1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21
22 #include "opp.h"
23
24 /*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35 {
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43 }
44
_find_opp_table_unlocked(struct device * dev)45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63 }
64
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
_find_opp_table(struct device * dev)76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90 }
91
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112 /**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
dev_pm_opp_get_freq(struct dev_pm_opp * opp)119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130 /**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148 /**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169 /**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
dev_pm_opp_get_max_clock_latency(struct device * dev)175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192 /**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
dev_pm_opp_get_max_volt_latency(struct device * dev)198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262 /**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
dev_pm_opp_get_max_transition_latency(struct device * dev)270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277 /**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
_get_opp_count(struct opp_table * opp_table)302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317 }
318
319 /**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
dev_pm_opp_get_opp_count(struct device * dev)326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346 /**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372 {
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404 /**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421 {
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454 {
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473 }
474
475 /**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495 {
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516 /**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574 /**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
dev_pm_opp_find_freq_ceil_by_volt(struct device * dev,unsigned long u_volt)591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593 {
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630 {
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651 }
652
_generic_set_opp_clk_only(struct device * dev,struct clk * clk,unsigned long freq)653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655 {
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665 }
666
_generic_set_opp_regulator(struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673 {
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 }
711
712 return 0;
713
714 restore_freq:
715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 __func__, old_freq);
718 restore_voltage:
719 /* This shouldn't harm even if the voltages weren't updated earlier */
720 if (old_supply)
721 _set_opp_voltage(dev, reg, old_supply);
722
723 return ret;
724 }
725
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev,bool remove)726 static int _set_opp_bw(const struct opp_table *opp_table,
727 struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 u32 avg, peak;
730 int i, ret;
731
732 if (!opp_table->paths)
733 return 0;
734
735 for (i = 0; i < opp_table->path_count; i++) {
736 if (remove) {
737 avg = 0;
738 peak = 0;
739 } else {
740 avg = opp->bandwidth[i].avg;
741 peak = opp->bandwidth[i].peak;
742 }
743 ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 if (ret) {
745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 remove ? "remove" : "set", i, ret);
747 return ret;
748 }
749 }
750
751 return 0;
752 }
753
_set_opp_custom(const struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)754 static int _set_opp_custom(const struct opp_table *opp_table,
755 struct device *dev, unsigned long old_freq,
756 unsigned long freq,
757 struct dev_pm_opp_supply *old_supply,
758 struct dev_pm_opp_supply *new_supply)
759 {
760 struct dev_pm_set_opp_data *data;
761 int size;
762
763 data = opp_table->set_opp_data;
764 data->regulators = opp_table->regulators;
765 data->regulator_count = opp_table->regulator_count;
766 data->clk = opp_table->clk;
767 data->dev = dev;
768
769 data->old_opp.rate = old_freq;
770 size = sizeof(*old_supply) * opp_table->regulator_count;
771 if (!old_supply)
772 memset(data->old_opp.supplies, 0, size);
773 else
774 memcpy(data->old_opp.supplies, old_supply, size);
775
776 data->new_opp.rate = freq;
777 memcpy(data->new_opp.supplies, new_supply, size);
778
779 return opp_table->set_opp(data);
780 }
781
_set_required_opp(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 struct dev_pm_opp *opp, int i)
784 {
785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 int ret;
787
788 if (!pd_dev)
789 return 0;
790
791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 if (ret) {
793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 dev_name(pd_dev), pstate, ret);
795 }
796
797 return ret;
798 }
799
800 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)801 static int _set_required_opps(struct device *dev,
802 struct opp_table *opp_table,
803 struct dev_pm_opp *opp, bool up)
804 {
805 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 int i, ret = 0;
808
809 if (!required_opp_tables)
810 return 0;
811
812 /* Single genpd case */
813 if (!genpd_virt_devs)
814 return _set_required_opp(dev, dev, opp, 0);
815
816 /* Multiple genpd case */
817
818 /*
819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 * after it is freed from another thread.
821 */
822 mutex_lock(&opp_table->genpd_virt_dev_lock);
823
824 /* Scaling up? Set required OPPs in normal order, else reverse */
825 if (up) {
826 for (i = 0; i < opp_table->required_opp_count; i++) {
827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 if (ret)
829 break;
830 }
831 } else {
832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 if (ret)
835 break;
836 }
837 }
838
839 mutex_unlock(&opp_table->genpd_virt_dev_lock);
840
841 return ret;
842 }
843
844 /**
845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846 * @dev: device for which we do this operation
847 * @opp: opp based on which the bandwidth levels are to be configured
848 *
849 * This configures the bandwidth to the levels specified by the OPP. However
850 * if the OPP specified is NULL the bandwidth levels are cleared out.
851 *
852 * Return: 0 on success or a negative error value.
853 */
dev_pm_opp_set_bw(struct device * dev,struct dev_pm_opp * opp)854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 struct opp_table *opp_table;
857 int ret;
858
859 opp_table = _find_opp_table(dev);
860 if (IS_ERR(opp_table)) {
861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 return PTR_ERR(opp_table);
863 }
864
865 if (opp)
866 ret = _set_opp_bw(opp_table, opp, dev, false);
867 else
868 ret = _set_opp_bw(opp_table, NULL, dev, true);
869
870 dev_pm_opp_put_opp_table(opp_table);
871 return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874
_opp_set_rate_zero(struct device * dev,struct opp_table * opp_table)875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 int ret;
878
879 if (!opp_table->enabled)
880 return 0;
881
882 /*
883 * Some drivers need to support cases where some platforms may
884 * have OPP table for the device, while others don't and
885 * opp_set_rate() just needs to behave like clk_set_rate().
886 */
887 if (!_get_opp_count(opp_table))
888 return 0;
889
890 ret = _set_opp_bw(opp_table, NULL, dev, true);
891 if (ret)
892 return ret;
893
894 if (opp_table->regulators)
895 regulator_disable(opp_table->regulators[0]);
896
897 ret = _set_required_opps(dev, opp_table, NULL, false);
898
899 opp_table->enabled = false;
900 return ret;
901 }
902
903 /**
904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905 * @dev: device for which we do this operation
906 * @target_freq: frequency to achieve
907 *
908 * This configures the power-supplies to the levels specified by the OPP
909 * corresponding to the target_freq, and programs the clock to a value <=
910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911 * provided by the opp, should have already rounded to the target OPP's
912 * frequency.
