1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 #include <trace/hooks/ipv4.h>
120
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)133 static int udp_lib_lport_inuse(struct net *net, __u16 num,
134 const struct udp_hslot *hslot,
135 unsigned long *bitmap,
136 struct sock *sk, unsigned int log)
137 {
138 struct sock *sk2;
139 kuid_t uid = sock_i_uid(sk);
140
141 sk_for_each(sk2, &hslot->head) {
142 if (net_eq(sock_net(sk2), net) &&
143 sk2 != sk &&
144 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 (!sk2->sk_reuse || !sk->sk_reuse) &&
146 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 inet_rcv_saddr_equal(sk, sk2, true)) {
149 if (sk2->sk_reuseport && sk->sk_reuseport &&
150 !rcu_access_pointer(sk->sk_reuseport_cb) &&
151 uid_eq(uid, sock_i_uid(sk2))) {
152 if (!bitmap)
153 return 0;
154 } else {
155 if (!bitmap)
156 return 1;
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 }
160 }
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk)
172 {
173 struct sock *sk2;
174 kuid_t uid = sock_i_uid(sk);
175 int res = 0;
176
177 spin_lock(&hslot2->lock);
178 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
179 if (net_eq(sock_net(sk2), net) &&
180 sk2 != sk &&
181 (udp_sk(sk2)->udp_port_hash == num) &&
182 (!sk2->sk_reuse || !sk->sk_reuse) &&
183 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
184 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
185 inet_rcv_saddr_equal(sk, sk2, true)) {
186 if (sk2->sk_reuseport && sk->sk_reuseport &&
187 !rcu_access_pointer(sk->sk_reuseport_cb) &&
188 uid_eq(uid, sock_i_uid(sk2))) {
189 res = 0;
190 } else {
191 res = 1;
192 }
193 break;
194 }
195 }
196 spin_unlock(&hslot2->lock);
197 return res;
198 }
199
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)200 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
201 {
202 struct net *net = sock_net(sk);
203 kuid_t uid = sock_i_uid(sk);
204 struct sock *sk2;
205
206 sk_for_each(sk2, &hslot->head) {
207 if (net_eq(sock_net(sk2), net) &&
208 sk2 != sk &&
209 sk2->sk_family == sk->sk_family &&
210 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
211 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
212 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
213 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
214 inet_rcv_saddr_equal(sk, sk2, false)) {
215 return reuseport_add_sock(sk, sk2,
216 inet_rcv_saddr_any(sk));
217 }
218 }
219
220 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
221 }
222
223 /**
224 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
225 *
226 * @sk: socket struct in question
227 * @snum: port number to look up
228 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
229 * with NULL address
230 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)231 int udp_lib_get_port(struct sock *sk, unsigned short snum,
232 unsigned int hash2_nulladdr)
233 {
234 struct udp_hslot *hslot, *hslot2;
235 struct udp_table *udptable = sk->sk_prot->h.udp_table;
236 int error = 1;
237 struct net *net = sock_net(sk);
238
239 if (!snum) {
240 int low, high, remaining;
241 unsigned int rand;
242 unsigned short first, last;
243 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
244
245 inet_get_local_port_range(net, &low, &high);
246 remaining = (high - low) + 1;
247
248 rand = prandom_u32();
249 first = reciprocal_scale(rand, remaining) + low;
250 /*
251 * force rand to be an odd multiple of UDP_HTABLE_SIZE
252 */
253 rand = (rand | 1) * (udptable->mask + 1);
254 last = first + udptable->mask + 1;
255 do {
256 hslot = udp_hashslot(udptable, net, first);
257 bitmap_zero(bitmap, PORTS_PER_CHAIN);
258 spin_lock_bh(&hslot->lock);
259 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
260 udptable->log);
261
262 snum = first;
263 /*
264 * Iterate on all possible values of snum for this hash.
265 * Using steps of an odd multiple of UDP_HTABLE_SIZE
266 * give us randomization and full range coverage.
267 */
268 do {
269 if (low <= snum && snum <= high &&
270 !test_bit(snum >> udptable->log, bitmap) &&
271 !inet_is_local_reserved_port(net, snum))
272 goto found;
273 snum += rand;
274 } while (snum != first);
275 spin_unlock_bh(&hslot->lock);
276 cond_resched();
277 } while (++first != last);
278 goto fail;
279 } else {
280 hslot = udp_hashslot(udptable, net, snum);
281 spin_lock_bh(&hslot->lock);
282 if (hslot->count > 10) {
283 int exist;
284 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
285
286 slot2 &= udptable->mask;
287 hash2_nulladdr &= udptable->mask;
288
289 hslot2 = udp_hashslot2(udptable, slot2);
290 if (hslot->count < hslot2->count)
291 goto scan_primary_hash;
292
293 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
294 if (!exist && (hash2_nulladdr != slot2)) {
295 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
296 exist = udp_lib_lport_inuse2(net, snum, hslot2,
297 sk);
298 }
299 if (exist)
300 goto fail_unlock;
301 else
302 goto found;
303 }
304 scan_primary_hash:
305 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
306 goto fail_unlock;
307 }
308 found:
309 inet_sk(sk)->inet_num = snum;
310 udp_sk(sk)->udp_port_hash = snum;
311 udp_sk(sk)->udp_portaddr_hash ^= snum;
312 if (sk_unhashed(sk)) {
313 if (sk->sk_reuseport &&
314 udp_reuseport_add_sock(sk, hslot)) {
315 inet_sk(sk)->inet_num = 0;
316 udp_sk(sk)->udp_port_hash = 0;
317 udp_sk(sk)->udp_portaddr_hash ^= snum;
318 goto fail_unlock;
319 }
320
321 sk_add_node_rcu(sk, &hslot->head);
322 hslot->count++;
323 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
324
325 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
326 spin_lock(&hslot2->lock);
327 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
328 sk->sk_family == AF_INET6)
329 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
330 &hslot2->head);
331 else
332 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
333 &hslot2->head);
334 hslot2->count++;
335 spin_unlock(&hslot2->lock);
336 }
337 sock_set_flag(sk, SOCK_RCU_FREE);
338 error = 0;
339 fail_unlock:
340 spin_unlock_bh(&hslot->lock);
341 fail:
342 return error;
343 }
344 EXPORT_SYMBOL(udp_lib_get_port);
345
udp_v4_get_port(struct sock * sk,unsigned short snum)346 int udp_v4_get_port(struct sock *sk, unsigned short snum)
347 {
348 unsigned int hash2_nulladdr =
349 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
350 unsigned int hash2_partial =
351 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
352
353 /* precompute partial secondary hash */
354 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
355 return udp_lib_get_port(sk, snum, hash2_nulladdr);
356 }
357
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)358 static int compute_score(struct sock *sk, struct net *net,
359 __be32 saddr, __be16 sport,
360 __be32 daddr, unsigned short hnum,
361 int dif, int sdif)
362 {
363 int score;
364 struct inet_sock *inet;
365 bool dev_match;
366
367 if (!net_eq(sock_net(sk), net) ||
368 udp_sk(sk)->udp_port_hash != hnum ||
369 ipv6_only_sock(sk))
370 return -1;
371
372 if (sk->sk_rcv_saddr != daddr)
373 return -1;
374
375 score = (sk->sk_family == PF_INET) ? 2 : 1;
376
377 inet = inet_sk(sk);
378 if (inet->inet_daddr) {
379 if (inet->inet_daddr != saddr)
380 return -1;
381 score += 4;
382 }
383
384 if (inet->inet_dport) {
385 if (inet->inet_dport != sport)
386 return -1;
387 score += 4;
388 }
389
390 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
391 dif, sdif);
392 if (!dev_match)
393 return -1;
394 if (sk->sk_bound_dev_if)
395 score += 4;
396
397 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
398 score++;
399 return score;
400 }
401
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)402 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
403 const __u16 lport, const __be32 faddr,
404 const __be16 fport)
405 {
406 static u32 udp_ehash_secret __read_mostly;
407
408 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
409
410 return __inet_ehashfn(laddr, lport, faddr, fport,
411 udp_ehash_secret + net_hash_mix(net));
412 }
413
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)414 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
415 struct sk_buff *skb,
416 __be32 saddr, __be16 sport,
417 __be32 daddr, unsigned short hnum)
418 {
419 struct sock *reuse_sk = NULL;
420 u32 hash;
421
422 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
423 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
424 reuse_sk = reuseport_select_sock(sk, hash, skb,
425 sizeof(struct udphdr));
426 }
427 return reuse_sk;
428 }
429
430 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)431 static struct sock *udp4_lib_lookup2(struct net *net,
432 __be32 saddr, __be16 sport,
433 __be32 daddr, unsigned int hnum,
434 int dif, int sdif,
435 struct udp_hslot *hslot2,
436 struct sk_buff *skb)
437 {
438 struct sock *sk, *result;
439 int score, badness;
440
441 result = NULL;
442 badness = 0;
443 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
444 score = compute_score(sk, net, saddr, sport,
445 daddr, hnum, dif, sdif);
446 if (score > badness) {
447 badness = score;
448 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
449 if (!result) {
450 result = sk;
451 continue;
452 }
453
454 /* Fall back to scoring if group has connections */
455 if (!reuseport_has_conns(sk))
456 return result;
457
458 /* Reuseport logic returned an error, keep original score. */
459 if (IS_ERR(result))
460 continue;
461
462 badness = compute_score(result, net, saddr, sport,
463 daddr, hnum, dif, sdif);
464
465 }
466 }
467 return result;
468 }
469
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)470 static struct sock *udp4_lookup_run_bpf(struct net *net,
471 struct udp_table *udptable,
472 struct sk_buff *skb,
473 __be32 saddr, __be16 sport,
474 __be32 daddr, u16 hnum)
475 {
476 struct sock *sk, *reuse_sk;
477 bool no_reuseport;
478
479 if (udptable != &udp_table)
480 return NULL; /* only UDP is supported */
481
482 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
483 saddr, sport, daddr, hnum, &sk);
484 if (no_reuseport || IS_ERR_OR_NULL(sk))
485 return sk;
486
487 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
488 if (reuse_sk)
489 sk = reuse_sk;
490 return sk;
491 }
492
493 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
494 * harder than this. -DaveM
495 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)496 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
497 __be16 sport, __be32 daddr, __be16 dport, int dif,
498 int sdif, struct udp_table *udptable, struct sk_buff *skb)
499 {
500 unsigned short hnum = ntohs(dport);
501 unsigned int hash2, slot2;
502 struct udp_hslot *hslot2;
503 struct sock *result, *sk;
504
505 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
506 slot2 = hash2 & udptable->mask;
507 hslot2 = &udptable->hash2[slot2];
508
509 /* Lookup connected or non-wildcard socket */
510 result = udp4_lib_lookup2(net, saddr, sport,
511 daddr, hnum, dif, sdif,
512 hslot2, skb);
513 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
514 goto done;
515
516 /* Lookup redirect from BPF */
517 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
518 sk = udp4_lookup_run_bpf(net, udptable, skb,
519 saddr, sport, daddr, hnum);
520 if (sk) {
521 result = sk;
522 goto done;
523 }
524 }
525
526 /* Got non-wildcard socket or error on first lookup */
527 if (result)
528 goto done;
529
530 /* Lookup wildcard sockets */
531 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
532 slot2 = hash2 & udptable->mask;
533 hslot2 = &udptable->hash2[slot2];
534
535 result = udp4_lib_lookup2(net, saddr, sport,
536 htonl(INADDR_ANY), hnum, dif, sdif,
537 hslot2, skb);
538 done:
539 if (IS_ERR(result))
540 return NULL;
541 return result;
542 }
543 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
544
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)545 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
546 __be16 sport, __be16 dport,
547 struct udp_table *udptable)
548 {
549 const struct iphdr *iph = ip_hdr(skb);
550
551 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
552 iph->daddr, dport, inet_iif(skb),
553 inet_sdif(skb), udptable, skb);
554 }
555
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)556 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
557 __be16 sport, __be16 dport)
558 {
559 const struct iphdr *iph = ip_hdr(skb);
560
561 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
562 iph->daddr, dport, inet_iif(skb),
563 inet_sdif(skb), &udp_table, NULL);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566
567 /* Must be called under rcu_read_lock().
