1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * commctrl.c
15 *
16 * Abstract: Contains all routines for control of the AFA comm layer
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/blkdev.h>
28 #include <linux/compat.h>
29 #include <linux/delay.h> /* ssleep prototype */
30 #include <linux/kthread.h>
31 #include <linux/uaccess.h>
32 #include <scsi/scsi_host.h>
33
34 #include "aacraid.h"
35
36 # define AAC_DEBUG_PREAMBLE KERN_INFO
37 # define AAC_DEBUG_POSTAMBLE
38 /**
39 * ioctl_send_fib - send a FIB from userspace
40 * @dev: adapter is being processed
41 * @arg: arguments to the ioctl call
42 *
43 * This routine sends a fib to the adapter on behalf of a user level
44 * program.
45 */
ioctl_send_fib(struct aac_dev * dev,void __user * arg)46 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
47 {
48 struct hw_fib * kfib;
49 struct fib *fibptr;
50 struct hw_fib * hw_fib = (struct hw_fib *)0;
51 dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
52 unsigned int size, osize;
53 int retval;
54
55 if (dev->in_reset) {
56 return -EBUSY;
57 }
58 fibptr = aac_fib_alloc(dev);
59 if(fibptr == NULL) {
60 return -ENOMEM;
61 }
62
63 kfib = fibptr->hw_fib_va;
64 /*
65 * First copy in the header so that we can check the size field.
66 */
67 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
68 aac_fib_free(fibptr);
69 return -EFAULT;
70 }
71 /*
72 * Since we copy based on the fib header size, make sure that we
73 * will not overrun the buffer when we copy the memory. Return
74 * an error if we would.
75 */
76 osize = size = le16_to_cpu(kfib->header.Size) +
77 sizeof(struct aac_fibhdr);
78 if (size < le16_to_cpu(kfib->header.SenderSize))
79 size = le16_to_cpu(kfib->header.SenderSize);
80 if (size > dev->max_fib_size) {
81 dma_addr_t daddr;
82
83 if (size > 2048) {
84 retval = -EINVAL;
85 goto cleanup;
86 }
87
88 kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
89 GFP_KERNEL);
90 if (!kfib) {
91 retval = -ENOMEM;
92 goto cleanup;
93 }
94
95 /* Highjack the hw_fib */
96 hw_fib = fibptr->hw_fib_va;
97 hw_fib_pa = fibptr->hw_fib_pa;
98 fibptr->hw_fib_va = kfib;
99 fibptr->hw_fib_pa = daddr;
100 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 memcpy(kfib, hw_fib, dev->max_fib_size);
102 }
103
104 if (copy_from_user(kfib, arg, size)) {
105 retval = -EFAULT;
106 goto cleanup;
107 }
108
109 /* Sanity check the second copy */
110 if ((osize != le16_to_cpu(kfib->header.Size) +
111 sizeof(struct aac_fibhdr))
112 || (size < le16_to_cpu(kfib->header.SenderSize))) {
113 retval = -EINVAL;
114 goto cleanup;
115 }
116
117 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
118 aac_adapter_interrupt(dev);
119 /*
120 * Since we didn't really send a fib, zero out the state to allow
121 * cleanup code not to assert.
122 */
123 kfib->header.XferState = 0;
124 } else {
125 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
126 le16_to_cpu(kfib->header.Size) , FsaNormal,
127 1, 1, NULL, NULL);
128 if (retval) {
129 goto cleanup;
130 }
131 if (aac_fib_complete(fibptr) != 0) {
132 retval = -EINVAL;
133 goto cleanup;
134 }
135 }
136 /*
137 * Make sure that the size returned by the adapter (which includes
138 * the header) is less than or equal to the size of a fib, so we
139 * don't corrupt application data. Then copy that size to the user
140 * buffer. (Don't try to add the header information again, since it
141 * was already included by the adapter.)
142 */
143
144 retval = 0;
145 if (copy_to_user(arg, (void *)kfib, size))
146 retval = -EFAULT;
147 cleanup:
148 if (hw_fib) {
149 dma_free_coherent(&dev->pdev->dev, size, kfib,
150 fibptr->hw_fib_pa);
151 fibptr->hw_fib_pa = hw_fib_pa;
152 fibptr->hw_fib_va = hw_fib;
153 }
154 if (retval != -ERESTARTSYS)
155 aac_fib_free(fibptr);
156 return retval;
157 }
158
159 /**
160 * open_getadapter_fib - Get the next fib
161 * @dev: adapter is being processed
162 * @arg: arguments to the open call
163 *
164 * This routine will get the next Fib, if available, from the AdapterFibContext
165 * passed in from the user.
