1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kmemleak.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/sections.h>
41
42 #include <kvm/arm_hypercalls.h>
43 #include <kvm/arm_pmu.h>
44 #include <kvm/arm_psci.h>
45
46 #ifdef REQUIRES_VIRT
47 __asm__(".arch_extension virt");
48 #endif
49
50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
51 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
52
53 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
54
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
56 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
57 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u32 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
72 }
73
kvm_arch_hardware_setup(void * opaque)74 int kvm_arch_hardware_setup(void *opaque)
75 {
76 return 0;
77 }
78
kvm_arch_check_processor_compat(void * opaque)79 int kvm_arch_check_processor_compat(void *opaque)
80 {
81 return 0;
82 }
83
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)84 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
85 struct kvm_enable_cap *cap)
86 {
87 int r;
88
89 if (cap->flags)
90 return -EINVAL;
91
92 switch (cap->cap) {
93 case KVM_CAP_ARM_NISV_TO_USER:
94 r = 0;
95 kvm->arch.return_nisv_io_abort_to_user = true;
96 break;
97 default:
98 r = -EINVAL;
99 break;
100 }
101
102 return r;
103 }
104
kvm_arm_default_max_vcpus(void)105 static int kvm_arm_default_max_vcpus(void)
106 {
107 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
108 }
109
set_default_spectre(struct kvm * kvm)110 static void set_default_spectre(struct kvm *kvm)
111 {
112 /*
113 * The default is to expose CSV2 == 1 if the HW isn't affected.
114 * Although this is a per-CPU feature, we make it global because
115 * asymmetric systems are just a nuisance.
116 *
117 * Userspace can override this as long as it doesn't promise
118 * the impossible.
119 */
120 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
121 kvm->arch.pfr0_csv2 = 1;
122 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
123 kvm->arch.pfr0_csv3 = 1;
124 }
125
126 /**
127 * kvm_arch_init_vm - initializes a VM data structure
128 * @kvm: pointer to the KVM struct
129 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132 int ret;
133
134 ret = kvm_arm_setup_stage2(kvm, type);
135 if (ret)
136 return ret;
137
138 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
139 if (ret)
140 return ret;
141
142 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
143 if (ret)
144 goto out_free_stage2_pgd;
145
146 kvm_vgic_early_init(kvm);
147
148 /* The maximum number of VCPUs is limited by the host's GIC model */
149 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
150
151 set_default_spectre(kvm);
152
153 return ret;
154 out_free_stage2_pgd:
155 kvm_free_stage2_pgd(&kvm->arch.mmu);
156 return ret;
157 }
158
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)159 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
160 {
161 return VM_FAULT_SIGBUS;
162 }
163
164
165 /**
166 * kvm_arch_destroy_vm - destroy the VM data structure
167 * @kvm: pointer to the KVM struct
168 */
kvm_arch_destroy_vm(struct kvm * kvm)169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171 int i;
172
173 bitmap_free(kvm->arch.pmu_filter);
174
175 kvm_vgic_destroy(kvm);
176
177 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178 if (kvm->vcpus[i]) {
179 kvm_vcpu_destroy(kvm->vcpus[i]);
180 kvm->vcpus[i] = NULL;
181 }
182 }
183 atomic_set(&kvm->online_vcpus, 0);
184 }
185
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)186 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
187 {
188 int r;
189 switch (ext) {
190 case KVM_CAP_IRQCHIP:
191 r = vgic_present;
192 break;
193 case KVM_CAP_IOEVENTFD:
194 case KVM_CAP_DEVICE_CTRL:
195 case KVM_CAP_USER_MEMORY:
196 case KVM_CAP_SYNC_MMU:
197 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
198 case KVM_CAP_ONE_REG:
199 case KVM_CAP_ARM_PSCI:
200 case KVM_CAP_ARM_PSCI_0_2:
201 case KVM_CAP_READONLY_MEM:
202 case KVM_CAP_MP_STATE:
203 case KVM_CAP_IMMEDIATE_EXIT:
204 case KVM_CAP_VCPU_EVENTS:
205 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
206 case KVM_CAP_ARM_NISV_TO_USER:
207 case KVM_CAP_ARM_INJECT_EXT_DABT:
208 case KVM_CAP_SET_GUEST_DEBUG:
209 case KVM_CAP_VCPU_ATTRIBUTES:
210 r = 1;
211 break;
212 case KVM_CAP_ARM_SET_DEVICE_ADDR:
213 r = 1;
214 break;
215 case KVM_CAP_NR_VCPUS:
216 r = num_online_cpus();
217 break;
218 case KVM_CAP_MAX_VCPUS:
219 case KVM_CAP_MAX_VCPU_ID:
220 if (kvm)
221 r = kvm->arch.max_vcpus;
222 else
223 r = kvm_arm_default_max_vcpus();
224 break;
225 case KVM_CAP_MSI_DEVID:
226 if (!kvm)
227 r = -EINVAL;
228 else
229 r = kvm->arch.vgic.msis_require_devid;
230 break;
231 case KVM_CAP_ARM_USER_IRQ:
232 /*
233 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234 * (bump this number if adding more devices)
235 */
236 r = 1;
237 break;
238 case KVM_CAP_STEAL_TIME:
239 r = kvm_arm_pvtime_supported();
240 break;
241 case KVM_CAP_ARM_EL1_32BIT:
242 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
243 break;
244 case KVM_CAP_GUEST_DEBUG_HW_BPS:
245 r = get_num_brps();
246 break;
247 case KVM_CAP_GUEST_DEBUG_HW_WPS:
248 r = get_num_wrps();
249 break;
250 case KVM_CAP_ARM_PMU_V3:
251 r = kvm_arm_support_pmu_v3();
252 break;
253 case KVM_CAP_ARM_INJECT_SERROR_ESR:
254 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
255 break;
256 case KVM_CAP_ARM_VM_IPA_SIZE:
257 r = get_kvm_ipa_limit();
258 break;
259 case KVM_CAP_ARM_SVE:
260 r = system_supports_sve();
261 break;
262 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
263 case KVM_CAP_ARM_PTRAUTH_GENERIC:
264 r = system_has_full_ptr_auth();
265 break;
266 default:
267 r = 0;
268 }
269
270 return r;
271 }
272
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)273 long kvm_arch_dev_ioctl(struct file *filp,
274 unsigned int ioctl, unsigned long arg)
275 {
276 return -EINVAL;
277 }
278
kvm_arch_alloc_vm(void)279 struct kvm *kvm_arch_alloc_vm(void)
280 {
281 if (!has_vhe())
282 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
283
284 return vzalloc(sizeof(struct kvm));
285 }
286
kvm_arch_free_vm(struct kvm * kvm)287 void kvm_arch_free_vm(struct kvm *kvm)
288 {
289 if (!has_vhe())
290 kfree(kvm);
291 else
292 vfree(kvm);
293 }
294
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)295 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
296 {
297 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
298 return -EBUSY;
299
300 if (id >= kvm->arch.max_vcpus)
301 return -EINVAL;
302
303 return 0;
304 }
305
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)306 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
307 {
308 int err;
309
310 /* Force users to call KVM_ARM_VCPU_INIT */
311 vcpu->arch.target = -1;
312 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
313
314 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
315
316 /* Set up the timer */
317 kvm_timer_vcpu_init(vcpu);
318
319 kvm_pmu_vcpu_init(vcpu);
320
321 kvm_arm_reset_debug_ptr(vcpu);
322
323 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
324
325 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
326
327 err = kvm_vgic_vcpu_init(vcpu);
328 if (err)
329 return err;
330
331 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
332 }
333
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)334 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
335 {
336 }
337
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)338 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
339 {
340 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
341 static_branch_dec(&userspace_irqchip_in_use);
342
343 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
344 kvm_timer_vcpu_terminate(vcpu);
345 kvm_pmu_vcpu_destroy(vcpu);
346
347 kvm_arm_vcpu_destroy(vcpu);
348 }
349
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)350 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
351 {
352 return kvm_timer_is_pending(vcpu);
353 }
354
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)355 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
356 {
357 /*
358 * If we're about to block (most likely because we've just hit a
359 * WFI), we need to sync back the state of the GIC CPU interface
360 * so that we have the latest PMR and group enables. This ensures
361 * that kvm_arch_vcpu_runnable has up-to-date data to decide
362 * whether we have pending interrupts.
