• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
tcp_select_window(struct sock * sk)256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	u32 old_win = tp->rcv_wnd;
260 	u32 cur_win = tcp_receive_window(tp);
261 	u32 new_win = __tcp_select_window(sk);
262 
263 	/* Never shrink the offered window */
264 	if (new_win < cur_win) {
265 		/* Danger Will Robinson!
266 		 * Don't update rcv_wup/rcv_wnd here or else
267 		 * we will not be able to advertise a zero
268 		 * window in time.  --DaveM
269 		 *
270 		 * Relax Will Robinson.
271 		 */
272 		if (new_win == 0)
273 			NET_INC_STATS(sock_net(sk),
274 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
275 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 	}
277 	tp->rcv_wnd = new_win;
278 	tp->rcv_wup = tp->rcv_nxt;
279 
280 	/* Make sure we do not exceed the maximum possible
281 	 * scaled window.
282 	 */
283 	if (!tp->rx_opt.rcv_wscale &&
284 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
285 		new_win = min(new_win, MAX_TCP_WINDOW);
286 	else
287 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288 
289 	/* RFC1323 scaling applied */
290 	new_win >>= tp->rx_opt.rcv_wscale;
291 
292 	/* If we advertise zero window, disable fast path. */
293 	if (new_win == 0) {
294 		tp->pred_flags = 0;
295 		if (old_win)
296 			NET_INC_STATS(sock_net(sk),
297 				      LINUX_MIB_TCPTOZEROWINDOWADV);
298 	} else if (old_win == 0) {
299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
300 	}
301 
302 	return new_win;
303 }
304 
305 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)306 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
307 {
308 	const struct tcp_sock *tp = tcp_sk(sk);
309 
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 	else if (tcp_ca_needs_ecn(sk) ||
314 		 tcp_bpf_ca_needs_ecn(sk))
315 		INET_ECN_xmit(sk);
316 }
317 
318 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)319 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
320 {
321 	struct tcp_sock *tp = tcp_sk(sk);
322 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
323 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
324 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
325 
326 	if (!use_ecn) {
327 		const struct dst_entry *dst = __sk_dst_get(sk);
328 
329 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
330 			use_ecn = true;
331 	}
332 
333 	tp->ecn_flags = 0;
334 
335 	if (use_ecn) {
336 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
337 		tp->ecn_flags = TCP_ECN_OK;
338 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
339 			INET_ECN_xmit(sk);
340 	}
341 }
342 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)343 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
344 {
345 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
346 		/* tp->ecn_flags are cleared at a later point in time when
347 		 * SYN ACK is ultimatively being received.
348 		 */
349 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
350 }
351 
352 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)353 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
354 {
355 	if (inet_rsk(req)->ecn_ok)
356 		th->ece = 1;
357 }
358 
359 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
360  * be sent.
361  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)362 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
363 			 struct tcphdr *th, int tcp_header_len)
364 {
365 	struct tcp_sock *tp = tcp_sk(sk);
366 
367 	if (tp->ecn_flags & TCP_ECN_OK) {
368 		/* Not-retransmitted data segment: set ECT and inject CWR. */
369 		if (skb->len != tcp_header_len &&
370 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
371 			INET_ECN_xmit(sk);
372 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
373 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
374 				th->cwr = 1;
375 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 			}
377 		} else if (!tcp_ca_needs_ecn(sk)) {
378 			/* ACK or retransmitted segment: clear ECT|CE */
379 			INET_ECN_dontxmit(sk);
380 		}
381 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
382 			th->ece = 1;
383 	}
384 }
385 
386 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
387  * auto increment end seqno.
388  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)389 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 {
391 	skb->ip_summed = CHECKSUM_PARTIAL;
392 
393 	TCP_SKB_CB(skb)->tcp_flags = flags;
394 	TCP_SKB_CB(skb)->sacked = 0;
395 
396 	tcp_skb_pcount_set(skb, 1);
397 
398 	TCP_SKB_CB(skb)->seq = seq;
399 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 		seq++;
401 	TCP_SKB_CB(skb)->end_seq = seq;
402 }
403 
tcp_urg_mode(const struct tcp_sock * tp)404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 	return tp->snd_una != tp->snd_up;
407 }
408 
409 #define OPTION_SACK_ADVERTISE	(1 << 0)
410 #define OPTION_TS		(1 << 1)
411 #define OPTION_MD5		(1 << 2)
412 #define OPTION_WSCALE		(1 << 3)
413 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
414 #define OPTION_SMC		(1 << 9)
415 #define OPTION_MPTCP		(1 << 10)
416 
smc_options_write(__be32 * ptr,u16 * options)417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 	if (static_branch_unlikely(&tcp_have_smc)) {
421 		if (unlikely(OPTION_SMC & *options)) {
422 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
423 				       (TCPOPT_NOP  << 16) |
424 				       (TCPOPT_EXP <<  8) |
425 				       (TCPOLEN_EXP_SMC_BASE));
426 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 		}
428 	}
429 #endif
430 }
431 
432 struct tcp_out_options {
433 	u16 options;		/* bit field of OPTION_* */
434 	u16 mss;		/* 0 to disable */
435 	u8 ws;			/* window scale, 0 to disable */
436 	u8 num_sack_blocks;	/* number of SACK blocks to include */
437 	u8 hash_size;		/* bytes in hash_location */
438 	u8 bpf_opt_len;		/* length of BPF hdr option */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 	struct mptcp_out_options mptcp;
443 };
444 
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)445 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
446 {
447 #if IS_ENABLED(CONFIG_MPTCP)
448 	if (unlikely(OPTION_MPTCP & opts->options))
449 		mptcp_write_options(ptr, &opts->mptcp);
450 #endif
451 }
452 
453 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)454 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
455 					enum tcp_synack_type synack_type)
456 {
457 	if (unlikely(!skb))
458 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
459 
460 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
461 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
462 
463 	return 0;
464 }
465 
466 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)467 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
468 				  struct request_sock *req,
469 				  struct sk_buff *syn_skb,
470 				  enum tcp_synack_type synack_type,
471 				  struct tcp_out_options *opts,
472 				  unsigned int *remaining)
473 {
474 	struct bpf_sock_ops_kern sock_ops;
475 	int err;
476 
477 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
478 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
479 	    !*remaining)
480 		return;
481 
482 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
483 
484 	/* init sock_ops */
485 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
486 
487 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
488 
489 	if (req) {
490 		/* The listen "sk" cannot be passed here because
491 		 * it is not locked.  It would not make too much
492 		 * sense to do bpf_setsockopt(listen_sk) based
493 		 * on individual connection request also.
494 		 *
495 		 * Thus, "req" is passed here and the cgroup-bpf-progs
496 		 * of the listen "sk" will be run.
497 		 *
498 		 * "req" is also used here for fastopen even the "sk" here is
499 		 * a fullsock "child" sk.  It is to keep the behavior
500 		 * consistent between fastopen and non-fastopen on
501 		 * the bpf programming side.
502 		 */
503 		sock_ops.sk = (struct sock *)req;
504 		sock_ops.syn_skb = syn_skb;
505 	} else {
506 		sock_owned_by_me(sk);
507 
508 		sock_ops.is_fullsock = 1;
509 		sock_ops.sk = sk;
510 	}
511 
512 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
513 	sock_ops.remaining_opt_len = *remaining;
514 	/* tcp_current_mss() does not pass a skb */
515 	if (skb)
516 		bpf_skops_init_skb(&sock_ops, skb, 0);
517 
518 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
519 
520 	if (err || sock_ops.remaining_opt_len == *remaining)
521 		return;
522 
523 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
524 	/* round up to 4 bytes */
525 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
526 
527 	*remaining -= opts->bpf_opt_len;
528 }
529 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)530 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
531 				    struct request_sock *req,
532 				    struct sk_buff *syn_skb,
533 				    enum tcp_synack_type synack_type,
534 				    struct tcp_out_options *opts)
535 {
536 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
537 	struct bpf_sock_ops_kern sock_ops;
538 	int err;
539 
540 	if (likely(!max_opt_len))
541 		return;
542 
543 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
544 
545 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
546 
547 	if (req) {
548 		sock_ops.sk = (struct sock *)req;
549 		sock_ops.syn_skb = syn_skb;
550 	} else {
551 		sock_owned_by_me(sk);
552 
553 		sock_ops.is_fullsock = 1;
554 		sock_ops.sk = sk;
555 	}
556 
557 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
558 	sock_ops.remaining_opt_len = max_opt_len;
559 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
560 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
561 
562 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
563 
564 	if (err)
565 		nr_written = 0;
566 	else
567 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
568 
569 	if (nr_written < max_opt_len)
570 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
571 		       max_opt_len - nr_written);
572 }
573 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)574 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
575 				  struct request_sock *req,
576 				  struct sk_buff *syn_skb,
577 				  enum tcp_synack_type synack_type,
578 				  struct tcp_out_options *opts,
579 				  unsigned int *remaining)
580 {
581 }
582 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)583 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
584 				    struct request_sock *req,
585 				    struct sk_buff *syn_skb,
586 				    enum tcp_synack_type synack_type,
587 				    struct tcp_out_options *opts)
588 {
589 }
590 #endif
591 
592 /* Write previously computed TCP options to the packet.
593  *
594  * Beware: Something in the Internet is very sensitive to the ordering of
595  * TCP options, we learned this through the hard way, so be careful here.
596  * Luckily we can at least blame others for their non-compliance but from
597  * inter-operability perspective it seems that we're somewhat stuck with
598  * the ordering which we have been using if we want to keep working with
599  * those broken things (not that it currently hurts anybody as there isn't
600  * particular reason why the ordering would need to be changed).
601  *
602  * At least SACK_PERM as the first option is known to lead to a disaster
603  * (but it may well be that other scenarios fail similarly).
604  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)605 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
606 			      struct tcp_out_options *opts)
607 {
608 	u16 options = opts->options;	/* mungable copy */
609 
610 	if (unlikely(OPTION_MD5 & options)) {
611 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
612 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
613 		/* overload cookie hash location */
614 		opts->hash_location = (__u8 *)ptr;
615 		ptr += 4;
616 	}
617 
618 	if (unlikely(opts->mss)) {
619 		*ptr++ = htonl((TCPOPT_MSS << 24) |
620 			       (TCPOLEN_MSS << 16) |
621 			       opts->mss);
622 	}
623 
624 	if (likely(OPTION_TS & options)) {
625 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
626 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
627 				       (TCPOLEN_SACK_PERM << 16) |
628 				       (TCPOPT_TIMESTAMP << 8) |
629 				       TCPOLEN_TIMESTAMP);
630 			options &= ~OPTION_SACK_ADVERTISE;
631 		} else {
632 			*ptr++ = htonl((TCPOPT_NOP << 24) |
633 				       (TCPOPT_NOP << 16) |
634 				       (TCPOPT_TIMESTAMP << 8) |
635 				       TCPOLEN_TIMESTAMP);
636 		}
637 		*ptr++ = htonl(opts->tsval);
638 		*ptr++ = htonl(opts->tsecr);
639 	}
640 
641 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
642 		*ptr++ = htonl((TCPOPT_NOP << 24) |
643 			       (TCPOPT_NOP << 16) |
644 			       (TCPOPT_SACK_PERM << 8) |
645 			       TCPOLEN_SACK_PERM);
646 	}
647 
648 	if (unlikely(OPTION_WSCALE & options)) {
649 		*ptr++ = htonl((TCPOPT_NOP << 24) |
650 			       (TCPOPT_WINDOW << 16) |
651 			       (TCPOLEN_WINDOW << 8) |
652 			       opts->ws);
653 	}
654 
655 	if (unlikely(opts->num_sack_blocks)) {
656 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
657 			tp->duplicate_sack : tp->selective_acks;
658 		int this_sack;
659 
660 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
661 			       (TCPOPT_NOP  << 16) |
662 			       (TCPOPT_SACK <<  8) |
663 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
664 						     TCPOLEN_SACK_PERBLOCK)));
665 
666 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
667 		     ++this_sack) {
668 			*ptr++ = htonl(sp[this_sack].start_seq);
669 			*ptr++ = htonl(sp[this_sack].end_seq);
670 		}
671 
672 		tp->rx_opt.dsack = 0;
673 	}
674 
675 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
676 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
677 		u8 *p = (u8 *)ptr;
678 		u32 len; /* Fast Open option length */
679 
680 		if (foc->exp) {
681 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
682 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
683 				     TCPOPT_FASTOPEN_MAGIC);
684 			p += TCPOLEN_EXP_FASTOPEN_BASE;
685 		} else {
686 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
687 			*p++ = TCPOPT_FASTOPEN;
688 			*p++ = len;
689 		}
690 
691 		memcpy(p, foc->val, foc->len);
692 		if ((len & 3) == 2) {
693 			p[foc->len] = TCPOPT_NOP;
694 			p[foc->len + 1] = TCPOPT_NOP;
695 		}
696 		ptr += (len + 3) >> 2;
697 	}
698 
699 	smc_options_write(ptr, &options);
700 
701 	mptcp_options_write(ptr, opts);
702 }
703 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)704 static void smc_set_option(const struct tcp_sock *tp,
705 			   struct tcp_out_options *opts,
706 			   unsigned int *remaining)
707 {
708 #if IS_ENABLED(CONFIG_SMC)
709 	if (static_branch_unlikely(&tcp_have_smc)) {
710 		if (tp->syn_smc) {
711 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
712 				opts->options |= OPTION_SMC;
713 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
714 			}
715 		}
716 	}
717 #endif
718 }
719 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)720 static void smc_set_option_cond(const struct tcp_sock *tp,
721 				const struct inet_request_sock *ireq,
722 				struct tcp_out_options *opts,
723 				unsigned int *remaining)
724 {
725 #if IS_ENABLED(CONFIG_SMC)
726 	if (static_branch_unlikely(&tcp_have_smc)) {
727 		if (tp->syn_smc && ireq->smc_ok) {
728 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
729 				opts->options |= OPTION_SMC;
730 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
731 			}
732 		}
733 	}
734 #endif
735 }
736 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)737 static void mptcp_set_option_cond(const struct request_sock *req,
738 				  struct tcp_out_options *opts,
739 				  unsigned int *remaining)
740 {
741 	if (rsk_is_mptcp(req)) {
742 		unsigned int size;
743 
744 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
745 			if (*remaining >= size) {
746 				opts->options |= OPTION_MPTCP;
747 				*remaining -= size;
748 			}
749 		}
750 	}
751 }
752 
753 /* Compute TCP options for SYN packets. This is not the final
754  * network wire format yet.
755  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)756 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
757 				struct tcp_out_options *opts,
758 				struct tcp_md5sig_key **md5)
759 {
760 	struct tcp_sock *tp = tcp_sk(sk);
761 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
762 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
763 
764 	*md5 = NULL;
765 #ifdef CONFIG_TCP_MD5SIG
766 	if (static_branch_unlikely(&tcp_md5_needed) &&
767 	    rcu_access_pointer(tp->md5sig_info)) {
768 		*md5 = tp->af_specific->md5_lookup(sk, sk);
769 		if (*md5) {
770 			opts->options |= OPTION_MD5;
771 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
772 		}
773 	}
774 #endif
775 
776 	/* We always get an MSS option.  The option bytes which will be seen in
777 	 * normal data packets should timestamps be used, must be in the MSS
778 	 * advertised.  But we subtract them from tp->mss_cache so that
779 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
780 	 * fact here if necessary.  If we don't do this correctly, as a
781 	 * receiver we won't recognize data packets as being full sized when we
782 	 * should, and thus we won't abide by the delayed ACK rules correctly.
