1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size,
318 int flags)
319 {
320 if (value) {
321 if (dentry->d_name.len + 1 > size)
322 return -ERANGE;
323 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
324 }
325 return dentry->d_name.len + 1;
326 }
327
328 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
329 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
330 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331
332 static const struct xattr_handler sockfs_xattr_handler = {
333 .name = XATTR_NAME_SOCKPROTONAME,
334 .get = sockfs_xattr_get,
335 };
336
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)337 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
338 struct dentry *dentry, struct inode *inode,
339 const char *suffix, const void *value,
340 size_t size, int flags)
341 {
342 /* Handled by LSM. */
343 return -EAGAIN;
344 }
345
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 .prefix = XATTR_SECURITY_PREFIX,
348 .set = sockfs_security_xattr_set,
349 };
350
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 &sockfs_xattr_handler,
353 &sockfs_security_xattr_handler,
354 NULL
355 };
356
sockfs_init_fs_context(struct fs_context * fc)357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 if (!ctx)
361 return -ENOMEM;
362 ctx->ops = &sockfs_ops;
363 ctx->dops = &sockfs_dentry_operations;
364 ctx->xattr = sockfs_xattr_handlers;
365 return 0;
366 }
367
368 static struct vfsmount *sock_mnt __read_mostly;
369
370 static struct file_system_type sock_fs_type = {
371 .name = "sockfs",
372 .init_fs_context = sockfs_init_fs_context,
373 .kill_sb = kill_anon_super,
374 };
375
376 /*
377 * Obtains the first available file descriptor and sets it up for use.
378 *
379 * These functions create file structures and maps them to fd space
380 * of the current process. On success it returns file descriptor
381 * and file struct implicitly stored in sock->file.
382 * Note that another thread may close file descriptor before we return
383 * from this function. We use the fact that now we do not refer
384 * to socket after mapping. If one day we will need it, this
385 * function will increment ref. count on file by 1.
386 *
387 * In any case returned fd MAY BE not valid!
388 * This race condition is unavoidable
389 * with shared fd spaces, we cannot solve it inside kernel,
390 * but we take care of internal coherence yet.
391 */
392
393 /**
394 * sock_alloc_file - Bind a &socket to a &file
395 * @sock: socket
396 * @flags: file status flags
397 * @dname: protocol name
398 *
399 * Returns the &file bound with @sock, implicitly storing it
400 * in sock->file. If dname is %NULL, sets to "".
401 * On failure the return is a ERR pointer (see linux/err.h).
402 * This function uses GFP_KERNEL internally.
403 */
404
sock_alloc_file(struct socket * sock,int flags,const char * dname)405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 struct file *file;
408
409 if (!dname)
410 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411
412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 O_RDWR | (flags & O_NONBLOCK),
414 &socket_file_ops);
415 if (IS_ERR(file)) {
416 sock_release(sock);
417 return file;
418 }
419
420 sock->file = file;
421 file->private_data = sock;
422 stream_open(SOCK_INODE(sock), file);
423 return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426
sock_map_fd(struct socket * sock,int flags)427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 struct file *newfile;
430 int fd = get_unused_fd_flags(flags);
431 if (unlikely(fd < 0)) {
432 sock_release(sock);
433 return fd;
434 }
435
436 newfile = sock_alloc_file(sock, flags, NULL);
437 if (!IS_ERR(newfile)) {
438 fd_install(fd, newfile);
439 return fd;
440 }
441
442 put_unused_fd(fd);
443 return PTR_ERR(newfile);
444 }
445
446 /**
447 * sock_from_file - Return the &socket bounded to @file.
448 * @file: file
449 * @err: pointer to an error code return
450 *
451 * On failure returns %NULL and assigns -ENOTSOCK to @err.
452 */
453
sock_from_file(struct file * file,int * err)454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 if (file->f_op == &socket_file_ops)
457 return file->private_data; /* set in sock_map_fd */
458
459 *err = -ENOTSOCK;
460 return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463
464 /**
465 * sockfd_lookup - Go from a file number to its socket slot
466 * @fd: file handle
467 * @err: pointer to an error code return
468 *
469 * The file handle passed in is locked and the socket it is bound
470 * to is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
473 *
474 * On a success the socket object pointer is returned.
475 */
476
sockfd_lookup(int fd,int * err)477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 struct file *file;
480 struct socket *sock;
481
482 file = fget(fd);
483 if (!file) {
484 *err = -EBADF;
485 return NULL;
486 }
487
488 sock = sock_from_file(file, err);
489 if (!sock)
490 fput(file);
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
sockfd_lookup_light(int fd,int * err,int * fput_needed)495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file, err);
503 if (likely(sock)) {
504 *fput_needed = f.flags & FDPUT_FPUT;
505 return sock;
506 }
507 fdput(f);
508 }
509 return NULL;
510 }
511
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 size_t size)
514 {
515 ssize_t len;
516 ssize_t used = 0;
517
518 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 if (len < 0)
520 return len;
521 used += len;
522 if (buffer) {
523 if (size < used)
524 return -ERANGE;
525 buffer += len;
526 }
527
528 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 used += len;
530 if (buffer) {
531 if (size < used)
532 return -ERANGE;
533 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 buffer += len;
535 }
536
537 return used;
538 }
539
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 int err = simple_setattr(dentry, iattr);
543
544 if (!err && (iattr->ia_valid & ATTR_UID)) {
545 struct socket *sock = SOCKET_I(d_inode(dentry));
546
547 if (sock->sk)
548 sock->sk->sk_uid = iattr->ia_uid;
549 else
550 err = -ENOENT;
551 }
552
553 return err;
554 }
555
556 static const struct inode_operations sockfs_inode_ops = {
557 .listxattr = sockfs_listxattr,
558 .setattr = sockfs_setattr,
559 };
560
561 /**
562 * sock_alloc - allocate a socket
563 *
564 * Allocate a new inode and socket object. The two are bound together
565 * and initialised. The socket is then returned. If we are out of inodes
566 * NULL is returned. This functions uses GFP_KERNEL internally.
567 */
568
sock_alloc(void)569 struct socket *sock_alloc(void)
570 {
571 struct inode *inode;
572 struct socket *sock;
573
574 inode = new_inode_pseudo(sock_mnt->mnt_sb);
575 if (!inode)
576 return NULL;
577
578 sock = SOCKET_I(inode);
579
580 inode->i_ino = get_next_ino();
581 inode->i_mode = S_IFSOCK | S_IRWXUGO;
582 inode->i_uid = current_fsuid();
583 inode->i_gid = current_fsgid();
584 inode->i_op = &sockfs_inode_ops;
585
586 return sock;
587 }
588 EXPORT_SYMBOL(sock_alloc);
589
__sock_release(struct socket * sock,struct inode * inode)590 static void __sock_release(struct socket *sock, struct inode *inode)
591 {
592 if (sock->ops) {
593 struct module *owner = sock->ops->owner;
594
595 if (inode)
596 inode_lock(inode);
597 sock->ops->release(sock);
598 sock->sk = NULL;
599 if (inode)
600 inode_unlock(inode);
601 sock->ops = NULL;
602 module_put(owner);
603 }
604
605 if (sock->wq.fasync_list)
606 pr_err("%s: fasync list not empty!\n", __func__);
607
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613 }
614
615 /**
616 * sock_release - close a socket
617 * @sock: socket to close
618 *
619 * The socket is released from the protocol stack if it has a release
620 * callback, and the inode is then released if the socket is bound to
621 * an inode not a file.
622 */
sock_release(struct socket * sock)623 void sock_release(struct socket *sock)
624 {
625 __sock_release(sock, NULL);
626 }
627 EXPORT_SYMBOL(sock_release);
628
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
630 {
631 u8 flags = *tx_flags;
632
633 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
634 flags |= SKBTX_HW_TSTAMP;
635
636 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
637 flags |= SKBTX_SW_TSTAMP;
638
639 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
640 flags |= SKBTX_SCHED_TSTAMP;
641
642 *tx_flags = flags;
643 }
644 EXPORT_SYMBOL(__sock_tx_timestamp);
645
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
647 size_t));
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
649 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
653 inet_sendmsg, sock, msg,
654 msg_data_left(msg));
655 BUG_ON(ret == -EIOCBQUEUED);
656 return ret;
657 }
658
__sock_sendmsg(struct socket * sock,struct msghdr * msg)659 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
660 {
661 int err = security_socket_sendmsg(sock, msg,
662 msg_data_left(msg));
663
664 return err ?: sock_sendmsg_nosec(sock, msg);
665 }
666
667 /**
668 * sock_sendmsg - send a message through @sock
669 * @sock: socket
670 * @msg: message to send
671 *
672 * Sends @msg through @sock, passing through LSM.
673 * Returns the number of bytes sent, or an error code.
674 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)675 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
676 {
677 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
678 struct sockaddr_storage address;
679 int save_len = msg->msg_namelen;
680 int ret;
681
682 if (msg->msg_name) {
683 memcpy(&address, msg->msg_name, msg->msg_namelen);
684 msg->msg_name = &address;
685 }
686
687 ret = __sock_sendmsg(sock, msg);
688 msg->msg_name = save_addr;
689 msg->msg_namelen = save_len;
690
691 return ret;
692 }
693 EXPORT_SYMBOL(sock_sendmsg);
694
695 /**
696 * kernel_sendmsg - send a message through @sock (kernel-space)
697 * @sock: socket
698 * @msg: message header
699 * @vec: kernel vec
700 * @num: vec array length
701 * @size: total message data size
702 *
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 */
706
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)707 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
708 struct kvec *vec, size_t num, size_t size)
709 {
710 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
711 return sock_sendmsg(sock, msg);
712 }
713 EXPORT_SYMBOL(kernel_sendmsg);
714
715 /**
716 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
717 * @sk: sock
718 * @msg: message header
719 * @vec: output s/g array
720 * @num: output s/g array length
721 * @size: total message data size
722 *
723 * Builds the message data with @vec and sends it through @sock.
724 * Returns the number of bytes sent, or an error code.
725 * Caller must hold @sk.
726 */
727
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)728 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
729 struct kvec *vec, size_t num, size_t size)
730 {
731 struct socket *sock = sk->sk_socket;
732
733 if (!sock->ops->sendmsg_locked)
734 return sock_no_sendmsg_locked(sk, msg, size);
735
736 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
737
738 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
739 }
740 EXPORT_SYMBOL(kernel_sendmsg_locked);
741
skb_is_err_queue(const struct sk_buff * skb)742 static bool skb_is_err_queue(const struct sk_buff *skb)
743 {
744 /* pkt_type of skbs enqueued on the error queue are set to
745 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
746 * in recvmsg, since skbs received on a local socket will never
747 * have a pkt_type of PACKET_OUTGOING.
748 */
749 return skb->pkt_type == PACKET_OUTGOING;
750 }
751
752 /* On transmit, software and hardware timestamps are returned independently.
753 * As the two skb clones share the hardware timestamp, which may be updated
754 * before the software timestamp is received, a hardware TX timestamp may be
755 * returned only if there is no software TX timestamp. Ignore false software
756 * timestamps, which may be made in the __sock_recv_timestamp() call when the
757 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
758 * hardware timestamp.
