1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 #include <trace/hooks/mm.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
swap_type_to_swap_info(int type)102 struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110 EXPORT_SYMBOL_GPL(swap_type_to_swap_info);
111
swap_count(unsigned char ent)112 static inline unsigned char swap_count(unsigned char ent)
113 {
114 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
115 }
116
117 /* Reclaim the swap entry anyway if possible */
118 #define TTRS_ANYWAY 0x1
119 /*
120 * Reclaim the swap entry if there are no more mappings of the
121 * corresponding page
122 */
123 #define TTRS_UNMAPPED 0x2
124 /* Reclaim the swap entry if swap is getting full*/
125 #define TTRS_FULL 0x4
126
127 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)128 static int __try_to_reclaim_swap(struct swap_info_struct *si,
129 unsigned long offset, unsigned long flags)
130 {
131 swp_entry_t entry = swp_entry(si->type, offset);
132 struct page *page;
133 int ret = 0;
134
135 page = find_get_page(swap_address_space(entry), offset);
136 if (!page)
137 return 0;
138 /*
139 * When this function is called from scan_swap_map_slots() and it's
140 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
141 * here. We have to use trylock for avoiding deadlock. This is a special
142 * case and you should use try_to_free_swap() with explicit lock_page()
143 * in usual operations.
144 */
145 if (trylock_page(page)) {
146 if ((flags & TTRS_ANYWAY) ||
147 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
148 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
149 ret = try_to_free_swap(page);
150 unlock_page(page);
151 }
152 put_page(page);
153 return ret;
154 }
155
first_se(struct swap_info_struct * sis)156 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
157 {
158 struct rb_node *rb = rb_first(&sis->swap_extent_root);
159 return rb_entry(rb, struct swap_extent, rb_node);
160 }
161
next_se(struct swap_extent * se)162 static inline struct swap_extent *next_se(struct swap_extent *se)
163 {
164 struct rb_node *rb = rb_next(&se->rb_node);
165 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
166 }
167
168 /*
169 * swapon tell device that all the old swap contents can be discarded,
170 * to allow the swap device to optimize its wear-levelling.
171 */
discard_swap(struct swap_info_struct * si)172 static int discard_swap(struct swap_info_struct *si)
173 {
174 struct swap_extent *se;
175 sector_t start_block;
176 sector_t nr_blocks;
177 int err = 0;
178
179 /* Do not discard the swap header page! */
180 se = first_se(si);
181 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
182 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
183 if (nr_blocks) {
184 err = blkdev_issue_discard(si->bdev, start_block,
185 nr_blocks, GFP_KERNEL, 0);
186 if (err)
187 return err;
188 cond_resched();
189 }
190
191 for (se = next_se(se); se; se = next_se(se)) {
192 start_block = se->start_block << (PAGE_SHIFT - 9);
193 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
194
195 err = blkdev_issue_discard(si->bdev, start_block,
196 nr_blocks, GFP_KERNEL, 0);
197 if (err)
198 break;
199
200 cond_resched();
201 }
202 return err; /* That will often be -EOPNOTSUPP */
203 }
204
205 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)206 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
207 {
208 struct swap_extent *se;
209 struct rb_node *rb;
210
211 rb = sis->swap_extent_root.rb_node;
212 while (rb) {
213 se = rb_entry(rb, struct swap_extent, rb_node);
214 if (offset < se->start_page)
215 rb = rb->rb_left;
216 else if (offset >= se->start_page + se->nr_pages)
217 rb = rb->rb_right;
218 else
219 return se;
220 }
221 /* It *must* be present */
222 BUG();
223 }
224
swap_page_sector(struct page * page)225 sector_t swap_page_sector(struct page *page)
226 {
227 struct swap_info_struct *sis = page_swap_info(page);
228 struct swap_extent *se;
229 sector_t sector;
230 pgoff_t offset;
231
232 offset = __page_file_index(page);
233 se = offset_to_swap_extent(sis, offset);
234 sector = se->start_block + (offset - se->start_page);
235 return sector << (PAGE_SHIFT - 9);
236 }
237
238 /*
239 * swap allocation tell device that a cluster of swap can now be discarded,
240 * to allow the swap device to optimize its wear-levelling.
241 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)242 static void discard_swap_cluster(struct swap_info_struct *si,
243 pgoff_t start_page, pgoff_t nr_pages)
244 {
245 struct swap_extent *se = offset_to_swap_extent(si, start_page);
246
247 while (nr_pages) {
248 pgoff_t offset = start_page - se->start_page;
249 sector_t start_block = se->start_block + offset;
250 sector_t nr_blocks = se->nr_pages - offset;
251
252 if (nr_blocks > nr_pages)
253 nr_blocks = nr_pages;
254 start_page += nr_blocks;
255 nr_pages -= nr_blocks;
256
257 start_block <<= PAGE_SHIFT - 9;
258 nr_blocks <<= PAGE_SHIFT - 9;
259 if (blkdev_issue_discard(si->bdev, start_block,
260 nr_blocks, GFP_NOIO, 0))
261 break;
262
263 se = next_se(se);
264 }
265 }
266
267 #ifdef CONFIG_THP_SWAP
268 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
269
270 #define swap_entry_size(size) (size)
271 #else
272 #define SWAPFILE_CLUSTER 256
273
274 /*
275 * Define swap_entry_size() as constant to let compiler to optimize
276 * out some code if !CONFIG_THP_SWAP
277 */
278 #define swap_entry_size(size) 1
279 #endif
280 #define LATENCY_LIMIT 256
281
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)282 static inline void cluster_set_flag(struct swap_cluster_info *info,
283 unsigned int flag)
284 {
285 info->flags = flag;
286 }
287
cluster_count(struct swap_cluster_info * info)288 static inline unsigned int cluster_count(struct swap_cluster_info *info)
289 {
290 return info->data;
291 }
292
cluster_set_count(struct swap_cluster_info * info,unsigned int c)293 static inline void cluster_set_count(struct swap_cluster_info *info,
294 unsigned int c)
295 {
296 info->data = c;
297 }
298
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)299 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
300 unsigned int c, unsigned int f)
301 {
302 info->flags = f;
303 info->data = c;
304 }
305
cluster_next(struct swap_cluster_info * info)306 static inline unsigned int cluster_next(struct swap_cluster_info *info)
307 {
308 return info->data;
309 }
310
cluster_set_next(struct swap_cluster_info * info,unsigned int n)311 static inline void cluster_set_next(struct swap_cluster_info *info,
312 unsigned int n)
313 {
314 info->data = n;
315 }
316
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)317 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
318 unsigned int n, unsigned int f)
319 {
320 info->flags = f;
321 info->data = n;
322 }
323
cluster_is_free(struct swap_cluster_info * info)324 static inline bool cluster_is_free(struct swap_cluster_info *info)
325 {
326 return info->flags & CLUSTER_FLAG_FREE;
327 }
328
cluster_is_null(struct swap_cluster_info * info)329 static inline bool cluster_is_null(struct swap_cluster_info *info)
330 {
331 return info->flags & CLUSTER_FLAG_NEXT_NULL;
332 }
333
cluster_set_null(struct swap_cluster_info * info)334 static inline void cluster_set_null(struct swap_cluster_info *info)
335 {
336 info->flags = CLUSTER_FLAG_NEXT_NULL;
337 info->data = 0;
338 }
339
cluster_is_huge(struct swap_cluster_info * info)340 static inline bool cluster_is_huge(struct swap_cluster_info *info)
341 {
342 if (IS_ENABLED(CONFIG_THP_SWAP))
343 return info->flags & CLUSTER_FLAG_HUGE;
344 return false;
345 }
346
cluster_clear_huge(struct swap_cluster_info * info)347 static inline void cluster_clear_huge(struct swap_cluster_info *info)
348 {
349 info->flags &= ~CLUSTER_FLAG_HUGE;
350 }
351
lock_cluster(struct swap_info_struct * si,unsigned long offset)352 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
353 unsigned long offset)
354 {
355 struct swap_cluster_info *ci;
356
357 ci = si->cluster_info;
358 if (ci) {
359 ci += offset / SWAPFILE_CLUSTER;
360 spin_lock(&ci->lock);
361 }
362 return ci;
363 }
364
unlock_cluster(struct swap_cluster_info * ci)365 static inline void unlock_cluster(struct swap_cluster_info *ci)
366 {
367 if (ci)
368 spin_unlock(&ci->lock);
369 }
370
371 /*
372 * Determine the locking method in use for this device. Return
373 * swap_cluster_info if SSD-style cluster-based locking is in place.
374 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)375 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
376 struct swap_info_struct *si, unsigned long offset)
377 {
378 struct swap_cluster_info *ci;
379
380 /* Try to use fine-grained SSD-style locking if available: */
381 ci = lock_cluster(si, offset);
382 /* Otherwise, fall back to traditional, coarse locking: */
383 if (!ci)
384 spin_lock(&si->lock);
385
386 return ci;
387 }
388
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)389 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
390 struct swap_cluster_info *ci)
391 {
392 if (ci)
393 unlock_cluster(ci);
394 else
395 spin_unlock(&si->lock);
396 }
397
cluster_list_empty(struct swap_cluster_list * list)398 static inline bool cluster_list_empty(struct swap_cluster_list *list)
399 {
400 return cluster_is_null(&list->head);
401 }
402
cluster_list_first(struct swap_cluster_list * list)403 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
404 {
405 return cluster_next(&list->head);
406 }
407
cluster_list_init(struct swap_cluster_list * list)408 static void cluster_list_init(struct swap_cluster_list *list)
409 {
410 cluster_set_null(&list->head);
411 cluster_set_null(&list->tail);
412 }
413
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)414 static void cluster_list_add_tail(struct swap_cluster_list *list,
415 struct swap_cluster_info *ci,
416 unsigned int idx)
417 {
418 if (cluster_list_empty(list)) {
419 cluster_set_next_flag(&list->head, idx, 0);
420 cluster_set_next_flag(&list->tail, idx, 0);
421 } else {
422 struct swap_cluster_info *ci_tail;
423 unsigned int tail = cluster_next(&list->tail);
424
425 /*
426 * Nested cluster lock, but both cluster locks are
427 * only acquired when we held swap_info_struct->lock
428 */
429 ci_tail = ci + tail;
430 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
431 cluster_set_next(ci_tail, idx);
432 spin_unlock(&ci_tail->lock);
433 cluster_set_next_flag(&list->tail, idx, 0);
434 }
435 }
436
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)437 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
438 struct swap_cluster_info *ci)
439 {
440 unsigned int idx;
441
442 idx = cluster_next(&list->head);
443 if (cluster_next(&list->tail) == idx) {
444 cluster_set_null(&list->head);
445 cluster_set_null(&list->tail);
446 } else
447 cluster_set_next_flag(&list->head,
448 cluster_next(&ci[idx]), 0);
449
450 return idx;
451 }
452
453 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)454 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
455 unsigned int idx)
456 {
457 /*
458 * If scan_swap_map() can't find a free cluster, it will check
459 * si->swap_map directly. To make sure the discarding cluster isn't
460 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
461 * will be cleared after discard
462 */
463 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
464 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465
466 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
467
468 schedule_work(&si->discard_work);
469 }
470
__free_cluster(struct swap_info_struct * si,unsigned long idx)471 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
472 {
473 struct swap_cluster_info *ci = si->cluster_info;
474
475 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
476 cluster_list_add_tail(&si->free_clusters, ci, idx);
477 }
478
479 /*
480 * Doing discard actually. After a cluster discard is finished, the cluster
481 * will be added to free cluster list. caller should hold si->lock.
482 */
swap_do_scheduled_discard(struct swap_info_struct * si)483 static void swap_do_scheduled_discard(struct swap_info_struct *si)
484 {
485 struct swap_cluster_info *info, *ci;
486 unsigned int idx;
487
488 info = si->cluster_info;
489
490 while (!cluster_list_empty(&si->discard_clusters)) {
491 idx = cluster_list_del_first(&si->discard_clusters, info);
492 spin_unlock(&si->lock);
493
494 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
495 SWAPFILE_CLUSTER);
496
497 spin_lock(&si->lock);
498 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
499 __free_cluster(si, idx);
500 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
501 0, SWAPFILE_CLUSTER);
502 unlock_cluster(ci);
503 }
504 }
505
swap_discard_work(struct work_struct * work)506 static void swap_discard_work(struct work_struct *work)
507 {
508 struct swap_info_struct *si;
509
510 si = container_of(work, struct swap_info_struct, discard_work);
511
512 spin_lock(&si->lock);
513 swap_do_scheduled_discard(si);
514 spin_unlock(&si->lock);
515 }
516
alloc_cluster(struct swap_info_struct * si,unsigned long idx)517 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
518 {
519 struct swap_cluster_info *ci = si->cluster_info;
520
521 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
522 cluster_list_del_first(&si->free_clusters, ci);
523 cluster_set_count_flag(ci + idx, 0, 0);
524 }
525
free_cluster(struct swap_info_struct * si,unsigned long idx)526 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
527 {
528 struct swap_cluster_info *ci = si->cluster_info + idx;
529
530 VM_BUG_ON(cluster_count(ci) != 0);
531 /*
532 * If the swap is discardable, prepare discard the cluster
533 * instead of free it immediately. The cluster will be freed
534 * after discard.
535 */
536 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
537 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
538 swap_cluster_schedule_discard(si, idx);
539 return;
540 }
541
542 __free_cluster(si, idx);
543 }
544
545 /*
546 * The cluster corresponding to page_nr will be used. The cluster will be
547 * removed from free cluster list and its usage counter will be increased.
548 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)549 static void inc_cluster_info_page(struct swap_info_struct *p,
550 struct swap_cluster_info *cluster_info, unsigned long page_nr)
551 {
552 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
553
554 if (!cluster_info)
555 return;
556 if (cluster_is_free(&cluster_info[idx]))
557 alloc_cluster(p, idx);
558
559 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
560 cluster_set_count(&cluster_info[idx],
561 cluster_count(&cluster_info[idx]) + 1);
562 }
563
564 /*
565 * The cluster corresponding to page_nr decreases one usage. If the usage
566 * counter becomes 0, which means no page in the cluster is in using, we can
567 * optionally discard the cluster and add it to free cluster list.
568 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)569 static void dec_cluster_info_page(struct swap_info_struct *p,
570 struct swap_cluster_info *cluster_info, unsigned long page_nr)
571 {
572 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
573
574 if (!cluster_info)
575 return;
576
577 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
578 cluster_set_count(&cluster_info[idx],
579 cluster_count(&cluster_info[idx]) - 1);
580
581 if (cluster_count(&cluster_info[idx]) == 0)
582 free_cluster(p, idx);
583 }
584
585 /*
586 * It's possible scan_swap_map() uses a free cluster in the middle of free
587 * cluster list. Avoiding such abuse to avoid list corruption.
