• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 #include <trace/hooks/ipv4.h>
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)133 static int udp_lib_lport_inuse(struct net *net, __u16 num,
134 			       const struct udp_hslot *hslot,
135 			       unsigned long *bitmap,
136 			       struct sock *sk, unsigned int log)
137 {
138 	struct sock *sk2;
139 	kuid_t uid = sock_i_uid(sk);
140 
141 	sk_for_each(sk2, &hslot->head) {
142 		if (net_eq(sock_net(sk2), net) &&
143 		    sk2 != sk &&
144 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
146 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 		    inet_rcv_saddr_equal(sk, sk2, true)) {
149 			if (sk2->sk_reuseport && sk->sk_reuseport &&
150 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
151 			    uid_eq(uid, sock_i_uid(sk2))) {
152 				if (!bitmap)
153 					return 0;
154 			} else {
155 				if (!bitmap)
156 					return 1;
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			}
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 				struct udp_hslot *hslot2,
171 				struct sock *sk)
172 {
173 	struct sock *sk2;
174 	kuid_t uid = sock_i_uid(sk);
175 	int res = 0;
176 
177 	spin_lock(&hslot2->lock);
178 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
179 		if (net_eq(sock_net(sk2), net) &&
180 		    sk2 != sk &&
181 		    (udp_sk(sk2)->udp_port_hash == num) &&
182 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
183 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
184 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
185 		    inet_rcv_saddr_equal(sk, sk2, true)) {
186 			if (sk2->sk_reuseport && sk->sk_reuseport &&
187 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
188 			    uid_eq(uid, sock_i_uid(sk2))) {
189 				res = 0;
190 			} else {
191 				res = 1;
192 			}
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)200 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
201 {
202 	struct net *net = sock_net(sk);
203 	kuid_t uid = sock_i_uid(sk);
204 	struct sock *sk2;
205 
206 	sk_for_each(sk2, &hslot->head) {
207 		if (net_eq(sock_net(sk2), net) &&
208 		    sk2 != sk &&
209 		    sk2->sk_family == sk->sk_family &&
210 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
211 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
212 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
213 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
214 		    inet_rcv_saddr_equal(sk, sk2, false)) {
215 			return reuseport_add_sock(sk, sk2,
216 						  inet_rcv_saddr_any(sk));
217 		}
218 	}
219 
220 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
221 }
222 
223 /**
224  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
225  *
226  *  @sk:          socket struct in question
227  *  @snum:        port number to look up
228  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
229  *                   with NULL address
230  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)231 int udp_lib_get_port(struct sock *sk, unsigned short snum,
232 		     unsigned int hash2_nulladdr)
233 {
234 	struct udp_hslot *hslot, *hslot2;
235 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
236 	int    error = 1;
237 	struct net *net = sock_net(sk);
238 
239 	if (!snum) {
240 		int low, high, remaining;
241 		unsigned int rand;
242 		unsigned short first, last;
243 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
244 
245 		inet_get_local_port_range(net, &low, &high);
246 		remaining = (high - low) + 1;
247 
248 		rand = prandom_u32();
249 		first = reciprocal_scale(rand, remaining) + low;
250 		/*
251 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
252 		 */
253 		rand = (rand | 1) * (udptable->mask + 1);
254 		last = first + udptable->mask + 1;
255 		do {
256 			hslot = udp_hashslot(udptable, net, first);
257 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
258 			spin_lock_bh(&hslot->lock);
259 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
260 					    udptable->log);
261 
262 			snum = first;
263 			/*
264 			 * Iterate on all possible values of snum for this hash.
265 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
266 			 * give us randomization and full range coverage.
267 			 */
268 			do {
269 				if (low <= snum && snum <= high &&
270 				    !test_bit(snum >> udptable->log, bitmap) &&
271 				    !inet_is_local_reserved_port(net, snum))
272 					goto found;
273 				snum += rand;
274 			} while (snum != first);
275 			spin_unlock_bh(&hslot->lock);
276 			cond_resched();
277 		} while (++first != last);
278 		goto fail;
279 	} else {
280 		hslot = udp_hashslot(udptable, net, snum);
281 		spin_lock_bh(&hslot->lock);
282 		if (hslot->count > 10) {
283 			int exist;
284 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
285 
286 			slot2          &= udptable->mask;
287 			hash2_nulladdr &= udptable->mask;
288 
289 			hslot2 = udp_hashslot2(udptable, slot2);
290 			if (hslot->count < hslot2->count)
291 				goto scan_primary_hash;
292 
293 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
294 			if (!exist && (hash2_nulladdr != slot2)) {
295 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
296 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
297 							     sk);
298 			}
299 			if (exist)
300 				goto fail_unlock;
301 			else
302 				goto found;
303 		}
304 scan_primary_hash:
305 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
306 			goto fail_unlock;
307 	}
308 found:
309 	inet_sk(sk)->inet_num = snum;
310 	udp_sk(sk)->udp_port_hash = snum;
311 	udp_sk(sk)->udp_portaddr_hash ^= snum;
312 	if (sk_unhashed(sk)) {
313 		if (sk->sk_reuseport &&
314 		    udp_reuseport_add_sock(sk, hslot)) {
315 			inet_sk(sk)->inet_num = 0;
316 			udp_sk(sk)->udp_port_hash = 0;
317 			udp_sk(sk)->udp_portaddr_hash ^= snum;
318 			goto fail_unlock;
319 		}
320 
321 		sk_add_node_rcu(sk, &hslot->head);
322 		hslot->count++;
323 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
324 
325 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
326 		spin_lock(&hslot2->lock);
327 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
328 		    sk->sk_family == AF_INET6)
329 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
330 					   &hslot2->head);
331 		else
332 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
333 					   &hslot2->head);
334 		hslot2->count++;
335 		spin_unlock(&hslot2->lock);
336 	}
337 	sock_set_flag(sk, SOCK_RCU_FREE);
338 	error = 0;
339 fail_unlock:
340 	spin_unlock_bh(&hslot->lock);
341 fail:
342 	return error;
343 }
344 EXPORT_SYMBOL(udp_lib_get_port);
345 
udp_v4_get_port(struct sock * sk,unsigned short snum)346 int udp_v4_get_port(struct sock *sk, unsigned short snum)
347 {
348 	unsigned int hash2_nulladdr =
349 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
350 	unsigned int hash2_partial =
351 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
352 
353 	/* precompute partial secondary hash */
354 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
355 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
356 }
357 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)358 static int compute_score(struct sock *sk, struct net *net,
359 			 __be32 saddr, __be16 sport,
360 			 __be32 daddr, unsigned short hnum,
361 			 int dif, int sdif)
362 {
363 	int score;
364 	struct inet_sock *inet;
365 	bool dev_match;
366 
367 	if (!net_eq(sock_net(sk), net) ||
368 	    udp_sk(sk)->udp_port_hash != hnum ||
369 	    ipv6_only_sock(sk))
370 		return -1;
371 
372 	if (sk->sk_rcv_saddr != daddr)
373 		return -1;
374 
375 	score = (sk->sk_family == PF_INET) ? 2 : 1;
376 
377 	inet = inet_sk(sk);
378 	if (inet->inet_daddr) {
379 		if (inet->inet_daddr != saddr)
380 			return -1;
381 		score += 4;
382 	}
383 
384 	if (inet->inet_dport) {
385 		if (inet->inet_dport != sport)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
391 					dif, sdif);
392 	if (!dev_match)
393 		return -1;
394 	if (sk->sk_bound_dev_if)
395 		score += 4;
396 
397 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
398 		score++;
399 	return score;
400 }
401 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)402 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
403 		       const __u16 lport, const __be32 faddr,
404 		       const __be16 fport)
405 {
406 	static u32 udp_ehash_secret __read_mostly;
407 
408 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
409 
410 	return __inet_ehashfn(laddr, lport, faddr, fport,
411 			      udp_ehash_secret + net_hash_mix(net));
412 }
413 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)414 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
415 				     struct sk_buff *skb,
416 				     __be32 saddr, __be16 sport,
417 				     __be32 daddr, unsigned short hnum)
418 {
419 	struct sock *reuse_sk = NULL;
420 	u32 hash;
421 
422 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
423 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
424 		reuse_sk = reuseport_select_sock(sk, hash, skb,
425 						 sizeof(struct udphdr));
426 	}
427 	return reuse_sk;
428 }
429 
430 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)431 static struct sock *udp4_lib_lookup2(struct net *net,
432 				     __be32 saddr, __be16 sport,
433 				     __be32 daddr, unsigned int hnum,
434 				     int dif, int sdif,
435 				     struct udp_hslot *hslot2,
436 				     struct sk_buff *skb)
437 {
438 	struct sock *sk, *result;
439 	int score, badness;
440 
441 	result = NULL;
442 	badness = 0;
443 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
444 		score = compute_score(sk, net, saddr, sport,
445 				      daddr, hnum, dif, sdif);
446 		if (score > badness) {
447 			badness = score;
448 			result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
449 			if (!result) {
450 				result = sk;
451 				continue;
452 			}
453 
454 			/* Fall back to scoring if group has connections */
455 			if (!reuseport_has_conns(sk))
456 				return result;
457 
458 			/* Reuseport logic returned an error, keep original score. */
459 			if (IS_ERR(result))
460 				continue;
461 
462 			badness = compute_score(result, net, saddr, sport,
463 						daddr, hnum, dif, sdif);
464 
465 		}
466 	}
467 	return result;
468 }
469 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)470 static struct sock *udp4_lookup_run_bpf(struct net *net,
471 					struct udp_table *udptable,
472 					struct sk_buff *skb,
473 					__be32 saddr, __be16 sport,
474 					__be32 daddr, u16 hnum)
475 {
476 	struct sock *sk, *reuse_sk;
477 	bool no_reuseport;
478 
479 	if (udptable != &udp_table)
480 		return NULL; /* only UDP is supported */
481 
482 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
483 					    saddr, sport, daddr, hnum, &sk);
484 	if (no_reuseport || IS_ERR_OR_NULL(sk))
485 		return sk;
486 
487 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
488 	if (reuse_sk)
489 		sk = reuse_sk;
490 	return sk;
491 }
492 
493 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
494  * harder than this. -DaveM
495  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)496 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
497 		__be16 sport, __be32 daddr, __be16 dport, int dif,
498 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
499 {
500 	unsigned short hnum = ntohs(dport);
501 	unsigned int hash2, slot2;
502 	struct udp_hslot *hslot2;
503 	struct sock *result, *sk;
504 
505 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
506 	slot2 = hash2 & udptable->mask;
507 	hslot2 = &udptable->hash2[slot2];
508 
509 	/* Lookup connected or non-wildcard socket */
510 	result = udp4_lib_lookup2(net, saddr, sport,
511 				  daddr, hnum, dif, sdif,
512 				  hslot2, skb);
513 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
514 		goto done;
515 
516 	/* Lookup redirect from BPF */
517 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
518 		sk = udp4_lookup_run_bpf(net, udptable, skb,
519 					 saddr, sport, daddr, hnum);
520 		if (sk) {
521 			result = sk;
522 			goto done;
523 		}
524 	}
525 
526 	/* Got non-wildcard socket or error on first lookup */
527 	if (result)
528 		goto done;
529 
530 	/* Lookup wildcard sockets */
531 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
532 	slot2 = hash2 & udptable->mask;
533 	hslot2 = &udptable->hash2[slot2];
534 
535 	result = udp4_lib_lookup2(net, saddr, sport,
536 				  htonl(INADDR_ANY), hnum, dif, sdif,
537 				  hslot2, skb);
538 done:
539 	if (IS_ERR(result))
540 		return NULL;
541 	return result;
542 }
543 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
544 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)545 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
546 						 __be16 sport, __be16 dport,
547 						 struct udp_table *udptable)
548 {
549 	const struct iphdr *iph = ip_hdr(skb);
550 
551 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
552 				 iph->daddr, dport, inet_iif(skb),
553 				 inet_sdif(skb), udptable, skb);
554 }
555 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)556 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
557 				 __be16 sport, __be16 dport)
558 {
559 	const struct iphdr *iph = ip_hdr(skb);
560 
561 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
562 				 iph->daddr, dport, inet_iif(skb),
563 				 inet_sdif(skb), &udp_table, NULL);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566 
567 /* Must be called under rcu_read_lock().
568  * Does increment socket refcount.