363 *
364 * For the same reason, we want to tell GICv4 that we need
365 * doorbells to be signalled, should an interrupt become pending.
366 */
367 preempt_disable();
368 kvm_vgic_vmcr_sync(vcpu);
369 vgic_v4_put(vcpu, true);
370 preempt_enable();
371 }
372
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)373 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
374 {
375 preempt_disable();
376 vgic_v4_load(vcpu);
377 preempt_enable();
378 }
379
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)380 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
381 {
382 struct kvm_s2_mmu *mmu;
383 int *last_ran;
384
385 mmu = vcpu->arch.hw_mmu;
386 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
387
388 /*
389 * We guarantee that both TLBs and I-cache are private to each
390 * vcpu. If detecting that a vcpu from the same VM has
391 * previously run on the same physical CPU, call into the
392 * hypervisor code to nuke the relevant contexts.
393 *
394 * We might get preempted before the vCPU actually runs, but
395 * over-invalidation doesn't affect correctness.
396 */
397 if (*last_ran != vcpu->vcpu_id) {
398 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
399 *last_ran = vcpu->vcpu_id;
400 }
401
402 vcpu->cpu = cpu;
403
404 kvm_vgic_load(vcpu);
405 kvm_timer_vcpu_load(vcpu);
406 if (has_vhe())
407 kvm_vcpu_load_sysregs_vhe(vcpu);
408 kvm_arch_vcpu_load_fp(vcpu);
409 kvm_vcpu_pmu_restore_guest(vcpu);
410 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
411 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
412
413 if (single_task_running())
414 vcpu_clear_wfx_traps(vcpu);
415 else
416 vcpu_set_wfx_traps(vcpu);
417
418 if (vcpu_has_ptrauth(vcpu))
419 vcpu_ptrauth_disable(vcpu);
420 kvm_arch_vcpu_load_debug_state_flags(vcpu);
421 }
422
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)423 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
424 {
425 kvm_arch_vcpu_put_debug_state_flags(vcpu);
426 kvm_arch_vcpu_put_fp(vcpu);
427 if (has_vhe())
428 kvm_vcpu_put_sysregs_vhe(vcpu);
429 kvm_timer_vcpu_put(vcpu);
430 kvm_vgic_put(vcpu);
431 kvm_vcpu_pmu_restore_host(vcpu);
432
433 vcpu->cpu = -1;
434 }
435
vcpu_power_off(struct kvm_vcpu * vcpu)436 static void vcpu_power_off(struct kvm_vcpu *vcpu)
437 {
438 vcpu->arch.power_off = true;
439 kvm_make_request(KVM_REQ_SLEEP, vcpu);
440 kvm_vcpu_kick(vcpu);
441 }
442
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
444 struct kvm_mp_state *mp_state)
445 {
446 if (vcpu->arch.power_off)
447 mp_state->mp_state = KVM_MP_STATE_STOPPED;
448 else
449 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
450
451 return 0;
452 }
453
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
455 struct kvm_mp_state *mp_state)
456 {
457 int ret = 0;
458
459 switch (mp_state->mp_state) {
460 case KVM_MP_STATE_RUNNABLE:
461 vcpu->arch.power_off = false;
462 break;
463 case KVM_MP_STATE_STOPPED:
464 vcpu_power_off(vcpu);
465 break;
466 default:
467 ret = -EINVAL;
468 }
469
470 return ret;
471 }
472
473 /**
474 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
475 * @v: The VCPU pointer
476 *
477 * If the guest CPU is not waiting for interrupts or an interrupt line is
478 * asserted, the CPU is by definition runnable.
479 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)480 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
481 {
482 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
483 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
484 && !v->arch.power_off && !v->arch.pause);
485 }
486
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)487 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
488 {
489 return vcpu_mode_priv(vcpu);
490 }
491
492 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)493 static void exit_vm_noop(void *info)
494 {
495 }
496
force_vm_exit(const cpumask_t * mask)497 void force_vm_exit(const cpumask_t *mask)
498 {
499 preempt_disable();
500 smp_call_function_many(mask, exit_vm_noop, NULL, true);
501 preempt_enable();
502 }
503
504 /**
505 * need_new_vmid_gen - check that the VMID is still valid
506 * @vmid: The VMID to check
507 *
508 * return true if there is a new generation of VMIDs being used
509 *
510 * The hardware supports a limited set of values with the value zero reserved
511 * for the host, so we check if an assigned value belongs to a previous
512 * generation, which requires us to assign a new value. If we're the first to
513 * use a VMID for the new generation, we must flush necessary caches and TLBs
514 * on all CPUs.
515 */
need_new_vmid_gen(struct kvm_vmid * vmid)516 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517 {
518 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
519 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 }
522
523 /**
524 * update_vmid - Update the vmid with a valid VMID for the current generation
525 * @vmid: The stage-2 VMID information struct
526 */
update_vmid(struct kvm_vmid * vmid)527 static void update_vmid(struct kvm_vmid *vmid)
528 {
529 if (!need_new_vmid_gen(vmid))
530 return;
531
532 spin_lock(&kvm_vmid_lock);
533
534 /*
535 * We need to re-check the vmid_gen here to ensure that if another vcpu
536 * already allocated a valid vmid for this vm, then this vcpu should
537 * use the same vmid.
538 */
539 if (!need_new_vmid_gen(vmid)) {
540 spin_unlock(&kvm_vmid_lock);
541 return;
542 }
543
544 /* First user of a new VMID generation? */
545 if (unlikely(kvm_next_vmid == 0)) {
546 atomic64_inc(&kvm_vmid_gen);
547 kvm_next_vmid = 1;
548
549 /*
550 * On SMP we know no other CPUs can use this CPU's or each
551 * other's VMID after force_vm_exit returns since the
552 * kvm_vmid_lock blocks them from reentry to the guest.
553 */
554 force_vm_exit(cpu_all_mask);
555 /*
556 * Now broadcast TLB + ICACHE invalidation over the inner
557 * shareable domain to make sure all data structures are
558 * clean.
559 */
560 kvm_call_hyp(__kvm_flush_vm_context);
561 }
562
563 vmid->vmid = kvm_next_vmid;
564 kvm_next_vmid++;
565 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566
567 smp_wmb();
568 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569
570 spin_unlock(&kvm_vmid_lock);
571 }
572
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)573 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
574 {
575 struct kvm *kvm = vcpu->kvm;
576 int ret = 0;
577
578 if (likely(vcpu->arch.has_run_once))
579 return 0;
580
581 if (!kvm_arm_vcpu_is_finalized(vcpu))
582 return -EPERM;
583
584 vcpu->arch.has_run_once = true;
585
586 kvm_arm_vcpu_init_debug(vcpu);
587
588 if (likely(irqchip_in_kernel(kvm))) {
589 /*
590 * Map the VGIC hardware resources before running a vcpu the
591 * first time on this VM.