166 */
open_getadapter_fib(struct aac_dev * dev,void __user * arg)167 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
168 {
169 struct aac_fib_context * fibctx;
170 int status;
171
172 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
173 if (fibctx == NULL) {
174 status = -ENOMEM;
175 } else {
176 unsigned long flags;
177 struct list_head * entry;
178 struct aac_fib_context * context;
179
180 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
181 fibctx->size = sizeof(struct aac_fib_context);
182 /*
183 * Yes yes, I know this could be an index, but we have a
184 * better guarantee of uniqueness for the locked loop below.
185 * Without the aid of a persistent history, this also helps
186 * reduce the chance that the opaque context would be reused.
187 */
188 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
189 /*
190 * Initialize the mutex used to wait for the next AIF.
191 */
192 init_completion(&fibctx->completion);
193 fibctx->wait = 0;
194 /*
195 * Initialize the fibs and set the count of fibs on
196 * the list to 0.
197 */
198 fibctx->count = 0;
199 INIT_LIST_HEAD(&fibctx->fib_list);
200 fibctx->jiffies = jiffies/HZ;
201 /*
202 * Now add this context onto the adapter's
203 * AdapterFibContext list.
204 */
205 spin_lock_irqsave(&dev->fib_lock, flags);
206 /* Ensure that we have a unique identifier */
207 entry = dev->fib_list.next;
208 while (entry != &dev->fib_list) {
209 context = list_entry(entry, struct aac_fib_context, next);
210 if (context->unique == fibctx->unique) {
211 /* Not unique (32 bits) */
212 fibctx->unique++;
213 entry = dev->fib_list.next;
214 } else {
215 entry = entry->next;
216 }
217 }
218 list_add_tail(&fibctx->next, &dev->fib_list);
219 spin_unlock_irqrestore(&dev->fib_lock, flags);
220 if (copy_to_user(arg, &fibctx->unique,
221 sizeof(fibctx->unique))) {
222 status = -EFAULT;
223 } else {
224 status = 0;
225 }
226 }
227 return status;
228 }
229
230 struct compat_fib_ioctl {
231 u32 fibctx;
232 s32 wait;
233 compat_uptr_t fib;
234 };
235
236 /**
237 * next_getadapter_fib - get the next fib
238 * @dev: adapter to use
239 * @arg: ioctl argument
240 *
241 * This routine will get the next Fib, if available, from the AdapterFibContext
242 * passed in from the user.
243 */
next_getadapter_fib(struct aac_dev * dev,void __user * arg)244 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
245 {
246 struct fib_ioctl f;
247 struct fib *fib;
248 struct aac_fib_context *fibctx;
249 int status;
250 struct list_head * entry;
251 unsigned long flags;
252
253 if (in_compat_syscall()) {
254 struct compat_fib_ioctl cf;
255
256 if (copy_from_user(&cf, arg, sizeof(struct compat_fib_ioctl)))
257 return -EFAULT;
258
259 f.fibctx = cf.fibctx;
260 f.wait = cf.wait;
261 f.fib = compat_ptr(cf.fib);
262 } else {
263 if (copy_from_user(&f, arg, sizeof(struct fib_ioctl)))
264 return -EFAULT;
265 }
266 /*
267 * Verify that the HANDLE passed in was a valid AdapterFibContext
268 *
269 * Search the list of AdapterFibContext addresses on the adapter
270 * to be sure this is a valid address
271 */
272 spin_lock_irqsave(&dev->fib_lock, flags);
273 entry = dev->fib_list.next;
274 fibctx = NULL;
275
276 while (entry != &dev->fib_list) {
277 fibctx = list_entry(entry, struct aac_fib_context, next);
278 /*
279 * Extract the AdapterFibContext from the Input parameters.