913 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 struct opp_table *opp_table;
917 unsigned long freq, old_freq, temp_freq;
918 struct dev_pm_opp *old_opp, *opp;
919 struct clk *clk;
920 int ret;
921
922 opp_table = _find_opp_table(dev);
923 if (IS_ERR(opp_table)) {
924 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 return PTR_ERR(opp_table);
926 }
927
928 if (unlikely(!target_freq)) {
929 ret = _opp_set_rate_zero(dev, opp_table);
930 goto put_opp_table;
931 }
932
933 clk = opp_table->clk;
934 if (IS_ERR(clk)) {
935 dev_err(dev, "%s: No clock available for the device\n",
936 __func__);
937 ret = PTR_ERR(clk);
938 goto put_opp_table;
939 }
940
941 freq = clk_round_rate(clk, target_freq);
942 if ((long)freq <= 0)
943 freq = target_freq;
944
945 old_freq = clk_get_rate(clk);
946
947 /* Return early if nothing to do */
948 if (opp_table->enabled && old_freq == freq) {
949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 __func__, freq);
951 ret = 0;
952 goto put_opp_table;
953 }
954
955 /*
956 * For IO devices which require an OPP on some platforms/SoCs
957 * while just needing to scale the clock on some others
958 * we look for empty OPP tables with just a clock handle and
959 * scale only the clk. This makes dev_pm_opp_set_rate()
960 * equivalent to a clk_set_rate()
961 */
962 if (!_get_opp_count(opp_table)) {
963 ret = _generic_set_opp_clk_only(dev, clk, freq);
964 goto put_opp_table;
965 }
966
967 temp_freq = old_freq;
968 old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 if (IS_ERR(old_opp)) {
970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 __func__, old_freq, PTR_ERR(old_opp));
972 }
973
974 temp_freq = freq;
975 opp = _find_freq_ceil(opp_table, &temp_freq);
976 if (IS_ERR(opp)) {
977 ret = PTR_ERR(opp);
978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 __func__, freq, ret);
980 goto put_old_opp;
981 }
982
983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 old_freq, freq);
985
986 /* Scaling up? Configure required OPPs before frequency */
987 if (freq >= old_freq) {
988 ret = _set_required_opps(dev, opp_table, opp, true);
989 if (ret)
990 goto put_opp;
991 }
992
993 if (opp_table->set_opp) {
994 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 opp->supplies);
997 } else if (opp_table->regulators) {
998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 opp->supplies);
1001 } else {
1002 /* Only frequency scaling */
1003 ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 }
1005
1006 /* Scaling down? Configure required OPPs after frequency */
1007 if (!ret && freq < old_freq) {
1008 ret = _set_required_opps(dev, opp_table, opp, false);
1009 if (ret)
1010 dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 }
1012
1013 if (!ret) {
1014 ret = _set_opp_bw(opp_table, opp, dev, false);
1015 if (!ret)
1016 opp_table->enabled = true;
1017 }
1018
1019 put_opp:
1020 dev_pm_opp_put(opp);
1021 put_old_opp:
1022 if (!IS_ERR(old_opp))
1023 dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 dev_pm_opp_put_opp_table(opp_table);
1026 return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029
1030 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 struct opp_table *opp_table)
1033 {
1034 opp_debug_unregister(opp_dev, opp_table);
1035 list_del(&opp_dev->node);
1036 kfree(opp_dev);
1037 }
1038
_add_opp_dev_unlocked(const struct device * dev,struct opp_table * opp_table)1039 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040 struct opp_table *opp_table)
1041 {
1042 struct opp_device *opp_dev;
1043
1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 if (!opp_dev)
1046 return NULL;
1047
1048 /* Initialize opp-dev */
1049 opp_dev->dev = dev;
1050
1051 list_add(&opp_dev->node, &opp_table->dev_list);
1052
1053 /* Create debugfs entries for the opp_table */
1054 opp_debug_register(opp_dev, opp_table);
1055
1056 return opp_dev;
1057 }
1058
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1059 struct opp_device *_add_opp_dev(const struct device *dev,
1060 struct opp_table *opp_table)
1061 {
1062 struct opp_device *opp_dev;
1063
1064 mutex_lock(&opp_table->lock);
1065 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066 mutex_unlock(&opp_table->lock);
1067
1068 return opp_dev;
1069 }
1070
_allocate_opp_table(struct device * dev,int index)1071 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072 {
1073 struct opp_table *opp_table;
1074 struct opp_device *opp_dev;
1075 int ret;
1076
1077 /*
1078 * Allocate a new OPP table. In the infrequent case where a new
1079 * device is needed to be added, we pay this penalty.
1080 */
1081 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082 if (!opp_table)
1083 return ERR_PTR(-ENOMEM);
1084
1085 mutex_init(&opp_table->lock);
1086 mutex_init(&opp_table->genpd_virt_dev_lock);
1087 INIT_LIST_HEAD(&opp_table->dev_list);
1088
1089 /* Mark regulator count uninitialized */
1090 opp_table->regulator_count = -1;
1091
1092 opp_dev = _add_opp_dev(dev, opp_table);
1093 if (!opp_dev) {
1094 ret = -ENOMEM;
1095 goto err;
1096 }
1097
1098 _of_init_opp_table(opp_table, dev, index);
1099
1100 /* Find clk for the device */
1101 opp_table->clk = clk_get(dev, NULL);
1102 if (IS_ERR(opp_table->clk)) {
1103 ret = PTR_ERR(opp_table->clk);
1104 if (ret == -EPROBE_DEFER)
1105 goto remove_opp_dev;
1106
1107 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108 }
1109
1110 /* Find interconnect path(s) for the device */
1111 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112 if (ret) {
1113 if (ret == -EPROBE_DEFER)
1114 goto put_clk;
1115
1116 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117 __func__, ret);
1118 }
1119
1120 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121 INIT_LIST_HEAD(&opp_table->opp_list);
1122 kref_init(&opp_table->kref);
1123
1124 /* Secure the device table modification */
1125 list_add(&opp_table->node, &opp_tables);
1126 return opp_table;
1127
1128 put_clk:
1129 if (!IS_ERR(opp_table->clk))
1130 clk_put(opp_table->clk);
1131 remove_opp_dev:
1132 _remove_opp_dev(opp_dev, opp_table);
1133 err:
1134 kfree(opp_table);
1135 return ERR_PTR(ret);
1136 }
1137
_get_opp_table_kref(struct opp_table * opp_table)1138 void _get_opp_table_kref(struct opp_table *opp_table)
1139 {
1140 kref_get(&opp_table->kref);
1141 }
1142
_opp_get_opp_table(struct device * dev,int index)1143 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1144 {
1145 struct opp_table *opp_table;
1146
1147 /* Hold our table modification lock here */
1148 mutex_lock(&opp_table_lock);
1149
1150 opp_table = _find_opp_table_unlocked(dev);
1151 if (!IS_ERR(opp_table))
1152 goto unlock;
1153
1154 opp_table = _managed_opp(dev, index);
1155 if (opp_table) {
1156 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1157 dev_pm_opp_put_opp_table(opp_table);
1158 opp_table = ERR_PTR(-ENOMEM);
1159 }
1160 goto unlock;
1161 }
1162
1163 opp_table = _allocate_opp_table(dev, index);
1164
1165 unlock:
1166 mutex_unlock(&opp_table_lock);
1167
1168 return opp_table;
1169 }
1170
dev_pm_opp_get_opp_table(struct device * dev)1171 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1172 {
1173 return _opp_get_opp_table(dev, 0);
1174 }
1175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1176
dev_pm_opp_get_opp_table_indexed(struct device * dev,int index)1177 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1178 int index)
1179 {
1180 return _opp_get_opp_table(dev, index);
1181 }
1182
_opp_table_kref_release(struct kref * kref)1183 static void _opp_table_kref_release(struct kref *kref)
1184 {
1185 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1186 struct opp_device *opp_dev, *temp;
1187 int i;
1188
1189 /* Drop the lock as soon as we can */
1190 list_del(&opp_table->node);
1191 mutex_unlock(&opp_table_lock);
1192
1193 _of_clear_opp_table(opp_table);
1194
1195 /* Release clk */
1196 if (!IS_ERR(opp_table->clk))
1197 clk_put(opp_table->clk);
1198
1199 if (opp_table->paths) {
1200 for (i = 0; i < opp_table->path_count; i++)
1201 icc_put(opp_table->paths[i]);
1202 kfree(opp_table->paths);
1203 }
1204
1205 WARN_ON(!list_empty(&opp_table->opp_list));
1206
1207 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1208 /*
1209 * The OPP table is getting removed, drop the performance state
1210 * constraints.