588 */
589 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)590 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
591 unsigned long offset)
592 {
593 struct percpu_cluster *percpu_cluster;
594 bool conflict;
595
596 offset /= SWAPFILE_CLUSTER;
597 conflict = !cluster_list_empty(&si->free_clusters) &&
598 offset != cluster_list_first(&si->free_clusters) &&
599 cluster_is_free(&si->cluster_info[offset]);
600
601 if (!conflict)
602 return false;
603
604 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
605 cluster_set_null(&percpu_cluster->index);
606 return true;
607 }
608
609 /*
610 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
611 * might involve allocating a new cluster for current CPU too.
612 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)613 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
614 unsigned long *offset, unsigned long *scan_base)
615 {
616 struct percpu_cluster *cluster;
617 struct swap_cluster_info *ci;
618 unsigned long tmp, max;
619
620 new_cluster:
621 cluster = this_cpu_ptr(si->percpu_cluster);
622 if (cluster_is_null(&cluster->index)) {
623 if (!cluster_list_empty(&si->free_clusters)) {
624 cluster->index = si->free_clusters.head;
625 cluster->next = cluster_next(&cluster->index) *
626 SWAPFILE_CLUSTER;
627 } else if (!cluster_list_empty(&si->discard_clusters)) {
628 /*
629 * we don't have free cluster but have some clusters in
630 * discarding, do discard now and reclaim them, then
631 * reread cluster_next_cpu since we dropped si->lock
632 */
633 swap_do_scheduled_discard(si);
634 *scan_base = this_cpu_read(*si->cluster_next_cpu);
635 *offset = *scan_base;
636 goto new_cluster;
637 } else
638 return false;
639 }
640
641 /*
642 * Other CPUs can use our cluster if they can't find a free cluster,
643 * check if there is still free entry in the cluster
644 */
645 tmp = cluster->next;
646 max = min_t(unsigned long, si->max,
647 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
648 if (tmp < max) {
649 ci = lock_cluster(si, tmp);
650 while (tmp < max) {
651 if (!si->swap_map[tmp])
652 break;
653 tmp++;
654 }
655 unlock_cluster(ci);
656 }
657 if (tmp >= max) {
658 cluster_set_null(&cluster->index);
659 goto new_cluster;
660 }
661 cluster->next = tmp + 1;
662 *offset = tmp;
663 *scan_base = tmp;
664 return true;
665 }
666
__del_from_avail_list(struct swap_info_struct * p)667 static void __del_from_avail_list(struct swap_info_struct *p)
668 {
669 int nid;
670
671 assert_spin_locked(&p->lock);
672 for_each_node(nid)
673 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
674 }
675
del_from_avail_list(struct swap_info_struct * p)676 static void del_from_avail_list(struct swap_info_struct *p)
677 {
678 bool skip = false;
679
680 trace_android_vh_del_from_avail_list(p, &skip);
681 if (skip)
682 return;
683
684 spin_lock(&swap_avail_lock);
685 __del_from_avail_list(p);
686 spin_unlock(&swap_avail_lock);
687 }
688
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690 unsigned int nr_entries)
691 {
692 unsigned int end = offset + nr_entries - 1;
693
694 if (offset == si->lowest_bit)
695 si->lowest_bit += nr_entries;
696 if (end == si->highest_bit)
697 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698 si->inuse_pages += nr_entries;
699 if (si->inuse_pages == si->pages) {
700 si->lowest_bit = si->max;
701 si->highest_bit = 0;
702 del_from_avail_list(si);
703 }
704 }
705
add_to_avail_list(struct swap_info_struct * p)706 static void add_to_avail_list(struct swap_info_struct *p)
707 {
708 int nid;
709 bool skip = false;
710
711 trace_android_vh_add_to_avail_list(p, &skip);
712 if (skip)
713 return;
714
715 spin_lock(&swap_avail_lock);
716 for_each_node(nid) {
717 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
718 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719 }
720 spin_unlock(&swap_avail_lock);
721 }
722
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 unsigned int nr_entries)
725 {
726 unsigned long begin = offset;
727 unsigned long end = offset + nr_entries - 1;
728 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729 bool skip = false;
730
731 if (offset < si->lowest_bit)
732 si->lowest_bit = offset;
733 if (end > si->highest_bit) {
734 bool was_full = !si->highest_bit;
735
736 WRITE_ONCE(si->highest_bit, end);
737 if (was_full && (si->flags & SWP_WRITEOK))
738 add_to_avail_list(si);
739 }
740 trace_android_vh_account_swap_pages(si, &skip);
741 if (!skip)
742 atomic_long_add(nr_entries, &nr_swap_pages);
743 si->inuse_pages -= nr_entries;
744 if (si->flags & SWP_BLKDEV)
745 swap_slot_free_notify =
746 si->bdev->bd_disk->fops->swap_slot_free_notify;
747 else
748 swap_slot_free_notify = NULL;
749 while (offset <= end) {
750 arch_swap_invalidate_page(si->type, offset);
751 frontswap_invalidate_page(si->type, offset);
752 if (swap_slot_free_notify)
753 swap_slot_free_notify(si->bdev, offset);
754 offset++;
755 }
756 clear_shadow_from_swap_cache(si->type, begin, end);
757 }
758
set_cluster_next(struct swap_info_struct * si,unsigned long next)759 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
760 {
761 unsigned long prev;
762
763 if (!(si->flags & SWP_SOLIDSTATE)) {
764 si->cluster_next = next;
765 return;
766 }
767
768 prev = this_cpu_read(*si->cluster_next_cpu);
769 /*
770 * Cross the swap address space size aligned trunk, choose
771 * another trunk randomly to avoid lock contention on swap
772 * address space if possible.
773 */
774 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
775 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
776 /* No free swap slots available */
777 if (si->highest_bit <= si->lowest_bit)
778 return;
779 next = si->lowest_bit +
780 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
781 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
782 next = max_t(unsigned int, next, si->lowest_bit);
783 }
784 this_cpu_write(*si->cluster_next_cpu, next);
785 }
786
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])787 int scan_swap_map_slots(struct swap_info_struct *si,
788 unsigned char usage, int nr,
789 swp_entry_t slots[])
790 {
791 struct swap_cluster_info *ci;
792 unsigned long offset;
793 unsigned long scan_base;
794 unsigned long last_in_cluster = 0;
795 int latency_ration = LATENCY_LIMIT;
796 int n_ret = 0;
797 bool scanned_many = false;
798
799 /*
800 * We try to cluster swap pages by allocating them sequentially
801 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
802 * way, however, we resort to first-free allocation, starting
803 * a new cluster. This prevents us from scattering swap pages
804 * all over the entire swap partition, so that we reduce
805 * overall disk seek times between swap pages. -- sct
806 * But we do now try to find an empty cluster. -Andrea
807 * And we let swap pages go all over an SSD partition. Hugh
808 */
809
810 si->flags += SWP_SCANNING;
811 /*
812 * Use percpu scan base for SSD to reduce lock contention on
813 * cluster and swap cache. For HDD, sequential access is more
814 * important.
815 */
816 if (si->flags & SWP_SOLIDSTATE)
817 scan_base = this_cpu_read(*si->cluster_next_cpu);
818 else
819 scan_base = si->cluster_next;
820 offset = scan_base;
821
822 /* SSD algorithm */
823 if (si->cluster_info) {
824 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825 goto scan;
826 } else if (unlikely(!si->cluster_nr--)) {
827 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
828 si->cluster_nr = SWAPFILE_CLUSTER - 1;
829 goto checks;
830 }
831
832 spin_unlock(&si->lock);
833
834 /*
835 * If seek is expensive, start searching for new cluster from
836 * start of partition, to minimize the span of allocated swap.
837 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
838 * case, just handled by scan_swap_map_try_ssd_cluster() above.
839 */
840 scan_base = offset = si->lowest_bit;
841 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
842
843 /* Locate the first empty (unaligned) cluster */
844 for (; last_in_cluster <= si->highest_bit; offset++) {
845 if (si->swap_map[offset])
846 last_in_cluster = offset + SWAPFILE_CLUSTER;
847 else if (offset == last_in_cluster) {
848 spin_lock(&si->lock);
849 offset -= SWAPFILE_CLUSTER - 1;
850 si->cluster_next = offset;
851 si->cluster_nr = SWAPFILE_CLUSTER - 1;
852 goto checks;
853 }
854 if (unlikely(--latency_ration < 0)) {
855 cond_resched();
856 latency_ration = LATENCY_LIMIT;
857 }
858 }
859
860 offset = scan_base;
861 spin_lock(&si->lock);
862 si->cluster_nr = SWAPFILE_CLUSTER - 1;
863 }
864
865 checks:
866 if (si->cluster_info) {
867 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
868 /* take a break if we already got some slots */
869 if (n_ret)
870 goto done;
871 if (!scan_swap_map_try_ssd_cluster(si, &offset,
872 &scan_base))
873 goto scan;
874 }
875 }
876 if (!(si->flags & SWP_WRITEOK))
877 goto no_page;
878 if (!si->highest_bit)
879 goto no_page;
880 if (offset > si->highest_bit)
881 scan_base = offset = si->lowest_bit;
882
883 ci = lock_cluster(si, offset);
884 /* reuse swap entry of cache-only swap if not busy. */
885 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
886 int swap_was_freed;
887 unlock_cluster(ci);
888 spin_unlock(&si->lock);
889 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
890 spin_lock(&si->lock);
891 /* entry was freed successfully, try to use this again */
892 if (swap_was_freed)
893 goto checks;
894 goto scan; /* check next one */
895 }
896
897 if (si->swap_map[offset]) {
898 unlock_cluster(ci);
899 if (!n_ret)
900 goto scan;
901 else
902 goto done;
903 }
904 WRITE_ONCE(si->swap_map[offset], usage);
905 inc_cluster_info_page(si, si->cluster_info, offset);
906 unlock_cluster(ci);
907
908 swap_range_alloc(si, offset, 1);
909 slots[n_ret++] = swp_entry(si->type, offset);
910
911 /* got enough slots or reach max slots? */
912 if ((n_ret == nr) || (offset >= si->highest_bit))
913 goto done;
914
915 /* search for next available slot */
916
917 /* time to take a break? */
918 if (unlikely(--latency_ration < 0)) {
919 if (n_ret)
920 goto done;
921 spin_unlock(&si->lock);
922 cond_resched();
923 spin_lock(&si->lock);
924 latency_ration = LATENCY_LIMIT;
925 }
926
927 /* try to get more slots in cluster */
928 if (si->cluster_info) {
929 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
930 goto checks;
931 } else if (si->cluster_nr && !si->swap_map[++offset]) {
932 /* non-ssd case, still more slots in cluster? */
933 --si->cluster_nr;
934 goto checks;
935 }
936
937 /*
938 * Even if there's no free clusters available (fragmented),
939 * try to scan a little more quickly with lock held unless we
940 * have scanned too many slots already.
941 */
942 if (!scanned_many) {
943 unsigned long scan_limit;
944
945 if (offset < scan_base)
946 scan_limit = scan_base;
947 else
948 scan_limit = si->highest_bit;
949 for (; offset <= scan_limit && --latency_ration > 0;
950 offset++) {
951 if (!si->swap_map[offset])
952 goto checks;
953 }
954 }
955
956 done:
957 set_cluster_next(si, offset + 1);
958 si->flags -= SWP_SCANNING;
959 return n_ret;
960
961 scan:
962 spin_unlock(&si->lock);
963 while (++offset <= READ_ONCE(si->highest_bit)) {
964 if (data_race(!si->swap_map[offset])) {
965 spin_lock(&si->lock);
966 goto checks;
967 }
968 if (vm_swap_full() &&
969 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
970 spin_lock(&si->lock);
971 goto checks;
972 }
973 if (unlikely(--latency_ration < 0)) {
974 cond_resched();
975 latency_ration = LATENCY_LIMIT;
976 scanned_many = true;
977 }
978 }
979 offset = si->lowest_bit;
980 while (offset < scan_base) {
981 if (data_race(!si->swap_map[offset])) {
982 spin_lock(&si->lock);
983 goto checks;
984 }
985 if (vm_swap_full() &&
986 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
987 spin_lock(&si->lock);
988 goto checks;
989 }
990 if (unlikely(--latency_ration < 0)) {
991 cond_resched();
992 latency_ration = LATENCY_LIMIT;
993 scanned_many = true;
994 }
995 offset++;
996 }
997 spin_lock(&si->lock);
998
999 no_page:
1000 si->flags -= SWP_SCANNING;
1001 return n_ret;
1002 }
1003 EXPORT_SYMBOL_GPL(scan_swap_map_slots);
1004
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)1005 int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1006 {
1007 unsigned long idx;
1008 struct swap_cluster_info *ci;
1009 unsigned long offset, i;
1010 unsigned char *map;
1011
1012 /*
1013 * Should not even be attempting cluster allocations when huge
1014 * page swap is disabled. Warn and fail the allocation.