592 */
593 ret = kvm_vgic_map_resources(kvm);
594 if (ret)
595 return ret;
596 } else {
597 /*
598 * Tell the rest of the code that there are userspace irqchip
599 * VMs in the wild.
600 */
601 static_branch_inc(&userspace_irqchip_in_use);
602 }
603
604 ret = kvm_timer_enable(vcpu);
605 if (ret)
606 return ret;
607
608 ret = kvm_arm_pmu_v3_enable(vcpu);
609
610 return ret;
611 }
612
kvm_arch_intc_initialized(struct kvm * kvm)613 bool kvm_arch_intc_initialized(struct kvm *kvm)
614 {
615 return vgic_initialized(kvm);
616 }
617
kvm_arm_halt_guest(struct kvm * kvm)618 void kvm_arm_halt_guest(struct kvm *kvm)
619 {
620 int i;
621 struct kvm_vcpu *vcpu;
622
623 kvm_for_each_vcpu(i, vcpu, kvm)
624 vcpu->arch.pause = true;
625 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
626 }
627
kvm_arm_resume_guest(struct kvm * kvm)628 void kvm_arm_resume_guest(struct kvm *kvm)
629 {
630 int i;
631 struct kvm_vcpu *vcpu;
632
633 kvm_for_each_vcpu(i, vcpu, kvm) {
634 vcpu->arch.pause = false;
635 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
636 }
637 }
638
vcpu_req_sleep(struct kvm_vcpu * vcpu)639 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
640 {
641 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
642
643 rcuwait_wait_event(wait,
644 (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
645 TASK_INTERRUPTIBLE);
646
647 if (vcpu->arch.power_off || vcpu->arch.pause) {
648 /* Awaken to handle a signal, request we sleep again later. */
649 kvm_make_request(KVM_REQ_SLEEP, vcpu);
650 }
651
652 /*
653 * Make sure we will observe a potential reset request if we've
654 * observed a change to the power state. Pairs with the smp_wmb() in
655 * kvm_psci_vcpu_on().
656 */
657 smp_rmb();
658 }
659
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)660 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
661 {
662 return vcpu->arch.target >= 0;
663 }
664
check_vcpu_requests(struct kvm_vcpu * vcpu)665 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
666 {
667 if (kvm_request_pending(vcpu)) {
668 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
669 vcpu_req_sleep(vcpu);
670
671 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
672 kvm_reset_vcpu(vcpu);
673
674 /*
675 * Clear IRQ_PENDING requests that were made to guarantee
676 * that a VCPU sees new virtual interrupts.
677 */
678 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
679
680 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
681 kvm_update_stolen_time(vcpu);
682
683 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
684 /* The distributor enable bits were changed */
685 preempt_disable();
686 vgic_v4_put(vcpu, false);
687 vgic_v4_load(vcpu);
688 preempt_enable();
689 }
690 }
691 }
692
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)693 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
694 {
695 if (likely(!vcpu_mode_is_32bit(vcpu)))
696 return false;
697
698 return !kvm_supports_32bit_el0();
699 }
700
701 /**
702 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
703 * @vcpu: The VCPU pointer
704 *
705 * This function is called through the VCPU_RUN ioctl called from user space. It
706 * will execute VM code in a loop until the time slice for the process is used
707 * or some emulation is needed from user space in which case the function will
708 * return with return value 0 and with the kvm_run structure filled in with the
709 * required data for the requested emulation.
710 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)711 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
712 {
713 struct kvm_run *run = vcpu->run;
714 int ret;
715
716 if (unlikely(!kvm_vcpu_initialized(vcpu)))
717 return -ENOEXEC;
718
719 ret = kvm_vcpu_first_run_init(vcpu);
720 if (ret)
721 return ret;
722
723 if (run->exit_reason == KVM_EXIT_MMIO) {
724 ret = kvm_handle_mmio_return(vcpu);
725 if (ret)
726 return ret;
727 }
728
729 if (run->immediate_exit)
730 return -EINTR;
731
732 vcpu_load(vcpu);
733
734 kvm_sigset_activate(vcpu);
735
736 ret = 1;
737 run->exit_reason = KVM_EXIT_UNKNOWN;
738 while (ret > 0) {
739 /*
740 * Check conditions before entering the guest
741 */
742 cond_resched();
743
744 update_vmid(&vcpu->arch.hw_mmu->vmid);
745
746 check_vcpu_requests(vcpu);
747
748 /*
749 * Preparing the interrupts to be injected also
750 * involves poking the GIC, which must be done in a
751 * non-preemptible context.
752 */
753 preempt_disable();
754
755 kvm_pmu_flush_hwstate(vcpu);
756
757 local_irq_disable();
758
759 kvm_vgic_flush_hwstate(vcpu);
760
761 /*
762 * Exit if we have a signal pending so that we can deliver the
763 * signal to user space.
764 */
765 if (signal_pending(current)) {
766 ret = -EINTR;
767 run->exit_reason = KVM_EXIT_INTR;
768 }
769
770 /*
771 * If we're using a userspace irqchip, then check if we need
772 * to tell a userspace irqchip about timer or PMU level
773 * changes and if so, exit to userspace (the actual level
774 * state gets updated in kvm_timer_update_run and
775 * kvm_pmu_update_run below).
776 */
777 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
778 if (kvm_timer_should_notify_user(vcpu) ||
779 kvm_pmu_should_notify_user(vcpu)) {
780 ret = -EINTR;
781 run->exit_reason = KVM_EXIT_INTR;
782 }
783 }
784
785 /*
786 * Ensure we set mode to IN_GUEST_MODE after we disable
787 * interrupts and before the final VCPU requests check.
788 * See the comment in kvm_vcpu_exiting_guest_mode() and
789 * Documentation/virt/kvm/vcpu-requests.rst
790 */
791 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
792
793 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
794 kvm_request_pending(vcpu)) {
795 vcpu->mode = OUTSIDE_GUEST_MODE;
796 isb(); /* Ensure work in x_flush_hwstate is committed */
797 kvm_pmu_sync_hwstate(vcpu);
798 if (static_branch_unlikely(&userspace_irqchip_in_use))
799 kvm_timer_sync_user(vcpu);
800 kvm_vgic_sync_hwstate(vcpu);
801 local_irq_enable();
802 preempt_enable();
803 continue;
804 }
805
806 kvm_arm_setup_debug(vcpu);
807
808 /**************************************************************
809 * Enter the guest
810 */
811 trace_kvm_entry(*vcpu_pc(vcpu));
812 guest_enter_irqoff();
813
814 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
815
816 vcpu->mode = OUTSIDE_GUEST_MODE;
817 vcpu->stat.exits++;
818 /*
819 * Back from guest
820 *************************************************************/
821
822 kvm_arm_clear_debug(vcpu);
823
824 /*
825 * We must sync the PMU state before the vgic state so
826 * that the vgic can properly sample the updated state of the
827 * interrupt line.
828 */
829 kvm_pmu_sync_hwstate(vcpu);
830
831 /*
832 * Sync the vgic state before syncing the timer state because
833 * the timer code needs to know if the virtual timer
834 * interrupts are active.