1211 */
1212 if (opp_table->genpd_performance_state)
1213 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1214
1215 _remove_opp_dev(opp_dev, opp_table);
1216 }
1217
1218 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1219 mutex_destroy(&opp_table->lock);
1220 kfree(opp_table);
1221 }
1222
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1223 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1224 {
1225 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1226 &opp_table_lock);
1227 }
1228 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1229
_opp_free(struct dev_pm_opp * opp)1230 void _opp_free(struct dev_pm_opp *opp)
1231 {
1232 kfree(opp);
1233 }
1234
_opp_kref_release(struct dev_pm_opp * opp,struct opp_table * opp_table)1235 static void _opp_kref_release(struct dev_pm_opp *opp,
1236 struct opp_table *opp_table)
1237 {
1238 /*
1239 * Notify the changes in the availability of the operable
1240 * frequency/voltage list.
1241 */
1242 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1243 _of_opp_free_required_opps(opp_table, opp);
1244 opp_debug_remove_one(opp);
1245 list_del(&opp->node);
1246 kfree(opp);
1247 }
1248
_opp_kref_release_unlocked(struct kref * kref)1249 static void _opp_kref_release_unlocked(struct kref *kref)
1250 {
1251 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1252 struct opp_table *opp_table = opp->opp_table;
1253
1254 _opp_kref_release(opp, opp_table);
1255 }
1256
_opp_kref_release_locked(struct kref * kref)1257 static void _opp_kref_release_locked(struct kref *kref)
1258 {
1259 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1260 struct opp_table *opp_table = opp->opp_table;
1261
1262 _opp_kref_release(opp, opp_table);
1263 mutex_unlock(&opp_table->lock);
1264 }
1265
dev_pm_opp_get(struct dev_pm_opp * opp)1266 void dev_pm_opp_get(struct dev_pm_opp *opp)
1267 {
1268 kref_get(&opp->kref);
1269 }
1270
dev_pm_opp_put(struct dev_pm_opp * opp)1271 void dev_pm_opp_put(struct dev_pm_opp *opp)
1272 {
1273 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1274 &opp->opp_table->lock);
1275 }
1276 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1277
dev_pm_opp_put_unlocked(struct dev_pm_opp * opp)1278 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1279 {
1280 kref_put(&opp->kref, _opp_kref_release_unlocked);
1281 }
1282
1283 /**
1284 * dev_pm_opp_remove() - Remove an OPP from OPP table
1285 * @dev: device for which we do this operation
1286 * @freq: OPP to remove with matching 'freq'
1287 *
1288 * This function removes an opp from the opp table.
1289 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1290 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1291 {
1292 struct dev_pm_opp *opp;
1293 struct opp_table *opp_table;
1294 bool found = false;
1295
1296 opp_table = _find_opp_table(dev);
1297 if (IS_ERR(opp_table))
1298 return;
1299
1300 mutex_lock(&opp_table->lock);
1301
1302 list_for_each_entry(opp, &opp_table->opp_list, node) {
1303 if (opp->rate == freq) {
1304 found = true;
1305 break;
1306 }
1307 }
1308
1309 mutex_unlock(&opp_table->lock);
1310
1311 if (found) {
1312 dev_pm_opp_put(opp);
1313
1314 /* Drop the reference taken by dev_pm_opp_add() */
1315 dev_pm_opp_put_opp_table(opp_table);
1316 } else {
1317 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1318 __func__, freq);
1319 }
1320
1321 /* Drop the reference taken by _find_opp_table() */
1322 dev_pm_opp_put_opp_table(opp_table);
1323 }
1324 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1325
_opp_remove_all_static(struct opp_table * opp_table)1326 bool _opp_remove_all_static(struct opp_table *opp_table)
1327 {
1328 struct dev_pm_opp *opp, *tmp;
1329 bool ret = true;
1330
1331 mutex_lock(&opp_table->lock);
1332
1333 if (!opp_table->parsed_static_opps) {
1334 ret = false;
1335 goto unlock;
1336 }
1337
1338 if (--opp_table->parsed_static_opps)
1339 goto unlock;
1340
1341 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1342 if (!opp->dynamic)
1343 dev_pm_opp_put_unlocked(opp);
1344 }
1345
1346 unlock:
1347 mutex_unlock(&opp_table->lock);
1348
1349 return ret;
1350 }
1351
1352 /**
1353 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1354 * @dev: device for which we do this operation
1355 *
1356 * This function removes all dynamically created OPPs from the opp table.