569  */
570 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)571 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
572 			     __be32 daddr, __be16 dport, int dif)
573 {
574 	struct sock *sk;
575 
576 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
577 			       dif, 0, &udp_table, NULL);
578 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
579 		sk = NULL;
580 	return sk;
581 }
582 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
583 #endif
584 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)585 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
586 				       __be16 loc_port, __be32 loc_addr,
587 				       __be16 rmt_port, __be32 rmt_addr,
588 				       int dif, int sdif, unsigned short hnum)
589 {
590 	struct inet_sock *inet = inet_sk(sk);
591 
592 	if (!net_eq(sock_net(sk), net) ||
593 	    udp_sk(sk)->udp_port_hash != hnum ||
594 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
595 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
596 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
597 	    ipv6_only_sock(sk) ||
598 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
599 		return false;
600 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
601 		return false;
602 	return true;
603 }
604 
605 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)606 void udp_encap_enable(void)
607 {
608 	static_branch_inc(&udp_encap_needed_key);
609 }
610 EXPORT_SYMBOL(udp_encap_enable);
611 
udp_encap_disable(void)612 void udp_encap_disable(void)
613 {
614 	static_branch_dec(&udp_encap_needed_key);
615 }
616 EXPORT_SYMBOL(udp_encap_disable);
617 
618 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
619  * through error handlers in encapsulations looking for a match.
620  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)621 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
622 {
623 	int i;
624 
625 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
626 		int (*handler)(struct sk_buff *skb, u32 info);
627 		const struct ip_tunnel_encap_ops *encap;
628 
629 		encap = rcu_dereference(iptun_encaps[i]);
630 		if (!encap)
631 			continue;
632 		handler = encap->err_handler;
633 		if (handler && !handler(skb, info))
634 			return 0;
635 	}
636 
637 	return -ENOENT;
638 }
639 
640 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
641  * reversing source and destination port: this will match tunnels that force the
642  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
643  * lwtunnels might actually break this assumption by being configured with
644  * different destination ports on endpoints, in this case we won't be able to
645  * trace ICMP messages back to them.
646  *
647  * If this doesn't match any socket, probe tunnels with arbitrary destination
648  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
649  * we've sent packets to won't necessarily match the local destination port.
650  *
651  * Then ask the tunnel implementation to match the error against a valid
652  * association.
653  *
654  * Return an error if we can't find a match, the socket if we need further
655  * processing, zero otherwise.
656  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)657 static struct sock *__udp4_lib_err_encap(struct net *net,
658 					 const struct iphdr *iph,
659 					 struct udphdr *uh,
660 					 struct udp_table *udptable,
661 					 struct sk_buff *skb, u32 info)
662 {
663 	int network_offset, transport_offset;
664 	struct sock *sk;
665 
666 	network_offset = skb_network_offset(skb);
667 	transport_offset = skb_transport_offset(skb);
668 
669 	/* Network header needs to point to the outer IPv4 header inside ICMP */
670 	skb_reset_network_header(skb);
671 
672 	/* Transport header needs to point to the UDP header */
673 	skb_set_transport_header(skb, iph->ihl << 2);
674 
675 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
676 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
677 			       udptable, NULL);
678 	if (sk) {
679 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
680 		struct udp_sock *up = udp_sk(sk);
681 
682 		lookup = READ_ONCE(up->encap_err_lookup);
683 		if (!lookup || lookup(sk, skb))
684 			sk = NULL;
685 	}
686 
687 	if (!sk)
688 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
689 
690 	skb_set_transport_header(skb, transport_offset);
691 	skb_set_network_header(skb, network_offset);
692 
693 	return sk;
694 }
695 
696 /*
697  * This routine is called by the ICMP module when it gets some
698  * sort of error condition.  If err < 0 then the socket should
699  * be closed and the error returned to the user.  If err > 0
700  * it's just the icmp type << 8 | icmp code.
701  * Header points to the ip header of the error packet. We move
702  * on past this. Then (as it used to claim before adjustment)
703  * header points to the first 8 bytes of the udp header.  We need
704  * to find the appropriate port.
705  */
706 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
708 {
709 	struct inet_sock *inet;
710 	const struct iphdr *iph = (const struct iphdr *)skb->data;
711 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
712 	const int type = icmp_hdr(skb)->type;
713 	const int code = icmp_hdr(skb)->code;
714 	bool tunnel = false;
715 	struct sock *sk;
716 	int harderr;
717 	int err;
718 	struct net *net = dev_net(skb->dev);
719 
720 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
721 			       iph->saddr, uh->source, skb->dev->ifindex,
722 			       inet_sdif(skb), udptable, NULL);
723 	if (!sk) {
724 		/* No socket for error: try tunnels before discarding */
725 		sk = ERR_PTR(-ENOENT);
726 		if (static_branch_unlikely(&udp_encap_needed_key)) {
727 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
728 						  info);
729 			if (!sk)
730 				return 0;
731 		}
732 
733 		if (IS_ERR(sk)) {
734 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
735 			return PTR_ERR(sk);
736 		}
737 
738 		tunnel = true;
739 	}
740 
741 	err = 0;
742 	harderr = 0;
743 	inet = inet_sk(sk);
744 
745 	switch (type) {
746 	default:
747 	case ICMP_TIME_EXCEEDED:
748 		err = EHOSTUNREACH;
749 		break;
750 	case ICMP_SOURCE_QUENCH:
751 		goto out;
752 	case ICMP_PARAMETERPROB:
753 		err = EPROTO;
754 		harderr = 1;
755 		break;
756 	case ICMP_DEST_UNREACH:
757 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
758 			ipv4_sk_update_pmtu(skb, sk, info);
759 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
760 				err = EMSGSIZE;
761 				harderr = 1;
762 				break;
763 			}
764 			goto out;
765 		}
766 		err = EHOSTUNREACH;
767 		if (code <= NR_ICMP_UNREACH) {
768 			harderr = icmp_err_convert[code].fatal;
769 			err = icmp_err_convert[code].errno;
770 		}
771 		break;
772 	case ICMP_REDIRECT:
773 		ipv4_sk_redirect(skb, sk);
774 		goto out;
775 	}
776 
777 	/*
778 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
779 	 *	4.1.3.3.
780 	 */
781 	if (tunnel) {
782 		/* ...not for tunnels though: we don't have a sending socket */
783 		goto out;
784 	}
785 	if (!inet->recverr) {
786 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
787 			goto out;
788 	} else
789 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
790 
791 	sk->sk_err = err;
792 	sk->sk_error_report(sk);
793 out:
794 	return 0;
795 }
796 
udp_err(struct sk_buff * skb,u32 info)797 int udp_err(struct sk_buff *skb, u32 info)
798 {
799 	return __udp4_lib_err(skb, info, &udp_table);
800 }
801 
802 /*
803  * Throw away all pending data and cancel the corking. Socket is locked.
804  */
udp_flush_pending_frames(struct sock * sk)805 void udp_flush_pending_frames(struct sock *sk)
806 {
807 	struct udp_sock *up = udp_sk(sk);
808 
809 	if (up->pending) {
810 		up->len = 0;
811 		up->pending = 0;
812 		ip_flush_pending_frames(sk);
813 	}
814 }
815 EXPORT_SYMBOL(udp_flush_pending_frames);
816 
817 /**
818  * 	udp4_hwcsum  -  handle outgoing HW checksumming
819  * 	@skb: 	sk_buff containing the filled-in UDP header
820  * 	        (checksum field must be zeroed out)
821  *	@src:	source IP address
822  *	@dst:	destination IP address
823  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)824 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
825 {
826 	struct udphdr *uh = udp_hdr(skb);
827 	int offset = skb_transport_offset(skb);
828 	int len = skb->len - offset;
829 	int hlen = len;
830 	__wsum csum = 0;
831 
832 	if (!skb_has_frag_list(skb)) {
833 		/*
834 		 * Only one fragment on the socket.
835 		 */
836 		skb->csum_start = skb_transport_header(skb) - skb->head;
837 		skb->csum_offset = offsetof(struct udphdr, check);
838 		uh->check = ~csum_tcpudp_magic(src, dst, len,
839 					       IPPROTO_UDP, 0);
840 	} else {
841 		struct sk_buff *frags;
842 
843 		/*
844 		 * HW-checksum won't work as there are two or more
845 		 * fragments on the socket so that all csums of sk_buffs
846 		 * should be together
847 		 */
848 		skb_walk_frags(skb, frags) {
849 			csum = csum_add(csum, frags->csum);
850 			hlen -= frags->len;
851 		}
852 
853 		csum = skb_checksum(skb, offset, hlen, csum);
854 		skb->ip_summed = CHECKSUM_NONE;
855 
856 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
857 		if (uh->check == 0)
858 			uh->check = CSUM_MANGLED_0;
859 	}
860 }
861 EXPORT_SYMBOL_GPL(udp4_hwcsum);
862 
863 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
864  * for the simple case like when setting the checksum for a UDP tunnel.
865  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)866 void udp_set_csum(bool nocheck, struct sk_buff *skb,
867 		  __be32 saddr, __be32 daddr, int len)
868 {
869 	struct udphdr *uh = udp_hdr(skb);
870 
871 	if (nocheck) {
872 		uh->check = 0;
873 	} else if (skb_is_gso(skb)) {
874 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
875 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
876 		uh->check = 0;
877 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
878 		if (uh->check == 0)
879 			uh->check = CSUM_MANGLED_0;
880 	} else {
881 		skb->ip_summed = CHECKSUM_PARTIAL;
882 		skb->csum_start = skb_transport_header(skb) - skb->head;
883 		skb->csum_offset = offsetof(struct udphdr, check);
884 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
885 	}
886 }
887 EXPORT_SYMBOL(udp_set_csum);
888 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)889 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
890 			struct inet_cork *cork)
891 {
892 	struct sock *sk = skb->sk;
893 	struct inet_sock *inet = inet_sk(sk);
894 	struct udphdr *uh;
895 	int err = 0;
896 	int is_udplite = IS_UDPLITE(sk);
897 	int offset = skb_transport_offset(skb);
898 	int len = skb->len - offset;
899 	int datalen = len - sizeof(*uh);
900 	__wsum csum = 0;
901 
902 	/*
903 	 * Create a UDP header
904 	 */
905 	uh = udp_hdr(skb);
906 	uh->source = inet->inet_sport;
907 	uh->dest = fl4->fl4_dport;
908 	uh->len = htons(len);
909 	uh->check = 0;
910 
911 	if (cork->gso_size) {
912 		const int hlen = skb_network_header_len(skb) +
913 				 sizeof(struct udphdr);
914 
915 		if (hlen + cork->gso_size > cork->fragsize) {
916 			kfree_skb(skb);
917 			return -EINVAL;
918 		}
919 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
920 			kfree_skb(skb);
921 			return -EINVAL;
922 		}
923 		if (sk->sk_no_check_tx) {
924 			kfree_skb(skb);
925 			return -EINVAL;
926 		}
927 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
928 		    dst_xfrm(skb_dst(skb))) {
929 			kfree_skb(skb);
930 			return -EIO;
931 		}
932 
933 		if (datalen > cork->gso_size) {
934 			skb_shinfo(skb)->gso_size = cork->gso_size;
935 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
936 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
937 								 cork->gso_size);
938 		}
939 		goto csum_partial;
940 	}
941 
942 	if (is_udplite)  				 /*     UDP-Lite      */
943 		csum = udplite_csum(skb);
944 
945 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
946 
947 		skb->ip_summed = CHECKSUM_NONE;
948 		goto send;
949 
950 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
951 csum_partial:
952 
953 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
954 		goto send;
955 
956 	} else
957 		csum = udp_csum(skb);
958 
959 	/* add protocol-dependent pseudo-header */
960 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
961 				      sk->sk_protocol, csum);
962 	if (uh->check == 0)
963 		uh->check = CSUM_MANGLED_0;
964 
965 send:
966 	err = ip_send_skb(sock_net(sk), skb);
967 	if (err) {
968 		if (err == -ENOBUFS && !inet->recverr) {
969 			UDP_INC_STATS(sock_net(sk),
970 				      UDP_MIB_SNDBUFERRORS, is_udplite);
971 			err = 0;
972 		}
973 	} else
974 		UDP_INC_STATS(sock_net(sk),
975 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
976 	return err;
977 }
978 
979 /*
980  * Push out all pending data as one UDP datagram. Socket is locked.