783 	 * SACKs don't matter, we never delay an ACK when we have any of those
784 	 * going out.  */
785 	opts->mss = tcp_advertise_mss(sk);
786 	remaining -= TCPOLEN_MSS_ALIGNED;
787 
788 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
789 		opts->options |= OPTION_TS;
790 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
791 		opts->tsecr = tp->rx_opt.ts_recent;
792 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
793 	}
794 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
795 		opts->ws = tp->rx_opt.rcv_wscale;
796 		opts->options |= OPTION_WSCALE;
797 		remaining -= TCPOLEN_WSCALE_ALIGNED;
798 	}
799 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
800 		opts->options |= OPTION_SACK_ADVERTISE;
801 		if (unlikely(!(OPTION_TS & opts->options)))
802 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
803 	}
804 
805 	if (fastopen && fastopen->cookie.len >= 0) {
806 		u32 need = fastopen->cookie.len;
807 
808 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
809 					       TCPOLEN_FASTOPEN_BASE;
810 		need = (need + 3) & ~3U;  /* Align to 32 bits */
811 		if (remaining >= need) {
812 			opts->options |= OPTION_FAST_OPEN_COOKIE;
813 			opts->fastopen_cookie = &fastopen->cookie;
814 			remaining -= need;
815 			tp->syn_fastopen = 1;
816 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
817 		}
818 	}
819 
820 	smc_set_option(tp, opts, &remaining);
821 
822 	if (sk_is_mptcp(sk)) {
823 		unsigned int size;
824 
825 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
826 			opts->options |= OPTION_MPTCP;
827 			remaining -= size;
828 		}
829 	}
830 
831 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
832 
833 	return MAX_TCP_OPTION_SPACE - remaining;
834 }
835 
836 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)837 static unsigned int tcp_synack_options(const struct sock *sk,
838 				       struct request_sock *req,
839 				       unsigned int mss, struct sk_buff *skb,
840 				       struct tcp_out_options *opts,
841 				       const struct tcp_md5sig_key *md5,
842 				       struct tcp_fastopen_cookie *foc,
843 				       enum tcp_synack_type synack_type,
844 				       struct sk_buff *syn_skb)
845 {
846 	struct inet_request_sock *ireq = inet_rsk(req);
847 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
848 
849 #ifdef CONFIG_TCP_MD5SIG
850 	if (md5) {
851 		opts->options |= OPTION_MD5;
852 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
853 
854 		/* We can't fit any SACK blocks in a packet with MD5 + TS
855 		 * options. There was discussion about disabling SACK
856 		 * rather than TS in order to fit in better with old,
857 		 * buggy kernels, but that was deemed to be unnecessary.
858 		 */
859 		if (synack_type != TCP_SYNACK_COOKIE)
860 			ireq->tstamp_ok &= !ireq->sack_ok;
861 	}
862 #endif
863 
864 	/* We always send an MSS option. */
865 	opts->mss = mss;
866 	remaining -= TCPOLEN_MSS_ALIGNED;
867 
868 	if (likely(ireq->wscale_ok)) {
869 		opts->ws = ireq->rcv_wscale;
870 		opts->options |= OPTION_WSCALE;
871 		remaining -= TCPOLEN_WSCALE_ALIGNED;
872 	}
873 	if (likely(ireq->tstamp_ok)) {
874 		opts->options |= OPTION_TS;
875 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
876 		opts->tsecr = READ_ONCE(req->ts_recent);
877 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
878 	}
879 	if (likely(ireq->sack_ok)) {
880 		opts->options |= OPTION_SACK_ADVERTISE;
881 		if (unlikely(!ireq->tstamp_ok))
882 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
883 	}
884 	if (foc != NULL && foc->len >= 0) {
885 		u32 need = foc->len;
886 
887 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
888 				   TCPOLEN_FASTOPEN_BASE;
889 		need = (need + 3) & ~3U;  /* Align to 32 bits */
890 		if (remaining >= need) {
891 			opts->options |= OPTION_FAST_OPEN_COOKIE;
892 			opts->fastopen_cookie = foc;
893 			remaining -= need;
894 		}
895 	}
896 
897 	mptcp_set_option_cond(req, opts, &remaining);
898 
899 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
900 
901 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
902 			      synack_type, opts, &remaining);
903 
904 	return MAX_TCP_OPTION_SPACE - remaining;
905 }
906 
907 /* Compute TCP options for ESTABLISHED sockets. This is not the
908  * final wire format yet.
909  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)910 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
911 					struct tcp_out_options *opts,
912 					struct tcp_md5sig_key **md5)
913 {
914 	struct tcp_sock *tp = tcp_sk(sk);
915 	unsigned int size = 0;
916 	unsigned int eff_sacks;
917 
918 	opts->options = 0;
919 
920 	*md5 = NULL;
921 #ifdef CONFIG_TCP_MD5SIG
922 	if (static_branch_unlikely(&tcp_md5_needed) &&
923 	    rcu_access_pointer(tp->md5sig_info)) {
924 		*md5 = tp->af_specific->md5_lookup(sk, sk);
925 		if (*md5) {
926 			opts->options |= OPTION_MD5;
927 			size += TCPOLEN_MD5SIG_ALIGNED;
928 		}
929 	}
930 #endif
931 
932 	if (likely(tp->rx_opt.tstamp_ok)) {
933 		opts->options |= OPTION_TS;
934 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
935 		opts->tsecr = tp->rx_opt.ts_recent;
936 		size += TCPOLEN_TSTAMP_ALIGNED;
937 	}
938 
939 	/* MPTCP options have precedence over SACK for the limited TCP
940 	 * option space because a MPTCP connection would be forced to
941 	 * fall back to regular TCP if a required multipath option is
942 	 * missing. SACK still gets a chance to use whatever space is
943 	 * left.
944 	 */
945 	if (sk_is_mptcp(sk)) {
946 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
947 		unsigned int opt_size = 0;
948 
949 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
950 					      &opts->mptcp)) {
951 			opts->options |= OPTION_MPTCP;
952 			size += opt_size;
953 		}
954 	}
955 
956 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
957 	if (unlikely(eff_sacks)) {
958 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
959 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
960 					 TCPOLEN_SACK_PERBLOCK))
961 			return size;
962 
963 		opts->num_sack_blocks =
964 			min_t(unsigned int, eff_sacks,
965 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
966 			      TCPOLEN_SACK_PERBLOCK);
967 
968 		size += TCPOLEN_SACK_BASE_ALIGNED +
969 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
970 	}
971 
972 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
973 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
974 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
975 
976 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
977 
978 		size = MAX_TCP_OPTION_SPACE - remaining;
979 	}
980 
981 	return size;
982 }
983 
984 
985 /* TCP SMALL QUEUES (TSQ)
986  *
987  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
988  * to reduce RTT and bufferbloat.
989  * We do this using a special skb destructor (tcp_wfree).
990  *
991  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
992  * needs to be reallocated in a driver.
993  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
994  *
995  * Since transmit from skb destructor is forbidden, we use a tasklet
996  * to process all sockets that eventually need to send more skbs.
997  * We use one tasklet per cpu, with its own queue of sockets.
998  */
999 struct tsq_tasklet {
1000 	struct tasklet_struct	tasklet;
1001 	struct list_head	head; /* queue of tcp sockets */
1002 };
1003 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1004 
tcp_tsq_write(struct sock * sk)1005 static void tcp_tsq_write(struct sock *sk)
1006 {
1007 	if ((1 << sk->sk_state) &
1008 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1009 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1010 		struct tcp_sock *tp = tcp_sk(sk);
1011 
1012 		if (tp->lost_out > tp->retrans_out &&
1013 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1014 			tcp_mstamp_refresh(tp);
1015 			tcp_xmit_retransmit_queue(sk);
1016 		}
1017 
1018 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1019 			       0, GFP_ATOMIC);
1020 	}
1021 }
1022 
tcp_tsq_handler(struct sock * sk)1023 static void tcp_tsq_handler(struct sock *sk)
1024 {
1025 	bh_lock_sock(sk);
1026 	if (!sock_owned_by_user(sk))
1027 		tcp_tsq_write(sk);
1028 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1029 		sock_hold(sk);
1030 	bh_unlock_sock(sk);
1031 }
1032 /*
1033  * One tasklet per cpu tries to send more skbs.
1034  * We run in tasklet context but need to disable irqs when
1035  * transferring tsq->head because tcp_wfree() might
1036  * interrupt us (non NAPI drivers)
1037  */
tcp_tasklet_func(unsigned long data)1038 static void tcp_tasklet_func(unsigned long data)
1039 {
1040 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1041 	LIST_HEAD(list);
1042 	unsigned long flags;
1043 	struct list_head *q, *n;
1044 	struct tcp_sock *tp;
1045 	struct sock *sk;
1046 
1047 	local_irq_save(flags);
1048 	list_splice_init(&tsq->head, &list);
1049 	local_irq_restore(flags);
1050 
1051 	list_for_each_safe(q, n, &list) {
1052 		tp = list_entry(q, struct tcp_sock, tsq_node);
1053 		list_del(&tp->tsq_node);
1054 
1055 		sk = (struct sock *)tp;
1056 		smp_mb__before_atomic();
1057 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1058 
1059 		tcp_tsq_handler(sk);
1060 		sk_free(sk);
1061 	}
1062 }
1063 
1064 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1065 			  TCPF_WRITE_TIMER_DEFERRED |	\
1066 			  TCPF_DELACK_TIMER_DEFERRED |	\
1067 			  TCPF_MTU_REDUCED_DEFERRED)
1068 /**
1069  * tcp_release_cb - tcp release_sock() callback
1070  * @sk: socket
1071  *
1072  * called from release_sock() to perform protocol dependent
1073  * actions before socket release.
1074  */
tcp_release_cb(struct sock * sk)1075 void tcp_release_cb(struct sock *sk)
1076 {
1077 	unsigned long flags, nflags;
1078 
1079 	/* perform an atomic operation only if at least one flag is set */
1080 	do {
1081 		flags = sk->sk_tsq_flags;
1082 		if (!(flags & TCP_DEFERRED_ALL))
1083 			return;
1084 		nflags = flags & ~TCP_DEFERRED_ALL;
1085 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1086 
1087 	if (flags & TCPF_TSQ_DEFERRED) {
1088 		tcp_tsq_write(sk);
1089 		__sock_put(sk);
1090 	}
1091 	/* Here begins the tricky part :
1092 	 * We are called from release_sock() with :
1093 	 * 1) BH disabled
1094 	 * 2) sk_lock.slock spinlock held
1095 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1096 	 *
1097 	 * But following code is meant to be called from BH handlers,
1098 	 * so we should keep BH disabled, but early release socket ownership
1099 	 */
1100 	sock_release_ownership(sk);
1101 
1102 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1103 		tcp_write_timer_handler(sk);
1104 		__sock_put(sk);
1105 	}
1106 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1107 		tcp_delack_timer_handler(sk);
1108 		__sock_put(sk);
1109 	}
1110 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1111 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1112 		__sock_put(sk);
1113 	}
1114 }
1115 EXPORT_SYMBOL(tcp_release_cb);
1116 
tcp_tasklet_init(void)1117 void __init tcp_tasklet_init(void)
1118 {
1119 	int i;
1120 
1121 	for_each_possible_cpu(i) {
1122 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1123 
1124 		INIT_LIST_HEAD(&tsq->head);
1125 		tasklet_init(&tsq->tasklet,
1126 			     tcp_tasklet_func,
1127 			     (unsigned long)tsq);
1128 	}
1129 }
1130 
1131 /*
1132  * Write buffer destructor automatically called from kfree_skb.
1133  * We can't xmit new skbs from this context, as we might already
1134  * hold qdisc lock.
1135  */
tcp_wfree(struct sk_buff * skb)1136 void tcp_wfree(struct sk_buff *skb)
1137 {
1138 	struct sock *sk = skb->sk;
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 	unsigned long flags, nval, oval;
1141 
1142 	/* Keep one reference on sk_wmem_alloc.
1143 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1144 	 */
1145 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1146 
1147 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1148 	 * Wait until our queues (qdisc + devices) are drained.
1149 	 * This gives :
1150 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1151 	 * - chance for incoming ACK (processed by another cpu maybe)
1152 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1153 	 */
1154 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1155 		goto out;
1156 
1157 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1158 		struct tsq_tasklet *tsq;
1159 		bool empty;
1160 
1161 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1162 			goto out;
1163 
1164 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1165 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1166 		if (nval != oval)
1167 			continue;
1168 
1169 		/* queue this socket to tasklet queue */
1170 		local_irq_save(flags);
1171 		tsq = this_cpu_ptr(&tsq_tasklet);
1172 		empty = list_empty(&tsq->head);
1173 		list_add(&tp->tsq_node, &tsq->head);
1174 		if (empty)
1175 			tasklet_schedule(&tsq->tasklet);
1176 		local_irq_restore(flags);
1177 		return;
1178 	}
1179 out:
1180 	sk_free(sk);
1181 }
1182 
1183 /* Note: Called under soft irq.
1184  * We can call TCP stack right away, unless socket is owned by user.
1185  */
tcp_pace_kick(struct hrtimer * timer)1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1187 {
1188 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1189 	struct sock *sk = (struct sock *)tp;
1190 
1191 	tcp_tsq_handler(sk);
1192 	sock_put(sk);
1193 
1194 	return HRTIMER_NORESTART;
1195 }
1196 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 				      u64 prior_wstamp)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1203 		unsigned long rate = sk->sk_pacing_rate;
1204 
1205 		/* Original sch_fq does not pace first 10 MSS
1206 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1207 		 * this is a minor annoyance.
1208 		 */
1209 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1210 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1211 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1212 
1213 			/* take into account OS jitter */
1214 			len_ns -= min_t(u64, len_ns / 2, credit);
1215 			tp->tcp_wstamp_ns += len_ns;
1216 		}
1217 	}
1218 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 }
1220 
1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1224 
1225 /* This routine actually transmits TCP packets queued in by
1226  * tcp_do_sendmsg().  This is used by both the initial
1227  * transmission and possible later retransmissions.
1228  * All SKB's seen here are completely headerless.  It is our
1229  * job to build the TCP header, and pass the packet down to
1230  * IP so it can do the same plus pass the packet off to the
1231  * device.
1232  *
1233  * We are working here with either a clone of the original
1234  * SKB, or a fresh unique copy made by the retransmit engine.