1357 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1358 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1359 {
1360 struct opp_table *opp_table;
1361 struct dev_pm_opp *opp, *temp;
1362 int count = 0;
1363
1364 opp_table = _find_opp_table(dev);
1365 if (IS_ERR(opp_table))
1366 return;
1367
1368 mutex_lock(&opp_table->lock);
1369 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1370 if (opp->dynamic) {
1371 dev_pm_opp_put_unlocked(opp);
1372 count++;
1373 }
1374 }
1375 mutex_unlock(&opp_table->lock);
1376
1377 /* Drop the references taken by dev_pm_opp_add() */
1378 while (count--)
1379 dev_pm_opp_put_opp_table(opp_table);
1380
1381 /* Drop the reference taken by _find_opp_table() */
1382 dev_pm_opp_put_opp_table(opp_table);
1383 }
1384 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1385
_opp_allocate(struct opp_table * table)1386 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1387 {
1388 struct dev_pm_opp *opp;
1389 int supply_count, supply_size, icc_size;
1390
1391 /* Allocate space for at least one supply */
1392 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1393 supply_size = sizeof(*opp->supplies) * supply_count;
1394 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1395
1396 /* allocate new OPP node and supplies structures */
1397 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1398
1399 if (!opp)
1400 return NULL;
1401
1402 /* Put the supplies at the end of the OPP structure as an empty array */
1403 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1404 if (icc_size)
1405 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1406 INIT_LIST_HEAD(&opp->node);
1407
1408 return opp;
1409 }
1410
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1411 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1412 struct opp_table *opp_table)
1413 {
1414 struct regulator *reg;
1415 int i;
1416
1417 if (!opp_table->regulators)
1418 return true;
1419
1420 for (i = 0; i < opp_table->regulator_count; i++) {
1421 reg = opp_table->regulators[i];
1422
1423 if (!regulator_is_supported_voltage(reg,
1424 opp->supplies[i].u_volt_min,
1425 opp->supplies[i].u_volt_max)) {
1426 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1427 __func__, opp->supplies[i].u_volt_min,
1428 opp->supplies[i].u_volt_max);
1429 return false;
1430 }
1431 }
1432
1433 return true;
1434 }
1435
_opp_compare_key(struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1436 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1437 {
1438 if (opp1->rate != opp2->rate)
1439 return opp1->rate < opp2->rate ? -1 : 1;
1440 if (opp1->bandwidth && opp2->bandwidth &&
1441 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1442 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1443 if (opp1->level != opp2->level)
1444 return opp1->level < opp2->level ? -1 : 1;
1445 return 0;
1446 }
1447
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1448 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1449 struct opp_table *opp_table,
1450 struct list_head **head)
1451 {
1452 struct dev_pm_opp *opp;
1453 int opp_cmp;
1454
1455 /*
1456 * Insert new OPP in order of increasing frequency and discard if
1457 * already present.
1458 *
1459 * Need to use &opp_table->opp_list in the condition part of the 'for'
1460 * loop, don't replace it with head otherwise it will become an infinite
1461 * loop.
1462 */
1463 list_for_each_entry(opp, &opp_table->opp_list, node) {
1464 opp_cmp = _opp_compare_key(new_opp, opp);
1465 if (opp_cmp > 0) {
1466 *head = &opp->node;
1467 continue;
1468 }
1469
1470 if (opp_cmp < 0)
1471 return 0;
1472
1473 /* Duplicate OPPs */
1474 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1475 __func__, opp->rate, opp->supplies[0].u_volt,
1476 opp->available, new_opp->rate,
1477 new_opp->supplies[0].u_volt, new_opp->available);
1478
1479 /* Should we compare voltages for all regulators here ? */
1480 return opp->available &&
1481 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /*
1488 * Returns:
1489 * 0: On success. And appropriate error message for duplicate OPPs.
1490 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1491 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1492 * sure we don't print error messages unnecessarily if different parts of
1493 * kernel try to initialize the OPP table.
1494 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1495 * should be considered an error by the callers of _opp_add().
1496 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,bool rate_not_available)1497 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1498 struct opp_table *opp_table, bool rate_not_available)
1499 {
1500 struct list_head *head;
1501 int ret;
1502
1503 mutex_lock(&opp_table->lock);
1504 head = &opp_table->opp_list;
1505
1506 if (likely(!rate_not_available)) {
1507 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1508 if (ret) {
1509 mutex_unlock(&opp_table->lock);
1510 return ret;
1511 }
1512 }
1513
1514 list_add(&new_opp->node, head);
1515 mutex_unlock(&opp_table->lock);
1516
1517 new_opp->opp_table = opp_table;
1518 kref_init(&new_opp->kref);
1519
1520 opp_debug_create_one(new_opp, opp_table);
1521
1522 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1523 new_opp->available = false;
1524 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1525 __func__, new_opp->rate);
1526 }
1527
1528 return 0;
1529 }
1530
1531 /**
1532 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1533 * @opp_table: OPP table
1534 * @dev: device for which we do this operation
1535 * @freq: Frequency in Hz for this OPP
1536 * @u_volt: Voltage in uVolts for this OPP
1537 * @dynamic: Dynamically added OPPs.
1538 *
1539 * This function adds an opp definition to the opp table and returns status.
1540 * The opp is made available by default and it can be controlled using
1541 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1542 *
1543 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1544 * and freed by dev_pm_opp_of_remove_table.
1545 *
1546 * Return:
1547 * 0 On success OR
1548 * Duplicate OPPs (both freq and volt are same) and opp->available
1549 * -EEXIST Freq are same and volt are different OR
1550 * Duplicate OPPs (both freq and volt are same) and !opp->available
1551 * -ENOMEM Memory allocation failure
1552 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)1553 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1554 unsigned long freq, long u_volt, bool dynamic)
1555 {
1556 struct dev_pm_opp *new_opp;
1557 unsigned long tol;
1558 int ret;
1559
1560 new_opp = _opp_allocate(opp_table);
1561 if (!new_opp)
1562 return -ENOMEM;
1563
1564 /* populate the opp table */
1565 new_opp->rate = freq;
1566 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1567 new_opp->supplies[0].u_volt = u_volt;
1568 new_opp->supplies[0].u_volt_min = u_volt - tol;
1569 new_opp->supplies[0].u_volt_max = u_volt + tol;
1570 new_opp->available = true;
1571 new_opp->dynamic = dynamic;
1572
1573 ret = _opp_add(dev, new_opp, opp_table, false);
1574 if (ret) {
1575 /* Don't return error for duplicate OPPs */
1576 if (ret == -EBUSY)
1577 ret = 0;
1578 goto free_opp;
1579 }
1580
1581 /*
1582 * Notify the changes in the availability of the operable
1583 * frequency/voltage list.
1584 */
1585 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1586 return 0;
1587
1588 free_opp:
1589 _opp_free(new_opp);
1590
1591 return ret;
1592 }
1593
1594 /**
1595 * dev_pm_opp_set_supported_hw() - Set supported platforms
1596 * @dev: Device for which supported-hw has to be set.
1597 * @versions: Array of hierarchy of versions to match.
1598 * @count: Number of elements in the array.
1599 *
1600 * This is required only for the V2 bindings, and it enables a platform to
1601 * specify the hierarchy of versions it supports. OPP layer will then enable
1602 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1603 * property.