759 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)760 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
761 {
762 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
763 }
764
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)765 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
766 {
767 struct scm_ts_pktinfo ts_pktinfo;
768 struct net_device *orig_dev;
769
770 if (!skb_mac_header_was_set(skb))
771 return;
772
773 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
774
775 rcu_read_lock();
776 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
777 if (orig_dev)
778 ts_pktinfo.if_index = orig_dev->ifindex;
779 rcu_read_unlock();
780
781 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
782 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
783 sizeof(ts_pktinfo), &ts_pktinfo);
784 }
785
786 /*
787 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
788 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)789 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
790 struct sk_buff *skb)
791 {
792 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
793 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
794 struct scm_timestamping_internal tss;
795
796 int empty = 1, false_tstamp = 0;
797 struct skb_shared_hwtstamps *shhwtstamps =
798 skb_hwtstamps(skb);
799
800 /* Race occurred between timestamp enabling and packet
801 receiving. Fill in the current time for now. */
802 if (need_software_tstamp && skb->tstamp == 0) {
803 __net_timestamp(skb);
804 false_tstamp = 1;
805 }
806
807 if (need_software_tstamp) {
808 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
809 if (new_tstamp) {
810 struct __kernel_sock_timeval tv;
811
812 skb_get_new_timestamp(skb, &tv);
813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
814 sizeof(tv), &tv);
815 } else {
816 struct __kernel_old_timeval tv;
817
818 skb_get_timestamp(skb, &tv);
819 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
820 sizeof(tv), &tv);
821 }
822 } else {
823 if (new_tstamp) {
824 struct __kernel_timespec ts;
825
826 skb_get_new_timestampns(skb, &ts);
827 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
828 sizeof(ts), &ts);
829 } else {
830 struct __kernel_old_timespec ts;
831
832 skb_get_timestampns(skb, &ts);
833 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
834 sizeof(ts), &ts);
835 }
836 }
837 }
838
839 memset(&tss, 0, sizeof(tss));
840 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
841 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
842 empty = 0;
843 if (shhwtstamps &&
844 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
845 !skb_is_swtx_tstamp(skb, false_tstamp) &&
846 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
847 empty = 0;
848 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
849 !skb_is_err_queue(skb))
850 put_ts_pktinfo(msg, skb);
851 }
852 if (!empty) {
853 if (sock_flag(sk, SOCK_TSTAMP_NEW))
854 put_cmsg_scm_timestamping64(msg, &tss);
855 else
856 put_cmsg_scm_timestamping(msg, &tss);
857
858 if (skb_is_err_queue(skb) && skb->len &&
859 SKB_EXT_ERR(skb)->opt_stats)
860 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
861 skb->len, skb->data);
862 }
863 }
864 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
865
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)866 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
867 struct sk_buff *skb)
868 {
869 int ack;
870
871 if (!sock_flag(sk, SOCK_WIFI_STATUS))
872 return;
873 if (!skb->wifi_acked_valid)
874 return;
875
876 ack = skb->wifi_acked;
877
878 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
879 }
880 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
881
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)882 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
883 struct sk_buff *skb)
884 {
885 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
886 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
887 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
888 }
889
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)890 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
891 struct sk_buff *skb)
892 {
893 sock_recv_timestamp(msg, sk, skb);
894 sock_recv_drops(msg, sk, skb);
895 }
896 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
897
898 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
899 size_t, int));
900 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
901 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)902 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
903 int flags)
904 {
905 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
906 inet_recvmsg, sock, msg, msg_data_left(msg),
907 flags);
908 }
909
910 /**
911 * sock_recvmsg - receive a message from @sock
912 * @sock: socket
913 * @msg: message to receive
914 * @flags: message flags
915 *
916 * Receives @msg from @sock, passing through LSM. Returns the total number
917 * of bytes received, or an error.
918 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)919 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
920 {
921 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
922
923 return err ?: sock_recvmsg_nosec(sock, msg, flags);
924 }
925 EXPORT_SYMBOL(sock_recvmsg);
926
927 /**
928 * kernel_recvmsg - Receive a message from a socket (kernel space)
929 * @sock: The socket to receive the message from
930 * @msg: Received message
931 * @vec: Input s/g array for message data
932 * @num: Size of input s/g array
933 * @size: Number of bytes to read
934 * @flags: Message flags (MSG_DONTWAIT, etc...)
935 *
936 * On return the msg structure contains the scatter/gather array passed in the
937 * vec argument. The array is modified so that it consists of the unfilled
938 * portion of the original array.
939 *
940 * The returned value is the total number of bytes received, or an error.
941 */
942
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)943 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
944 struct kvec *vec, size_t num, size_t size, int flags)
945 {
946 msg->msg_control_is_user = false;
947 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
948 return sock_recvmsg(sock, msg, flags);
949 }
950 EXPORT_SYMBOL(kernel_recvmsg);
951
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)952 static ssize_t sock_sendpage(struct file *file, struct page *page,
953 int offset, size_t size, loff_t *ppos, int more)
954 {
955 struct socket *sock;
956 int flags;
957
958 sock = file->private_data;
959
960 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
962 flags |= more;
963
964 return kernel_sendpage(sock, page, offset, size, flags);
965 }
966
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)967 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
968 struct pipe_inode_info *pipe, size_t len,
969 unsigned int flags)
970 {
971 struct socket *sock = file->private_data;
972
973 if (unlikely(!sock->ops->splice_read))
974 return generic_file_splice_read(file, ppos, pipe, len, flags);
975
976 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
977 }
978
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)979 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
980 {
981 struct file *file = iocb->ki_filp;
982 struct socket *sock = file->private_data;
983 struct msghdr msg = {.msg_iter = *to,
984 .msg_iocb = iocb};
985 ssize_t res;
986
987 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
988 msg.msg_flags = MSG_DONTWAIT;
989
990 if (iocb->ki_pos != 0)
991 return -ESPIPE;
992
993 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
994 return 0;
995
996 res = sock_recvmsg(sock, &msg, msg.msg_flags);
997 *to = msg.msg_iter;
998 return res;
999 }
1000
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1001 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1002 {
1003 struct file *file = iocb->ki_filp;
1004 struct socket *sock = file->private_data;
1005 struct msghdr msg = {.msg_iter = *from,
1006 .msg_iocb = iocb};
1007 ssize_t res;
1008
1009 if (iocb->ki_pos != 0)
1010 return -ESPIPE;
1011
1012 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1013 msg.msg_flags = MSG_DONTWAIT;
1014
1015 if (sock->type == SOCK_SEQPACKET)
1016 msg.msg_flags |= MSG_EOR;
1017
1018 res = __sock_sendmsg(sock, &msg);
1019 *from = msg.msg_iter;
1020 return res;
1021 }
1022
1023 /*
1024 * Atomic setting of ioctl hooks to avoid race
1025 * with module unload.
1026 */
1027
1028 static DEFINE_MUTEX(br_ioctl_mutex);
1029 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1030
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1031 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1032 {
1033 mutex_lock(&br_ioctl_mutex);
1034 br_ioctl_hook = hook;
1035 mutex_unlock(&br_ioctl_mutex);
1036 }
1037 EXPORT_SYMBOL(brioctl_set);
1038
1039 static DEFINE_MUTEX(vlan_ioctl_mutex);
1040 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1041
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1042 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1043 {
1044 mutex_lock(&vlan_ioctl_mutex);
1045 vlan_ioctl_hook = hook;
1046 mutex_unlock(&vlan_ioctl_mutex);
1047 }
1048 EXPORT_SYMBOL(vlan_ioctl_set);
1049
1050 static DEFINE_MUTEX(dlci_ioctl_mutex);
1051 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1052
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1053 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1054 {
1055 mutex_lock(&dlci_ioctl_mutex);
1056 dlci_ioctl_hook = hook;
1057 mutex_unlock(&dlci_ioctl_mutex);
1058 }
1059 EXPORT_SYMBOL(dlci_ioctl_set);
1060
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1061 static long sock_do_ioctl(struct net *net, struct socket *sock,
1062 unsigned int cmd, unsigned long arg)
1063 {
1064 int err;
1065 void __user *argp = (void __user *)arg;
1066
1067 err = sock->ops->ioctl(sock, cmd, arg);
1068
1069 /*
1070 * If this ioctl is unknown try to hand it down
1071 * to the NIC driver.
1072 */
1073 if (err != -ENOIOCTLCMD)
1074 return err;
1075
1076 if (cmd == SIOCGIFCONF) {
1077 struct ifconf ifc;
1078 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1079 return -EFAULT;
1080 rtnl_lock();
1081 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1082 rtnl_unlock();
1083 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1084 err = -EFAULT;
1085 } else if (is_socket_ioctl_cmd(cmd)) {
1086 struct ifreq ifr;
1087 bool need_copyout;
1088 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1089 return -EFAULT;
1090 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1091 if (!err && need_copyout)
1092 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1093 return -EFAULT;
1094 } else {
1095 err = -ENOTTY;
1096 }
1097 return err;
1098 }
1099
1100 /*
1101 * With an ioctl, arg may well be a user mode pointer, but we don't know
1102 * what to do with it - that's up to the protocol still.
1103 */
1104
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1105 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1106 {
1107 struct socket *sock;
1108 struct sock *sk;
1109 void __user *argp = (void __user *)arg;
1110 int pid, err;
1111 struct net *net;
1112
1113 sock = file->private_data;
1114 sk = sock->sk;
1115 net = sock_net(sk);
1116 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1117 struct ifreq ifr;
1118 bool need_copyout;
1119 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1120 return -EFAULT;
1121 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1122 if (!err && need_copyout)
1123 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1124 return -EFAULT;
1125 } else
1126 #ifdef CONFIG_WEXT_CORE
1127 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1128 err = wext_handle_ioctl(net, cmd, argp);
1129 } else
1130 #endif
1131 switch (cmd) {
1132 case FIOSETOWN:
1133 case SIOCSPGRP:
1134 err = -EFAULT;
1135 if (get_user(pid, (int __user *)argp))
1136 break;
1137 err = f_setown(sock->file, pid, 1);
1138 break;
1139 case FIOGETOWN:
1140 case SIOCGPGRP:
1141 err = put_user(f_getown(sock->file),
1142 (int __user *)argp);
1143 break;
1144 case SIOCGIFBR:
1145 case SIOCSIFBR:
1146 case SIOCBRADDBR:
1147 case SIOCBRDELBR:
1148 err = -ENOPKG;
1149 if (!br_ioctl_hook)
1150 request_module("bridge");
1151
1152 mutex_lock(&br_ioctl_mutex);
1153 if (br_ioctl_hook)
1154 err = br_ioctl_hook(net, cmd, argp);
1155 mutex_unlock(&br_ioctl_mutex);
1156 break;
1157 case SIOCGIFVLAN:
1158 case SIOCSIFVLAN:
1159 err = -ENOPKG;
1160 if (!vlan_ioctl_hook)
1161 request_module("8021q");
1162
1163 mutex_lock(&vlan_ioctl_mutex);
1164 if (vlan_ioctl_hook)
1165 err = vlan_ioctl_hook(net, argp);
1166 mutex_unlock(&vlan_ioctl_mutex);
1167 break;
1168 case SIOCADDDLCI:
1169 case SIOCDELDLCI:
1170 err = -ENOPKG;
1171 if (!dlci_ioctl_hook)
1172 request_module("dlci");
1173
1174 mutex_lock(&dlci_ioctl_mutex);
1175 if (dlci_ioctl_hook)
1176 err = dlci_ioctl_hook(cmd, argp);
1177 mutex_unlock(&dlci_ioctl_mutex);
1178 break;
1179 case SIOCGSKNS:
1180 err = -EPERM;
1181 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1182 break;
1183
1184 err = open_related_ns(&net->ns, get_net_ns);
1185 break;
1186 case SIOCGSTAMP_OLD:
1187 case SIOCGSTAMPNS_OLD:
1188 if (!sock->ops->gettstamp) {
1189 err = -ENOIOCTLCMD;
1190 break;
1191 }
1192 err = sock->ops->gettstamp(sock, argp,
1193 cmd == SIOCGSTAMP_OLD,
1194 !IS_ENABLED(CONFIG_64BIT));
1195 break;
1196 case SIOCGSTAMP_NEW:
1197 case SIOCGSTAMPNS_NEW:
1198 if (!sock->ops->gettstamp) {
1199 err = -ENOIOCTLCMD;
1200 break;
1201 }
1202 err = sock->ops->gettstamp(sock, argp,
1203 cmd == SIOCGSTAMP_NEW,
1204 false);
1205 break;
1206 default:
1207 err = sock_do_ioctl(net, sock, cmd, arg);
1208 break;
1209 }
1210 return err;
1211 }
1212
1213 /**
1214 * sock_create_lite - creates a socket
1215 * @family: protocol family (AF_INET, ...)
