top_waiter;
457 int ret = 0, depth = 0;
458 struct rt_mutex *lock;
459 bool detect_deadlock;
460 bool requeue = true;
461
462 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
463
464 /*
465 * The (de)boosting is a step by step approach with a lot of
466 * pitfalls. We want this to be preemptible and we want hold a
467 * maximum of two locks per step. So we have to check
468 * carefully whether things change under us.
469 */
470 again:
471 /*
472 * We limit the lock chain length for each invocation.
473 */
474 if (++depth > max_lock_depth) {
475 static int prev_max;
476
477 /*
478 * Print this only once. If the admin changes the limit,
479 * print a new message when reaching the limit again.
480 */
481 if (prev_max != max_lock_depth) {
482 prev_max = max_lock_depth;
483 printk(KERN_WARNING "Maximum lock depth %d reached "
484 "task: %s (%d)\n", max_lock_depth,
485 top_task->comm, task_pid_nr(top_task));
486 }
487 put_task_struct(task);
488
489 return -EDEADLK;
490 }
491
492 /*
493 * We are fully preemptible here and only hold the refcount on
494 * @task. So everything can have changed under us since the
495 * caller or our own code below (goto retry/again) dropped all
496 * locks.
497 */
498 retry:
499 /*
500 * [1] Task cannot go away as we did a get_task() before !
501 */
502 raw_spin_lock_irq(&task->pi_lock);
503
504 /*
505 * [2] Get the waiter on which @task is blocked on.
506 */
507 waiter = task->pi_blocked_on;
508
509 /*
510 * [3] check_exit_conditions_1() protected by task->pi_lock.
511 */
512
513 /*
514 * Check whether the end of the boosting chain has been
515 * reached or the state of the chain has changed while we
516 * dropped the locks.
517 */
518 if (!waiter)
519 goto out_unlock_pi;
520
521 /*
522 * Check the orig_waiter state. After we dropped the locks,
523 * the previous owner of the lock might have released the lock.
524 */
525 if (orig_waiter && !rt_mutex_owner(orig_lock))
526 goto out_unlock_pi;
527
528 /*
529 * We dropped all locks after taking a refcount on @task, so
530 * the task might have moved on in the lock chain or even left
531 * the chain completely and blocks now on an unrelated lock or
532 * on @orig_lock.
533 *
534 * We stored the lock on which @task was blocked in @next_lock,
535 * so we can detect the chain change.
536 */
537 if (next_lock != waiter->lock)
538 goto out_unlock_pi;
539
540 /*
541 * Drop out, when the task has no waiters. Note,
542 * top_waiter can be NULL, when we are in the deboosting
543 * mode!
544 */
545 if (top_waiter) {
546 if (!task_has_pi_waiters(task))
547 goto out_unlock_pi;
548 /*
549 * If deadlock detection is off, we stop here if we
550 * are not the top pi waiter of the task. If deadlock
551 * detection is enabled we continue, but stop the
552 * requeueing in the chain walk.
553 */
554 if (top_waiter != task_top_pi_waiter(task)) {
555 if (!detect_deadlock)
556 goto out_unlock_pi;
557 else
558 requeue = false;
559 }
560 }
561
562 /*
563 * If the waiter priority is the same as the task priority
564 * then there is no further priority adjustment necessary. If
565 * deadlock detection is off, we stop the chain walk. If its
566 * enabled we continue, but stop the requeueing in the chain
567 * walk.
568 */
569 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
570 if (!detect_deadlock)
571 goto out_unlock_pi;
572 else
573 requeue = false;
574 }
575
576 /*
577 * [4] Get the next lock
578 */
579 lock = waiter->lock;
580 /*
581 * [5] We need to trylock here as we are holding task->pi_lock,
582 * which is the reverse lock order versus the other rtmutex
583 * operations.
584 */
585 if (!raw_spin_trylock(&lock->wait_lock)) {
586 raw_spin_unlock_irq(&task->pi_lock);
587 cpu_relax();
588 goto retry;
589 }
590
591 /*
592 * [6] check_exit_conditions_2() protected by task->pi_lock and
593 * lock->wait_lock.
594 *
595 * Deadlock detection. If the lock is the same as the original
596 * lock which caused us to walk the lock chain or if the
597 * current lock is owned by the task which initiated the chain
598 * walk, we detected a deadlock.
599 */
600 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
601 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
602 raw_spin_unlock(&lock->wait_lock);
603 ret = -EDEADLK;
604 goto out_unlock_pi;
605 }
606
607 /*
608 * If we just follow the lock chain for deadlock detection, no
609 * need to do all the requeue operations. To avoid a truckload
610 * of conditionals around the various places below, just do the
611 * minimum chain walk checks.
612 */
613 if (!requeue) {
614 /*
615 * No requeue[7] here. Just release @task [8]
616 */
617 raw_spin_unlock(&task->pi_lock);
618 put_task_struct(task);
619
620 /*
621 * [9] check_exit_conditions_3 protected by lock->wait_lock.
622 * If there is no owner of the lock, end of chain.
623 */
624 if (!rt_mutex_owner(lock)) {
625 raw_spin_unlock_irq(&lock->wait_lock);
626 return 0;
627 }
628
629 /* [10] Grab the next task, i.e. owner of @lock */
630 task = get_task_struct(rt_mutex_owner(lock));
631 raw_spin_lock(&task->pi_lock);
632
633 /*
634 * No requeue [11] here. We just do deadlock detection.