1015 */
1016 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1017 VM_WARN_ON_ONCE(1);
1018 return 0;
1019 }
1020
1021 if (cluster_list_empty(&si->free_clusters))
1022 return 0;
1023
1024 idx = cluster_list_first(&si->free_clusters);
1025 offset = idx * SWAPFILE_CLUSTER;
1026 ci = lock_cluster(si, offset);
1027 alloc_cluster(si, idx);
1028 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1029
1030 map = si->swap_map + offset;
1031 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1032 map[i] = SWAP_HAS_CACHE;
1033 unlock_cluster(ci);
1034 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1035 *slot = swp_entry(si->type, offset);
1036
1037 return 1;
1038 }
1039 EXPORT_SYMBOL_GPL(swap_alloc_cluster);
1040
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1041 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1042 {
1043 unsigned long offset = idx * SWAPFILE_CLUSTER;
1044 struct swap_cluster_info *ci;
1045
1046 ci = lock_cluster(si, offset);
1047 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1048 cluster_set_count_flag(ci, 0, 0);
1049 free_cluster(si, idx);
1050 unlock_cluster(ci);
1051 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1052 }
1053
scan_swap_map(struct swap_info_struct * si,unsigned char usage)1054 static unsigned long scan_swap_map(struct swap_info_struct *si,
1055 unsigned char usage)
1056 {
1057 swp_entry_t entry;
1058 int n_ret;
1059
1060 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1061
1062 if (n_ret)
1063 return swp_offset(entry);
1064 else
1065 return 0;
1066
1067 }
1068
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1069 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1070 {
1071 unsigned long size = swap_entry_size(entry_size);
1072 struct swap_info_struct *si, *next;
1073 long avail_pgs;
1074 int n_ret = 0;
1075 int node;
1076
1077 /* Only single cluster request supported */
1078 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1079
1080 spin_lock(&swap_avail_lock);
1081
1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083 if (avail_pgs <= 0) {
1084 spin_unlock(&swap_avail_lock);
1085 goto noswap;
1086 }
1087
1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089
1090 atomic_long_sub(n_goal * size, &nr_swap_pages);
1091
1092 start_over:
1093 node = numa_node_id();
1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095 /* requeue si to after same-priority siblings */
1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097 spin_unlock(&swap_avail_lock);
1098 spin_lock(&si->lock);
1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100 spin_lock(&swap_avail_lock);
1101 if (plist_node_empty(&si->avail_lists[node])) {
1102 spin_unlock(&si->lock);
1103 goto nextsi;
1104 }
1105 WARN(!si->highest_bit,
1106 "swap_info %d in list but !highest_bit\n",
1107 si->type);
1108 WARN(!(si->flags & SWP_WRITEOK),
1109 "swap_info %d in list but !SWP_WRITEOK\n",
1110 si->type);
1111 __del_from_avail_list(si);
1112 spin_unlock(&si->lock);
1113 goto nextsi;
1114 }
1115 if (size == SWAPFILE_CLUSTER) {
1116 if (si->flags & SWP_BLKDEV)
1117 n_ret = swap_alloc_cluster(si, swp_entries);
1118 } else
1119 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1120 n_goal, swp_entries);
1121 spin_unlock(&si->lock);
1122 if (n_ret || size == SWAPFILE_CLUSTER)
1123 goto check_out;
1124 pr_debug("scan_swap_map of si %d failed to find offset\n",
1125 si->type);
1126 cond_resched();
1127
1128 spin_lock(&swap_avail_lock);
1129 nextsi:
1130 /*
1131 * if we got here, it's likely that si was almost full before,
1132 * and since scan_swap_map() can drop the si->lock, multiple
1133 * callers probably all tried to get a page from the same si
1134 * and it filled up before we could get one; or, the si filled
1135 * up between us dropping swap_avail_lock and taking si->lock.
1136 * Since we dropped the swap_avail_lock, the swap_avail_head
1137 * list may have been modified; so if next is still in the
1138 * swap_avail_head list then try it, otherwise start over
1139 * if we have not gotten any slots.
1140 */
1141 if (plist_node_empty(&next->avail_lists[node]))
1142 goto start_over;
1143 }
1144
1145 spin_unlock(&swap_avail_lock);
1146
1147 check_out:
1148 if (n_ret < n_goal)
1149 atomic_long_add((long)(n_goal - n_ret) * size,
1150 &nr_swap_pages);
1151 noswap:
1152 return n_ret;
1153 }
1154
1155 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1156 swp_entry_t get_swap_page_of_type(int type)
1157 {
1158 struct swap_info_struct *si = swap_type_to_swap_info(type);
1159 pgoff_t offset;
1160 bool skip = false;
1161
1162 if (!si)
1163 goto fail;
1164
1165 spin_lock(&si->lock);
1166 if (si->flags & SWP_WRITEOK) {
1167 /* This is called for allocating swap entry, not cache */
1168 offset = scan_swap_map(si, 1);
1169 if (offset) {
1170 trace_android_vh_account_swap_pages(si, &skip);
1171 if (!skip)
1172 atomic_long_dec(&nr_swap_pages);
1173 spin_unlock(&si->lock);
1174 return swp_entry(type, offset);
1175 }
1176 }
1177 spin_unlock(&si->lock);
1178 fail:
1179 return (swp_entry_t) {0};
1180 }
1181
__swap_info_get(swp_entry_t entry)1182 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1183 {
1184 struct swap_info_struct *p;
1185 unsigned long offset;
1186
1187 if (!entry.val)
1188 goto out;
1189 p = swp_swap_info(entry);
1190 if (!p)
1191 goto bad_nofile;
1192 if (data_race(!(p->flags & SWP_USED)))
1193 goto bad_device;
1194 offset = swp_offset(entry);
1195 if (offset >= p->max)
1196 goto bad_offset;
1197 return p;
1198
1199 bad_offset:
1200 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1201 goto out;
1202 bad_device:
1203 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1204 goto out;
1205 bad_nofile:
1206 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1207 out:
1208 return NULL;
1209 }
1210
_swap_info_get(swp_entry_t entry)1211 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1212 {
1213 struct swap_info_struct *p;
1214
1215 p = __swap_info_get(entry);
1216 if (!p)
1217 goto out;
1218 if (data_race(!p->swap_map[swp_offset(entry)]))
1219 goto bad_free;
1220 return p;
1221
1222 bad_free:
1223 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1224 out:
1225 return NULL;
1226 }
1227
swap_info_get(swp_entry_t entry)1228 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1229 {
1230 struct swap_info_struct *p;
1231
1232 p = _swap_info_get(entry);
1233 if (p)
1234 spin_lock(&p->lock);
1235 return p;
1236 }
1237
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1238 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1239 struct swap_info_struct *q)
1240 {
1241 struct swap_info_struct *p;
1242
1243 p = _swap_info_get(entry);
1244
1245 if (p != q) {
1246 if (q != NULL)
1247 spin_unlock(&q->lock);
1248 if (p != NULL)
1249 spin_lock(&p->lock);
1250 }
1251 return p;
1252 }
1253
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1254 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1255 unsigned long offset,
1256 unsigned char usage)
1257 {
1258 unsigned char count;
1259 unsigned char has_cache;
1260
1261 count = p->swap_map[offset];
1262
1263 has_cache = count & SWAP_HAS_CACHE;
1264 count &= ~SWAP_HAS_CACHE;
1265
1266 if (usage == SWAP_HAS_CACHE) {
1267 VM_BUG_ON(!has_cache);
1268 has_cache = 0;
1269 } else if (count == SWAP_MAP_SHMEM) {
1270 /*
1271 * Or we could insist on shmem.c using a special
1272 * swap_shmem_free() and free_shmem_swap_and_cache()...
1273 */
1274 count = 0;
1275 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1276 if (count == COUNT_CONTINUED) {
1277 if (swap_count_continued(p, offset, count))
1278 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1279 else
1280 count = SWAP_MAP_MAX;
1281 } else
1282 count--;
1283 }
1284
1285 usage = count | has_cache;
1286 if (usage)
1287 WRITE_ONCE(p->swap_map[offset], usage);
1288 else
1289 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1290
1291 return usage;
1292 }
1293
1294 /*
1295 * Check whether swap entry is valid in the swap device. If so,
1296 * return pointer to swap_info_struct, and keep the swap entry valid
1297 * via preventing the swap device from being swapoff, until
1298 * put_swap_device() is called. Otherwise return NULL.
1299 *
1300 * The entirety of the RCU read critical section must come before the
1301 * return from or after the call to synchronize_rcu() in
1302 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1303 * true, the si->map, si->cluster_info, etc. must be valid in the
1304 * critical section.
1305 *
1306 * Notice that swapoff or swapoff+swapon can still happen before the
1307 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1308 * in put_swap_device() if there isn't any other way to prevent
1309 * swapoff, such as page lock, page table lock, etc. The caller must
1310 * be prepared for that. For example, the following situation is
1311 * possible.
1312 *
1313 * CPU1 CPU2
1314 * do_swap_page()
1315 * ... swapoff+swapon
1316 * __read_swap_cache_async()
1317 * swapcache_prepare()
1318 * __swap_duplicate()
1319 * // check swap_map
1320 * // verify PTE not changed
1321 *
1322 * In __swap_duplicate(), the swap_map need to be checked before
1323 * changing partly because the specified swap entry may be for another
1324 * swap device which has been swapoff. And in do_swap_page(), after
1325 * the page is read from the swap device, the PTE is verified not
1326 * changed with the page table locked to check whether the swap device
1327 * has been swapoff or swapoff+swapon.
1328 */
get_swap_device(swp_entry_t entry)1329 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1330 {
1331 struct swap_info_struct *si;
1332 unsigned long offset;
1333
1334 if (!entry.val)
1335 goto out;
1336 si = swp_swap_info(entry);
1337 if (!si)
1338 goto bad_nofile;
1339
1340 rcu_read_lock();
1341 if (data_race(!(si->flags & SWP_VALID)))
1342 goto unlock_out;
1343 offset = swp_offset(entry);
1344 if (offset >= si->max)
1345 goto unlock_out;
1346
1347 return si;
1348 bad_nofile:
1349 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1350 out:
1351 return NULL;
1352 unlock_out:
1353 rcu_read_unlock();
1354 return NULL;
1355 }
1356
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1357 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1358 swp_entry_t entry)
1359 {
1360 struct swap_cluster_info *ci;
1361 unsigned long offset = swp_offset(entry);
1362 unsigned char usage;
1363
1364 ci = lock_cluster_or_swap_info(p, offset);
1365 usage = __swap_entry_free_locked(p, offset, 1);
1366 unlock_cluster_or_swap_info(p, ci);
1367 if (!usage)
1368 free_swap_slot(entry);
1369
1370 return usage;
1371 }
1372
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1373 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1374 {
1375 struct swap_cluster_info *ci;
1376 unsigned long offset = swp_offset(entry);
1377 unsigned char count;
1378
1379 ci = lock_cluster(p, offset);
1380 count = p->swap_map[offset];
1381 VM_BUG_ON(count != SWAP_HAS_CACHE);
1382 p->swap_map[offset] = 0;
1383 dec_cluster_info_page(p, p->cluster_info, offset);
1384 unlock_cluster(ci);
1385
1386 mem_cgroup_uncharge_swap(entry, 1);
1387 swap_range_free(p, offset, 1);
1388 }
1389
1390 /*
1391 * Caller has made sure that the swap device corresponding to entry
1392 * is still around or has not been recycled.
1393 */
swap_free(swp_entry_t entry)1394 void swap_free(swp_entry_t entry)
1395 {
1396 struct swap_info_struct *p;
1397
1398 p = _swap_info_get(entry);
1399 if (p)
1400 __swap_entry_free(p, entry);
1401 }
1402
1403 /*
1404 * Called after dropping swapcache to decrease refcnt to swap entries.
1405 */
put_swap_page(struct page * page,swp_entry_t entry)1406 void put_swap_page(struct page *page, swp_entry_t entry)
1407 {
1408 unsigned long offset = swp_offset(entry);
1409 unsigned long idx = offset / SWAPFILE_CLUSTER;
1410 struct swap_cluster_info *ci;
1411 struct swap_info_struct *si;
1412 unsigned char *map;
1413 unsigned int i, free_entries = 0;
1414 unsigned char val;
1415 int size = swap_entry_size(thp_nr_pages(page));
1416
1417 si = _swap_info_get(entry);
1418 if (!si)
1419 return;
1420
1421 ci = lock_cluster_or_swap_info(si, offset);
1422 if (size == SWAPFILE_CLUSTER) {
1423 VM_BUG_ON(!cluster_is_huge(ci));
1424 map = si->swap_map + offset;
1425 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1426 val = map[i];
1427 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1428 if (val == SWAP_HAS_CACHE)
1429 free_entries++;
1430 }
1431 cluster_clear_huge(ci);
1432 if (free_entries == SWAPFILE_CLUSTER) {
1433 unlock_cluster_or_swap_info(si, ci);
1434 spin_lock(&si->lock);
1435 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1436 swap_free_cluster(si, idx);
1437 spin_unlock(&si->lock);
1438 return;
1439 }
1440 }
1441 for (i = 0; i < size; i++, entry.val++) {
1442 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1443 unlock_cluster_or_swap_info(si, ci);
1444 free_swap_slot(entry);
1445 if (i == size - 1)
1446 return;
1447 lock_cluster_or_swap_info(si, offset);
1448 }
1449 }
1450 unlock_cluster_or_swap_info(si, ci);
1451 }
1452
1453 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1454 int split_swap_cluster(swp_entry_t entry)
1455 {
1456 struct swap_info_struct *si;
1457 struct swap_cluster_info *ci;
1458 unsigned long offset = swp_offset(entry);
1459
1460 si = _swap_info_get(entry);
1461 if (!si)
1462 return -EBUSY;
1463 ci = lock_cluster(si, offset);
1464 cluster_clear_huge(ci);
1465 unlock_cluster(ci);
1466 return 0;
1467 }
1468 #endif
1469
swp_entry_cmp(const void * ent1,const void * ent2)1470 static int swp_entry_cmp(const void *ent1, const void *ent2)
1471 {
1472 const swp_entry_t *e1 = ent1, *e2 = ent2;
1473
1474 return (int)swp_type(*e1) - (int)swp_type(*e2);
1475 }
1476
swapcache_free_entries(swp_entry_t * entries,int n)1477 void swapcache_free_entries(swp_entry_t *entries, int n)
1478 {
1479 struct swap_info_struct *p, *prev;
1480 int i;
1481
1482 if (n <= 0)
1483 return;
1484
1485 prev = NULL;
1486 p = NULL;
1487
1488 /*
1489 * Sort swap entries by swap device, so each lock is only taken once.
1490 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1491 * so low that it isn't necessary to optimize further.
1492 */
1493 if (nr_swapfiles > 1)
1494 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1495 for (i = 0; i < n; ++i) {
1496 p = swap_info_get_cont(entries[i], prev);
1497 if (p)
1498 swap_entry_free(p, entries[i]);
1499 prev = p;
1500 }
1501 if (p)
1502 spin_unlock(&p->lock);
1503 }
1504 EXPORT_SYMBOL_GPL(swapcache_free_entries);
1505
1506 /*
1507 * How many references to page are currently swapped out?
1508 * This does not give an exact answer when swap count is continued,
1509 * but does include the high COUNT_CONTINUED flag to allow for that.
1510 */
page_swapcount(struct page * page)1511 int page_swapcount(struct page *page)
1512 {
1513 int count = 0;
1514 struct swap_info_struct *p;
1515 struct swap_cluster_info *ci;
1516 swp_entry_t entry;
1517 unsigned long offset;
1518
1519 entry.val = page_private(page);
1520 p = _swap_info_get(entry);
1521 if (p) {
1522 offset = swp_offset(entry);
1523 ci = lock_cluster_or_swap_info(p, offset);
1524 count = swap_count(p->swap_map[offset]);
1525 unlock_cluster_or_swap_info(p, ci);
1526 }
1527 return count;
1528 }
1529
__swap_count(swp_entry_t entry)1530 int __swap_count(swp_entry_t entry)
1531 {
1532 struct swap_info_struct *si;
1533 pgoff_t offset = swp_offset(entry);
1534 int count = 0;
1535
1536 si = get_swap_device(entry);
1537 if (si) {
1538 count = swap_count(si->swap_map[offset]);
1539 put_swap_device(si);
1540 }
1541 return count;
1542 }
1543
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1544 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1545 {
1546 int count = 0;
1547 pgoff_t offset = swp_offset(entry);
1548 struct swap_cluster_info *ci;
1549
1550 ci = lock_cluster_or_swap_info(si, offset);
1551 count = swap_count(si->swap_map[offset]);
1552 unlock_cluster_or_swap_info(si, ci);
1553 return count;
1554 }
1555
1556 /*
1557 * How many references to @entry are currently swapped out?