568 * Does increment socket refcount.
569 */
570 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)571 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
572 __be32 daddr, __be16 dport, int dif)
573 {
574 struct sock *sk;
575
576 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
577 dif, 0, &udp_table, NULL);
578 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
579 sk = NULL;
580 return sk;
581 }
582 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
583 #endif
584
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)585 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
586 __be16 loc_port, __be32 loc_addr,
587 __be16 rmt_port, __be32 rmt_addr,
588 int dif, int sdif, unsigned short hnum)
589 {
590 struct inet_sock *inet = inet_sk(sk);
591
592 if (!net_eq(sock_net(sk), net) ||
593 udp_sk(sk)->udp_port_hash != hnum ||
594 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
595 (inet->inet_dport != rmt_port && inet->inet_dport) ||
596 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
597 ipv6_only_sock(sk) ||
598 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
599 return false;
600 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
601 return false;
602 return true;
603 }
604
605 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)606 void udp_encap_enable(void)
607 {
608 static_branch_inc(&udp_encap_needed_key);
609 }
610 EXPORT_SYMBOL(udp_encap_enable);
611
udp_encap_disable(void)612 void udp_encap_disable(void)
613 {
614 static_branch_dec(&udp_encap_needed_key);
615 }
616 EXPORT_SYMBOL(udp_encap_disable);
617
618 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
619 * through error handlers in encapsulations looking for a match.
620 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)621 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
622 {
623 int i;
624
625 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
626 int (*handler)(struct sk_buff *skb, u32 info);
627 const struct ip_tunnel_encap_ops *encap;
628
629 encap = rcu_dereference(iptun_encaps[i]);
630 if (!encap)
631 continue;
632 handler = encap->err_handler;
633 if (handler && !handler(skb, info))
634 return 0;
635 }
636
637 return -ENOENT;
638 }
639
640 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
641 * reversing source and destination port: this will match tunnels that force the
642 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
643 * lwtunnels might actually break this assumption by being configured with
644 * different destination ports on endpoints, in this case we won't be able to
645 * trace ICMP messages back to them.
646 *
647 * If this doesn't match any socket, probe tunnels with arbitrary destination
648 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
649 * we've sent packets to won't necessarily match the local destination port.
650 *
651 * Then ask the tunnel implementation to match the error against a valid
652 * association.
653 *
654 * Return an error if we can't find a match, the socket if we need further
655 * processing, zero otherwise.
656 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)657 static struct sock *__udp4_lib_err_encap(struct net *net,
658 const struct iphdr *iph,
659 struct udphdr *uh,
660 struct udp_table *udptable,
661 struct sk_buff *skb, u32 info)
662 {
663 int network_offset, transport_offset;
664 struct sock *sk;
665
666 network_offset = skb_network_offset(skb);
667 transport_offset = skb_transport_offset(skb);
668
669 /* Network header needs to point to the outer IPv4 header inside ICMP */
670 skb_reset_network_header(skb);
671
672 /* Transport header needs to point to the UDP header */
673 skb_set_transport_header(skb, iph->ihl << 2);
674
675 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
676 iph->saddr, uh->dest, skb->dev->ifindex, 0,
677 udptable, NULL);
678 if (sk) {
679 int (*lookup)(struct sock *sk, struct sk_buff *skb);
680 struct udp_sock *up = udp_sk(sk);
681
682 lookup = READ_ONCE(up->encap_err_lookup);
683 if (!lookup || lookup(sk, skb))
684 sk = NULL;
685 }
686
687 if (!sk)
688 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
689
690 skb_set_transport_header(skb, transport_offset);
691 skb_set_network_header(skb, network_offset);
692
693 return sk;
694 }
695
696 /*
697 * This routine is called by the ICMP module when it gets some
698 * sort of error condition. If err < 0 then the socket should
699 * be closed and the error returned to the user. If err > 0
700 * it's just the icmp type << 8 | icmp code.
701 * Header points to the ip header of the error packet. We move
702 * on past this. Then (as it used to claim before adjustment)
703 * header points to the first 8 bytes of the udp header. We need
704 * to find the appropriate port.
705 */
706
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
708 {
709 struct inet_sock *inet;
710 const struct iphdr *iph = (const struct iphdr *)skb->data;
711 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
712 const int type = icmp_hdr(skb)->type;
713 const int code = icmp_hdr(skb)->code;
714 bool tunnel = false;
715 struct sock *sk;
716 int harderr;
717 int err;
718 struct net *net = dev_net(skb->dev);
719
720 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
721 iph->saddr, uh->source, skb->dev->ifindex,
722 inet_sdif(skb), udptable, NULL);
723 if (!sk) {
724 /* No socket for error: try tunnels before discarding */
725 sk = ERR_PTR(-ENOENT);
726 if (static_branch_unlikely(&udp_encap_needed_key)) {
727 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
728 info);
729 if (!sk)
730 return 0;
731 }
732
733 if (IS_ERR(sk)) {
734 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
735 return PTR_ERR(sk);
736 }
737
738 tunnel = true;
739 }
740
741 err = 0;
742 harderr = 0;
743 inet = inet_sk(sk);
744
745 switch (type) {
746 default:
747 case ICMP_TIME_EXCEEDED:
748 err = EHOSTUNREACH;
749 break;
750 case ICMP_SOURCE_QUENCH:
751 goto out;
752 case ICMP_PARAMETERPROB:
753 err = EPROTO;
754 harderr = 1;
755 break;
756 case ICMP_DEST_UNREACH:
757 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
758 ipv4_sk_update_pmtu(skb, sk, info);
759 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
760 err = EMSGSIZE;
761 harderr = 1;
762 break;
763 }
764 goto out;
765 }
766 err = EHOSTUNREACH;
767 if (code <= NR_ICMP_UNREACH) {
768 harderr = icmp_err_convert[code].fatal;
769 err = icmp_err_convert[code].errno;
770 }
771 break;
772 case ICMP_REDIRECT:
773 ipv4_sk_redirect(skb, sk);
774 goto out;
775 }
776
777 /*
778 * RFC1122: OK. Passes ICMP errors back to application, as per
779 * 4.1.3.3.
780 */
781 if (tunnel) {
782 /* ...not for tunnels though: we don't have a sending socket */
783 goto out;
784 }
785 if (!inet->recverr) {
786 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
787 goto out;
788 } else
789 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
790
791 sk->sk_err = err;
792 sk->sk_error_report(sk);
793 out:
794 return 0;
795 }
796
udp_err(struct sk_buff * skb,u32 info)797 int udp_err(struct sk_buff *skb, u32 info)
798 {
799 return __udp4_lib_err(skb, info, &udp_table);
800 }
801
802 /*
803 * Throw away all pending data and cancel the corking. Socket is locked.
804 */
udp_flush_pending_frames(struct sock * sk)805 void udp_flush_pending_frames(struct sock *sk)
806 {
807 struct udp_sock *up = udp_sk(sk);
808
809 if (up->pending) {
810 up->len = 0;
811 up->pending = 0;
812 ip_flush_pending_frames(sk);
813 }
814 }
815 EXPORT_SYMBOL(udp_flush_pending_frames);
816
817 /**
818 * udp4_hwcsum - handle outgoing HW checksumming
819 * @skb: sk_buff containing the filled-in UDP header
820 * (checksum field must be zeroed out)
821 * @src: source IP address
822 * @dst: destination IP address
823 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)824 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
825 {
826 struct udphdr *uh = udp_hdr(skb);
827 int offset = skb_transport_offset(skb);
828 int len = skb->len - offset;
829 int hlen = len;
830 __wsum csum = 0;
831
832 if (!skb_has_frag_list(skb)) {
833 /*
834 * Only one fragment on the socket.
835 */
836 skb->csum_start = skb_transport_header(skb) - skb->head;
837 skb->csum_offset = offsetof(struct udphdr, check);
838 uh->check = ~csum_tcpudp_magic(src, dst, len,
839 IPPROTO_UDP, 0);
840 } else {
841 struct sk_buff *frags;
842
843 /*
844 * HW-checksum won't work as there are two or more
845 * fragments on the socket so that all csums of sk_buffs
846 * should be together
847 */
848 skb_walk_frags(skb, frags) {
849 csum = csum_add(csum, frags->csum);
850 hlen -= frags->len;
851 }
852
853 csum = skb_checksum(skb, offset, hlen, csum);
854 skb->ip_summed = CHECKSUM_NONE;
855
856 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
857 if (uh->check == 0)
858 uh->check = CSUM_MANGLED_0;
859 }
860 }
861 EXPORT_SYMBOL_GPL(udp4_hwcsum);
862
863 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
864 * for the simple case like when setting the checksum for a UDP tunnel.
865 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)866 void udp_set_csum(bool nocheck, struct sk_buff *skb,
867 __be32 saddr, __be32 daddr, int len)
868 {
869 struct udphdr *uh = udp_hdr(skb);
870
871 if (nocheck) {
872 uh->check = 0;
873 } else if (skb_is_gso(skb)) {
874 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
876 uh->check = 0;
877 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
878 if (uh->check == 0)
879 uh->check = CSUM_MANGLED_0;
880 } else {
881 skb->ip_summed = CHECKSUM_PARTIAL;
882 skb->csum_start = skb_transport_header(skb) - skb->head;
883 skb->csum_offset = offsetof(struct udphdr, check);
884 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
885 }
886 }
887 EXPORT_SYMBOL(udp_set_csum);
888
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)889 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
890 struct inet_cork *cork)
891 {
892 struct sock *sk = skb->sk;
893 struct inet_sock *inet = inet_sk(sk);
894 struct udphdr *uh;
895 int err = 0;
896 int is_udplite = IS_UDPLITE(sk);
897 int offset = skb_transport_offset(skb);
898 int len = skb->len - offset;
899 int datalen = len - sizeof(*uh);
900 __wsum csum = 0;
901
902 /*
903 * Create a UDP header
904 */
905 uh = udp_hdr(skb);
906 uh->source = inet->inet_sport;
907 uh->dest = fl4->fl4_dport;
908 uh->len = htons(len);
909 uh->check = 0;
910
911 if (cork->gso_size) {
912 const int hlen = skb_network_header_len(skb) +
913 sizeof(struct udphdr);
914
915 if (hlen + cork->gso_size > cork->fragsize) {
916 kfree_skb(skb);
917 return -EINVAL;
918 }
919 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
920 kfree_skb(skb);
921 return -EINVAL;
922 }
923 if (sk->sk_no_check_tx) {
924 kfree_skb(skb);
925 return -EINVAL;
926 }
927 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
928 dst_xfrm(skb_dst(skb))) {
929 kfree_skb(skb);
930 return -EIO;
931 }
932
933 if (datalen > cork->gso_size) {
934 skb_shinfo(skb)->gso_size = cork->gso_size;
935 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
936 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
937 cork->gso_size);
938 }
939 goto csum_partial;
940 }
941
942 if (is_udplite) /* UDP-Lite */
943 csum = udplite_csum(skb);
944
945 else if (sk->sk_no_check_tx) { /* UDP csum off */
946
947 skb->ip_summed = CHECKSUM_NONE;
948 goto send;
949
950 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
951 csum_partial:
952
953 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
954 goto send;
955
956 } else
957 csum = udp_csum(skb);
958
959 /* add protocol-dependent pseudo-header */
960 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
961 sk->sk_protocol, csum);
962 if (uh->check == 0)
963 uh->check = CSUM_MANGLED_0;
964
965 send:
966 err = ip_send_skb(sock_net(sk), skb);
967 if (err) {
968 if (err == -ENOBUFS && !inet->recverr) {
969 UDP_INC_STATS(sock_net(sk),
970 UDP_MIB_SNDBUFERRORS, is_udplite);
971 err = 0;
972 }
973 } else
974 UDP_INC_STATS(sock_net(sk),
975 UDP_MIB_OUTDATAGRAMS, is_udplite);
976 return err;
977 }
978
979 /*
980 * Push out all pending data as one UDP datagram. Socket is locked.