635 *
636 * [12] Store whether owner is blocked
637 * itself. Decision is made after dropping the locks
638 */
639 next_lock = task_blocked_on_lock(task);
640 /*
641 * Get the top waiter for the next iteration
642 */
643 top_waiter = rt_mutex_top_waiter(lock);
644
645 /* [13] Drop locks */
646 raw_spin_unlock(&task->pi_lock);
647 raw_spin_unlock_irq(&lock->wait_lock);
648
649 /* If owner is not blocked, end of chain. */
650 if (!next_lock)
651 goto out_put_task;
652 goto again;
653 }
654
655 /*
656 * Store the current top waiter before doing the requeue
657 * operation on @lock. We need it for the boost/deboost
658 * decision below.
659 */
660 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
661
662 /* [7] Requeue the waiter in the lock waiter tree. */
663 rt_mutex_dequeue(lock, waiter);
664
665 /*
666 * Update the waiter prio fields now that we're dequeued.
667 *
668 * These values can have changed through either:
669 *
670 * sys_sched_set_scheduler() / sys_sched_setattr()
671 *
672 * or
673 *
674 * DL CBS enforcement advancing the effective deadline.
675 *
676 * Even though pi_waiters also uses these fields, and that tree is only
677 * updated in [11], we can do this here, since we hold [L], which
678 * serializes all pi_waiters access and rb_erase() does not care about
679 * the values of the node being removed.
680 */
681 waiter->prio = task->prio;
682 waiter->deadline = task->dl.deadline;
683
684 rt_mutex_enqueue(lock, waiter);
685
686 /* [8] Release the task */
687 raw_spin_unlock(&task->pi_lock);
688 put_task_struct(task);
689
690 /*
691 * [9] check_exit_conditions_3 protected by lock->wait_lock.
692 *
693 * We must abort the chain walk if there is no lock owner even
694 * in the dead lock detection case, as we have nothing to
695 * follow here. This is the end of the chain we are walking.
696 */
697 if (!rt_mutex_owner(lock)) {
698 /*
699 * If the requeue [7] above changed the top waiter,
700 * then we need to wake the new top waiter up to try
701 * to get the lock.
702 */
703 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
704 wake_up_process(rt_mutex_top_waiter(lock)->task);
705 raw_spin_unlock_irq(&lock->wait_lock);
706 return 0;
707 }
708
709 /* [10] Grab the next task, i.e. the owner of @lock */
710 task = get_task_struct(rt_mutex_owner(lock));
711 raw_spin_lock(&task->pi_lock);
712
713 /* [11] requeue the pi waiters if necessary */
714 if (waiter == rt_mutex_top_waiter(lock)) {
715 /*
716 * The waiter became the new top (highest priority)
717 * waiter on the lock. Replace the previous top waiter
718 * in the owner tasks pi waiters tree with this waiter
719 * and adjust the priority of the owner.
720 */
721 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
722 rt_mutex_enqueue_pi(task, waiter);
723 rt_mutex_adjust_prio(task);
724
725 } else if (prerequeue_top_waiter == waiter) {
726 /*
727 * The waiter was the top waiter on the lock, but is
728 * no longer the top prority waiter. Replace waiter in
729 * the owner tasks pi waiters tree with the new top
730 * (highest priority) waiter and adjust the priority
731 * of the owner.
732 * The new top waiter is stored in @waiter so that
733 * @waiter == @top_waiter evaluates to true below and
734 * we continue to deboost the rest of the chain.
735 */
736 rt_mutex_dequeue_pi(task, waiter);
737 waiter = rt_mutex_top_waiter(lock);
738 rt_mutex_enqueue_pi(task, waiter);
739 rt_mutex_adjust_prio(task);
740 } else {
741 /*
742 * Nothing changed. No need to do any priority
743 * adjustment.
744 */
745 }
746
747 /*
748 * [12] check_exit_conditions_4() protected by task->pi_lock
749 * and lock->wait_lock. The actual decisions are made after we
750 * dropped the locks.
751 *
752 * Check whether the task which owns the current lock is pi
753 * blocked itself. If yes we store a pointer to the lock for
754 * the lock chain change detection above. After we dropped
755 * task->pi_lock next_lock cannot be dereferenced anymore.
756 */
757 next_lock = task_blocked_on_lock(task);
758 /*
759 * Store the top waiter of @lock for the end of chain walk
760 * decision below.
761 */
762 top_waiter = rt_mutex_top_waiter(lock);
763
764 /* [13] Drop the locks */
765 raw_spin_unlock(&task->pi_lock);
766 raw_spin_unlock_irq(&lock->wait_lock);
767
768 /*
769 * Make the actual exit decisions [12], based on the stored
770 * values.
771 *
772 * We reached the end of the lock chain. Stop right here. No
773 * point to go back just to figure that out.
774 */
775 if (!next_lock)
776 goto out_put_task;
777
778 /*
779 * If the current waiter is not the top waiter on the lock,
780 * then we can stop the chain walk here if we are not in full
781 * deadlock detection mode.
782 */
783 if (!detect_deadlock && waiter != top_waiter)
784 goto out_put_task;
785
786 goto again;
787
788 out_unlock_pi:
789 raw_spin_unlock_irq(&task->pi_lock);
790 out_put_task:
791 put_task_struct(task);
792
793 return ret;
794 }
795
796 /*
797 * Try to take an rt-mutex
798 *
799 * Must be called with lock->wait_lock held and interrupts disabled
800 *
801 * @lock: The lock to be acquired.
802 * @task: The task which wants to acquire the lock
803 * @waiter: The waiter that is queued to the lock's wait tree if the
804 * callsite called task_blocked_on_lock(), otherwise NULL
805 */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)806 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
807 struct rt_mutex_waiter *waiter)
808 {
809 lockdep_assert_held(&lock->wait_lock);
810
811 /*
812 * Before testing whether we can acquire @lock, we set the
813 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
814 * other tasks which try to modify @lock into the slow path
815 * and they serialize on @lock->wait_lock.