280 */
281 if (fibctx->unique == f.fibctx) { /* We found a winner */
282 break;
283 }
284 entry = entry->next;
285 fibctx = NULL;
286 }
287 if (!fibctx) {
288 spin_unlock_irqrestore(&dev->fib_lock, flags);
289 dprintk ((KERN_INFO "Fib Context not found\n"));
290 return -EINVAL;
291 }
292
293 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
294 (fibctx->size != sizeof(struct aac_fib_context))) {
295 spin_unlock_irqrestore(&dev->fib_lock, flags);
296 dprintk ((KERN_INFO "Fib Context corrupt?\n"));
297 return -EINVAL;
298 }
299 status = 0;
300 /*
301 * If there are no fibs to send back, then either wait or return
302 * -EAGAIN
303 */
304 return_fib:
305 if (!list_empty(&fibctx->fib_list)) {
306 /*
307 * Pull the next fib from the fibs
308 */
309 entry = fibctx->fib_list.next;
310 list_del(entry);
311
312 fib = list_entry(entry, struct fib, fiblink);
313 fibctx->count--;
314 spin_unlock_irqrestore(&dev->fib_lock, flags);
315 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
316 kfree(fib->hw_fib_va);
317 kfree(fib);
318 return -EFAULT;
319 }
320 /*
321 * Free the space occupied by this copy of the fib.
322 */
323 kfree(fib->hw_fib_va);
324 kfree(fib);
325 status = 0;
326 } else {
327 spin_unlock_irqrestore(&dev->fib_lock, flags);
328 /* If someone killed the AIF aacraid thread, restart it */
329 status = !dev->aif_thread;
330 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
331 /* Be paranoid, be very paranoid! */
332 kthread_stop(dev->thread);
333 ssleep(1);
334 dev->aif_thread = 0;
335 dev->thread = kthread_run(aac_command_thread, dev,
336 "%s", dev->name);
337 ssleep(1);
338 }
339 if (f.wait) {
340 if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
341 status = -ERESTARTSYS;
342 } else {
343 /* Lock again and retry */
344 spin_lock_irqsave(&dev->fib_lock, flags);
345 goto return_fib;
346 }
347 } else {
348 status = -EAGAIN;
349 }
350 }
351 fibctx->jiffies = jiffies/HZ;
352 return status;
353 }
354
aac_close_fib_context(struct aac_dev * dev,struct aac_fib_context * fibctx)355 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
356 {
357 struct fib *fib;
358
359 /*
360 * First free any FIBs that have not been consumed.
361 */
362 while (!list_empty(&fibctx->fib_list)) {
363 struct list_head * entry;
364 /*
365 * Pull the next fib from the fibs
366 */
367 entry = fibctx->fib_list.next;
368 list_del(entry);
369 fib = list_entry(entry, struct fib, fiblink);
370 fibctx->count--;
371 /*
372 * Free the space occupied by this copy of the fib.
373 */
374 kfree(fib->hw_fib_va);
375 kfree(fib);
376 }
377 /*
378 * Remove the Context from the AdapterFibContext List
379 */
380 list_del(&fibctx->next);
381 /*
382 * Invalidate context
383 */
384 fibctx->type = 0;
385 /*
386 * Free the space occupied by the Context
387 */
388 kfree(fibctx);
389 return 0;
390 }
391
392 /**
393 * close_getadapter_fib - close down user fib context
394 * @dev: adapter
395 * @arg: ioctl arguments
396 *
397 * This routine will close down the fibctx passed in from the user.
398 */
399
close_getadapter_fib(struct aac_dev * dev,void __user * arg)400 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
401 {
402 struct aac_fib_context *fibctx;
403 int status;
404 unsigned long flags;
405 struct list_head * entry;
406
407 /*
408 * Verify that the HANDLE passed in was a valid AdapterFibContext
409 *
410 * Search the list of AdapterFibContext addresses on the adapter
411 * to be sure this is a valid address
412 */
413
414 entry = dev->fib_list.next;
415 fibctx = NULL;
416
417 while(entry != &dev->fib_list) {
418 fibctx = list_entry(entry, struct aac_fib_context, next);
419 /*
420 * Extract the fibctx from the input parameters
421 */
422 if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
423 break;
424 entry = entry->next;
425 fibctx = NULL;
426 }
427
428 if (!fibctx)
429 return 0; /* Already gone */
430
431 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
432 (fibctx->size != sizeof(struct aac_fib_context)))
433 return -EINVAL;
434 spin_lock_irqsave(&dev->fib_lock, flags);
435 status = aac_close_fib_context(dev, fibctx);
436 spin_unlock_irqrestore(&dev->fib_lock, flags);
437 return status;
438 }
439
440 /**
441 * check_revision - close down user fib context
442 * @dev: adapter
443 * @arg: ioctl arguments
444 *
445 * This routine returns the driver version.