981 */
udp_push_pending_frames(struct sock * sk)982 int udp_push_pending_frames(struct sock *sk)
983 {
984 struct udp_sock *up = udp_sk(sk);
985 struct inet_sock *inet = inet_sk(sk);
986 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
987 struct sk_buff *skb;
988 int err = 0;
989
990 skb = ip_finish_skb(sk, fl4);
991 if (!skb)
992 goto out;
993
994 err = udp_send_skb(skb, fl4, &inet->cork.base);
995
996 out:
997 up->len = 0;
998 up->pending = 0;
999 return err;
1000 }
1001 EXPORT_SYMBOL(udp_push_pending_frames);
1002
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1003 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1004 {
1005 switch (cmsg->cmsg_type) {
1006 case UDP_SEGMENT:
1007 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1008 return -EINVAL;
1009 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1010 return 0;
1011 default:
1012 return -EINVAL;
1013 }
1014 }
1015
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1016 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1017 {
1018 struct cmsghdr *cmsg;
1019 bool need_ip = false;
1020 int err;
1021
1022 for_each_cmsghdr(cmsg, msg) {
1023 if (!CMSG_OK(msg, cmsg))
1024 return -EINVAL;
1025
1026 if (cmsg->cmsg_level != SOL_UDP) {
1027 need_ip = true;
1028 continue;
1029 }
1030
1031 err = __udp_cmsg_send(cmsg, gso_size);
1032 if (err)
1033 return err;
1034 }
1035
1036 return need_ip;
1037 }
1038 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1039
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1040 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1041 {
1042 struct inet_sock *inet = inet_sk(sk);
1043 struct udp_sock *up = udp_sk(sk);
1044 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1045 struct flowi4 fl4_stack;
1046 struct flowi4 *fl4;
1047 int ulen = len;
1048 struct ipcm_cookie ipc;
1049 struct rtable *rt = NULL;
1050 int free = 0;
1051 int connected = 0;
1052 __be32 daddr, faddr, saddr;
1053 __be16 dport;
1054 u8 tos;
1055 int err, is_udplite = IS_UDPLITE(sk);
1056 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1057 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1058 struct sk_buff *skb;
1059 struct ip_options_data opt_copy;
1060
1061 if (len > 0xFFFF)
1062 return -EMSGSIZE;
1063
1064 /*
1065 * Check the flags.
1066 */
1067
1068 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1069 return -EOPNOTSUPP;
1070 trace_android_rvh_udp_sendmsg(sk);
1071
1072 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1073
1074 fl4 = &inet->cork.fl.u.ip4;
1075 if (up->pending) {
1076 /*
1077 * There are pending frames.
1078 * The socket lock must be held while it's corked.
1079 */
1080 lock_sock(sk);
1081 if (likely(up->pending)) {
1082 if (unlikely(up->pending != AF_INET)) {
1083 release_sock(sk);
1084 return -EINVAL;
1085 }
1086 goto do_append_data;
1087 }
1088 release_sock(sk);
1089 }
1090 ulen += sizeof(struct udphdr);
1091
1092 /*
1093 * Get and verify the address.
1094 */
1095 if (usin) {
1096 if (msg->msg_namelen < sizeof(*usin))
1097 return -EINVAL;
1098 if (usin->sin_family != AF_INET) {
1099 if (usin->sin_family != AF_UNSPEC)
1100 return -EAFNOSUPPORT;
1101 }
1102
1103 daddr = usin->sin_addr.s_addr;
1104 dport = usin->sin_port;
1105 if (dport == 0)
1106 return -EINVAL;
1107 } else {
1108 if (sk->sk_state != TCP_ESTABLISHED)
1109 return -EDESTADDRREQ;
1110 daddr = inet->inet_daddr;
1111 dport = inet->inet_dport;
1112 /* Open fast path for connected socket.
1113 Route will not be used, if at least one option is set.
1114 */
1115 connected = 1;
1116 }
1117
1118 ipcm_init_sk(&ipc, inet);
1119 ipc.gso_size = READ_ONCE(up->gso_size);
1120
1121 if (msg->msg_controllen) {
1122 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1123 if (err > 0)
1124 err = ip_cmsg_send(sk, msg, &ipc,
1125 sk->sk_family == AF_INET6);
1126 if (unlikely(err < 0)) {
1127 kfree(ipc.opt);
1128 return err;
1129 }
1130 if (ipc.opt)
1131 free = 1;
1132 connected = 0;
1133 }
1134 if (!ipc.opt) {
1135 struct ip_options_rcu *inet_opt;
1136
1137 rcu_read_lock();
1138 inet_opt = rcu_dereference(inet->inet_opt);
1139 if (inet_opt) {
1140 memcpy(&opt_copy, inet_opt,
1141 sizeof(*inet_opt) + inet_opt->opt.optlen);
1142 ipc.opt = &opt_copy.opt;
1143 }
1144 rcu_read_unlock();
1145 }
1146
1147 if (cgroup_bpf_enabled && !connected) {
1148 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1149 (struct sockaddr *)usin, &ipc.addr);
1150 if (err)
1151 goto out_free;
1152 if (usin) {
1153 if (usin->sin_port == 0) {
1154 /* BPF program set invalid port. Reject it. */
1155 err = -EINVAL;
1156 goto out_free;
1157 }
1158 daddr = usin->sin_addr.s_addr;
1159 dport = usin->sin_port;
1160 }
1161 }
1162
1163 saddr = ipc.addr;
1164 ipc.addr = faddr = daddr;
1165
1166 if (ipc.opt && ipc.opt->opt.srr) {
1167 if (!daddr) {
1168 err = -EINVAL;
1169 goto out_free;
1170 }
1171 faddr = ipc.opt->opt.faddr;
1172 connected = 0;
1173 }
1174 tos = get_rttos(&ipc, inet);
1175 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1176 (msg->msg_flags & MSG_DONTROUTE) ||
1177 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1178 tos |= RTO_ONLINK;
1179 connected = 0;
1180 }
1181
1182 if (ipv4_is_multicast(daddr)) {
1183 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1184 ipc.oif = inet->mc_index;
1185 if (!saddr)
1186 saddr = inet->mc_addr;
1187 connected = 0;
1188 } else if (!ipc.oif) {
1189 ipc.oif = inet->uc_index;
1190 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1191 /* oif is set, packet is to local broadcast and
1192 * uc_index is set. oif is most likely set
1193 * by sk_bound_dev_if. If uc_index != oif check if the
1194 * oif is an L3 master and uc_index is an L3 slave.
1195 * If so, we want to allow the send using the uc_index.
1196 */
1197 if (ipc.oif != inet->uc_index &&
1198 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1199 inet->uc_index)) {
1200 ipc.oif = inet->uc_index;
1201 }
1202 }
1203
1204 if (connected)
1205 rt = (struct rtable *)sk_dst_check(sk, 0);
1206
1207 if (!rt) {
1208 struct net *net = sock_net(sk);
1209 __u8 flow_flags = inet_sk_flowi_flags(sk);
1210
1211 fl4 = &fl4_stack;
1212
1213 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1214 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1215 flow_flags,
1216 faddr, saddr, dport, inet->inet_sport,
1217 sk->sk_uid);
1218
1219 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1220 rt = ip_route_output_flow(net, fl4, sk);
1221 if (IS_ERR(rt)) {
1222 err = PTR_ERR(rt);
1223 rt = NULL;
1224 if (err == -ENETUNREACH)
1225 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1226 goto out;
1227 }
1228
1229 err = -EACCES;
1230 if ((rt->rt_flags & RTCF_BROADCAST) &&
1231 !sock_flag(sk, SOCK_BROADCAST))
1232 goto out;
1233 if (connected)
1234 sk_dst_set(sk, dst_clone(&rt->dst));
1235 }
1236
1237 if (msg->msg_flags&MSG_CONFIRM)
1238 goto do_confirm;
1239 back_from_confirm:
1240
1241 saddr = fl4->saddr;
1242 if (!ipc.addr)
1243 daddr = ipc.addr = fl4->daddr;
1244
1245 /* Lockless fast path for the non-corking case. */
1246 if (!corkreq) {
1247 struct inet_cork cork;
1248
1249 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1250 sizeof(struct udphdr), &ipc, &rt,
1251 &cork, msg->msg_flags);
1252 err = PTR_ERR(skb);
1253 if (!IS_ERR_OR_NULL(skb))
1254 err = udp_send_skb(skb, fl4, &cork);
1255 goto out;
1256 }
1257
1258 lock_sock(sk);
1259 if (unlikely(up->pending)) {
1260 /* The socket is already corked while preparing it. */
1261 /* ... which is an evident application bug. --ANK */
1262 release_sock(sk);
1263
1264 net_dbg_ratelimited("socket already corked\n");
1265 err = -EINVAL;
1266 goto out;
1267 }
1268 /*
1269 * Now cork the socket to pend data.
1270 */
1271 fl4 = &inet->cork.fl.u.ip4;
1272 fl4->daddr = daddr;
1273 fl4->saddr = saddr;
1274 fl4->fl4_dport = dport;
1275 fl4->fl4_sport = inet->inet_sport;
1276 up->pending = AF_INET;
1277
1278 do_append_data:
1279 up->len += ulen;
1280 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1281 sizeof(struct udphdr), &ipc, &rt,
1282 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1283 if (err)
1284 udp_flush_pending_frames(sk);
1285 else if (!corkreq)
1286 err = udp_push_pending_frames(sk);
1287 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1288 up->pending = 0;
1289 release_sock(sk);
1290
1291 out:
1292 ip_rt_put(rt);
1293 out_free:
1294 if (free)
1295 kfree(ipc.opt);
1296 if (!err)
1297 return len;
1298 /*
1299 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1300 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1301 * we don't have a good statistic (IpOutDiscards but it can be too many
1302 * things). We could add another new stat but at least for now that
1303 * seems like overkill.
1304 */
1305 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1306 UDP_INC_STATS(sock_net(sk),
1307 UDP_MIB_SNDBUFERRORS, is_udplite);
1308 }
1309 return err;
1310
1311 do_confirm:
1312 if (msg->msg_flags & MSG_PROBE)
1313 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1314 if (!(msg->msg_flags&MSG_PROBE) || len)
1315 goto back_from_confirm;
1316 err = 0;
1317 goto out;
1318 }
1319 EXPORT_SYMBOL(udp_sendmsg);
1320
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1321 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1322 size_t size, int flags)
1323 {
1324 struct inet_sock *inet = inet_sk(sk);
1325 struct udp_sock *up = udp_sk(sk);
1326 int ret;
1327
1328 if (flags & MSG_SENDPAGE_NOTLAST)
1329 flags |= MSG_MORE;
1330
1331 if (!up->pending) {
1332 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1333
1334 /* Call udp_sendmsg to specify destination address which
1335 * sendpage interface can't pass.
1336 * This will succeed only when the socket is connected.
1337 */
1338 ret = udp_sendmsg(sk, &msg, 0);
1339 if (ret < 0)
1340 return ret;
1341 }
1342
1343 lock_sock(sk);
1344
1345 if (unlikely(!up->pending)) {
1346 release_sock(sk);
1347
1348 net_dbg_ratelimited("cork failed\n");
1349 return -EINVAL;
1350 }
1351
1352 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1353 page, offset, size, flags);
1354 if (ret == -EOPNOTSUPP) {
1355 release_sock(sk);
1356 return sock_no_sendpage(sk->sk_socket, page, offset,
1357 size, flags);
1358 }
1359 if (ret < 0) {
1360 udp_flush_pending_frames(sk);
1361 goto out;
1362 }
1363
1364 up->len += size;
1365 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1366 ret = udp_push_pending_frames(sk);
1367 if (!ret)
1368 ret = size;
1369 out:
1370 release_sock(sk);
1371 return ret;
1372 }
1373
1374 #define UDP_SKB_IS_STATELESS 0x80000000
1375
1376 /* all head states (dst, sk, nf conntrack) except skb extensions are
1377 * cleared by udp_rcv().