835 */
836 kvm_vgic_sync_hwstate(vcpu);
837
838 /*
839 * Sync the timer hardware state before enabling interrupts as
840 * we don't want vtimer interrupts to race with syncing the
841 * timer virtual interrupt state.
842 */
843 if (static_branch_unlikely(&userspace_irqchip_in_use))
844 kvm_timer_sync_user(vcpu);
845
846 kvm_arch_vcpu_ctxsync_fp(vcpu);
847
848 /*
849 * We may have taken a host interrupt in HYP mode (ie
850 * while executing the guest). This interrupt is still
851 * pending, as we haven't serviced it yet!
852 *
853 * We're now back in SVC mode, with interrupts
854 * disabled. Enabling the interrupts now will have
855 * the effect of taking the interrupt again, in SVC
856 * mode this time.
857 */
858 local_irq_enable();
859
860 /*
861 * We do local_irq_enable() before calling guest_exit() so
862 * that if a timer interrupt hits while running the guest we
863 * account that tick as being spent in the guest. We enable
864 * preemption after calling guest_exit() so that if we get
865 * preempted we make sure ticks after that is not counted as
866 * guest time.
867 */
868 guest_exit();
869 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
870
871 /* Exit types that need handling before we can be preempted */
872 handle_exit_early(vcpu, ret);
873
874 preempt_enable();
875
876 /*
877 * The ARMv8 architecture doesn't give the hypervisor
878 * a mechanism to prevent a guest from dropping to AArch32 EL0
879 * if implemented by the CPU. If we spot the guest in such
880 * state and that we decided it wasn't supposed to do so (like
881 * with the asymmetric AArch32 case), return to userspace with
882 * a fatal error.
883 */
884 if (vcpu_mode_is_bad_32bit(vcpu)) {
885 /*
886 * As we have caught the guest red-handed, decide that
887 * it isn't fit for purpose anymore by making the vcpu
888 * invalid. The VMM can try and fix it by issuing a
889 * KVM_ARM_VCPU_INIT if it really wants to.
890 */
891 vcpu->arch.target = -1;
892 ret = ARM_EXCEPTION_IL;
893 }
894
895 ret = handle_exit(vcpu, ret);
896 }
897
898 /* Tell userspace about in-kernel device output levels */
899 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
900 kvm_timer_update_run(vcpu);
901 kvm_pmu_update_run(vcpu);
902 }
903
904 kvm_sigset_deactivate(vcpu);
905
906 vcpu_put(vcpu);
907 return ret;
908 }
909
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)910 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
911 {
912 int bit_index;
913 bool set;
914 unsigned long *hcr;
915
916 if (number == KVM_ARM_IRQ_CPU_IRQ)
917 bit_index = __ffs(HCR_VI);
918 else /* KVM_ARM_IRQ_CPU_FIQ */
919 bit_index = __ffs(HCR_VF);
920
921 hcr = vcpu_hcr(vcpu);
922 if (level)
923 set = test_and_set_bit(bit_index, hcr);
924 else
925 set = test_and_clear_bit(bit_index, hcr);
926
927 /*
928 * If we didn't change anything, no need to wake up or kick other CPUs
929 */
930 if (set == level)
931 return 0;
932
933 /*
934 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
935 * trigger a world-switch round on the running physical CPU to set the
936 * virtual IRQ/FIQ fields in the HCR appropriately.
937 */
938 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
939 kvm_vcpu_kick(vcpu);
940
941 return 0;
942 }
943
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)944 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
945 bool line_status)
946 {
947 u32 irq = irq_level->irq;
948 unsigned int irq_type, vcpu_idx, irq_num;
949 int nrcpus = atomic_read(&kvm->online_vcpus);
950 struct kvm_vcpu *vcpu = NULL;
951 bool level = irq_level->level;
952
953 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
954 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
955 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
956 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
957
958 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
959
960 switch (irq_type) {
961 case KVM_ARM_IRQ_TYPE_CPU:
962 if (irqchip_in_kernel(kvm))
963 return -ENXIO;
964
965 if (vcpu_idx >= nrcpus)
966 return -EINVAL;
967
968 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
969 if (!vcpu)
970 return -EINVAL;
971
972 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
973 return -EINVAL;
974
975 return vcpu_interrupt_line(vcpu, irq_num, level);
976 case KVM_ARM_IRQ_TYPE_PPI:
977 if (!irqchip_in_kernel(kvm))
978 return -ENXIO;
979
980 if (vcpu_idx >= nrcpus)
981 return -EINVAL;
982
983 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
984 if (!vcpu)
985 return -EINVAL;
986
987 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
988 return -EINVAL;
989
990 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
991 case KVM_ARM_IRQ_TYPE_SPI:
992 if (!irqchip_in_kernel(kvm))
993 return -ENXIO;
994
995 if (irq_num < VGIC_NR_PRIVATE_IRQS)
996 return -EINVAL;
997
998 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
999 }
1000
1001 return -EINVAL;
1002 }
1003
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1004 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1005 const struct kvm_vcpu_init *init)
1006 {
1007 unsigned int i, ret;
1008 int phys_target = kvm_target_cpu();
1009
1010 if (init->target != phys_target)
1011 return -EINVAL;
1012
1013 /*
1014 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1015 * use the same target.
1016 */
1017 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1018 return -EINVAL;
1019
1020 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1021 for (i = 0; i < sizeof(init->features) * 8; i++) {
1022 bool set = (init->features[i / 32] & (1 << (i % 32)));
1023
1024 if (set && i >= KVM_VCPU_MAX_FEATURES)
1025 return -ENOENT;
1026
1027 /*
1028 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1029 * use the same feature set.
1030 */
1031 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1032 test_bit(i, vcpu->arch.features) != set)
1033 return -EINVAL;
1034
1035 if (set)
1036 set_bit(i, vcpu->arch.features);
1037 }
1038
1039 vcpu->arch.target = phys_target;
1040
1041 /* Now we know what it is, we can reset it. */
1042 ret = kvm_reset_vcpu(vcpu);
1043 if (ret) {
1044 vcpu->arch.target = -1;
1045 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1046 }
1047
1048 return ret;
1049 }
1050
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1051 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1052 struct kvm_vcpu_init *init)
1053 {
1054 int ret;
1055
1056 ret = kvm_vcpu_set_target(vcpu, init);
1057 if (ret)
1058 return ret;
1059
1060 /*
1061 * Ensure a rebooted VM will fault in RAM pages and detect if the
1062 * guest MMU is turned off and flush the caches as needed.
1063 *
1064 * S2FWB enforces all memory accesses to RAM being cacheable,
1065 * ensuring that the data side is always coherent. We still
1066 * need to invalidate the I-cache though, as FWB does *not*
1067 * imply CTR_EL0.DIC.
1068 */
1069 if (vcpu->arch.has_run_once) {
1070 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1071 stage2_unmap_vm(vcpu->kvm);
1072 else
1073 __flush_icache_all();
1074 }
1075
1076 vcpu_reset_hcr(vcpu);
1077
1078 /*
1079 * Handle the "start in power-off" case.