446 * Under Linux, there have been no version incompatibilities, so this is
447 * simple!
448 */
449
check_revision(struct aac_dev * dev,void __user * arg)450 static int check_revision(struct aac_dev *dev, void __user *arg)
451 {
452 struct revision response;
453 char *driver_version = aac_driver_version;
454 u32 version;
455
456 response.compat = 1;
457 version = (simple_strtol(driver_version,
458 &driver_version, 10) << 24) | 0x00000400;
459 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
460 version += simple_strtol(driver_version + 1, NULL, 10);
461 response.version = cpu_to_le32(version);
462 # ifdef AAC_DRIVER_BUILD
463 response.build = cpu_to_le32(AAC_DRIVER_BUILD);
464 # else
465 response.build = cpu_to_le32(9999);
466 # endif
467
468 if (copy_to_user(arg, &response, sizeof(response)))
469 return -EFAULT;
470 return 0;
471 }
472
473
474 /**
475 * aac_send_raw_scb
476 * @dev: adapter is being processed
477 * @arg: arguments to the send call
478 */
aac_send_raw_srb(struct aac_dev * dev,void __user * arg)479 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
480 {
481 struct fib* srbfib;
482 int status;
483 struct aac_srb *srbcmd = NULL;
484 struct aac_hba_cmd_req *hbacmd = NULL;
485 struct user_aac_srb *user_srbcmd = NULL;
486 struct user_aac_srb __user *user_srb = arg;
487 struct aac_srb_reply __user *user_reply;
488 u32 chn;
489 u32 fibsize = 0;
490 u32 flags = 0;
491 s32 rcode = 0;
492 u32 data_dir;
493 void __user *sg_user[HBA_MAX_SG_EMBEDDED];
494 void *sg_list[HBA_MAX_SG_EMBEDDED];
495 u32 sg_count[HBA_MAX_SG_EMBEDDED];
496 u32 sg_indx = 0;
497 u32 byte_count = 0;
498 u32 actual_fibsize64, actual_fibsize = 0;
499 int i;
500 int is_native_device;
501 u64 address;
502
503
504 if (dev->in_reset) {
505 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
506 return -EBUSY;
507 }
508 if (!capable(CAP_SYS_ADMIN)){
509 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
510 return -EPERM;
511 }
512 /*
513 * Allocate and initialize a Fib then setup a SRB command
514 */
515 if (!(srbfib = aac_fib_alloc(dev))) {
516 return -ENOMEM;
517 }
518
519 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
520 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
521 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
522 rcode = -EFAULT;
523 goto cleanup;
524 }
525
526 if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
527 (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
528 rcode = -EINVAL;
529 goto cleanup;
530 }
531
532 user_srbcmd = memdup_user(user_srb, fibsize);
533 if (IS_ERR(user_srbcmd)) {
534 rcode = PTR_ERR(user_srbcmd);
535 user_srbcmd = NULL;
536 goto cleanup;
537 }
538
539 flags = user_srbcmd->flags; /* from user in cpu order */
540 switch (flags & (SRB_DataIn | SRB_DataOut)) {
541 case SRB_DataOut:
542 data_dir = DMA_TO_DEVICE;
543 break;
544 case (SRB_DataIn | SRB_DataOut):
545 data_dir = DMA_BIDIRECTIONAL;
546 break;
547 case SRB_DataIn:
548 data_dir = DMA_FROM_DEVICE;
549 break;
550 default:
551 data_dir = DMA_NONE;
552 }
553 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
554 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
555 user_srbcmd->sg.count));
556 rcode = -EINVAL;
557 goto cleanup;
558 }
559 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
560 dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
561 rcode = -EINVAL;
562 goto cleanup;
563 }
564 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
565 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
566 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
567 (sizeof(struct sgentry64) - sizeof(struct sgentry));
568 /* User made a mistake - should not continue */
569 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
570 dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
571 "Raw SRB command calculated fibsize=%lu;%lu "
572 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
573 "issued fibsize=%d\n",
574 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
575 sizeof(struct aac_srb), sizeof(struct sgentry),
576 sizeof(struct sgentry64), fibsize));
577 rcode = -EINVAL;
578 goto cleanup;
579 }
580
581 chn = user_srbcmd->channel;
582 if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
583 dev->hba_map[chn][user_srbcmd->id].devtype ==