1378 *
1379 * We need to preserve secpath, if present, to eventually process
1380 * IP_CMSG_PASSSEC at recvmsg() time.
1381 *
1382 * Other extensions can be cleared.
1383 */
udp_try_make_stateless(struct sk_buff * skb)1384 static bool udp_try_make_stateless(struct sk_buff *skb)
1385 {
1386 if (!skb_has_extensions(skb))
1387 return true;
1388
1389 if (!secpath_exists(skb)) {
1390 skb_ext_reset(skb);
1391 return true;
1392 }
1393
1394 return false;
1395 }
1396
udp_set_dev_scratch(struct sk_buff * skb)1397 static void udp_set_dev_scratch(struct sk_buff *skb)
1398 {
1399 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1400
1401 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1402 scratch->_tsize_state = skb->truesize;
1403 #if BITS_PER_LONG == 64
1404 scratch->len = skb->len;
1405 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1406 scratch->is_linear = !skb_is_nonlinear(skb);
1407 #endif
1408 if (udp_try_make_stateless(skb))
1409 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1410 }
1411
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1412 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1413 {
1414 /* We come here after udp_lib_checksum_complete() returned 0.
1415 * This means that __skb_checksum_complete() might have
1416 * set skb->csum_valid to 1.
1417 * On 64bit platforms, we can set csum_unnecessary
1418 * to true, but only if the skb is not shared.
1419 */
1420 #if BITS_PER_LONG == 64
1421 if (!skb_shared(skb))
1422 udp_skb_scratch(skb)->csum_unnecessary = true;
1423 #endif
1424 }
1425
udp_skb_truesize(struct sk_buff * skb)1426 static int udp_skb_truesize(struct sk_buff *skb)
1427 {
1428 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1429 }
1430
udp_skb_has_head_state(struct sk_buff * skb)1431 static bool udp_skb_has_head_state(struct sk_buff *skb)
1432 {
1433 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1434 }
1435
1436 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1437 static void udp_rmem_release(struct sock *sk, int size, int partial,
1438 bool rx_queue_lock_held)
1439 {
1440 struct udp_sock *up = udp_sk(sk);
1441 struct sk_buff_head *sk_queue;
1442 int amt;
1443
1444 if (likely(partial)) {
1445 up->forward_deficit += size;
1446 size = up->forward_deficit;
1447 if (size < (sk->sk_rcvbuf >> 2) &&
1448 !skb_queue_empty(&up->reader_queue))
1449 return;
1450 } else {
1451 size += up->forward_deficit;
1452 }
1453 up->forward_deficit = 0;
1454
1455 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1456 * if the called don't held it already
1457 */
1458 sk_queue = &sk->sk_receive_queue;
1459 if (!rx_queue_lock_held)
1460 spin_lock(&sk_queue->lock);
1461
1462
1463 sk->sk_forward_alloc += size;
1464 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1465 sk->sk_forward_alloc -= amt;
1466
1467 if (amt)
1468 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1469
1470 atomic_sub(size, &sk->sk_rmem_alloc);
1471
1472 /* this can save us from acquiring the rx queue lock on next receive */
1473 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1474
1475 if (!rx_queue_lock_held)
1476 spin_unlock(&sk_queue->lock);
1477 }
1478
1479 /* Note: called with reader_queue.lock held.
1480 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1481 * This avoids a cache line miss while receive_queue lock is held.
1482 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1483 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1484 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1485 {
1486 prefetch(&skb->data);
1487 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1488 }
1489 EXPORT_SYMBOL(udp_skb_destructor);
1490
1491 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1492 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1493 {
1494 prefetch(&skb->data);
1495 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1496 }
1497
1498 /* Idea of busylocks is to let producers grab an extra spinlock
1499 * to relieve pressure on the receive_queue spinlock shared by consumer.
1500 * Under flood, this means that only one producer can be in line
1501 * trying to acquire the receive_queue spinlock.
1502 * These busylock can be allocated on a per cpu manner, instead of a
1503 * per socket one (that would consume a cache line per socket)
1504 */
1505 static int udp_busylocks_log __read_mostly;
1506 static spinlock_t *udp_busylocks __read_mostly;
1507
busylock_acquire(void * ptr)1508 static spinlock_t *busylock_acquire(void *ptr)
1509 {
1510 spinlock_t *busy;
1511
1512 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1513 spin_lock(busy);
1514 return busy;
1515 }
1516
busylock_release(spinlock_t * busy)1517 static void busylock_release(spinlock_t *busy)
1518 {
1519 if (busy)
1520 spin_unlock(busy);
1521 }
1522
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1523 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1524 {
1525 struct sk_buff_head *list = &sk->sk_receive_queue;
1526 int rmem, delta, amt, err = -ENOMEM;
1527 spinlock_t *busy = NULL;
1528 int size;
1529
1530 /* try to avoid the costly atomic add/sub pair when the receive
1531 * queue is full; always allow at least a packet
1532 */
1533 rmem = atomic_read(&sk->sk_rmem_alloc);
1534 if (rmem > sk->sk_rcvbuf)
1535 goto drop;
1536
1537 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1538 * having linear skbs :
1539 * - Reduce memory overhead and thus increase receive queue capacity
1540 * - Less cache line misses at copyout() time
1541 * - Less work at consume_skb() (less alien page frag freeing)
1542 */
1543 if (rmem > (sk->sk_rcvbuf >> 1)) {
1544 skb_condense(skb);
1545
1546 busy = busylock_acquire(sk);
1547 }
1548 size = skb->truesize;
1549 udp_set_dev_scratch(skb);
1550
1551 /* we drop only if the receive buf is full and the receive
1552 * queue contains some other skb
1553 */
1554 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1555 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1556 goto uncharge_drop;
1557
1558 spin_lock(&list->lock);
1559 if (size >= sk->sk_forward_alloc) {
1560 amt = sk_mem_pages(size);
1561 delta = amt << SK_MEM_QUANTUM_SHIFT;
1562 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1563 err = -ENOBUFS;
1564 spin_unlock(&list->lock);
1565 goto uncharge_drop;
1566 }
1567
1568 sk->sk_forward_alloc += delta;
1569 }
1570
1571 sk->sk_forward_alloc -= size;
1572
1573 /* no need to setup a destructor, we will explicitly release the
1574 * forward allocated memory on dequeue
1575 */
1576 sock_skb_set_dropcount(sk, skb);
1577
1578 __skb_queue_tail(list, skb);
1579 spin_unlock(&list->lock);
1580
1581 if (!sock_flag(sk, SOCK_DEAD))
1582 sk->sk_data_ready(sk);
1583
1584 busylock_release(busy);
1585 return 0;
1586
1587 uncharge_drop:
1588 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1589
1590 drop:
1591 atomic_inc(&sk->sk_drops);
1592 busylock_release(busy);
1593 return err;
1594 }
1595 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1596
udp_destruct_common(struct sock * sk)1597 void udp_destruct_common(struct sock *sk)
1598 {
1599 /* reclaim completely the forward allocated memory */
1600 struct udp_sock *up = udp_sk(sk);
1601 unsigned int total = 0;
1602 struct sk_buff *skb;
1603
1604 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1605 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1606 total += skb->truesize;
1607 kfree_skb(skb);
1608 }
1609 udp_rmem_release(sk, total, 0, true);
1610 }
1611 EXPORT_SYMBOL_GPL(udp_destruct_common);
1612
udp_destruct_sock(struct sock * sk)1613 static void udp_destruct_sock(struct sock *sk)
1614 {
1615 udp_destruct_common(sk);
1616 inet_sock_destruct(sk);
1617 }
1618
udp_init_sock(struct sock * sk)1619 int udp_init_sock(struct sock *sk)
1620 {
1621 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1622 sk->sk_destruct = udp_destruct_sock;
1623 return 0;
1624 }
1625
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1626 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1627 {
1628 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1629 bool slow = lock_sock_fast(sk);
1630
1631 sk_peek_offset_bwd(sk, len);
1632 unlock_sock_fast(sk, slow);
1633 }
1634
1635 if (!skb_unref(skb))
1636 return;
1637
1638 /* In the more common cases we cleared the head states previously,
1639 * see __udp_queue_rcv_skb().
1640 */
1641 if (unlikely(udp_skb_has_head_state(skb)))
1642 skb_release_head_state(skb);
1643 __consume_stateless_skb(skb);
1644 }
1645 EXPORT_SYMBOL_GPL(skb_consume_udp);
1646
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1647 static struct sk_buff *__first_packet_length(struct sock *sk,
1648 struct sk_buff_head *rcvq,
1649 int *total)
1650 {
1651 struct sk_buff *skb;
1652
1653 while ((skb = skb_peek(rcvq)) != NULL) {
1654 if (udp_lib_checksum_complete(skb)) {
1655 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1656 IS_UDPLITE(sk));
1657 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1658 IS_UDPLITE(sk));
1659 atomic_inc(&sk->sk_drops);
1660 __skb_unlink(skb, rcvq);
1661 *total += skb->truesize;
1662 kfree_skb(skb);
1663 } else {
1664 udp_skb_csum_unnecessary_set(skb);
1665 break;
1666 }
1667 }
1668 return skb;
1669 }
1670
1671 /**
1672 * first_packet_length - return length of first packet in receive queue
1673 * @sk: socket
1674 *
1675 * Drops all bad checksum frames, until a valid one is found.
1676 * Returns the length of found skb, or -1 if none is found.
1677 */
first_packet_length(struct sock * sk)1678 static int first_packet_length(struct sock *sk)
1679 {
1680 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1681 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1682 struct sk_buff *skb;
1683 int total = 0;
1684 int res;
1685
1686 spin_lock_bh(&rcvq->lock);
1687 skb = __first_packet_length(sk, rcvq, &total);
1688 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1689 spin_lock(&sk_queue->lock);
1690 skb_queue_splice_tail_init(sk_queue, rcvq);
1691 spin_unlock(&sk_queue->lock);
1692
1693 skb = __first_packet_length(sk, rcvq, &total);
1694 }
1695 res = skb ? skb->len : -1;
1696 if (total)
1697 udp_rmem_release(sk, total, 1, false);
1698 spin_unlock_bh(&rcvq->lock);
1699 return res;
1700 }
1701
1702 /*
1703 * IOCTL requests applicable to the UDP protocol
1704 */
1705
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1706 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1707 {
1708 switch (cmd) {
1709 case SIOCOUTQ:
1710 {
1711 int amount = sk_wmem_alloc_get(sk);
1712
1713 return put_user(amount, (int __user *)arg);
1714 }
1715
1716 case SIOCINQ:
1717 {
1718 int amount = max_t(int, 0, first_packet_length(sk));
1719
1720 return put_user(amount, (int __user *)arg);
1721 }
1722
1723 default:
1724 return -ENOIOCTLCMD;
1725 }
1726
1727 return 0;
1728 }
1729 EXPORT_SYMBOL(udp_ioctl);
1730
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1731 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1732 int noblock, int *off, int *err)
1733 {
1734 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1735 struct sk_buff_head *queue;
1736 struct sk_buff *last;
1737 long timeo;
1738 int error;
1739
1740 queue = &udp_sk(sk)->reader_queue;
1741 flags |= noblock ? MSG_DONTWAIT : 0;
1742 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1743 do {
1744 struct sk_buff *skb;
1745
1746 error = sock_error(sk);
1747 if (error)
1748 break;
1749
1750 error = -EAGAIN;
1751 do {
1752 spin_lock_bh(&queue->lock);
1753 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754 err, &last);
1755 if (skb) {
1756 if (!(flags & MSG_PEEK))
1757 udp_skb_destructor(sk, skb);
1758 spin_unlock_bh(&queue->lock);
1759 return skb;
1760 }
1761
1762 if (skb_queue_empty_lockless(sk_queue)) {
1763 spin_unlock_bh(&queue->lock);
1764 goto busy_check;
1765 }
1766
1767 /* refill the reader queue and walk it again
1768 * keep both queues locked to avoid re-acquiring
1769 * the sk_receive_queue lock if fwd memory scheduling
1770 * is needed.