1235  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1237 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1238 {
1239 	const struct inet_connection_sock *icsk = inet_csk(sk);
1240 	struct inet_sock *inet;
1241 	struct tcp_sock *tp;
1242 	struct tcp_skb_cb *tcb;
1243 	struct tcp_out_options opts;
1244 	unsigned int tcp_options_size, tcp_header_size;
1245 	struct sk_buff *oskb = NULL;
1246 	struct tcp_md5sig_key *md5;
1247 	struct tcphdr *th;
1248 	u64 prior_wstamp;
1249 	int err;
1250 
1251 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1252 	tp = tcp_sk(sk);
1253 	prior_wstamp = tp->tcp_wstamp_ns;
1254 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1255 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1256 	if (clone_it) {
1257 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1258 			- tp->snd_una;
1259 		oskb = skb;
1260 
1261 		tcp_skb_tsorted_save(oskb) {
1262 			if (unlikely(skb_cloned(oskb)))
1263 				skb = pskb_copy(oskb, gfp_mask);
1264 			else
1265 				skb = skb_clone(oskb, gfp_mask);
1266 		} tcp_skb_tsorted_restore(oskb);
1267 
1268 		if (unlikely(!skb))
1269 			return -ENOBUFS;
1270 		/* retransmit skbs might have a non zero value in skb->dev
1271 		 * because skb->dev is aliased with skb->rbnode.rb_left
1272 		 */
1273 		skb->dev = NULL;
1274 	}
1275 
1276 	inet = inet_sk(sk);
1277 	tcb = TCP_SKB_CB(skb);
1278 	memset(&opts, 0, sizeof(opts));
1279 
1280 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1281 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1282 	} else {
1283 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1284 							   &md5);
1285 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1286 		 * at receiver : This slightly improve GRO performance.
1287 		 * Note that we do not force the PSH flag for non GSO packets,
1288 		 * because they might be sent under high congestion events,
1289 		 * and in this case it is better to delay the delivery of 1-MSS
1290 		 * packets and thus the corresponding ACK packet that would
1291 		 * release the following packet.
1292 		 */
1293 		if (tcp_skb_pcount(skb) > 1)
1294 			tcb->tcp_flags |= TCPHDR_PSH;
1295 	}
1296 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1297 
1298 	/* if no packet is in qdisc/device queue, then allow XPS to select
1299 	 * another queue. We can be called from tcp_tsq_handler()
1300 	 * which holds one reference to sk.
1301 	 *
1302 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1303 	 * One way to get this would be to set skb->truesize = 2 on them.
1304 	 */
1305 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1306 
1307 	/* If we had to use memory reserve to allocate this skb,
1308 	 * this might cause drops if packet is looped back :
1309 	 * Other socket might not have SOCK_MEMALLOC.
1310 	 * Packets not looped back do not care about pfmemalloc.
1311 	 */
1312 	skb->pfmemalloc = 0;
1313 
1314 	skb_push(skb, tcp_header_size);
1315 	skb_reset_transport_header(skb);
1316 
1317 	skb_orphan(skb);
1318 	skb->sk = sk;
1319 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1320 	skb_set_hash_from_sk(skb, sk);
1321 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1322 
1323 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1324 
1325 	/* Build TCP header and checksum it. */
1326 	th = (struct tcphdr *)skb->data;
1327 	th->source		= inet->inet_sport;
1328 	th->dest		= inet->inet_dport;
1329 	th->seq			= htonl(tcb->seq);
1330 	th->ack_seq		= htonl(rcv_nxt);
1331 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1332 					tcb->tcp_flags);
1333 
1334 	th->check		= 0;
1335 	th->urg_ptr		= 0;
1336 
1337 	/* The urg_mode check is necessary during a below snd_una win probe */
1338 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1339 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1340 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1341 			th->urg = 1;
1342 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1343 			th->urg_ptr = htons(0xFFFF);
1344 			th->urg = 1;
1345 		}
1346 	}
1347 
1348 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1349 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1350 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1351 		th->window      = htons(tcp_select_window(sk));
1352 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1353 	} else {
1354 		/* RFC1323: The window in SYN & SYN/ACK segments
1355 		 * is never scaled.
1356 		 */
1357 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1358 	}
1359 #ifdef CONFIG_TCP_MD5SIG
1360 	/* Calculate the MD5 hash, as we have all we need now */
1361 	if (md5) {
1362 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1363 		tp->af_specific->calc_md5_hash(opts.hash_location,
1364 					       md5, sk, skb);
1365 	}
1366 #endif
1367 
1368 	/* BPF prog is the last one writing header option */
1369 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370 
1371 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 			   tcp_v6_send_check, tcp_v4_send_check,
1373 			   sk, skb);
1374 
1375 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 		tcp_event_ack_sent(sk, rcv_nxt);
1377 
1378 	if (skb->len != tcp_header_size) {
1379 		tcp_event_data_sent(tp, sk);
1380 		tp->data_segs_out += tcp_skb_pcount(skb);
1381 		tp->bytes_sent += skb->len - tcp_header_size;
1382 	}
1383 
1384 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 			      tcp_skb_pcount(skb));
1387 
1388 	tp->segs_out += tcp_skb_pcount(skb);
1389 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1390 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1391 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1392 
1393 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1394 
1395 	/* Cleanup our debris for IP stacks */
1396 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1397 			       sizeof(struct inet6_skb_parm)));
1398 
1399 	tcp_add_tx_delay(skb, tp);
1400 
1401 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1402 				 inet6_csk_xmit, ip_queue_xmit,
1403 				 sk, skb, &inet->cork.fl);
1404 
1405 	if (unlikely(err > 0)) {
1406 		tcp_enter_cwr(sk);
1407 		err = net_xmit_eval(err);
1408 	}
1409 	if (!err && oskb) {
1410 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1411 		tcp_rate_skb_sent(sk, oskb);
1412 	}
1413 	return err;
1414 }
1415 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1416 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1417 			    gfp_t gfp_mask)
1418 {
1419 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1420 				  tcp_sk(sk)->rcv_nxt);
1421 }
1422 
1423 /* This routine just queues the buffer for sending.
1424  *
1425  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1426  * otherwise socket can stall.
1427  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1428 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	/* Advance write_seq and place onto the write_queue. */
1433 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1434 	__skb_header_release(skb);
1435 	tcp_add_write_queue_tail(sk, skb);
1436 	sk_wmem_queued_add(sk, skb->truesize);
1437 	sk_mem_charge(sk, skb->truesize);
1438 }
1439 
1440 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1441 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1442 {
1443 	if (skb->len <= mss_now) {
1444 		/* Avoid the costly divide in the normal
1445 		 * non-TSO case.
1446 		 */
1447 		tcp_skb_pcount_set(skb, 1);
1448 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1449 	} else {
1450 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1451 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1452 	}
1453 }
1454 
1455 /* Pcount in the middle of the write queue got changed, we need to do various
1456  * tweaks to fix counters
1457  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1458 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	tp->packets_out -= decr;
1463 
1464 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1465 		tp->sacked_out -= decr;
1466 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1467 		tp->retrans_out -= decr;
1468 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1469 		tp->lost_out -= decr;
1470 
1471 	/* Reno case is special. Sigh... */
1472 	if (tcp_is_reno(tp) && decr > 0)
1473 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1474 
1475 	if (tp->lost_skb_hint &&
1476 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1477 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1478 		tp->lost_cnt_hint -= decr;
1479 
1480 	tcp_verify_left_out(tp);
1481 }
1482 
tcp_has_tx_tstamp(const struct sk_buff * skb)1483 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1484 {
1485 	return TCP_SKB_CB(skb)->txstamp_ack ||
1486 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1487 }
1488 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1489 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1490 {
1491 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1492 
1493 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1494 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1495 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1496 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1497 
1498 		shinfo->tx_flags &= ~tsflags;
1499 		shinfo2->tx_flags |= tsflags;
1500 		swap(shinfo->tskey, shinfo2->tskey);
1501 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1502 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1503 	}
1504 }
1505 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1506 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1507 {
1508 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1509 	TCP_SKB_CB(skb)->eor = 0;
1510 }
1511 
1512 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1513 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1514 					 struct sk_buff *buff,
1515 					 struct sock *sk,
1516 					 enum tcp_queue tcp_queue)
1517 {
1518 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1519 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1520 	else
1521 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1522 }
1523 
1524 /* Function to create two new TCP segments.  Shrinks the given segment
1525  * to the specified size and appends a new segment with the rest of the
1526  * packet to the list.  This won't be called frequently, I hope.
1527  * Remember, these are still headerless SKBs at this point.
1528  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1530 		 struct sk_buff *skb, u32 len,
1531 		 unsigned int mss_now, gfp_t gfp)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	struct sk_buff *buff;
1535 	int nsize, old_factor;
1536 	long limit;
1537 	int nlen;
1538 	u8 flags;
1539 
1540 	if (WARN_ON(len > skb->len))
1541 		return -EINVAL;
1542 
1543 	nsize = skb_headlen(skb) - len;
1544 	if (nsize < 0)
1545 		nsize = 0;
1546 
1547 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1548 	 * We need some allowance to not penalize applications setting small
1549 	 * SO_SNDBUF values.
1550 	 * Also allow first and last skb in retransmit queue to be split.
1551 	 */
1552 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1553 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1554 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1555 		     skb != tcp_rtx_queue_head(sk) &&
1556 		     skb != tcp_rtx_queue_tail(sk))) {
1557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1558 		return -ENOMEM;
1559 	}
1560 
1561 	if (skb_unclone_keeptruesize(skb, gfp))
1562 		return -ENOMEM;
1563 
1564 	/* Get a new skb... force flag on. */
1565 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1566 	if (!buff)
1567 		return -ENOMEM; /* We'll just try again later. */
1568 	skb_copy_decrypted(buff, skb);
1569 
1570 	sk_wmem_queued_add(sk, buff->truesize);
1571 	sk_mem_charge(sk, buff->truesize);
1572 	nlen = skb->len - len - nsize;
1573 	buff->truesize += nlen;
1574 	skb->truesize -= nlen;
1575 
1576 	/* Correct the sequence numbers. */
1577 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1578 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1579 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1580 
1581 	/* PSH and FIN should only be set in the second packet. */
1582 	flags = TCP_SKB_CB(skb)->tcp_flags;
1583 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1584 	TCP_SKB_CB(buff)->tcp_flags = flags;
1585 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1586 	tcp_skb_fragment_eor(skb, buff);
1587 
1588 	skb_split(skb, buff, len);
1589 
1590 	buff->ip_summed = CHECKSUM_PARTIAL;
1591 
1592 	buff->tstamp = skb->tstamp;
1593 	tcp_fragment_tstamp(skb, buff);
1594 
1595 	old_factor = tcp_skb_pcount(skb);
1596 
1597 	/* Fix up tso_factor for both original and new SKB.  */
1598 	tcp_set_skb_tso_segs(skb, mss_now);
1599 	tcp_set_skb_tso_segs(buff, mss_now);
1600 
1601 	/* Update delivered info for the new segment */
1602 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1603 
1604 	/* If this packet has been sent out already, we must
1605 	 * adjust the various packet counters.
1606 	 */
1607 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608 		int diff = old_factor - tcp_skb_pcount(skb) -
1609 			tcp_skb_pcount(buff);
1610 
1611 		if (diff)
1612 			tcp_adjust_pcount(sk, skb, diff);
1613 	}
1614 
1615 	/* Link BUFF into the send queue. */
1616 	__skb_header_release(buff);
1617 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1620 
1621 	return 0;
1622 }
1623 
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625  * data is not copied, but immediately discarded.
1626  */
__pskb_trim_head(struct sk_buff * skb,int len)1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1628 {
1629 	struct skb_shared_info *shinfo;
1630 	int i, k, eat;
1631 
1632 	eat = min_t(int, len, skb_headlen(skb));
1633 	if (eat) {
1634 		__skb_pull(skb, eat);
1635 		len -= eat;
1636 		if (!len)
1637 			return 0;
1638 	}
1639 	eat = len;
1640 	k = 0;
1641 	shinfo = skb_shinfo(skb);
1642 	for (i = 0; i < shinfo->nr_frags; i++) {
1643 		int size = skb_frag_size(&shinfo->frags[i]);
1644 
1645 		if (size <= eat) {
1646 			skb_frag_unref(skb, i);
1647 			eat -= size;
1648 		} else {
1649 			shinfo->frags[k] = shinfo->frags[i];
1650 			if (eat) {
1651 				skb_frag_off_add(&shinfo->frags[k], eat);
1652 				skb_frag_size_sub(&shinfo->frags[k], eat);
1653 				eat = 0;
1654 			}
1655 			k++;
1656 		}
1657 	}
1658 	shinfo->nr_frags = k;
1659 
1660 	skb->data_len -= len;
1661 	skb->len = skb->data_len;
1662 	return len;
1663 }
1664 
1665 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668 	u32 delta_truesize;
1669 
1670 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671 		return -ENOMEM;
1672 
1673 	delta_truesize = __pskb_trim_head(skb, len);
1674 
1675 	TCP_SKB_CB(skb)->seq += len;
1676 	skb->ip_summed = CHECKSUM_PARTIAL;
1677 
1678 	if (delta_truesize) {
1679 		skb->truesize	   -= delta_truesize;
1680 		sk_wmem_queued_add(sk, -delta_truesize);
1681 		sk_mem_uncharge(sk, delta_truesize);
1682 	}
1683 
1684 	/* Any change of skb->len requires recalculation of tso factor. */
1685 	if (tcp_skb_pcount(skb) > 1)
1686 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1687 
1688 	return 0;
1689 }
1690 
1691 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1693 {
1694 	const struct tcp_sock *tp = tcp_sk(sk);
1695 	const struct inet_connection_sock *icsk = inet_csk(sk);
1696 	int mss_now;
1697 
1698 	/* Calculate base mss without TCP options:
1699 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1700 	 */
1701 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1702 
1703 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704 	if (icsk->icsk_af_ops->net_frag_header_len) {
1705 		const struct dst_entry *dst = __sk_dst_get(sk);
1706 
1707 		if (dst && dst_allfrag(dst))
1708 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1709 	}
1710 
1711 	/* Clamp it (mss_clamp does not include tcp options) */
1712 	if (mss_now > tp->rx_opt.mss_clamp)
1713 		mss_now = tp->rx_opt.mss_clamp;
1714 
1715 	/* Now subtract optional transport overhead */
1716 	mss_now -= icsk->icsk_ext_hdr_len;
1717 
1718 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1719 	mss_now = max(mss_now,
1720 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1721 	return mss_now;
1722 }
1723 
1724 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1725 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1726 {
1727 	/* Subtract TCP options size, not including SACKs */
1728 	return __tcp_mtu_to_mss(sk, pmtu) -
1729 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1730 }
1731 EXPORT_SYMBOL(tcp_mtu_to_mss);
1732 
1733 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1734 int tcp_mss_to_mtu(struct sock *sk, int mss)
1735 {
1736 	const struct tcp_sock *tp = tcp_sk(sk);
1737 	const struct inet_connection_sock *icsk = inet_csk(sk);
1738 	int mtu;
1739 
1740 	mtu = mss +
1741 	      tp->tcp_header_len +
1742 	      icsk->icsk_ext_hdr_len +
1743 	      icsk->icsk_af_ops->net_header_len;
1744 
1745 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1746 	if (icsk->icsk_af_ops->net_frag_header_len) {
1747 		const struct dst_entry *dst = __sk_dst_get(sk);
1748 
1749 		if (dst && dst_allfrag(dst))
1750 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1751 	}
1752 	return mtu;
1753 }
1754 EXPORT_SYMBOL(tcp_mss_to_mtu);
1755 
1756 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1757 void tcp_mtup_init(struct sock *sk)
1758 {
1759 	struct tcp_sock *tp = tcp_sk(sk);
1760 	struct inet_connection_sock *icsk = inet_csk(sk);
1761 	struct net *net = sock_net(sk);
1762 
1763 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1764 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1765 			       icsk->icsk_af_ops->net_header_len;
1766 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1767 	icsk->icsk_mtup.probe_size = 0;
1768 	if (icsk->icsk_mtup.enabled)
1769 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1770 }
1771 EXPORT_SYMBOL(tcp_mtup_init);
1772 
1773 /* This function synchronize snd mss to current pmtu/exthdr set.