1604 */
dev_pm_opp_set_supported_hw(struct device * dev,const u32 * versions,unsigned int count)1605 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1606 const u32 *versions, unsigned int count)
1607 {
1608 struct opp_table *opp_table;
1609
1610 opp_table = dev_pm_opp_get_opp_table(dev);
1611 if (IS_ERR(opp_table))
1612 return opp_table;
1613
1614 /* Make sure there are no concurrent readers while updating opp_table */
1615 WARN_ON(!list_empty(&opp_table->opp_list));
1616
1617 /* Another CPU that shares the OPP table has set the property ? */
1618 if (opp_table->supported_hw)
1619 return opp_table;
1620
1621 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1622 GFP_KERNEL);
1623 if (!opp_table->supported_hw) {
1624 dev_pm_opp_put_opp_table(opp_table);
1625 return ERR_PTR(-ENOMEM);
1626 }
1627
1628 opp_table->supported_hw_count = count;
1629
1630 return opp_table;
1631 }
1632 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1633
1634 /**
1635 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1636 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1637 *
1638 * This is required only for the V2 bindings, and is called for a matching
1639 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1640 * will not be freed.
1641 */
dev_pm_opp_put_supported_hw(struct opp_table * opp_table)1642 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1643 {
1644 /* Make sure there are no concurrent readers while updating opp_table */
1645 WARN_ON(!list_empty(&opp_table->opp_list));
1646
1647 kfree(opp_table->supported_hw);
1648 opp_table->supported_hw = NULL;
1649 opp_table->supported_hw_count = 0;
1650
1651 dev_pm_opp_put_opp_table(opp_table);
1652 }
1653 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1654
1655 /**
1656 * dev_pm_opp_set_prop_name() - Set prop-extn name
1657 * @dev: Device for which the prop-name has to be set.
1658 * @name: name to postfix to properties.
1659 *
1660 * This is required only for the V2 bindings, and it enables a platform to
1661 * specify the extn to be used for certain property names. The properties to
1662 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1663 * should postfix the property name with -<name> while looking for them.
1664 */
dev_pm_opp_set_prop_name(struct device * dev,const char * name)1665 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1666 {
1667 struct opp_table *opp_table;
1668
1669 opp_table = dev_pm_opp_get_opp_table(dev);
1670 if (IS_ERR(opp_table))
1671 return opp_table;
1672
1673 /* Make sure there are no concurrent readers while updating opp_table */
1674 WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676 /* Another CPU that shares the OPP table has set the property ? */
1677 if (opp_table->prop_name)
1678 return opp_table;
1679
1680 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1681 if (!opp_table->prop_name) {
1682 dev_pm_opp_put_opp_table(opp_table);
1683 return ERR_PTR(-ENOMEM);
1684 }
1685
1686 return opp_table;
1687 }
1688 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1689
1690 /**
1691 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1692 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1693 *
1694 * This is required only for the V2 bindings, and is called for a matching
1695 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1696 * will not be freed.
1697 */
dev_pm_opp_put_prop_name(struct opp_table * opp_table)1698 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1699 {
1700 /* Make sure there are no concurrent readers while updating opp_table */
1701 WARN_ON(!list_empty(&opp_table->opp_list));
1702
1703 kfree(opp_table->prop_name);
1704 opp_table->prop_name = NULL;
1705
1706 dev_pm_opp_put_opp_table(opp_table);
1707 }
1708 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1709
_allocate_set_opp_data(struct opp_table * opp_table)1710 static int _allocate_set_opp_data(struct opp_table *opp_table)
1711 {
1712 struct dev_pm_set_opp_data *data;
1713 int len, count = opp_table->regulator_count;
1714
1715 if (WARN_ON(!opp_table->regulators))
1716 return -EINVAL;
1717
1718 /* space for set_opp_data */
1719 len = sizeof(*data);
1720
1721 /* space for old_opp.supplies and new_opp.supplies */
1722 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1723
1724 data = kzalloc(len, GFP_KERNEL);
1725 if (!data)
1726 return -ENOMEM;
1727
1728 data->old_opp.supplies = (void *)(data + 1);
1729 data->new_opp.supplies = data->old_opp.supplies + count;
1730
1731 opp_table->set_opp_data = data;
1732
1733 return 0;
1734 }
1735
_free_set_opp_data(struct opp_table * opp_table)1736 static void _free_set_opp_data(struct opp_table *opp_table)
1737 {
1738 kfree(opp_table->set_opp_data);
1739 opp_table->set_opp_data = NULL;
1740 }
1741
1742 /**
1743 * dev_pm_opp_set_regulators() - Set regulator names for the device
1744 * @dev: Device for which regulator name is being set.
1745 * @names: Array of pointers to the names of the regulator.
1746 * @count: Number of regulators.
1747 *
1748 * In order to support OPP switching, OPP layer needs to know the name of the
1749 * device's regulators, as the core would be required to switch voltages as
1750 * well.
1751 *
1752 * This must be called before any OPPs are initialized for the device.
1753 */
dev_pm_opp_set_regulators(struct device * dev,const char * const names[],unsigned int count)1754 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1755 const char * const names[],
1756 unsigned int count)
1757 {
1758 struct opp_table *opp_table;
1759 struct regulator *reg;
1760 int ret, i;
1761
1762 opp_table = dev_pm_opp_get_opp_table(dev);
1763 if (IS_ERR(opp_table))
1764 return opp_table;
1765
1766 /* This should be called before OPPs are initialized */
1767 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1768 ret = -EBUSY;
1769 goto err;
1770 }
1771
1772 /* Another CPU that shares the OPP table has set the regulators ? */
1773 if (opp_table->regulators)
1774 return opp_table;
1775
1776 opp_table->regulators = kmalloc_array(count,
1777 sizeof(*opp_table->regulators),
1778 GFP_KERNEL);
1779 if (!opp_table->regulators) {
1780 ret = -ENOMEM;
1781 goto err;
1782 }
1783
1784 for (i = 0; i < count; i++) {
1785 reg = regulator_get_optional(dev, names[i]);
1786 if (IS_ERR(reg)) {
1787 ret = PTR_ERR(reg);
1788 if (ret != -EPROBE_DEFER)
1789 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1790 __func__, names[i], ret);
1791 goto free_regulators;
1792 }
1793
1794 opp_table->regulators[i] = reg;
1795 }
1796
1797 opp_table->regulator_count = count;
1798
1799 /* Allocate block only once to pass to set_opp() routines */
1800 ret = _allocate_set_opp_data(opp_table);
1801 if (ret)
1802 goto free_regulators;
1803
1804 return opp_table;
1805
1806 free_regulators:
1807 while (i != 0)
1808 regulator_put(opp_table->regulators[--i]);
1809
1810 kfree(opp_table->regulators);
1811 opp_table->regulators = NULL;
1812 opp_table->regulator_count = -1;
1813 err:
1814 dev_pm_opp_put_opp_table(opp_table);
1815
1816 return ERR_PTR(ret);
1817 }
1818 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1819
1820 /**
1821 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1822 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1823 */
dev_pm_opp_put_regulators(struct opp_table * opp_table)1824 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1825 {
1826 int i;
1827
1828 if (!opp_table->regulators)
1829 goto put_opp_table;
1830
1831 /* Make sure there are no concurrent readers while updating opp_table */
1832 WARN_ON(!list_empty(&opp_table->opp_list));
1833
1834 if (opp_table->enabled) {
1835 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1836 regulator_disable(opp_table->regulators[i]);
1837 }
1838
1839 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1840 regulator_put(opp_table->regulators[i]);
1841
1842 _free_set_opp_data(opp_table);
1843
1844 kfree(opp_table->regulators);
1845 opp_table->regulators = NULL;
1846 opp_table->regulator_count = -1;
1847
1848 put_opp_table:
1849 dev_pm_opp_put_opp_table(opp_table);
1850 }
1851 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1852
1853 /**
1854 * dev_pm_opp_set_clkname() - Set clk name for the device
1855 * @dev: Device for which clk name is being set.
