1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/acpi/device_pm.c - ACPI device power management routines.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/mutex.h>
16 #include <linux/pm_qos.h>
17 #include <linux/pm_domain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/suspend.h>
20
21 #include "fan.h"
22 #include "internal.h"
23
24 #define _COMPONENT ACPI_POWER_COMPONENT
25 ACPI_MODULE_NAME("device_pm");
26
27 /**
28 * acpi_power_state_string - String representation of ACPI device power state.
29 * @state: ACPI device power state to return the string representation of.
30 */
acpi_power_state_string(int state)31 const char *acpi_power_state_string(int state)
32 {
33 switch (state) {
34 case ACPI_STATE_D0:
35 return "D0";
36 case ACPI_STATE_D1:
37 return "D1";
38 case ACPI_STATE_D2:
39 return "D2";
40 case ACPI_STATE_D3_HOT:
41 return "D3hot";
42 case ACPI_STATE_D3_COLD:
43 return "D3cold";
44 default:
45 return "(unknown)";
46 }
47 }
48
acpi_dev_pm_explicit_get(struct acpi_device * device,int * state)49 static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
50 {
51 unsigned long long psc;
52 acpi_status status;
53
54 status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
55 if (ACPI_FAILURE(status))
56 return -ENODEV;
57
58 *state = psc;
59 return 0;
60 }
61
62 /**
63 * acpi_device_get_power - Get power state of an ACPI device.
64 * @device: Device to get the power state of.
65 * @state: Place to store the power state of the device.
66 *
67 * This function does not update the device's power.state field, but it may
68 * update its parent's power.state field (when the parent's power state is
69 * unknown and the device's power state turns out to be D0).
70 *
71 * Also, it does not update power resource reference counters to ensure that
72 * the power state returned by it will be persistent and it may return a power
73 * state shallower than previously set by acpi_device_set_power() for @device
74 * (if that power state depends on any power resources).
75 */
acpi_device_get_power(struct acpi_device * device,int * state)76 int acpi_device_get_power(struct acpi_device *device, int *state)
77 {
78 int result = ACPI_STATE_UNKNOWN;
79 int error;
80
81 if (!device || !state)
82 return -EINVAL;
83
84 if (!device->flags.power_manageable) {
85 /* TBD: Non-recursive algorithm for walking up hierarchy. */
86 *state = device->parent ?
87 device->parent->power.state : ACPI_STATE_D0;
88 goto out;
89 }
90
91 /*
92 * Get the device's power state from power resources settings and _PSC,
93 * if available.
94 */
95 if (device->power.flags.power_resources) {
96 error = acpi_power_get_inferred_state(device, &result);
97 if (error)
98 return error;
99 }
100 if (device->power.flags.explicit_get) {
101 int psc;
102
103 error = acpi_dev_pm_explicit_get(device, &psc);
104 if (error)
105 return error;
106
107 /*
108 * The power resources settings may indicate a power state
109 * shallower than the actual power state of the device, because
110 * the same power resources may be referenced by other devices.
111 *
112 * For systems predating ACPI 4.0 we assume that D3hot is the
113 * deepest state that can be supported.
114 */
115 if (psc > result && psc < ACPI_STATE_D3_COLD)
116 result = psc;
117 else if (result == ACPI_STATE_UNKNOWN)
118 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
119 }
120
121 /*
122 * If we were unsure about the device parent's power state up to this
123 * point, the fact that the device is in D0 implies that the parent has
124 * to be in D0 too, except if ignore_parent is set.
125 */
126 if (!device->power.flags.ignore_parent && device->parent
127 && device->parent->power.state == ACPI_STATE_UNKNOWN
128 && result == ACPI_STATE_D0)
129 device->parent->power.state = ACPI_STATE_D0;
130
131 *state = result;
132
133 out:
134 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
135 device->pnp.bus_id, acpi_power_state_string(*state)));
136
137 return 0;
138 }
139
acpi_dev_pm_explicit_set(struct acpi_device * adev,int state)140 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
141 {
142 if (adev->power.states[state].flags.explicit_set) {
143 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
144 acpi_status status;
145
146 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
147 if (ACPI_FAILURE(status))
148 return -ENODEV;
149 }
150 return 0;
151 }
152
153 /**
154 * acpi_device_set_power - Set power state of an ACPI device.
155 * @device: Device to set the power state of.
156 * @state: New power state to set.
157 *
158 * Callers must ensure that the device is power manageable before using this
159 * function.
160 */
acpi_device_set_power(struct acpi_device * device,int state)161 int acpi_device_set_power(struct acpi_device *device, int state)
162 {
163 int target_state = state;
164 int result = 0;
165
166 if (!device || !device->flags.power_manageable
167 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
168 return -EINVAL;
169
170 acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
171 acpi_power_state_string(device->power.state),
172 acpi_power_state_string(state));
173
174 /* Make sure this is a valid target state */
175
176 /* There is a special case for D0 addressed below. */
177 if (state > ACPI_STATE_D0 && state == device->power.state) {
178 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
179 device->pnp.bus_id,
180 acpi_power_state_string(state)));
181 return 0;
182 }
183
184 if (state == ACPI_STATE_D3_COLD) {
185 /*
186 * For transitions to D3cold we need to execute _PS3 and then
187 * possibly drop references to the power resources in use.