1558 * This does not give an exact answer when swap count is continued,
1559 * but does include the high COUNT_CONTINUED flag to allow for that.
1560 */
__swp_swapcount(swp_entry_t entry)1561 int __swp_swapcount(swp_entry_t entry)
1562 {
1563 int count = 0;
1564 struct swap_info_struct *si;
1565
1566 si = get_swap_device(entry);
1567 if (si) {
1568 count = swap_swapcount(si, entry);
1569 put_swap_device(si);
1570 }
1571 return count;
1572 }
1573
1574 /*
1575 * How many references to @entry are currently swapped out?
1576 * This considers COUNT_CONTINUED so it returns exact answer.
1577 */
swp_swapcount(swp_entry_t entry)1578 int swp_swapcount(swp_entry_t entry)
1579 {
1580 int count, tmp_count, n;
1581 struct swap_info_struct *p;
1582 struct swap_cluster_info *ci;
1583 struct page *page;
1584 pgoff_t offset;
1585 unsigned char *map;
1586
1587 p = _swap_info_get(entry);
1588 if (!p)
1589 return 0;
1590
1591 offset = swp_offset(entry);
1592
1593 ci = lock_cluster_or_swap_info(p, offset);
1594
1595 count = swap_count(p->swap_map[offset]);
1596 if (!(count & COUNT_CONTINUED))
1597 goto out;
1598
1599 count &= ~COUNT_CONTINUED;
1600 n = SWAP_MAP_MAX + 1;
1601
1602 page = vmalloc_to_page(p->swap_map + offset);
1603 offset &= ~PAGE_MASK;
1604 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1605
1606 do {
1607 page = list_next_entry(page, lru);
1608 map = kmap_atomic(page);
1609 tmp_count = map[offset];
1610 kunmap_atomic(map);
1611
1612 count += (tmp_count & ~COUNT_CONTINUED) * n;
1613 n *= (SWAP_CONT_MAX + 1);
1614 } while (tmp_count & COUNT_CONTINUED);
1615 out:
1616 unlock_cluster_or_swap_info(p, ci);
1617 return count;
1618 }
1619
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1620 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1621 swp_entry_t entry)
1622 {
1623 struct swap_cluster_info *ci;
1624 unsigned char *map = si->swap_map;
1625 unsigned long roffset = swp_offset(entry);
1626 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1627 int i;
1628 bool ret = false;
1629
1630 ci = lock_cluster_or_swap_info(si, offset);
1631 if (!ci || !cluster_is_huge(ci)) {
1632 if (swap_count(map[roffset]))
1633 ret = true;
1634 goto unlock_out;
1635 }
1636 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1637 if (swap_count(map[offset + i])) {
1638 ret = true;
1639 break;
1640 }
1641 }
1642 unlock_out:
1643 unlock_cluster_or_swap_info(si, ci);
1644 return ret;
1645 }
1646
page_swapped(struct page * page)1647 static bool page_swapped(struct page *page)
1648 {
1649 swp_entry_t entry;
1650 struct swap_info_struct *si;
1651
1652 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1653 return page_swapcount(page) != 0;
1654
1655 page = compound_head(page);
1656 entry.val = page_private(page);
1657 si = _swap_info_get(entry);
1658 if (si)
1659 return swap_page_trans_huge_swapped(si, entry);
1660 return false;
1661 }
1662
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1663 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1664 int *total_swapcount)
1665 {
1666 int i, map_swapcount, _total_mapcount, _total_swapcount;
1667 unsigned long offset = 0;
1668 struct swap_info_struct *si;
1669 struct swap_cluster_info *ci = NULL;
1670 unsigned char *map = NULL;
1671 int mapcount, swapcount = 0;
1672
1673 /* hugetlbfs shouldn't call it */
1674 VM_BUG_ON_PAGE(PageHuge(page), page);
1675
1676 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1677 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1678 if (PageSwapCache(page))
1679 swapcount = page_swapcount(page);
1680 if (total_swapcount)
1681 *total_swapcount = swapcount;
1682 return mapcount + swapcount;
1683 }
1684
1685 page = compound_head(page);
1686
1687 _total_mapcount = _total_swapcount = map_swapcount = 0;
1688 if (PageSwapCache(page)) {
1689 swp_entry_t entry;
1690
1691 entry.val = page_private(page);
1692 si = _swap_info_get(entry);
1693 if (si) {
1694 map = si->swap_map;
1695 offset = swp_offset(entry);
1696 }
1697 }
1698 if (map)
1699 ci = lock_cluster(si, offset);
1700 for (i = 0; i < HPAGE_PMD_NR; i++) {
1701 mapcount = atomic_read(&page[i]._mapcount) + 1;
1702 _total_mapcount += mapcount;
1703 if (map) {
1704 swapcount = swap_count(map[offset + i]);
1705 _total_swapcount += swapcount;
1706 }
1707 map_swapcount = max(map_swapcount, mapcount + swapcount);
1708 }
1709 unlock_cluster(ci);
1710 if (PageDoubleMap(page)) {
1711 map_swapcount -= 1;
1712 _total_mapcount -= HPAGE_PMD_NR;
1713 }
1714 mapcount = compound_mapcount(page);
1715 map_swapcount += mapcount;
1716 _total_mapcount += mapcount;
1717 if (total_mapcount)
1718 *total_mapcount = _total_mapcount;
1719 if (total_swapcount)
1720 *total_swapcount = _total_swapcount;
1721
1722 return map_swapcount;
1723 }
1724
1725 /*
1726 * We can write to an anon page without COW if there are no other references
1727 * to it. And as a side-effect, free up its swap: because the old content
1728 * on disk will never be read, and seeking back there to write new content
1729 * later would only waste time away from clustering.
1730 *
1731 * NOTE: total_map_swapcount should not be relied upon by the caller if
1732 * reuse_swap_page() returns false, but it may be always overwritten
1733 * (see the other implementation for CONFIG_SWAP=n).
1734 */
reuse_swap_page(struct page * page,int * total_map_swapcount)1735 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1736 {
1737 int count, total_mapcount, total_swapcount;
1738
1739 VM_BUG_ON_PAGE(!PageLocked(page), page);
1740 if (unlikely(PageKsm(page)))
1741 return false;
1742 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1743 &total_swapcount);
1744 if (total_map_swapcount)
1745 *total_map_swapcount = total_mapcount + total_swapcount;
1746 if (count == 1 && PageSwapCache(page) &&
1747 (likely(!PageTransCompound(page)) ||
1748 /* The remaining swap count will be freed soon */
1749 total_swapcount == page_swapcount(page))) {
1750 if (!PageWriteback(page)) {
1751 page = compound_head(page);
1752 delete_from_swap_cache(page);
1753 SetPageDirty(page);
1754 } else {
1755 swp_entry_t entry;
1756 struct swap_info_struct *p;
1757
1758 entry.val = page_private(page);
1759 p = swap_info_get(entry);
1760 if (p->flags & SWP_STABLE_WRITES) {
1761 spin_unlock(&p->lock);
1762 return false;
1763 }
1764 spin_unlock(&p->lock);
1765 }
1766 }
1767
1768 return count <= 1;
1769 }
1770
1771 /*
1772 * If swap is getting full, or if there are no more mappings of this page,
1773 * then try_to_free_swap is called to free its swap space.
1774 */
try_to_free_swap(struct page * page)1775 int try_to_free_swap(struct page *page)
1776 {
1777 VM_BUG_ON_PAGE(!PageLocked(page), page);
1778
1779 if (!PageSwapCache(page))
1780 return 0;
1781 if (PageWriteback(page))
1782 return 0;
1783 if (page_swapped(page))
1784 return 0;
1785
1786 /*
1787 * Once hibernation has begun to create its image of memory,
1788 * there's a danger that one of the calls to try_to_free_swap()
1789 * - most probably a call from __try_to_reclaim_swap() while
1790 * hibernation is allocating its own swap pages for the image,
1791 * but conceivably even a call from memory reclaim - will free
1792 * the swap from a page which has already been recorded in the
1793 * image as a clean swapcache page, and then reuse its swap for
1794 * another page of the image. On waking from hibernation, the
1795 * original page might be freed under memory pressure, then
1796 * later read back in from swap, now with the wrong data.
1797 *
1798 * Hibernation suspends storage while it is writing the image
1799 * to disk so check that here.
1800 */
1801 if (pm_suspended_storage())
1802 return 0;
1803
1804 page = compound_head(page);
1805 delete_from_swap_cache(page);
1806 SetPageDirty(page);
1807 return 1;
1808 }
1809
1810 /*
1811 * Free the swap entry like above, but also try to
1812 * free the page cache entry if it is the last user.
1813 */
free_swap_and_cache(swp_entry_t entry)1814 int free_swap_and_cache(swp_entry_t entry)
1815 {
1816 struct swap_info_struct *p;
1817 unsigned char count;
1818
1819 if (non_swap_entry(entry))
1820 return 1;
1821
1822 p = _swap_info_get(entry);
1823 if (p) {
1824 count = __swap_entry_free(p, entry);
1825 if (count == SWAP_HAS_CACHE &&
1826 !swap_page_trans_huge_swapped(p, entry))
1827 __try_to_reclaim_swap(p, swp_offset(entry),
1828 TTRS_UNMAPPED | TTRS_FULL);
1829 }
1830 return p != NULL;
1831 }
1832
1833 #ifdef CONFIG_HIBERNATION
1834 /*
1835 * Find the swap type that corresponds to given device (if any).
1836 *
1837 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1838 * from 0, in which the swap header is expected to be located.
1839 *
1840 * This is needed for the suspend to disk (aka swsusp).
1841 */
swap_type_of(dev_t device,sector_t offset)1842 int swap_type_of(dev_t device, sector_t offset)
1843 {
1844 int type;
1845
1846 if (!device)
1847 return -1;
1848
1849 spin_lock(&swap_lock);
1850 for (type = 0; type < nr_swapfiles; type++) {
1851 struct swap_info_struct *sis = swap_info[type];
1852
1853 if (!(sis->flags & SWP_WRITEOK))
1854 continue;
1855
1856 if (device == sis->bdev->bd_dev) {
1857 struct swap_extent *se = first_se(sis);
1858
1859 if (se->start_block == offset) {
1860 spin_unlock(&swap_lock);
1861 return type;
1862 }
1863 }
1864 }
1865 spin_unlock(&swap_lock);
1866 return -ENODEV;
1867 }
1868
find_first_swap(dev_t * device)1869 int find_first_swap(dev_t *device)
1870 {
1871 int type;
1872
1873 spin_lock(&swap_lock);
1874 for (type = 0; type < nr_swapfiles; type++) {
1875 struct swap_info_struct *sis = swap_info[type];
1876
1877 if (!(sis->flags & SWP_WRITEOK))
1878 continue;
1879 *device = sis->bdev->bd_dev;
1880 spin_unlock(&swap_lock);
1881 return type;
1882 }
1883 spin_unlock(&swap_lock);
1884 return -ENODEV;
1885 }
1886
1887 /*
1888 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1889 * corresponding to given index in swap_info (swap type).
1890 */
swapdev_block(int type,pgoff_t offset)1891 sector_t swapdev_block(int type, pgoff_t offset)
1892 {
1893 struct block_device *bdev;
1894 struct swap_info_struct *si = swap_type_to_swap_info(type);
1895
1896 if (!si || !(si->flags & SWP_WRITEOK))
1897 return 0;
1898 return map_swap_entry(swp_entry(type, offset), &bdev);
1899 }
1900
1901 /*
1902 * Return either the total number of swap pages of given type, or the number
1903 * of free pages of that type (depending on @free)
1904 *
1905 * This is needed for software suspend
1906 */
count_swap_pages(int type,int free)1907 unsigned int count_swap_pages(int type, int free)
1908 {
1909 unsigned int n = 0;
1910
1911 spin_lock(&swap_lock);
1912 if ((unsigned int)type < nr_swapfiles) {
1913 struct swap_info_struct *sis = swap_info[type];
1914
1915 spin_lock(&sis->lock);
1916 if (sis->flags & SWP_WRITEOK) {
1917 n = sis->pages;
1918 if (free)
1919 n -= sis->inuse_pages;
1920 }
1921 spin_unlock(&sis->lock);
1922 }
1923 spin_unlock(&swap_lock);
1924 return n;
1925 }
1926 #endif /* CONFIG_HIBERNATION */
1927
pte_same_as_swp(pte_t pte,pte_t swp_pte)1928 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1929 {
1930 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1931 }
1932
1933 /*
1934 * No need to decide whether this PTE shares the swap entry with others,
1935 * just let do_wp_page work it out if a write is requested later - to
1936 * force COW, vm_page_prot omits write permission from any private vma.