584 AAC_DEVTYPE_NATIVE_RAW) {
585 is_native_device = 1;
586 hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
587 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
588
589 /* iu_type is a parameter of aac_hba_send */
590 switch (data_dir) {
591 case DMA_TO_DEVICE:
592 hbacmd->byte1 = 2;
593 break;
594 case DMA_FROM_DEVICE:
595 case DMA_BIDIRECTIONAL:
596 hbacmd->byte1 = 1;
597 break;
598 case DMA_NONE:
599 default:
600 break;
601 }
602 hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
603 hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
604
605 /*
606 * we fill in reply_qid later in aac_src_deliver_message
607 * we fill in iu_type, request_id later in aac_hba_send
608 * we fill in emb_data_desc_count, data_length later
609 * in sg list build
610 */
611
612 memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
613
614 address = (u64)srbfib->hw_error_pa;
615 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
616 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
617 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
618 hbacmd->emb_data_desc_count =
619 cpu_to_le32(user_srbcmd->sg.count);
620 srbfib->hbacmd_size = 64 +
621 user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
622
623 } else {
624 is_native_device = 0;
625 aac_fib_init(srbfib);
626
627 /* raw_srb FIB is not FastResponseCapable */
628 srbfib->hw_fib_va->header.XferState &=
629 ~cpu_to_le32(FastResponseCapable);
630
631 srbcmd = (struct aac_srb *) fib_data(srbfib);
632
633 // Fix up srb for endian and force some values
634
635 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
636 srbcmd->channel = cpu_to_le32(user_srbcmd->channel);
637 srbcmd->id = cpu_to_le32(user_srbcmd->id);
638 srbcmd->lun = cpu_to_le32(user_srbcmd->lun);
639 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout);
640 srbcmd->flags = cpu_to_le32(flags);
641 srbcmd->retry_limit = 0; // Obsolete parameter
642 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
643 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
644 }
645
646 byte_count = 0;
647 if (is_native_device) {
648 struct user_sgmap *usg32 = &user_srbcmd->sg;
649 struct user_sgmap64 *usg64 =
650 (struct user_sgmap64 *)&user_srbcmd->sg;
651
652 for (i = 0; i < usg32->count; i++) {
653 void *p;
654 u64 addr;
655
656 sg_count[i] = (actual_fibsize64 == fibsize) ?
657 usg64->sg[i].count : usg32->sg[i].count;
658 if (sg_count[i] >
659 (dev->scsi_host_ptr->max_sectors << 9)) {
660 pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
661 i, sg_count[i],
662 dev->scsi_host_ptr->max_sectors << 9);
663 rcode = -EINVAL;
664 goto cleanup;
665 }
666
667 p = kmalloc(sg_count[i], GFP_KERNEL);
668 if (!p) {
669 rcode = -ENOMEM;
670 goto cleanup;
671 }
672
673 if (actual_fibsize64 == fibsize) {
674 addr = (u64)usg64->sg[i].addr[0];
675 addr += ((u64)usg64->sg[i].addr[1]) << 32;
676 } else {
677 addr = (u64)usg32->sg[i].addr;
678 }
679
680 sg_user[i] = (void __user *)(uintptr_t)addr;
681 sg_list[i] = p; // save so we can clean up later
682 sg_indx = i;
683
684 if (flags & SRB_DataOut) {
685 if (copy_from_user(p, sg_user[i],
686 sg_count[i])) {
687 rcode = -EFAULT;
688 goto cleanup;
689 }
690 }
691 addr = dma_map_single(&dev->pdev->dev, p, sg_count[i],
692 data_dir);
693 hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
694 hbacmd->sge[i].addr_lo = cpu_to_le32(
695 (u32)(addr & 0xffffffff));
696 hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
697 hbacmd->sge[i].flags = 0;
698 byte_count += sg_count[i];
699 }
700
701 if (usg32->count > 0) /* embedded sglist */
702 hbacmd->sge[usg32->count-1].flags =
703 cpu_to_le32(0x40000000);
704 hbacmd->data_length = cpu_to_le32(byte_count);
705
706 status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
707 NULL, NULL);
708
709 } else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
710 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
711 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
712
713 /*
714 * This should also catch if user used the 32 bit sgmap
715 */
716 if (actual_fibsize64 == fibsize) {
717 actual_fibsize = actual_fibsize64;
718 for (i = 0; i < upsg->count; i++) {
719 u64 addr;
720 void* p;
721
722 sg_count[i] = upsg->sg[i].count;