1856 * @name: Clk name.
1857 *
1858 * In order to support OPP switching, OPP layer needs to get pointer to the
1859 * clock for the device. Simple cases work fine without using this routine (i.e.
1860 * by passing connection-id as NULL), but for a device with multiple clocks
1861 * available, the OPP core needs to know the exact name of the clk to use.
1862 *
1863 * This must be called before any OPPs are initialized for the device.
1864 */
dev_pm_opp_set_clkname(struct device * dev,const char * name)1865 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1866 {
1867 struct opp_table *opp_table;
1868 int ret;
1869
1870 opp_table = dev_pm_opp_get_opp_table(dev);
1871 if (IS_ERR(opp_table))
1872 return opp_table;
1873
1874 /* This should be called before OPPs are initialized */
1875 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1876 ret = -EBUSY;
1877 goto err;
1878 }
1879
1880 /* Already have default clk set, free it */
1881 if (!IS_ERR(opp_table->clk))
1882 clk_put(opp_table->clk);
1883
1884 /* Find clk for the device */
1885 opp_table->clk = clk_get(dev, name);
1886 if (IS_ERR(opp_table->clk)) {
1887 ret = PTR_ERR(opp_table->clk);
1888 if (ret != -EPROBE_DEFER) {
1889 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1890 ret);
1891 }
1892 goto err;
1893 }
1894
1895 return opp_table;
1896
1897 err:
1898 dev_pm_opp_put_opp_table(opp_table);
1899
1900 return ERR_PTR(ret);
1901 }
1902 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1903
1904 /**
1905 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1906 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1907 */
dev_pm_opp_put_clkname(struct opp_table * opp_table)1908 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1909 {
1910 /* Make sure there are no concurrent readers while updating opp_table */
1911 WARN_ON(!list_empty(&opp_table->opp_list));
1912
1913 clk_put(opp_table->clk);
1914 opp_table->clk = ERR_PTR(-EINVAL);
1915
1916 dev_pm_opp_put_opp_table(opp_table);
1917 }
1918 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1919
1920 /**
1921 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1922 * @dev: Device for which the helper is getting registered.
1923 * @set_opp: Custom set OPP helper.
1924 *
1925 * This is useful to support complex platforms (like platforms with multiple
1926 * regulators per device), instead of the generic OPP set rate helper.
1927 *
1928 * This must be called before any OPPs are initialized for the device.
1929 */
dev_pm_opp_register_set_opp_helper(struct device * dev,int (* set_opp)(struct dev_pm_set_opp_data * data))1930 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1931 int (*set_opp)(struct dev_pm_set_opp_data *data))
1932 {
1933 struct opp_table *opp_table;
1934
1935 if (!set_opp)
1936 return ERR_PTR(-EINVAL);
1937
1938 opp_table = dev_pm_opp_get_opp_table(dev);
1939 if (IS_ERR(opp_table))
1940 return opp_table;
1941
1942 /* This should be called before OPPs are initialized */
1943 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1944 dev_pm_opp_put_opp_table(opp_table);
1945 return ERR_PTR(-EBUSY);
1946 }
1947
1948 /* Another CPU that shares the OPP table has set the helper ? */
1949 if (!opp_table->set_opp)
1950 opp_table->set_opp = set_opp;
1951
1952 return opp_table;
1953 }
1954 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1955
1956 /**
1957 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1958 * set_opp helper
1959 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1960 *
1961 * Release resources blocked for platform specific set_opp helper.
1962 */
dev_pm_opp_unregister_set_opp_helper(struct opp_table * opp_table)1963 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1964 {
1965 /* Make sure there are no concurrent readers while updating opp_table */
1966 WARN_ON(!list_empty(&opp_table->opp_list));
1967
1968 opp_table->set_opp = NULL;
1969 dev_pm_opp_put_opp_table(opp_table);
1970 }
1971 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1972
_opp_detach_genpd(struct opp_table * opp_table)1973 static void _opp_detach_genpd(struct opp_table *opp_table)
1974 {
1975 int index;
1976
1977 if (!opp_table->genpd_virt_devs)
1978 return;
1979
1980 for (index = 0; index < opp_table->required_opp_count; index++) {
1981 if (!opp_table->genpd_virt_devs[index])
1982 continue;
1983
1984 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1985 opp_table->genpd_virt_devs[index] = NULL;
1986 }
1987
1988 kfree(opp_table->genpd_virt_devs);
1989 opp_table->genpd_virt_devs = NULL;
1990 }
1991
1992 /**
1993 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1994 * @dev: Consumer device for which the genpd is getting attached.
1995 * @names: Null terminated array of pointers containing names of genpd to attach.
1996 * @virt_devs: Pointer to return the array of virtual devices.
1997 *
1998 * Multiple generic power domains for a device are supported with the help of
1999 * virtual genpd devices, which are created for each consumer device - genpd
2000 * pair. These are the device structures which are attached to the power domain
2001 * and are required by the OPP core to set the performance state of the genpd.
2002 * The same API also works for the case where single genpd is available and so
2003 * we don't need to support that separately.
2004 *
2005 * This helper will normally be called by the consumer driver of the device
2006 * "dev", as only that has details of the genpd names.
2007 *
2008 * This helper needs to be called once with a list of all genpd to attach.
2009 * Otherwise the original device structure will be used instead by the OPP core.
2010 *
2011 * The order of entries in the names array must match the order in which
2012 * "required-opps" are added in DT.