981  */
udp_push_pending_frames(struct sock * sk)982 int udp_push_pending_frames(struct sock *sk)
983 {
984 	struct udp_sock  *up = udp_sk(sk);
985 	struct inet_sock *inet = inet_sk(sk);
986 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
987 	struct sk_buff *skb;
988 	int err = 0;
989 
990 	skb = ip_finish_skb(sk, fl4);
991 	if (!skb)
992 		goto out;
993 
994 	err = udp_send_skb(skb, fl4, &inet->cork.base);
995 
996 out:
997 	up->len = 0;
998 	up->pending = 0;
999 	return err;
1000 }
1001 EXPORT_SYMBOL(udp_push_pending_frames);
1002 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1003 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1004 {
1005 	switch (cmsg->cmsg_type) {
1006 	case UDP_SEGMENT:
1007 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1008 			return -EINVAL;
1009 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1010 		return 0;
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 }
1015 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1016 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1017 {
1018 	struct cmsghdr *cmsg;
1019 	bool need_ip = false;
1020 	int err;
1021 
1022 	for_each_cmsghdr(cmsg, msg) {
1023 		if (!CMSG_OK(msg, cmsg))
1024 			return -EINVAL;
1025 
1026 		if (cmsg->cmsg_level != SOL_UDP) {
1027 			need_ip = true;
1028 			continue;
1029 		}
1030 
1031 		err = __udp_cmsg_send(cmsg, gso_size);
1032 		if (err)
1033 			return err;
1034 	}
1035 
1036 	return need_ip;
1037 }
1038 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1039 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1040 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1041 {
1042 	struct inet_sock *inet = inet_sk(sk);
1043 	struct udp_sock *up = udp_sk(sk);
1044 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1045 	struct flowi4 fl4_stack;
1046 	struct flowi4 *fl4;
1047 	int ulen = len;
1048 	struct ipcm_cookie ipc;
1049 	struct rtable *rt = NULL;
1050 	int free = 0;
1051 	int connected = 0;
1052 	__be32 daddr, faddr, saddr;
1053 	__be16 dport;
1054 	u8  tos;
1055 	int err, is_udplite = IS_UDPLITE(sk);
1056 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1057 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1058 	struct sk_buff *skb;
1059 	struct ip_options_data opt_copy;
1060 
1061 	if (len > 0xFFFF)
1062 		return -EMSGSIZE;
1063 
1064 	/*
1065 	 *	Check the flags.
1066 	 */
1067 
1068 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1069 		return -EOPNOTSUPP;
1070 	trace_android_rvh_udp_sendmsg(sk);
1071 
1072 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1073 
1074 	fl4 = &inet->cork.fl.u.ip4;
1075 	if (up->pending) {
1076 		/*
1077 		 * There are pending frames.
1078 		 * The socket lock must be held while it's corked.
1079 		 */
1080 		lock_sock(sk);
1081 		if (likely(up->pending)) {
1082 			if (unlikely(up->pending != AF_INET)) {
1083 				release_sock(sk);
1084 				return -EINVAL;
1085 			}
1086 			goto do_append_data;
1087 		}
1088 		release_sock(sk);
1089 	}
1090 	ulen += sizeof(struct udphdr);
1091 
1092 	/*
1093 	 *	Get and verify the address.
1094 	 */
1095 	if (usin) {
1096 		if (msg->msg_namelen < sizeof(*usin))
1097 			return -EINVAL;
1098 		if (usin->sin_family != AF_INET) {
1099 			if (usin->sin_family != AF_UNSPEC)
1100 				return -EAFNOSUPPORT;
1101 		}
1102 
1103 		daddr = usin->sin_addr.s_addr;
1104 		dport = usin->sin_port;
1105 		if (dport == 0)
1106 			return -EINVAL;
1107 	} else {
1108 		if (sk->sk_state != TCP_ESTABLISHED)
1109 			return -EDESTADDRREQ;
1110 		daddr = inet->inet_daddr;
1111 		dport = inet->inet_dport;
1112 		/* Open fast path for connected socket.
1113 		   Route will not be used, if at least one option is set.
1114 		 */
1115 		connected = 1;
1116 	}
1117 
1118 	ipcm_init_sk(&ipc, inet);
1119 	ipc.gso_size = READ_ONCE(up->gso_size);
1120 
1121 	if (msg->msg_controllen) {
1122 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1123 		if (err > 0)
1124 			err = ip_cmsg_send(sk, msg, &ipc,
1125 					   sk->sk_family == AF_INET6);
1126 		if (unlikely(err < 0)) {
1127 			kfree(ipc.opt);
1128 			return err;
1129 		}
1130 		if (ipc.opt)
1131 			free = 1;
1132 		connected = 0;
1133 	}
1134 	if (!ipc.opt) {
1135 		struct ip_options_rcu *inet_opt;
1136 
1137 		rcu_read_lock();
1138 		inet_opt = rcu_dereference(inet->inet_opt);
1139 		if (inet_opt) {
1140 			memcpy(&opt_copy, inet_opt,
1141 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1142 			ipc.opt = &opt_copy.opt;
1143 		}
1144 		rcu_read_unlock();
1145 	}
1146 
1147 	if (cgroup_bpf_enabled && !connected) {
1148 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1149 					    (struct sockaddr *)usin, &ipc.addr);
1150 		if (err)
1151 			goto out_free;
1152 		if (usin) {
1153 			if (usin->sin_port == 0) {
1154 				/* BPF program set invalid port. Reject it. */
1155 				err = -EINVAL;
1156 				goto out_free;
1157 			}
1158 			daddr = usin->sin_addr.s_addr;
1159 			dport = usin->sin_port;
1160 		}
1161 	}
1162 
1163 	saddr = ipc.addr;
1164 	ipc.addr = faddr = daddr;
1165 
1166 	if (ipc.opt && ipc.opt->opt.srr) {
1167 		if (!daddr) {
1168 			err = -EINVAL;
1169 			goto out_free;
1170 		}
1171 		faddr = ipc.opt->opt.faddr;
1172 		connected = 0;
1173 	}
1174 	tos = get_rttos(&ipc, inet);
1175 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1176 	    (msg->msg_flags & MSG_DONTROUTE) ||
1177 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1178 		tos |= RTO_ONLINK;
1179 		connected = 0;
1180 	}
1181 
1182 	if (ipv4_is_multicast(daddr)) {
1183 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1184 			ipc.oif = inet->mc_index;
1185 		if (!saddr)
1186 			saddr = inet->mc_addr;
1187 		connected = 0;
1188 	} else if (!ipc.oif) {
1189 		ipc.oif = inet->uc_index;
1190 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1191 		/* oif is set, packet is to local broadcast and
1192 		 * uc_index is set. oif is most likely set
1193 		 * by sk_bound_dev_if. If uc_index != oif check if the
1194 		 * oif is an L3 master and uc_index is an L3 slave.
1195 		 * If so, we want to allow the send using the uc_index.
1196 		 */
1197 		if (ipc.oif != inet->uc_index &&
1198 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1199 							      inet->uc_index)) {
1200 			ipc.oif = inet->uc_index;
1201 		}
1202 	}
1203 
1204 	if (connected)
1205 		rt = (struct rtable *)sk_dst_check(sk, 0);
1206 
1207 	if (!rt) {
1208 		struct net *net = sock_net(sk);
1209 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1210 
1211 		fl4 = &fl4_stack;
1212 
1213 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1214 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1215 				   flow_flags,
1216 				   faddr, saddr, dport, inet->inet_sport,
1217 				   sk->sk_uid);
1218 
1219 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1220 		rt = ip_route_output_flow(net, fl4, sk);
1221 		if (IS_ERR(rt)) {
1222 			err = PTR_ERR(rt);
1223 			rt = NULL;
1224 			if (err == -ENETUNREACH)
1225 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1226 			goto out;
1227 		}
1228 
1229 		err = -EACCES;
1230 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1231 		    !sock_flag(sk, SOCK_BROADCAST))
1232 			goto out;
1233 		if (connected)
1234 			sk_dst_set(sk, dst_clone(&rt->dst));
1235 	}
1236 
1237 	if (msg->msg_flags&MSG_CONFIRM)
1238 		goto do_confirm;
1239 back_from_confirm:
1240 
1241 	saddr = fl4->saddr;
1242 	if (!ipc.addr)
1243 		daddr = ipc.addr = fl4->daddr;
1244 
1245 	/* Lockless fast path for the non-corking case. */
1246 	if (!corkreq) {
1247 		struct inet_cork cork;
1248 
1249 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1250 				  sizeof(struct udphdr), &ipc, &rt,
1251 				  &cork, msg->msg_flags);
1252 		err = PTR_ERR(skb);
1253 		if (!IS_ERR_OR_NULL(skb))
1254 			err = udp_send_skb(skb, fl4, &cork);
1255 		goto out;
1256 	}
1257 
1258 	lock_sock(sk);
1259 	if (unlikely(up->pending)) {
1260 		/* The socket is already corked while preparing it. */
1261 		/* ... which is an evident application bug. --ANK */
1262 		release_sock(sk);
1263 
1264 		net_dbg_ratelimited("socket already corked\n");
1265 		err = -EINVAL;
1266 		goto out;
1267 	}
1268 	/*
1269 	 *	Now cork the socket to pend data.
1270 	 */
1271 	fl4 = &inet->cork.fl.u.ip4;
1272 	fl4->daddr = daddr;
1273 	fl4->saddr = saddr;
1274 	fl4->fl4_dport = dport;
1275 	fl4->fl4_sport = inet->inet_sport;
1276 	up->pending = AF_INET;
1277 
1278 do_append_data:
1279 	up->len += ulen;
1280 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1281 			     sizeof(struct udphdr), &ipc, &rt,
1282 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1283 	if (err)
1284 		udp_flush_pending_frames(sk);
1285 	else if (!corkreq)
1286 		err = udp_push_pending_frames(sk);
1287 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1288 		up->pending = 0;
1289 	release_sock(sk);
1290 
1291 out:
1292 	ip_rt_put(rt);
1293 out_free:
1294 	if (free)
1295 		kfree(ipc.opt);
1296 	if (!err)
1297 		return len;
1298 	/*
1299 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1300 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1301 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1302 	 * things).  We could add another new stat but at least for now that
1303 	 * seems like overkill.
1304 	 */
1305 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1306 		UDP_INC_STATS(sock_net(sk),
1307 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1308 	}
1309 	return err;
1310 
1311 do_confirm:
1312 	if (msg->msg_flags & MSG_PROBE)
1313 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1314 	if (!(msg->msg_flags&MSG_PROBE) || len)
1315 		goto back_from_confirm;
1316 	err = 0;
1317 	goto out;
1318 }
1319 EXPORT_SYMBOL(udp_sendmsg);
1320 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1321 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1322 		 size_t size, int flags)
1323 {
1324 	struct inet_sock *inet = inet_sk(sk);
1325 	struct udp_sock *up = udp_sk(sk);
1326 	int ret;
1327 
1328 	if (flags & MSG_SENDPAGE_NOTLAST)
1329 		flags |= MSG_MORE;
1330 
1331 	if (!up->pending) {
1332 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1333 
1334 		/* Call udp_sendmsg to specify destination address which
1335 		 * sendpage interface can't pass.
1336 		 * This will succeed only when the socket is connected.
1337 		 */
1338 		ret = udp_sendmsg(sk, &msg, 0);
1339 		if (ret < 0)
1340 			return ret;
1341 	}
1342 
1343 	lock_sock(sk);
1344 
1345 	if (unlikely(!up->pending)) {
1346 		release_sock(sk);
1347 
1348 		net_dbg_ratelimited("cork failed\n");
1349 		return -EINVAL;
1350 	}
1351 
1352 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1353 			     page, offset, size, flags);
1354 	if (ret == -EOPNOTSUPP) {
1355 		release_sock(sk);
1356 		return sock_no_sendpage(sk->sk_socket, page, offset,
1357 					size, flags);
1358 	}
1359 	if (ret < 0) {
1360 		udp_flush_pending_frames(sk);
1361 		goto out;
1362 	}
1363 
1364 	up->len += size;
1365 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1366 		ret = udp_push_pending_frames(sk);
1367 	if (!ret)
1368 		ret = size;
1369 out:
1370 	release_sock(sk);
1371 	return ret;
1372 }
1373 
1374 #define UDP_SKB_IS_STATELESS 0x80000000
1375 
1376 /* all head states (dst, sk, nf conntrack) except skb extensions are
1377  * cleared by udp_rcv().