816 *
817 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
818 * as explained at the top of this file if and only if:
819 *
820 * - There is a lock owner. The caller must fixup the
821 * transient state if it does a trylock or leaves the lock
822 * function due to a signal or timeout.
823 *
824 * - @task acquires the lock and there are no other
825 * waiters. This is undone in rt_mutex_set_owner(@task) at
826 * the end of this function.
827 */
828 mark_rt_mutex_waiters(lock);
829
830 /*
831 * If @lock has an owner, give up.
832 */
833 if (rt_mutex_owner(lock))
834 return 0;
835
836 /*
837 * If @waiter != NULL, @task has already enqueued the waiter
838 * into @lock waiter tree. If @waiter == NULL then this is a
839 * trylock attempt.
840 */
841 if (waiter) {
842 /*
843 * If waiter is not the highest priority waiter of
844 * @lock, give up.
845 */
846 if (waiter != rt_mutex_top_waiter(lock))
847 return 0;
848
849 /*
850 * We can acquire the lock. Remove the waiter from the
851 * lock waiters tree.
852 */
853 rt_mutex_dequeue(lock, waiter);
854
855 } else {
856 /*
857 * If the lock has waiters already we check whether @task is
858 * eligible to take over the lock.
859 *
860 * If there are no other waiters, @task can acquire
861 * the lock. @task->pi_blocked_on is NULL, so it does
862 * not need to be dequeued.
863 */
864 if (rt_mutex_has_waiters(lock)) {
865 /*
866 * If @task->prio is greater than or equal to
867 * the top waiter priority (kernel view),
868 * @task lost.
869 */
870 if (!rt_mutex_waiter_less(task_to_waiter(task),
871 rt_mutex_top_waiter(lock)))
872 return 0;
873
874 /*
875 * The current top waiter stays enqueued. We
876 * don't have to change anything in the lock
877 * waiters order.
878 */
879 } else {
880 /*
881 * No waiters. Take the lock without the
882 * pi_lock dance.@task->pi_blocked_on is NULL
883 * and we have no waiters to enqueue in @task
884 * pi waiters tree.
885 */
886 goto takeit;
887 }
888 }
889
890 /*
891 * Clear @task->pi_blocked_on. Requires protection by
892 * @task->pi_lock. Redundant operation for the @waiter == NULL
893 * case, but conditionals are more expensive than a redundant
894 * store.
895 */
896 raw_spin_lock(&task->pi_lock);
897 task->pi_blocked_on = NULL;
898 /*
899 * Finish the lock acquisition. @task is the new owner. If
900 * other waiters exist we have to insert the highest priority
901 * waiter into @task->pi_waiters tree.
902 */
903 if (rt_mutex_has_waiters(lock))
904 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
905 raw_spin_unlock(&task->pi_lock);
906
907 takeit:
908 /* We got the lock. */
909 debug_rt_mutex_lock(lock);
910
911 /*
912 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
913 * are still waiters or clears it.
914 */
915 rt_mutex_set_owner(lock, task);
916
917 return 1;
918 }
919
920 /*
921 * Task blocks on lock.
922 *
923 * Prepare waiter and propagate pi chain
924 *
925 * This must be called with lock->wait_lock held and interrupts disabled
926 */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,enum rtmutex_chainwalk chwalk)927 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
928 struct rt_mutex_waiter *waiter,
929 struct task_struct *task,
930 enum rtmutex_chainwalk chwalk)
931 {
932 struct task_struct *owner = rt_mutex_owner(lock);
933 struct rt_mutex_waiter *top_waiter = waiter;
934 struct rt_mutex *next_lock;
935 int chain_walk = 0, res;
936
937 lockdep_assert_held(&lock->wait_lock);
938
939 /*
940 * Early deadlock detection. We really don't want the task to
941 * enqueue on itself just to untangle the mess later. It's not
942 * only an optimization. We drop the locks, so another waiter
943 * can come in before the chain walk detects the deadlock. So
944 * the other will detect the deadlock and return -EDEADLOCK,
945 * which is wrong, as the other waiter is not in a deadlock
946 * situation.
947 */
948 if (owner == task)
949 return -EDEADLK;
950
951 raw_spin_lock(&task->pi_lock);
952 waiter->task = task;
953 waiter->lock = lock;
954 waiter->prio = task->prio;
955 waiter->deadline = task->dl.deadline;
956
957 /* Get the top priority waiter on the lock */
958 if (rt_mutex_has_waiters(lock))
959 top_waiter = rt_mutex_top_waiter(lock);
960 rt_mutex_enqueue(lock, waiter);
961
962 task->pi_blocked_on = waiter;
963
964 raw_spin_unlock(&task->pi_lock);
965
966 if (!owner)
967 return 0;
968
969 raw_spin_lock(&owner->pi_lock);
970 if (waiter == rt_mutex_top_waiter(lock)) {
971 rt_mutex_dequeue_pi(owner, top_waiter);
972 rt_mutex_enqueue_pi(owner, waiter);
973
974 rt_mutex_adjust_prio(owner);
975 if (owner->pi_blocked_on)
976 chain_walk = 1;
977 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
978 chain_walk = 1;
979 }
980
981 /* Store the lock on which owner is blocked or NULL */
982 next_lock = task_blocked_on_lock(owner);
983
984 raw_spin_unlock(&owner->pi_lock);
985 /*
986 * Even if full deadlock detection is on, if the owner is not
987 * blocked itself, we can avoid finding this out in the chain
988 * walk.