1216 * @type: communication type (SOCK_STREAM, ...)
1217 * @protocol: protocol (0, ...)
1218 * @res: new socket
1219 *
1220 * Creates a new socket and assigns it to @res, passing through LSM.
1221 * The new socket initialization is not complete, see kernel_accept().
1222 * Returns 0 or an error. On failure @res is set to %NULL.
1223 * This function internally uses GFP_KERNEL.
1224 */
1225
sock_create_lite(int family,int type,int protocol,struct socket ** res)1226 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1227 {
1228 int err;
1229 struct socket *sock = NULL;
1230
1231 err = security_socket_create(family, type, protocol, 1);
1232 if (err)
1233 goto out;
1234
1235 sock = sock_alloc();
1236 if (!sock) {
1237 err = -ENOMEM;
1238 goto out;
1239 }
1240
1241 sock->type = type;
1242 err = security_socket_post_create(sock, family, type, protocol, 1);
1243 if (err)
1244 goto out_release;
1245
1246 out:
1247 *res = sock;
1248 return err;
1249 out_release:
1250 sock_release(sock);
1251 sock = NULL;
1252 goto out;
1253 }
1254 EXPORT_SYMBOL(sock_create_lite);
1255
1256 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1257 static __poll_t sock_poll(struct file *file, poll_table *wait)
1258 {
1259 struct socket *sock = file->private_data;
1260 __poll_t events = poll_requested_events(wait), flag = 0;
1261
1262 if (!sock->ops->poll)
1263 return 0;
1264
1265 if (sk_can_busy_loop(sock->sk)) {
1266 /* poll once if requested by the syscall */
1267 if (events & POLL_BUSY_LOOP)
1268 sk_busy_loop(sock->sk, 1);
1269
1270 /* if this socket can poll_ll, tell the system call */
1271 flag = POLL_BUSY_LOOP;
1272 }
1273
1274 return sock->ops->poll(file, sock, wait) | flag;
1275 }
1276
sock_mmap(struct file * file,struct vm_area_struct * vma)1277 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1278 {
1279 struct socket *sock = file->private_data;
1280
1281 return sock->ops->mmap(file, sock, vma);
1282 }
1283
sock_close(struct inode * inode,struct file * filp)1284 static int sock_close(struct inode *inode, struct file *filp)
1285 {
1286 __sock_release(SOCKET_I(inode), inode);
1287 return 0;
1288 }
1289
1290 /*
1291 * Update the socket async list
1292 *
1293 * Fasync_list locking strategy.
1294 *
1295 * 1. fasync_list is modified only under process context socket lock
1296 * i.e. under semaphore.
1297 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1298 * or under socket lock
1299 */
1300
sock_fasync(int fd,struct file * filp,int on)1301 static int sock_fasync(int fd, struct file *filp, int on)
1302 {
1303 struct socket *sock = filp->private_data;
1304 struct sock *sk = sock->sk;
1305 struct socket_wq *wq = &sock->wq;
1306
1307 if (sk == NULL)
1308 return -EINVAL;
1309
1310 lock_sock(sk);
1311 fasync_helper(fd, filp, on, &wq->fasync_list);
1312
1313 if (!wq->fasync_list)
1314 sock_reset_flag(sk, SOCK_FASYNC);
1315 else
1316 sock_set_flag(sk, SOCK_FASYNC);
1317
1318 release_sock(sk);
1319 return 0;
1320 }
1321
1322 /* This function may be called only under rcu_lock */
1323
sock_wake_async(struct socket_wq * wq,int how,int band)1324 int sock_wake_async(struct socket_wq *wq, int how, int band)
1325 {
1326 if (!wq || !wq->fasync_list)
1327 return -1;
1328
1329 switch (how) {
1330 case SOCK_WAKE_WAITD:
1331 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1332 break;
1333 goto call_kill;
1334 case SOCK_WAKE_SPACE:
1335 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1336 break;
1337 fallthrough;
1338 case SOCK_WAKE_IO:
1339 call_kill:
1340 kill_fasync(&wq->fasync_list, SIGIO, band);
1341 break;
1342 case SOCK_WAKE_URG:
1343 kill_fasync(&wq->fasync_list, SIGURG, band);
1344 }
1345
1346 return 0;
1347 }
1348 EXPORT_SYMBOL(sock_wake_async);
1349
1350 /**
1351 * __sock_create - creates a socket
1352 * @net: net namespace
1353 * @family: protocol family (AF_INET, ...)
1354 * @type: communication type (SOCK_STREAM, ...)
1355 * @protocol: protocol (0, ...)
1356 * @res: new socket
1357 * @kern: boolean for kernel space sockets
1358 *
1359 * Creates a new socket and assigns it to @res, passing through LSM.
1360 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1361 * be set to true if the socket resides in kernel space.
1362 * This function internally uses GFP_KERNEL.
1363 */
1364
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1365 int __sock_create(struct net *net, int family, int type, int protocol,
1366 struct socket **res, int kern)
1367 {
1368 int err;
1369 struct socket *sock;
1370 const struct net_proto_family *pf;
1371
1372 /*
1373 * Check protocol is in range
1374 */
1375 if (family < 0 || family >= NPROTO)
1376 return -EAFNOSUPPORT;
1377 if (type < 0 || type >= SOCK_MAX)
1378 return -EINVAL;
1379
1380 /* Compatibility.
1381
1382 This uglymoron is moved from INET layer to here to avoid
1383 deadlock in module load.
1384 */
1385 if (family == PF_INET && type == SOCK_PACKET) {
1386 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1387 current->comm);
1388 family = PF_PACKET;
1389 }
1390
1391 err = security_socket_create(family, type, protocol, kern);
1392 if (err)
1393 return err;
1394
1395 /*
1396 * Allocate the socket and allow the family to set things up. if
1397 * the protocol is 0, the family is instructed to select an appropriate
1398 * default.
1399 */
1400 sock = sock_alloc();
1401 if (!sock) {
1402 net_warn_ratelimited("socket: no more sockets\n");
1403 return -ENFILE; /* Not exactly a match, but its the
1404 closest posix thing */
1405 }
1406
1407 sock->type = type;
1408
1409 #ifdef CONFIG_MODULES
1410 /* Attempt to load a protocol module if the find failed.
1411 *
1412 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1413 * requested real, full-featured networking support upon configuration.
1414 * Otherwise module support will break!
1415 */
1416 if (rcu_access_pointer(net_families[family]) == NULL)
1417 request_module("net-pf-%d", family);
1418 #endif
1419
1420 rcu_read_lock();
1421 pf = rcu_dereference(net_families[family]);
1422 err = -EAFNOSUPPORT;
1423 if (!pf)
1424 goto out_release;
1425
1426 /*
1427 * We will call the ->create function, that possibly is in a loadable
1428 * module, so we have to bump that loadable module refcnt first.
1429 */
1430 if (!try_module_get(pf->owner))
1431 goto out_release;
1432
1433 /* Now protected by module ref count */
1434 rcu_read_unlock();
1435
1436 err = pf->create(net, sock, protocol, kern);
1437 if (err < 0)
1438 goto out_module_put;
1439
1440 /*
1441 * Now to bump the refcnt of the [loadable] module that owns this
1442 * socket at sock_release time we decrement its refcnt.
1443 */
1444 if (!try_module_get(sock->ops->owner))
1445 goto out_module_busy;
1446
1447 /*
1448 * Now that we're done with the ->create function, the [loadable]
1449 * module can have its refcnt decremented
1450 */
1451 module_put(pf->owner);
1452 err = security_socket_post_create(sock, family, type, protocol, kern);
1453 if (err)
1454 goto out_sock_release;
1455 *res = sock;
1456
1457 return 0;
1458
1459 out_module_busy:
1460 err = -EAFNOSUPPORT;
1461 out_module_put:
1462 sock->ops = NULL;
1463 module_put(pf->owner);
1464 out_sock_release:
1465 sock_release(sock);
1466 return err;
1467
1468 out_release:
1469 rcu_read_unlock();
1470 goto out_sock_release;
1471 }
1472 EXPORT_SYMBOL(__sock_create);
1473
1474 /**
1475 * sock_create - creates a socket
1476 * @family: protocol family (AF_INET, ...)
1477 * @type: communication type (SOCK_STREAM, ...)
1478 * @protocol: protocol (0, ...)
1479 * @res: new socket
1480 *
1481 * A wrapper around __sock_create().
1482 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1483 */
1484
sock_create(int family,int type,int protocol,struct socket ** res)1485 int sock_create(int family, int type, int protocol, struct socket **res)
1486 {
1487 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1488 }
1489 EXPORT_SYMBOL(sock_create);
1490
1491 /**
1492 * sock_create_kern - creates a socket (kernel space)
1493 * @net: net namespace
1494 * @family: protocol family (AF_INET, ...)
1495 * @type: communication type (SOCK_STREAM, ...)
1496 * @protocol: protocol (0, ...)
1497 * @res: new socket
1498 *
1499 * A wrapper around __sock_create().
1500 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1501 */
1502
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1503 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1504 {
1505 return __sock_create(net, family, type, protocol, res, 1);
1506 }
1507 EXPORT_SYMBOL(sock_create_kern);
1508
__sys_socket(int family,int type,int protocol)1509 int __sys_socket(int family, int type, int protocol)
1510 {
1511 int retval;
1512 struct socket *sock;
1513 int flags;
1514
1515 /* Check the SOCK_* constants for consistency. */
1516 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1517 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1518 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1519 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1520
1521 flags = type & ~SOCK_TYPE_MASK;
1522 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1523 return -EINVAL;
1524 type &= SOCK_TYPE_MASK;
1525
1526 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1527 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1528
1529 retval = sock_create(family, type, protocol, &sock);
1530 if (retval < 0)
1531 return retval;
1532
1533 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1534 }
1535
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1536 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1537 {
1538 return __sys_socket(family, type, protocol);
1539 }
1540
1541 /*
1542 * Create a pair of connected sockets.
1543 */
1544
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1545 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1546 {
1547 struct socket *sock1, *sock2;
1548 int fd1, fd2, err;
1549 struct file *newfile1, *newfile2;
1550 int flags;
1551
1552 flags = type & ~SOCK_TYPE_MASK;
1553 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1554 return -EINVAL;
1555 type &= SOCK_TYPE_MASK;
1556
1557 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1558 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1559
1560 /*
1561 * reserve descriptors and make sure we won't fail
1562 * to return them to userland.