1937 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1938 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1939 unsigned long addr, swp_entry_t entry, struct page *page)
1940 {
1941 struct page *swapcache;
1942 spinlock_t *ptl;
1943 pte_t *pte;
1944 int ret = 1;
1945
1946 swapcache = page;
1947 page = ksm_might_need_to_copy(page, vma, addr);
1948 if (unlikely(!page))
1949 return -ENOMEM;
1950
1951 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1952 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1953 ret = 0;
1954 goto out;
1955 }
1956
1957 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1958 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1959 get_page(page);
1960 set_pte_at(vma->vm_mm, addr, pte,
1961 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1962 if (page == swapcache) {
1963 page_add_anon_rmap(page, vma, addr, false);
1964 } else { /* ksm created a completely new copy */
1965 page_add_new_anon_rmap(page, vma, addr, false);
1966 lru_cache_add_inactive_or_unevictable(page, vma);
1967 }
1968 swap_free(entry);
1969 out:
1970 pte_unmap_unlock(pte, ptl);
1971 if (page != swapcache) {
1972 unlock_page(page);
1973 put_page(page);
1974 }
1975 return ret;
1976 }
1977
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1978 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1979 unsigned long addr, unsigned long end,
1980 unsigned int type, bool frontswap,
1981 unsigned long *fs_pages_to_unuse)
1982 {
1983 struct page *page;
1984 swp_entry_t entry;
1985 pte_t *pte;
1986 struct swap_info_struct *si;
1987 unsigned long offset;
1988 int ret = 0;
1989 volatile unsigned char *swap_map;
1990
1991 si = swap_info[type];
1992 pte = pte_offset_map(pmd, addr);
1993 do {
1994 if (!is_swap_pte(*pte))
1995 continue;
1996
1997 entry = pte_to_swp_entry(*pte);
1998 if (swp_type(entry) != type)
1999 continue;
2000
2001 offset = swp_offset(entry);
2002 if (frontswap && !frontswap_test(si, offset))
2003 continue;
2004
2005 pte_unmap(pte);
2006 swap_map = &si->swap_map[offset];
2007 page = lookup_swap_cache(entry, vma, addr);
2008 if (!page) {
2009 struct vm_fault vmf = {
2010 .vma = vma,
2011 .address = addr,
2012 .pmd = pmd,
2013 };
2014
2015 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2016 &vmf);
2017 }
2018 if (!page) {
2019 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2020 goto try_next;
2021 return -ENOMEM;
2022 }
2023
2024 lock_page(page);
2025 wait_on_page_writeback(page);
2026 ret = unuse_pte(vma, pmd, addr, entry, page);
2027 if (ret < 0) {
2028 unlock_page(page);
2029 put_page(page);
2030 goto out;
2031 }
2032
2033 try_to_free_swap(page);
2034 trace_android_vh_unuse_swap_page(si, page);
2035 unlock_page(page);
2036 put_page(page);
2037
2038 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2039 ret = FRONTSWAP_PAGES_UNUSED;
2040 goto out;
2041 }
2042 try_next:
2043 pte = pte_offset_map(pmd, addr);
2044 } while (pte++, addr += PAGE_SIZE, addr != end);
2045 pte_unmap(pte - 1);
2046
2047 ret = 0;
2048 out:
2049 return ret;
2050 }
2051
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2052 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2053 unsigned long addr, unsigned long end,
2054 unsigned int type, bool frontswap,
2055 unsigned long *fs_pages_to_unuse)
2056 {
2057 pmd_t *pmd;
2058 unsigned long next;
2059 int ret;
2060
2061 pmd = pmd_offset(pud, addr);
2062 do {
2063 cond_resched();
2064 next = pmd_addr_end(addr, end);
2065 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2066 continue;
2067 ret = unuse_pte_range(vma, pmd, addr, next, type,
2068 frontswap, fs_pages_to_unuse);
2069 if (ret)
2070 return ret;
2071 } while (pmd++, addr = next, addr != end);
2072 return 0;
2073 }
2074
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2075 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2076 unsigned long addr, unsigned long end,
2077 unsigned int type, bool frontswap,
2078 unsigned long *fs_pages_to_unuse)
2079 {
2080 pud_t *pud;
2081 unsigned long next;
2082 int ret;
2083
2084 pud = pud_offset(p4d, addr);
2085 do {
2086 next = pud_addr_end(addr, end);
2087 if (pud_none_or_clear_bad(pud))
2088 continue;
2089 ret = unuse_pmd_range(vma, pud, addr, next, type,
2090 frontswap, fs_pages_to_unuse);
2091 if (ret)
2092 return ret;
2093 } while (pud++, addr = next, addr != end);
2094 return 0;
2095 }
2096
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2097 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2098 unsigned long addr, unsigned long end,
2099 unsigned int type, bool frontswap,
2100 unsigned long *fs_pages_to_unuse)
2101 {
2102 p4d_t *p4d;
2103 unsigned long next;
2104 int ret;
2105
2106 p4d = p4d_offset(pgd, addr);
2107 do {
2108 next = p4d_addr_end(addr, end);
2109 if (p4d_none_or_clear_bad(p4d))
2110 continue;
2111 ret = unuse_pud_range(vma, p4d, addr, next, type,
2112 frontswap, fs_pages_to_unuse);
2113 if (ret)
2114 return ret;
2115 } while (p4d++, addr = next, addr != end);
2116 return 0;
2117 }
2118
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2119 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2120 bool frontswap, unsigned long *fs_pages_to_unuse)
2121 {
2122 pgd_t *pgd;
2123 unsigned long addr, end, next;
2124 int ret;
2125
2126 addr = vma->vm_start;
2127 end = vma->vm_end;
2128
2129 pgd = pgd_offset(vma->vm_mm, addr);
2130 do {
2131 next = pgd_addr_end(addr, end);
2132 if (pgd_none_or_clear_bad(pgd))
2133 continue;
2134 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2135 frontswap, fs_pages_to_unuse);
2136 if (ret)
2137 return ret;
2138 } while (pgd++, addr = next, addr != end);
2139 return 0;
2140 }
2141
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2142 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2143 bool frontswap, unsigned long *fs_pages_to_unuse)
2144 {
2145 struct vm_area_struct *vma;
2146 int ret = 0;
2147
2148 mmap_read_lock(mm);
2149 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2150 if (vma->anon_vma) {
2151 ret = unuse_vma(vma, type, frontswap,
2152 fs_pages_to_unuse);
2153 if (ret)
2154 break;
2155 }
2156 cond_resched();
2157 }
2158 mmap_read_unlock(mm);
2159 return ret;
2160 }
2161
2162 /*
2163 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2164 * from current position to next entry still in use. Return 0
2165 * if there are no inuse entries after prev till end of the map.
2166 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2167 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2168 unsigned int prev, bool frontswap)
2169 {
2170 unsigned int i;
2171 unsigned char count;
2172
2173 /*
2174 * No need for swap_lock here: we're just looking
2175 * for whether an entry is in use, not modifying it; false
2176 * hits are okay, and sys_swapoff() has already prevented new
2177 * allocations from this area (while holding swap_lock).
2178 */
2179 for (i = prev + 1; i < si->max; i++) {
2180 count = READ_ONCE(si->swap_map[i]);
2181 if (count && swap_count(count) != SWAP_MAP_BAD)
2182 if (!frontswap || frontswap_test(si, i))
2183 break;
2184 if ((i % LATENCY_LIMIT) == 0)
2185 cond_resched();
2186 }
2187
2188 if (i == si->max)
2189 i = 0;
2190
2191 return i;
2192 }
2193
2194 /*
2195 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2196 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2197 */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2198 int try_to_unuse(unsigned int type, bool frontswap,
2199 unsigned long pages_to_unuse)
2200 {
2201 struct mm_struct *prev_mm;
2202 struct mm_struct *mm;
2203 struct list_head *p;
2204 int retval = 0;
2205 struct swap_info_struct *si = swap_info[type];
2206 struct page *page;
2207 swp_entry_t entry;
2208 unsigned int i;
2209
2210 if (!READ_ONCE(si->inuse_pages))
2211 return 0;
2212
2213 if (!frontswap)
2214 pages_to_unuse = 0;
2215
2216 retry:
2217 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2218 if (retval)
2219 goto out;
2220
2221 prev_mm = &init_mm;
2222 mmget(prev_mm);
2223
2224 spin_lock(&mmlist_lock);
2225 p = &init_mm.mmlist;
2226 while (READ_ONCE(si->inuse_pages) &&
2227 !signal_pending(current) &&
2228 (p = p->next) != &init_mm.mmlist) {
2229
2230 mm = list_entry(p, struct mm_struct, mmlist);
2231 if (!mmget_not_zero(mm))
2232 continue;
2233 spin_unlock(&mmlist_lock);
2234 mmput(prev_mm);
2235 prev_mm = mm;
2236 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2237
2238 if (retval) {
2239 mmput(prev_mm);
2240 goto out;
2241 }
2242
2243 /*
2244 * Make sure that we aren't completely killing
2245 * interactive performance.
2246 */
2247 cond_resched();
2248 spin_lock(&mmlist_lock);
2249 }
2250 spin_unlock(&mmlist_lock);
2251
2252 mmput(prev_mm);
2253
2254 i = 0;
2255 while (READ_ONCE(si->inuse_pages) &&
2256 !signal_pending(current) &&
2257 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2258
2259 entry = swp_entry(type, i);
2260 page = find_get_page(swap_address_space(entry), i);
2261 if (!page)
2262 continue;
2263
2264 /*
2265 * It is conceivable that a racing task removed this page from
2266 * swap cache just before we acquired the page lock. The page
2267 * might even be back in swap cache on another swap area. But
2268 * that is okay, try_to_free_swap() only removes stale pages.
2269 */
2270 lock_page(page);
2271 wait_on_page_writeback(page);
2272 try_to_free_swap(page);
2273 trace_android_vh_unuse_swap_page(si, page);
2274 unlock_page(page);
2275 put_page(page);
2276
2277 /*
2278 * For frontswap, we just need to unuse pages_to_unuse, if
2279 * it was specified. Need not check frontswap again here as
2280 * we already zeroed out pages_to_unuse if not frontswap.
2281 */
2282 if (pages_to_unuse && --pages_to_unuse == 0)
2283 goto out;
2284 }
2285
2286 /*
2287 * Lets check again to see if there are still swap entries in the map.
2288 * If yes, we would need to do retry the unuse logic again.
2289 * Under global memory pressure, swap entries can be reinserted back
2290 * into process space after the mmlist loop above passes over them.
2291 *
2292 * Limit the number of retries? No: when mmget_not_zero() above fails,
2293 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2294 * at its own independent pace; and even shmem_writepage() could have
2295 * been preempted after get_swap_page(), temporarily hiding that swap.
2296 * It's easy and robust (though cpu-intensive) just to keep retrying.
2297 */
2298 if (READ_ONCE(si->inuse_pages)) {
2299 if (!signal_pending(current))
2300 goto retry;
2301 retval = -EINTR;
2302 }
2303 out:
2304 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2305 }
2306
2307 /*
2308 * After a successful try_to_unuse, if no swap is now in use, we know
2309 * we can empty the mmlist. swap_lock must be held on entry and exit.
2310 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2311 * added to the mmlist just after page_duplicate - before would be racy.
2312 */
drain_mmlist(void)2313 static void drain_mmlist(void)
2314 {
2315 struct list_head *p, *next;
2316 unsigned int type;
2317
2318 for (type = 0; type < nr_swapfiles; type++)
2319 if (swap_info[type]->inuse_pages)
2320 return;
2321 spin_lock(&mmlist_lock);
2322 list_for_each_safe(p, next, &init_mm.mmlist)
2323 list_del_init(p);
2324 spin_unlock(&mmlist_lock);
2325 }
2326
2327 /*
2328 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2329 * corresponds to page offset for the specified swap entry.
2330 * Note that the type of this function is sector_t, but it returns page offset
2331 * into the bdev, not sector offset.
2332 */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2333 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2334 {
2335 struct swap_info_struct *sis;
2336 struct swap_extent *se;
2337 pgoff_t offset;
2338
2339 sis = swp_swap_info(entry);
2340 *bdev = sis->bdev;
2341
2342 offset = swp_offset(entry);
2343 se = offset_to_swap_extent(sis, offset);
2344 return se->start_block + (offset - se->start_page);
2345 }
2346
2347 /*
2348 * Returns the page offset into bdev for the specified page's swap entry.
2349 */
map_swap_page(struct page * page,struct block_device ** bdev)2350 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2351 {
2352 swp_entry_t entry;
2353 entry.val = page_private(page);
2354 return map_swap_entry(entry, bdev);
2355 }
2356
2357 /*
2358 * Free all of a swapdev's extent information
2359 */
destroy_swap_extents(struct swap_info_struct * sis)2360 static void destroy_swap_extents(struct swap_info_struct *sis)
2361 {
2362 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2363 struct rb_node *rb = sis->swap_extent_root.rb_node;
2364 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2365
2366 rb_erase(rb, &sis->swap_extent_root);
2367 kfree(se);
2368 }
2369
2370 if (sis->flags & SWP_ACTIVATED) {
2371 struct file *swap_file = sis->swap_file;
2372 struct address_space *mapping = swap_file->f_mapping;
2373
2374 sis->flags &= ~SWP_ACTIVATED;
2375 if (mapping->a_ops->swap_deactivate)
2376 mapping->a_ops->swap_deactivate(swap_file);
2377 }
2378 }
2379
2380 /*
2381 * Add a block range (and the corresponding page range) into this swapdev's
2382 * extent tree.
2383 *
2384 * This function rather assumes that it is called in ascending page order.
2385 */
2386 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2387 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2388 unsigned long nr_pages, sector_t start_block)
2389 {
2390 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2391 struct swap_extent *se;
2392 struct swap_extent *new_se;
2393
2394 /*
2395 * place the new node at the right most since the
2396 * function is called in ascending page order.
2397 */
2398 while (*link) {
2399 parent = *link;
2400 link = &parent->rb_right;
2401 }
2402
2403 if (parent) {
2404 se = rb_entry(parent, struct swap_extent, rb_node);
2405 BUG_ON(se->start_page + se->nr_pages != start_page);
2406 if (se->start_block + se->nr_pages == start_block) {
2407 /* Merge it */
2408 se->nr_pages += nr_pages;
2409 return 0;
2410 }
2411 }
2412
2413 /* No merge, insert a new extent. */
2414 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2415 if (new_se == NULL)
2416 return -ENOMEM;
2417 new_se->start_page = start_page;
2418 new_se->nr_pages = nr_pages;
2419 new_se->start_block = start_block;
2420
2421 rb_link_node(&new_se->rb_node, parent, link);
2422 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2423 return 1;
2424 }
2425 EXPORT_SYMBOL_GPL(add_swap_extent);
2426
2427 /*
2428 * A `swap extent' is a simple thing which maps a contiguous range of pages
2429 * onto a contiguous range of disk blocks. An ordered list of swap extents
2430 * is built at swapon time and is then used at swap_writepage/swap_readpage
2431 * time for locating where on disk a page belongs.
2432 *
2433 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2434 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2435 * swap files identically.
2436 *
2437 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2438 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2439 * swapfiles are handled *identically* after swapon time.
2440 *
2441 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2442 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2443 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2444 * requirements, they are simply tossed out - we will never use those blocks
2445 * for swapping.
2446 *
2447 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2448 * prevents users from writing to the swap device, which will corrupt memory.
2449 *
2450 * The amount of disk space which a single swap extent represents varies.
2451 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2452 * extents in the list. To avoid much list walking, we cache the previous
2453 * search location in `curr_swap_extent', and start new searches from there.