989 */
990 if (!chain_walk || !next_lock)
991 return 0;
992
993 /*
994 * The owner can't disappear while holding a lock,
995 * so the owner struct is protected by wait_lock.
996 * Gets dropped in rt_mutex_adjust_prio_chain()!
997 */
998 get_task_struct(owner);
999
1000 raw_spin_unlock_irq(&lock->wait_lock);
1001
1002 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1003 next_lock, waiter, task);
1004
1005 raw_spin_lock_irq(&lock->wait_lock);
1006
1007 return res;
1008 }
1009
1010 /*
1011 * Remove the top waiter from the current tasks pi waiter tree and
1012 * queue it up.
1013 *
1014 * Called with lock->wait_lock held and interrupts disabled.
1015 */
mark_wakeup_next_waiter(struct wake_q_head * wake_q,struct rt_mutex * lock)1016 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1017 struct rt_mutex *lock)
1018 {
1019 struct rt_mutex_waiter *waiter;
1020
1021 raw_spin_lock(¤t->pi_lock);
1022
1023 waiter = rt_mutex_top_waiter(lock);
1024
1025 /*
1026 * Remove it from current->pi_waiters and deboost.
1027 *
1028 * We must in fact deboost here in order to ensure we call
1029 * rt_mutex_setprio() to update p->pi_top_task before the
1030 * task unblocks.
1031 */
1032 rt_mutex_dequeue_pi(current, waiter);
1033 rt_mutex_adjust_prio(current);
1034
1035 /*
1036 * As we are waking up the top waiter, and the waiter stays
1037 * queued on the lock until it gets the lock, this lock
1038 * obviously has waiters. Just set the bit here and this has
1039 * the added benefit of forcing all new tasks into the
1040 * slow path making sure no task of lower priority than
1041 * the top waiter can steal this lock.
1042 */
1043 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1044
1045 /*
1046 * We deboosted before waking the top waiter task such that we don't
1047 * run two tasks with the 'same' priority (and ensure the
1048 * p->pi_top_task pointer points to a blocked task). This however can
1049 * lead to priority inversion if we would get preempted after the
1050 * deboost but before waking our donor task, hence the preempt_disable()
1051 * before unlock.
1052 *
1053 * Pairs with preempt_enable() in rt_mutex_postunlock();
1054 */
1055 preempt_disable();
1056 wake_q_add(wake_q, waiter->task);
1057 raw_spin_unlock(¤t->pi_lock);
1058 }
1059
1060 /*
1061 * Remove a waiter from a lock and give up
1062 *
1063 * Must be called with lock->wait_lock held and interrupts disabled. I must
1064 * have just failed to try_to_take_rt_mutex().
1065 */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1066 static void remove_waiter(struct rt_mutex *lock,
1067 struct rt_mutex_waiter *waiter)
1068 {
1069 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1070 struct task_struct *owner = rt_mutex_owner(lock);
1071 struct rt_mutex *next_lock;
1072
1073 lockdep_assert_held(&lock->wait_lock);
1074
1075 raw_spin_lock(¤t->pi_lock);
1076 rt_mutex_dequeue(lock, waiter);
1077 current->pi_blocked_on = NULL;
1078 raw_spin_unlock(¤t->pi_lock);
1079
1080 /*
1081 * Only update priority if the waiter was the highest priority
1082 * waiter of the lock and there is an owner to update.
1083 */
1084 if (!owner || !is_top_waiter)
1085 return;
1086
1087 raw_spin_lock(&owner->pi_lock);
1088
1089 rt_mutex_dequeue_pi(owner, waiter);
1090
1091 if (rt_mutex_has_waiters(lock))
1092 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1093
1094 rt_mutex_adjust_prio(owner);
1095
1096 /* Store the lock on which owner is blocked or NULL */
1097 next_lock = task_blocked_on_lock(owner);
1098
1099 raw_spin_unlock(&owner->pi_lock);
1100
1101 /*
1102 * Don't walk the chain, if the owner task is not blocked
1103 * itself.
1104 */
1105 if (!next_lock)
1106 return;
1107
1108 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1109 get_task_struct(owner);
1110
1111 raw_spin_unlock_irq(&lock->wait_lock);
1112
1113 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1114 next_lock, NULL, current);
1115
1116 raw_spin_lock_irq(&lock->wait_lock);
1117 }
1118
1119 /*
1120 * Recheck the pi chain, in case we got a priority setting
1121 *
1122 * Called from sched_setscheduler
1123 */
rt_mutex_adjust_pi(struct task_struct * task)1124 void rt_mutex_adjust_pi(struct task_struct *task)
1125 {
1126 struct rt_mutex_waiter *waiter;
1127 struct rt_mutex *next_lock;
1128 unsigned long flags;
1129
1130 raw_spin_lock_irqsave(&task->pi_lock, flags);
1131
1132 waiter = task->pi_blocked_on;
1133 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1134 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1135 return;
1136 }
1137 next_lock = waiter->lock;
1138 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1139
1140 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1141 get_task_struct(task);
1142
1143 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1144 next_lock, NULL, task);
1145 }
1146
rt_mutex_init_waiter(struct rt_mutex_waiter * waiter)1147 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1148 {
1149 debug_rt_mutex_init_waiter(waiter);
1150 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1151 RB_CLEAR_NODE(&waiter->tree_entry);
1152 waiter->task = NULL;
1153 }
1154
1155 /**
1156 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1157 * @lock: the rt_mutex to take
1158 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1159 * or TASK_UNINTERRUPTIBLE)
1160 * @timeout: the pre-initialized and started timer, or NULL for none
1161 * @waiter: the pre-initialized rt_mutex_waiter
1162 *
1163 * Must be called with lock->wait_lock held and interrupts disabled
1164 */
1165 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1166 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1167 struct hrtimer_sleeper *timeout,
1168 struct rt_mutex_waiter *waiter)
1169 {
1170 int ret = 0;
1171
1172 trace_android_vh_rtmutex_wait_start(lock);
1173 for (;;) {
1174 /* Try to acquire the lock: */
1175 if (try_to_take_rt_mutex(lock, current, waiter))
1176 break;
1177
1178 /*
1179 * TASK_INTERRUPTIBLE checks for signals and
1180 * timeout. Ignored otherwise.