1563 */
1564 fd1 = get_unused_fd_flags(flags);
1565 if (unlikely(fd1 < 0))
1566 return fd1;
1567
1568 fd2 = get_unused_fd_flags(flags);
1569 if (unlikely(fd2 < 0)) {
1570 put_unused_fd(fd1);
1571 return fd2;
1572 }
1573
1574 err = put_user(fd1, &usockvec[0]);
1575 if (err)
1576 goto out;
1577
1578 err = put_user(fd2, &usockvec[1]);
1579 if (err)
1580 goto out;
1581
1582 /*
1583 * Obtain the first socket and check if the underlying protocol
1584 * supports the socketpair call.
1585 */
1586
1587 err = sock_create(family, type, protocol, &sock1);
1588 if (unlikely(err < 0))
1589 goto out;
1590
1591 err = sock_create(family, type, protocol, &sock2);
1592 if (unlikely(err < 0)) {
1593 sock_release(sock1);
1594 goto out;
1595 }
1596
1597 err = security_socket_socketpair(sock1, sock2);
1598 if (unlikely(err)) {
1599 sock_release(sock2);
1600 sock_release(sock1);
1601 goto out;
1602 }
1603
1604 err = sock1->ops->socketpair(sock1, sock2);
1605 if (unlikely(err < 0)) {
1606 sock_release(sock2);
1607 sock_release(sock1);
1608 goto out;
1609 }
1610
1611 newfile1 = sock_alloc_file(sock1, flags, NULL);
1612 if (IS_ERR(newfile1)) {
1613 err = PTR_ERR(newfile1);
1614 sock_release(sock2);
1615 goto out;
1616 }
1617
1618 newfile2 = sock_alloc_file(sock2, flags, NULL);
1619 if (IS_ERR(newfile2)) {
1620 err = PTR_ERR(newfile2);
1621 fput(newfile1);
1622 goto out;
1623 }
1624
1625 audit_fd_pair(fd1, fd2);
1626
1627 fd_install(fd1, newfile1);
1628 fd_install(fd2, newfile2);
1629 return 0;
1630
1631 out:
1632 put_unused_fd(fd2);
1633 put_unused_fd(fd1);
1634 return err;
1635 }
1636
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1637 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1638 int __user *, usockvec)
1639 {
1640 return __sys_socketpair(family, type, protocol, usockvec);
1641 }
1642
1643 /*
1644 * Bind a name to a socket. Nothing much to do here since it's
1645 * the protocol's responsibility to handle the local address.
1646 *
1647 * We move the socket address to kernel space before we call
1648 * the protocol layer (having also checked the address is ok).
1649 */
1650
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1651 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1652 {
1653 struct socket *sock;
1654 struct sockaddr_storage address;
1655 int err, fput_needed;
1656
1657 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 if (sock) {
1659 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1660 if (!err) {
1661 err = security_socket_bind(sock,
1662 (struct sockaddr *)&address,
1663 addrlen);
1664 if (!err)
1665 err = sock->ops->bind(sock,
1666 (struct sockaddr *)
1667 &address, addrlen);
1668 }
1669 fput_light(sock->file, fput_needed);
1670 }
1671 return err;
1672 }
1673
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1674 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1675 {
1676 return __sys_bind(fd, umyaddr, addrlen);
1677 }
1678
1679 /*
1680 * Perform a listen. Basically, we allow the protocol to do anything
1681 * necessary for a listen, and if that works, we mark the socket as
1682 * ready for listening.
1683 */
1684
__sys_listen(int fd,int backlog)1685 int __sys_listen(int fd, int backlog)
1686 {
1687 struct socket *sock;
1688 int err, fput_needed;
1689 int somaxconn;
1690
1691 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692 if (sock) {
1693 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1694 if ((unsigned int)backlog > somaxconn)
1695 backlog = somaxconn;
1696
1697 err = security_socket_listen(sock, backlog);
1698 if (!err)
1699 err = sock->ops->listen(sock, backlog);
1700
1701 fput_light(sock->file, fput_needed);
1702 }
1703 return err;
1704 }
1705
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1706 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1707 {
1708 return __sys_listen(fd, backlog);
1709 }
1710
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1711 struct file *do_accept(struct file *file, unsigned file_flags,
1712 struct sockaddr __user *upeer_sockaddr,
1713 int __user *upeer_addrlen, int flags)
1714 {
1715 struct socket *sock, *newsock;
1716 struct file *newfile;
1717 int err, len;
1718 struct sockaddr_storage address;
1719
1720 sock = sock_from_file(file, &err);
1721 if (!sock)
1722 return ERR_PTR(err);
1723
1724 newsock = sock_alloc();
1725 if (!newsock)
1726 return ERR_PTR(-ENFILE);
1727
1728 newsock->type = sock->type;
1729 newsock->ops = sock->ops;
1730
1731 /*
1732 * We don't need try_module_get here, as the listening socket (sock)
1733 * has the protocol module (sock->ops->owner) held.
1734 */
1735 __module_get(newsock->ops->owner);
1736
1737 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1738 if (IS_ERR(newfile))
1739 return newfile;
1740
1741 err = security_socket_accept(sock, newsock);
1742 if (err)
1743 goto out_fd;
1744
1745 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1746 false);
1747 if (err < 0)
1748 goto out_fd;
1749
1750 if (upeer_sockaddr) {
1751 len = newsock->ops->getname(newsock,
1752 (struct sockaddr *)&address, 2);
1753 if (len < 0) {
1754 err = -ECONNABORTED;
1755 goto out_fd;
1756 }
1757 err = move_addr_to_user(&address,
1758 len, upeer_sockaddr, upeer_addrlen);
1759 if (err < 0)
1760 goto out_fd;
1761 }
1762
1763 /* File flags are not inherited via accept() unlike another OSes. */
1764 return newfile;
1765 out_fd:
1766 fput(newfile);
1767 return ERR_PTR(err);
1768 }
1769
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1770 int __sys_accept4_file(struct file *file, unsigned file_flags,
1771 struct sockaddr __user *upeer_sockaddr,
1772 int __user *upeer_addrlen, int flags,
1773 unsigned long nofile)
1774 {
1775 struct file *newfile;
1776 int newfd;
1777
1778 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1779 return -EINVAL;
1780
1781 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1782 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1783
1784 newfd = __get_unused_fd_flags(flags, nofile);
1785 if (unlikely(newfd < 0))
1786 return newfd;
1787
1788 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1789 flags);
1790 if (IS_ERR(newfile)) {
1791 put_unused_fd(newfd);
1792 return PTR_ERR(newfile);
1793 }
1794 fd_install(newfd, newfile);
1795 return newfd;
1796 }
1797
1798 /*
1799 * For accept, we attempt to create a new socket, set up the link
1800 * with the client, wake up the client, then return the new
1801 * connected fd. We collect the address of the connector in kernel
1802 * space and move it to user at the very end. This is unclean because
1803 * we open the socket then return an error.
1804 *
1805 * 1003.1g adds the ability to recvmsg() to query connection pending
1806 * status to recvmsg. We need to add that support in a way thats
1807 * clean when we restructure accept also.
1808 */
1809
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1810 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1811 int __user *upeer_addrlen, int flags)
1812 {
1813 int ret = -EBADF;
1814 struct fd f;
1815
1816 f = fdget(fd);
1817 if (f.file) {
1818 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1819 upeer_addrlen, flags,
1820 rlimit(RLIMIT_NOFILE));
1821 fdput(f);
1822 }
1823
1824 return ret;
1825 }
1826
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1827 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1828 int __user *, upeer_addrlen, int, flags)
1829 {
1830 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1831 }
1832
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1833 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1834 int __user *, upeer_addrlen)
1835 {
1836 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1837 }
1838
1839 /*
1840 * Attempt to connect to a socket with the server address. The address
1841 * is in user space so we verify it is OK and move it to kernel space.
1842 *
1843 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1844 * break bindings
1845 *
1846 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1847 * other SEQPACKET protocols that take time to connect() as it doesn't
1848 * include the -EINPROGRESS status for such sockets.
1849 */
1850
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1851 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1852 int addrlen, int file_flags)
1853 {
1854 struct socket *sock;
1855 int err;
1856
1857 sock = sock_from_file(file, &err);
1858 if (!sock)
1859 goto out;
1860
1861 err =
1862 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1863 if (err)
1864 goto out;
1865
1866 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1867 sock->file->f_flags | file_flags);
1868 out:
1869 return err;
1870 }
1871
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1872 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1873 {
1874 int ret = -EBADF;
1875 struct fd f;
1876
1877 f = fdget(fd);
1878 if (f.file) {
1879 struct sockaddr_storage address;
1880
1881 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1882 if (!ret)
1883 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1884 fdput(f);
1885 }
1886
1887 return ret;
1888 }
1889
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1890 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1891 int, addrlen)
1892 {
1893 return __sys_connect(fd, uservaddr, addrlen);
1894 }
1895
1896 /*
1897 * Get the local address ('name') of a socket object. Move the obtained
1898 * name to user space.
1899 */
1900
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1901 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1902 int __user *usockaddr_len)
1903 {
1904 struct socket *sock;
1905 struct sockaddr_storage address;
1906 int err, fput_needed;
1907
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1909 if (!sock)
1910 goto out;
1911
1912 err = security_socket_getsockname(sock);
1913 if (err)
1914 goto out_put;
1915
1916 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1917 if (err < 0)
1918 goto out_put;
1919 /* "err" is actually length in this case */
1920 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1921
1922 out_put:
1923 fput_light(sock->file, fput_needed);
1924 out:
1925 return err;
1926 }
1927
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1928 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1929 int __user *, usockaddr_len)
1930 {
1931 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1932 }
1933
1934 /*
1935 * Get the remote address ('name') of a socket object. Move the obtained
1936 * name to user space.
1937 */
1938
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1939 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1940 int __user *usockaddr_len)
1941 {
1942 struct socket *sock;
1943 struct sockaddr_storage address;
1944 int err, fput_needed;
1945
1946 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 if (sock != NULL) {
1948 err = security_socket_getpeername(sock);
1949 if (err) {
1950 fput_light(sock->file, fput_needed);
1951 return err;
1952 }
1953
1954 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1955 if (err >= 0)
1956 /* "err" is actually length in this case */
1957 err = move_addr_to_user(&address, err, usockaddr,
1958 usockaddr_len);
1959 fput_light(sock->file, fput_needed);
1960 }
1961 return err;
1962 }
1963
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1964 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1965 int __user *, usockaddr_len)
1966 {
1967 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1968 }
1969
1970 /*
1971 * Send a datagram to a given address. We move the address into kernel
1972 * space and check the user space data area is readable before invoking
1973 * the protocol.
1974 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1975 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1976 struct sockaddr __user *addr, int addr_len)
1977 {
1978 struct socket *sock;
1979 struct sockaddr_storage address;
1980 int err;
1981 struct msghdr msg;
1982 struct iovec iov;
1983 int fput_needed;
1984
1985 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1986 if (unlikely(err))
1987 return err;
1988 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1989 if (!sock)
1990 goto out;
1991
1992 msg.msg_name = NULL;
1993 msg.msg_control = NULL;
1994 msg.msg_controllen = 0;
1995 msg.msg_namelen = 0;
1996 if (addr) {
1997 err = move_addr_to_kernel(addr, addr_len, &address);
1998 if (err < 0)
1999 goto out_put;
2000 msg.msg_name = (struct sockaddr *)&address;
2001 msg.msg_namelen = addr_len;
2002 }
2003 if (sock->file->f_flags & O_NONBLOCK)
2004 flags |= MSG_DONTWAIT;
2005 msg.msg_flags = flags;
2006 err = __sock_sendmsg(sock, &msg);
2007
2008 out_put:
2009 fput_light(sock->file, fput_needed);
2010 out:
2011 return err;
2012 }
2013
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2014 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2015 unsigned int, flags, struct sockaddr __user *, addr,
2016 int, addr_len)
2017 {
2018 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2019 }
2020
2021 /*
2022 * Send a datagram down a socket.