1771 */
1772 spin_lock(&sk_queue->lock);
1773 skb_queue_splice_tail_init(sk_queue, queue);
1774
1775 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1776 err, &last);
1777 if (skb && !(flags & MSG_PEEK))
1778 udp_skb_dtor_locked(sk, skb);
1779 spin_unlock(&sk_queue->lock);
1780 spin_unlock_bh(&queue->lock);
1781 if (skb)
1782 return skb;
1783
1784 busy_check:
1785 if (!sk_can_busy_loop(sk))
1786 break;
1787
1788 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1789 } while (!skb_queue_empty_lockless(sk_queue));
1790
1791 /* sk_queue is empty, reader_queue may contain peeked packets */
1792 } while (timeo &&
1793 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1794 &error, &timeo,
1795 (struct sk_buff *)sk_queue));
1796
1797 *err = error;
1798 return NULL;
1799 }
1800 EXPORT_SYMBOL(__skb_recv_udp);
1801
1802 /*
1803 * This should be easy, if there is something there we
1804 * return it, otherwise we block.
1805 */
1806
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1807 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1808 int flags, int *addr_len)
1809 {
1810 struct inet_sock *inet = inet_sk(sk);
1811 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1812 struct sk_buff *skb;
1813 unsigned int ulen, copied;
1814 int off, err, peeking = flags & MSG_PEEK;
1815 int is_udplite = IS_UDPLITE(sk);
1816 bool checksum_valid = false;
1817
1818 if (flags & MSG_ERRQUEUE)
1819 return ip_recv_error(sk, msg, len, addr_len);
1820
1821 try_again:
1822 off = sk_peek_offset(sk, flags);
1823 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1824 if (!skb)
1825 return err;
1826 trace_android_rvh_udp_recvmsg(sk);
1827
1828 ulen = udp_skb_len(skb);
1829 copied = len;
1830 if (copied > ulen - off)
1831 copied = ulen - off;
1832 else if (copied < ulen)
1833 msg->msg_flags |= MSG_TRUNC;
1834
1835 /*
1836 * If checksum is needed at all, try to do it while copying the
1837 * data. If the data is truncated, or if we only want a partial
1838 * coverage checksum (UDP-Lite), do it before the copy.
1839 */
1840
1841 if (copied < ulen || peeking ||
1842 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1843 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1844 !__udp_lib_checksum_complete(skb);
1845 if (!checksum_valid)
1846 goto csum_copy_err;
1847 }
1848
1849 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1850 if (udp_skb_is_linear(skb))
1851 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1852 else
1853 err = skb_copy_datagram_msg(skb, off, msg, copied);
1854 } else {
1855 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1856
1857 if (err == -EINVAL)
1858 goto csum_copy_err;
1859 }
1860
1861 if (unlikely(err)) {
1862 if (!peeking) {
1863 atomic_inc(&sk->sk_drops);
1864 UDP_INC_STATS(sock_net(sk),
1865 UDP_MIB_INERRORS, is_udplite);
1866 }
1867 kfree_skb(skb);
1868 return err;
1869 }
1870
1871 if (!peeking)
1872 UDP_INC_STATS(sock_net(sk),
1873 UDP_MIB_INDATAGRAMS, is_udplite);
1874
1875 sock_recv_ts_and_drops(msg, sk, skb);
1876
1877 /* Copy the address. */
1878 if (sin) {
1879 sin->sin_family = AF_INET;
1880 sin->sin_port = udp_hdr(skb)->source;
1881 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1882 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1883 *addr_len = sizeof(*sin);
1884
1885 if (cgroup_bpf_enabled)
1886 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1887 (struct sockaddr *)sin);
1888 }
1889
1890 if (udp_sk(sk)->gro_enabled)
1891 udp_cmsg_recv(msg, sk, skb);
1892
1893 if (inet->cmsg_flags)
1894 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1895
1896 err = copied;
1897 if (flags & MSG_TRUNC)
1898 err = ulen;
1899
1900 skb_consume_udp(sk, skb, peeking ? -err : err);
1901 return err;
1902
1903 csum_copy_err:
1904 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1905 udp_skb_destructor)) {
1906 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1907 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1908 }
1909 kfree_skb(skb);
1910
1911 /* starting over for a new packet, but check if we need to yield */
1912 cond_resched();
1913 msg->msg_flags &= ~MSG_TRUNC;
1914 goto try_again;
1915 }
1916
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1917 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1918 {
1919 /* This check is replicated from __ip4_datagram_connect() and
1920 * intended to prevent BPF program called below from accessing bytes
1921 * that are out of the bound specified by user in addr_len.
1922 */
1923 if (addr_len < sizeof(struct sockaddr_in))
1924 return -EINVAL;
1925
1926 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1927 }
1928 EXPORT_SYMBOL(udp_pre_connect);
1929
__udp_disconnect(struct sock * sk,int flags)1930 int __udp_disconnect(struct sock *sk, int flags)
1931 {
1932 struct inet_sock *inet = inet_sk(sk);
1933 /*
1934 * 1003.1g - break association.
1935 */
1936
1937 sk->sk_state = TCP_CLOSE;
1938 inet->inet_daddr = 0;
1939 inet->inet_dport = 0;
1940 sock_rps_reset_rxhash(sk);
1941 sk->sk_bound_dev_if = 0;
1942 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1943 inet_reset_saddr(sk);
1944 if (sk->sk_prot->rehash &&
1945 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1946 sk->sk_prot->rehash(sk);
1947 }
1948
1949 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1950 sk->sk_prot->unhash(sk);
1951 inet->inet_sport = 0;
1952 }
1953 sk_dst_reset(sk);
1954 return 0;
1955 }
1956 EXPORT_SYMBOL(__udp_disconnect);
1957
udp_disconnect(struct sock * sk,int flags)1958 int udp_disconnect(struct sock *sk, int flags)
1959 {
1960 lock_sock(sk);
1961 __udp_disconnect(sk, flags);
1962 release_sock(sk);
1963 return 0;
1964 }
1965 EXPORT_SYMBOL(udp_disconnect);
1966
udp_lib_unhash(struct sock * sk)1967 void udp_lib_unhash(struct sock *sk)
1968 {
1969 if (sk_hashed(sk)) {
1970 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1971 struct udp_hslot *hslot, *hslot2;
1972
1973 hslot = udp_hashslot(udptable, sock_net(sk),
1974 udp_sk(sk)->udp_port_hash);
1975 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1976
1977 spin_lock_bh(&hslot->lock);
1978 if (rcu_access_pointer(sk->sk_reuseport_cb))
1979 reuseport_detach_sock(sk);
1980 if (sk_del_node_init_rcu(sk)) {
1981 hslot->count--;
1982 inet_sk(sk)->inet_num = 0;
1983 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1984
1985 spin_lock(&hslot2->lock);
1986 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1987 hslot2->count--;
1988 spin_unlock(&hslot2->lock);
1989 }
1990 spin_unlock_bh(&hslot->lock);
1991 }
1992 }
1993 EXPORT_SYMBOL(udp_lib_unhash);
1994
1995 /*
1996 * inet_rcv_saddr was changed, we must rehash secondary hash
1997 */
udp_lib_rehash(struct sock * sk,u16 newhash)1998 void udp_lib_rehash(struct sock *sk, u16 newhash)
1999 {
2000 if (sk_hashed(sk)) {
2001 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2002 struct udp_hslot *hslot, *hslot2, *nhslot2;
2003
2004 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2005 nhslot2 = udp_hashslot2(udptable, newhash);
2006 udp_sk(sk)->udp_portaddr_hash = newhash;
2007
2008 if (hslot2 != nhslot2 ||
2009 rcu_access_pointer(sk->sk_reuseport_cb)) {
2010 hslot = udp_hashslot(udptable, sock_net(sk),
2011 udp_sk(sk)->udp_port_hash);
2012 /* we must lock primary chain too */
2013 spin_lock_bh(&hslot->lock);
2014 if (rcu_access_pointer(sk->sk_reuseport_cb))
2015 reuseport_detach_sock(sk);
2016
2017 if (hslot2 != nhslot2) {
2018 spin_lock(&hslot2->lock);
2019 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2020 hslot2->count--;
2021 spin_unlock(&hslot2->lock);
2022
2023 spin_lock(&nhslot2->lock);
2024 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2025 &nhslot2->head);
2026 nhslot2->count++;
2027 spin_unlock(&nhslot2->lock);
2028 }
2029
2030 spin_unlock_bh(&hslot->lock);
2031 }
2032 }
2033 }
2034 EXPORT_SYMBOL(udp_lib_rehash);
2035
udp_v4_rehash(struct sock * sk)2036 void udp_v4_rehash(struct sock *sk)
2037 {
2038 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2039 inet_sk(sk)->inet_rcv_saddr,
2040 inet_sk(sk)->inet_num);
2041 udp_lib_rehash(sk, new_hash);
2042 }
2043
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2044 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2045 {
2046 int rc;
2047
2048 if (inet_sk(sk)->inet_daddr) {
2049 sock_rps_save_rxhash(sk, skb);
2050 sk_mark_napi_id(sk, skb);
2051 sk_incoming_cpu_update(sk);
2052 } else {
2053 sk_mark_napi_id_once(sk, skb);
2054 }
2055
2056 rc = __udp_enqueue_schedule_skb(sk, skb);
2057 if (rc < 0) {
2058 int is_udplite = IS_UDPLITE(sk);
2059
2060 /* Note that an ENOMEM error is charged twice */
2061 if (rc == -ENOMEM)
2062 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2063 is_udplite);
2064 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2065 kfree_skb(skb);
2066 trace_udp_fail_queue_rcv_skb(rc, sk);
2067 return -1;
2068 }
2069
2070 return 0;
2071 }
2072
2073 /* returns:
2074 * -1: error
2075 * 0: success
2076 * >0: "udp encap" protocol resubmission
2077 *
2078 * Note that in the success and error cases, the skb is assumed to
2079 * have either been requeued or freed.
2080 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2081 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2082 {
2083 struct udp_sock *up = udp_sk(sk);
2084 int is_udplite = IS_UDPLITE(sk);
2085
2086 /*
2087 * Charge it to the socket, dropping if the queue is full.
2088 */
2089 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2090 goto drop;
2091 nf_reset_ct(skb);
2092
2093 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2094 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2095
2096 /*
2097 * This is an encapsulation socket so pass the skb to
2098 * the socket's udp_encap_rcv() hook. Otherwise, just
2099 * fall through and pass this up the UDP socket.
2100 * up->encap_rcv() returns the following value:
2101 * =0 if skb was successfully passed to the encap
2102 * handler or was discarded by it.
2103 * >0 if skb should be passed on to UDP.
2104 * <0 if skb should be resubmitted as proto -N
2105 */
2106
2107 /* if we're overly short, let UDP handle it */
2108 encap_rcv = READ_ONCE(up->encap_rcv);
2109 if (encap_rcv) {
2110 int ret;
2111
2112 /* Verify checksum before giving to encap */
2113 if (udp_lib_checksum_complete(skb))
2114 goto csum_error;
2115
2116 ret = encap_rcv(sk, skb);
2117 if (ret <= 0) {
2118 __UDP_INC_STATS(sock_net(sk),
2119 UDP_MIB_INDATAGRAMS,
2120 is_udplite);
2121 return -ret;
2122 }
2123 }
2124
2125 /* FALLTHROUGH -- it's a UDP Packet */
2126 }
2127
2128 /*
2129 * UDP-Lite specific tests, ignored on UDP sockets
2130 */
2131 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2132
2133 /*
2134 * MIB statistics other than incrementing the error count are
2135 * disabled for the following two types of errors: these depend
2136 * on the application settings, not on the functioning of the
2137 * protocol stack as such.
2138 *
2139 * RFC 3828 here recommends (sec 3.3): "There should also be a
2140 * way ... to ... at least let the receiving application block
2141 * delivery of packets with coverage values less than a value
2142 * provided by the application."