1181 */
1182 if (likely(state == TASK_INTERRUPTIBLE)) {
1183 /* Signal pending? */
1184 if (signal_pending(current))
1185 ret = -EINTR;
1186 if (timeout && !timeout->task)
1187 ret = -ETIMEDOUT;
1188 if (ret)
1189 break;
1190 }
1191
1192 raw_spin_unlock_irq(&lock->wait_lock);
1193
1194 debug_rt_mutex_print_deadlock(waiter);
1195
1196 schedule();
1197
1198 raw_spin_lock_irq(&lock->wait_lock);
1199 set_current_state(state);
1200 }
1201
1202 trace_android_vh_rtmutex_wait_finish(lock);
1203 __set_current_state(TASK_RUNNING);
1204 return ret;
1205 }
1206
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1207 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208 struct rt_mutex_waiter *w)
1209 {
1210 /*
1211 * If the result is not -EDEADLOCK or the caller requested
1212 * deadlock detection, nothing to do here.
1213 */
1214 if (res != -EDEADLOCK || detect_deadlock)
1215 return;
1216
1217 /*
1218 * Yell lowdly and stop the task right here.
1219 */
1220 rt_mutex_print_deadlock(w);
1221 while (1) {
1222 set_current_state(TASK_INTERRUPTIBLE);
1223 schedule();
1224 }
1225 }
1226
1227 /*
1228 * Slow path lock function:
1229 */
1230 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk)1231 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232 struct hrtimer_sleeper *timeout,
1233 enum rtmutex_chainwalk chwalk)
1234 {
1235 struct rt_mutex_waiter waiter;
1236 unsigned long flags;
1237 int ret = 0;
1238
1239 rt_mutex_init_waiter(&waiter);
1240
1241 /*
1242 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1243 * be called in early boot if the cmpxchg() fast path is disabled
1244 * (debug, no architecture support). In this case we will acquire the
1245 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1246 * enable interrupts in that early boot case. So we need to use the
1247 * irqsave/restore variants.
1248 */
1249 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1250
1251 /* Try to acquire the lock again: */
1252 if (try_to_take_rt_mutex(lock, current, NULL)) {
1253 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1254 return 0;
1255 }
1256
1257 set_current_state(state);
1258
1259 /* Setup the timer, when timeout != NULL */
1260 if (unlikely(timeout))
1261 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1262
1263 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1264
1265 if (likely(!ret))
1266 /* sleep on the mutex */
1267 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1268
1269 if (unlikely(ret)) {
1270 __set_current_state(TASK_RUNNING);
1271 remove_waiter(lock, &waiter);
1272 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1273 }
1274
1275 /*
1276 * try_to_take_rt_mutex() sets the waiter bit
1277 * unconditionally. We might have to fix that up.
1278 */
1279 fixup_rt_mutex_waiters(lock);
1280
1281 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1282
1283 /* Remove pending timer: */
1284 if (unlikely(timeout))
1285 hrtimer_cancel(&timeout->timer);
1286
1287 debug_rt_mutex_free_waiter(&waiter);
1288
1289 return ret;
1290 }
1291
__rt_mutex_slowtrylock(struct rt_mutex * lock)1292 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1293 {
1294 int ret = try_to_take_rt_mutex(lock, current, NULL);
1295
1296 /*
1297 * try_to_take_rt_mutex() sets the lock waiters bit
1298 * unconditionally. Clean this up.
1299 */
1300 fixup_rt_mutex_waiters(lock);
1301
1302 return ret;
1303 }
1304
1305 /*
1306 * Slow path try-lock function:
1307 */
rt_mutex_slowtrylock(struct rt_mutex * lock)1308 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1309 {
1310 unsigned long flags;
1311 int ret;
1312
1313 /*
1314 * If the lock already has an owner we fail to get the lock.
1315 * This can be done without taking the @lock->wait_lock as
1316 * it is only being read, and this is a trylock anyway.
1317 */
1318 if (rt_mutex_owner(lock))
1319 return 0;
1320
1321 /*
1322 * The mutex has currently no owner. Lock the wait lock and try to
1323 * acquire the lock. We use irqsave here to support early boot calls.
1324 */
1325 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1326
1327 ret = __rt_mutex_slowtrylock(lock);
1328
1329 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1330
1331 return ret;
1332 }
1333
1334 /*
1335 * Slow path to release a rt-mutex.
1336 *
1337 * Return whether the current task needs to call rt_mutex_postunlock().