1080 */
1081 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1082 vcpu_power_off(vcpu);
1083 else
1084 vcpu->arch.power_off = false;
1085
1086 return 0;
1087 }
1088
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1089 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1090 struct kvm_device_attr *attr)
1091 {
1092 int ret = -ENXIO;
1093
1094 switch (attr->group) {
1095 default:
1096 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1097 break;
1098 }
1099
1100 return ret;
1101 }
1102
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1103 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1104 struct kvm_device_attr *attr)
1105 {
1106 int ret = -ENXIO;
1107
1108 switch (attr->group) {
1109 default:
1110 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1111 break;
1112 }
1113
1114 return ret;
1115 }
1116
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1117 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1118 struct kvm_device_attr *attr)
1119 {
1120 int ret = -ENXIO;
1121
1122 switch (attr->group) {
1123 default:
1124 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1125 break;
1126 }
1127
1128 return ret;
1129 }
1130
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1131 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1132 struct kvm_vcpu_events *events)
1133 {
1134 memset(events, 0, sizeof(*events));
1135
1136 return __kvm_arm_vcpu_get_events(vcpu, events);
1137 }
1138
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1139 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1140 struct kvm_vcpu_events *events)
1141 {
1142 int i;
1143
1144 /* check whether the reserved field is zero */
1145 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1146 if (events->reserved[i])
1147 return -EINVAL;
1148
1149 /* check whether the pad field is zero */
1150 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1151 if (events->exception.pad[i])
1152 return -EINVAL;
1153
1154 return __kvm_arm_vcpu_set_events(vcpu, events);
1155 }
1156
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1157 long kvm_arch_vcpu_ioctl(struct file *filp,
1158 unsigned int ioctl, unsigned long arg)
1159 {
1160 struct kvm_vcpu *vcpu = filp->private_data;
1161 void __user *argp = (void __user *)arg;
1162 struct kvm_device_attr attr;
1163 long r;
1164
1165 switch (ioctl) {
1166 case KVM_ARM_VCPU_INIT: {
1167 struct kvm_vcpu_init init;
1168
1169 r = -EFAULT;
1170 if (copy_from_user(&init, argp, sizeof(init)))
1171 break;
1172
1173 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1174 break;
1175 }
1176 case KVM_SET_ONE_REG:
1177 case KVM_GET_ONE_REG: {
1178 struct kvm_one_reg reg;
1179
1180 r = -ENOEXEC;
1181 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1182 break;
1183
1184 r = -EFAULT;
1185 if (copy_from_user(®, argp, sizeof(reg)))
1186 break;
1187
1188 /*
1189 * We could owe a reset due to PSCI. Handle the pending reset
1190 * here to ensure userspace register accesses are ordered after
1191 * the reset.
1192 */
1193 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1194 kvm_reset_vcpu(vcpu);
1195
1196 if (ioctl == KVM_SET_ONE_REG)
1197 r = kvm_arm_set_reg(vcpu, ®);
1198 else
1199 r = kvm_arm_get_reg(vcpu, ®);
1200 break;
1201 }
1202 case KVM_GET_REG_LIST: {
1203 struct kvm_reg_list __user *user_list = argp;
1204 struct kvm_reg_list reg_list;
1205 unsigned n;
1206
1207 r = -ENOEXEC;
1208 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1209 break;
1210
1211 r = -EPERM;
1212 if (!kvm_arm_vcpu_is_finalized(vcpu))
1213 break;
1214
1215 r = -EFAULT;
1216 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1217 break;
1218 n = reg_list.n;
1219 reg_list.n = kvm_arm_num_regs(vcpu);
1220 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1221 break;
1222 r = -E2BIG;
1223 if (n < reg_list.n)
1224 break;
1225 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1226 break;
1227 }
1228 case KVM_SET_DEVICE_ATTR: {
1229 r = -EFAULT;
1230 if (copy_from_user(&attr, argp, sizeof(attr)))
1231 break;
1232 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1233 break;
1234 }
1235 case KVM_GET_DEVICE_ATTR: {
1236 r = -EFAULT;
1237 if (copy_from_user(&attr, argp, sizeof(attr)))
1238 break;
1239 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1240 break;
1241 }
1242 case KVM_HAS_DEVICE_ATTR: {
1243 r = -EFAULT;
1244 if (copy_from_user(&attr, argp, sizeof(attr)))
1245 break;
1246 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1247 break;
1248 }
1249 case KVM_GET_VCPU_EVENTS: {
1250 struct kvm_vcpu_events events;
1251
1252 if (kvm_arm_vcpu_get_events(vcpu, &events))
1253 return -EINVAL;
1254
1255 if (copy_to_user(argp, &events, sizeof(events)))
1256 return -EFAULT;
1257
1258 return 0;
1259 }
1260 case KVM_SET_VCPU_EVENTS: {
1261 struct kvm_vcpu_events events;
1262
1263 if (copy_from_user(&events, argp, sizeof(events)))
1264 return -EFAULT;
1265
1266 return kvm_arm_vcpu_set_events(vcpu, &events);
1267 }
1268 case KVM_ARM_VCPU_FINALIZE: {
1269 int what;
1270
1271 if (!kvm_vcpu_initialized(vcpu))
1272 return -ENOEXEC;
1273
1274 if (get_user(what, (const int __user *)argp))
1275 return -EFAULT;
1276
1277 return kvm_arm_vcpu_finalize(vcpu, what);
1278 }
1279 default:
1280 r = -EINVAL;
1281 }
1282
1283 return r;
1284 }
1285
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1286 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1287 {
1288
1289 }
1290
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)1291 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1292 struct kvm_memory_slot *memslot)
1293 {
1294 kvm_flush_remote_tlbs(kvm);
1295 }
1296
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1297 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1298 struct kvm_arm_device_addr *dev_addr)
1299 {
1300 unsigned long dev_id, type;
1301
1302 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1303 KVM_ARM_DEVICE_ID_SHIFT;
1304 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1305 KVM_ARM_DEVICE_TYPE_SHIFT;
1306
1307 switch (dev_id) {
1308 case KVM_ARM_DEVICE_VGIC_V2:
1309 if (!vgic_present)
1310 return -ENXIO;
1311 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1312 default:
1313 return -ENODEV;
1314 }
1315 }
1316
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1317 long kvm_arch_vm_ioctl(struct file *filp,
1318 unsigned int ioctl, unsigned long arg)
1319 {
1320 struct kvm *kvm = filp->private_data;
1321 void __user *argp = (void __user *)arg;
1322
1323 switch (ioctl) {
1324 case KVM_CREATE_IRQCHIP: {
1325 int ret;
1326 if (!vgic_present)
1327 return -ENXIO;
1328 mutex_lock(&kvm->lock);
1329 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1330 mutex_unlock(&kvm->lock);
1331 return ret;
1332 }
1333 case KVM_ARM_SET_DEVICE_ADDR: {
1334 struct kvm_arm_device_addr dev_addr;
1335
1336 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1337 return -EFAULT;
1338 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1339 }
1340 case KVM_ARM_PREFERRED_TARGET: {
1341 int err;
1342 struct kvm_vcpu_init init;
1343
1344 err = kvm_vcpu_preferred_target(&init);
1345 if (err)
1346 return err;
1347
1348 if (copy_to_user(argp, &init, sizeof(init)))
1349 return -EFAULT;
1350
1351 return 0;
1352 }
1353 default:
1354 return -EINVAL;
1355 }
1356 }
1357
nvhe_percpu_size(void)1358 static unsigned long nvhe_percpu_size(void)
1359 {
1360 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1361 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1362 }
1363
nvhe_percpu_order(void)1364 static unsigned long nvhe_percpu_order(void)
1365 {
1366 unsigned long size = nvhe_percpu_size();
1367
1368 return size ? get_order(size) : 0;
1369 }
1370
1371 /* A lookup table holding the hypervisor VA for each vector slot */
1372 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1373
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1374 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1375 {
1376 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1377 }
1378
kvm_init_vector_slots(void)1379 static int kvm_init_vector_slots(void)
1380 {
1381 int err;
1382 void *base;
1383
1384 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1385 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1386
1387 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1388 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1389
1390 if (kvm_system_needs_idmapped_vectors() && !has_vhe()) {
1391 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1392 __BP_HARDEN_HYP_VECS_SZ, &base);
1393 if (err)
1394 return err;
1395 }
1396
1397 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1398 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1399 return 0;
1400 }
1401
cpu_prepare_hyp_mode(int cpu)1402 static void cpu_prepare_hyp_mode(int cpu)
1403 {
1404 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1405 unsigned long tcr;
1406
1407 /*
1408 * Calculate the raw per-cpu offset without a translation from the
1409 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1410 * so that we can use adr_l to access per-cpu variables in EL2.