1378  *
1379  * We need to preserve secpath, if present, to eventually process
1380  * IP_CMSG_PASSSEC at recvmsg() time.
1381  *
1382  * Other extensions can be cleared.
1383  */
udp_try_make_stateless(struct sk_buff * skb)1384 static bool udp_try_make_stateless(struct sk_buff *skb)
1385 {
1386 	if (!skb_has_extensions(skb))
1387 		return true;
1388 
1389 	if (!secpath_exists(skb)) {
1390 		skb_ext_reset(skb);
1391 		return true;
1392 	}
1393 
1394 	return false;
1395 }
1396 
udp_set_dev_scratch(struct sk_buff * skb)1397 static void udp_set_dev_scratch(struct sk_buff *skb)
1398 {
1399 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1400 
1401 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1402 	scratch->_tsize_state = skb->truesize;
1403 #if BITS_PER_LONG == 64
1404 	scratch->len = skb->len;
1405 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1406 	scratch->is_linear = !skb_is_nonlinear(skb);
1407 #endif
1408 	if (udp_try_make_stateless(skb))
1409 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1410 }
1411 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1412 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1413 {
1414 	/* We come here after udp_lib_checksum_complete() returned 0.
1415 	 * This means that __skb_checksum_complete() might have
1416 	 * set skb->csum_valid to 1.
1417 	 * On 64bit platforms, we can set csum_unnecessary
1418 	 * to true, but only if the skb is not shared.
1419 	 */
1420 #if BITS_PER_LONG == 64
1421 	if (!skb_shared(skb))
1422 		udp_skb_scratch(skb)->csum_unnecessary = true;
1423 #endif
1424 }
1425 
udp_skb_truesize(struct sk_buff * skb)1426 static int udp_skb_truesize(struct sk_buff *skb)
1427 {
1428 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1429 }
1430 
udp_skb_has_head_state(struct sk_buff * skb)1431 static bool udp_skb_has_head_state(struct sk_buff *skb)
1432 {
1433 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1434 }
1435 
1436 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1437 static void udp_rmem_release(struct sock *sk, int size, int partial,
1438 			     bool rx_queue_lock_held)
1439 {
1440 	struct udp_sock *up = udp_sk(sk);
1441 	struct sk_buff_head *sk_queue;
1442 	int amt;
1443 
1444 	if (likely(partial)) {
1445 		up->forward_deficit += size;
1446 		size = up->forward_deficit;
1447 		if (size < (sk->sk_rcvbuf >> 2) &&
1448 		    !skb_queue_empty(&up->reader_queue))
1449 			return;
1450 	} else {
1451 		size += up->forward_deficit;
1452 	}
1453 	up->forward_deficit = 0;
1454 
1455 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1456 	 * if the called don't held it already
1457 	 */
1458 	sk_queue = &sk->sk_receive_queue;
1459 	if (!rx_queue_lock_held)
1460 		spin_lock(&sk_queue->lock);
1461 
1462 
1463 	sk->sk_forward_alloc += size;
1464 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1465 	sk->sk_forward_alloc -= amt;
1466 
1467 	if (amt)
1468 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1469 
1470 	atomic_sub(size, &sk->sk_rmem_alloc);
1471 
1472 	/* this can save us from acquiring the rx queue lock on next receive */
1473 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1474 
1475 	if (!rx_queue_lock_held)
1476 		spin_unlock(&sk_queue->lock);
1477 }
1478 
1479 /* Note: called with reader_queue.lock held.
1480  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1481  * This avoids a cache line miss while receive_queue lock is held.
1482  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1483  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1484 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1485 {
1486 	prefetch(&skb->data);
1487 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1488 }
1489 EXPORT_SYMBOL(udp_skb_destructor);
1490 
1491 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1492 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	prefetch(&skb->data);
1495 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1496 }
1497 
1498 /* Idea of busylocks is to let producers grab an extra spinlock
1499  * to relieve pressure on the receive_queue spinlock shared by consumer.
1500  * Under flood, this means that only one producer can be in line
1501  * trying to acquire the receive_queue spinlock.
1502  * These busylock can be allocated on a per cpu manner, instead of a
1503  * per socket one (that would consume a cache line per socket)
1504  */
1505 static int udp_busylocks_log __read_mostly;
1506 static spinlock_t *udp_busylocks __read_mostly;
1507 
busylock_acquire(void * ptr)1508 static spinlock_t *busylock_acquire(void *ptr)
1509 {
1510 	spinlock_t *busy;
1511 
1512 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1513 	spin_lock(busy);
1514 	return busy;
1515 }
1516 
busylock_release(spinlock_t * busy)1517 static void busylock_release(spinlock_t *busy)
1518 {
1519 	if (busy)
1520 		spin_unlock(busy);
1521 }
1522 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1523 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1524 {
1525 	struct sk_buff_head *list = &sk->sk_receive_queue;
1526 	int rmem, delta, amt, err = -ENOMEM;
1527 	spinlock_t *busy = NULL;
1528 	int size;
1529 
1530 	/* try to avoid the costly atomic add/sub pair when the receive
1531 	 * queue is full; always allow at least a packet
1532 	 */
1533 	rmem = atomic_read(&sk->sk_rmem_alloc);
1534 	if (rmem > sk->sk_rcvbuf)
1535 		goto drop;
1536 
1537 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1538 	 * having linear skbs :
1539 	 * - Reduce memory overhead and thus increase receive queue capacity
1540 	 * - Less cache line misses at copyout() time
1541 	 * - Less work at consume_skb() (less alien page frag freeing)
1542 	 */
1543 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1544 		skb_condense(skb);
1545 
1546 		busy = busylock_acquire(sk);
1547 	}
1548 	size = skb->truesize;
1549 	udp_set_dev_scratch(skb);
1550 
1551 	/* we drop only if the receive buf is full and the receive
1552 	 * queue contains some other skb
1553 	 */
1554 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1555 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1556 		goto uncharge_drop;
1557 
1558 	spin_lock(&list->lock);
1559 	if (size >= sk->sk_forward_alloc) {
1560 		amt = sk_mem_pages(size);
1561 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1562 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1563 			err = -ENOBUFS;
1564 			spin_unlock(&list->lock);
1565 			goto uncharge_drop;
1566 		}
1567 
1568 		sk->sk_forward_alloc += delta;
1569 	}
1570 
1571 	sk->sk_forward_alloc -= size;
1572 
1573 	/* no need to setup a destructor, we will explicitly release the
1574 	 * forward allocated memory on dequeue
1575 	 */
1576 	sock_skb_set_dropcount(sk, skb);
1577 
1578 	__skb_queue_tail(list, skb);
1579 	spin_unlock(&list->lock);
1580 
1581 	if (!sock_flag(sk, SOCK_DEAD))
1582 		sk->sk_data_ready(sk);
1583 
1584 	busylock_release(busy);
1585 	return 0;
1586 
1587 uncharge_drop:
1588 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1589 
1590 drop:
1591 	atomic_inc(&sk->sk_drops);
1592 	busylock_release(busy);
1593 	return err;
1594 }
1595 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1596 
udp_destruct_common(struct sock * sk)1597 void udp_destruct_common(struct sock *sk)
1598 {
1599 	/* reclaim completely the forward allocated memory */
1600 	struct udp_sock *up = udp_sk(sk);
1601 	unsigned int total = 0;
1602 	struct sk_buff *skb;
1603 
1604 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1605 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1606 		total += skb->truesize;
1607 		kfree_skb(skb);
1608 	}
1609 	udp_rmem_release(sk, total, 0, true);
1610 }
1611 EXPORT_SYMBOL_GPL(udp_destruct_common);
1612 
udp_destruct_sock(struct sock * sk)1613 static void udp_destruct_sock(struct sock *sk)
1614 {
1615 	udp_destruct_common(sk);
1616 	inet_sock_destruct(sk);
1617 }
1618 
udp_init_sock(struct sock * sk)1619 int udp_init_sock(struct sock *sk)
1620 {
1621 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1622 	sk->sk_destruct = udp_destruct_sock;
1623 	return 0;
1624 }
1625 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1626 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1627 {
1628 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1629 		bool slow = lock_sock_fast(sk);
1630 
1631 		sk_peek_offset_bwd(sk, len);
1632 		unlock_sock_fast(sk, slow);
1633 	}
1634 
1635 	if (!skb_unref(skb))
1636 		return;
1637 
1638 	/* In the more common cases we cleared the head states previously,
1639 	 * see __udp_queue_rcv_skb().
1640 	 */
1641 	if (unlikely(udp_skb_has_head_state(skb)))
1642 		skb_release_head_state(skb);
1643 	__consume_stateless_skb(skb);
1644 }
1645 EXPORT_SYMBOL_GPL(skb_consume_udp);
1646 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1647 static struct sk_buff *__first_packet_length(struct sock *sk,
1648 					     struct sk_buff_head *rcvq,
1649 					     int *total)
1650 {
1651 	struct sk_buff *skb;
1652 
1653 	while ((skb = skb_peek(rcvq)) != NULL) {
1654 		if (udp_lib_checksum_complete(skb)) {
1655 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1656 					IS_UDPLITE(sk));
1657 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1658 					IS_UDPLITE(sk));
1659 			atomic_inc(&sk->sk_drops);
1660 			__skb_unlink(skb, rcvq);
1661 			*total += skb->truesize;
1662 			kfree_skb(skb);
1663 		} else {
1664 			udp_skb_csum_unnecessary_set(skb);
1665 			break;
1666 		}
1667 	}
1668 	return skb;
1669 }
1670 
1671 /**
1672  *	first_packet_length	- return length of first packet in receive queue
1673  *	@sk: socket
1674  *
1675  *	Drops all bad checksum frames, until a valid one is found.
1676  *	Returns the length of found skb, or -1 if none is found.
1677  */
first_packet_length(struct sock * sk)1678 static int first_packet_length(struct sock *sk)
1679 {
1680 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1681 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1682 	struct sk_buff *skb;
1683 	int total = 0;
1684 	int res;
1685 
1686 	spin_lock_bh(&rcvq->lock);
1687 	skb = __first_packet_length(sk, rcvq, &total);
1688 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1689 		spin_lock(&sk_queue->lock);
1690 		skb_queue_splice_tail_init(sk_queue, rcvq);
1691 		spin_unlock(&sk_queue->lock);
1692 
1693 		skb = __first_packet_length(sk, rcvq, &total);
1694 	}
1695 	res = skb ? skb->len : -1;
1696 	if (total)
1697 		udp_rmem_release(sk, total, 1, false);
1698 	spin_unlock_bh(&rcvq->lock);
1699 	return res;
1700 }
1701 
1702 /*
1703  *	IOCTL requests applicable to the UDP protocol
1704  */
1705 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1706 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1707 {
1708 	switch (cmd) {
1709 	case SIOCOUTQ:
1710 	{
1711 		int amount = sk_wmem_alloc_get(sk);
1712 
1713 		return put_user(amount, (int __user *)arg);
1714 	}
1715 
1716 	case SIOCINQ:
1717 	{
1718 		int amount = max_t(int, 0, first_packet_length(sk));
1719 
1720 		return put_user(amount, (int __user *)arg);
1721 	}
1722 
1723 	default:
1724 		return -ENOIOCTLCMD;
1725 	}
1726 
1727 	return 0;
1728 }
1729 EXPORT_SYMBOL(udp_ioctl);
1730 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1731 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1732 			       int noblock, int *off, int *err)
1733 {
1734 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1735 	struct sk_buff_head *queue;
1736 	struct sk_buff *last;
1737 	long timeo;
1738 	int error;
1739 
1740 	queue = &udp_sk(sk)->reader_queue;
1741 	flags |= noblock ? MSG_DONTWAIT : 0;
1742 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1743 	do {
1744 		struct sk_buff *skb;
1745 
1746 		error = sock_error(sk);
1747 		if (error)
1748 			break;
1749 
1750 		error = -EAGAIN;
1751 		do {
1752 			spin_lock_bh(&queue->lock);
1753 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754 							err, &last);
1755 			if (skb) {
1756 				if (!(flags & MSG_PEEK))
1757 					udp_skb_destructor(sk, skb);
1758 				spin_unlock_bh(&queue->lock);
1759 				return skb;
1760 			}
1761 
1762 			if (skb_queue_empty_lockless(sk_queue)) {
1763 				spin_unlock_bh(&queue->lock);
1764 				goto busy_check;
1765 			}
1766 
1767 			/* refill the reader queue and walk it again
1768 			 * keep both queues locked to avoid re-acquiring
1769 			 * the sk_receive_queue lock if fwd memory scheduling
1770 			 * is needed.