723 if (sg_count[i] >
724 ((dev->adapter_info.options &
725 AAC_OPT_NEW_COMM) ?
726 (dev->scsi_host_ptr->max_sectors << 9) :
727 65536)) {
728 rcode = -EINVAL;
729 goto cleanup;
730 }
731
732 p = kmalloc(sg_count[i], GFP_KERNEL);
733 if(!p) {
734 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
735 sg_count[i], i, upsg->count));
736 rcode = -ENOMEM;
737 goto cleanup;
738 }
739 addr = (u64)upsg->sg[i].addr[0];
740 addr += ((u64)upsg->sg[i].addr[1]) << 32;
741 sg_user[i] = (void __user *)(uintptr_t)addr;
742 sg_list[i] = p; // save so we can clean up later
743 sg_indx = i;
744
745 if (flags & SRB_DataOut) {
746 if (copy_from_user(p, sg_user[i],
747 sg_count[i])){
748 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
749 rcode = -EFAULT;
750 goto cleanup;
751 }
752 }
753 addr = dma_map_single(&dev->pdev->dev, p,
754 sg_count[i], data_dir);
755
756 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
757 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
758 byte_count += sg_count[i];
759 psg->sg[i].count = cpu_to_le32(sg_count[i]);
760 }
761 } else {
762 struct user_sgmap* usg;
763 usg = kmemdup(upsg,
764 actual_fibsize - sizeof(struct aac_srb)
765 + sizeof(struct sgmap), GFP_KERNEL);
766 if (!usg) {
767 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
768 rcode = -ENOMEM;
769 goto cleanup;
770 }
771 actual_fibsize = actual_fibsize64;
772
773 for (i = 0; i < usg->count; i++) {
774 u64 addr;
775 void* p;
776
777 sg_count[i] = usg->sg[i].count;
778 if (sg_count[i] >
779 ((dev->adapter_info.options &
780 AAC_OPT_NEW_COMM) ?
781 (dev->scsi_host_ptr->max_sectors << 9) :
782 65536)) {
783 kfree(usg);
784 rcode = -EINVAL;
785 goto cleanup;
786 }
787
788 p = kmalloc(sg_count[i], GFP_KERNEL);
789 if(!p) {
790 dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
791 sg_count[i], i, usg->count));
792 kfree(usg);
793 rcode = -ENOMEM;
794 goto cleanup;
795 }
796 sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
797 sg_list[i] = p; // save so we can clean up later
798 sg_indx = i;
799
800 if (flags & SRB_DataOut) {
801 if (copy_from_user(p, sg_user[i],
802 sg_count[i])) {
803 kfree (usg);
804 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
805 rcode = -EFAULT;
806 goto cleanup;
807 }
808 }
809 addr = dma_map_single(&dev->pdev->dev, p,
810 sg_count[i], data_dir);
811
812 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
813 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
814 byte_count += sg_count[i];
815 psg->sg[i].count = cpu_to_le32(sg_count[i]);
816 }
817 kfree (usg);
818 }
819 srbcmd->count = cpu_to_le32(byte_count);
820 if (user_srbcmd->sg.count)
821 psg->count = cpu_to_le32(sg_indx+1);
822 else
823 psg->count = 0;
824 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
825 } else {
826 struct user_sgmap* upsg = &user_srbcmd->sg;
827 struct sgmap* psg = &srbcmd->sg;
828
829 if (actual_fibsize64 == fibsize) {
830 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
831 for (i = 0; i < upsg->count; i++) {
832 uintptr_t addr;
833 void* p;
834
835 sg_count[i] = usg->sg[i].count;