1338 */
rt_mutex_slowunlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1339 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1340 struct wake_q_head *wake_q)
1341 {
1342 unsigned long flags;
1343
1344 /* irqsave required to support early boot calls */
1345 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1346
1347 debug_rt_mutex_unlock(lock);
1348
1349 /*
1350 * We must be careful here if the fast path is enabled. If we
1351 * have no waiters queued we cannot set owner to NULL here
1352 * because of:
1353 *
1354 * foo->lock->owner = NULL;
1355 * rtmutex_lock(foo->lock); <- fast path
1356 * free = atomic_dec_and_test(foo->refcnt);
1357 * rtmutex_unlock(foo->lock); <- fast path
1358 * if (free)
1359 * kfree(foo);
1360 * raw_spin_unlock(foo->lock->wait_lock);
1361 *
1362 * So for the fastpath enabled kernel:
1363 *
1364 * Nothing can set the waiters bit as long as we hold
1365 * lock->wait_lock. So we do the following sequence:
1366 *
1367 * owner = rt_mutex_owner(lock);
1368 * clear_rt_mutex_waiters(lock);
1369 * raw_spin_unlock(&lock->wait_lock);
1370 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1371 * return;
1372 * goto retry;
1373 *
1374 * The fastpath disabled variant is simple as all access to
1375 * lock->owner is serialized by lock->wait_lock:
1376 *
1377 * lock->owner = NULL;
1378 * raw_spin_unlock(&lock->wait_lock);
1379 */
1380 while (!rt_mutex_has_waiters(lock)) {
1381 /* Drops lock->wait_lock ! */
1382 if (unlock_rt_mutex_safe(lock, flags) == true)
1383 return false;
1384 /* Relock the rtmutex and try again */
1385 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1386 }
1387
1388 /*
1389 * The wakeup next waiter path does not suffer from the above
1390 * race. See the comments there.
1391 *
1392 * Queue the next waiter for wakeup once we release the wait_lock.
1393 */
1394 mark_wakeup_next_waiter(wake_q, lock);
1395 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1396
1397 return true; /* call rt_mutex_postunlock() */
1398 }
1399
1400 /*
1401 * debug aware fast / slowpath lock,trylock,unlock
1402 *
1403 * The atomic acquire/release ops are compiled away, when either the
1404 * architecture does not support cmpxchg or when debugging is enabled.
1405 */
1406 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1407 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1408 int (*slowfn)(struct rt_mutex *lock, int state,
1409 struct hrtimer_sleeper *timeout,
1410 enum rtmutex_chainwalk chwalk))
1411 {
1412 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1413 return 0;
1414
1415 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1416 }
1417
1418 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1419 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1420 struct hrtimer_sleeper *timeout,
1421 enum rtmutex_chainwalk chwalk,
1422 int (*slowfn)(struct rt_mutex *lock, int state,
1423 struct hrtimer_sleeper *timeout,
1424 enum rtmutex_chainwalk chwalk))
1425 {
1426 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1427 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1428 return 0;
1429
1430 return slowfn(lock, state, timeout, chwalk);
1431 }
1432
1433 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))1434 rt_mutex_fasttrylock(struct rt_mutex *lock,
1435 int (*slowfn)(struct rt_mutex *lock))
1436 {
1437 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1438 return 1;
1439
1440 return slowfn(lock);
1441 }
1442
1443 /*
1444 * Performs the wakeup of the top-waiter and re-enables preemption.
1445 */
rt_mutex_postunlock(struct wake_q_head * wake_q)1446 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1447 {
1448 wake_up_q(wake_q);
1449
1450 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1451 preempt_enable();
1452 }
1453
1454 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,bool (* slowfn)(struct rt_mutex * lock,struct wake_q_head * wqh))1455 rt_mutex_fastunlock(struct rt_mutex *lock,
1456 bool (*slowfn)(struct rt_mutex *lock,
1457 struct wake_q_head *wqh))
1458 {
1459 DEFINE_WAKE_Q(wake_q);
1460
1461 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1462 return;
1463
1464 if (slowfn(lock, &wake_q))
1465 rt_mutex_postunlock(&wake_q);
1466 }
1467
__rt_mutex_lock(struct rt_mutex * lock,unsigned int subclass)1468 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1469 {
1470 might_sleep();
1471
1472 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1473 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1474 trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
1475 }
1476
1477 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1478 /**
1479 * rt_mutex_lock_nested - lock a rt_mutex
1480 *
1481 * @lock: the rt_mutex to be locked
1482 * @subclass: the lockdep subclass
1483 */
rt_mutex_lock_nested(struct rt_mutex * lock,unsigned int subclass)1484 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1485 {
1486 __rt_mutex_lock(lock, subclass);
1487 }
1488 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1489
1490 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1491
1492 /**
1493 * rt_mutex_lock - lock a rt_mutex
1494 *
1495 * @lock: the rt_mutex to be locked
1496 */
rt_mutex_lock(struct rt_mutex * lock)1497 void __sched rt_mutex_lock(struct rt_mutex *lock)
1498 {
1499 __rt_mutex_lock(lock, 0);
1500 }
1501 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1502 #endif
1503
1504 /**
1505 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1506 *
1507 * @lock: the rt_mutex to be locked
1508 *
1509 * Returns:
1510 * 0 on success
1511 * -EINTR when interrupted by a signal
1512 */
rt_mutex_lock_interruptible(struct rt_mutex * lock)1513 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1514 {
1515 int ret;
1516
1517 might_sleep();
1518
1519 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1520 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1521 if (ret)
1522 mutex_release(&lock->dep_map, _RET_IP_);
1523 else
1524 trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
1525
1526 return ret;
1527 }
1528 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1529
1530 /*
1531 * Futex variant, must not use fastpath.