1771 			 */
1772 			spin_lock(&sk_queue->lock);
1773 			skb_queue_splice_tail_init(sk_queue, queue);
1774 
1775 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1776 							err, &last);
1777 			if (skb && !(flags & MSG_PEEK))
1778 				udp_skb_dtor_locked(sk, skb);
1779 			spin_unlock(&sk_queue->lock);
1780 			spin_unlock_bh(&queue->lock);
1781 			if (skb)
1782 				return skb;
1783 
1784 busy_check:
1785 			if (!sk_can_busy_loop(sk))
1786 				break;
1787 
1788 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1789 		} while (!skb_queue_empty_lockless(sk_queue));
1790 
1791 		/* sk_queue is empty, reader_queue may contain peeked packets */
1792 	} while (timeo &&
1793 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1794 					      &error, &timeo,
1795 					      (struct sk_buff *)sk_queue));
1796 
1797 	*err = error;
1798 	return NULL;
1799 }
1800 EXPORT_SYMBOL(__skb_recv_udp);
1801 
1802 /*
1803  * 	This should be easy, if there is something there we
1804  * 	return it, otherwise we block.
1805  */
1806 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1807 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1808 		int flags, int *addr_len)
1809 {
1810 	struct inet_sock *inet = inet_sk(sk);
1811 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1812 	struct sk_buff *skb;
1813 	unsigned int ulen, copied;
1814 	int off, err, peeking = flags & MSG_PEEK;
1815 	int is_udplite = IS_UDPLITE(sk);
1816 	bool checksum_valid = false;
1817 
1818 	if (flags & MSG_ERRQUEUE)
1819 		return ip_recv_error(sk, msg, len, addr_len);
1820 
1821 try_again:
1822 	off = sk_peek_offset(sk, flags);
1823 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1824 	if (!skb)
1825 		return err;
1826 	trace_android_rvh_udp_recvmsg(sk);
1827 
1828 	ulen = udp_skb_len(skb);
1829 	copied = len;
1830 	if (copied > ulen - off)
1831 		copied = ulen - off;
1832 	else if (copied < ulen)
1833 		msg->msg_flags |= MSG_TRUNC;
1834 
1835 	/*
1836 	 * If checksum is needed at all, try to do it while copying the
1837 	 * data.  If the data is truncated, or if we only want a partial
1838 	 * coverage checksum (UDP-Lite), do it before the copy.
1839 	 */
1840 
1841 	if (copied < ulen || peeking ||
1842 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1843 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1844 				!__udp_lib_checksum_complete(skb);
1845 		if (!checksum_valid)
1846 			goto csum_copy_err;
1847 	}
1848 
1849 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1850 		if (udp_skb_is_linear(skb))
1851 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1852 		else
1853 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1854 	} else {
1855 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1856 
1857 		if (err == -EINVAL)
1858 			goto csum_copy_err;
1859 	}
1860 
1861 	if (unlikely(err)) {
1862 		if (!peeking) {
1863 			atomic_inc(&sk->sk_drops);
1864 			UDP_INC_STATS(sock_net(sk),
1865 				      UDP_MIB_INERRORS, is_udplite);
1866 		}
1867 		kfree_skb(skb);
1868 		return err;
1869 	}
1870 
1871 	if (!peeking)
1872 		UDP_INC_STATS(sock_net(sk),
1873 			      UDP_MIB_INDATAGRAMS, is_udplite);
1874 
1875 	sock_recv_ts_and_drops(msg, sk, skb);
1876 
1877 	/* Copy the address. */
1878 	if (sin) {
1879 		sin->sin_family = AF_INET;
1880 		sin->sin_port = udp_hdr(skb)->source;
1881 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1882 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1883 		*addr_len = sizeof(*sin);
1884 
1885 		if (cgroup_bpf_enabled)
1886 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1887 							(struct sockaddr *)sin);
1888 	}
1889 
1890 	if (udp_sk(sk)->gro_enabled)
1891 		udp_cmsg_recv(msg, sk, skb);
1892 
1893 	if (inet->cmsg_flags)
1894 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1895 
1896 	err = copied;
1897 	if (flags & MSG_TRUNC)
1898 		err = ulen;
1899 
1900 	skb_consume_udp(sk, skb, peeking ? -err : err);
1901 	return err;
1902 
1903 csum_copy_err:
1904 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1905 				 udp_skb_destructor)) {
1906 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1907 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1908 	}
1909 	kfree_skb(skb);
1910 
1911 	/* starting over for a new packet, but check if we need to yield */
1912 	cond_resched();
1913 	msg->msg_flags &= ~MSG_TRUNC;
1914 	goto try_again;
1915 }
1916 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1917 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1918 {
1919 	/* This check is replicated from __ip4_datagram_connect() and
1920 	 * intended to prevent BPF program called below from accessing bytes
1921 	 * that are out of the bound specified by user in addr_len.
1922 	 */
1923 	if (addr_len < sizeof(struct sockaddr_in))
1924 		return -EINVAL;
1925 
1926 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1927 }
1928 EXPORT_SYMBOL(udp_pre_connect);
1929 
__udp_disconnect(struct sock * sk,int flags)1930 int __udp_disconnect(struct sock *sk, int flags)
1931 {
1932 	struct inet_sock *inet = inet_sk(sk);
1933 	/*
1934 	 *	1003.1g - break association.
1935 	 */
1936 
1937 	sk->sk_state = TCP_CLOSE;
1938 	inet->inet_daddr = 0;
1939 	inet->inet_dport = 0;
1940 	sock_rps_reset_rxhash(sk);
1941 	sk->sk_bound_dev_if = 0;
1942 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1943 		inet_reset_saddr(sk);
1944 		if (sk->sk_prot->rehash &&
1945 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1946 			sk->sk_prot->rehash(sk);
1947 	}
1948 
1949 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1950 		sk->sk_prot->unhash(sk);
1951 		inet->inet_sport = 0;
1952 	}
1953 	sk_dst_reset(sk);
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL(__udp_disconnect);
1957 
udp_disconnect(struct sock * sk,int flags)1958 int udp_disconnect(struct sock *sk, int flags)
1959 {
1960 	lock_sock(sk);
1961 	__udp_disconnect(sk, flags);
1962 	release_sock(sk);
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(udp_disconnect);
1966 
udp_lib_unhash(struct sock * sk)1967 void udp_lib_unhash(struct sock *sk)
1968 {
1969 	if (sk_hashed(sk)) {
1970 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1971 		struct udp_hslot *hslot, *hslot2;
1972 
1973 		hslot  = udp_hashslot(udptable, sock_net(sk),
1974 				      udp_sk(sk)->udp_port_hash);
1975 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1976 
1977 		spin_lock_bh(&hslot->lock);
1978 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1979 			reuseport_detach_sock(sk);
1980 		if (sk_del_node_init_rcu(sk)) {
1981 			hslot->count--;
1982 			inet_sk(sk)->inet_num = 0;
1983 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1984 
1985 			spin_lock(&hslot2->lock);
1986 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1987 			hslot2->count--;
1988 			spin_unlock(&hslot2->lock);
1989 		}
1990 		spin_unlock_bh(&hslot->lock);
1991 	}
1992 }
1993 EXPORT_SYMBOL(udp_lib_unhash);
1994 
1995 /*
1996  * inet_rcv_saddr was changed, we must rehash secondary hash
1997  */
udp_lib_rehash(struct sock * sk,u16 newhash)1998 void udp_lib_rehash(struct sock *sk, u16 newhash)
1999 {
2000 	if (sk_hashed(sk)) {
2001 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2002 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2003 
2004 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2005 		nhslot2 = udp_hashslot2(udptable, newhash);
2006 		udp_sk(sk)->udp_portaddr_hash = newhash;
2007 
2008 		if (hslot2 != nhslot2 ||
2009 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2010 			hslot = udp_hashslot(udptable, sock_net(sk),
2011 					     udp_sk(sk)->udp_port_hash);
2012 			/* we must lock primary chain too */
2013 			spin_lock_bh(&hslot->lock);
2014 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2015 				reuseport_detach_sock(sk);
2016 
2017 			if (hslot2 != nhslot2) {
2018 				spin_lock(&hslot2->lock);
2019 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2020 				hslot2->count--;
2021 				spin_unlock(&hslot2->lock);
2022 
2023 				spin_lock(&nhslot2->lock);
2024 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2025 							 &nhslot2->head);
2026 				nhslot2->count++;
2027 				spin_unlock(&nhslot2->lock);
2028 			}
2029 
2030 			spin_unlock_bh(&hslot->lock);
2031 		}
2032 	}
2033 }
2034 EXPORT_SYMBOL(udp_lib_rehash);
2035 
udp_v4_rehash(struct sock * sk)2036 void udp_v4_rehash(struct sock *sk)
2037 {
2038 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2039 					  inet_sk(sk)->inet_rcv_saddr,
2040 					  inet_sk(sk)->inet_num);
2041 	udp_lib_rehash(sk, new_hash);
2042 }
2043 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2044 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2045 {
2046 	int rc;
2047 
2048 	if (inet_sk(sk)->inet_daddr) {
2049 		sock_rps_save_rxhash(sk, skb);
2050 		sk_mark_napi_id(sk, skb);
2051 		sk_incoming_cpu_update(sk);
2052 	} else {
2053 		sk_mark_napi_id_once(sk, skb);
2054 	}
2055 
2056 	rc = __udp_enqueue_schedule_skb(sk, skb);
2057 	if (rc < 0) {
2058 		int is_udplite = IS_UDPLITE(sk);
2059 
2060 		/* Note that an ENOMEM error is charged twice */
2061 		if (rc == -ENOMEM)
2062 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2063 					is_udplite);
2064 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2065 		kfree_skb(skb);
2066 		trace_udp_fail_queue_rcv_skb(rc, sk);
2067 		return -1;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* returns:
2074  *  -1: error
2075  *   0: success
2076  *  >0: "udp encap" protocol resubmission
2077  *
2078  * Note that in the success and error cases, the skb is assumed to
2079  * have either been requeued or freed.
2080  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2081 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2082 {
2083 	struct udp_sock *up = udp_sk(sk);
2084 	int is_udplite = IS_UDPLITE(sk);
2085 
2086 	/*
2087 	 *	Charge it to the socket, dropping if the queue is full.
2088 	 */
2089 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2090 		goto drop;
2091 	nf_reset_ct(skb);
2092 
2093 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2094 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2095 
2096 		/*
2097 		 * This is an encapsulation socket so pass the skb to
2098 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2099 		 * fall through and pass this up the UDP socket.
2100 		 * up->encap_rcv() returns the following value:
2101 		 * =0 if skb was successfully passed to the encap
2102 		 *    handler or was discarded by it.
2103 		 * >0 if skb should be passed on to UDP.
2104 		 * <0 if skb should be resubmitted as proto -N
2105 		 */
2106 
2107 		/* if we're overly short, let UDP handle it */
2108 		encap_rcv = READ_ONCE(up->encap_rcv);
2109 		if (encap_rcv) {
2110 			int ret;
2111 
2112 			/* Verify checksum before giving to encap */
2113 			if (udp_lib_checksum_complete(skb))
2114 				goto csum_error;
2115 
2116 			ret = encap_rcv(sk, skb);
2117 			if (ret <= 0) {
2118 				__UDP_INC_STATS(sock_net(sk),
2119 						UDP_MIB_INDATAGRAMS,
2120 						is_udplite);
2121 				return -ret;
2122 			}
2123 		}
2124 
2125 		/* FALLTHROUGH -- it's a UDP Packet */
2126 	}
2127 
2128 	/*
2129 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2130 	 */
2131 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2132 
2133 		/*
2134 		 * MIB statistics other than incrementing the error count are
2135 		 * disabled for the following two types of errors: these depend
2136 		 * on the application settings, not on the functioning of the
2137 		 * protocol stack as such.
2138 		 *
2139 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2140 		 * way ... to ... at least let the receiving application block
2141 		 * delivery of packets with coverage values less than a value
2142 		 * provided by the application."