836 if (sg_count[i] >
837 ((dev->adapter_info.options &
838 AAC_OPT_NEW_COMM) ?
839 (dev->scsi_host_ptr->max_sectors << 9) :
840 65536)) {
841 rcode = -EINVAL;
842 goto cleanup;
843 }
844 p = kmalloc(sg_count[i], GFP_KERNEL);
845 if (!p) {
846 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
847 sg_count[i], i, usg->count));
848 rcode = -ENOMEM;
849 goto cleanup;
850 }
851 addr = (u64)usg->sg[i].addr[0];
852 addr += ((u64)usg->sg[i].addr[1]) << 32;
853 sg_user[i] = (void __user *)addr;
854 sg_list[i] = p; // save so we can clean up later
855 sg_indx = i;
856
857 if (flags & SRB_DataOut) {
858 if (copy_from_user(p, sg_user[i],
859 sg_count[i])){
860 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
861 rcode = -EFAULT;
862 goto cleanup;
863 }
864 }
865 addr = dma_map_single(&dev->pdev->dev, p,
866 usg->sg[i].count,
867 data_dir);
868
869 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
870 byte_count += usg->sg[i].count;
871 psg->sg[i].count = cpu_to_le32(sg_count[i]);
872 }
873 } else {
874 for (i = 0; i < upsg->count; i++) {
875 dma_addr_t addr;
876 void* p;
877
878 sg_count[i] = upsg->sg[i].count;
879 if (sg_count[i] >
880 ((dev->adapter_info.options &
881 AAC_OPT_NEW_COMM) ?
882 (dev->scsi_host_ptr->max_sectors << 9) :
883 65536)) {
884 rcode = -EINVAL;
885 goto cleanup;
886 }
887 p = kmalloc(sg_count[i], GFP_KERNEL);
888 if (!p) {
889 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
890 sg_count[i], i, upsg->count));
891 rcode = -ENOMEM;
892 goto cleanup;
893 }
894 sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
895 sg_list[i] = p; // save so we can clean up later
896 sg_indx = i;
897
898 if (flags & SRB_DataOut) {
899 if (copy_from_user(p, sg_user[i],
900 sg_count[i])) {
901 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
902 rcode = -EFAULT;
903 goto cleanup;
904 }
905 }
906 addr = dma_map_single(&dev->pdev->dev, p,
907 sg_count[i], data_dir);
908
909 psg->sg[i].addr = cpu_to_le32(addr);
910 byte_count += sg_count[i];
911 psg->sg[i].count = cpu_to_le32(sg_count[i]);
912 }
913 }
914 srbcmd->count = cpu_to_le32(byte_count);
915 if (user_srbcmd->sg.count)
916 psg->count = cpu_to_le32(sg_indx+1);
917 else
918 psg->count = 0;
919 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
920 }
921
922 if (status == -ERESTARTSYS) {
923 rcode = -ERESTARTSYS;
924 goto cleanup;
925 }
926
927 if (status != 0) {
928 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
929 rcode = -ENXIO;
930 goto cleanup;
931 }
932
933 if (flags & SRB_DataIn) {
934 for(i = 0 ; i <= sg_indx; i++){
935 if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
936 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
937 rcode = -EFAULT;
938 goto cleanup;
939
940 }
941 }
942 }
943
944 user_reply = arg + fibsize;
945 if (is_native_device) {
946 struct aac_hba_resp *err =
947 &((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
948 struct aac_srb_reply reply;
949
950 memset(&reply, 0, sizeof(reply));
951 reply.status = ST_OK;
952 if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
953 /* fast response */
954 reply.srb_status = SRB_STATUS_SUCCESS;
955 reply.scsi_status = 0;
956 reply.data_xfer_length = byte_count;
957 reply.sense_data_size = 0;
958 memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
959 } else {
960 reply.srb_status = err->service_response;
961 reply.scsi_status = err->status;
962 reply.data_xfer_length = byte_count -
963 le32_to_cpu(err->residual_count);
964 reply.sense_data_size = err->sense_response_data_len;
965 memcpy(reply.sense_data, err->sense_response_buf,
966 AAC_SENSE_BUFFERSIZE);
967 }
968 if (copy_to_user(user_reply, &reply,
969 sizeof(struct aac_srb_reply))) {
970 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
971 rcode = -EFAULT;
972 goto cleanup;
973 }
974 } else {