2143 */
2144 if (up->pcrlen == 0) { /* full coverage was set */
2145 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2146 UDP_SKB_CB(skb)->cscov, skb->len);
2147 goto drop;
2148 }
2149 /* The next case involves violating the min. coverage requested
2150 * by the receiver. This is subtle: if receiver wants x and x is
2151 * greater than the buffersize/MTU then receiver will complain
2152 * that it wants x while sender emits packets of smaller size y.
2153 * Therefore the above ...()->partial_cov statement is essential.
2154 */
2155 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2156 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2157 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2158 goto drop;
2159 }
2160 }
2161
2162 prefetch(&sk->sk_rmem_alloc);
2163 if (rcu_access_pointer(sk->sk_filter) &&
2164 udp_lib_checksum_complete(skb))
2165 goto csum_error;
2166
2167 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2168 goto drop;
2169
2170 udp_csum_pull_header(skb);
2171
2172 ipv4_pktinfo_prepare(sk, skb);
2173 return __udp_queue_rcv_skb(sk, skb);
2174
2175 csum_error:
2176 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2177 drop:
2178 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2179 atomic_inc(&sk->sk_drops);
2180 kfree_skb(skb);
2181 return -1;
2182 }
2183
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2184 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2185 {
2186 struct sk_buff *next, *segs;
2187 int ret;
2188
2189 if (likely(!udp_unexpected_gso(sk, skb)))
2190 return udp_queue_rcv_one_skb(sk, skb);
2191
2192 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2193 __skb_push(skb, -skb_mac_offset(skb));
2194 segs = udp_rcv_segment(sk, skb, true);
2195 skb_list_walk_safe(segs, skb, next) {
2196 __skb_pull(skb, skb_transport_offset(skb));
2197 ret = udp_queue_rcv_one_skb(sk, skb);
2198 if (ret > 0)
2199 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2200 }
2201 return 0;
2202 }
2203
2204 /* For TCP sockets, sk_rx_dst is protected by socket lock
2205 * For UDP, we use xchg() to guard against concurrent changes.
2206 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2207 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2208 {
2209 struct dst_entry *old;
2210
2211 if (dst_hold_safe(dst)) {
2212 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2213 dst_release(old);
2214 return old != dst;
2215 }
2216 return false;
2217 }
2218 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2219
2220 /*
2221 * Multicasts and broadcasts go to each listener.
2222 *
2223 * Note: called only from the BH handler context.
2224 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2225 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2226 struct udphdr *uh,
2227 __be32 saddr, __be32 daddr,
2228 struct udp_table *udptable,
2229 int proto)
2230 {
2231 struct sock *sk, *first = NULL;
2232 unsigned short hnum = ntohs(uh->dest);
2233 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2234 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2235 unsigned int offset = offsetof(typeof(*sk), sk_node);
2236 int dif = skb->dev->ifindex;
2237 int sdif = inet_sdif(skb);
2238 struct hlist_node *node;
2239 struct sk_buff *nskb;
2240
2241 if (use_hash2) {
2242 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2243 udptable->mask;
2244 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2245 start_lookup:
2246 hslot = &udptable->hash2[hash2];
2247 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2248 }
2249
2250 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2251 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2252 uh->source, saddr, dif, sdif, hnum))
2253 continue;
2254
2255 if (!first) {
2256 first = sk;
2257 continue;
2258 }
2259 nskb = skb_clone(skb, GFP_ATOMIC);
2260
2261 if (unlikely(!nskb)) {
2262 atomic_inc(&sk->sk_drops);
2263 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2264 IS_UDPLITE(sk));
2265 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2266 IS_UDPLITE(sk));
2267 continue;
2268 }
2269 if (udp_queue_rcv_skb(sk, nskb) > 0)
2270 consume_skb(nskb);
2271 }
2272
2273 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2274 if (use_hash2 && hash2 != hash2_any) {
2275 hash2 = hash2_any;
2276 goto start_lookup;
2277 }
2278
2279 if (first) {
2280 if (udp_queue_rcv_skb(first, skb) > 0)
2281 consume_skb(skb);
2282 } else {
2283 kfree_skb(skb);
2284 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2285 proto == IPPROTO_UDPLITE);
2286 }
2287 return 0;
2288 }
2289
2290 /* Initialize UDP checksum. If exited with zero value (success),
2291 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2292 * Otherwise, csum completion requires checksumming packet body,
2293 * including udp header and folding it to skb->csum.
2294 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2295 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2296 int proto)
2297 {
2298 int err;
2299
2300 UDP_SKB_CB(skb)->partial_cov = 0;
2301 UDP_SKB_CB(skb)->cscov = skb->len;
2302
2303 if (proto == IPPROTO_UDPLITE) {
2304 err = udplite_checksum_init(skb, uh);
2305 if (err)
2306 return err;
2307
2308 if (UDP_SKB_CB(skb)->partial_cov) {
2309 skb->csum = inet_compute_pseudo(skb, proto);
2310 return 0;
2311 }
2312 }
2313
2314 /* Note, we are only interested in != 0 or == 0, thus the
2315 * force to int.
2316 */
2317 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2318 inet_compute_pseudo);
2319 if (err)
2320 return err;
2321
2322 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2323 /* If SW calculated the value, we know it's bad */
2324 if (skb->csum_complete_sw)
2325 return 1;
2326
2327 /* HW says the value is bad. Let's validate that.
2328 * skb->csum is no longer the full packet checksum,
2329 * so don't treat it as such.
2330 */
2331 skb_checksum_complete_unset(skb);
2332 }
2333
2334 return 0;
2335 }
2336
2337 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2338 * return code conversion for ip layer consumption
2339 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2340 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2341 struct udphdr *uh)
2342 {
2343 int ret;
2344
2345 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2346 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2347
2348 ret = udp_queue_rcv_skb(sk, skb);
2349
2350 /* a return value > 0 means to resubmit the input, but
2351 * it wants the return to be -protocol, or 0
2352 */
2353 if (ret > 0)
2354 return -ret;
2355 return 0;
2356 }
2357
2358 /*
2359 * All we need to do is get the socket, and then do a checksum.
2360 */
2361
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2362 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2363 int proto)
2364 {
2365 struct sock *sk;
2366 struct udphdr *uh;
2367 unsigned short ulen;
2368 struct rtable *rt = skb_rtable(skb);
2369 __be32 saddr, daddr;
2370 struct net *net = dev_net(skb->dev);
2371 bool refcounted;
2372
2373 /*
2374 * Validate the packet.
2375 */
2376 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2377 goto drop; /* No space for header. */
2378
2379 uh = udp_hdr(skb);
2380 ulen = ntohs(uh->len);
2381 saddr = ip_hdr(skb)->saddr;
2382 daddr = ip_hdr(skb)->daddr;
2383
2384 if (ulen > skb->len)
2385 goto short_packet;
2386
2387 if (proto == IPPROTO_UDP) {
2388 /* UDP validates ulen. */
2389 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2390 goto short_packet;
2391 uh = udp_hdr(skb);
2392 }
2393
2394 if (udp4_csum_init(skb, uh, proto))
2395 goto csum_error;
2396
2397 sk = skb_steal_sock(skb, &refcounted);
2398 if (sk) {
2399 struct dst_entry *dst = skb_dst(skb);
2400 int ret;
2401
2402 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2403 udp_sk_rx_dst_set(sk, dst);
2404
2405 ret = udp_unicast_rcv_skb(sk, skb, uh);
2406 if (refcounted)
2407 sock_put(sk);
2408 return ret;
2409 }
2410
2411 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2412 return __udp4_lib_mcast_deliver(net, skb, uh,
2413 saddr, daddr, udptable, proto);
2414
2415 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2416 if (sk)
2417 return udp_unicast_rcv_skb(sk, skb, uh);
2418
2419 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2420 goto drop;
2421 nf_reset_ct(skb);
2422
2423 /* No socket. Drop packet silently, if checksum is wrong */
2424 if (udp_lib_checksum_complete(skb))
2425 goto csum_error;
2426
2427 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2428 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2429
2430 /*
2431 * Hmm. We got an UDP packet to a port to which we
2432 * don't wanna listen. Ignore it.
2433 */
2434 kfree_skb(skb);
2435 return 0;
2436
2437 short_packet:
2438 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2439 proto == IPPROTO_UDPLITE ? "Lite" : "",
2440 &saddr, ntohs(uh->source),
2441 ulen, skb->len,
2442 &daddr, ntohs(uh->dest));
2443 goto drop;
2444
2445 csum_error:
2446 /*
2447 * RFC1122: OK. Discards the bad packet silently (as far as
2448 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2449 */
2450 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2451 proto == IPPROTO_UDPLITE ? "Lite" : "",
2452 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2453 ulen);
2454 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2455 drop:
2456 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2457 kfree_skb(skb);
2458 return 0;
2459 }
2460
2461 /* We can only early demux multicast if there is a single matching socket.
2462 * If more than one socket found returns NULL
2463 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2464 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2465 __be16 loc_port, __be32 loc_addr,
2466 __be16 rmt_port, __be32 rmt_addr,
2467 int dif, int sdif)
2468 {
2469 struct sock *sk, *result;
2470 unsigned short hnum = ntohs(loc_port);
2471 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2472 struct udp_hslot *hslot = &udp_table.hash[slot];
2473
2474 /* Do not bother scanning a too big list */
2475 if (hslot->count > 10)
2476 return NULL;
2477
2478 result = NULL;
2479 sk_for_each_rcu(sk, &hslot->head) {
2480 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2481 rmt_port, rmt_addr, dif, sdif, hnum)) {
2482 if (result)
2483 return NULL;
2484 result = sk;
2485 }
2486 }
2487
2488 return result;
2489 }
2490
2491 /* For unicast we should only early demux connected sockets or we can
2492 * break forwarding setups. The chains here can be long so only check
2493 * if the first socket is an exact match and if not move on.
2494 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2495 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2496 __be16 loc_port, __be32 loc_addr,
2497 __be16 rmt_port, __be32 rmt_addr,
2498 int dif, int sdif)
2499 {
2500 unsigned short hnum = ntohs(loc_port);
2501 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2502 unsigned int slot2 = hash2 & udp_table.mask;
2503 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2504 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2505 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2506 struct sock *sk;
2507
2508 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2509 if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2510 return sk;
2511 /* Only check first socket in chain */
2512 break;
2513 }
2514 return NULL;
2515 }
2516
udp_v4_early_demux(struct sk_buff * skb)2517 int udp_v4_early_demux(struct sk_buff *skb)
2518 {
2519 struct net *net = dev_net(skb->dev);
2520 struct in_device *in_dev = NULL;
2521 const struct iphdr *iph;
2522 const struct udphdr *uh;
2523 struct sock *sk = NULL;
2524 struct dst_entry *dst;
2525 int dif = skb->dev->ifindex;
2526 int sdif = inet_sdif(skb);
2527 int ours;
2528
2529 /* validate the packet */
2530 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2531 return 0;
2532
2533 iph = ip_hdr(skb);
2534 uh = udp_hdr(skb);
2535
2536 if (skb->pkt_type == PACKET_MULTICAST) {
2537 in_dev = __in_dev_get_rcu(skb->dev);
2538
2539 if (!in_dev)
2540 return 0;
2541
2542 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2543 iph->protocol);
2544 if (!ours)
2545 return 0;
2546
2547 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2548 uh->source, iph->saddr,
2549 dif, sdif);
2550 } else if (skb->pkt_type == PACKET_HOST) {
2551 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2552 uh->source, iph->saddr, dif, sdif);
2553 }
2554
2555 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2556 return 0;
2557
2558 skb->sk = sk;
2559 skb->destructor = sock_efree;
2560 dst = rcu_dereference(sk->sk_rx_dst);
2561
2562 if (dst)
2563 dst = dst_check(dst, 0);
2564 if (dst) {
2565 u32 itag = 0;
2566
2567 /* set noref for now.