1411 * Also drop the KASAN tag which gets in the way...
1412 */
1413 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1414 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1415
1416 params->mair_el2 = read_sysreg(mair_el1);
1417
1418 /*
1419 * The ID map may be configured to use an extended virtual address
1420 * range. This is only the case if system RAM is out of range for the
1421 * currently configured page size and VA_BITS, in which case we will
1422 * also need the extended virtual range for the HYP ID map, or we won't
1423 * be able to enable the EL2 MMU.
1424 *
1425 * However, at EL2, there is only one TTBR register, and we can't switch
1426 * between translation tables *and* update TCR_EL2.T0SZ at the same
1427 * time. Bottom line: we need to use the extended range with *both* our
1428 * translation tables.
1429 *
1430 * So use the same T0SZ value we use for the ID map.
1431 */
1432 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1433 tcr &= ~TCR_T0SZ_MASK;
1434 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1435 params->tcr_el2 = tcr;
1436
1437 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1438 params->pgd_pa = kvm_mmu_get_httbr();
1439 if (is_protected_kvm_enabled())
1440 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1441 else
1442 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1443 params->vttbr = params->vtcr = 0;
1444
1445 /*
1446 * Flush the init params from the data cache because the struct will
1447 * be read while the MMU is off.
1448 */
1449 kvm_flush_dcache_to_poc(params, sizeof(*params));
1450 }
1451
hyp_install_host_vector(void)1452 static void hyp_install_host_vector(void)
1453 {
1454 struct kvm_nvhe_init_params *params;
1455 struct arm_smccc_res res;
1456
1457 /* Switch from the HYP stub to our own HYP init vector */
1458 __hyp_set_vectors(kvm_get_idmap_vector());
1459
1460 /*
1461 * Call initialization code, and switch to the full blown HYP code.
1462 * If the cpucaps haven't been finalized yet, something has gone very
1463 * wrong, and hyp will crash and burn when it uses any
1464 * cpus_have_const_cap() wrapper.
1465 */
1466 BUG_ON(!system_capabilities_finalized());
1467 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1468 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1469 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1470 }
1471
cpu_init_hyp_mode(void)1472 static void cpu_init_hyp_mode(void)
1473 {
1474 hyp_install_host_vector();
1475
1476 /*
1477 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1478 * at EL2.
1479 */
1480 if (this_cpu_has_cap(ARM64_SSBS) &&
1481 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1482 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1483 }
1484 }
1485
cpu_hyp_reset(void)1486 static void cpu_hyp_reset(void)
1487 {
1488 if (!is_kernel_in_hyp_mode())
1489 __hyp_reset_vectors();
1490 }
1491
1492 /*
1493 * EL2 vectors can be mapped and rerouted in a number of ways,
1494 * depending on the kernel configuration and CPU present:
1495 *
1496 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1497 * placed in one of the vector slots, which is executed before jumping
1498 * to the real vectors.
1499 *
1500 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1501 * containing the hardening sequence is mapped next to the idmap page,
1502 * and executed before jumping to the real vectors.
1503 *
1504 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1505 * empty slot is selected, mapped next to the idmap page, and
1506 * executed before jumping to the real vectors.
1507 *
1508 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1509 * VHE, as we don't have hypervisor-specific mappings. If the system
1510 * is VHE and yet selects this capability, it will be ignored.
1511 */
cpu_set_hyp_vector(void)1512 static void cpu_set_hyp_vector(void)
1513 {
1514 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1515 void *vector = hyp_spectre_vector_selector[data->slot];
1516
1517 if (!is_protected_kvm_enabled())
1518 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1519 else
1520 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1521 }
1522
cpu_hyp_reinit(void)1523 static void cpu_hyp_reinit(void)
1524 {
1525 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1526
1527 cpu_hyp_reset();
1528
1529 if (is_kernel_in_hyp_mode())
1530 kvm_timer_init_vhe();
1531 else
1532 cpu_init_hyp_mode();
1533
1534 cpu_set_hyp_vector();
1535
1536 kvm_arm_init_debug();
1537
1538 if (vgic_present)
1539 kvm_vgic_init_cpu_hardware();
1540 }
1541
_kvm_arch_hardware_enable(void * discard)1542 static void _kvm_arch_hardware_enable(void *discard)
1543 {
1544 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1545 cpu_hyp_reinit();
1546 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1547 }
1548 }
1549
kvm_arch_hardware_enable(void)1550 int kvm_arch_hardware_enable(void)
1551 {
1552 _kvm_arch_hardware_enable(NULL);
1553 return 0;
1554 }
1555
_kvm_arch_hardware_disable(void * discard)1556 static void _kvm_arch_hardware_disable(void *discard)
1557 {
1558 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1559 cpu_hyp_reset();
1560 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1561 }
1562 }
1563
kvm_arch_hardware_disable(void)1564 void kvm_arch_hardware_disable(void)
1565 {
1566 if (!is_protected_kvm_enabled())
1567 _kvm_arch_hardware_disable(NULL);
1568 }
1569
1570 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1571 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1572 unsigned long cmd,
1573 void *v)
1574 {
1575 /*
1576 * kvm_arm_hardware_enabled is left with its old value over
1577 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1578 * re-enable hyp.
1579 */
1580 switch (cmd) {
1581 case CPU_PM_ENTER:
1582 if (__this_cpu_read(kvm_arm_hardware_enabled))
1583 /*
1584 * don't update kvm_arm_hardware_enabled here
1585 * so that the hardware will be re-enabled
1586 * when we resume. See below.
1587 */
1588 cpu_hyp_reset();
1589
1590 return NOTIFY_OK;
1591 case CPU_PM_ENTER_FAILED:
1592 case CPU_PM_EXIT:
1593 if (__this_cpu_read(kvm_arm_hardware_enabled))
1594 /* The hardware was enabled before suspend. */
1595 cpu_hyp_reinit();
1596
1597 return NOTIFY_OK;
1598
1599 default:
1600 return NOTIFY_DONE;
1601 }
1602 }
1603
1604 static struct notifier_block hyp_init_cpu_pm_nb = {
1605 .notifier_call = hyp_init_cpu_pm_notifier,
1606 };
1607
hyp_cpu_pm_init(void)1608 static void hyp_cpu_pm_init(void)
1609 {
1610 if (!is_protected_kvm_enabled())
1611 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1612 }
hyp_cpu_pm_exit(void)1613 static void hyp_cpu_pm_exit(void)
1614 {
1615 if (!is_protected_kvm_enabled())
1616 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1617 }
1618 #else
hyp_cpu_pm_init(void)1619 static inline void hyp_cpu_pm_init(void)
1620 {
1621 }
hyp_cpu_pm_exit(void)1622 static inline void hyp_cpu_pm_exit(void)
1623 {
1624 }
1625 #endif
1626
init_cpu_logical_map(void)1627 static void init_cpu_logical_map(void)
1628 {
1629 unsigned int cpu;
1630
1631 /*
1632 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1633 * Only copy the set of online CPUs whose features have been chacked
1634 * against the finalized system capabilities. The hypervisor will not
1635 * allow any other CPUs from the `possible` set to boot.