1774 
1775    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1776    for TCP options, but includes only bare TCP header.
1777 
1778    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1779    It is minimum of user_mss and mss received with SYN.
1780    It also does not include TCP options.
1781 
1782    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1783 
1784    tp->mss_cache is current effective sending mss, including
1785    all tcp options except for SACKs. It is evaluated,
1786    taking into account current pmtu, but never exceeds
1787    tp->rx_opt.mss_clamp.
1788 
1789    NOTE1. rfc1122 clearly states that advertised MSS
1790    DOES NOT include either tcp or ip options.
1791 
1792    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1793    are READ ONLY outside this function.		--ANK (980731)
1794  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1795 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1796 {
1797 	struct tcp_sock *tp = tcp_sk(sk);
1798 	struct inet_connection_sock *icsk = inet_csk(sk);
1799 	int mss_now;
1800 
1801 	if (icsk->icsk_mtup.search_high > pmtu)
1802 		icsk->icsk_mtup.search_high = pmtu;
1803 
1804 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1805 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1806 
1807 	/* And store cached results */
1808 	icsk->icsk_pmtu_cookie = pmtu;
1809 	if (icsk->icsk_mtup.enabled)
1810 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1811 	tp->mss_cache = mss_now;
1812 
1813 	return mss_now;
1814 }
1815 EXPORT_SYMBOL(tcp_sync_mss);
1816 
1817 /* Compute the current effective MSS, taking SACKs and IP options,
1818  * and even PMTU discovery events into account.
1819  */
tcp_current_mss(struct sock * sk)1820 unsigned int tcp_current_mss(struct sock *sk)
1821 {
1822 	const struct tcp_sock *tp = tcp_sk(sk);
1823 	const struct dst_entry *dst = __sk_dst_get(sk);
1824 	u32 mss_now;
1825 	unsigned int header_len;
1826 	struct tcp_out_options opts;
1827 	struct tcp_md5sig_key *md5;
1828 
1829 	mss_now = tp->mss_cache;
1830 
1831 	if (dst) {
1832 		u32 mtu = dst_mtu(dst);
1833 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1834 			mss_now = tcp_sync_mss(sk, mtu);
1835 	}
1836 
1837 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1838 		     sizeof(struct tcphdr);
1839 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1840 	 * some common options. If this is an odd packet (because we have SACK
1841 	 * blocks etc) then our calculated header_len will be different, and
1842 	 * we have to adjust mss_now correspondingly */
1843 	if (header_len != tp->tcp_header_len) {
1844 		int delta = (int) header_len - tp->tcp_header_len;
1845 		mss_now -= delta;
1846 	}
1847 
1848 	return mss_now;
1849 }
1850 
1851 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1852  * As additional protections, we do not touch cwnd in retransmission phases,
1853  * and if application hit its sndbuf limit recently.
1854  */
tcp_cwnd_application_limited(struct sock * sk)1855 static void tcp_cwnd_application_limited(struct sock *sk)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 
1859 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1860 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1861 		/* Limited by application or receiver window. */
1862 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1863 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1864 		if (win_used < tp->snd_cwnd) {
1865 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1866 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1867 		}
1868 		tp->snd_cwnd_used = 0;
1869 	}
1870 	tp->snd_cwnd_stamp = tcp_jiffies32;
1871 }
1872 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1873 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1874 {
1875 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 
1878 	/* Track the strongest available signal of the degree to which the cwnd
1879 	 * is fully utilized. If cwnd-limited then remember that fact for the
1880 	 * current window. If not cwnd-limited then track the maximum number of
1881 	 * outstanding packets in the current window. (If cwnd-limited then we
1882 	 * chose to not update tp->max_packets_out to avoid an extra else
1883 	 * clause with no functional impact.)
1884 	 */
1885 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1886 	    is_cwnd_limited ||
1887 	    (!tp->is_cwnd_limited &&
1888 	     tp->packets_out > tp->max_packets_out)) {
1889 		tp->is_cwnd_limited = is_cwnd_limited;
1890 		tp->max_packets_out = tp->packets_out;
1891 		tp->cwnd_usage_seq = tp->snd_nxt;
1892 	}
1893 
1894 	if (tcp_is_cwnd_limited(sk)) {
1895 		/* Network is feed fully. */
1896 		tp->snd_cwnd_used = 0;
1897 		tp->snd_cwnd_stamp = tcp_jiffies32;
1898 	} else {
1899 		/* Network starves. */
1900 		if (tp->packets_out > tp->snd_cwnd_used)
1901 			tp->snd_cwnd_used = tp->packets_out;
1902 
1903 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1904 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1905 		    !ca_ops->cong_control)
1906 			tcp_cwnd_application_limited(sk);
1907 
1908 		/* The following conditions together indicate the starvation
1909 		 * is caused by insufficient sender buffer:
1910 		 * 1) just sent some data (see tcp_write_xmit)
1911 		 * 2) not cwnd limited (this else condition)
1912 		 * 3) no more data to send (tcp_write_queue_empty())
1913 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1914 		 */
1915 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1916 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1917 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1918 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1919 	}
1920 }
1921 
1922 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1923 static bool tcp_minshall_check(const struct tcp_sock *tp)
1924 {
1925 	return after(tp->snd_sml, tp->snd_una) &&
1926 		!after(tp->snd_sml, tp->snd_nxt);
1927 }
1928 
1929 /* Update snd_sml if this skb is under mss
1930  * Note that a TSO packet might end with a sub-mss segment
1931  * The test is really :
1932  * if ((skb->len % mss) != 0)
1933  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1934  * But we can avoid doing the divide again given we already have
1935  *  skb_pcount = skb->len / mss_now
1936  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1937 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1938 				const struct sk_buff *skb)
1939 {
1940 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1941 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1942 }
1943 
1944 /* Return false, if packet can be sent now without violation Nagle's rules:
1945  * 1. It is full sized. (provided by caller in %partial bool)
1946  * 2. Or it contains FIN. (already checked by caller)
1947  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1948  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1949  *    With Minshall's modification: all sent small packets are ACKed.
1950  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1951 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1952 			    int nonagle)
1953 {
1954 	return partial &&
1955 		((nonagle & TCP_NAGLE_CORK) ||
1956 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1957 }
1958 
1959 /* Return how many segs we'd like on a TSO packet,
1960  * to send one TSO packet per ms
1961  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1962 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1963 			    int min_tso_segs)
1964 {
1965 	u32 bytes, segs;
1966 
1967 	bytes = min_t(unsigned long,
1968 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1969 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1970 
1971 	/* Goal is to send at least one packet per ms,
1972 	 * not one big TSO packet every 100 ms.
1973 	 * This preserves ACK clocking and is consistent
1974 	 * with tcp_tso_should_defer() heuristic.
1975 	 */
1976 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1977 
1978 	return segs;
1979 }
1980 
1981 /* Return the number of segments we want in the skb we are transmitting.
1982  * See if congestion control module wants to decide; otherwise, autosize.
1983  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1984 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1985 {
1986 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1987 	u32 min_tso, tso_segs;
1988 
1989 	min_tso = ca_ops->min_tso_segs ?
1990 			ca_ops->min_tso_segs(sk) :
1991 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1992 
1993 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1994 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1995 }
1996 
1997 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1998 static unsigned int tcp_mss_split_point(const struct sock *sk,
1999 					const struct sk_buff *skb,
2000 					unsigned int mss_now,
2001 					unsigned int max_segs,
2002 					int nonagle)
2003 {
2004 	const struct tcp_sock *tp = tcp_sk(sk);
2005 	u32 partial, needed, window, max_len;
2006 
2007 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2008 	max_len = mss_now * max_segs;
2009 
2010 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2011 		return max_len;
2012 
2013 	needed = min(skb->len, window);
2014 
2015 	if (max_len <= needed)
2016 		return max_len;
2017 
2018 	partial = needed % mss_now;
2019 	/* If last segment is not a full MSS, check if Nagle rules allow us
2020 	 * to include this last segment in this skb.
2021 	 * Otherwise, we'll split the skb at last MSS boundary
2022 	 */
2023 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2024 		return needed - partial;
2025 
2026 	return needed;
2027 }
2028 
2029 /* Can at least one segment of SKB be sent right now, according to the
2030  * congestion window rules?  If so, return how many segments are allowed.
2031  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2032 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2033 					 const struct sk_buff *skb)
2034 {
2035 	u32 in_flight, cwnd, halfcwnd;
2036 
2037 	/* Don't be strict about the congestion window for the final FIN.  */
2038 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2039 	    tcp_skb_pcount(skb) == 1)
2040 		return 1;
2041 
2042 	in_flight = tcp_packets_in_flight(tp);
2043 	cwnd = tp->snd_cwnd;
2044 	if (in_flight >= cwnd)
2045 		return 0;
2046 
2047 	/* For better scheduling, ensure we have at least
2048 	 * 2 GSO packets in flight.
2049 	 */
2050 	halfcwnd = max(cwnd >> 1, 1U);
2051 	return min(halfcwnd, cwnd - in_flight);
2052 }
2053 
2054 /* Initialize TSO state of a skb.
2055  * This must be invoked the first time we consider transmitting
2056  * SKB onto the wire.
2057  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2058 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2059 {
2060 	int tso_segs = tcp_skb_pcount(skb);
2061 
2062 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2063 		tcp_set_skb_tso_segs(skb, mss_now);
2064 		tso_segs = tcp_skb_pcount(skb);
2065 	}
2066 	return tso_segs;
2067 }
2068 
2069 
2070 /* Return true if the Nagle test allows this packet to be
2071  * sent now.
2072  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2073 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2074 				  unsigned int cur_mss, int nonagle)
2075 {
2076 	/* Nagle rule does not apply to frames, which sit in the middle of the
2077 	 * write_queue (they have no chances to get new data).
2078 	 *
2079 	 * This is implemented in the callers, where they modify the 'nonagle'
2080 	 * argument based upon the location of SKB in the send queue.
2081 	 */
2082 	if (nonagle & TCP_NAGLE_PUSH)
2083 		return true;
2084 
2085 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2086 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2087 		return true;
2088 
2089 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2090 		return true;
2091 
2092 	return false;
2093 }
2094 
2095 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2096 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2097 			     const struct sk_buff *skb,
2098 			     unsigned int cur_mss)
2099 {
2100 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2101 
2102 	if (skb->len > cur_mss)
2103 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2104 
2105 	return !after(end_seq, tcp_wnd_end(tp));
2106 }
2107 
2108 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2109  * which is put after SKB on the list.  It is very much like
2110  * tcp_fragment() except that it may make several kinds of assumptions
2111  * in order to speed up the splitting operation.  In particular, we
2112  * know that all the data is in scatter-gather pages, and that the
2113  * packet has never been sent out before (and thus is not cloned).
2114  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2115 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2116 			unsigned int mss_now, gfp_t gfp)
2117 {
2118 	int nlen = skb->len - len;
2119 	struct sk_buff *buff;
2120 	u8 flags;
2121 
2122 	/* All of a TSO frame must be composed of paged data.  */
2123 	if (skb->len != skb->data_len)
2124 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2125 				    skb, len, mss_now, gfp);
2126 
2127 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2128 	if (unlikely(!buff))
2129 		return -ENOMEM;
2130 	skb_copy_decrypted(buff, skb);
2131 
2132 	sk_wmem_queued_add(sk, buff->truesize);
2133 	sk_mem_charge(sk, buff->truesize);
2134 	buff->truesize += nlen;
2135 	skb->truesize -= nlen;
2136 
2137 	/* Correct the sequence numbers. */
2138 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2139 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2140 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2141 
2142 	/* PSH and FIN should only be set in the second packet. */
2143 	flags = TCP_SKB_CB(skb)->tcp_flags;
2144 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2145 	TCP_SKB_CB(buff)->tcp_flags = flags;
2146 
2147 	/* This packet was never sent out yet, so no SACK bits. */
2148 	TCP_SKB_CB(buff)->sacked = 0;
2149 
2150 	tcp_skb_fragment_eor(skb, buff);
2151 
2152 	buff->ip_summed = CHECKSUM_PARTIAL;
2153 	skb_split(skb, buff, len);
2154 	tcp_fragment_tstamp(skb, buff);
2155 
2156 	/* Fix up tso_factor for both original and new SKB.  */
2157 	tcp_set_skb_tso_segs(skb, mss_now);
2158 	tcp_set_skb_tso_segs(buff, mss_now);
2159 
2160 	/* Link BUFF into the send queue. */
2161 	__skb_header_release(buff);
2162 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2163 
2164 	return 0;
2165 }
2166 
2167 /* Try to defer sending, if possible, in order to minimize the amount
2168  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2169  *
2170  * This algorithm is from John Heffner.
2171  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2172 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2173 				 bool *is_cwnd_limited,
2174 				 bool *is_rwnd_limited,
2175 				 u32 max_segs)
2176 {
2177 	const struct inet_connection_sock *icsk = inet_csk(sk);
2178 	u32 send_win, cong_win, limit, in_flight;
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	struct sk_buff *head;
2181 	int win_divisor;
2182 	s64 delta;
2183 
2184 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2185 		goto send_now;
2186 
2187 	/* Avoid bursty behavior by allowing defer
2188 	 * only if the last write was recent (1 ms).
2189 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2190 	 * packets waiting in a qdisc or device for EDT delivery.
2191 	 */
2192 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2193 	if (delta > 0)
2194 		goto send_now;
2195 
2196 	in_flight = tcp_packets_in_flight(tp);
2197 
2198 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2199 	BUG_ON(tp->snd_cwnd <= in_flight);
2200 
2201 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2202 
2203 	/* From in_flight test above, we know that cwnd > in_flight.  */
2204 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2205 
2206 	limit = min(send_win, cong_win);
2207 
2208 	/* If a full-sized TSO skb can be sent, do it. */
2209 	if (limit >= max_segs * tp->mss_cache)
2210 		goto send_now;
2211 
2212 	/* Middle in queue won't get any more data, full sendable already? */
2213 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2214 		goto send_now;
2215 
2216 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2217 	if (win_divisor) {
2218 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2219 
2220 		/* If at least some fraction of a window is available,
2221 		 * just use it.