2013 */
dev_pm_opp_attach_genpd(struct device * dev,const char ** names,struct device *** virt_devs)2014 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2015 const char **names, struct device ***virt_devs)
2016 {
2017 struct opp_table *opp_table;
2018 struct device *virt_dev;
2019 int index = 0, ret = -EINVAL;
2020 const char **name = names;
2021
2022 opp_table = dev_pm_opp_get_opp_table(dev);
2023 if (IS_ERR(opp_table))
2024 return opp_table;
2025
2026 if (opp_table->genpd_virt_devs)
2027 return opp_table;
2028
2029 /*
2030 * If the genpd's OPP table isn't already initialized, parsing of the
2031 * required-opps fail for dev. We should retry this after genpd's OPP
2032 * table is added.
2033 */
2034 if (!opp_table->required_opp_count) {
2035 ret = -EPROBE_DEFER;
2036 goto put_table;
2037 }
2038
2039 mutex_lock(&opp_table->genpd_virt_dev_lock);
2040
2041 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2042 sizeof(*opp_table->genpd_virt_devs),
2043 GFP_KERNEL);
2044 if (!opp_table->genpd_virt_devs)
2045 goto unlock;
2046
2047 while (*name) {
2048 if (index >= opp_table->required_opp_count) {
2049 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2050 *name, opp_table->required_opp_count, index);
2051 goto err;
2052 }
2053
2054 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2055 if (IS_ERR_OR_NULL(virt_dev)) {
2056 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2057 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2058 goto err;
2059 }
2060
2061 opp_table->genpd_virt_devs[index] = virt_dev;
2062 index++;
2063 name++;
2064 }
2065
2066 if (virt_devs)
2067 *virt_devs = opp_table->genpd_virt_devs;
2068 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2069
2070 return opp_table;
2071
2072 err:
2073 _opp_detach_genpd(opp_table);
2074 unlock:
2075 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2076
2077 put_table:
2078 dev_pm_opp_put_opp_table(opp_table);
2079
2080 return ERR_PTR(ret);
2081 }
2082 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2083
2084 /**
2085 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2086 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2087 *
2088 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2089 * OPP table.
2090 */
dev_pm_opp_detach_genpd(struct opp_table * opp_table)2091 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2092 {
2093 /*
2094 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2095 * used in parallel.
2096 */
2097 mutex_lock(&opp_table->genpd_virt_dev_lock);
2098 _opp_detach_genpd(opp_table);
2099 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2100
2101 dev_pm_opp_put_opp_table(opp_table);
2102 }
2103 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2104
2105 /**
2106 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2107 * @src_table: OPP table which has dst_table as one of its required OPP table.
2108 * @dst_table: Required OPP table of the src_table.
2109 * @pstate: Current performance state of the src_table.
2110 *
2111 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2112 * "required-opps" property of the OPP (present in @src_table) which has
2113 * performance state set to @pstate.
2114 *
2115 * Return: Zero or positive performance state on success, otherwise negative
2116 * value on errors.
2117 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2118 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2119 struct opp_table *dst_table,
2120 unsigned int pstate)
2121 {
2122 struct dev_pm_opp *opp;
2123 int dest_pstate = -EINVAL;
2124 int i;
2125
2126 /*
2127 * Normally the src_table will have the "required_opps" property set to
2128 * point to one of the OPPs in the dst_table, but in some cases the
2129 * genpd and its master have one to one mapping of performance states
2130 * and so none of them have the "required-opps" property set. Return the
2131 * pstate of the src_table as it is in such cases.
2132 */
2133 if (!src_table->required_opp_count)
2134 return pstate;
2135
2136 for (i = 0; i < src_table->required_opp_count; i++) {
2137 if (src_table->required_opp_tables[i]->np == dst_table->np)
2138 break;
2139 }
2140
2141 if (unlikely(i == src_table->required_opp_count)) {
2142 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2143 __func__, src_table, dst_table);
2144 return -EINVAL;
2145 }
2146
2147 mutex_lock(&src_table->lock);
2148
2149 list_for_each_entry(opp, &src_table->opp_list, node) {
2150 if (opp->pstate == pstate) {
2151 dest_pstate = opp->required_opps[i]->pstate;
2152 goto unlock;
2153 }
2154 }
2155
2156 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2157 dst_table);
2158
2159 unlock:
2160 mutex_unlock(&src_table->lock);
2161
2162 return dest_pstate;
2163 }
2164
2165 /**
2166 * dev_pm_opp_add() - Add an OPP table from a table definitions
2167 * @dev: device for which we do this operation
2168 * @freq: Frequency in Hz for this OPP
2169 * @u_volt: Voltage in uVolts for this OPP
2170 *
2171 * This function adds an opp definition to the opp table and returns status.
2172 * The opp is made available by default and it can be controlled using
2173 * dev_pm_opp_enable/disable functions.
2174 *
2175 * Return:
2176 * 0 On success OR
2177 * Duplicate OPPs (both freq and volt are same) and opp->available
2178 * -EEXIST Freq are same and volt are different OR
2179 * Duplicate OPPs (both freq and volt are same) and !opp->available
2180 * -ENOMEM Memory allocation failure
2181 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2182 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2183 {
2184 struct opp_table *opp_table;
2185 int ret;
2186
2187 opp_table = dev_pm_opp_get_opp_table(dev);
2188 if (IS_ERR(opp_table))
2189 return PTR_ERR(opp_table);
2190
2191 /* Fix regulator count for dynamic OPPs */
2192 opp_table->regulator_count = 1;
2193
2194 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2195 if (ret)
2196 dev_pm_opp_put_opp_table(opp_table);
2197
2198 return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2201
2202 /**
2203 * _opp_set_availability() - helper to set the availability of an opp
2204 * @dev: device for which we do this operation
2205 * @freq: OPP frequency to modify availability
2206 * @availability_req: availability status requested for this opp
2207 *
2208 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2209 * which is isolated here.
2210 *
2211 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2212 * copy operation, returns 0 if no modification was done OR modification was
2213 * successful.