2143 		 */
2144 		if (up->pcrlen == 0) {          /* full coverage was set  */
2145 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2146 					    UDP_SKB_CB(skb)->cscov, skb->len);
2147 			goto drop;
2148 		}
2149 		/* The next case involves violating the min. coverage requested
2150 		 * by the receiver. This is subtle: if receiver wants x and x is
2151 		 * greater than the buffersize/MTU then receiver will complain
2152 		 * that it wants x while sender emits packets of smaller size y.
2153 		 * Therefore the above ...()->partial_cov statement is essential.
2154 		 */
2155 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2156 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2157 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2158 			goto drop;
2159 		}
2160 	}
2161 
2162 	prefetch(&sk->sk_rmem_alloc);
2163 	if (rcu_access_pointer(sk->sk_filter) &&
2164 	    udp_lib_checksum_complete(skb))
2165 			goto csum_error;
2166 
2167 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2168 		goto drop;
2169 
2170 	udp_csum_pull_header(skb);
2171 
2172 	ipv4_pktinfo_prepare(sk, skb);
2173 	return __udp_queue_rcv_skb(sk, skb);
2174 
2175 csum_error:
2176 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2177 drop:
2178 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2179 	atomic_inc(&sk->sk_drops);
2180 	kfree_skb(skb);
2181 	return -1;
2182 }
2183 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2184 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2185 {
2186 	struct sk_buff *next, *segs;
2187 	int ret;
2188 
2189 	if (likely(!udp_unexpected_gso(sk, skb)))
2190 		return udp_queue_rcv_one_skb(sk, skb);
2191 
2192 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2193 	__skb_push(skb, -skb_mac_offset(skb));
2194 	segs = udp_rcv_segment(sk, skb, true);
2195 	skb_list_walk_safe(segs, skb, next) {
2196 		__skb_pull(skb, skb_transport_offset(skb));
2197 		ret = udp_queue_rcv_one_skb(sk, skb);
2198 		if (ret > 0)
2199 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2200 	}
2201 	return 0;
2202 }
2203 
2204 /* For TCP sockets, sk_rx_dst is protected by socket lock
2205  * For UDP, we use xchg() to guard against concurrent changes.
2206  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2207 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2208 {
2209 	struct dst_entry *old;
2210 
2211 	if (dst_hold_safe(dst)) {
2212 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2213 		dst_release(old);
2214 		return old != dst;
2215 	}
2216 	return false;
2217 }
2218 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2219 
2220 /*
2221  *	Multicasts and broadcasts go to each listener.
2222  *
2223  *	Note: called only from the BH handler context.
2224  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2225 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2226 				    struct udphdr  *uh,
2227 				    __be32 saddr, __be32 daddr,
2228 				    struct udp_table *udptable,
2229 				    int proto)
2230 {
2231 	struct sock *sk, *first = NULL;
2232 	unsigned short hnum = ntohs(uh->dest);
2233 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2234 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2235 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2236 	int dif = skb->dev->ifindex;
2237 	int sdif = inet_sdif(skb);
2238 	struct hlist_node *node;
2239 	struct sk_buff *nskb;
2240 
2241 	if (use_hash2) {
2242 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2243 			    udptable->mask;
2244 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2245 start_lookup:
2246 		hslot = &udptable->hash2[hash2];
2247 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2248 	}
2249 
2250 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2251 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2252 					 uh->source, saddr, dif, sdif, hnum))
2253 			continue;
2254 
2255 		if (!first) {
2256 			first = sk;
2257 			continue;
2258 		}
2259 		nskb = skb_clone(skb, GFP_ATOMIC);
2260 
2261 		if (unlikely(!nskb)) {
2262 			atomic_inc(&sk->sk_drops);
2263 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2264 					IS_UDPLITE(sk));
2265 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2266 					IS_UDPLITE(sk));
2267 			continue;
2268 		}
2269 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2270 			consume_skb(nskb);
2271 	}
2272 
2273 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2274 	if (use_hash2 && hash2 != hash2_any) {
2275 		hash2 = hash2_any;
2276 		goto start_lookup;
2277 	}
2278 
2279 	if (first) {
2280 		if (udp_queue_rcv_skb(first, skb) > 0)
2281 			consume_skb(skb);
2282 	} else {
2283 		kfree_skb(skb);
2284 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2285 				proto == IPPROTO_UDPLITE);
2286 	}
2287 	return 0;
2288 }
2289 
2290 /* Initialize UDP checksum. If exited with zero value (success),
2291  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2292  * Otherwise, csum completion requires checksumming packet body,
2293  * including udp header and folding it to skb->csum.
2294  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2295 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2296 				 int proto)
2297 {
2298 	int err;
2299 
2300 	UDP_SKB_CB(skb)->partial_cov = 0;
2301 	UDP_SKB_CB(skb)->cscov = skb->len;
2302 
2303 	if (proto == IPPROTO_UDPLITE) {
2304 		err = udplite_checksum_init(skb, uh);
2305 		if (err)
2306 			return err;
2307 
2308 		if (UDP_SKB_CB(skb)->partial_cov) {
2309 			skb->csum = inet_compute_pseudo(skb, proto);
2310 			return 0;
2311 		}
2312 	}
2313 
2314 	/* Note, we are only interested in != 0 or == 0, thus the
2315 	 * force to int.
2316 	 */
2317 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2318 							inet_compute_pseudo);
2319 	if (err)
2320 		return err;
2321 
2322 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2323 		/* If SW calculated the value, we know it's bad */
2324 		if (skb->csum_complete_sw)
2325 			return 1;
2326 
2327 		/* HW says the value is bad. Let's validate that.
2328 		 * skb->csum is no longer the full packet checksum,
2329 		 * so don't treat it as such.
2330 		 */
2331 		skb_checksum_complete_unset(skb);
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2338  * return code conversion for ip layer consumption
2339  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2340 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2341 			       struct udphdr *uh)
2342 {
2343 	int ret;
2344 
2345 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2346 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2347 
2348 	ret = udp_queue_rcv_skb(sk, skb);
2349 
2350 	/* a return value > 0 means to resubmit the input, but
2351 	 * it wants the return to be -protocol, or 0
2352 	 */
2353 	if (ret > 0)
2354 		return -ret;
2355 	return 0;
2356 }
2357 
2358 /*
2359  *	All we need to do is get the socket, and then do a checksum.
2360  */
2361 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2362 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2363 		   int proto)
2364 {
2365 	struct sock *sk;
2366 	struct udphdr *uh;
2367 	unsigned short ulen;
2368 	struct rtable *rt = skb_rtable(skb);
2369 	__be32 saddr, daddr;
2370 	struct net *net = dev_net(skb->dev);
2371 	bool refcounted;
2372 
2373 	/*
2374 	 *  Validate the packet.
2375 	 */
2376 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2377 		goto drop;		/* No space for header. */
2378 
2379 	uh   = udp_hdr(skb);
2380 	ulen = ntohs(uh->len);
2381 	saddr = ip_hdr(skb)->saddr;
2382 	daddr = ip_hdr(skb)->daddr;
2383 
2384 	if (ulen > skb->len)
2385 		goto short_packet;
2386 
2387 	if (proto == IPPROTO_UDP) {
2388 		/* UDP validates ulen. */
2389 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2390 			goto short_packet;
2391 		uh = udp_hdr(skb);
2392 	}
2393 
2394 	if (udp4_csum_init(skb, uh, proto))
2395 		goto csum_error;
2396 
2397 	sk = skb_steal_sock(skb, &refcounted);
2398 	if (sk) {
2399 		struct dst_entry *dst = skb_dst(skb);
2400 		int ret;
2401 
2402 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2403 			udp_sk_rx_dst_set(sk, dst);
2404 
2405 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2406 		if (refcounted)
2407 			sock_put(sk);
2408 		return ret;
2409 	}
2410 
2411 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2412 		return __udp4_lib_mcast_deliver(net, skb, uh,
2413 						saddr, daddr, udptable, proto);
2414 
2415 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2416 	if (sk)
2417 		return udp_unicast_rcv_skb(sk, skb, uh);
2418 
2419 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2420 		goto drop;
2421 	nf_reset_ct(skb);
2422 
2423 	/* No socket. Drop packet silently, if checksum is wrong */
2424 	if (udp_lib_checksum_complete(skb))
2425 		goto csum_error;
2426 
2427 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2428 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2429 
2430 	/*
2431 	 * Hmm.  We got an UDP packet to a port to which we
2432 	 * don't wanna listen.  Ignore it.
2433 	 */
2434 	kfree_skb(skb);
2435 	return 0;
2436 
2437 short_packet:
2438 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2439 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2440 			    &saddr, ntohs(uh->source),
2441 			    ulen, skb->len,
2442 			    &daddr, ntohs(uh->dest));
2443 	goto drop;
2444 
2445 csum_error:
2446 	/*
2447 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2448 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2449 	 */
2450 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2451 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2452 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2453 			    ulen);
2454 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2455 drop:
2456 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2457 	kfree_skb(skb);
2458 	return 0;
2459 }
2460 
2461 /* We can only early demux multicast if there is a single matching socket.
2462  * If more than one socket found returns NULL
2463  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2464 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2465 						  __be16 loc_port, __be32 loc_addr,
2466 						  __be16 rmt_port, __be32 rmt_addr,
2467 						  int dif, int sdif)
2468 {
2469 	struct sock *sk, *result;
2470 	unsigned short hnum = ntohs(loc_port);
2471 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2472 	struct udp_hslot *hslot = &udp_table.hash[slot];
2473 
2474 	/* Do not bother scanning a too big list */
2475 	if (hslot->count > 10)
2476 		return NULL;
2477 
2478 	result = NULL;
2479 	sk_for_each_rcu(sk, &hslot->head) {
2480 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2481 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2482 			if (result)
2483 				return NULL;
2484 			result = sk;
2485 		}
2486 	}
2487 
2488 	return result;
2489 }
2490 
2491 /* For unicast we should only early demux connected sockets or we can
2492  * break forwarding setups.  The chains here can be long so only check
2493  * if the first socket is an exact match and if not move on.
2494  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2495 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2496 					    __be16 loc_port, __be32 loc_addr,
2497 					    __be16 rmt_port, __be32 rmt_addr,
2498 					    int dif, int sdif)
2499 {
2500 	unsigned short hnum = ntohs(loc_port);
2501 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2502 	unsigned int slot2 = hash2 & udp_table.mask;
2503 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2504 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2505 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2506 	struct sock *sk;
2507 
2508 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2509 		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2510 			return sk;
2511 		/* Only check first socket in chain */
2512 		break;
2513 	}
2514 	return NULL;
2515 }
2516 
udp_v4_early_demux(struct sk_buff * skb)2517 int udp_v4_early_demux(struct sk_buff *skb)
2518 {
2519 	struct net *net = dev_net(skb->dev);
2520 	struct in_device *in_dev = NULL;
2521 	const struct iphdr *iph;
2522 	const struct udphdr *uh;
2523 	struct sock *sk = NULL;
2524 	struct dst_entry *dst;
2525 	int dif = skb->dev->ifindex;
2526 	int sdif = inet_sdif(skb);
2527 	int ours;
2528 
2529 	/* validate the packet */
2530 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2531 		return 0;
2532 
2533 	iph = ip_hdr(skb);
2534 	uh = udp_hdr(skb);
2535 
2536 	if (skb->pkt_type == PACKET_MULTICAST) {
2537 		in_dev = __in_dev_get_rcu(skb->dev);
2538 
2539 		if (!in_dev)
2540 			return 0;
2541 
2542 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2543 				       iph->protocol);
2544 		if (!ours)
2545 			return 0;
2546 
2547 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2548 						   uh->source, iph->saddr,
2549 						   dif, sdif);
2550 	} else if (skb->pkt_type == PACKET_HOST) {
2551 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2552 					     uh->source, iph->saddr, dif, sdif);
2553 	}
2554 
2555 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2556 		return 0;
2557 
2558 	skb->sk = sk;
2559 	skb->destructor = sock_efree;
2560 	dst = rcu_dereference(sk->sk_rx_dst);
2561 
2562 	if (dst)
2563 		dst = dst_check(dst, 0);
2564 	if (dst) {
2565 		u32 itag = 0;
2566 
2567 		/* set noref for now.