2023 */
2024
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2025 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2026 unsigned int, flags)
2027 {
2028 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2029 }
2030
2031 /*
2032 * Receive a frame from the socket and optionally record the address of the
2033 * sender. We verify the buffers are writable and if needed move the
2034 * sender address from kernel to user space.
2035 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2036 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2037 struct sockaddr __user *addr, int __user *addr_len)
2038 {
2039 struct socket *sock;
2040 struct iovec iov;
2041 struct msghdr msg;
2042 struct sockaddr_storage address;
2043 int err, err2;
2044 int fput_needed;
2045
2046 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2047 if (unlikely(err))
2048 return err;
2049 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2050 if (!sock)
2051 goto out;
2052
2053 msg.msg_control = NULL;
2054 msg.msg_controllen = 0;
2055 /* Save some cycles and don't copy the address if not needed */
2056 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2057 /* We assume all kernel code knows the size of sockaddr_storage */
2058 msg.msg_namelen = 0;
2059 msg.msg_iocb = NULL;
2060 msg.msg_flags = 0;
2061 if (sock->file->f_flags & O_NONBLOCK)
2062 flags |= MSG_DONTWAIT;
2063 err = sock_recvmsg(sock, &msg, flags);
2064
2065 if (err >= 0 && addr != NULL) {
2066 err2 = move_addr_to_user(&address,
2067 msg.msg_namelen, addr, addr_len);
2068 if (err2 < 0)
2069 err = err2;
2070 }
2071
2072 fput_light(sock->file, fput_needed);
2073 out:
2074 return err;
2075 }
2076
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2077 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2078 unsigned int, flags, struct sockaddr __user *, addr,
2079 int __user *, addr_len)
2080 {
2081 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2082 }
2083
2084 /*
2085 * Receive a datagram from a socket.
2086 */
2087
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2088 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2089 unsigned int, flags)
2090 {
2091 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2092 }
2093
sock_use_custom_sol_socket(const struct socket * sock)2094 static bool sock_use_custom_sol_socket(const struct socket *sock)
2095 {
2096 const struct sock *sk = sock->sk;
2097
2098 /* Use sock->ops->setsockopt() for MPTCP */
2099 return IS_ENABLED(CONFIG_MPTCP) &&
2100 sk->sk_protocol == IPPROTO_MPTCP &&
2101 sk->sk_type == SOCK_STREAM &&
2102 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2103 }
2104
2105 /*
2106 * Set a socket option. Because we don't know the option lengths we have
2107 * to pass the user mode parameter for the protocols to sort out.
2108 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2109 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2110 int optlen)
2111 {
2112 sockptr_t optval = USER_SOCKPTR(user_optval);
2113 char *kernel_optval = NULL;
2114 int err, fput_needed;
2115 struct socket *sock;
2116
2117 if (optlen < 0)
2118 return -EINVAL;
2119
2120 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2121 if (!sock)
2122 return err;
2123
2124 err = security_socket_setsockopt(sock, level, optname);
2125 if (err)
2126 goto out_put;
2127
2128 if (!in_compat_syscall())
2129 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2130 user_optval, &optlen,
2131 &kernel_optval);
2132 if (err < 0)
2133 goto out_put;
2134 if (err > 0) {
2135 err = 0;
2136 goto out_put;
2137 }
2138
2139 if (kernel_optval)
2140 optval = KERNEL_SOCKPTR(kernel_optval);
2141 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2142 err = sock_setsockopt(sock, level, optname, optval, optlen);
2143 else if (unlikely(!sock->ops->setsockopt))
2144 err = -EOPNOTSUPP;
2145 else
2146 err = sock->ops->setsockopt(sock, level, optname, optval,
2147 optlen);
2148 kfree(kernel_optval);
2149 out_put:
2150 fput_light(sock->file, fput_needed);
2151 return err;
2152 }
2153
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2154 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2155 char __user *, optval, int, optlen)
2156 {
2157 return __sys_setsockopt(fd, level, optname, optval, optlen);
2158 }
2159
2160 /*
2161 * Get a socket option. Because we don't know the option lengths we have
2162 * to pass a user mode parameter for the protocols to sort out.
2163 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2164 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2165 int __user *optlen)
2166 {
2167 int err, fput_needed;
2168 struct socket *sock;
2169 int max_optlen;
2170
2171 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 if (!sock)
2173 return err;
2174
2175 err = security_socket_getsockopt(sock, level, optname);
2176 if (err)
2177 goto out_put;
2178
2179 if (!in_compat_syscall())
2180 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2181
2182 if (level == SOL_SOCKET)
2183 err = sock_getsockopt(sock, level, optname, optval, optlen);
2184 else if (unlikely(!sock->ops->getsockopt))
2185 err = -EOPNOTSUPP;
2186 else
2187 err = sock->ops->getsockopt(sock, level, optname, optval,
2188 optlen);
2189
2190 if (!in_compat_syscall())
2191 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2192 optval, optlen, max_optlen,
2193 err);
2194 out_put:
2195 fput_light(sock->file, fput_needed);
2196 return err;
2197 }
2198
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2199 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2200 char __user *, optval, int __user *, optlen)
2201 {
2202 return __sys_getsockopt(fd, level, optname, optval, optlen);
2203 }
2204
2205 /*
2206 * Shutdown a socket.
2207 */
2208
__sys_shutdown_sock(struct socket * sock,int how)2209 int __sys_shutdown_sock(struct socket *sock, int how)
2210 {
2211 int err;
2212
2213 err = security_socket_shutdown(sock, how);
2214 if (!err)
2215 err = sock->ops->shutdown(sock, how);
2216
2217 return err;
2218 }
2219
__sys_shutdown(int fd,int how)2220 int __sys_shutdown(int fd, int how)
2221 {
2222 int err, fput_needed;
2223 struct socket *sock;
2224
2225 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2226 if (sock != NULL) {
2227 err = __sys_shutdown_sock(sock, how);
2228 fput_light(sock->file, fput_needed);
2229 }
2230 return err;
2231 }
2232
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2233 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2234 {
2235 return __sys_shutdown(fd, how);
2236 }
2237
2238 /* A couple of helpful macros for getting the address of the 32/64 bit
2239 * fields which are the same type (int / unsigned) on our platforms.
2240 */
2241 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2242 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2243 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2244
2245 struct used_address {
2246 struct sockaddr_storage name;
2247 unsigned int name_len;
2248 };
2249
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2250 int __copy_msghdr_from_user(struct msghdr *kmsg,
2251 struct user_msghdr __user *umsg,
2252 struct sockaddr __user **save_addr,
2253 struct iovec __user **uiov, size_t *nsegs)
2254 {
2255 struct user_msghdr msg;
2256 ssize_t err;
2257
2258 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2259 return -EFAULT;
2260
2261 kmsg->msg_control_is_user = true;
2262 kmsg->msg_control_user = msg.msg_control;
2263 kmsg->msg_controllen = msg.msg_controllen;
2264 kmsg->msg_flags = msg.msg_flags;
2265
2266 kmsg->msg_namelen = msg.msg_namelen;
2267 if (!msg.msg_name)
2268 kmsg->msg_namelen = 0;
2269
2270 if (kmsg->msg_namelen < 0)
2271 return -EINVAL;
2272
2273 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2274 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2275
2276 if (save_addr)
2277 *save_addr = msg.msg_name;
2278
2279 if (msg.msg_name && kmsg->msg_namelen) {
2280 if (!save_addr) {
2281 err = move_addr_to_kernel(msg.msg_name,
2282 kmsg->msg_namelen,
2283 kmsg->msg_name);
2284 if (err < 0)
2285 return err;
2286 }
2287 } else {
2288 kmsg->msg_name = NULL;
2289 kmsg->msg_namelen = 0;
2290 }
2291
2292 if (msg.msg_iovlen > UIO_MAXIOV)
2293 return -EMSGSIZE;
2294
2295 kmsg->msg_iocb = NULL;
2296 *uiov = msg.msg_iov;
2297 *nsegs = msg.msg_iovlen;
2298 return 0;
2299 }
2300
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2301 static int copy_msghdr_from_user(struct msghdr *kmsg,
2302 struct user_msghdr __user *umsg,
2303 struct sockaddr __user **save_addr,
2304 struct iovec **iov)
2305 {
2306 struct user_msghdr msg;
2307 ssize_t err;
2308
2309 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2310 &msg.msg_iovlen);
2311 if (err)
2312 return err;
2313
2314 err = import_iovec(save_addr ? READ : WRITE,
2315 msg.msg_iov, msg.msg_iovlen,
2316 UIO_FASTIOV, iov, &kmsg->msg_iter);
2317 return err < 0 ? err : 0;
2318 }
2319
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2320 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2321 unsigned int flags, struct used_address *used_address,
2322 unsigned int allowed_msghdr_flags)
2323 {
2324 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2325 __aligned(sizeof(__kernel_size_t));
2326 /* 20 is size of ipv6_pktinfo */
2327 unsigned char *ctl_buf = ctl;
2328 int ctl_len;
2329 ssize_t err;
2330
2331 err = -ENOBUFS;
2332
2333 if (msg_sys->msg_controllen > INT_MAX)
2334 goto out;
2335 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2336 ctl_len = msg_sys->msg_controllen;
2337 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2338 err =
2339 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2340 sizeof(ctl));
2341 if (err)
2342 goto out;
2343 ctl_buf = msg_sys->msg_control;
2344 ctl_len = msg_sys->msg_controllen;
2345 } else if (ctl_len) {
2346 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2347 CMSG_ALIGN(sizeof(struct cmsghdr)));
2348 if (ctl_len > sizeof(ctl)) {
2349 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2350 if (ctl_buf == NULL)
2351 goto out;
2352 }
2353 err = -EFAULT;
2354 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2355 goto out_freectl;
2356 msg_sys->msg_control = ctl_buf;
2357 msg_sys->msg_control_is_user = false;
2358 }
2359 msg_sys->msg_flags = flags;
2360
2361 if (sock->file->f_flags & O_NONBLOCK)
2362 msg_sys->msg_flags |= MSG_DONTWAIT;
2363 /*
2364 * If this is sendmmsg() and current destination address is same as
2365 * previously succeeded address, omit asking LSM's decision.
2366 * used_address->name_len is initialized to UINT_MAX so that the first
2367 * destination address never matches.
2368 */
2369 if (used_address && msg_sys->msg_name &&
2370 used_address->name_len == msg_sys->msg_namelen &&
2371 !memcmp(&used_address->name, msg_sys->msg_name,
2372 used_address->name_len)) {
2373 err = sock_sendmsg_nosec(sock, msg_sys);
2374 goto out_freectl;
2375 }
2376 err = __sock_sendmsg(sock, msg_sys);
2377 /*
2378 * If this is sendmmsg() and sending to current destination address was
2379 * successful, remember it.