2222 		 */
2223 		chunk /= win_divisor;
2224 		if (limit >= chunk)
2225 			goto send_now;
2226 	} else {
2227 		/* Different approach, try not to defer past a single
2228 		 * ACK.  Receiver should ACK every other full sized
2229 		 * frame, so if we have space for more than 3 frames
2230 		 * then send now.
2231 		 */
2232 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2233 			goto send_now;
2234 	}
2235 
2236 	/* TODO : use tsorted_sent_queue ? */
2237 	head = tcp_rtx_queue_head(sk);
2238 	if (!head)
2239 		goto send_now;
2240 	delta = tp->tcp_clock_cache - head->tstamp;
2241 	/* If next ACK is likely to come too late (half srtt), do not defer */
2242 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2243 		goto send_now;
2244 
2245 	/* Ok, it looks like it is advisable to defer.
2246 	 * Three cases are tracked :
2247 	 * 1) We are cwnd-limited
2248 	 * 2) We are rwnd-limited
2249 	 * 3) We are application limited.
2250 	 */
2251 	if (cong_win < send_win) {
2252 		if (cong_win <= skb->len) {
2253 			*is_cwnd_limited = true;
2254 			return true;
2255 		}
2256 	} else {
2257 		if (send_win <= skb->len) {
2258 			*is_rwnd_limited = true;
2259 			return true;
2260 		}
2261 	}
2262 
2263 	/* If this packet won't get more data, do not wait. */
2264 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2265 	    TCP_SKB_CB(skb)->eor)
2266 		goto send_now;
2267 
2268 	return true;
2269 
2270 send_now:
2271 	return false;
2272 }
2273 
tcp_mtu_check_reprobe(struct sock * sk)2274 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2275 {
2276 	struct inet_connection_sock *icsk = inet_csk(sk);
2277 	struct tcp_sock *tp = tcp_sk(sk);
2278 	struct net *net = sock_net(sk);
2279 	u32 interval;
2280 	s32 delta;
2281 
2282 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2283 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2284 	if (unlikely(delta >= interval * HZ)) {
2285 		int mss = tcp_current_mss(sk);
2286 
2287 		/* Update current search range */
2288 		icsk->icsk_mtup.probe_size = 0;
2289 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2290 			sizeof(struct tcphdr) +
2291 			icsk->icsk_af_ops->net_header_len;
2292 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2293 
2294 		/* Update probe time stamp */
2295 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2296 	}
2297 }
2298 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2299 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2300 {
2301 	struct sk_buff *skb, *next;
2302 
2303 	skb = tcp_send_head(sk);
2304 	tcp_for_write_queue_from_safe(skb, next, sk) {
2305 		if (len <= skb->len)
2306 			break;
2307 
2308 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2309 			return false;
2310 
2311 		len -= skb->len;
2312 	}
2313 
2314 	return true;
2315 }
2316 
2317 /* Create a new MTU probe if we are ready.
2318  * MTU probe is regularly attempting to increase the path MTU by
2319  * deliberately sending larger packets.  This discovers routing
2320  * changes resulting in larger path MTUs.
2321  *
2322  * Returns 0 if we should wait to probe (no cwnd available),
2323  *         1 if a probe was sent,
2324  *         -1 otherwise
2325  */
tcp_mtu_probe(struct sock * sk)2326 static int tcp_mtu_probe(struct sock *sk)
2327 {
2328 	struct inet_connection_sock *icsk = inet_csk(sk);
2329 	struct tcp_sock *tp = tcp_sk(sk);
2330 	struct sk_buff *skb, *nskb, *next;
2331 	struct net *net = sock_net(sk);
2332 	int probe_size;
2333 	int size_needed;
2334 	int copy, len;
2335 	int mss_now;
2336 	int interval;
2337 
2338 	/* Not currently probing/verifying,
2339 	 * not in recovery,
2340 	 * have enough cwnd, and
2341 	 * not SACKing (the variable headers throw things off)
2342 	 */
2343 	if (likely(!icsk->icsk_mtup.enabled ||
2344 		   icsk->icsk_mtup.probe_size ||
2345 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2346 		   tp->snd_cwnd < 11 ||
2347 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2348 		return -1;
2349 
2350 	/* Use binary search for probe_size between tcp_mss_base,
2351 	 * and current mss_clamp. if (search_high - search_low)
2352 	 * smaller than a threshold, backoff from probing.
2353 	 */
2354 	mss_now = tcp_current_mss(sk);
2355 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2356 				    icsk->icsk_mtup.search_low) >> 1);
2357 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2358 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2359 	/* When misfortune happens, we are reprobing actively,
2360 	 * and then reprobe timer has expired. We stick with current
2361 	 * probing process by not resetting search range to its orignal.
2362 	 */
2363 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2364 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2365 		/* Check whether enough time has elaplased for
2366 		 * another round of probing.
2367 		 */
2368 		tcp_mtu_check_reprobe(sk);
2369 		return -1;
2370 	}
2371 
2372 	/* Have enough data in the send queue to probe? */
2373 	if (tp->write_seq - tp->snd_nxt < size_needed)
2374 		return -1;
2375 
2376 	if (tp->snd_wnd < size_needed)
2377 		return -1;
2378 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2379 		return 0;
2380 
2381 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2382 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2383 		if (!tcp_packets_in_flight(tp))
2384 			return -1;
2385 		else
2386 			return 0;
2387 	}
2388 
2389 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2390 		return -1;
2391 
2392 	/* We're allowed to probe.  Build it now. */
2393 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2394 	if (!nskb)
2395 		return -1;
2396 	sk_wmem_queued_add(sk, nskb->truesize);
2397 	sk_mem_charge(sk, nskb->truesize);
2398 
2399 	skb = tcp_send_head(sk);
2400 	skb_copy_decrypted(nskb, skb);
2401 
2402 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2403 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2404 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2405 	TCP_SKB_CB(nskb)->sacked = 0;
2406 	nskb->csum = 0;
2407 	nskb->ip_summed = CHECKSUM_PARTIAL;
2408 
2409 	tcp_insert_write_queue_before(nskb, skb, sk);
2410 	tcp_highest_sack_replace(sk, skb, nskb);
2411 
2412 	len = 0;
2413 	tcp_for_write_queue_from_safe(skb, next, sk) {
2414 		copy = min_t(int, skb->len, probe_size - len);
2415 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2416 
2417 		if (skb->len <= copy) {
2418 			/* We've eaten all the data from this skb.
2419 			 * Throw it away. */
2420 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2421 			/* If this is the last SKB we copy and eor is set
2422 			 * we need to propagate it to the new skb.
2423 			 */
2424 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2425 			tcp_skb_collapse_tstamp(nskb, skb);
2426 			tcp_unlink_write_queue(skb, sk);
2427 			sk_wmem_free_skb(sk, skb);
2428 		} else {
2429 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2430 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2431 			if (!skb_shinfo(skb)->nr_frags) {
2432 				skb_pull(skb, copy);
2433 			} else {
2434 				__pskb_trim_head(skb, copy);
2435 				tcp_set_skb_tso_segs(skb, mss_now);
2436 			}
2437 			TCP_SKB_CB(skb)->seq += copy;
2438 		}
2439 
2440 		len += copy;
2441 
2442 		if (len >= probe_size)
2443 			break;
2444 	}
2445 	tcp_init_tso_segs(nskb, nskb->len);
2446 
2447 	/* We're ready to send.  If this fails, the probe will
2448 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2449 	 */
2450 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2451 		/* Decrement cwnd here because we are sending
2452 		 * effectively two packets. */
2453 		tp->snd_cwnd--;
2454 		tcp_event_new_data_sent(sk, nskb);
2455 
2456 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2457 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2458 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2459 
2460 		return 1;
2461 	}
2462 
2463 	return -1;
2464 }
2465 
tcp_pacing_check(struct sock * sk)2466 static bool tcp_pacing_check(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (!tcp_needs_internal_pacing(sk))
2471 		return false;
2472 
2473 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2474 		return false;
2475 
2476 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2477 		hrtimer_start(&tp->pacing_timer,
2478 			      ns_to_ktime(tp->tcp_wstamp_ns),
2479 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2480 		sock_hold(sk);
2481 	}
2482 	return true;
2483 }
2484 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2485 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2486 {
2487 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2488 
2489 	/* No skb in the rtx queue. */
2490 	if (!node)
2491 		return true;
2492 
2493 	/* Only one skb in rtx queue. */
2494 	return !node->rb_left && !node->rb_right;
2495 }
2496 
2497 /* TCP Small Queues :
2498  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2499  * (These limits are doubled for retransmits)
2500  * This allows for :
2501  *  - better RTT estimation and ACK scheduling
2502  *  - faster recovery
2503  *  - high rates
2504  * Alas, some drivers / subsystems require a fair amount
2505  * of queued bytes to ensure line rate.
2506  * One example is wifi aggregation (802.11 AMPDU)
2507  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2508 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2509 				  unsigned int factor)
2510 {
2511 	unsigned long limit;
2512 
2513 	limit = max_t(unsigned long,
2514 		      2 * skb->truesize,
2515 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2516 	if (sk->sk_pacing_status == SK_PACING_NONE)
2517 		limit = min_t(unsigned long, limit,
2518 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2519 	limit <<= factor;
2520 
2521 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2522 	    tcp_sk(sk)->tcp_tx_delay) {
2523 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2524 
2525 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2526 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2527 		 * USEC_PER_SEC is approximated by 2^20.
2528 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2529 		 */
2530 		extra_bytes >>= (20 - 1);
2531 		limit += extra_bytes;
2532 	}
2533 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2534 		/* Always send skb if rtx queue is empty or has one skb.
2535 		 * No need to wait for TX completion to call us back,
2536 		 * after softirq/tasklet schedule.
2537 		 * This helps when TX completions are delayed too much.
2538 		 */
2539 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2540 			return false;
2541 
2542 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2543 		/* It is possible TX completion already happened
2544 		 * before we set TSQ_THROTTLED, so we must
2545 		 * test again the condition.
2546 		 */
2547 		smp_mb__after_atomic();
2548 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2549 			return true;
2550 	}
2551 	return false;
2552 }
2553 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2554 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2555 {
2556 	const u32 now = tcp_jiffies32;
2557 	enum tcp_chrono old = tp->chrono_type;
2558 
2559 	if (old > TCP_CHRONO_UNSPEC)
2560 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2561 	tp->chrono_start = now;
2562 	tp->chrono_type = new;
2563 }
2564 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2565 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2566 {
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 
2569 	/* If there are multiple conditions worthy of tracking in a
2570 	 * chronograph then the highest priority enum takes precedence
2571 	 * over the other conditions. So that if something "more interesting"
2572 	 * starts happening, stop the previous chrono and start a new one.
2573 	 */
2574 	if (type > tp->chrono_type)
2575 		tcp_chrono_set(tp, type);
2576 }
2577 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2578 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 
2582 
2583 	/* There are multiple conditions worthy of tracking in a
2584 	 * chronograph, so that the highest priority enum takes
2585 	 * precedence over the other conditions (see tcp_chrono_start).
2586 	 * If a condition stops, we only stop chrono tracking if
2587 	 * it's the "most interesting" or current chrono we are
2588 	 * tracking and starts busy chrono if we have pending data.
2589 	 */
2590 	if (tcp_rtx_and_write_queues_empty(sk))
2591 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2592 	else if (type == tp->chrono_type)
2593 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2594 }
2595 
2596 /* This routine writes packets to the network.  It advances the
2597  * send_head.  This happens as incoming acks open up the remote
2598  * window for us.
2599  *
2600  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2601  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2602  * account rare use of URG, this is not a big flaw.
2603  *
2604  * Send at most one packet when push_one > 0. Temporarily ignore
2605  * cwnd limit to force at most one packet out when push_one == 2.
2606 
2607  * Returns true, if no segments are in flight and we have queued segments,
2608  * but cannot send anything now because of SWS or another problem.
2609  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2610 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2611 			   int push_one, gfp_t gfp)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 	struct sk_buff *skb;
2615 	unsigned int tso_segs, sent_pkts;
2616 	int cwnd_quota;
2617 	int result;
2618 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2619 	u32 max_segs;
2620 
2621 	sent_pkts = 0;
2622 
2623 	tcp_mstamp_refresh(tp);
2624 	if (!push_one) {
2625 		/* Do MTU probing. */
2626 		result = tcp_mtu_probe(sk);
2627 		if (!result) {
2628 			return false;
2629 		} else if (result > 0) {
2630 			sent_pkts = 1;
2631 		}
2632 	}
2633 
2634 	max_segs = tcp_tso_segs(sk, mss_now);
2635 	while ((skb = tcp_send_head(sk))) {
2636 		unsigned int limit;
2637 
2638 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2639 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2640 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2641 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2642 			tcp_init_tso_segs(skb, mss_now);
2643 			goto repair; /* Skip network transmission */
2644 		}
2645 
2646 		if (tcp_pacing_check(sk))
2647 			break;
2648 
2649 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2650 		BUG_ON(!tso_segs);
2651 
2652 		cwnd_quota = tcp_cwnd_test(tp, skb);
2653 		if (!cwnd_quota) {
2654 			if (push_one == 2)
2655 				/* Force out a loss probe pkt. */
2656 				cwnd_quota = 1;
2657 			else
2658 				break;
2659 		}
2660 
2661 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2662 			is_rwnd_limited = true;
2663 			break;
2664 		}
2665 
2666 		if (tso_segs == 1) {
2667 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2668 						     (tcp_skb_is_last(sk, skb) ?
2669 						      nonagle : TCP_NAGLE_PUSH))))
2670 				break;
2671 		} else {
2672 			if (!push_one &&
2673 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2674 						 &is_rwnd_limited, max_segs))
2675 				break;
2676 		}
2677 
2678 		limit = mss_now;
2679 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2680 			limit = tcp_mss_split_point(sk, skb, mss_now,
2681 						    min_t(unsigned int,
2682 							  cwnd_quota,
2683 							  max_segs),
2684 						    nonagle);
2685 
2686 		if (skb->len > limit &&
2687 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2688 			break;
2689 
2690 		if (tcp_small_queue_check(sk, skb, 0))
2691 			break;
2692 
2693 		/* Argh, we hit an empty skb(), presumably a thread
2694 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2695 		 * We do not want to send a pure-ack packet and have
2696 		 * a strange looking rtx queue with empty packet(s).
2697 		 */
2698 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2699 			break;
2700 
2701 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2702 			break;
2703 
2704 repair:
2705 		/* Advance the send_head.  This one is sent out.
2706 		 * This call will increment packets_out.