2454 * This is extremely effective. The average number of iterations in
2455 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2456 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2457 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2458 {
2459 struct file *swap_file = sis->swap_file;
2460 struct address_space *mapping = swap_file->f_mapping;
2461 struct inode *inode = mapping->host;
2462 int ret;
2463
2464 if (S_ISBLK(inode->i_mode)) {
2465 ret = add_swap_extent(sis, 0, sis->max, 0);
2466 *span = sis->pages;
2467 return ret;
2468 }
2469
2470 if (mapping->a_ops->swap_activate) {
2471 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2472 if (ret >= 0)
2473 sis->flags |= SWP_ACTIVATED;
2474 if (!ret) {
2475 sis->flags |= SWP_FS_OPS;
2476 ret = add_swap_extent(sis, 0, sis->max, 0);
2477 *span = sis->pages;
2478 }
2479 return ret;
2480 }
2481
2482 return generic_swapfile_activate(sis, swap_file, span);
2483 }
2484
swap_node(struct swap_info_struct * p)2485 static int swap_node(struct swap_info_struct *p)
2486 {
2487 struct block_device *bdev;
2488
2489 if (p->bdev)
2490 bdev = p->bdev;
2491 else
2492 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2493
2494 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2495 }
2496
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2497 static void setup_swap_info(struct swap_info_struct *p, int prio,
2498 unsigned char *swap_map,
2499 struct swap_cluster_info *cluster_info)
2500 {
2501 int i;
2502
2503 if (prio >= 0)
2504 p->prio = prio;
2505 else
2506 p->prio = --least_priority;
2507 /*
2508 * the plist prio is negated because plist ordering is
2509 * low-to-high, while swap ordering is high-to-low
2510 */
2511 p->list.prio = -p->prio;
2512 for_each_node(i) {
2513 if (p->prio >= 0)
2514 p->avail_lists[i].prio = -p->prio;
2515 else {
2516 if (swap_node(p) == i)
2517 p->avail_lists[i].prio = 1;
2518 else
2519 p->avail_lists[i].prio = -p->prio;
2520 }
2521 }
2522 p->swap_map = swap_map;
2523 p->cluster_info = cluster_info;
2524 }
2525
_enable_swap_info(struct swap_info_struct * p)2526 static void _enable_swap_info(struct swap_info_struct *p)
2527 {
2528 bool skip = false;
2529
2530 p->flags |= SWP_WRITEOK | SWP_VALID;
2531 trace_android_vh_account_swap_pages(p, &skip);
2532 if (!skip) {
2533 atomic_long_add(p->pages, &nr_swap_pages);
2534 total_swap_pages += p->pages;
2535 }
2536 assert_spin_locked(&swap_lock);
2537 /*
2538 * both lists are plists, and thus priority ordered.
2539 * swap_active_head needs to be priority ordered for swapoff(),
2540 * which on removal of any swap_info_struct with an auto-assigned
2541 * (i.e. negative) priority increments the auto-assigned priority
2542 * of any lower-priority swap_info_structs.
2543 * swap_avail_head needs to be priority ordered for get_swap_page(),
2544 * which allocates swap pages from the highest available priority
2545 * swap_info_struct.
2546 */
2547 plist_add(&p->list, &swap_active_head);
2548 add_to_avail_list(p);
2549 }
2550
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2551 static void enable_swap_info(struct swap_info_struct *p, int prio,
2552 unsigned char *swap_map,
2553 struct swap_cluster_info *cluster_info,
2554 unsigned long *frontswap_map)
2555 {
2556 frontswap_init(p->type, frontswap_map);
2557 spin_lock(&swap_lock);
2558 spin_lock(&p->lock);
2559 setup_swap_info(p, prio, swap_map, cluster_info);
2560 spin_unlock(&p->lock);
2561 spin_unlock(&swap_lock);
2562 /*
2563 * Guarantee swap_map, cluster_info, etc. fields are valid
2564 * between get/put_swap_device() if SWP_VALID bit is set
2565 */
2566 synchronize_rcu();
2567 spin_lock(&swap_lock);
2568 spin_lock(&p->lock);
2569 _enable_swap_info(p);
2570 spin_unlock(&p->lock);
2571 spin_unlock(&swap_lock);
2572 }
2573
reinsert_swap_info(struct swap_info_struct * p)2574 static void reinsert_swap_info(struct swap_info_struct *p)
2575 {
2576 spin_lock(&swap_lock);
2577 spin_lock(&p->lock);
2578 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2579 _enable_swap_info(p);
2580 spin_unlock(&p->lock);
2581 spin_unlock(&swap_lock);
2582 }
2583
has_usable_swap(void)2584 bool has_usable_swap(void)
2585 {
2586 bool ret = true;
2587
2588 spin_lock(&swap_lock);
2589 if (plist_head_empty(&swap_active_head))
2590 ret = false;
2591 spin_unlock(&swap_lock);
2592 return ret;
2593 }
2594
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2595 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2596 {
2597 struct swap_info_struct *p = NULL;
2598 unsigned char *swap_map;
2599 struct swap_cluster_info *cluster_info;
2600 unsigned long *frontswap_map;
2601 struct file *swap_file, *victim;
2602 struct address_space *mapping;
2603 struct inode *inode;
2604 struct filename *pathname;
2605 int err, found = 0;
2606 unsigned int old_block_size;
2607 bool skip = false;
2608
2609 if (!capable(CAP_SYS_ADMIN))
2610 return -EPERM;
2611
2612 BUG_ON(!current->mm);
2613
2614 pathname = getname(specialfile);
2615 if (IS_ERR(pathname))
2616 return PTR_ERR(pathname);
2617
2618 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2619 err = PTR_ERR(victim);
2620 if (IS_ERR(victim))
2621 goto out;
2622
2623 mapping = victim->f_mapping;
2624 spin_lock(&swap_lock);
2625 plist_for_each_entry(p, &swap_active_head, list) {
2626 if (p->flags & SWP_WRITEOK) {
2627 if (p->swap_file->f_mapping == mapping) {
2628 found = 1;
2629 break;
2630 }
2631 }
2632 }
2633 if (!found) {
2634 err = -EINVAL;
2635 spin_unlock(&swap_lock);
2636 goto out_dput;
2637 }
2638 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2639 vm_unacct_memory(p->pages);
2640 else {
2641 err = -ENOMEM;
2642 spin_unlock(&swap_lock);
2643 goto out_dput;
2644 }
2645 spin_lock(&p->lock);
2646 del_from_avail_list(p);
2647 if (p->prio < 0) {
2648 struct swap_info_struct *si = p;
2649 int nid;
2650
2651 plist_for_each_entry_continue(si, &swap_active_head, list) {
2652 si->prio++;
2653 si->list.prio--;
2654 for_each_node(nid) {
2655 if (si->avail_lists[nid].prio != 1)
2656 si->avail_lists[nid].prio--;
2657 }
2658 }
2659 least_priority++;
2660 }
2661 plist_del(&p->list, &swap_active_head);
2662 trace_android_vh_account_swap_pages(p, &skip);
2663 if (!skip) {
2664 atomic_long_sub(p->pages, &nr_swap_pages);
2665 total_swap_pages -= p->pages;
2666 }
2667 p->flags &= ~SWP_WRITEOK;
2668 spin_unlock(&p->lock);
2669 spin_unlock(&swap_lock);
2670
2671 disable_swap_slots_cache_lock();
2672
2673 set_current_oom_origin();
2674 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2675 clear_current_oom_origin();
2676
2677 if (err) {
2678 /* re-insert swap space back into swap_list */
2679 reinsert_swap_info(p);
2680 reenable_swap_slots_cache_unlock();
2681 goto out_dput;
2682 }
2683
2684 reenable_swap_slots_cache_unlock();
2685
2686 spin_lock(&swap_lock);
2687 spin_lock(&p->lock);
2688 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2689 spin_unlock(&p->lock);
2690 spin_unlock(&swap_lock);
2691 /*
2692 * wait for swap operations protected by get/put_swap_device()
2693 * to complete
2694 */
2695 synchronize_rcu();
2696
2697 flush_work(&p->discard_work);
2698
2699 destroy_swap_extents(p);
2700 if (p->flags & SWP_CONTINUED)
2701 free_swap_count_continuations(p);
2702
2703 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2704 atomic_dec(&nr_rotate_swap);
2705
2706 mutex_lock(&swapon_mutex);
2707 spin_lock(&swap_lock);
2708 spin_lock(&p->lock);
2709 drain_mmlist();
2710
2711 /* wait for anyone still in scan_swap_map */
2712 p->highest_bit = 0; /* cuts scans short */
2713 while (p->flags >= SWP_SCANNING) {
2714 spin_unlock(&p->lock);
2715 spin_unlock(&swap_lock);
2716 schedule_timeout_uninterruptible(1);
2717 spin_lock(&swap_lock);
2718 spin_lock(&p->lock);
2719 }
2720
2721 swap_file = p->swap_file;
2722 old_block_size = p->old_block_size;
2723 p->swap_file = NULL;
2724 p->max = 0;
2725 swap_map = p->swap_map;
2726 p->swap_map = NULL;
2727 cluster_info = p->cluster_info;
2728 p->cluster_info = NULL;
2729 frontswap_map = frontswap_map_get(p);
2730 spin_unlock(&p->lock);
2731 spin_unlock(&swap_lock);
2732 arch_swap_invalidate_area(p->type);
2733 frontswap_invalidate_area(p->type);
2734 frontswap_map_set(p, NULL);
2735 mutex_unlock(&swapon_mutex);
2736 free_percpu(p->percpu_cluster);
2737 p->percpu_cluster = NULL;
2738 free_percpu(p->cluster_next_cpu);
2739 p->cluster_next_cpu = NULL;
2740 vfree(swap_map);
2741 kvfree(cluster_info);
2742 kvfree(frontswap_map);
2743 /* Destroy swap account information */
2744 swap_cgroup_swapoff(p->type);
2745 exit_swap_address_space(p->type);
2746
2747 inode = mapping->host;
2748 if (S_ISBLK(inode->i_mode)) {
2749 struct block_device *bdev = I_BDEV(inode);
2750
2751 set_blocksize(bdev, old_block_size);
2752 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2753 }
2754
2755 inode_lock(inode);
2756 inode->i_flags &= ~S_SWAPFILE;
2757 inode_unlock(inode);
2758 filp_close(swap_file, NULL);
2759
2760 /*
2761 * Clear the SWP_USED flag after all resources are freed so that swapon
2762 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2763 * not hold p->lock after we cleared its SWP_WRITEOK.
2764 */
2765 spin_lock(&swap_lock);
2766 p->flags = 0;
2767 spin_unlock(&swap_lock);
2768
2769 err = 0;
2770 atomic_inc(&proc_poll_event);
2771 wake_up_interruptible(&proc_poll_wait);
2772
2773 out_dput:
2774 filp_close(victim, NULL);
2775 out:
2776 putname(pathname);
2777 return err;
2778 }
2779
2780 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2781 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2782 {
2783 struct seq_file *seq = file->private_data;
2784
2785 poll_wait(file, &proc_poll_wait, wait);
2786
2787 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2788 seq->poll_event = atomic_read(&proc_poll_event);
2789 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2790 }
2791
2792 return EPOLLIN | EPOLLRDNORM;
2793 }
2794
2795 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2796 static void *swap_start(struct seq_file *swap, loff_t *pos)
2797 {
2798 struct swap_info_struct *si;
2799 int type;
2800 loff_t l = *pos;
2801
2802 mutex_lock(&swapon_mutex);
2803
2804 if (!l)
2805 return SEQ_START_TOKEN;
2806
2807 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2808 if (!(si->flags & SWP_USED) || !si->swap_map)
2809 continue;
2810 if (!--l)
2811 return si;
2812 }
2813
2814 return NULL;
2815 }
2816
swap_next(struct seq_file * swap,void * v,loff_t * pos)2817 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2818 {
2819 struct swap_info_struct *si = v;
2820 int type;
2821
2822 if (v == SEQ_START_TOKEN)
2823 type = 0;
2824 else
2825 type = si->type + 1;
2826
2827 ++(*pos);
2828 for (; (si = swap_type_to_swap_info(type)); type++) {
2829 if (!(si->flags & SWP_USED) || !si->swap_map)
2830 continue;
2831 return si;
2832 }
2833
2834 return NULL;
2835 }
2836
swap_stop(struct seq_file * swap,void * v)2837 static void swap_stop(struct seq_file *swap, void *v)
2838 {
2839 mutex_unlock(&swapon_mutex);
2840 }
2841
swap_show(struct seq_file * swap,void * v)2842 static int swap_show(struct seq_file *swap, void *v)
2843 {
2844 struct swap_info_struct *si = v;
2845 struct file *file;
2846 int len;
2847 unsigned int bytes, inuse;
2848
2849 if (si == SEQ_START_TOKEN) {
2850 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2851 return 0;
2852 }
2853
2854 bytes = si->pages << (PAGE_SHIFT - 10);
2855 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2856
2857 file = si->swap_file;
2858 len = seq_file_path(swap, file, " \t\n\\");
2859 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2860 len < 40 ? 40 - len : 1, " ",
2861 S_ISBLK(file_inode(file)->i_mode) ?
2862 "partition" : "file\t",
2863 bytes, bytes < 10000000 ? "\t" : "",
2864 inuse, inuse < 10000000 ? "\t" : "",
2865 si->prio);
2866 return 0;
2867 }
2868
2869 static const struct seq_operations swaps_op = {
2870 .start = swap_start,
2871 .next = swap_next,
2872 .stop = swap_stop,
2873 .show = swap_show
2874 };
2875
swaps_open(struct inode * inode,struct file * file)2876 static int swaps_open(struct inode *inode, struct file *file)
2877 {
2878 struct seq_file *seq;
2879 int ret;
2880
2881 ret = seq_open(file, &swaps_op);
2882 if (ret)
2883 return ret;
2884
2885 seq = file->private_data;
2886 seq->poll_event = atomic_read(&proc_poll_event);
2887 return 0;
2888 }
2889
2890 static const struct proc_ops swaps_proc_ops = {
2891 .proc_flags = PROC_ENTRY_PERMANENT,
2892 .proc_open = swaps_open,
2893 .proc_read = seq_read,
2894 .proc_lseek = seq_lseek,
2895 .proc_release = seq_release,
2896 .proc_poll = swaps_poll,
2897 };
2898
procswaps_init(void)2899 static int __init procswaps_init(void)
2900 {
2901 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2902 return 0;
2903 }
2904 __initcall(procswaps_init);
2905 #endif /* CONFIG_PROC_FS */
2906
2907 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2908 static int __init max_swapfiles_check(void)
2909 {
2910 MAX_SWAPFILES_CHECK();
2911 return 0;
2912 }
2913 late_initcall(max_swapfiles_check);
2914 #endif
2915
alloc_swap_info(void)2916 static struct swap_info_struct *alloc_swap_info(void)
2917 {
2918 struct swap_info_struct *p = NULL;
2919 struct swap_info_struct *defer = NULL;
2920 unsigned int type;
2921 int i;
2922 bool skip = false;
2923
2924 trace_android_rvh_alloc_si(&p, &skip);
2925 trace_android_vh_alloc_si(&p, &skip);
2926 if (!skip)
2927 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2928 if (!p)
2929 return ERR_PTR(-ENOMEM);
2930
2931 spin_lock(&swap_lock);
2932 for (type = 0; type < nr_swapfiles; type++) {
2933 if (!(swap_info[type]->flags & SWP_USED))
2934 break;
2935 }
2936 if (type >= MAX_SWAPFILES) {
2937 spin_unlock(&swap_lock);
2938 kvfree(p);
2939 return ERR_PTR(-EPERM);
2940 }
2941 if (type >= nr_swapfiles) {
2942 p->type = type;
2943 WRITE_ONCE(swap_info[type], p);
2944 /*
2945 * Write swap_info[type] before nr_swapfiles, in case a
2946 * racing procfs swap_start() or swap_next() is reading them.