2568 * any place which wants to hold dst has to call
2569 * dst_hold_safe()
2570 */
2571 skb_dst_set_noref(skb, dst);
2572
2573 /* for unconnected multicast sockets we need to validate
2574 * the source on each packet
2575 */
2576 if (!inet_sk(sk)->inet_daddr && in_dev)
2577 return ip_mc_validate_source(skb, iph->daddr,
2578 iph->saddr,
2579 iph->tos & IPTOS_RT_MASK,
2580 skb->dev, in_dev, &itag);
2581 }
2582 return 0;
2583 }
2584
udp_rcv(struct sk_buff * skb)2585 int udp_rcv(struct sk_buff *skb)
2586 {
2587 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2588 }
2589
udp_destroy_sock(struct sock * sk)2590 void udp_destroy_sock(struct sock *sk)
2591 {
2592 struct udp_sock *up = udp_sk(sk);
2593 bool slow = lock_sock_fast(sk);
2594
2595 /* protects from races with udp_abort() */
2596 sock_set_flag(sk, SOCK_DEAD);
2597 udp_flush_pending_frames(sk);
2598 unlock_sock_fast(sk, slow);
2599 if (static_branch_unlikely(&udp_encap_needed_key)) {
2600 if (up->encap_type) {
2601 void (*encap_destroy)(struct sock *sk);
2602 encap_destroy = READ_ONCE(up->encap_destroy);
2603 if (encap_destroy)
2604 encap_destroy(sk);
2605 }
2606 if (up->encap_enabled)
2607 static_branch_dec(&udp_encap_needed_key);
2608 }
2609 }
2610
2611 /*
2612 * Socket option code for UDP
2613 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2614 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2615 sockptr_t optval, unsigned int optlen,
2616 int (*push_pending_frames)(struct sock *))
2617 {
2618 struct udp_sock *up = udp_sk(sk);
2619 int val, valbool;
2620 int err = 0;
2621 int is_udplite = IS_UDPLITE(sk);
2622
2623 if (optlen < sizeof(int))
2624 return -EINVAL;
2625
2626 if (copy_from_sockptr(&val, optval, sizeof(val)))
2627 return -EFAULT;
2628
2629 valbool = val ? 1 : 0;
2630
2631 switch (optname) {
2632 case UDP_CORK:
2633 if (val != 0) {
2634 WRITE_ONCE(up->corkflag, 1);
2635 } else {
2636 WRITE_ONCE(up->corkflag, 0);
2637 lock_sock(sk);
2638 push_pending_frames(sk);
2639 release_sock(sk);
2640 }
2641 break;
2642
2643 case UDP_ENCAP:
2644 switch (val) {
2645 case 0:
2646 #ifdef CONFIG_XFRM
2647 case UDP_ENCAP_ESPINUDP:
2648 case UDP_ENCAP_ESPINUDP_NON_IKE:
2649 #if IS_ENABLED(CONFIG_IPV6)
2650 if (sk->sk_family == AF_INET6)
2651 WRITE_ONCE(up->encap_rcv,
2652 ipv6_stub->xfrm6_udp_encap_rcv);
2653 else
2654 #endif
2655 WRITE_ONCE(up->encap_rcv,
2656 xfrm4_udp_encap_rcv);
2657 #endif
2658 fallthrough;
2659 case UDP_ENCAP_L2TPINUDP:
2660 up->encap_type = val;
2661 lock_sock(sk);
2662 udp_tunnel_encap_enable(sk->sk_socket);
2663 release_sock(sk);
2664 break;
2665 default:
2666 err = -ENOPROTOOPT;
2667 break;
2668 }
2669 break;
2670
2671 case UDP_NO_CHECK6_TX:
2672 up->no_check6_tx = valbool;
2673 break;
2674
2675 case UDP_NO_CHECK6_RX:
2676 up->no_check6_rx = valbool;
2677 break;
2678
2679 case UDP_SEGMENT:
2680 if (val < 0 || val > USHRT_MAX)
2681 return -EINVAL;
2682 WRITE_ONCE(up->gso_size, val);
2683 break;
2684
2685 case UDP_GRO:
2686 lock_sock(sk);
2687
2688 /* when enabling GRO, accept the related GSO packet type */
2689 if (valbool)
2690 udp_tunnel_encap_enable(sk->sk_socket);
2691 up->gro_enabled = valbool;
2692 up->accept_udp_l4 = valbool;
2693 release_sock(sk);
2694 break;
2695
2696 /*
2697 * UDP-Lite's partial checksum coverage (RFC 3828).
2698 */
2699 /* The sender sets actual checksum coverage length via this option.
2700 * The case coverage > packet length is handled by send module. */
2701 case UDPLITE_SEND_CSCOV:
2702 if (!is_udplite) /* Disable the option on UDP sockets */
2703 return -ENOPROTOOPT;
2704 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2705 val = 8;
2706 else if (val > USHRT_MAX)
2707 val = USHRT_MAX;
2708 up->pcslen = val;
2709 up->pcflag |= UDPLITE_SEND_CC;
2710 break;
2711
2712 /* The receiver specifies a minimum checksum coverage value. To make
2713 * sense, this should be set to at least 8 (as done below). If zero is
2714 * used, this again means full checksum coverage. */
2715 case UDPLITE_RECV_CSCOV:
2716 if (!is_udplite) /* Disable the option on UDP sockets */
2717 return -ENOPROTOOPT;
2718 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2719 val = 8;
2720 else if (val > USHRT_MAX)
2721 val = USHRT_MAX;
2722 up->pcrlen = val;
2723 up->pcflag |= UDPLITE_RECV_CC;
2724 break;
2725
2726 default:
2727 err = -ENOPROTOOPT;
2728 break;
2729 }
2730
2731 return err;
2732 }
2733 EXPORT_SYMBOL(udp_lib_setsockopt);
2734
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2735 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2736 unsigned int optlen)
2737 {
2738 if (level == SOL_UDP || level == SOL_UDPLITE)
2739 return udp_lib_setsockopt(sk, level, optname,
2740 optval, optlen,
2741 udp_push_pending_frames);
2742 return ip_setsockopt(sk, level, optname, optval, optlen);
2743 }
2744
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2745 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2746 char __user *optval, int __user *optlen)
2747 {
2748 struct udp_sock *up = udp_sk(sk);
2749 int val, len;
2750
2751 if (get_user(len, optlen))
2752 return -EFAULT;
2753
2754 len = min_t(unsigned int, len, sizeof(int));
2755
2756 if (len < 0)
2757 return -EINVAL;
2758
2759 switch (optname) {
2760 case UDP_CORK:
2761 val = READ_ONCE(up->corkflag);
2762 break;
2763
2764 case UDP_ENCAP:
2765 val = up->encap_type;
2766 break;
2767
2768 case UDP_NO_CHECK6_TX:
2769 val = up->no_check6_tx;
2770 break;
2771
2772 case UDP_NO_CHECK6_RX:
2773 val = up->no_check6_rx;
2774 break;
2775
2776 case UDP_SEGMENT:
2777 val = READ_ONCE(up->gso_size);
2778 break;
2779
2780 case UDP_GRO:
2781 val = up->gro_enabled;
2782 break;
2783
2784 /* The following two cannot be changed on UDP sockets, the return is
2785 * always 0 (which corresponds to the full checksum coverage of UDP). */
2786 case UDPLITE_SEND_CSCOV:
2787 val = up->pcslen;
2788 break;
2789
2790 case UDPLITE_RECV_CSCOV:
2791 val = up->pcrlen;
2792 break;
2793
2794 default:
2795 return -ENOPROTOOPT;
2796 }
2797
2798 if (put_user(len, optlen))
2799 return -EFAULT;
2800 if (copy_to_user(optval, &val, len))
2801 return -EFAULT;
2802 return 0;
2803 }
2804 EXPORT_SYMBOL(udp_lib_getsockopt);
2805
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2806 int udp_getsockopt(struct sock *sk, int level, int optname,
2807 char __user *optval, int __user *optlen)
2808 {
2809 if (level == SOL_UDP || level == SOL_UDPLITE)
2810 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2811 return ip_getsockopt(sk, level, optname, optval, optlen);
2812 }
2813
2814 /**
2815 * udp_poll - wait for a UDP event.
2816 * @file: - file struct
2817 * @sock: - socket
2818 * @wait: - poll table
2819 *
2820 * This is same as datagram poll, except for the special case of
2821 * blocking sockets. If application is using a blocking fd
2822 * and a packet with checksum error is in the queue;
2823 * then it could get return from select indicating data available
2824 * but then block when reading it. Add special case code
2825 * to work around these arguably broken applications.
2826 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2827 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2828 {
2829 __poll_t mask = datagram_poll(file, sock, wait);
2830 struct sock *sk = sock->sk;
2831
2832 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2833 mask |= EPOLLIN | EPOLLRDNORM;
2834
2835 /* Check for false positives due to checksum errors */
2836 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2837 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2838 mask &= ~(EPOLLIN | EPOLLRDNORM);
2839
2840 return mask;
2841
2842 }
2843 EXPORT_SYMBOL(udp_poll);
2844
udp_abort(struct sock * sk,int err)2845 int udp_abort(struct sock *sk, int err)
2846 {
2847 lock_sock(sk);
2848
2849 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2850 * with close()
2851 */
2852 if (sock_flag(sk, SOCK_DEAD))
2853 goto out;
2854
2855 sk->sk_err = err;
2856 sk->sk_error_report(sk);
2857 __udp_disconnect(sk, 0);
2858
2859 out:
2860 release_sock(sk);
2861
2862 return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(udp_abort);
2865
2866 struct proto udp_prot = {
2867 .name = "UDP",
2868 .owner = THIS_MODULE,
2869 .close = udp_lib_close,
2870 .pre_connect = udp_pre_connect,
2871 .connect = ip4_datagram_connect,
2872 .disconnect = udp_disconnect,
2873 .ioctl = udp_ioctl,
2874 .init = udp_init_sock,
2875 .destroy = udp_destroy_sock,
2876 .setsockopt = udp_setsockopt,
2877 .getsockopt = udp_getsockopt,
2878 .sendmsg = udp_sendmsg,
2879 .recvmsg = udp_recvmsg,
2880 .sendpage = udp_sendpage,
2881 .release_cb = ip4_datagram_release_cb,
2882 .hash = udp_lib_hash,
2883 .unhash = udp_lib_unhash,
2884 .rehash = udp_v4_rehash,
2885 .get_port = udp_v4_get_port,
2886 .memory_allocated = &udp_memory_allocated,
2887 .sysctl_mem = sysctl_udp_mem,
2888 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2889 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2890 .obj_size = sizeof(struct udp_sock),
2891 .h.udp_table = &udp_table,
2892 .diag_destroy = udp_abort,
2893 };
2894 EXPORT_SYMBOL(udp_prot);
2895
2896 /* ------------------------------------------------------------------------ */
2897 #ifdef CONFIG_PROC_FS
2898
udp_get_first(struct seq_file * seq,int start)2899 static struct sock *udp_get_first(struct seq_file *seq, int start)
2900 {
2901 struct sock *sk;
2902 struct udp_seq_afinfo *afinfo;
2903 struct udp_iter_state *state = seq->private;
2904 struct net *net = seq_file_net(seq);
2905
2906 if (state->bpf_seq_afinfo)
2907 afinfo = state->bpf_seq_afinfo;
2908 else
2909 afinfo = PDE_DATA(file_inode(seq->file));
2910
2911 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2912 ++state->bucket) {
2913 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2914
2915 if (hlist_empty(&hslot->head))
2916 continue;
2917
2918 spin_lock_bh(&hslot->lock);
2919 sk_for_each(sk, &hslot->head) {
2920 if (!net_eq(sock_net(sk), net))
2921 continue;
2922 if (afinfo->family == AF_UNSPEC ||
2923 sk->sk_family == afinfo->family)
2924 goto found;
2925 }
2926 spin_unlock_bh(&hslot->lock);
2927 }
2928 sk = NULL;
2929 found:
2930 return sk;
2931 }
2932
udp_get_next(struct seq_file * seq,struct sock * sk)2933 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2934 {
2935 struct udp_seq_afinfo *afinfo;
2936 struct udp_iter_state *state = seq->private;
2937 struct net *net = seq_file_net(seq);
2938
2939 if (state->bpf_seq_afinfo)
2940 afinfo = state->bpf_seq_afinfo;
2941 else
2942 afinfo = PDE_DATA(file_inode(seq->file));
2943
2944 do {
2945 sk = sk_next(sk);
2946 } while (sk && (!net_eq(sock_net(sk), net) ||