2707 		 */
2708 		tcp_event_new_data_sent(sk, skb);
2709 
2710 		tcp_minshall_update(tp, mss_now, skb);
2711 		sent_pkts += tcp_skb_pcount(skb);
2712 
2713 		if (push_one)
2714 			break;
2715 	}
2716 
2717 	if (is_rwnd_limited)
2718 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2719 	else
2720 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2721 
2722 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2723 	if (likely(sent_pkts || is_cwnd_limited))
2724 		tcp_cwnd_validate(sk, is_cwnd_limited);
2725 
2726 	if (likely(sent_pkts)) {
2727 		if (tcp_in_cwnd_reduction(sk))
2728 			tp->prr_out += sent_pkts;
2729 
2730 		/* Send one loss probe per tail loss episode. */
2731 		if (push_one != 2)
2732 			tcp_schedule_loss_probe(sk, false);
2733 		return false;
2734 	}
2735 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2736 }
2737 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2738 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2739 {
2740 	struct inet_connection_sock *icsk = inet_csk(sk);
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 	u32 timeout, timeout_us, rto_delta_us;
2743 	int early_retrans;
2744 
2745 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2746 	 * finishes.
2747 	 */
2748 	if (rcu_access_pointer(tp->fastopen_rsk))
2749 		return false;
2750 
2751 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2752 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2753 	 * not in loss recovery, that are either limited by cwnd or application.
2754 	 */
2755 	if ((early_retrans != 3 && early_retrans != 4) ||
2756 	    !tp->packets_out || !tcp_is_sack(tp) ||
2757 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2758 	     icsk->icsk_ca_state != TCP_CA_CWR))
2759 		return false;
2760 
2761 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2762 	 * for delayed ack when there's one outstanding packet. If no RTT
2763 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2764 	 */
2765 	if (tp->srtt_us) {
2766 		timeout_us = tp->srtt_us >> 2;
2767 		if (tp->packets_out == 1)
2768 			timeout_us += tcp_rto_min_us(sk);
2769 		else
2770 			timeout_us += TCP_TIMEOUT_MIN_US;
2771 		timeout = usecs_to_jiffies(timeout_us);
2772 	} else {
2773 		timeout = TCP_TIMEOUT_INIT;
2774 	}
2775 
2776 	/* If the RTO formula yields an earlier time, then use that time. */
2777 	rto_delta_us = advancing_rto ?
2778 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2779 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2780 	if (rto_delta_us > 0)
2781 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2782 
2783 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2784 	return true;
2785 }
2786 
2787 /* Thanks to skb fast clones, we can detect if a prior transmit of
2788  * a packet is still in a qdisc or driver queue.
2789  * In this case, there is very little point doing a retransmit !
2790  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2791 static bool skb_still_in_host_queue(const struct sock *sk,
2792 				    const struct sk_buff *skb)
2793 {
2794 	if (unlikely(skb_fclone_busy(sk, skb))) {
2795 		NET_INC_STATS(sock_net(sk),
2796 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2797 		return true;
2798 	}
2799 	return false;
2800 }
2801 
2802 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2803  * retransmit the last segment.
2804  */
tcp_send_loss_probe(struct sock * sk)2805 void tcp_send_loss_probe(struct sock *sk)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	struct sk_buff *skb;
2809 	int pcount;
2810 	int mss = tcp_current_mss(sk);
2811 
2812 	/* At most one outstanding TLP */
2813 	if (tp->tlp_high_seq)
2814 		goto rearm_timer;
2815 
2816 	tp->tlp_retrans = 0;
2817 	skb = tcp_send_head(sk);
2818 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2819 		pcount = tp->packets_out;
2820 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2821 		if (tp->packets_out > pcount)
2822 			goto probe_sent;
2823 		goto rearm_timer;
2824 	}
2825 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2826 	if (unlikely(!skb)) {
2827 		WARN_ONCE(tp->packets_out,
2828 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2829 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2830 		inet_csk(sk)->icsk_pending = 0;
2831 		return;
2832 	}
2833 
2834 	if (skb_still_in_host_queue(sk, skb))
2835 		goto rearm_timer;
2836 
2837 	pcount = tcp_skb_pcount(skb);
2838 	if (WARN_ON(!pcount))
2839 		goto rearm_timer;
2840 
2841 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2842 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2843 					  (pcount - 1) * mss, mss,
2844 					  GFP_ATOMIC)))
2845 			goto rearm_timer;
2846 		skb = skb_rb_next(skb);
2847 	}
2848 
2849 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2850 		goto rearm_timer;
2851 
2852 	if (__tcp_retransmit_skb(sk, skb, 1))
2853 		goto rearm_timer;
2854 
2855 	tp->tlp_retrans = 1;
2856 
2857 probe_sent:
2858 	/* Record snd_nxt for loss detection. */
2859 	tp->tlp_high_seq = tp->snd_nxt;
2860 
2861 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2862 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2863 	inet_csk(sk)->icsk_pending = 0;
2864 rearm_timer:
2865 	tcp_rearm_rto(sk);
2866 }
2867 
2868 /* Push out any pending frames which were held back due to
2869  * TCP_CORK or attempt at coalescing tiny packets.
2870  * The socket must be locked by the caller.
2871  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2872 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2873 			       int nonagle)
2874 {
2875 	/* If we are closed, the bytes will have to remain here.
2876 	 * In time closedown will finish, we empty the write queue and
2877 	 * all will be happy.
2878 	 */
2879 	if (unlikely(sk->sk_state == TCP_CLOSE))
2880 		return;
2881 
2882 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2883 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2884 		tcp_check_probe_timer(sk);
2885 }
2886 
2887 /* Send _single_ skb sitting at the send head. This function requires
2888  * true push pending frames to setup probe timer etc.
2889  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2890 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2891 {
2892 	struct sk_buff *skb = tcp_send_head(sk);
2893 
2894 	BUG_ON(!skb || skb->len < mss_now);
2895 
2896 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2897 }
2898 
2899 /* This function returns the amount that we can raise the
2900  * usable window based on the following constraints
2901  *
2902  * 1. The window can never be shrunk once it is offered (RFC 793)
2903  * 2. We limit memory per socket
2904  *
2905  * RFC 1122:
2906  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2907  *  RECV.NEXT + RCV.WIN fixed until:
2908  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2909  *
2910  * i.e. don't raise the right edge of the window until you can raise
2911  * it at least MSS bytes.
2912  *
2913  * Unfortunately, the recommended algorithm breaks header prediction,
2914  * since header prediction assumes th->window stays fixed.
2915  *
2916  * Strictly speaking, keeping th->window fixed violates the receiver
2917  * side SWS prevention criteria. The problem is that under this rule
2918  * a stream of single byte packets will cause the right side of the
2919  * window to always advance by a single byte.
2920  *
2921  * Of course, if the sender implements sender side SWS prevention
2922  * then this will not be a problem.
2923  *
2924  * BSD seems to make the following compromise:
2925  *
2926  *	If the free space is less than the 1/4 of the maximum
2927  *	space available and the free space is less than 1/2 mss,
2928  *	then set the window to 0.
2929  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2930  *	Otherwise, just prevent the window from shrinking
2931  *	and from being larger than the largest representable value.
2932  *
2933  * This prevents incremental opening of the window in the regime
2934  * where TCP is limited by the speed of the reader side taking
2935  * data out of the TCP receive queue. It does nothing about
2936  * those cases where the window is constrained on the sender side
2937  * because the pipeline is full.
2938  *
2939  * BSD also seems to "accidentally" limit itself to windows that are a
2940  * multiple of MSS, at least until the free space gets quite small.
2941  * This would appear to be a side effect of the mbuf implementation.
2942  * Combining these two algorithms results in the observed behavior
2943  * of having a fixed window size at almost all times.
2944  *
2945  * Below we obtain similar behavior by forcing the offered window to
2946  * a multiple of the mss when it is feasible to do so.
2947  *
2948  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2949  * Regular options like TIMESTAMP are taken into account.
2950  */
__tcp_select_window(struct sock * sk)2951 u32 __tcp_select_window(struct sock *sk)
2952 {
2953 	struct inet_connection_sock *icsk = inet_csk(sk);
2954 	struct tcp_sock *tp = tcp_sk(sk);
2955 	/* MSS for the peer's data.  Previous versions used mss_clamp
2956 	 * here.  I don't know if the value based on our guesses
2957 	 * of peer's MSS is better for the performance.  It's more correct
2958 	 * but may be worse for the performance because of rcv_mss
2959 	 * fluctuations.  --SAW  1998/11/1
2960 	 */
2961 	int mss = icsk->icsk_ack.rcv_mss;
2962 	int free_space = tcp_space(sk);
2963 	int allowed_space = tcp_full_space(sk);
2964 	int full_space, window;
2965 
2966 	if (sk_is_mptcp(sk))
2967 		mptcp_space(sk, &free_space, &allowed_space);
2968 
2969 	full_space = min_t(int, tp->window_clamp, allowed_space);
2970 
2971 	if (unlikely(mss > full_space)) {
2972 		mss = full_space;
2973 		if (mss <= 0)
2974 			return 0;
2975 	}
2976 	if (free_space < (full_space >> 1)) {
2977 		icsk->icsk_ack.quick = 0;
2978 
2979 		if (tcp_under_memory_pressure(sk))
2980 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2981 					       4U * tp->advmss);
2982 
2983 		/* free_space might become our new window, make sure we don't
2984 		 * increase it due to wscale.
2985 		 */
2986 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2987 
2988 		/* if free space is less than mss estimate, or is below 1/16th
2989 		 * of the maximum allowed, try to move to zero-window, else
2990 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2991 		 * new incoming data is dropped due to memory limits.
2992 		 * With large window, mss test triggers way too late in order
2993 		 * to announce zero window in time before rmem limit kicks in.
2994 		 */
2995 		if (free_space < (allowed_space >> 4) || free_space < mss)
2996 			return 0;
2997 	}
2998 
2999 	if (free_space > tp->rcv_ssthresh)
3000 		free_space = tp->rcv_ssthresh;
3001 
3002 	/* Don't do rounding if we are using window scaling, since the
3003 	 * scaled window will not line up with the MSS boundary anyway.
3004 	 */
3005 	if (tp->rx_opt.rcv_wscale) {
3006 		window = free_space;
3007 
3008 		/* Advertise enough space so that it won't get scaled away.
3009 		 * Import case: prevent zero window announcement if
3010 		 * 1<<rcv_wscale > mss.
3011 		 */
3012 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3013 	} else {
3014 		window = tp->rcv_wnd;
3015 		/* Get the largest window that is a nice multiple of mss.
3016 		 * Window clamp already applied above.
3017 		 * If our current window offering is within 1 mss of the
3018 		 * free space we just keep it. This prevents the divide
3019 		 * and multiply from happening most of the time.
3020 		 * We also don't do any window rounding when the free space
3021 		 * is too small.
3022 		 */
3023 		if (window <= free_space - mss || window > free_space)
3024 			window = rounddown(free_space, mss);
3025 		else if (mss == full_space &&
3026 			 free_space > window + (full_space >> 1))
3027 			window = free_space;
3028 	}
3029 
3030 	return window;
3031 }
3032 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3033 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3034 			     const struct sk_buff *next_skb)
3035 {
3036 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3037 		const struct skb_shared_info *next_shinfo =
3038 			skb_shinfo(next_skb);
3039 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3040 
3041 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3042 		shinfo->tskey = next_shinfo->tskey;
3043 		TCP_SKB_CB(skb)->txstamp_ack |=
3044 			TCP_SKB_CB(next_skb)->txstamp_ack;
3045 	}
3046 }
3047 
3048 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3049 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3050 {
3051 	struct tcp_sock *tp = tcp_sk(sk);
3052 	struct sk_buff *next_skb = skb_rb_next(skb);
3053 	int next_skb_size;
3054 
3055 	next_skb_size = next_skb->len;
3056 
3057 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3058 
3059 	if (next_skb_size) {
3060 		if (next_skb_size <= skb_availroom(skb))
3061 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3062 				      next_skb_size);
3063 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3064 			return false;
3065 	}
3066 	tcp_highest_sack_replace(sk, next_skb, skb);
3067 
3068 	/* Update sequence range on original skb. */
3069 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3070 
3071 	/* Merge over control information. This moves PSH/FIN etc. over */
3072 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3073 
3074 	/* All done, get rid of second SKB and account for it so
3075 	 * packet counting does not break.
3076 	 */
3077 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3078 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3079 
3080 	/* changed transmit queue under us so clear hints */
3081 	tcp_clear_retrans_hints_partial(tp);
3082 	if (next_skb == tp->retransmit_skb_hint)
3083 		tp->retransmit_skb_hint = skb;
3084 
3085 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3086 
3087 	tcp_skb_collapse_tstamp(skb, next_skb);
3088 
3089 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3090 	return true;
3091 }
3092 
3093 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3094 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3095 {
3096 	if (tcp_skb_pcount(skb) > 1)
3097 		return false;
3098 	if (skb_cloned(skb))
3099 		return false;
3100 	/* Some heuristics for collapsing over SACK'd could be invented */
3101 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3102 		return false;
3103 
3104 	return true;
3105 }
3106 
3107 /* Collapse packets in the retransmit queue to make to create
3108  * less packets on the wire. This is only done on retransmission.
3109  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3110 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3111 				     int space)
3112 {
3113 	struct tcp_sock *tp = tcp_sk(sk);
3114 	struct sk_buff *skb = to, *tmp;
3115 	bool first = true;
3116 
3117 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3118 		return;
3119 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3120 		return;
3121 
3122 	skb_rbtree_walk_from_safe(skb, tmp) {
3123 		if (!tcp_can_collapse(sk, skb))
3124 			break;
3125 
3126 		if (!tcp_skb_can_collapse(to, skb))
3127 			break;
3128 
3129 		space -= skb->len;
3130 
3131 		if (first) {
3132 			first = false;
3133 			continue;
3134 		}
3135 
3136 		if (space < 0)
3137 			break;
3138 
3139 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3140 			break;
3141 
3142 		if (!tcp_collapse_retrans(sk, to))
3143 			break;
3144 	}
3145 }
3146 
3147 /* This retransmits one SKB.  Policy decisions and retransmit queue
3148  * state updates are done by the caller.  Returns non-zero if an
3149  * error occurred which prevented the send.
3150  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3151 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3152 {
3153 	struct inet_connection_sock *icsk = inet_csk(sk);
3154 	struct tcp_sock *tp = tcp_sk(sk);
3155 	unsigned int cur_mss;
3156 	int diff, len, err;
3157 	int avail_wnd;
3158 
3159 	/* Inconclusive MTU probe */
3160 	if (icsk->icsk_mtup.probe_size)
3161 		icsk->icsk_mtup.probe_size = 0;
3162 
3163 	/* Do not sent more than we queued. 1/4 is reserved for possible
3164 	 * copying overhead: fragmentation, tunneling, mangling etc.
3165 	 */
3166 	if (refcount_read(&sk->sk_wmem_alloc) >
3167 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3168 		  sk->sk_sndbuf))
3169 		return -EAGAIN;
3170 
3171 	if (skb_still_in_host_queue(sk, skb))
3172 		return -EBUSY;
3173 
3174 start:
3175 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3176 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3177 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3178 			TCP_SKB_CB(skb)->seq++;
3179 			goto start;
3180 		}
3181 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3182 			WARN_ON_ONCE(1);
3183 			return -EINVAL;
3184 		}
3185 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3186 			return -ENOMEM;
3187 	}
3188 
3189 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3190 		return -EHOSTUNREACH; /* Routing failure or similar. */
3191 
3192 	cur_mss = tcp_current_mss(sk);
3193 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3194 
3195 	/* If receiver has shrunk his window, and skb is out of
3196 	 * new window, do not retransmit it. The exception is the
3197 	 * case, when window is shrunk to zero. In this case
3198 	 * our retransmit of one segment serves as a zero window probe.