2568 		 * any place which wants to hold dst has to call
2569 		 * dst_hold_safe()
2570 		 */
2571 		skb_dst_set_noref(skb, dst);
2572 
2573 		/* for unconnected multicast sockets we need to validate
2574 		 * the source on each packet
2575 		 */
2576 		if (!inet_sk(sk)->inet_daddr && in_dev)
2577 			return ip_mc_validate_source(skb, iph->daddr,
2578 						     iph->saddr,
2579 						     iph->tos & IPTOS_RT_MASK,
2580 						     skb->dev, in_dev, &itag);
2581 	}
2582 	return 0;
2583 }
2584 
udp_rcv(struct sk_buff * skb)2585 int udp_rcv(struct sk_buff *skb)
2586 {
2587 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2588 }
2589 
udp_destroy_sock(struct sock * sk)2590 void udp_destroy_sock(struct sock *sk)
2591 {
2592 	struct udp_sock *up = udp_sk(sk);
2593 	bool slow = lock_sock_fast(sk);
2594 
2595 	/* protects from races with udp_abort() */
2596 	sock_set_flag(sk, SOCK_DEAD);
2597 	udp_flush_pending_frames(sk);
2598 	unlock_sock_fast(sk, slow);
2599 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2600 		if (up->encap_type) {
2601 			void (*encap_destroy)(struct sock *sk);
2602 			encap_destroy = READ_ONCE(up->encap_destroy);
2603 			if (encap_destroy)
2604 				encap_destroy(sk);
2605 		}
2606 		if (up->encap_enabled)
2607 			static_branch_dec(&udp_encap_needed_key);
2608 	}
2609 }
2610 
2611 /*
2612  *	Socket option code for UDP
2613  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2614 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2615 		       sockptr_t optval, unsigned int optlen,
2616 		       int (*push_pending_frames)(struct sock *))
2617 {
2618 	struct udp_sock *up = udp_sk(sk);
2619 	int val, valbool;
2620 	int err = 0;
2621 	int is_udplite = IS_UDPLITE(sk);
2622 
2623 	if (optlen < sizeof(int))
2624 		return -EINVAL;
2625 
2626 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2627 		return -EFAULT;
2628 
2629 	valbool = val ? 1 : 0;
2630 
2631 	switch (optname) {
2632 	case UDP_CORK:
2633 		if (val != 0) {
2634 			WRITE_ONCE(up->corkflag, 1);
2635 		} else {
2636 			WRITE_ONCE(up->corkflag, 0);
2637 			lock_sock(sk);
2638 			push_pending_frames(sk);
2639 			release_sock(sk);
2640 		}
2641 		break;
2642 
2643 	case UDP_ENCAP:
2644 		switch (val) {
2645 		case 0:
2646 #ifdef CONFIG_XFRM
2647 		case UDP_ENCAP_ESPINUDP:
2648 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2649 #if IS_ENABLED(CONFIG_IPV6)
2650 			if (sk->sk_family == AF_INET6)
2651 				WRITE_ONCE(up->encap_rcv,
2652 					   ipv6_stub->xfrm6_udp_encap_rcv);
2653 			else
2654 #endif
2655 				WRITE_ONCE(up->encap_rcv,
2656 					   xfrm4_udp_encap_rcv);
2657 #endif
2658 			fallthrough;
2659 		case UDP_ENCAP_L2TPINUDP:
2660 			up->encap_type = val;
2661 			lock_sock(sk);
2662 			udp_tunnel_encap_enable(sk->sk_socket);
2663 			release_sock(sk);
2664 			break;
2665 		default:
2666 			err = -ENOPROTOOPT;
2667 			break;
2668 		}
2669 		break;
2670 
2671 	case UDP_NO_CHECK6_TX:
2672 		up->no_check6_tx = valbool;
2673 		break;
2674 
2675 	case UDP_NO_CHECK6_RX:
2676 		up->no_check6_rx = valbool;
2677 		break;
2678 
2679 	case UDP_SEGMENT:
2680 		if (val < 0 || val > USHRT_MAX)
2681 			return -EINVAL;
2682 		WRITE_ONCE(up->gso_size, val);
2683 		break;
2684 
2685 	case UDP_GRO:
2686 		lock_sock(sk);
2687 
2688 		/* when enabling GRO, accept the related GSO packet type */
2689 		if (valbool)
2690 			udp_tunnel_encap_enable(sk->sk_socket);
2691 		up->gro_enabled = valbool;
2692 		up->accept_udp_l4 = valbool;
2693 		release_sock(sk);
2694 		break;
2695 
2696 	/*
2697 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2698 	 */
2699 	/* The sender sets actual checksum coverage length via this option.
2700 	 * The case coverage > packet length is handled by send module. */
2701 	case UDPLITE_SEND_CSCOV:
2702 		if (!is_udplite)         /* Disable the option on UDP sockets */
2703 			return -ENOPROTOOPT;
2704 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2705 			val = 8;
2706 		else if (val > USHRT_MAX)
2707 			val = USHRT_MAX;
2708 		up->pcslen = val;
2709 		up->pcflag |= UDPLITE_SEND_CC;
2710 		break;
2711 
2712 	/* The receiver specifies a minimum checksum coverage value. To make
2713 	 * sense, this should be set to at least 8 (as done below). If zero is
2714 	 * used, this again means full checksum coverage.                     */
2715 	case UDPLITE_RECV_CSCOV:
2716 		if (!is_udplite)         /* Disable the option on UDP sockets */
2717 			return -ENOPROTOOPT;
2718 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2719 			val = 8;
2720 		else if (val > USHRT_MAX)
2721 			val = USHRT_MAX;
2722 		up->pcrlen = val;
2723 		up->pcflag |= UDPLITE_RECV_CC;
2724 		break;
2725 
2726 	default:
2727 		err = -ENOPROTOOPT;
2728 		break;
2729 	}
2730 
2731 	return err;
2732 }
2733 EXPORT_SYMBOL(udp_lib_setsockopt);
2734 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2735 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2736 		   unsigned int optlen)
2737 {
2738 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2739 		return udp_lib_setsockopt(sk, level, optname,
2740 					  optval, optlen,
2741 					  udp_push_pending_frames);
2742 	return ip_setsockopt(sk, level, optname, optval, optlen);
2743 }
2744 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2745 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2746 		       char __user *optval, int __user *optlen)
2747 {
2748 	struct udp_sock *up = udp_sk(sk);
2749 	int val, len;
2750 
2751 	if (get_user(len, optlen))
2752 		return -EFAULT;
2753 
2754 	len = min_t(unsigned int, len, sizeof(int));
2755 
2756 	if (len < 0)
2757 		return -EINVAL;
2758 
2759 	switch (optname) {
2760 	case UDP_CORK:
2761 		val = READ_ONCE(up->corkflag);
2762 		break;
2763 
2764 	case UDP_ENCAP:
2765 		val = up->encap_type;
2766 		break;
2767 
2768 	case UDP_NO_CHECK6_TX:
2769 		val = up->no_check6_tx;
2770 		break;
2771 
2772 	case UDP_NO_CHECK6_RX:
2773 		val = up->no_check6_rx;
2774 		break;
2775 
2776 	case UDP_SEGMENT:
2777 		val = READ_ONCE(up->gso_size);
2778 		break;
2779 
2780 	case UDP_GRO:
2781 		val = up->gro_enabled;
2782 		break;
2783 
2784 	/* The following two cannot be changed on UDP sockets, the return is
2785 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2786 	case UDPLITE_SEND_CSCOV:
2787 		val = up->pcslen;
2788 		break;
2789 
2790 	case UDPLITE_RECV_CSCOV:
2791 		val = up->pcrlen;
2792 		break;
2793 
2794 	default:
2795 		return -ENOPROTOOPT;
2796 	}
2797 
2798 	if (put_user(len, optlen))
2799 		return -EFAULT;
2800 	if (copy_to_user(optval, &val, len))
2801 		return -EFAULT;
2802 	return 0;
2803 }
2804 EXPORT_SYMBOL(udp_lib_getsockopt);
2805 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2806 int udp_getsockopt(struct sock *sk, int level, int optname,
2807 		   char __user *optval, int __user *optlen)
2808 {
2809 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2810 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2811 	return ip_getsockopt(sk, level, optname, optval, optlen);
2812 }
2813 
2814 /**
2815  * 	udp_poll - wait for a UDP event.
2816  *	@file: - file struct
2817  *	@sock: - socket
2818  *	@wait: - poll table
2819  *
2820  *	This is same as datagram poll, except for the special case of
2821  *	blocking sockets. If application is using a blocking fd
2822  *	and a packet with checksum error is in the queue;
2823  *	then it could get return from select indicating data available
2824  *	but then block when reading it. Add special case code
2825  *	to work around these arguably broken applications.
2826  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2827 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2828 {
2829 	__poll_t mask = datagram_poll(file, sock, wait);
2830 	struct sock *sk = sock->sk;
2831 
2832 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2833 		mask |= EPOLLIN | EPOLLRDNORM;
2834 
2835 	/* Check for false positives due to checksum errors */
2836 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2837 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2838 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2839 
2840 	return mask;
2841 
2842 }
2843 EXPORT_SYMBOL(udp_poll);
2844 
udp_abort(struct sock * sk,int err)2845 int udp_abort(struct sock *sk, int err)
2846 {
2847 	lock_sock(sk);
2848 
2849 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2850 	 * with close()
2851 	 */
2852 	if (sock_flag(sk, SOCK_DEAD))
2853 		goto out;
2854 
2855 	sk->sk_err = err;
2856 	sk->sk_error_report(sk);
2857 	__udp_disconnect(sk, 0);
2858 
2859 out:
2860 	release_sock(sk);
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(udp_abort);
2865 
2866 struct proto udp_prot = {
2867 	.name			= "UDP",
2868 	.owner			= THIS_MODULE,
2869 	.close			= udp_lib_close,
2870 	.pre_connect		= udp_pre_connect,
2871 	.connect		= ip4_datagram_connect,
2872 	.disconnect		= udp_disconnect,
2873 	.ioctl			= udp_ioctl,
2874 	.init			= udp_init_sock,
2875 	.destroy		= udp_destroy_sock,
2876 	.setsockopt		= udp_setsockopt,
2877 	.getsockopt		= udp_getsockopt,
2878 	.sendmsg		= udp_sendmsg,
2879 	.recvmsg		= udp_recvmsg,
2880 	.sendpage		= udp_sendpage,
2881 	.release_cb		= ip4_datagram_release_cb,
2882 	.hash			= udp_lib_hash,
2883 	.unhash			= udp_lib_unhash,
2884 	.rehash			= udp_v4_rehash,
2885 	.get_port		= udp_v4_get_port,
2886 	.memory_allocated	= &udp_memory_allocated,
2887 	.sysctl_mem		= sysctl_udp_mem,
2888 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2889 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2890 	.obj_size		= sizeof(struct udp_sock),
2891 	.h.udp_table		= &udp_table,
2892 	.diag_destroy		= udp_abort,
2893 };
2894 EXPORT_SYMBOL(udp_prot);
2895 
2896 /* ------------------------------------------------------------------------ */
2897 #ifdef CONFIG_PROC_FS
2898 
udp_get_first(struct seq_file * seq,int start)2899 static struct sock *udp_get_first(struct seq_file *seq, int start)
2900 {
2901 	struct sock *sk;
2902 	struct udp_seq_afinfo *afinfo;
2903 	struct udp_iter_state *state = seq->private;
2904 	struct net *net = seq_file_net(seq);
2905 
2906 	if (state->bpf_seq_afinfo)
2907 		afinfo = state->bpf_seq_afinfo;
2908 	else
2909 		afinfo = PDE_DATA(file_inode(seq->file));
2910 
2911 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2912 	     ++state->bucket) {
2913 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2914 
2915 		if (hlist_empty(&hslot->head))
2916 			continue;
2917 
2918 		spin_lock_bh(&hslot->lock);
2919 		sk_for_each(sk, &hslot->head) {
2920 			if (!net_eq(sock_net(sk), net))
2921 				continue;
2922 			if (afinfo->family == AF_UNSPEC ||
2923 			    sk->sk_family == afinfo->family)
2924 				goto found;
2925 		}
2926 		spin_unlock_bh(&hslot->lock);
2927 	}
2928 	sk = NULL;
2929 found:
2930 	return sk;
2931 }
2932 
udp_get_next(struct seq_file * seq,struct sock * sk)2933 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2934 {
2935 	struct udp_seq_afinfo *afinfo;
2936 	struct udp_iter_state *state = seq->private;
2937 	struct net *net = seq_file_net(seq);
2938 
2939 	if (state->bpf_seq_afinfo)
2940 		afinfo = state->bpf_seq_afinfo;
2941 	else