1532 */
rt_mutex_futex_trylock(struct rt_mutex * lock)1533 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1534 {
1535 return rt_mutex_slowtrylock(lock);
1536 }
1537
__rt_mutex_futex_trylock(struct rt_mutex * lock)1538 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1539 {
1540 return __rt_mutex_slowtrylock(lock);
1541 }
1542
1543 /**
1544 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1545 * the timeout structure is provided
1546 * by the caller
1547 *
1548 * @lock: the rt_mutex to be locked
1549 * @timeout: timeout structure or NULL (no timeout)
1550 *
1551 * Returns:
1552 * 0 on success
1553 * -EINTR when interrupted by a signal
1554 * -ETIMEDOUT when the timeout expired
1555 */
1556 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1557 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1558 {
1559 int ret;
1560
1561 might_sleep();
1562
1563 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1564 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1565 RT_MUTEX_MIN_CHAINWALK,
1566 rt_mutex_slowlock);
1567 if (ret)
1568 mutex_release(&lock->dep_map, _RET_IP_);
1569 else
1570 trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
1571
1572 return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1575
1576 /**
1577 * rt_mutex_trylock - try to lock a rt_mutex
1578 *
1579 * @lock: the rt_mutex to be locked
1580 *
1581 * This function can only be called in thread context. It's safe to
1582 * call it from atomic regions, but not from hard interrupt or soft
1583 * interrupt context.
1584 *
1585 * Returns 1 on success and 0 on contention
1586 */
rt_mutex_trylock(struct rt_mutex * lock)1587 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1588 {
1589 int ret;
1590
1591 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1592 return 0;
1593
1594 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1595 if (ret)
1596 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1597 else
1598 trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
1599
1600 return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1603
1604 /**
1605 * rt_mutex_unlock - unlock a rt_mutex
1606 *
1607 * @lock: the rt_mutex to be unlocked
1608 */
rt_mutex_unlock(struct rt_mutex * lock)1609 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1610 {
1611 mutex_release(&lock->dep_map, _RET_IP_);
1612 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1613 trace_android_vh_record_rtmutex_lock_starttime(current, 0);
1614 }
1615 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1616
1617 /**
1618 * Futex variant, that since futex variants do not use the fast-path, can be
1619 * simple and will not need to retry.
1620 */
__rt_mutex_futex_unlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1621 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1622 struct wake_q_head *wake_q)
1623 {
1624 lockdep_assert_held(&lock->wait_lock);
1625
1626 debug_rt_mutex_unlock(lock);
1627
1628 if (!rt_mutex_has_waiters(lock)) {
1629 lock->owner = NULL;
1630 return false; /* done */
1631 }
1632
1633 /*
1634 * We've already deboosted, mark_wakeup_next_waiter() will
1635 * retain preempt_disabled when we drop the wait_lock, to
1636 * avoid inversion prior to the wakeup. preempt_disable()
1637 * therein pairs with rt_mutex_postunlock().
1638 */
1639 mark_wakeup_next_waiter(wake_q, lock);
1640
1641 return true; /* call postunlock() */
1642 }
1643
rt_mutex_futex_unlock(struct rt_mutex * lock)1644 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1645 {
1646 DEFINE_WAKE_Q(wake_q);
1647 unsigned long flags;
1648 bool postunlock;
1649
1650 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1651 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1652 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1653
1654 if (postunlock)
1655 rt_mutex_postunlock(&wake_q);
1656 }
1657
1658 /**
1659 * rt_mutex_destroy - mark a mutex unusable
1660 * @lock: the mutex to be destroyed
1661 *
1662 * This function marks the mutex uninitialized, and any subsequent
1663 * use of the mutex is forbidden. The mutex must not be locked when
1664 * this function is called.
1665 */
rt_mutex_destroy(struct rt_mutex * lock)1666 void rt_mutex_destroy(struct rt_mutex *lock)
1667 {
1668 WARN_ON(rt_mutex_is_locked(lock));
1669 #ifdef CONFIG_DEBUG_RT_MUTEXES
1670 lock->magic = NULL;
1671 #endif
1672 }
1673 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1674
1675 /**
1676 * __rt_mutex_init - initialize the rt lock
1677 *
1678 * @lock: the rt lock to be initialized
1679 *
1680 * Initialize the rt lock to unlocked state.
1681 *
1682 * Initializing of a locked rt lock is not allowed
1683 */
__rt_mutex_init(struct rt_mutex * lock,const char * name,struct lock_class_key * key)1684 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1685 struct lock_class_key *key)
1686 {
1687 lock->owner = NULL;
1688 raw_spin_lock_init(&lock->wait_lock);
1689 lock->waiters = RB_ROOT_CACHED;
1690
1691 if (name && key)
1692 debug_rt_mutex_init(lock, name, key);
1693 }
1694 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1695
1696 /**
1697 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1698 * proxy owner
1699 *
1700 * @lock: the rt_mutex to be locked
1701 * @proxy_owner:the task to set as owner
1702 *
1703 * No locking. Caller has to do serializing itself
1704 *
1705 * Special API call for PI-futex support. This initializes the rtmutex and
1706 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1707 * possible at this point because the pi_state which contains the rtmutex
1708 * is not yet visible to other tasks.
1709 */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)1710 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1711 struct task_struct *proxy_owner)
1712 {
1713 __rt_mutex_init(lock, NULL, NULL);
1714 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1715 rt_mutex_set_owner(lock, proxy_owner);
1716 }
1717
1718 /**
1719 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1720 *
1721 * @lock: the rt_mutex to be locked
1722 *
1723 * No locking. Caller has to do serializing itself
1724 *
1725 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1726 * (debugging) state. Concurrent operations on this rt_mutex are not
1727 * possible because it belongs to the pi_state which is about to be freed
1728 * and it is not longer visible to other tasks.