3199 	 */
3200 	if (avail_wnd <= 0) {
3201 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3202 			return -EAGAIN;
3203 		avail_wnd = cur_mss;
3204 	}
3205 
3206 	len = cur_mss * segs;
3207 	if (len > avail_wnd) {
3208 		len = rounddown(avail_wnd, cur_mss);
3209 		if (!len)
3210 			len = avail_wnd;
3211 	}
3212 	if (skb->len > len) {
3213 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3214 				 cur_mss, GFP_ATOMIC))
3215 			return -ENOMEM; /* We'll try again later. */
3216 	} else {
3217 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3218 			return -ENOMEM;
3219 
3220 		diff = tcp_skb_pcount(skb);
3221 		tcp_set_skb_tso_segs(skb, cur_mss);
3222 		diff -= tcp_skb_pcount(skb);
3223 		if (diff)
3224 			tcp_adjust_pcount(sk, skb, diff);
3225 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3226 		if (skb->len < avail_wnd)
3227 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3228 	}
3229 
3230 	/* RFC3168, section 6.1.1.1. ECN fallback */
3231 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3232 		tcp_ecn_clear_syn(sk, skb);
3233 
3234 	/* Update global and local TCP statistics. */
3235 	segs = tcp_skb_pcount(skb);
3236 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3237 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3238 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3239 	tp->total_retrans += segs;
3240 	tp->bytes_retrans += skb->len;
3241 
3242 	/* make sure skb->data is aligned on arches that require it
3243 	 * and check if ack-trimming & collapsing extended the headroom
3244 	 * beyond what csum_start can cover.
3245 	 */
3246 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3247 		     skb_headroom(skb) >= 0xFFFF)) {
3248 		struct sk_buff *nskb;
3249 
3250 		tcp_skb_tsorted_save(skb) {
3251 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3252 			if (nskb) {
3253 				nskb->dev = NULL;
3254 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3255 			} else {
3256 				err = -ENOBUFS;
3257 			}
3258 		} tcp_skb_tsorted_restore(skb);
3259 
3260 		if (!err) {
3261 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3262 			tcp_rate_skb_sent(sk, skb);
3263 		}
3264 	} else {
3265 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3266 	}
3267 
3268 	/* To avoid taking spuriously low RTT samples based on a timestamp
3269 	 * for a transmit that never happened, always mark EVER_RETRANS
3270 	 */
3271 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3272 
3273 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3274 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3275 				  TCP_SKB_CB(skb)->seq, segs, err);
3276 
3277 	if (likely(!err)) {
3278 		trace_tcp_retransmit_skb(sk, skb);
3279 	} else if (err != -EBUSY) {
3280 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3281 	}
3282 	return err;
3283 }
3284 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3285 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3286 {
3287 	struct tcp_sock *tp = tcp_sk(sk);
3288 	int err = __tcp_retransmit_skb(sk, skb, segs);
3289 
3290 	if (err == 0) {
3291 #if FASTRETRANS_DEBUG > 0
3292 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3293 			net_dbg_ratelimited("retrans_out leaked\n");
3294 		}
3295 #endif
3296 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3297 		tp->retrans_out += tcp_skb_pcount(skb);
3298 	}
3299 
3300 	/* Save stamp of the first (attempted) retransmit. */
3301 	if (!tp->retrans_stamp)
3302 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3303 
3304 	if (tp->undo_retrans < 0)
3305 		tp->undo_retrans = 0;
3306 	tp->undo_retrans += tcp_skb_pcount(skb);
3307 	return err;
3308 }
3309 
3310 /* This gets called after a retransmit timeout, and the initially
3311  * retransmitted data is acknowledged.  It tries to continue
3312  * resending the rest of the retransmit queue, until either
3313  * we've sent it all or the congestion window limit is reached.
3314  */
tcp_xmit_retransmit_queue(struct sock * sk)3315 void tcp_xmit_retransmit_queue(struct sock *sk)
3316 {
3317 	const struct inet_connection_sock *icsk = inet_csk(sk);
3318 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3319 	struct tcp_sock *tp = tcp_sk(sk);
3320 	bool rearm_timer = false;
3321 	u32 max_segs;
3322 	int mib_idx;
3323 
3324 	if (!tp->packets_out)
3325 		return;
3326 
3327 	rtx_head = tcp_rtx_queue_head(sk);
3328 	skb = tp->retransmit_skb_hint ?: rtx_head;
3329 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3330 	skb_rbtree_walk_from(skb) {
3331 		__u8 sacked;
3332 		int segs;
3333 
3334 		if (tcp_pacing_check(sk))
3335 			break;
3336 
3337 		/* we could do better than to assign each time */
3338 		if (!hole)
3339 			tp->retransmit_skb_hint = skb;
3340 
3341 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3342 		if (segs <= 0)
3343 			break;
3344 		sacked = TCP_SKB_CB(skb)->sacked;
3345 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3346 		 * we need to make sure not sending too bigs TSO packets
3347 		 */
3348 		segs = min_t(int, segs, max_segs);
3349 
3350 		if (tp->retrans_out >= tp->lost_out) {
3351 			break;
3352 		} else if (!(sacked & TCPCB_LOST)) {
3353 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3354 				hole = skb;
3355 			continue;
3356 
3357 		} else {
3358 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3359 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3360 			else
3361 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3362 		}
3363 
3364 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3365 			continue;
3366 
3367 		if (tcp_small_queue_check(sk, skb, 1))
3368 			break;
3369 
3370 		if (tcp_retransmit_skb(sk, skb, segs))
3371 			break;
3372 
3373 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3374 
3375 		if (tcp_in_cwnd_reduction(sk))
3376 			tp->prr_out += tcp_skb_pcount(skb);
3377 
3378 		if (skb == rtx_head &&
3379 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3380 			rearm_timer = true;
3381 
3382 	}
3383 	if (rearm_timer)
3384 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3385 				     inet_csk(sk)->icsk_rto,
3386 				     TCP_RTO_MAX);
3387 }
3388 
3389 /* We allow to exceed memory limits for FIN packets to expedite
3390  * connection tear down and (memory) recovery.
3391  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3392  * or even be forced to close flow without any FIN.
3393  * In general, we want to allow one skb per socket to avoid hangs
3394  * with edge trigger epoll()
3395  */
sk_forced_mem_schedule(struct sock * sk,int size)3396 void sk_forced_mem_schedule(struct sock *sk, int size)
3397 {
3398 	int delta, amt;
3399 
3400 	delta = size - sk->sk_forward_alloc;
3401 	if (delta <= 0)
3402 		return;
3403 	amt = sk_mem_pages(delta);
3404 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3405 	sk_memory_allocated_add(sk, amt);
3406 
3407 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3408 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3409 }
3410 
3411 /* Send a FIN. The caller locks the socket for us.
3412  * We should try to send a FIN packet really hard, but eventually give up.
3413  */
tcp_send_fin(struct sock * sk)3414 void tcp_send_fin(struct sock *sk)
3415 {
3416 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3417 	struct tcp_sock *tp = tcp_sk(sk);
3418 
3419 	/* Optimization, tack on the FIN if we have one skb in write queue and
3420 	 * this skb was not yet sent, or we are under memory pressure.
3421 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3422 	 * as TCP stack thinks it has already been transmitted.
3423 	 */
3424 	tskb = tail;
3425 	if (!tskb && tcp_under_memory_pressure(sk))
3426 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3427 
3428 	if (tskb) {
3429 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3430 		TCP_SKB_CB(tskb)->end_seq++;
3431 		tp->write_seq++;
3432 		if (!tail) {
3433 			/* This means tskb was already sent.
3434 			 * Pretend we included the FIN on previous transmit.
3435 			 * We need to set tp->snd_nxt to the value it would have
3436 			 * if FIN had been sent. This is because retransmit path
3437 			 * does not change tp->snd_nxt.
3438 			 */
3439 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3440 			return;
3441 		}
3442 	} else {
3443 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3444 		if (unlikely(!skb))
3445 			return;
3446 
3447 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3448 		skb_reserve(skb, MAX_TCP_HEADER);
3449 		sk_forced_mem_schedule(sk, skb->truesize);
3450 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3451 		tcp_init_nondata_skb(skb, tp->write_seq,
3452 				     TCPHDR_ACK | TCPHDR_FIN);
3453 		tcp_queue_skb(sk, skb);
3454 	}
3455 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3456 }
3457 
3458 /* We get here when a process closes a file descriptor (either due to
3459  * an explicit close() or as a byproduct of exit()'ing) and there
3460  * was unread data in the receive queue.  This behavior is recommended
3461  * by RFC 2525, section 2.17.  -DaveM
3462  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3463 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3464 {
3465 	struct sk_buff *skb;
3466 
3467 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3468 
3469 	/* NOTE: No TCP options attached and we never retransmit this. */
3470 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3471 	if (!skb) {
3472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3473 		return;
3474 	}
3475 
3476 	/* Reserve space for headers and prepare control bits. */
3477 	skb_reserve(skb, MAX_TCP_HEADER);
3478 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3479 			     TCPHDR_ACK | TCPHDR_RST);
3480 	tcp_mstamp_refresh(tcp_sk(sk));
3481 	/* Send it off. */
3482 	if (tcp_transmit_skb(sk, skb, 0, priority))
3483 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3484 
3485 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3486 	 * skb here is different to the troublesome skb, so use NULL
3487 	 */
3488 	trace_tcp_send_reset(sk, NULL);
3489 }
3490 
3491 /* Send a crossed SYN-ACK during socket establishment.
3492  * WARNING: This routine must only be called when we have already sent
3493  * a SYN packet that crossed the incoming SYN that caused this routine
3494  * to get called. If this assumption fails then the initial rcv_wnd
3495  * and rcv_wscale values will not be correct.
3496  */
tcp_send_synack(struct sock * sk)3497 int tcp_send_synack(struct sock *sk)
3498 {
3499 	struct sk_buff *skb;
3500 
3501 	skb = tcp_rtx_queue_head(sk);
3502 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3503 		pr_err("%s: wrong queue state\n", __func__);
3504 		return -EFAULT;
3505 	}
3506 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3507 		if (skb_cloned(skb)) {
3508 			struct sk_buff *nskb;
3509 
3510 			tcp_skb_tsorted_save(skb) {
3511 				nskb = skb_copy(skb, GFP_ATOMIC);
3512 			} tcp_skb_tsorted_restore(skb);
3513 			if (!nskb)
3514 				return -ENOMEM;
3515 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3516 			tcp_highest_sack_replace(sk, skb, nskb);
3517 			tcp_rtx_queue_unlink_and_free(skb, sk);
3518 			__skb_header_release(nskb);
3519 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3520 			sk_wmem_queued_add(sk, nskb->truesize);
3521 			sk_mem_charge(sk, nskb->truesize);
3522 			skb = nskb;
3523 		}
3524 
3525 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3526 		tcp_ecn_send_synack(sk, skb);
3527 	}
3528 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3529 }
3530 
3531 /**
3532  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3533  * @sk: listener socket
3534  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3535  *       should not use it again.
3536  * @req: request_sock pointer
3537  * @foc: cookie for tcp fast open
3538  * @synack_type: Type of synack to prepare
3539  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3540  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3541 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3542 				struct request_sock *req,
3543 				struct tcp_fastopen_cookie *foc,
3544 				enum tcp_synack_type synack_type,
3545 				struct sk_buff *syn_skb)
3546 {
3547 	struct inet_request_sock *ireq = inet_rsk(req);
3548 	const struct tcp_sock *tp = tcp_sk(sk);
3549 	struct tcp_md5sig_key *md5 = NULL;
3550 	struct tcp_out_options opts;
3551 	struct sk_buff *skb;
3552 	int tcp_header_size;
3553 	struct tcphdr *th;
3554 	int mss;
3555 	u64 now;
3556 
3557 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3558 	if (unlikely(!skb)) {
3559 		dst_release(dst);
3560 		return NULL;
3561 	}
3562 	/* Reserve space for headers. */
3563 	skb_reserve(skb, MAX_TCP_HEADER);
3564 
3565 	switch (synack_type) {
3566 	case TCP_SYNACK_NORMAL:
3567 		skb_set_owner_w(skb, req_to_sk(req));
3568 		break;
3569 	case TCP_SYNACK_COOKIE:
3570 		/* Under synflood, we do not attach skb to a socket,
3571 		 * to avoid false sharing.
3572 		 */
3573 		break;
3574 	case TCP_SYNACK_FASTOPEN:
3575 		/* sk is a const pointer, because we want to express multiple
3576 		 * cpu might call us concurrently.
3577 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3578 		 */
3579 		skb_set_owner_w(skb, (struct sock *)sk);
3580 		break;
3581 	}
3582 	skb_dst_set(skb, dst);
3583 
3584 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3585 
3586 	memset(&opts, 0, sizeof(opts));
3587 	now = tcp_clock_ns();
3588 #ifdef CONFIG_SYN_COOKIES
3589 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3590 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3591 	else
3592 #endif
3593 	{
3594 		skb->skb_mstamp_ns = now;
3595 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3596 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3597 	}
3598 
3599 #ifdef CONFIG_TCP_MD5SIG
3600 	rcu_read_lock();
3601 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3602 #endif
3603 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3604 	/* bpf program will be interested in the tcp_flags */
3605 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3606 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3607 					     foc, synack_type,
3608 					     syn_skb) + sizeof(*th);
3609 
3610 	skb_push(skb, tcp_header_size);
3611 	skb_reset_transport_header(skb);
3612 
3613 	th = (struct tcphdr *)skb->data;
3614 	memset(th, 0, sizeof(struct tcphdr));
3615 	th->syn = 1;
3616 	th->ack = 1;
3617 	tcp_ecn_make_synack(req, th);
3618 	th->source = htons(ireq->ir_num);
3619 	th->dest = ireq->ir_rmt_port;
3620 	skb->mark = ireq->ir_mark;
3621 	skb->ip_summed = CHECKSUM_PARTIAL;
3622 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3623 	/* XXX data is queued and acked as is. No buffer/window check */
3624 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3625 
3626 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3627 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3628 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3629 	th->doff = (tcp_header_size >> 2);
3630 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3631 
3632 #ifdef CONFIG_TCP_MD5SIG
3633 	/* Okay, we have all we need - do the md5 hash if needed */
3634 	if (md5)
3635 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3636 					       md5, req_to_sk(req), skb);
3637 	rcu_read_unlock();
3638 #endif
3639 
3640 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3641 				synack_type, &opts);
3642 
3643 	skb->skb_mstamp_ns = now;
3644 	tcp_add_tx_delay(skb, tp);
3645 
3646 	return skb;
3647 }
3648 EXPORT_SYMBOL(tcp_make_synack);
3649 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3650 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3651 {
3652 	struct inet_connection_sock *icsk = inet_csk(sk);
3653 	const struct tcp_congestion_ops *ca;
3654 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3655 
3656 	if (ca_key == TCP_CA_UNSPEC)
3657 		return;
3658 
3659 	rcu_read_lock();
3660 	ca = tcp_ca_find_key(ca_key);
3661 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3662 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3663 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3664 		icsk->icsk_ca_ops = ca;
3665 	}
3666 	rcu_read_unlock();
3667 }
3668 
3669 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3670 static void tcp_connect_init(struct sock *sk)
3671 {
3672 	const struct dst_entry *dst = __sk_dst_get(sk);
3673 	struct tcp_sock *tp = tcp_sk(sk);
3674 	__u8 rcv_wscale;
3675 	u32 rcv_wnd;
3676 
3677 	/* We'll fix this up when we get a response from the other end.