2380 */
2381 if (used_address && err >= 0) {
2382 used_address->name_len = msg_sys->msg_namelen;
2383 if (msg_sys->msg_name)
2384 memcpy(&used_address->name, msg_sys->msg_name,
2385 used_address->name_len);
2386 }
2387
2388 out_freectl:
2389 if (ctl_buf != ctl)
2390 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2391 out:
2392 return err;
2393 }
2394
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2395 int sendmsg_copy_msghdr(struct msghdr *msg,
2396 struct user_msghdr __user *umsg, unsigned flags,
2397 struct iovec **iov)
2398 {
2399 int err;
2400
2401 if (flags & MSG_CMSG_COMPAT) {
2402 struct compat_msghdr __user *msg_compat;
2403
2404 msg_compat = (struct compat_msghdr __user *) umsg;
2405 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2406 } else {
2407 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2408 }
2409 if (err < 0)
2410 return err;
2411
2412 return 0;
2413 }
2414
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2415 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2416 struct msghdr *msg_sys, unsigned int flags,
2417 struct used_address *used_address,
2418 unsigned int allowed_msghdr_flags)
2419 {
2420 struct sockaddr_storage address;
2421 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2422 ssize_t err;
2423
2424 msg_sys->msg_name = &address;
2425
2426 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2427 if (err < 0)
2428 return err;
2429
2430 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2431 allowed_msghdr_flags);
2432 kfree(iov);
2433 return err;
2434 }
2435
2436 /*
2437 * BSD sendmsg interface
2438 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2439 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2440 unsigned int flags)
2441 {
2442 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2443 }
2444
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2445 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2446 bool forbid_cmsg_compat)
2447 {
2448 int fput_needed, err;
2449 struct msghdr msg_sys;
2450 struct socket *sock;
2451
2452 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2453 return -EINVAL;
2454
2455 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2456 if (!sock)
2457 goto out;
2458
2459 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2460
2461 fput_light(sock->file, fput_needed);
2462 out:
2463 return err;
2464 }
2465
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2466 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2467 {
2468 return __sys_sendmsg(fd, msg, flags, true);
2469 }
2470
2471 /*
2472 * Linux sendmmsg interface
2473 */
2474
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2475 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2476 unsigned int flags, bool forbid_cmsg_compat)
2477 {
2478 int fput_needed, err, datagrams;
2479 struct socket *sock;
2480 struct mmsghdr __user *entry;
2481 struct compat_mmsghdr __user *compat_entry;
2482 struct msghdr msg_sys;
2483 struct used_address used_address;
2484 unsigned int oflags = flags;
2485
2486 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2487 return -EINVAL;
2488
2489 if (vlen > UIO_MAXIOV)
2490 vlen = UIO_MAXIOV;
2491
2492 datagrams = 0;
2493
2494 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2495 if (!sock)
2496 return err;
2497
2498 used_address.name_len = UINT_MAX;
2499 entry = mmsg;
2500 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2501 err = 0;
2502 flags |= MSG_BATCH;
2503
2504 while (datagrams < vlen) {
2505 if (datagrams == vlen - 1)
2506 flags = oflags;
2507
2508 if (MSG_CMSG_COMPAT & flags) {
2509 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2510 &msg_sys, flags, &used_address, MSG_EOR);
2511 if (err < 0)
2512 break;
2513 err = __put_user(err, &compat_entry->msg_len);
2514 ++compat_entry;
2515 } else {
2516 err = ___sys_sendmsg(sock,
2517 (struct user_msghdr __user *)entry,
2518 &msg_sys, flags, &used_address, MSG_EOR);
2519 if (err < 0)
2520 break;
2521 err = put_user(err, &entry->msg_len);
2522 ++entry;
2523 }
2524
2525 if (err)
2526 break;
2527 ++datagrams;
2528 if (msg_data_left(&msg_sys))
2529 break;
2530 cond_resched();
2531 }
2532
2533 fput_light(sock->file, fput_needed);
2534
2535 /* We only return an error if no datagrams were able to be sent */
2536 if (datagrams != 0)
2537 return datagrams;
2538
2539 return err;
2540 }
2541
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2542 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2543 unsigned int, vlen, unsigned int, flags)
2544 {
2545 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2546 }
2547
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2548 int recvmsg_copy_msghdr(struct msghdr *msg,
2549 struct user_msghdr __user *umsg, unsigned flags,
2550 struct sockaddr __user **uaddr,
2551 struct iovec **iov)
2552 {
2553 ssize_t err;
2554
2555 if (MSG_CMSG_COMPAT & flags) {
2556 struct compat_msghdr __user *msg_compat;
2557
2558 msg_compat = (struct compat_msghdr __user *) umsg;
2559 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2560 } else {
2561 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2562 }
2563 if (err < 0)
2564 return err;
2565
2566 return 0;
2567 }
2568
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2569 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2570 struct user_msghdr __user *msg,
2571 struct sockaddr __user *uaddr,
2572 unsigned int flags, int nosec)
2573 {
2574 struct compat_msghdr __user *msg_compat =
2575 (struct compat_msghdr __user *) msg;
2576 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2577 struct sockaddr_storage addr;
2578 unsigned long cmsg_ptr;
2579 int len;
2580 ssize_t err;
2581
2582 msg_sys->msg_name = &addr;
2583 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2584 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2585
2586 /* We assume all kernel code knows the size of sockaddr_storage */
2587 msg_sys->msg_namelen = 0;
2588
2589 if (sock->file->f_flags & O_NONBLOCK)
2590 flags |= MSG_DONTWAIT;
2591
2592 if (unlikely(nosec))
2593 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2594 else
2595 err = sock_recvmsg(sock, msg_sys, flags);
2596
2597 if (err < 0)
2598 goto out;
2599 len = err;
2600
2601 if (uaddr != NULL) {
2602 err = move_addr_to_user(&addr,
2603 msg_sys->msg_namelen, uaddr,
2604 uaddr_len);
2605 if (err < 0)
2606 goto out;
2607 }
2608 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2609 COMPAT_FLAGS(msg));
2610 if (err)
2611 goto out;
2612 if (MSG_CMSG_COMPAT & flags)
2613 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2614 &msg_compat->msg_controllen);
2615 else
2616 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2617 &msg->msg_controllen);
2618 if (err)
2619 goto out;
2620 err = len;
2621 out:
2622 return err;
2623 }
2624
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2625 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2626 struct msghdr *msg_sys, unsigned int flags, int nosec)
2627 {
2628 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 /* user mode address pointers */
2630 struct sockaddr __user *uaddr;
2631 ssize_t err;
2632
2633 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2634 if (err < 0)
2635 return err;
2636
2637 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2638 kfree(iov);
2639 return err;
2640 }
2641
2642 /*
2643 * BSD recvmsg interface
2644 */
2645
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2646 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2647 struct user_msghdr __user *umsg,
2648 struct sockaddr __user *uaddr, unsigned int flags)
2649 {
2650 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2651 }
2652
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2653 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2654 bool forbid_cmsg_compat)
2655 {
2656 int fput_needed, err;
2657 struct msghdr msg_sys;
2658 struct socket *sock;
2659
2660 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2661 return -EINVAL;
2662
2663 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2664 if (!sock)
2665 goto out;
2666
2667 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2668
2669 fput_light(sock->file, fput_needed);
2670 out:
2671 return err;
2672 }
2673
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2674 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2675 unsigned int, flags)
2676 {
2677 return __sys_recvmsg(fd, msg, flags, true);
2678 }
2679
2680 /*
2681 * Linux recvmmsg interface
2682 */
2683
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2684 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2685 unsigned int vlen, unsigned int flags,
2686 struct timespec64 *timeout)
2687 {
2688 int fput_needed, err, datagrams;
2689 struct socket *sock;
2690 struct mmsghdr __user *entry;
2691 struct compat_mmsghdr __user *compat_entry;
2692 struct msghdr msg_sys;
2693 struct timespec64 end_time;
2694 struct timespec64 timeout64;
2695
2696 if (timeout &&
2697 poll_select_set_timeout(&end_time, timeout->tv_sec,
2698 timeout->tv_nsec))
2699 return -EINVAL;
2700
2701 datagrams = 0;
2702
2703 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2704 if (!sock)
2705 return err;
2706
2707 if (likely(!(flags & MSG_ERRQUEUE))) {
2708 err = sock_error(sock->sk);
2709 if (err) {
2710 datagrams = err;
2711 goto out_put;
2712 }
2713 }
2714
2715 entry = mmsg;
2716 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2717
2718 while (datagrams < vlen) {
2719 /*
2720 * No need to ask LSM for more than the first datagram.
2721 */
2722 if (MSG_CMSG_COMPAT & flags) {
2723 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2724 &msg_sys, flags & ~MSG_WAITFORONE,
2725 datagrams);
2726 if (err < 0)
2727 break;
2728 err = __put_user(err, &compat_entry->msg_len);
2729 ++compat_entry;
2730 } else {
2731 err = ___sys_recvmsg(sock,
2732 (struct user_msghdr __user *)entry,
2733 &msg_sys, flags & ~MSG_WAITFORONE,
2734 datagrams);
2735 if (err < 0)
2736 break;
2737 err = put_user(err, &entry->msg_len);
2738 ++entry;
2739 }
2740
2741 if (err)
2742 break;
2743 ++datagrams;
2744
2745 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2746 if (flags & MSG_WAITFORONE)
2747 flags |= MSG_DONTWAIT;
2748
2749 if (timeout) {
2750 ktime_get_ts64(&timeout64);
2751 *timeout = timespec64_sub(end_time, timeout64);
2752 if (timeout->tv_sec < 0) {
2753 timeout->tv_sec = timeout->tv_nsec = 0;
2754 break;
2755 }
2756
2757 /* Timeout, return less than vlen datagrams */
2758 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2759 break;
2760 }
2761
2762 /* Out of band data, return right away */
2763 if (msg_sys.msg_flags & MSG_OOB)
2764 break;
2765 cond_resched();
2766 }
2767
2768 if (err == 0)
2769 goto out_put;
2770
2771 if (datagrams == 0) {
2772 datagrams = err;
2773 goto out_put;
2774 }
2775
2776 /*
2777 * We may return less entries than requested (vlen) if the
2778 * sock is non block and there aren't enough datagrams...
2779 */
2780 if (err != -EAGAIN) {
2781 /*
2782 * ... or if recvmsg returns an error after we
2783 * received some datagrams, where we record the
2784 * error to return on the next call or if the
2785 * app asks about it using getsockopt(SO_ERROR).
2786 */
2787 WRITE_ONCE(sock->sk->sk_err, -err);
2788 }
2789 out_put:
2790 fput_light(sock->file, fput_needed);
2791
2792 return datagrams;
2793 }
2794
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2795 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2796 unsigned int vlen, unsigned int flags,
2797 struct __kernel_timespec __user *timeout,
2798 struct old_timespec32 __user *timeout32)
2799 {
2800 int datagrams;
2801 struct timespec64 timeout_sys;
2802
2803 if (timeout && get_timespec64(&timeout_sys, timeout))
2804 return -EFAULT;
2805
2806 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2807 return -EFAULT;
2808
2809 if (!timeout && !timeout32)
2810 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2811
2812 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2813
2814 if (datagrams <= 0)
2815 return datagrams;
2816
2817 if (timeout && put_timespec64(&timeout_sys, timeout))
2818 datagrams = -EFAULT;
2819
2820 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2821 datagrams = -EFAULT;
2822
2823 return datagrams;
2824 }
2825
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2826 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2827 unsigned int, vlen, unsigned int, flags,
2828 struct __kernel_timespec __user *, timeout)
2829 {
2830 if (flags & MSG_CMSG_COMPAT)
2831 return -EINVAL;
2832
2833 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2834 }
2835
2836 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2837 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2838 unsigned int, vlen, unsigned int, flags,
2839 struct old_timespec32 __user *, timeout)
2840 {
2841 if (flags & MSG_CMSG_COMPAT)
2842 return -EINVAL;
2843
2844 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2845 }
2846 #endif
2847
2848 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2849 /* Argument list sizes for sys_socketcall */
2850 #define AL(x) ((x) * sizeof(unsigned long))
2851 static const unsigned char nargs[21] = {
2852 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2853 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2854 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2855 AL(4), AL(5), AL(4)
2856 };
2857
2858 #undef AL
2859
2860 /*
2861 * System call vectors.