1729 */
rt_mutex_proxy_unlock(struct rt_mutex * lock)1730 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1731 {
1732 debug_rt_mutex_proxy_unlock(lock);
1733 rt_mutex_set_owner(lock, NULL);
1734 }
1735
1736 /**
1737 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1738 * @lock: the rt_mutex to take
1739 * @waiter: the pre-initialized rt_mutex_waiter
1740 * @task: the task to prepare
1741 *
1742 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1743 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1744 *
1745 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1746 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1747 *
1748 * Returns:
1749 * 0 - task blocked on lock
1750 * 1 - acquired the lock for task, caller should wake it up
1751 * <0 - error
1752 *
1753 * Special API call for PI-futex support.
1754 */
__rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1755 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1756 struct rt_mutex_waiter *waiter,
1757 struct task_struct *task)
1758 {
1759 int ret;
1760
1761 lockdep_assert_held(&lock->wait_lock);
1762
1763 if (try_to_take_rt_mutex(lock, task, NULL))
1764 return 1;
1765
1766 /* We enforce deadlock detection for futexes */
1767 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1768 RT_MUTEX_FULL_CHAINWALK);
1769
1770 if (ret && !rt_mutex_owner(lock)) {
1771 /*
1772 * Reset the return value. We might have
1773 * returned with -EDEADLK and the owner
1774 * released the lock while we were walking the
1775 * pi chain. Let the waiter sort it out.
1776 */
1777 ret = 0;
1778 }
1779
1780 debug_rt_mutex_print_deadlock(waiter);
1781
1782 return ret;
1783 }
1784
1785 /**
1786 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1787 * @lock: the rt_mutex to take
1788 * @waiter: the pre-initialized rt_mutex_waiter
1789 * @task: the task to prepare
1790 *
1791 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1792 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1793 *
1794 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1795 * on failure.
1796 *
1797 * Returns:
1798 * 0 - task blocked on lock
1799 * 1 - acquired the lock for task, caller should wake it up
1800 * <0 - error
1801 *
1802 * Special API call for PI-futex support.
1803 */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1804 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1805 struct rt_mutex_waiter *waiter,
1806 struct task_struct *task)
1807 {
1808 int ret;
1809
1810 raw_spin_lock_irq(&lock->wait_lock);
1811 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1812 if (unlikely(ret))
1813 remove_waiter(lock, waiter);
1814 raw_spin_unlock_irq(&lock->wait_lock);
1815
1816 return ret;
1817 }
1818
1819 /**
1820 * rt_mutex_next_owner - return the next owner of the lock
1821 *
1822 * @lock: the rt lock query
1823 *
1824 * Returns the next owner of the lock or NULL
1825 *
1826 * Caller has to serialize against other accessors to the lock
1827 * itself.
1828 *
1829 * Special API call for PI-futex support
1830 */
rt_mutex_next_owner(struct rt_mutex * lock)1831 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1832 {
1833 if (!rt_mutex_has_waiters(lock))
1834 return NULL;
1835
1836 return rt_mutex_top_waiter(lock)->task;
1837 }
1838
1839 /**
1840 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1841 * @lock: the rt_mutex we were woken on
1842 * @to: the timeout, null if none. hrtimer should already have
1843 * been started.
1844 * @waiter: the pre-initialized rt_mutex_waiter
1845 *
1846 * Wait for the lock acquisition started on our behalf by
1847 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1848 * rt_mutex_cleanup_proxy_lock().
1849 *
1850 * Returns:
1851 * 0 - success
1852 * <0 - error, one of -EINTR, -ETIMEDOUT
1853 *
1854 * Special API call for PI-futex support
1855 */
rt_mutex_wait_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)1856 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1857 struct hrtimer_sleeper *to,
1858 struct rt_mutex_waiter *waiter)
1859 {
1860 int ret;
1861
1862 raw_spin_lock_irq(&lock->wait_lock);
1863 /* sleep on the mutex */
1864 set_current_state(TASK_INTERRUPTIBLE);
1865 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1866 /*
1867 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1868 * have to fix that up.
1869 */
1870 fixup_rt_mutex_waiters(lock);
1871 raw_spin_unlock_irq(&lock->wait_lock);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1878 * @lock: the rt_mutex we were woken on
1879 * @waiter: the pre-initialized rt_mutex_waiter
1880 *
1881 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1882 * rt_mutex_wait_proxy_lock().
1883 *
1884 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1885 * in fact still be granted ownership until we're removed. Therefore we can
1886 * find we are in fact the owner and must disregard the
1887 * rt_mutex_wait_proxy_lock() failure.
1888 *
1889 * Returns:
1890 * true - did the cleanup, we done.
1891 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1892 * caller should disregards its return value.
1893 *
1894 * Special API call for PI-futex support
1895 */
rt_mutex_cleanup_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1896 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1897 struct rt_mutex_waiter *waiter)
1898 {
1899 bool cleanup = false;
1900
1901 raw_spin_lock_irq(&lock->wait_lock);
1902 /*
1903 * Do an unconditional try-lock, this deals with the lock stealing
1904 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1905 * sets a NULL owner.
1906 *
1907 * We're not interested in the return value, because the subsequent
1908 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1909 * we will own the lock and it will have removed the waiter. If we
1910 * failed the trylock, we're still not owner and we need to remove
1911 * ourselves.
1912 */
1913 try_to_take_rt_mutex(lock, current, waiter);
1914 /*
1915 * Unless we're the owner; we're still enqueued on the wait_list.
1916 * So check if we became owner, if not, take us off the wait_list.
1917 */
1918 if (rt_mutex_owner(lock) != current) {
1919 remove_waiter(lock, waiter);
1920 cleanup = true;
1921 }
1922 /*
1923 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1924 * have to fix that up.
1925 */
1926 fixup_rt_mutex_waiters(lock);
1927
1928 raw_spin_unlock_irq(&lock->wait_lock);
1929
1930 return cleanup;
1931 }
1932