1636 */
1637 for_each_online_cpu(cpu)
1638 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1639 }
1640
1641 #define init_psci_0_1_impl_state(config, what) \
1642 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1643
init_psci_relay(void)1644 static bool init_psci_relay(void)
1645 {
1646 /*
1647 * If PSCI has not been initialized, protected KVM cannot install
1648 * itself on newly booted CPUs.
1649 */
1650 if (!psci_ops.get_version) {
1651 kvm_err("Cannot initialize protected mode without PSCI\n");
1652 return false;
1653 }
1654
1655 kvm_host_psci_config.version = psci_ops.get_version();
1656
1657 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1658 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1659 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1660 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1661 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1662 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1663 }
1664 return true;
1665 }
1666
init_common_resources(void)1667 static int init_common_resources(void)
1668 {
1669 return kvm_set_ipa_limit();
1670 }
1671
init_subsystems(void)1672 static int init_subsystems(void)
1673 {
1674 int err = 0;
1675
1676 /*
1677 * Enable hardware so that subsystem initialisation can access EL2.
1678 */
1679 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1680
1681 /*
1682 * Register CPU lower-power notifier
1683 */
1684 hyp_cpu_pm_init();
1685
1686 /*
1687 * Init HYP view of VGIC
1688 */
1689 err = kvm_vgic_hyp_init();
1690 switch (err) {
1691 case 0:
1692 vgic_present = true;
1693 break;
1694 case -ENODEV:
1695 case -ENXIO:
1696 vgic_present = false;
1697 err = 0;
1698 break;
1699 default:
1700 goto out;
1701 }
1702
1703 /*
1704 * Init HYP architected timer support
1705 */
1706 err = kvm_timer_hyp_init(vgic_present);
1707 if (err)
1708 goto out;
1709
1710 kvm_perf_init();
1711 kvm_sys_reg_table_init();
1712
1713 out:
1714 if (err || !is_protected_kvm_enabled())
1715 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1716
1717 return err;
1718 }
1719
teardown_hyp_mode(void)1720 static void teardown_hyp_mode(void)
1721 {
1722 int cpu;
1723
1724 free_hyp_pgds();
1725 for_each_possible_cpu(cpu) {
1726 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1727 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1728 }
1729 }
1730
do_pkvm_init(u32 hyp_va_bits)1731 static int do_pkvm_init(u32 hyp_va_bits)
1732 {
1733 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1734 int ret;
1735
1736 preempt_disable();
1737 hyp_install_host_vector();
1738 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1739 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1740 hyp_va_bits);
1741 preempt_enable();
1742
1743 return ret;
1744 }
1745
kvm_hyp_init_protection(u32 hyp_va_bits)1746 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1747 {
1748 void *addr = phys_to_virt(hyp_mem_base);
1749 int ret;
1750
1751 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1752 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1753
1754 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1755 if (ret)
1756 return ret;
1757
1758 ret = do_pkvm_init(hyp_va_bits);
1759 if (ret)
1760 return ret;
1761
1762 free_hyp_pgds();
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * Inits Hyp-mode on all online CPUs
1769 */
init_hyp_mode(void)1770 static int init_hyp_mode(void)
1771 {
1772 u32 hyp_va_bits;
1773 int cpu;
1774 int err = -ENOMEM;
1775
1776 /*
1777 * The protected Hyp-mode cannot be initialized if the memory pool
1778 * allocation has failed.
1779 */
1780 if (is_protected_kvm_enabled() && !hyp_mem_base)
1781 goto out_err;
1782
1783 /*
1784 * Allocate Hyp PGD and setup Hyp identity mapping
1785 */
1786 err = kvm_mmu_init(&hyp_va_bits);
1787 if (err)
1788 goto out_err;
1789
1790 /*
1791 * Allocate stack pages for Hypervisor-mode
1792 */
1793 for_each_possible_cpu(cpu) {
1794 unsigned long stack_page;
1795
1796 stack_page = __get_free_page(GFP_KERNEL);
1797 if (!stack_page) {
1798 err = -ENOMEM;
1799 goto out_err;
1800 }
1801
1802 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1803 }
1804
1805 /*
1806 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1807 */
1808 for_each_possible_cpu(cpu) {
1809 struct page *page;
1810 void *page_addr;
1811
1812 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1813 if (!page) {
1814 err = -ENOMEM;
1815 goto out_err;
1816 }
1817
1818 page_addr = page_address(page);
1819 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1820 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1821 }
1822
1823 /*
1824 * Map the Hyp-code called directly from the host
1825 */
1826 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1827 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1828 if (err) {
1829 kvm_err("Cannot map world-switch code\n");
1830 goto out_err;
1831 }
1832
1833 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1834 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1835 if (err) {
1836 kvm_err("Cannot map .hyp.rodata section\n");
1837 goto out_err;
1838 }
1839
1840 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1841 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1842 if (err) {
1843 kvm_err("Cannot map rodata section\n");
1844 goto out_err;
1845 }
1846
1847 /*
1848 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1849 * section thanks to an assertion in the linker script. Map it RW and
1850 * the rest of .bss RO.
1851 */
1852 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1853 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1854 if (err) {
1855 kvm_err("Cannot map hyp bss section: %d\n", err);
1856 goto out_err;
1857 }
1858
1859 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1860 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1861 if (err) {
1862 kvm_err("Cannot map bss section\n");
1863 goto out_err;
1864 }
1865
1866 /*
1867 * Map the Hyp stack pages
1868 */
1869 for_each_possible_cpu(cpu) {
1870 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1871 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1872 PAGE_HYP);
1873
1874 if (err) {
1875 kvm_err("Cannot map hyp stack\n");
1876 goto out_err;
1877 }
1878 }
1879
1880 for_each_possible_cpu(cpu) {
1881 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1882 char *percpu_end = percpu_begin + nvhe_percpu_size();
1883
1884 /* Map Hyp percpu pages */
1885 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1886 if (err) {
1887 kvm_err("Cannot map hyp percpu region\n");
1888 goto out_err;
1889 }
1890
1891 /* Prepare the CPU initialization parameters */
1892 cpu_prepare_hyp_mode(cpu);
1893 }
1894
1895 if (is_protected_kvm_enabled()) {
1896 init_cpu_logical_map();
1897
1898 if (!init_psci_relay()) {
1899 err = -ENODEV;
1900 goto out_err;
1901 }
1902 }
1903
1904 if (is_protected_kvm_enabled()) {
1905 err = kvm_hyp_init_protection(hyp_va_bits);
1906 if (err) {
1907 kvm_err("Failed to init hyp memory protection\n");
1908 goto out_err;
1909 }
1910 }
1911
1912 return 0;
1913
1914 out_err:
1915 teardown_hyp_mode();
1916 kvm_err("error initializing Hyp mode: %d\n", err);
1917 return err;
1918 }
1919
_kvm_host_prot_finalize(void * discard)1920 void _kvm_host_prot_finalize(void *discard)
1921 {
1922 WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1923 }
1924
pkvm_mark_hyp(phys_addr_t start,phys_addr_t end)1925 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1926 {
1927 return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1928 }
1929
1930 #define pkvm_mark_hyp_section(__section) \
1931 pkvm_mark_hyp(__pa_symbol(__section##_start), \
1932 __pa_symbol(__section##_end))
1933
finalize_hyp_mode(void)1934 static int finalize_hyp_mode(void)
1935 {
1936 int cpu, ret;
1937
1938 if (!is_protected_kvm_enabled())
1939 return 0;
1940
1941 ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1942 if (ret)
1943 return ret;
1944
1945 ret = pkvm_mark_hyp_section(__hyp_text);
1946 if (ret)
1947 return ret;
1948
1949 ret = pkvm_mark_hyp_section(__hyp_rodata);
1950 if (ret)
1951 return ret;
1952
1953 /*
1954 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
1955 * at, which would end badly once the section is inaccessible.