975 struct aac_srb_reply *reply;
976
977 reply = (struct aac_srb_reply *) fib_data(srbfib);
978 if (copy_to_user(user_reply, reply,
979 sizeof(struct aac_srb_reply))) {
980 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
981 rcode = -EFAULT;
982 goto cleanup;
983 }
984 }
985
986 cleanup:
987 kfree(user_srbcmd);
988 if (rcode != -ERESTARTSYS) {
989 for (i = 0; i <= sg_indx; i++)
990 kfree(sg_list[i]);
991 aac_fib_complete(srbfib);
992 aac_fib_free(srbfib);
993 }
994
995 return rcode;
996 }
997
998 struct aac_pci_info {
999 u32 bus;
1000 u32 slot;
1001 };
1002
1003
aac_get_pci_info(struct aac_dev * dev,void __user * arg)1004 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1005 {
1006 struct aac_pci_info pci_info;
1007
1008 pci_info.bus = dev->pdev->bus->number;
1009 pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1010
1011 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1012 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1013 return -EFAULT;
1014 }
1015 return 0;
1016 }
1017
aac_get_hba_info(struct aac_dev * dev,void __user * arg)1018 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1019 {
1020 struct aac_hba_info hbainfo;
1021
1022 memset(&hbainfo, 0, sizeof(hbainfo));
1023 hbainfo.adapter_number = (u8) dev->id;
1024 hbainfo.system_io_bus_number = dev->pdev->bus->number;
1025 hbainfo.device_number = (dev->pdev->devfn >> 3);
1026 hbainfo.function_number = (dev->pdev->devfn & 0x0007);
1027
1028 hbainfo.vendor_id = dev->pdev->vendor;
1029 hbainfo.device_id = dev->pdev->device;
1030 hbainfo.sub_vendor_id = dev->pdev->subsystem_vendor;
1031 hbainfo.sub_system_id = dev->pdev->subsystem_device;
1032
1033 if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1034 dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1035 return -EFAULT;
1036 }
1037
1038 return 0;
1039 }
1040
1041 struct aac_reset_iop {
1042 u8 reset_type;
1043 };
1044
aac_send_reset_adapter(struct aac_dev * dev,void __user * arg)1045 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1046 {
1047 struct aac_reset_iop reset;
1048 int retval;
1049
1050 if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1051 return -EFAULT;
1052
1053 dev->adapter_shutdown = 1;
1054
1055 mutex_unlock(&dev->ioctl_mutex);
1056 retval = aac_reset_adapter(dev, 0, reset.reset_type);
1057 mutex_lock(&dev->ioctl_mutex);
1058
1059 return retval;
1060 }
1061
aac_do_ioctl(struct aac_dev * dev,unsigned int cmd,void __user * arg)1062 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
1063 {
1064 int status;
1065
1066 mutex_lock(&dev->ioctl_mutex);
1067
1068 if (dev->adapter_shutdown) {
1069 status = -EACCES;
1070 goto cleanup;
1071 }
1072
1073 /*
1074 * HBA gets first crack
1075 */
1076
1077 status = aac_dev_ioctl(dev, cmd, arg);
1078 if (status != -ENOTTY)
1079 goto cleanup;
1080
1081 switch (cmd) {
1082 case FSACTL_MINIPORT_REV_CHECK:
1083 status = check_revision(dev, arg);
1084 break;
1085 case FSACTL_SEND_LARGE_FIB:
1086 case FSACTL_SENDFIB:
1087 status = ioctl_send_fib(dev, arg);
1088 break;
1089 case FSACTL_OPEN_GET_ADAPTER_FIB:
1090 status = open_getadapter_fib(dev, arg);
1091 break;
1092 case FSACTL_GET_NEXT_ADAPTER_FIB:
1093 status = next_getadapter_fib(dev, arg);
1094 break;
1095 case FSACTL_CLOSE_GET_ADAPTER_FIB:
1096 status = close_getadapter_fib(dev, arg);
1097 break;
1098 case FSACTL_SEND_RAW_SRB:
1099 status = aac_send_raw_srb(dev,arg);
1100 break;
1101 case FSACTL_GET_PCI_INFO:
1102 status = aac_get_pci_info(dev,arg);
1103 break;
1104 case FSACTL_GET_HBA_INFO:
1105 status = aac_get_hba_info(dev, arg);
1106 break;
1107 case FSACTL_RESET_IOP:
1108 status = aac_send_reset_adapter(dev, arg);
1109 break;
1110
1111 default:
1112 status = -ENOTTY;
1113 break;
1114 }
1115
1116 cleanup:
1117 mutex_unlock(&dev->ioctl_mutex);
1118
1119 return status;
1120 }
1121
1122