2862 *
2863 * Argument checking cleaned up. Saved 20% in size.
2864 * This function doesn't need to set the kernel lock because
2865 * it is set by the callees.
2866 */
2867
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2868 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2869 {
2870 unsigned long a[AUDITSC_ARGS];
2871 unsigned long a0, a1;
2872 int err;
2873 unsigned int len;
2874
2875 if (call < 1 || call > SYS_SENDMMSG)
2876 return -EINVAL;
2877 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2878
2879 len = nargs[call];
2880 if (len > sizeof(a))
2881 return -EINVAL;
2882
2883 /* copy_from_user should be SMP safe. */
2884 if (copy_from_user(a, args, len))
2885 return -EFAULT;
2886
2887 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2888 if (err)
2889 return err;
2890
2891 a0 = a[0];
2892 a1 = a[1];
2893
2894 switch (call) {
2895 case SYS_SOCKET:
2896 err = __sys_socket(a0, a1, a[2]);
2897 break;
2898 case SYS_BIND:
2899 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2900 break;
2901 case SYS_CONNECT:
2902 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2903 break;
2904 case SYS_LISTEN:
2905 err = __sys_listen(a0, a1);
2906 break;
2907 case SYS_ACCEPT:
2908 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2909 (int __user *)a[2], 0);
2910 break;
2911 case SYS_GETSOCKNAME:
2912 err =
2913 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2914 (int __user *)a[2]);
2915 break;
2916 case SYS_GETPEERNAME:
2917 err =
2918 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2919 (int __user *)a[2]);
2920 break;
2921 case SYS_SOCKETPAIR:
2922 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2923 break;
2924 case SYS_SEND:
2925 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2926 NULL, 0);
2927 break;
2928 case SYS_SENDTO:
2929 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2930 (struct sockaddr __user *)a[4], a[5]);
2931 break;
2932 case SYS_RECV:
2933 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2934 NULL, NULL);
2935 break;
2936 case SYS_RECVFROM:
2937 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2938 (struct sockaddr __user *)a[4],
2939 (int __user *)a[5]);
2940 break;
2941 case SYS_SHUTDOWN:
2942 err = __sys_shutdown(a0, a1);
2943 break;
2944 case SYS_SETSOCKOPT:
2945 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2946 a[4]);
2947 break;
2948 case SYS_GETSOCKOPT:
2949 err =
2950 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2951 (int __user *)a[4]);
2952 break;
2953 case SYS_SENDMSG:
2954 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2955 a[2], true);
2956 break;
2957 case SYS_SENDMMSG:
2958 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2959 a[3], true);
2960 break;
2961 case SYS_RECVMSG:
2962 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2963 a[2], true);
2964 break;
2965 case SYS_RECVMMSG:
2966 if (IS_ENABLED(CONFIG_64BIT))
2967 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2968 a[2], a[3],
2969 (struct __kernel_timespec __user *)a[4],
2970 NULL);
2971 else
2972 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2973 a[2], a[3], NULL,
2974 (struct old_timespec32 __user *)a[4]);
2975 break;
2976 case SYS_ACCEPT4:
2977 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2978 (int __user *)a[2], a[3]);
2979 break;
2980 default:
2981 err = -EINVAL;
2982 break;
2983 }
2984 return err;
2985 }
2986
2987 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2988
2989 /**
2990 * sock_register - add a socket protocol handler
2991 * @ops: description of protocol
2992 *
2993 * This function is called by a protocol handler that wants to
2994 * advertise its address family, and have it linked into the
2995 * socket interface. The value ops->family corresponds to the
2996 * socket system call protocol family.
2997 */
sock_register(const struct net_proto_family * ops)2998 int sock_register(const struct net_proto_family *ops)
2999 {
3000 int err;
3001
3002 if (ops->family >= NPROTO) {
3003 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3004 return -ENOBUFS;
3005 }
3006
3007 spin_lock(&net_family_lock);
3008 if (rcu_dereference_protected(net_families[ops->family],
3009 lockdep_is_held(&net_family_lock)))
3010 err = -EEXIST;
3011 else {
3012 rcu_assign_pointer(net_families[ops->family], ops);
3013 err = 0;
3014 }
3015 spin_unlock(&net_family_lock);
3016
3017 pr_info("NET: Registered protocol family %d\n", ops->family);
3018 return err;
3019 }
3020 EXPORT_SYMBOL(sock_register);
3021
3022 /**
3023 * sock_unregister - remove a protocol handler
3024 * @family: protocol family to remove
3025 *
3026 * This function is called by a protocol handler that wants to
3027 * remove its address family, and have it unlinked from the
3028 * new socket creation.
3029 *
3030 * If protocol handler is a module, then it can use module reference
3031 * counts to protect against new references. If protocol handler is not
3032 * a module then it needs to provide its own protection in
3033 * the ops->create routine.
3034 */
sock_unregister(int family)3035 void sock_unregister(int family)
3036 {
3037 BUG_ON(family < 0 || family >= NPROTO);
3038
3039 spin_lock(&net_family_lock);
3040 RCU_INIT_POINTER(net_families[family], NULL);
3041 spin_unlock(&net_family_lock);
3042
3043 synchronize_rcu();
3044
3045 pr_info("NET: Unregistered protocol family %d\n", family);
3046 }
3047 EXPORT_SYMBOL(sock_unregister);
3048
sock_is_registered(int family)3049 bool sock_is_registered(int family)
3050 {
3051 return family < NPROTO && rcu_access_pointer(net_families[family]);
3052 }
3053
sock_init(void)3054 static int __init sock_init(void)
3055 {
3056 int err;
3057 /*
3058 * Initialize the network sysctl infrastructure.
3059 */
3060 err = net_sysctl_init();
3061 if (err)
3062 goto out;
3063
3064 /*
3065 * Initialize skbuff SLAB cache
3066 */
3067 skb_init();
3068
3069 /*
3070 * Initialize the protocols module.
3071 */
3072
3073 init_inodecache();
3074
3075 err = register_filesystem(&sock_fs_type);
3076 if (err)
3077 goto out;
3078 sock_mnt = kern_mount(&sock_fs_type);
3079 if (IS_ERR(sock_mnt)) {
3080 err = PTR_ERR(sock_mnt);
3081 goto out_mount;
3082 }
3083
3084 /* The real protocol initialization is performed in later initcalls.
3085 */
3086
3087 #ifdef CONFIG_NETFILTER
3088 err = netfilter_init();
3089 if (err)
3090 goto out;
3091 #endif
3092
3093 ptp_classifier_init();
3094
3095 out:
3096 return err;
3097
3098 out_mount:
3099 unregister_filesystem(&sock_fs_type);
3100 goto out;
3101 }
3102
3103 core_initcall(sock_init); /* early initcall */
3104
3105 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3106 void socket_seq_show(struct seq_file *seq)
3107 {
3108 seq_printf(seq, "sockets: used %d\n",
3109 sock_inuse_get(seq->private));
3110 }
3111 #endif /* CONFIG_PROC_FS */
3112
3113 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3114 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3115 {
3116 struct compat_ifconf ifc32;
3117 struct ifconf ifc;
3118 int err;
3119
3120 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3121 return -EFAULT;
3122
3123 ifc.ifc_len = ifc32.ifc_len;
3124 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3125
3126 rtnl_lock();
3127 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3128 rtnl_unlock();
3129 if (err)
3130 return err;
3131
3132 ifc32.ifc_len = ifc.ifc_len;
3133 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3134 return -EFAULT;
3135
3136 return 0;
3137 }
3138
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3139 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3140 {
3141 compat_uptr_t uptr32;
3142 struct ifreq ifr;
3143 void __user *saved;
3144 int err;
3145
3146 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3147 return -EFAULT;
3148
3149 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3150 return -EFAULT;
3151
3152 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3153 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3154
3155 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3156 if (!err) {
3157 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3158 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3159 err = -EFAULT;
3160 }
3161 return err;
3162 }
3163
3164 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3165 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3166 struct compat_ifreq __user *u_ifreq32)
3167 {
3168 struct ifreq ifreq;
3169 u32 data32;
3170
3171 if (!is_socket_ioctl_cmd(cmd))
3172 return -ENOTTY;
3173 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3174 return -EFAULT;
3175 if (get_user(data32, &u_ifreq32->ifr_data))
3176 return -EFAULT;
3177 ifreq.ifr_data = compat_ptr(data32);
3178
3179 return dev_ioctl(net, cmd, &ifreq, NULL);
3180 }
3181
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3182 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3183 unsigned int cmd,
3184 struct compat_ifreq __user *uifr32)
3185 {
3186 struct ifreq __user *uifr;
3187 int err;
3188
3189 /* Handle the fact that while struct ifreq has the same *layout* on
3190 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3191 * which are handled elsewhere, it still has different *size* due to
3192 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3193 * resulting in struct ifreq being 32 and 40 bytes respectively).
3194 * As a result, if the struct happens to be at the end of a page and
3195 * the next page isn't readable/writable, we get a fault. To prevent
3196 * that, copy back and forth to the full size.