2947 * (We never shrink nr_swapfiles, we never free this entry.)
2948 */
2949 smp_wmb();
2950 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2951 } else {
2952 defer = p;
2953 p = swap_info[type];
2954 /*
2955 * Do not memset this entry: a racing procfs swap_next()
2956 * would be relying on p->type to remain valid.
2957 */
2958 }
2959 p->swap_extent_root = RB_ROOT;
2960 plist_node_init(&p->list, 0);
2961 for_each_node(i)
2962 plist_node_init(&p->avail_lists[i], 0);
2963 p->flags = SWP_USED;
2964 spin_unlock(&swap_lock);
2965 kvfree(defer);
2966 spin_lock_init(&p->lock);
2967 spin_lock_init(&p->cont_lock);
2968
2969 return p;
2970 }
2971
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2972 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2973 {
2974 int error;
2975
2976 if (S_ISBLK(inode->i_mode)) {
2977 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2978 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2979 if (IS_ERR(p->bdev)) {
2980 error = PTR_ERR(p->bdev);
2981 p->bdev = NULL;
2982 return error;
2983 }
2984 p->old_block_size = block_size(p->bdev);
2985 error = set_blocksize(p->bdev, PAGE_SIZE);
2986 if (error < 0)
2987 return error;
2988 /*
2989 * Zoned block devices contain zones that have a sequential
2990 * write only restriction. Hence zoned block devices are not
2991 * suitable for swapping. Disallow them here.
2992 */
2993 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2994 return -EINVAL;
2995 p->flags |= SWP_BLKDEV;
2996 } else if (S_ISREG(inode->i_mode)) {
2997 p->bdev = inode->i_sb->s_bdev;
2998 }
2999
3000 return 0;
3001 }
3002
3003
3004 /*
3005 * Find out how many pages are allowed for a single swap device. There
3006 * are two limiting factors:
3007 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3008 * 2) the number of bits in the swap pte, as defined by the different
3009 * architectures.
3010 *
3011 * In order to find the largest possible bit mask, a swap entry with
3012 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3013 * decoded to a swp_entry_t again, and finally the swap offset is
3014 * extracted.
3015 *
3016 * This will mask all the bits from the initial ~0UL mask that can't
3017 * be encoded in either the swp_entry_t or the architecture definition
3018 * of a swap pte.
3019 */
generic_max_swapfile_size(void)3020 unsigned long generic_max_swapfile_size(void)
3021 {
3022 return swp_offset(pte_to_swp_entry(
3023 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3024 }
3025
3026 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)3027 __weak unsigned long max_swapfile_size(void)
3028 {
3029 return generic_max_swapfile_size();
3030 }
3031
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)3032 static unsigned long read_swap_header(struct swap_info_struct *p,
3033 union swap_header *swap_header,
3034 struct inode *inode)
3035 {
3036 int i;
3037 unsigned long maxpages;
3038 unsigned long swapfilepages;
3039 unsigned long last_page;
3040
3041 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3042 pr_err("Unable to find swap-space signature\n");
3043 return 0;
3044 }
3045
3046 /* swap partition endianess hack... */
3047 if (swab32(swap_header->info.version) == 1) {
3048 swab32s(&swap_header->info.version);
3049 swab32s(&swap_header->info.last_page);
3050 swab32s(&swap_header->info.nr_badpages);
3051 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3052 return 0;
3053 for (i = 0; i < swap_header->info.nr_badpages; i++)
3054 swab32s(&swap_header->info.badpages[i]);
3055 }
3056 /* Check the swap header's sub-version */
3057 if (swap_header->info.version != 1) {
3058 pr_warn("Unable to handle swap header version %d\n",
3059 swap_header->info.version);
3060 return 0;
3061 }
3062
3063 p->lowest_bit = 1;
3064 p->cluster_next = 1;
3065 p->cluster_nr = 0;
3066
3067 maxpages = max_swapfile_size();
3068 last_page = swap_header->info.last_page;
3069 if (!last_page) {
3070 pr_warn("Empty swap-file\n");
3071 return 0;
3072 }
3073 if (last_page > maxpages) {
3074 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3075 maxpages << (PAGE_SHIFT - 10),
3076 last_page << (PAGE_SHIFT - 10));
3077 }
3078 if (maxpages > last_page) {
3079 maxpages = last_page + 1;
3080 /* p->max is an unsigned int: don't overflow it */
3081 if ((unsigned int)maxpages == 0)
3082 maxpages = UINT_MAX;
3083 }
3084 p->highest_bit = maxpages - 1;
3085
3086 if (!maxpages)
3087 return 0;
3088 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3089 if (swapfilepages && maxpages > swapfilepages) {
3090 pr_warn("Swap area shorter than signature indicates\n");
3091 return 0;
3092 }
3093 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3094 return 0;
3095 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3096 return 0;
3097
3098 return maxpages;
3099 }
3100
3101 #define SWAP_CLUSTER_INFO_COLS \
3102 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3103 #define SWAP_CLUSTER_SPACE_COLS \
3104 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3105 #define SWAP_CLUSTER_COLS \
3106 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3107
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3108 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3109 union swap_header *swap_header,
3110 unsigned char *swap_map,
3111 struct swap_cluster_info *cluster_info,
3112 unsigned long maxpages,
3113 sector_t *span)
3114 {
3115 unsigned int j, k;
3116 unsigned int nr_good_pages;
3117 int nr_extents;
3118 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3119 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3120 unsigned long i, idx;
3121
3122 nr_good_pages = maxpages - 1; /* omit header page */
3123
3124 cluster_list_init(&p->free_clusters);
3125 cluster_list_init(&p->discard_clusters);
3126
3127 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3128 unsigned int page_nr = swap_header->info.badpages[i];
3129 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3130 return -EINVAL;
3131 if (page_nr < maxpages) {
3132 swap_map[page_nr] = SWAP_MAP_BAD;
3133 nr_good_pages--;
3134 /*
3135 * Haven't marked the cluster free yet, no list
3136 * operation involved
3137 */
3138 inc_cluster_info_page(p, cluster_info, page_nr);
3139 }
3140 }
3141
3142 /* Haven't marked the cluster free yet, no list operation involved */
3143 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3144 inc_cluster_info_page(p, cluster_info, i);
3145
3146 if (nr_good_pages) {
3147 swap_map[0] = SWAP_MAP_BAD;
3148 /*
3149 * Not mark the cluster free yet, no list
3150 * operation involved
3151 */
3152 inc_cluster_info_page(p, cluster_info, 0);
3153 p->max = maxpages;
3154 p->pages = nr_good_pages;
3155 nr_extents = setup_swap_extents(p, span);
3156 if (nr_extents < 0)
3157 return nr_extents;
3158 nr_good_pages = p->pages;
3159 }
3160 if (!nr_good_pages) {
3161 pr_warn("Empty swap-file\n");
3162 return -EINVAL;
3163 }
3164
3165 if (!cluster_info)
3166 return nr_extents;
3167
3168
3169 /*
3170 * Reduce false cache line sharing between cluster_info and
3171 * sharing same address space.
3172 */
3173 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3174 j = (k + col) % SWAP_CLUSTER_COLS;
3175 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3176 idx = i * SWAP_CLUSTER_COLS + j;
3177 if (idx >= nr_clusters)
3178 continue;
3179 if (cluster_count(&cluster_info[idx]))
3180 continue;
3181 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3182 cluster_list_add_tail(&p->free_clusters, cluster_info,
3183 idx);
3184 }
3185 }
3186 return nr_extents;
3187 }
3188
3189 /*
3190 * Helper to sys_swapon determining if a given swap
3191 * backing device queue supports DISCARD operations.
3192 */
swap_discardable(struct swap_info_struct * si)3193 static bool swap_discardable(struct swap_info_struct *si)
3194 {
3195 struct request_queue *q = bdev_get_queue(si->bdev);
3196
3197 if (!q || !blk_queue_discard(q))
3198 return false;
3199
3200 return true;
3201 }
3202
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3203 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3204 {
3205 struct swap_info_struct *p;
3206 struct filename *name;
3207 struct file *swap_file = NULL;
3208 struct address_space *mapping;
3209 int prio;
3210 int error;
3211 union swap_header *swap_header;
3212 int nr_extents;
3213 sector_t span;
3214 unsigned long maxpages;
3215 unsigned char *swap_map = NULL;
3216 struct swap_cluster_info *cluster_info = NULL;
3217 unsigned long *frontswap_map = NULL;
3218 struct page *page = NULL;
3219 struct inode *inode = NULL;
3220 bool inced_nr_rotate_swap = false;
3221
3222 if (swap_flags & ~SWAP_FLAGS_VALID)
3223 return -EINVAL;
3224
3225 if (!capable(CAP_SYS_ADMIN))
3226 return -EPERM;
3227
3228 if (!swap_avail_heads)
3229 return -ENOMEM;
3230
3231 p = alloc_swap_info();
3232 if (IS_ERR(p))
3233 return PTR_ERR(p);
3234
3235 INIT_WORK(&p->discard_work, swap_discard_work);
3236
3237 name = getname(specialfile);
3238 if (IS_ERR(name)) {
3239 error = PTR_ERR(name);
3240 name = NULL;
3241 goto bad_swap;
3242 }
3243 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3244 if (IS_ERR(swap_file)) {
3245 error = PTR_ERR(swap_file);
3246 swap_file = NULL;
3247 goto bad_swap;
3248 }
3249
3250 p->swap_file = swap_file;
3251 mapping = swap_file->f_mapping;
3252 inode = mapping->host;
3253
3254 error = claim_swapfile(p, inode);
3255 if (unlikely(error))
3256 goto bad_swap;
3257
3258 inode_lock(inode);
3259 if (IS_SWAPFILE(inode)) {
3260 error = -EBUSY;
3261 goto bad_swap_unlock_inode;
3262 }
3263
3264 /*
3265 * Read the swap header.
3266 */
3267 if (!mapping->a_ops->readpage) {
3268 error = -EINVAL;
3269 goto bad_swap_unlock_inode;
3270 }
3271 page = read_mapping_page(mapping, 0, swap_file);
3272 if (IS_ERR(page)) {
3273 error = PTR_ERR(page);
3274 goto bad_swap_unlock_inode;
3275 }
3276 swap_header = kmap(page);
3277
3278 maxpages = read_swap_header(p, swap_header, inode);
3279 if (unlikely(!maxpages)) {
3280 error = -EINVAL;
3281 goto bad_swap_unlock_inode;
3282 }
3283
3284 /* OK, set up the swap map and apply the bad block list */
3285 swap_map = vzalloc(maxpages);
3286 if (!swap_map) {
3287 error = -ENOMEM;
3288 goto bad_swap_unlock_inode;
3289 }
3290
3291 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3292 p->flags |= SWP_STABLE_WRITES;
3293
3294 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3295 p->flags |= SWP_SYNCHRONOUS_IO;
3296
3297 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3298 int cpu;
3299 unsigned long ci, nr_cluster;
3300
3301 p->flags |= SWP_SOLIDSTATE;
3302 p->cluster_next_cpu = alloc_percpu(unsigned int);
3303 if (!p->cluster_next_cpu) {
3304 error = -ENOMEM;
3305 goto bad_swap_unlock_inode;
3306 }
3307 /*
3308 * select a random position to start with to help wear leveling
3309 * SSD
3310 */
3311 for_each_possible_cpu(cpu) {
3312 per_cpu(*p->cluster_next_cpu, cpu) =
3313 1 + prandom_u32_max(p->highest_bit);
3314 }
3315 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3316
3317 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3318 GFP_KERNEL);
3319 if (!cluster_info) {
3320 error = -ENOMEM;
3321 goto bad_swap_unlock_inode;
3322 }
3323
3324 for (ci = 0; ci < nr_cluster; ci++)
3325 spin_lock_init(&((cluster_info + ci)->lock));
3326
3327 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3328 if (!p->percpu_cluster) {
3329 error = -ENOMEM;
3330 goto bad_swap_unlock_inode;
3331 }
3332 for_each_possible_cpu(cpu) {
3333 struct percpu_cluster *cluster;
3334 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3335 cluster_set_null(&cluster->index);
3336 }
3337 } else {
3338 atomic_inc(&nr_rotate_swap);
3339 inced_nr_rotate_swap = true;
3340 }
3341
3342 error = swap_cgroup_swapon(p->type, maxpages);
3343 if (error)
3344 goto bad_swap_unlock_inode;
3345
3346 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3347 cluster_info, maxpages, &span);
3348 if (unlikely(nr_extents < 0)) {
3349 error = nr_extents;
3350 goto bad_swap_unlock_inode;
3351 }
3352 /* frontswap enabled? set up bit-per-page map for frontswap */
3353 if (IS_ENABLED(CONFIG_FRONTSWAP))
3354 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3355 sizeof(long),
3356 GFP_KERNEL);
3357
3358 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3359 /*
3360 * When discard is enabled for swap with no particular
3361 * policy flagged, we set all swap discard flags here in
3362 * order to sustain backward compatibility with older
3363 * swapon(8) releases.
3364 */
3365 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3366 SWP_PAGE_DISCARD);
3367
3368 /*
3369 * By flagging sys_swapon, a sysadmin can tell us to
3370 * either do single-time area discards only, or to just
3371 * perform discards for released swap page-clusters.
3372 * Now it's time to adjust the p->flags accordingly.
3373 */
3374 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3375 p->flags &= ~SWP_PAGE_DISCARD;
3376 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3377 p->flags &= ~SWP_AREA_DISCARD;
3378
3379 /* issue a swapon-time discard if it's still required */
3380 if (p->flags & SWP_AREA_DISCARD) {
3381 int err = discard_swap(p);
3382 if (unlikely(err))
3383 pr_err("swapon: discard_swap(%p): %d\n",
3384 p, err);
3385 }
3386 }
3387
3388 error = init_swap_address_space(p->type, maxpages);
3389 if (error)
3390 goto bad_swap_unlock_inode;
3391
3392 /*
3393 * Flush any pending IO and dirty mappings before we start using this
3394 * swap device.