2942 		afinfo = PDE_DATA(file_inode(seq->file));
2943 
2944 	do {
2945 		sk = sk_next(sk);
2946 	} while (sk && (!net_eq(sock_net(sk), net) ||
2947 			(afinfo->family != AF_UNSPEC &&
2948 			 sk->sk_family != afinfo->family)));
2949 
2950 	if (!sk) {
2951 		if (state->bucket <= afinfo->udp_table->mask)
2952 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2953 		return udp_get_first(seq, state->bucket + 1);
2954 	}
2955 	return sk;
2956 }
2957 
udp_get_idx(struct seq_file * seq,loff_t pos)2958 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2959 {
2960 	struct sock *sk = udp_get_first(seq, 0);
2961 
2962 	if (sk)
2963 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2964 			--pos;
2965 	return pos ? NULL : sk;
2966 }
2967 
udp_seq_start(struct seq_file * seq,loff_t * pos)2968 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2969 {
2970 	struct udp_iter_state *state = seq->private;
2971 	state->bucket = MAX_UDP_PORTS;
2972 
2973 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2974 }
2975 EXPORT_SYMBOL(udp_seq_start);
2976 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2977 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2978 {
2979 	struct sock *sk;
2980 
2981 	if (v == SEQ_START_TOKEN)
2982 		sk = udp_get_idx(seq, 0);
2983 	else
2984 		sk = udp_get_next(seq, v);
2985 
2986 	++*pos;
2987 	return sk;
2988 }
2989 EXPORT_SYMBOL(udp_seq_next);
2990 
udp_seq_stop(struct seq_file * seq,void * v)2991 void udp_seq_stop(struct seq_file *seq, void *v)
2992 {
2993 	struct udp_seq_afinfo *afinfo;
2994 	struct udp_iter_state *state = seq->private;
2995 
2996 	if (state->bpf_seq_afinfo)
2997 		afinfo = state->bpf_seq_afinfo;
2998 	else
2999 		afinfo = PDE_DATA(file_inode(seq->file));
3000 
3001 	if (state->bucket <= afinfo->udp_table->mask)
3002 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3003 }
3004 EXPORT_SYMBOL(udp_seq_stop);
3005 
3006 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3007 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3008 		int bucket)
3009 {
3010 	struct inet_sock *inet = inet_sk(sp);
3011 	__be32 dest = inet->inet_daddr;
3012 	__be32 src  = inet->inet_rcv_saddr;
3013 	__u16 destp	  = ntohs(inet->inet_dport);
3014 	__u16 srcp	  = ntohs(inet->inet_sport);
3015 
3016 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3017 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3018 		bucket, src, srcp, dest, destp, sp->sk_state,
3019 		sk_wmem_alloc_get(sp),
3020 		udp_rqueue_get(sp),
3021 		0, 0L, 0,
3022 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3023 		0, sock_i_ino(sp),
3024 		refcount_read(&sp->sk_refcnt), sp,
3025 		atomic_read(&sp->sk_drops));
3026 }
3027 
udp4_seq_show(struct seq_file * seq,void * v)3028 int udp4_seq_show(struct seq_file *seq, void *v)
3029 {
3030 	seq_setwidth(seq, 127);
3031 	if (v == SEQ_START_TOKEN)
3032 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3033 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3034 			   "inode ref pointer drops");
3035 	else {
3036 		struct udp_iter_state *state = seq->private;
3037 
3038 		udp4_format_sock(v, seq, state->bucket);
3039 	}
3040 	seq_pad(seq, '\n');
3041 	return 0;
3042 }
3043 
3044 #ifdef CONFIG_BPF_SYSCALL
3045 struct bpf_iter__udp {
3046 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3047 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3048 	uid_t uid __aligned(8);
3049 	int bucket __aligned(8);
3050 };
3051 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3052 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3053 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3054 {
3055 	struct bpf_iter__udp ctx;
3056 
3057 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3058 	ctx.meta = meta;
3059 	ctx.udp_sk = udp_sk;
3060 	ctx.uid = uid;
3061 	ctx.bucket = bucket;
3062 	return bpf_iter_run_prog(prog, &ctx);
3063 }
3064 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3065 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3066 {
3067 	struct udp_iter_state *state = seq->private;
3068 	struct bpf_iter_meta meta;
3069 	struct bpf_prog *prog;
3070 	struct sock *sk = v;
3071 	uid_t uid;
3072 
3073 	if (v == SEQ_START_TOKEN)
3074 		return 0;
3075 
3076 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3077 	meta.seq = seq;
3078 	prog = bpf_iter_get_info(&meta, false);
3079 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3080 }
3081 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3082 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3083 {
3084 	struct bpf_iter_meta meta;
3085 	struct bpf_prog *prog;
3086 
3087 	if (!v) {
3088 		meta.seq = seq;
3089 		prog = bpf_iter_get_info(&meta, true);
3090 		if (prog)
3091 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3092 	}
3093 
3094 	udp_seq_stop(seq, v);
3095 }
3096 
3097 static const struct seq_operations bpf_iter_udp_seq_ops = {
3098 	.start		= udp_seq_start,
3099 	.next		= udp_seq_next,
3100 	.stop		= bpf_iter_udp_seq_stop,
3101 	.show		= bpf_iter_udp_seq_show,
3102 };
3103 #endif
3104 
3105 const struct seq_operations udp_seq_ops = {
3106 	.start		= udp_seq_start,
3107 	.next		= udp_seq_next,
3108 	.stop		= udp_seq_stop,
3109 	.show		= udp4_seq_show,
3110 };
3111 EXPORT_SYMBOL(udp_seq_ops);
3112 
3113 static struct udp_seq_afinfo udp4_seq_afinfo = {
3114 	.family		= AF_INET,
3115 	.udp_table	= &udp_table,
3116 };
3117 
udp4_proc_init_net(struct net * net)3118 static int __net_init udp4_proc_init_net(struct net *net)
3119 {
3120 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3121 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3122 		return -ENOMEM;
3123 	return 0;
3124 }
3125 
udp4_proc_exit_net(struct net * net)3126 static void __net_exit udp4_proc_exit_net(struct net *net)
3127 {
3128 	remove_proc_entry("udp", net->proc_net);
3129 }
3130 
3131 static struct pernet_operations udp4_net_ops = {
3132 	.init = udp4_proc_init_net,
3133 	.exit = udp4_proc_exit_net,
3134 };
3135 
udp4_proc_init(void)3136 int __init udp4_proc_init(void)
3137 {
3138 	return register_pernet_subsys(&udp4_net_ops);
3139 }
3140 
udp4_proc_exit(void)3141 void udp4_proc_exit(void)
3142 {
3143 	unregister_pernet_subsys(&udp4_net_ops);
3144 }
3145 #endif /* CONFIG_PROC_FS */
3146 
3147 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3148 static int __init set_uhash_entries(char *str)
3149 {
3150 	ssize_t ret;
3151 
3152 	if (!str)
3153 		return 0;
3154 
3155 	ret = kstrtoul(str, 0, &uhash_entries);
3156 	if (ret)
3157 		return 0;
3158 
3159 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3160 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3161 	return 1;
3162 }
3163 __setup("uhash_entries=", set_uhash_entries);
3164 
udp_table_init(struct udp_table * table,const char * name)3165 void __init udp_table_init(struct udp_table *table, const char *name)
3166 {
3167 	unsigned int i;
3168 
3169 	table->hash = alloc_large_system_hash(name,
3170 					      2 * sizeof(struct udp_hslot),
3171 					      uhash_entries,
3172 					      21, /* one slot per 2 MB */
3173 					      0,
3174 					      &table->log,
3175 					      &table->mask,
3176 					      UDP_HTABLE_SIZE_MIN,
3177 					      64 * 1024);
3178 
3179 	table->hash2 = table->hash + (table->mask + 1);
3180 	for (i = 0; i <= table->mask; i++) {
3181 		INIT_HLIST_HEAD(&table->hash[i].head);
3182 		table->hash[i].count = 0;
3183 		spin_lock_init(&table->hash[i].lock);
3184 	}
3185 	for (i = 0; i <= table->mask; i++) {
3186 		INIT_HLIST_HEAD(&table->hash2[i].head);
3187 		table->hash2[i].count = 0;
3188 		spin_lock_init(&table->hash2[i].lock);
3189 	}
3190 }
3191 
udp_flow_hashrnd(void)3192 u32 udp_flow_hashrnd(void)
3193 {
3194 	static u32 hashrnd __read_mostly;
3195 
3196 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3197 
3198 	return hashrnd;
3199 }
3200 EXPORT_SYMBOL(udp_flow_hashrnd);
3201 
__udp_sysctl_init(struct net * net)3202 static void __udp_sysctl_init(struct net *net)
3203 {
3204 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3205 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3206 
3207 #ifdef CONFIG_NET_L3_MASTER_DEV
3208 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3209 #endif
3210 }
3211 
udp_sysctl_init(struct net * net)3212 static int __net_init udp_sysctl_init(struct net *net)
3213 {
3214 	__udp_sysctl_init(net);
3215 	return 0;
3216 }
3217 
3218 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3219 	.init	= udp_sysctl_init,
3220 };
3221 
3222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3223 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3224 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3225 
3226 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3227 {
3228 	struct udp_iter_state *st = priv_data;
3229 	struct udp_seq_afinfo *afinfo;
3230 	int ret;
3231 
3232 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3233 	if (!afinfo)
3234 		return -ENOMEM;
3235 
3236 	afinfo->family = AF_UNSPEC;
3237 	afinfo->udp_table = &udp_table;
3238 	st->bpf_seq_afinfo = afinfo;
3239 	ret = bpf_iter_init_seq_net(priv_data, aux);
3240 	if (ret)
3241 		kfree(afinfo);
3242 	return ret;
3243 }
3244 
bpf_iter_fini_udp(void * priv_data)3245 static void bpf_iter_fini_udp(void *priv_data)
3246 {
3247 	struct udp_iter_state *st = priv_data;
3248 
3249 	kfree(st->bpf_seq_afinfo);
3250 	bpf_iter_fini_seq_net(priv_data);
3251 }
3252 
3253 static const struct bpf_iter_seq_info udp_seq_info = {
3254 	.seq_ops		= &bpf_iter_udp_seq_ops,
3255 	.init_seq_private	= bpf_iter_init_udp,
3256 	.fini_seq_private	= bpf_iter_fini_udp,
3257 	.seq_priv_size		= sizeof(struct udp_iter_state),
3258 };
3259 
3260 static struct bpf_iter_reg udp_reg_info = {
3261 	.target			= "udp",
3262 	.ctx_arg_info_size	= 1,
3263 	.ctx_arg_info		= {
3264 		{ offsetof(struct bpf_iter__udp, udp_sk),
3265 		  PTR_TO_BTF_ID_OR_NULL },
3266 	},
3267 	.seq_info		= &udp_seq_info,
3268 };
3269 
bpf_iter_register(void)3270 static void __init bpf_iter_register(void)
3271 {
3272 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3273 	if (bpf_iter_reg_target(&udp_reg_info))
3274 		pr_warn("Warning: could not register bpf iterator udp\n");
3275 }
3276 #endif
3277 
udp_init(void)3278 void __init udp_init(void)
3279 {
3280 	unsigned long limit;
3281 	unsigned int i;
3282 
3283 	udp_table_init(&udp_table, "UDP");
3284 	limit = nr_free_buffer_pages() / 8;
3285 	limit = max(limit, 128UL);
3286 	sysctl_udp_mem[0] = limit / 4 * 3;
3287 	sysctl_udp_mem[1] = limit;
3288 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3289 
3290 	__udp_sysctl_init(&init_net);
3291 
3292 	/* 16 spinlocks per cpu */
3293 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3294 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3295 				GFP_KERNEL);
3296 	if (!udp_busylocks)
3297 		panic("UDP: failed to alloc udp_busylocks\n");
3298 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3299 		spin_lock_init(udp_busylocks + i);
3300 
3301 	if (register_pernet_subsys(&udp_sysctl_ops))
3302 		panic("UDP: failed to init sysctl parameters.\n");
3303 
3304 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3305 	bpf_iter_register();
3306 #endif
3307 }
3308