3197 */
3198
3199 uifr = compat_alloc_user_space(sizeof(*uifr));
3200 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3201 return -EFAULT;
3202
3203 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3204
3205 if (!err) {
3206 switch (cmd) {
3207 case SIOCGIFFLAGS:
3208 case SIOCGIFMETRIC:
3209 case SIOCGIFMTU:
3210 case SIOCGIFMEM:
3211 case SIOCGIFHWADDR:
3212 case SIOCGIFINDEX:
3213 case SIOCGIFADDR:
3214 case SIOCGIFBRDADDR:
3215 case SIOCGIFDSTADDR:
3216 case SIOCGIFNETMASK:
3217 case SIOCGIFPFLAGS:
3218 case SIOCGIFTXQLEN:
3219 case SIOCGMIIPHY:
3220 case SIOCGMIIREG:
3221 case SIOCGIFNAME:
3222 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3223 err = -EFAULT;
3224 break;
3225 }
3226 }
3227 return err;
3228 }
3229
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3230 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3231 struct compat_ifreq __user *uifr32)
3232 {
3233 struct ifreq ifr;
3234 struct compat_ifmap __user *uifmap32;
3235 int err;
3236
3237 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3238 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3239 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3240 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3241 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3242 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3243 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3244 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3245 if (err)
3246 return -EFAULT;
3247
3248 err = dev_ioctl(net, cmd, &ifr, NULL);
3249
3250 if (cmd == SIOCGIFMAP && !err) {
3251 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3252 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3253 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3254 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3255 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3256 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3257 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3258 if (err)
3259 err = -EFAULT;
3260 }
3261 return err;
3262 }
3263
3264 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3265 * for some operations; this forces use of the newer bridge-utils that
3266 * use compatible ioctls
3267 */
old_bridge_ioctl(compat_ulong_t __user * argp)3268 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3269 {
3270 compat_ulong_t tmp;
3271
3272 if (get_user(tmp, argp))
3273 return -EFAULT;
3274 if (tmp == BRCTL_GET_VERSION)
3275 return BRCTL_VERSION + 1;
3276 return -EINVAL;
3277 }
3278
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3279 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3280 unsigned int cmd, unsigned long arg)
3281 {
3282 void __user *argp = compat_ptr(arg);
3283 struct sock *sk = sock->sk;
3284 struct net *net = sock_net(sk);
3285
3286 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3287 return compat_ifr_data_ioctl(net, cmd, argp);
3288
3289 switch (cmd) {
3290 case SIOCSIFBR:
3291 case SIOCGIFBR:
3292 return old_bridge_ioctl(argp);
3293 case SIOCGIFCONF:
3294 return compat_dev_ifconf(net, argp);
3295 case SIOCWANDEV:
3296 return compat_siocwandev(net, argp);
3297 case SIOCGIFMAP:
3298 case SIOCSIFMAP:
3299 return compat_sioc_ifmap(net, cmd, argp);
3300 case SIOCGSTAMP_OLD:
3301 case SIOCGSTAMPNS_OLD:
3302 if (!sock->ops->gettstamp)
3303 return -ENOIOCTLCMD;
3304 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3305 !COMPAT_USE_64BIT_TIME);
3306
3307 case SIOCETHTOOL:
3308 case SIOCBONDSLAVEINFOQUERY:
3309 case SIOCBONDINFOQUERY:
3310 case SIOCSHWTSTAMP:
3311 case SIOCGHWTSTAMP:
3312 return compat_ifr_data_ioctl(net, cmd, argp);
3313
3314 case FIOSETOWN:
3315 case SIOCSPGRP:
3316 case FIOGETOWN:
3317 case SIOCGPGRP:
3318 case SIOCBRADDBR:
3319 case SIOCBRDELBR:
3320 case SIOCGIFVLAN:
3321 case SIOCSIFVLAN:
3322 case SIOCADDDLCI:
3323 case SIOCDELDLCI:
3324 case SIOCGSKNS:
3325 case SIOCGSTAMP_NEW:
3326 case SIOCGSTAMPNS_NEW:
3327 return sock_ioctl(file, cmd, arg);
3328
3329 case SIOCGIFFLAGS:
3330 case SIOCSIFFLAGS:
3331 case SIOCGIFMETRIC:
3332 case SIOCSIFMETRIC:
3333 case SIOCGIFMTU:
3334 case SIOCSIFMTU:
3335 case SIOCGIFMEM:
3336 case SIOCSIFMEM:
3337 case SIOCGIFHWADDR:
3338 case SIOCSIFHWADDR:
3339 case SIOCADDMULTI:
3340 case SIOCDELMULTI:
3341 case SIOCGIFINDEX:
3342 case SIOCGIFADDR:
3343 case SIOCSIFADDR:
3344 case SIOCSIFHWBROADCAST:
3345 case SIOCDIFADDR:
3346 case SIOCGIFBRDADDR:
3347 case SIOCSIFBRDADDR:
3348 case SIOCGIFDSTADDR:
3349 case SIOCSIFDSTADDR:
3350 case SIOCGIFNETMASK:
3351 case SIOCSIFNETMASK:
3352 case SIOCSIFPFLAGS:
3353 case SIOCGIFPFLAGS:
3354 case SIOCGIFTXQLEN:
3355 case SIOCSIFTXQLEN:
3356 case SIOCBRADDIF:
3357 case SIOCBRDELIF:
3358 case SIOCGIFNAME:
3359 case SIOCSIFNAME:
3360 case SIOCGMIIPHY:
3361 case SIOCGMIIREG:
3362 case SIOCSMIIREG:
3363 case SIOCBONDENSLAVE:
3364 case SIOCBONDRELEASE:
3365 case SIOCBONDSETHWADDR:
3366 case SIOCBONDCHANGEACTIVE:
3367 return compat_ifreq_ioctl(net, sock, cmd, argp);
3368
3369 case SIOCSARP:
3370 case SIOCGARP:
3371 case SIOCDARP:
3372 case SIOCOUTQ:
3373 case SIOCOUTQNSD:
3374 case SIOCATMARK:
3375 return sock_do_ioctl(net, sock, cmd, arg);
3376 }
3377
3378 return -ENOIOCTLCMD;
3379 }
3380
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3381 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3382 unsigned long arg)
3383 {
3384 struct socket *sock = file->private_data;
3385 int ret = -ENOIOCTLCMD;
3386 struct sock *sk;
3387 struct net *net;
3388
3389 sk = sock->sk;
3390 net = sock_net(sk);
3391
3392 if (sock->ops->compat_ioctl)
3393 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3394
3395 if (ret == -ENOIOCTLCMD &&
3396 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3397 ret = compat_wext_handle_ioctl(net, cmd, arg);
3398
3399 if (ret == -ENOIOCTLCMD)
3400 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3401
3402 return ret;
3403 }
3404 #endif
3405
3406 /**
3407 * kernel_bind - bind an address to a socket (kernel space)
3408 * @sock: socket
3409 * @addr: address
3410 * @addrlen: length of address
3411 *
3412 * Returns 0 or an error.
3413 */
3414
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3415 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3416 {
3417 struct sockaddr_storage address;
3418
3419 memcpy(&address, addr, addrlen);
3420
3421 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3422 }
3423 EXPORT_SYMBOL(kernel_bind);
3424
3425 /**
3426 * kernel_listen - move socket to listening state (kernel space)
3427 * @sock: socket
3428 * @backlog: pending connections queue size
3429 *
3430 * Returns 0 or an error.
3431 */
3432
kernel_listen(struct socket * sock,int backlog)3433 int kernel_listen(struct socket *sock, int backlog)
3434 {
3435 return sock->ops->listen(sock, backlog);
3436 }
3437 EXPORT_SYMBOL(kernel_listen);
3438
3439 /**
3440 * kernel_accept - accept a connection (kernel space)
3441 * @sock: listening socket
3442 * @newsock: new connected socket
3443 * @flags: flags
3444 *
3445 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3446 * If it fails, @newsock is guaranteed to be %NULL.
3447 * Returns 0 or an error.
3448 */
3449
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3450 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3451 {
3452 struct sock *sk = sock->sk;
3453 int err;
3454
3455 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3456 newsock);
3457 if (err < 0)
3458 goto done;
3459
3460 err = sock->ops->accept(sock, *newsock, flags, true);
3461 if (err < 0) {
3462 sock_release(*newsock);
3463 *newsock = NULL;
3464 goto done;
3465 }
3466
3467 (*newsock)->ops = sock->ops;
3468 __module_get((*newsock)->ops->owner);
3469
3470 done:
3471 return err;
3472 }
3473 EXPORT_SYMBOL(kernel_accept);
3474
3475 /**
3476 * kernel_connect - connect a socket (kernel space)
3477 * @sock: socket
3478 * @addr: address
3479 * @addrlen: address length
3480 * @flags: flags (O_NONBLOCK, ...)
3481 *
3482 * For datagram sockets, @addr is the addres to which datagrams are sent
3483 * by default, and the only address from which datagrams are received.
3484 * For stream sockets, attempts to connect to @addr.
3485 * Returns 0 or an error code.
3486 */
3487
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3488 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3489 int flags)
3490 {
3491 struct sockaddr_storage address;
3492
3493 memcpy(&address, addr, addrlen);
3494
3495 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3496 }
3497 EXPORT_SYMBOL(kernel_connect);
3498
3499 /**
3500 * kernel_getsockname - get the address which the socket is bound (kernel space)
3501 * @sock: socket
3502 * @addr: address holder
3503 *
3504 * Fills the @addr pointer with the address which the socket is bound.
3505 * Returns 0 or an error code.
3506 */
3507
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3508 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3509 {
3510 return sock->ops->getname(sock, addr, 0);
3511 }
3512 EXPORT_SYMBOL(kernel_getsockname);
3513
3514 /**
3515 * kernel_getpeername - get the address which the socket is connected (kernel space)
3516 * @sock: socket
3517 * @addr: address holder
3518 *
3519 * Fills the @addr pointer with the address which the socket is connected.
3520 * Returns 0 or an error code.
3521 */
3522
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3523 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3524 {
3525 return sock->ops->getname(sock, addr, 1);
3526 }
3527 EXPORT_SYMBOL(kernel_getpeername);
3528
3529 /**
3530 * kernel_sendpage - send a &page through a socket (kernel space)
3531 * @sock: socket
3532 * @page: page
3533 * @offset: page offset
3534 * @size: total size in bytes
3535 * @flags: flags (MSG_DONTWAIT, ...)
3536 *
3537 * Returns the total amount sent in bytes or an error.
3538 */
3539
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3540 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3541 size_t size, int flags)
3542 {
3543 if (sock->ops->sendpage) {
3544 /* Warn in case the improper page to zero-copy send */
3545 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3546 return sock->ops->sendpage(sock, page, offset, size, flags);
3547 }
3548 return sock_no_sendpage(sock, page, offset, size, flags);
3549 }
3550 EXPORT_SYMBOL(kernel_sendpage);
3551
3552 /**
3553 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3554 * @sk: sock
3555 * @page: page
3556 * @offset: page offset
3557 * @size: total size in bytes
3558 * @flags: flags (MSG_DONTWAIT, ...)
3559 *
3560 * Returns the total amount sent in bytes or an error.
3561 * Caller must hold @sk.
3562 */
3563
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3564 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3565 size_t size, int flags)
3566 {
3567 struct socket *sock = sk->sk_socket;
3568
3569 if (sock->ops->sendpage_locked)
3570 return sock->ops->sendpage_locked(sk, page, offset, size,
3571 flags);
3572
3573 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3574 }
3575 EXPORT_SYMBOL(kernel_sendpage_locked);
3576
3577 /**
3578 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3579 * @sock: socket
3580 * @how: connection part
3581 *
3582 * Returns 0 or an error.
3583 */
3584
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3585 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3586 {
3587 return sock->ops->shutdown(sock, how);
3588 }
3589 EXPORT_SYMBOL(kernel_sock_shutdown);
3590
3591 /**
3592 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3593 * @sk: socket
3594 *
3595 * This routine returns the IP overhead imposed by a socket i.e.
3596 * the length of the underlying IP header, depending on whether
3597 * this is an IPv4 or IPv6 socket and the length from IP options turned
3598 * on at the socket. Assumes that the caller has a lock on the socket.
3599 */
3600
kernel_sock_ip_overhead(struct sock * sk)3601 u32 kernel_sock_ip_overhead(struct sock *sk)
3602 {
3603 struct inet_sock *inet;
3604 struct ip_options_rcu *opt;
3605 u32 overhead = 0;
3606 #if IS_ENABLED(CONFIG_IPV6)
3607 struct ipv6_pinfo *np;
3608 struct ipv6_txoptions *optv6 = NULL;
3609 #endif /* IS_ENABLED(CONFIG_IPV6) */
3610
3611 if (!sk)
3612 return overhead;
3613
3614 switch (sk->sk_family) {
3615 case AF_INET:
3616 inet = inet_sk(sk);
3617 overhead += sizeof(struct iphdr);
3618 opt = rcu_dereference_protected(inet->inet_opt,
3619 sock_owned_by_user(sk));
3620 if (opt)
3621 overhead += opt->opt.optlen;
3622 return overhead;
3623 #if IS_ENABLED(CONFIG_IPV6)
3624 case AF_INET6:
3625 np = inet6_sk(sk);
3626 overhead += sizeof(struct ipv6hdr);
3627 if (np)
3628 optv6 = rcu_dereference_protected(np->opt,
3629 sock_owned_by_user(sk));
3630 if (optv6)
3631 overhead += (optv6->opt_flen + optv6->opt_nflen);
3632 return overhead;
3633 #endif /* IS_ENABLED(CONFIG_IPV6) */
3634 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3635 return overhead;
3636 }
3637 }
3638 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3639