3395 */
3396 inode->i_flags |= S_SWAPFILE;
3397 error = inode_drain_writes(inode);
3398 if (error) {
3399 inode->i_flags &= ~S_SWAPFILE;
3400 goto free_swap_address_space;
3401 }
3402
3403 mutex_lock(&swapon_mutex);
3404 prio = -1;
3405 if (swap_flags & SWAP_FLAG_PREFER)
3406 prio =
3407 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3408
3409 trace_android_vh_swap_avail_heads_init(swap_avail_heads);
3410 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3411
3412 trace_android_vh_init_swap_info_struct(p, swap_avail_heads);
3413 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3414 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3415 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3416 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3417 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3418 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3419 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3420 (frontswap_map) ? "FS" : "");
3421
3422 mutex_unlock(&swapon_mutex);
3423 atomic_inc(&proc_poll_event);
3424 wake_up_interruptible(&proc_poll_wait);
3425
3426 error = 0;
3427 goto out;
3428 free_swap_address_space:
3429 exit_swap_address_space(p->type);
3430 bad_swap_unlock_inode:
3431 inode_unlock(inode);
3432 bad_swap:
3433 free_percpu(p->percpu_cluster);
3434 p->percpu_cluster = NULL;
3435 free_percpu(p->cluster_next_cpu);
3436 p->cluster_next_cpu = NULL;
3437 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3438 set_blocksize(p->bdev, p->old_block_size);
3439 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3440 }
3441 inode = NULL;
3442 destroy_swap_extents(p);
3443 swap_cgroup_swapoff(p->type);
3444 spin_lock(&swap_lock);
3445 p->swap_file = NULL;
3446 p->flags = 0;
3447 spin_unlock(&swap_lock);
3448 vfree(swap_map);
3449 kvfree(cluster_info);
3450 kvfree(frontswap_map);
3451 if (inced_nr_rotate_swap)
3452 atomic_dec(&nr_rotate_swap);
3453 if (swap_file)
3454 filp_close(swap_file, NULL);
3455 out:
3456 if (page && !IS_ERR(page)) {
3457 kunmap(page);
3458 put_page(page);
3459 }
3460 if (name)
3461 putname(name);
3462 if (inode)
3463 inode_unlock(inode);
3464 if (!error)
3465 enable_swap_slots_cache();
3466 return error;
3467 }
3468
si_swapinfo(struct sysinfo * val)3469 void si_swapinfo(struct sysinfo *val)
3470 {
3471 unsigned int type;
3472 unsigned long nr_to_be_unused = 0;
3473
3474 spin_lock(&swap_lock);
3475 for (type = 0; type < nr_swapfiles; type++) {
3476 struct swap_info_struct *si = swap_info[type];
3477 bool skip = false;
3478
3479 trace_android_vh_si_swapinfo(si, &skip);
3480 if (!skip && (si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3481 nr_to_be_unused += si->inuse_pages;
3482 }
3483 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3484 val->totalswap = total_swap_pages + nr_to_be_unused;
3485 spin_unlock(&swap_lock);
3486 }
3487 EXPORT_SYMBOL_GPL(si_swapinfo);
3488
3489 /*
3490 * Verify that a swap entry is valid and increment its swap map count.
3491 *
3492 * Returns error code in following case.
3493 * - success -> 0
3494 * - swp_entry is invalid -> EINVAL
3495 * - swp_entry is migration entry -> EINVAL
3496 * - swap-cache reference is requested but there is already one. -> EEXIST
3497 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3498 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3499 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3500 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3501 {
3502 struct swap_info_struct *p;
3503 struct swap_cluster_info *ci;
3504 unsigned long offset;
3505 unsigned char count;
3506 unsigned char has_cache;
3507 int err = -EINVAL;
3508
3509 p = get_swap_device(entry);
3510 if (!p)
3511 goto out;
3512
3513 offset = swp_offset(entry);
3514 ci = lock_cluster_or_swap_info(p, offset);
3515
3516 count = p->swap_map[offset];
3517
3518 /*
3519 * swapin_readahead() doesn't check if a swap entry is valid, so the
3520 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3521 */
3522 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3523 err = -ENOENT;
3524 goto unlock_out;
3525 }
3526
3527 has_cache = count & SWAP_HAS_CACHE;
3528 count &= ~SWAP_HAS_CACHE;
3529 err = 0;
3530
3531 if (usage == SWAP_HAS_CACHE) {
3532
3533 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3534 if (!has_cache && count)
3535 has_cache = SWAP_HAS_CACHE;
3536 else if (has_cache) /* someone else added cache */
3537 err = -EEXIST;
3538 else /* no users remaining */
3539 err = -ENOENT;
3540
3541 } else if (count || has_cache) {
3542
3543 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3544 count += usage;
3545 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3546 err = -EINVAL;
3547 else if (swap_count_continued(p, offset, count))
3548 count = COUNT_CONTINUED;
3549 else
3550 err = -ENOMEM;
3551 } else
3552 err = -ENOENT; /* unused swap entry */
3553
3554 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3555
3556 unlock_out:
3557 unlock_cluster_or_swap_info(p, ci);
3558 out:
3559 if (p)
3560 put_swap_device(p);
3561 return err;
3562 }
3563
3564 /*
3565 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3566 * (in which case its reference count is never incremented).
3567 */
swap_shmem_alloc(swp_entry_t entry)3568 void swap_shmem_alloc(swp_entry_t entry)
3569 {
3570 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3571 }
3572
3573 /*
3574 * Increase reference count of swap entry by 1.
3575 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3576 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3577 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3578 * might occur if a page table entry has got corrupted.
3579 */
swap_duplicate(swp_entry_t entry)3580 int swap_duplicate(swp_entry_t entry)
3581 {
3582 int err = 0;
3583
3584 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3585 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3586 return err;
3587 }
3588
3589 /*
3590 * @entry: swap entry for which we allocate swap cache.
3591 *
3592 * Called when allocating swap cache for existing swap entry,
3593 * This can return error codes. Returns 0 at success.
3594 * -EEXIST means there is a swap cache.
3595 * Note: return code is different from swap_duplicate().
3596 */
swapcache_prepare(swp_entry_t entry)3597 int swapcache_prepare(swp_entry_t entry)
3598 {
3599 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3600 }
3601
swp_swap_info(swp_entry_t entry)3602 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3603 {
3604 return swap_type_to_swap_info(swp_type(entry));
3605 }
3606 EXPORT_SYMBOL_GPL(swp_swap_info);
3607
page_swap_info(struct page * page)3608 struct swap_info_struct *page_swap_info(struct page *page)
3609 {
3610 swp_entry_t entry = { .val = page_private(page) };
3611 return swp_swap_info(entry);
3612 }
3613
3614 /*
3615 * out-of-line __page_file_ methods to avoid include hell.
3616 */
__page_file_mapping(struct page * page)3617 struct address_space *__page_file_mapping(struct page *page)
3618 {
3619 return page_swap_info(page)->swap_file->f_mapping;
3620 }
3621 EXPORT_SYMBOL_GPL(__page_file_mapping);
3622
__page_file_index(struct page * page)3623 pgoff_t __page_file_index(struct page *page)
3624 {
3625 swp_entry_t swap = { .val = page_private(page) };
3626 return swp_offset(swap);
3627 }
3628 EXPORT_SYMBOL_GPL(__page_file_index);
3629
3630 /*
3631 * add_swap_count_continuation - called when a swap count is duplicated
3632 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3633 * page of the original vmalloc'ed swap_map, to hold the continuation count
3634 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3635 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3636 *
3637 * These continuation pages are seldom referenced: the common paths all work
3638 * on the original swap_map, only referring to a continuation page when the
3639 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3640 *
3641 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3642 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3643 * can be called after dropping locks.
3644 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3645 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3646 {
3647 struct swap_info_struct *si;
3648 struct swap_cluster_info *ci;
3649 struct page *head;
3650 struct page *page;
3651 struct page *list_page;
3652 pgoff_t offset;
3653 unsigned char count;
3654 int ret = 0;
3655
3656 /*
3657 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3658 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3659 */
3660 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3661
3662 si = get_swap_device(entry);
3663 if (!si) {
3664 /*
3665 * An acceptable race has occurred since the failing
3666 * __swap_duplicate(): the swap device may be swapoff
3667 */
3668 goto outer;
3669 }
3670 spin_lock(&si->lock);
3671
3672 offset = swp_offset(entry);
3673
3674 ci = lock_cluster(si, offset);
3675
3676 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3677
3678 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3679 /*
3680 * The higher the swap count, the more likely it is that tasks
3681 * will race to add swap count continuation: we need to avoid
3682 * over-provisioning.
3683 */
3684 goto out;
3685 }
3686
3687 if (!page) {
3688 ret = -ENOMEM;
3689 goto out;
3690 }
3691
3692 /*
3693 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3694 * no architecture is using highmem pages for kernel page tables: so it
3695 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3696 */
3697 head = vmalloc_to_page(si->swap_map + offset);
3698 offset &= ~PAGE_MASK;
3699
3700 spin_lock(&si->cont_lock);
3701 /*
3702 * Page allocation does not initialize the page's lru field,
3703 * but it does always reset its private field.
3704 */
3705 if (!page_private(head)) {
3706 BUG_ON(count & COUNT_CONTINUED);
3707 INIT_LIST_HEAD(&head->lru);
3708 set_page_private(head, SWP_CONTINUED);
3709 si->flags |= SWP_CONTINUED;
3710 }
3711
3712 list_for_each_entry(list_page, &head->lru, lru) {
3713 unsigned char *map;
3714
3715 /*
3716 * If the previous map said no continuation, but we've found
3717 * a continuation page, free our allocation and use this one.
3718 */
3719 if (!(count & COUNT_CONTINUED))
3720 goto out_unlock_cont;
3721
3722 map = kmap_atomic(list_page) + offset;
3723 count = *map;
3724 kunmap_atomic(map);
3725
3726 /*
3727 * If this continuation count now has some space in it,
3728 * free our allocation and use this one.
3729 */
3730 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3731 goto out_unlock_cont;
3732 }
3733
3734 list_add_tail(&page->lru, &head->lru);
3735 page = NULL; /* now it's attached, don't free it */
3736 out_unlock_cont:
3737 spin_unlock(&si->cont_lock);
3738 out:
3739 unlock_cluster(ci);
3740 spin_unlock(&si->lock);
3741 put_swap_device(si);
3742 outer:
3743 if (page)
3744 __free_page(page);
3745 return ret;
3746 }
3747
3748 /*
3749 * swap_count_continued - when the original swap_map count is incremented
3750 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3751 * into, carry if so, or else fail until a new continuation page is allocated;
3752 * when the original swap_map count is decremented from 0 with continuation,
3753 * borrow from the continuation and report whether it still holds more.
3754 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3755 * lock.
3756 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3757 static bool swap_count_continued(struct swap_info_struct *si,
3758 pgoff_t offset, unsigned char count)
3759 {
3760 struct page *head;
3761 struct page *page;
3762 unsigned char *map;
3763 bool ret;
3764
3765 head = vmalloc_to_page(si->swap_map + offset);
3766 if (page_private(head) != SWP_CONTINUED) {
3767 BUG_ON(count & COUNT_CONTINUED);
3768 return false; /* need to add count continuation */
3769 }
3770
3771 spin_lock(&si->cont_lock);
3772 offset &= ~PAGE_MASK;
3773 page = list_next_entry(head, lru);
3774 map = kmap_atomic(page) + offset;
3775
3776 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3777 goto init_map; /* jump over SWAP_CONT_MAX checks */
3778
3779 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3780 /*
3781 * Think of how you add 1 to 999
3782 */
3783 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3784 kunmap_atomic(map);
3785 page = list_next_entry(page, lru);
3786 BUG_ON(page == head);
3787 map = kmap_atomic(page) + offset;
3788 }
3789 if (*map == SWAP_CONT_MAX) {
3790 kunmap_atomic(map);
3791 page = list_next_entry(page, lru);
3792 if (page == head) {
3793 ret = false; /* add count continuation */
3794 goto out;
3795 }
3796 map = kmap_atomic(page) + offset;
3797 init_map: *map = 0; /* we didn't zero the page */
3798 }
3799 *map += 1;
3800 kunmap_atomic(map);
3801 while ((page = list_prev_entry(page, lru)) != head) {
3802 map = kmap_atomic(page) + offset;
3803 *map = COUNT_CONTINUED;
3804 kunmap_atomic(map);
3805 }
3806 ret = true; /* incremented */
3807
3808 } else { /* decrementing */
3809 /*
3810 * Think of how you subtract 1 from 1000
3811 */
3812 BUG_ON(count != COUNT_CONTINUED);
3813 while (*map == COUNT_CONTINUED) {
3814 kunmap_atomic(map);
3815 page = list_next_entry(page, lru);
3816 BUG_ON(page == head);
3817 map = kmap_atomic(page) + offset;
3818 }
3819 BUG_ON(*map == 0);
3820 *map -= 1;
3821 if (*map == 0)
3822 count = 0;
3823 kunmap_atomic(map);
3824 while ((page = list_prev_entry(page, lru)) != head) {
3825 map = kmap_atomic(page) + offset;
3826 *map = SWAP_CONT_MAX | count;
3827 count = COUNT_CONTINUED;
3828 kunmap_atomic(map);
3829 }
3830 ret = count == COUNT_CONTINUED;
3831 }
3832 out:
3833 spin_unlock(&si->cont_lock);
3834 return ret;
3835 }
3836
3837 /*
3838 * free_swap_count_continuations - swapoff free all the continuation pages
3839 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3840 */
free_swap_count_continuations(struct swap_info_struct * si)3841 static void free_swap_count_continuations(struct swap_info_struct *si)
3842 {
3843 pgoff_t offset;
3844
3845 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3846 struct page *head;
3847 head = vmalloc_to_page(si->swap_map + offset);
3848 if (page_private(head)) {
3849 struct page *page, *next;
3850
3851 list_for_each_entry_safe(page, next, &head->lru, lru) {
3852 list_del(&page->lru);
3853 __free_page(page);
3854 }
3855 }
3856 }
3857 }
3858
3859 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3860 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3861 {
3862 struct swap_info_struct *si, *next;
3863 int nid = page_to_nid(page);
3864 bool skip = false;
3865
3866 if (!(gfp_mask & __GFP_IO))
3867 return;
3868
3869 if (!blk_cgroup_congested())
3870 return;
3871
3872 /*
3873 * We've already scheduled a throttle, avoid taking the global swap
3874 * lock.
3875 */
3876 if (current->throttle_queue)
3877 return;
3878
3879 trace_android_vh___cgroup_throttle_swaprate(nid, &skip);
3880 if (skip)
3881 return;
3882
3883 spin_lock(&swap_avail_lock);
3884 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3885 avail_lists[nid]) {
3886 if (si->bdev) {
3887 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3888 break;
3889 }
3890 }
3891 spin_unlock(&swap_avail_lock);
3892 }
3893 #endif
3894
swapfile_init(void)3895 static int __init swapfile_init(void)
3896 {
3897 int nid;
3898
3899 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3900 GFP_KERNEL);
3901 if (!swap_avail_heads) {
3902 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3903 return -ENOMEM;
3904 }
3905
3906 for_each_node(nid)
3907 plist_head_init(&swap_avail_heads[nid]);
3908
3909 return 0;
3910 }
3911 subsys_initcall(swapfile_init);
3912