2947 (afinfo->family != AF_UNSPEC &&
2948 sk->sk_family != afinfo->family)));
2949
2950 if (!sk) {
2951 if (state->bucket <= afinfo->udp_table->mask)
2952 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2953 return udp_get_first(seq, state->bucket + 1);
2954 }
2955 return sk;
2956 }
2957
udp_get_idx(struct seq_file * seq,loff_t pos)2958 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2959 {
2960 struct sock *sk = udp_get_first(seq, 0);
2961
2962 if (sk)
2963 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2964 --pos;
2965 return pos ? NULL : sk;
2966 }
2967
udp_seq_start(struct seq_file * seq,loff_t * pos)2968 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2969 {
2970 struct udp_iter_state *state = seq->private;
2971 state->bucket = MAX_UDP_PORTS;
2972
2973 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2974 }
2975 EXPORT_SYMBOL(udp_seq_start);
2976
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2977 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2978 {
2979 struct sock *sk;
2980
2981 if (v == SEQ_START_TOKEN)
2982 sk = udp_get_idx(seq, 0);
2983 else
2984 sk = udp_get_next(seq, v);
2985
2986 ++*pos;
2987 return sk;
2988 }
2989 EXPORT_SYMBOL(udp_seq_next);
2990
udp_seq_stop(struct seq_file * seq,void * v)2991 void udp_seq_stop(struct seq_file *seq, void *v)
2992 {
2993 struct udp_seq_afinfo *afinfo;
2994 struct udp_iter_state *state = seq->private;
2995
2996 if (state->bpf_seq_afinfo)
2997 afinfo = state->bpf_seq_afinfo;
2998 else
2999 afinfo = PDE_DATA(file_inode(seq->file));
3000
3001 if (state->bucket <= afinfo->udp_table->mask)
3002 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3003 }
3004 EXPORT_SYMBOL(udp_seq_stop);
3005
3006 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3007 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3008 int bucket)
3009 {
3010 struct inet_sock *inet = inet_sk(sp);
3011 __be32 dest = inet->inet_daddr;
3012 __be32 src = inet->inet_rcv_saddr;
3013 __u16 destp = ntohs(inet->inet_dport);
3014 __u16 srcp = ntohs(inet->inet_sport);
3015
3016 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3017 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3018 bucket, src, srcp, dest, destp, sp->sk_state,
3019 sk_wmem_alloc_get(sp),
3020 udp_rqueue_get(sp),
3021 0, 0L, 0,
3022 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3023 0, sock_i_ino(sp),
3024 refcount_read(&sp->sk_refcnt), sp,
3025 atomic_read(&sp->sk_drops));
3026 }
3027
udp4_seq_show(struct seq_file * seq,void * v)3028 int udp4_seq_show(struct seq_file *seq, void *v)
3029 {
3030 seq_setwidth(seq, 127);
3031 if (v == SEQ_START_TOKEN)
3032 seq_puts(seq, " sl local_address rem_address st tx_queue "
3033 "rx_queue tr tm->when retrnsmt uid timeout "
3034 "inode ref pointer drops");
3035 else {
3036 struct udp_iter_state *state = seq->private;
3037
3038 udp4_format_sock(v, seq, state->bucket);
3039 }
3040 seq_pad(seq, '\n');
3041 return 0;
3042 }
3043
3044 #ifdef CONFIG_BPF_SYSCALL
3045 struct bpf_iter__udp {
3046 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3047 __bpf_md_ptr(struct udp_sock *, udp_sk);
3048 uid_t uid __aligned(8);
3049 int bucket __aligned(8);
3050 };
3051
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3052 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3053 struct udp_sock *udp_sk, uid_t uid, int bucket)
3054 {
3055 struct bpf_iter__udp ctx;
3056
3057 meta->seq_num--; /* skip SEQ_START_TOKEN */
3058 ctx.meta = meta;
3059 ctx.udp_sk = udp_sk;
3060 ctx.uid = uid;
3061 ctx.bucket = bucket;
3062 return bpf_iter_run_prog(prog, &ctx);
3063 }
3064
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3065 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3066 {
3067 struct udp_iter_state *state = seq->private;
3068 struct bpf_iter_meta meta;
3069 struct bpf_prog *prog;
3070 struct sock *sk = v;
3071 uid_t uid;
3072
3073 if (v == SEQ_START_TOKEN)
3074 return 0;
3075
3076 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3077 meta.seq = seq;
3078 prog = bpf_iter_get_info(&meta, false);
3079 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3080 }
3081
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3082 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3083 {
3084 struct bpf_iter_meta meta;
3085 struct bpf_prog *prog;
3086
3087 if (!v) {
3088 meta.seq = seq;
3089 prog = bpf_iter_get_info(&meta, true);
3090 if (prog)
3091 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3092 }
3093
3094 udp_seq_stop(seq, v);
3095 }
3096
3097 static const struct seq_operations bpf_iter_udp_seq_ops = {
3098 .start = udp_seq_start,
3099 .next = udp_seq_next,
3100 .stop = bpf_iter_udp_seq_stop,
3101 .show = bpf_iter_udp_seq_show,
3102 };
3103 #endif
3104
3105 const struct seq_operations udp_seq_ops = {
3106 .start = udp_seq_start,
3107 .next = udp_seq_next,
3108 .stop = udp_seq_stop,
3109 .show = udp4_seq_show,
3110 };
3111 EXPORT_SYMBOL(udp_seq_ops);
3112
3113 static struct udp_seq_afinfo udp4_seq_afinfo = {
3114 .family = AF_INET,
3115 .udp_table = &udp_table,
3116 };
3117
udp4_proc_init_net(struct net * net)3118 static int __net_init udp4_proc_init_net(struct net *net)
3119 {
3120 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3121 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3122 return -ENOMEM;
3123 return 0;
3124 }
3125
udp4_proc_exit_net(struct net * net)3126 static void __net_exit udp4_proc_exit_net(struct net *net)
3127 {
3128 remove_proc_entry("udp", net->proc_net);
3129 }
3130
3131 static struct pernet_operations udp4_net_ops = {
3132 .init = udp4_proc_init_net,
3133 .exit = udp4_proc_exit_net,
3134 };
3135
udp4_proc_init(void)3136 int __init udp4_proc_init(void)
3137 {
3138 return register_pernet_subsys(&udp4_net_ops);
3139 }
3140
udp4_proc_exit(void)3141 void udp4_proc_exit(void)
3142 {
3143 unregister_pernet_subsys(&udp4_net_ops);
3144 }
3145 #endif /* CONFIG_PROC_FS */
3146
3147 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3148 static int __init set_uhash_entries(char *str)
3149 {
3150 ssize_t ret;
3151
3152 if (!str)
3153 return 0;
3154
3155 ret = kstrtoul(str, 0, &uhash_entries);
3156 if (ret)
3157 return 0;
3158
3159 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3160 uhash_entries = UDP_HTABLE_SIZE_MIN;
3161 return 1;
3162 }
3163 __setup("uhash_entries=", set_uhash_entries);
3164
udp_table_init(struct udp_table * table,const char * name)3165 void __init udp_table_init(struct udp_table *table, const char *name)
3166 {
3167 unsigned int i;
3168
3169 table->hash = alloc_large_system_hash(name,
3170 2 * sizeof(struct udp_hslot),
3171 uhash_entries,
3172 21, /* one slot per 2 MB */
3173 0,
3174 &table->log,
3175 &table->mask,
3176 UDP_HTABLE_SIZE_MIN,
3177 64 * 1024);
3178
3179 table->hash2 = table->hash + (table->mask + 1);
3180 for (i = 0; i <= table->mask; i++) {
3181 INIT_HLIST_HEAD(&table->hash[i].head);
3182 table->hash[i].count = 0;
3183 spin_lock_init(&table->hash[i].lock);
3184 }
3185 for (i = 0; i <= table->mask; i++) {
3186 INIT_HLIST_HEAD(&table->hash2[i].head);
3187 table->hash2[i].count = 0;
3188 spin_lock_init(&table->hash2[i].lock);
3189 }
3190 }
3191
udp_flow_hashrnd(void)3192 u32 udp_flow_hashrnd(void)
3193 {
3194 static u32 hashrnd __read_mostly;
3195
3196 net_get_random_once(&hashrnd, sizeof(hashrnd));
3197
3198 return hashrnd;
3199 }
3200 EXPORT_SYMBOL(udp_flow_hashrnd);
3201
__udp_sysctl_init(struct net * net)3202 static void __udp_sysctl_init(struct net *net)
3203 {
3204 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3205 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3206
3207 #ifdef CONFIG_NET_L3_MASTER_DEV
3208 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3209 #endif
3210 }
3211
udp_sysctl_init(struct net * net)3212 static int __net_init udp_sysctl_init(struct net *net)
3213 {
3214 __udp_sysctl_init(net);
3215 return 0;
3216 }
3217
3218 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3219 .init = udp_sysctl_init,
3220 };
3221
3222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3223 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3224 struct udp_sock *udp_sk, uid_t uid, int bucket)
3225
3226 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3227 {
3228 struct udp_iter_state *st = priv_data;
3229 struct udp_seq_afinfo *afinfo;
3230 int ret;
3231
3232 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3233 if (!afinfo)
3234 return -ENOMEM;
3235
3236 afinfo->family = AF_UNSPEC;
3237 afinfo->udp_table = &udp_table;
3238 st->bpf_seq_afinfo = afinfo;
3239 ret = bpf_iter_init_seq_net(priv_data, aux);
3240 if (ret)
3241 kfree(afinfo);
3242 return ret;
3243 }
3244
bpf_iter_fini_udp(void * priv_data)3245 static void bpf_iter_fini_udp(void *priv_data)
3246 {
3247 struct udp_iter_state *st = priv_data;
3248
3249 kfree(st->bpf_seq_afinfo);
3250 bpf_iter_fini_seq_net(priv_data);
3251 }
3252
3253 static const struct bpf_iter_seq_info udp_seq_info = {
3254 .seq_ops = &bpf_iter_udp_seq_ops,
3255 .init_seq_private = bpf_iter_init_udp,
3256 .fini_seq_private = bpf_iter_fini_udp,
3257 .seq_priv_size = sizeof(struct udp_iter_state),
3258 };
3259
3260 static struct bpf_iter_reg udp_reg_info = {
3261 .target = "udp",
3262 .ctx_arg_info_size = 1,
3263 .ctx_arg_info = {
3264 { offsetof(struct bpf_iter__udp, udp_sk),
3265 PTR_TO_BTF_ID_OR_NULL },
3266 },
3267 .seq_info = &udp_seq_info,
3268 };
3269
bpf_iter_register(void)3270 static void __init bpf_iter_register(void)
3271 {
3272 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3273 if (bpf_iter_reg_target(&udp_reg_info))
3274 pr_warn("Warning: could not register bpf iterator udp\n");
3275 }
3276 #endif
3277
udp_init(void)3278 void __init udp_init(void)
3279 {
3280 unsigned long limit;
3281 unsigned int i;
3282
3283 udp_table_init(&udp_table, "UDP");
3284 limit = nr_free_buffer_pages() / 8;
3285 limit = max(limit, 128UL);
3286 sysctl_udp_mem[0] = limit / 4 * 3;
3287 sysctl_udp_mem[1] = limit;
3288 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3289
3290 __udp_sysctl_init(&init_net);
3291
3292 /* 16 spinlocks per cpu */
3293 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3294 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3295 GFP_KERNEL);
3296 if (!udp_busylocks)
3297 panic("UDP: failed to alloc udp_busylocks\n");
3298 for (i = 0; i < (1U << udp_busylocks_log); i++)
3299 spin_lock_init(udp_busylocks + i);
3300
3301 if (register_pernet_subsys(&udp_sysctl_ops))
3302 panic("UDP: failed to init sysctl parameters.\n");
3303
3304 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3305 bpf_iter_register();
3306 #endif
3307 }
3308