1956 * None of other sections should ever be introspected.
1957 */
1958 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
1959 ret = pkvm_mark_hyp_section(__hyp_bss);
1960 if (ret)
1961 return ret;
1962
1963 ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1964 if (ret)
1965 return ret;
1966
1967 for_each_possible_cpu(cpu) {
1968 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1969 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1970
1971 ret = pkvm_mark_hyp(start, end);
1972 if (ret)
1973 return ret;
1974
1975 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1976 end = start + PAGE_SIZE;
1977 ret = pkvm_mark_hyp(start, end);
1978 if (ret)
1979 return ret;
1980 }
1981
1982 /*
1983 * Flip the static key upfront as that may no longer be possible
1984 * once the host stage 2 is installed.
1985 */
1986 static_branch_enable(&kvm_protected_mode_initialized);
1987 on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1988
1989 return 0;
1990 }
1991
check_kvm_target_cpu(void * ret)1992 static void check_kvm_target_cpu(void *ret)
1993 {
1994 *(int *)ret = kvm_target_cpu();
1995 }
1996
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1997 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1998 {
1999 struct kvm_vcpu *vcpu;
2000 int i;
2001
2002 mpidr &= MPIDR_HWID_BITMASK;
2003 kvm_for_each_vcpu(i, vcpu, kvm) {
2004 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2005 return vcpu;
2006 }
2007 return NULL;
2008 }
2009
kvm_arch_has_irq_bypass(void)2010 bool kvm_arch_has_irq_bypass(void)
2011 {
2012 return true;
2013 }
2014
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2015 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2016 struct irq_bypass_producer *prod)
2017 {
2018 struct kvm_kernel_irqfd *irqfd =
2019 container_of(cons, struct kvm_kernel_irqfd, consumer);
2020
2021 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2022 &irqfd->irq_entry);
2023 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2024 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2025 struct irq_bypass_producer *prod)
2026 {
2027 struct kvm_kernel_irqfd *irqfd =
2028 container_of(cons, struct kvm_kernel_irqfd, consumer);
2029
2030 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2031 &irqfd->irq_entry);
2032 }
2033
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2034 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2035 {
2036 struct kvm_kernel_irqfd *irqfd =
2037 container_of(cons, struct kvm_kernel_irqfd, consumer);
2038
2039 kvm_arm_halt_guest(irqfd->kvm);
2040 }
2041
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2042 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2043 {
2044 struct kvm_kernel_irqfd *irqfd =
2045 container_of(cons, struct kvm_kernel_irqfd, consumer);
2046
2047 kvm_arm_resume_guest(irqfd->kvm);
2048 }
2049
2050 /**
2051 * Initialize Hyp-mode and memory mappings on all CPUs.
2052 */
kvm_arch_init(void * opaque)2053 int kvm_arch_init(void *opaque)
2054 {
2055 int err;
2056 int ret, cpu;
2057 bool in_hyp_mode;
2058
2059 if (!is_hyp_mode_available()) {
2060 kvm_info("HYP mode not available\n");
2061 return -ENODEV;
2062 }
2063
2064 if (kvm_get_mode() == KVM_MODE_NONE) {
2065 kvm_info("KVM disabled from command line\n");
2066 return -ENODEV;
2067 }
2068
2069 in_hyp_mode = is_kernel_in_hyp_mode();
2070
2071 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2072 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2073 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2074 "Only trusted guests should be used on this system.\n");
2075
2076 for_each_online_cpu(cpu) {
2077 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2078 if (ret < 0) {
2079 kvm_err("Error, CPU %d not supported!\n", cpu);
2080 return -ENODEV;
2081 }
2082 }
2083
2084 err = init_common_resources();
2085 if (err)
2086 return err;
2087
2088 err = kvm_arm_init_sve();
2089 if (err)
2090 return err;
2091
2092 if (!in_hyp_mode) {
2093 err = init_hyp_mode();
2094 if (err)
2095 goto out_err;
2096 }
2097
2098 err = kvm_init_vector_slots();
2099 if (err) {
2100 kvm_err("Cannot initialise vector slots\n");
2101 goto out_hyp;
2102 }
2103
2104 err = init_subsystems();
2105 if (err)
2106 goto out_subs;
2107
2108 if (!in_hyp_mode) {
2109 err = finalize_hyp_mode();
2110 if (err) {
2111 kvm_err("Failed to finalize Hyp protection\n");
2112 goto out_subs;
2113 }
2114 }
2115
2116 if (is_protected_kvm_enabled()) {
2117 kvm_info("Protected nVHE mode initialized successfully\n");
2118 } else if (in_hyp_mode) {
2119 kvm_info("VHE mode initialized successfully\n");
2120 } else {
2121 kvm_info("Hyp mode initialized successfully\n");
2122 }
2123
2124 return 0;
2125
2126 out_subs:
2127 hyp_cpu_pm_exit();
2128 out_hyp:
2129 if (!in_hyp_mode)
2130 teardown_hyp_mode();
2131 out_err:
2132 return err;
2133 }
2134
2135 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)2136 void kvm_arch_exit(void)
2137 {
2138 kvm_perf_teardown();
2139 }
2140
early_kvm_mode_cfg(char * arg)2141 static int __init early_kvm_mode_cfg(char *arg)
2142 {
2143 if (!arg)
2144 return -EINVAL;
2145
2146 if (strcmp(arg, "none") == 0) {
2147 kvm_mode = KVM_MODE_NONE;
2148 return 0;
2149 }
2150
2151 if (!is_hyp_mode_available()) {
2152 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2153 return 0;
2154 }
2155
2156 if (strcmp(arg, "protected") == 0) {
2157 kvm_mode = KVM_MODE_PROTECTED;
2158 return 0;
2159 }
2160
2161 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2162 kvm_mode = KVM_MODE_DEFAULT;
2163 return 0;
2164 }
2165
2166 return -EINVAL;
2167 }
2168 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2169
kvm_get_mode(void)2170 enum kvm_mode kvm_get_mode(void)
2171 {
2172 return kvm_mode;
2173 }
2174
arm_init(void)2175 static int arm_init(void)
2176 {
2177 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2178 return rc;
2179 }
2180
2181 module_init(arm_init);
2182