3678 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3679 	 */
3680 	tp->tcp_header_len = sizeof(struct tcphdr);
3681 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3682 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3683 
3684 #ifdef CONFIG_TCP_MD5SIG
3685 	if (tp->af_specific->md5_lookup(sk, sk))
3686 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3687 #endif
3688 
3689 	/* If user gave his TCP_MAXSEG, record it to clamp */
3690 	if (tp->rx_opt.user_mss)
3691 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3692 	tp->max_window = 0;
3693 	tcp_mtup_init(sk);
3694 	tcp_sync_mss(sk, dst_mtu(dst));
3695 
3696 	tcp_ca_dst_init(sk, dst);
3697 
3698 	if (!tp->window_clamp)
3699 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3700 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3701 
3702 	tcp_initialize_rcv_mss(sk);
3703 
3704 	/* limit the window selection if the user enforce a smaller rx buffer */
3705 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3706 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3707 		tp->window_clamp = tcp_full_space(sk);
3708 
3709 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3710 	if (rcv_wnd == 0)
3711 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3712 
3713 	tcp_select_initial_window(sk, tcp_full_space(sk),
3714 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3715 				  &tp->rcv_wnd,
3716 				  &tp->window_clamp,
3717 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3718 				  &rcv_wscale,
3719 				  rcv_wnd);
3720 
3721 	tp->rx_opt.rcv_wscale = rcv_wscale;
3722 	tp->rcv_ssthresh = tp->rcv_wnd;
3723 
3724 	sk->sk_err = 0;
3725 	sock_reset_flag(sk, SOCK_DONE);
3726 	tp->snd_wnd = 0;
3727 	tcp_init_wl(tp, 0);
3728 	tcp_write_queue_purge(sk);
3729 	tp->snd_una = tp->write_seq;
3730 	tp->snd_sml = tp->write_seq;
3731 	tp->snd_up = tp->write_seq;
3732 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3733 
3734 	if (likely(!tp->repair))
3735 		tp->rcv_nxt = 0;
3736 	else
3737 		tp->rcv_tstamp = tcp_jiffies32;
3738 	tp->rcv_wup = tp->rcv_nxt;
3739 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3740 
3741 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3742 	inet_csk(sk)->icsk_retransmits = 0;
3743 	tcp_clear_retrans(tp);
3744 }
3745 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3746 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3747 {
3748 	struct tcp_sock *tp = tcp_sk(sk);
3749 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3750 
3751 	tcb->end_seq += skb->len;
3752 	__skb_header_release(skb);
3753 	sk_wmem_queued_add(sk, skb->truesize);
3754 	sk_mem_charge(sk, skb->truesize);
3755 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3756 	tp->packets_out += tcp_skb_pcount(skb);
3757 }
3758 
3759 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3760  * queue a data-only packet after the regular SYN, such that regular SYNs
3761  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3762  * only the SYN sequence, the data are retransmitted in the first ACK.
3763  * If cookie is not cached or other error occurs, falls back to send a
3764  * regular SYN with Fast Open cookie request option.
3765  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3766 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3767 {
3768 	struct inet_connection_sock *icsk = inet_csk(sk);
3769 	struct tcp_sock *tp = tcp_sk(sk);
3770 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3771 	int space, err = 0;
3772 	struct sk_buff *syn_data;
3773 
3774 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3775 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3776 		goto fallback;
3777 
3778 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3779 	 * user-MSS. Reserve maximum option space for middleboxes that add
3780 	 * private TCP options. The cost is reduced data space in SYN :(
3781 	 */
3782 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3783 	/* Sync mss_cache after updating the mss_clamp */
3784 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3785 
3786 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3787 		MAX_TCP_OPTION_SPACE;
3788 
3789 	space = min_t(size_t, space, fo->size);
3790 
3791 	/* limit to order-0 allocations */
3792 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3793 
3794 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3795 	if (!syn_data)
3796 		goto fallback;
3797 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3798 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3799 	if (space) {
3800 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3801 					    &fo->data->msg_iter);
3802 		if (unlikely(!copied)) {
3803 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3804 			kfree_skb(syn_data);
3805 			goto fallback;
3806 		}
3807 		if (copied != space) {
3808 			skb_trim(syn_data, copied);
3809 			space = copied;
3810 		}
3811 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3812 	}
3813 	/* No more data pending in inet_wait_for_connect() */
3814 	if (space == fo->size)
3815 		fo->data = NULL;
3816 	fo->copied = space;
3817 
3818 	tcp_connect_queue_skb(sk, syn_data);
3819 	if (syn_data->len)
3820 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3821 
3822 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3823 
3824 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3825 
3826 	/* Now full SYN+DATA was cloned and sent (or not),
3827 	 * remove the SYN from the original skb (syn_data)
3828 	 * we keep in write queue in case of a retransmit, as we
3829 	 * also have the SYN packet (with no data) in the same queue.
3830 	 */
3831 	TCP_SKB_CB(syn_data)->seq++;
3832 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3833 	if (!err) {
3834 		tp->syn_data = (fo->copied > 0);
3835 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3836 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3837 		goto done;
3838 	}
3839 
3840 	/* data was not sent, put it in write_queue */
3841 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3842 	tp->packets_out -= tcp_skb_pcount(syn_data);
3843 
3844 fallback:
3845 	/* Send a regular SYN with Fast Open cookie request option */
3846 	if (fo->cookie.len > 0)
3847 		fo->cookie.len = 0;
3848 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3849 	if (err)
3850 		tp->syn_fastopen = 0;
3851 done:
3852 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3853 	return err;
3854 }
3855 
3856 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3857 int tcp_connect(struct sock *sk)
3858 {
3859 	struct tcp_sock *tp = tcp_sk(sk);
3860 	struct sk_buff *buff;
3861 	int err;
3862 
3863 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3864 
3865 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3866 		return -EHOSTUNREACH; /* Routing failure or similar. */
3867 
3868 	tcp_connect_init(sk);
3869 
3870 	if (unlikely(tp->repair)) {
3871 		tcp_finish_connect(sk, NULL);
3872 		return 0;
3873 	}
3874 
3875 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3876 	if (unlikely(!buff))
3877 		return -ENOBUFS;
3878 
3879 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3880 	tcp_mstamp_refresh(tp);
3881 	tp->retrans_stamp = tcp_time_stamp(tp);
3882 	tcp_connect_queue_skb(sk, buff);
3883 	tcp_ecn_send_syn(sk, buff);
3884 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3885 
3886 	/* Send off SYN; include data in Fast Open. */
3887 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3888 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3889 	if (err == -ECONNREFUSED)
3890 		return err;
3891 
3892 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3893 	 * in order to make this packet get counted in tcpOutSegs.
3894 	 */
3895 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3896 	tp->pushed_seq = tp->write_seq;
3897 	buff = tcp_send_head(sk);
3898 	if (unlikely(buff)) {
3899 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3900 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3901 	}
3902 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3903 
3904 	/* Timer for repeating the SYN until an answer. */
3905 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3906 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3907 	return 0;
3908 }
3909 EXPORT_SYMBOL(tcp_connect);
3910 
3911 /* Send out a delayed ack, the caller does the policy checking
3912  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3913  * for details.
3914  */
tcp_send_delayed_ack(struct sock * sk)3915 void tcp_send_delayed_ack(struct sock *sk)
3916 {
3917 	struct inet_connection_sock *icsk = inet_csk(sk);
3918 	int ato = icsk->icsk_ack.ato;
3919 	unsigned long timeout;
3920 
3921 	if (ato > TCP_DELACK_MIN) {
3922 		const struct tcp_sock *tp = tcp_sk(sk);
3923 		int max_ato = HZ / 2;
3924 
3925 		if (inet_csk_in_pingpong_mode(sk) ||
3926 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3927 			max_ato = TCP_DELACK_MAX;
3928 
3929 		/* Slow path, intersegment interval is "high". */
3930 
3931 		/* If some rtt estimate is known, use it to bound delayed ack.
3932 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3933 		 * directly.
3934 		 */
3935 		if (tp->srtt_us) {
3936 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3937 					TCP_DELACK_MIN);
3938 
3939 			if (rtt < max_ato)
3940 				max_ato = rtt;
3941 		}
3942 
3943 		ato = min(ato, max_ato);
3944 	}
3945 
3946 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3947 
3948 	/* Stay within the limit we were given */
3949 	timeout = jiffies + ato;
3950 
3951 	/* Use new timeout only if there wasn't a older one earlier. */
3952 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3953 		/* If delack timer is about to expire, send ACK now. */
3954 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3955 			tcp_send_ack(sk);
3956 			return;
3957 		}
3958 
3959 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3960 			timeout = icsk->icsk_ack.timeout;
3961 	}
3962 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3963 	icsk->icsk_ack.timeout = timeout;
3964 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3965 }
3966 
3967 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3968 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3969 {
3970 	struct sk_buff *buff;
3971 
3972 	/* If we have been reset, we may not send again. */
3973 	if (sk->sk_state == TCP_CLOSE)
3974 		return;
3975 
3976 	/* We are not putting this on the write queue, so
3977 	 * tcp_transmit_skb() will set the ownership to this
3978 	 * sock.
3979 	 */
3980 	buff = alloc_skb(MAX_TCP_HEADER,
3981 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3982 	if (unlikely(!buff)) {
3983 		struct inet_connection_sock *icsk = inet_csk(sk);
3984 		unsigned long delay;
3985 
3986 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3987 		if (delay < TCP_RTO_MAX)
3988 			icsk->icsk_ack.retry++;
3989 		inet_csk_schedule_ack(sk);
3990 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3991 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3992 		return;
3993 	}
3994 
3995 	/* Reserve space for headers and prepare control bits. */
3996 	skb_reserve(buff, MAX_TCP_HEADER);
3997 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3998 
3999 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4000 	 * too much.
4001 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4002 	 */
4003 	skb_set_tcp_pure_ack(buff);
4004 
4005 	/* Send it off, this clears delayed acks for us. */
4006 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4007 }
4008 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4009 
tcp_send_ack(struct sock * sk)4010 void tcp_send_ack(struct sock *sk)
4011 {
4012 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4013 }
4014 
4015 /* This routine sends a packet with an out of date sequence
4016  * number. It assumes the other end will try to ack it.
4017  *
4018  * Question: what should we make while urgent mode?
4019  * 4.4BSD forces sending single byte of data. We cannot send
4020  * out of window data, because we have SND.NXT==SND.MAX...
4021  *
4022  * Current solution: to send TWO zero-length segments in urgent mode:
4023  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4024  * out-of-date with SND.UNA-1 to probe window.
4025  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4026 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4027 {
4028 	struct tcp_sock *tp = tcp_sk(sk);
4029 	struct sk_buff *skb;
4030 
4031 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4032 	skb = alloc_skb(MAX_TCP_HEADER,
4033 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4034 	if (!skb)
4035 		return -1;
4036 
4037 	/* Reserve space for headers and set control bits. */
4038 	skb_reserve(skb, MAX_TCP_HEADER);
4039 	/* Use a previous sequence.  This should cause the other
4040 	 * end to send an ack.  Don't queue or clone SKB, just
4041 	 * send it.
4042 	 */
4043 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4044 	NET_INC_STATS(sock_net(sk), mib);
4045 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4046 }
4047 
4048 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4049 void tcp_send_window_probe(struct sock *sk)
4050 {
4051 	if (sk->sk_state == TCP_ESTABLISHED) {
4052 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4053 		tcp_mstamp_refresh(tcp_sk(sk));
4054 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4055 	}
4056 }
4057 
4058 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4059 int tcp_write_wakeup(struct sock *sk, int mib)
4060 {
4061 	struct tcp_sock *tp = tcp_sk(sk);
4062 	struct sk_buff *skb;
4063 
4064 	if (sk->sk_state == TCP_CLOSE)
4065 		return -1;
4066 
4067 	skb = tcp_send_head(sk);
4068 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4069 		int err;
4070 		unsigned int mss = tcp_current_mss(sk);
4071 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4072 
4073 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4074 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4075 
4076 		/* We are probing the opening of a window
4077 		 * but the window size is != 0
4078 		 * must have been a result SWS avoidance ( sender )
4079 		 */
4080 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4081 		    skb->len > mss) {
4082 			seg_size = min(seg_size, mss);
4083 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4084 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4085 					 skb, seg_size, mss, GFP_ATOMIC))
4086 				return -1;
4087 		} else if (!tcp_skb_pcount(skb))
4088 			tcp_set_skb_tso_segs(skb, mss);
4089 
4090 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4091 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4092 		if (!err)
4093 			tcp_event_new_data_sent(sk, skb);
4094 		return err;
4095 	} else {
4096 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4097 			tcp_xmit_probe_skb(sk, 1, mib);
4098 		return tcp_xmit_probe_skb(sk, 0, mib);
4099 	}
4100 }
4101 
4102 /* A window probe timeout has occurred.  If window is not closed send
4103  * a partial packet else a zero probe.
4104  */
tcp_send_probe0(struct sock * sk)4105 void tcp_send_probe0(struct sock *sk)
4106 {
4107 	struct inet_connection_sock *icsk = inet_csk(sk);
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 	struct net *net = sock_net(sk);
4110 	unsigned long timeout;
4111 	int err;
4112 
4113 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4114 
4115 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4116 		/* Cancel probe timer, if it is not required. */
4117 		icsk->icsk_probes_out = 0;
4118 		icsk->icsk_backoff = 0;
4119 		icsk->icsk_probes_tstamp = 0;
4120 		return;
4121 	}
4122 
4123 	icsk->icsk_probes_out++;
4124 	if (err <= 0) {
4125 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4126 			icsk->icsk_backoff++;
4127 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4128 	} else {
4129 		/* If packet was not sent due to local congestion,
4130 		 * Let senders fight for local resources conservatively.
4131 		 */
4132 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4133 	}
4134 
4135 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4136 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4137 }
4138 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4139 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4140 {
4141 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4142 	struct flowi fl;
4143 	int res;
4144 
4145 	tcp_rsk(req)->txhash = net_tx_rndhash();
4146 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4147 				  NULL);
4148 	if (!res) {
4149 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4151 		if (unlikely(tcp_passive_fastopen(sk)))
4152 			tcp_sk(sk)->total_retrans++;
4153 		trace_tcp_retransmit_synack(sk, req);
4154 	}
4155 	return res;
4156 }
4157 EXPORT_SYMBOL(tcp_rtx_synack);
4158