2214 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2215 static int _opp_set_availability(struct device *dev, unsigned long freq,
2216 bool availability_req)
2217 {
2218 struct opp_table *opp_table;
2219 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2220 int r = 0;
2221
2222 /* Find the opp_table */
2223 opp_table = _find_opp_table(dev);
2224 if (IS_ERR(opp_table)) {
2225 r = PTR_ERR(opp_table);
2226 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2227 return r;
2228 }
2229
2230 mutex_lock(&opp_table->lock);
2231
2232 /* Do we have the frequency? */
2233 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2234 if (tmp_opp->rate == freq) {
2235 opp = tmp_opp;
2236 break;
2237 }
2238 }
2239
2240 if (IS_ERR(opp)) {
2241 r = PTR_ERR(opp);
2242 goto unlock;
2243 }
2244
2245 /* Is update really needed? */
2246 if (opp->available == availability_req)
2247 goto unlock;
2248
2249 opp->available = availability_req;
2250
2251 dev_pm_opp_get(opp);
2252 mutex_unlock(&opp_table->lock);
2253
2254 /* Notify the change of the OPP availability */
2255 if (availability_req)
2256 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2257 opp);
2258 else
2259 blocking_notifier_call_chain(&opp_table->head,
2260 OPP_EVENT_DISABLE, opp);
2261
2262 dev_pm_opp_put(opp);
2263 goto put_table;
2264
2265 unlock:
2266 mutex_unlock(&opp_table->lock);
2267 put_table:
2268 dev_pm_opp_put_opp_table(opp_table);
2269 return r;
2270 }
2271
2272 /**
2273 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2274 * @dev: device for which we do this operation
2275 * @freq: OPP frequency to adjust voltage of
2276 * @u_volt: new OPP target voltage
2277 * @u_volt_min: new OPP min voltage
2278 * @u_volt_max: new OPP max voltage
2279 *
2280 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2281 * copy operation, returns 0 if no modifcation was done OR modification was
2282 * successful.
2283 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2284 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2285 unsigned long u_volt, unsigned long u_volt_min,
2286 unsigned long u_volt_max)
2287
2288 {
2289 struct opp_table *opp_table;
2290 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2291 int r = 0;
2292
2293 /* Find the opp_table */
2294 opp_table = _find_opp_table(dev);
2295 if (IS_ERR(opp_table)) {
2296 r = PTR_ERR(opp_table);
2297 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2298 return r;
2299 }
2300
2301 mutex_lock(&opp_table->lock);
2302
2303 /* Do we have the frequency? */
2304 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2305 if (tmp_opp->rate == freq) {
2306 opp = tmp_opp;
2307 break;
2308 }
2309 }
2310
2311 if (IS_ERR(opp)) {
2312 r = PTR_ERR(opp);
2313 goto adjust_unlock;
2314 }
2315
2316 /* Is update really needed? */
2317 if (opp->supplies->u_volt == u_volt)
2318 goto adjust_unlock;
2319
2320 opp->supplies->u_volt = u_volt;
2321 opp->supplies->u_volt_min = u_volt_min;
2322 opp->supplies->u_volt_max = u_volt_max;
2323
2324 dev_pm_opp_get(opp);
2325 mutex_unlock(&opp_table->lock);
2326
2327 /* Notify the voltage change of the OPP */
2328 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2329 opp);
2330
2331 dev_pm_opp_put(opp);
2332 goto adjust_put_table;
2333
2334 adjust_unlock:
2335 mutex_unlock(&opp_table->lock);
2336 adjust_put_table:
2337 dev_pm_opp_put_opp_table(opp_table);
2338 return r;
2339 }
2340 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2341
2342 /**
2343 * dev_pm_opp_enable() - Enable a specific OPP
2344 * @dev: device for which we do this operation
2345 * @freq: OPP frequency to enable
2346 *
2347 * Enables a provided opp. If the operation is valid, this returns 0, else the
2348 * corresponding error value. It is meant to be used for users an OPP available
2349 * after being temporarily made unavailable with dev_pm_opp_disable.
2350 *
2351 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2352 * copy operation, returns 0 if no modification was done OR modification was
2353 * successful.
2354 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2355 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2356 {
2357 return _opp_set_availability(dev, freq, true);
2358 }
2359 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2360
2361 /**
2362 * dev_pm_opp_disable() - Disable a specific OPP
2363 * @dev: device for which we do this operation
2364 * @freq: OPP frequency to disable
2365 *
2366 * Disables a provided opp. If the operation is valid, this returns
2367 * 0, else the corresponding error value. It is meant to be a temporary
2368 * control by users to make this OPP not available until the circumstances are
2369 * right to make it available again (with a call to dev_pm_opp_enable).
2370 *
2371 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2372 * copy operation, returns 0 if no modification was done OR modification was
2373 * successful.
2374 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2375 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2376 {
2377 return _opp_set_availability(dev, freq, false);
2378 }
2379 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2380
2381 /**
2382 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2383 * @dev: Device for which notifier needs to be registered
2384 * @nb: Notifier block to be registered
2385 *
2386 * Return: 0 on success or a negative error value.
2387 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2388 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2389 {
2390 struct opp_table *opp_table;
2391 int ret;
2392
2393 opp_table = _find_opp_table(dev);
2394 if (IS_ERR(opp_table))
2395 return PTR_ERR(opp_table);
2396
2397 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2398
2399 dev_pm_opp_put_opp_table(opp_table);
2400
2401 return ret;
2402 }
2403 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2404
2405 /**
2406 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2407 * @dev: Device for which notifier needs to be unregistered
2408 * @nb: Notifier block to be unregistered
2409 *
2410 * Return: 0 on success or a negative error value.
2411 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2412 int dev_pm_opp_unregister_notifier(struct device *dev,
2413 struct notifier_block *nb)
2414 {
2415 struct opp_table *opp_table;
2416 int ret;
2417
2418 opp_table = _find_opp_table(dev);
2419 if (IS_ERR(opp_table))
2420 return PTR_ERR(opp_table);
2421
2422 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2423
2424 dev_pm_opp_put_opp_table(opp_table);
2425
2426 return ret;
2427 }
2428 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2429
2430 /**
2431 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2432 * @dev: device pointer used to lookup OPP table.
2433 *
2434 * Free both OPPs created using static entries present in DT and the
2435 * dynamically added entries.
2436 */
dev_pm_opp_remove_table(struct device * dev)2437 void dev_pm_opp_remove_table(struct device *dev)
2438 {
2439 struct opp_table *opp_table;
2440
2441 /* Check for existing table for 'dev' */
2442 opp_table = _find_opp_table(dev);
2443 if (IS_ERR(opp_table)) {
2444 int error = PTR_ERR(opp_table);
2445
2446 if (error != -ENODEV)
2447 WARN(1, "%s: opp_table: %d\n",
2448 IS_ERR_OR_NULL(dev) ?
2449 "Invalid device" : dev_name(dev),
2450 error);
2451 return;
2452 }
2453
2454 /*
2455 * Drop the extra reference only if the OPP table was successfully added
2456 * with dev_pm_opp_of_add_table() earlier.
2457 **/
2458 if (_opp_remove_all_static(opp_table))
2459 dev_pm_opp_put_opp_table(opp_table);
2460
2461 /* Drop reference taken by _find_opp_table() */
2462 dev_pm_opp_put_opp_table(opp_table);
2463 }
2464 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2465