188 */
189 state = ACPI_STATE_D3_HOT;
190 /* If D3cold is not supported, use D3hot as the target state. */
191 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
192 target_state = state;
193 } else if (!device->power.states[state].flags.valid) {
194 dev_warn(&device->dev, "Power state %s not supported\n",
195 acpi_power_state_string(state));
196 return -ENODEV;
197 }
198
199 if (!device->power.flags.ignore_parent &&
200 device->parent && (state < device->parent->power.state)) {
201 dev_warn(&device->dev,
202 "Cannot transition to power state %s for parent in %s\n",
203 acpi_power_state_string(state),
204 acpi_power_state_string(device->parent->power.state));
205 return -ENODEV;
206 }
207
208 /*
209 * Transition Power
210 * ----------------
211 * In accordance with ACPI 6, _PSx is executed before manipulating power
212 * resources, unless the target state is D0, in which case _PS0 is
213 * supposed to be executed after turning the power resources on.
214 */
215 if (state > ACPI_STATE_D0) {
216 /*
217 * According to ACPI 6, devices cannot go from lower-power
218 * (deeper) states to higher-power (shallower) states.
219 */
220 if (state < device->power.state) {
221 dev_warn(&device->dev, "Cannot transition from %s to %s\n",
222 acpi_power_state_string(device->power.state),
223 acpi_power_state_string(state));
224 return -ENODEV;
225 }
226
227 /*
228 * If the device goes from D3hot to D3cold, _PS3 has been
229 * evaluated for it already, so skip it in that case.
230 */
231 if (device->power.state < ACPI_STATE_D3_HOT) {
232 result = acpi_dev_pm_explicit_set(device, state);
233 if (result)
234 goto end;
235 }
236
237 if (device->power.flags.power_resources)
238 result = acpi_power_transition(device, target_state);
239 } else {
240 int cur_state = device->power.state;
241
242 if (device->power.flags.power_resources) {
243 result = acpi_power_transition(device, ACPI_STATE_D0);
244 if (result)
245 goto end;
246 }
247
248 if (cur_state == ACPI_STATE_D0) {
249 int psc;
250
251 /* Nothing to do here if _PSC is not present. */
252 if (!device->power.flags.explicit_get)
253 return 0;
254
255 /*
256 * The power state of the device was set to D0 last
257 * time, but that might have happened before a
258 * system-wide transition involving the platform
259 * firmware, so it may be necessary to evaluate _PS0
260 * for the device here. However, use extra care here
261 * and evaluate _PSC to check the device's current power
262 * state, and only invoke _PS0 if the evaluation of _PSC
263 * is successful and it returns a power state different
264 * from D0.
265 */
266 result = acpi_dev_pm_explicit_get(device, &psc);
267 if (result || psc == ACPI_STATE_D0)
268 return 0;
269 }
270
271 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
272 }
273
274 end:
275 if (result) {
276 dev_warn(&device->dev, "Failed to change power state to %s\n",
277 acpi_power_state_string(target_state));
278 } else {
279 device->power.state = target_state;
280 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
281 "Device [%s] transitioned to %s\n",
282 device->pnp.bus_id,
283 acpi_power_state_string(target_state)));
284 }
285
286 return result;
287 }
288 EXPORT_SYMBOL(acpi_device_set_power);
289
acpi_bus_set_power(acpi_handle handle,int state)290 int acpi_bus_set_power(acpi_handle handle, int state)
291 {
292 struct acpi_device *device;
293 int result;
294
295 result = acpi_bus_get_device(handle, &device);
296 if (result)
297 return result;
298
299 return acpi_device_set_power(device, state);
300 }
301 EXPORT_SYMBOL(acpi_bus_set_power);
302
acpi_bus_init_power(struct acpi_device * device)303 int acpi_bus_init_power(struct acpi_device *device)
304 {
305 int state;
306 int result;
307
308 if (!device)
309 return -EINVAL;
310
311 device->power.state = ACPI_STATE_UNKNOWN;
312 if (!acpi_device_is_present(device)) {
313 device->flags.initialized = false;
314 return -ENXIO;
315 }
316
317 result = acpi_device_get_power(device, &state);
318 if (result)
319 return result;
320
321 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
322 /* Reference count the power resources. */
323 result = acpi_power_on_resources(device, state);
324 if (result)
325 return result;
326
327 if (state == ACPI_STATE_D0) {
328 /*
329 * If _PSC is not present and the state inferred from
330 * power resources appears to be D0, it still may be
331 * necessary to execute _PS0 at this point, because
332 * another device using the same power resources may
333 * have been put into D0 previously and that's why we
334 * see D0 here.
335 */
336 result = acpi_dev_pm_explicit_set(device, state);
337 if (result)
338 return result;
339 }
340 } else if (state == ACPI_STATE_UNKNOWN) {
341 /*
342 * No power resources and missing _PSC? Cross fingers and make
343 * it D0 in hope that this is what the BIOS put the device into.
344 * [We tried to force D0 here by executing _PS0, but that broke
345 * Toshiba P870-303 in a nasty way.]
346 */
347 state = ACPI_STATE_D0;
348 }
349 device->power.state = state;
350 return 0;
351 }
352
353 /**
354 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
355 * @device: Device object whose power state is to be fixed up.
356 *
357 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
358 * are assumed to be put into D0 by the BIOS. However, in some cases that may
359 * not be the case and this function should be used then.
360 */
acpi_device_fix_up_power(struct acpi_device * device)361 int acpi_device_fix_up_power(struct acpi_device *device)
362 {
363 int ret = 0;
364
365 if (!device->power.flags.power_resources
366 && !device->power.flags.explicit_get
367 && device->power.state == ACPI_STATE_D0)
368 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
369
370 return ret;
371 }
372 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
373
acpi_device_update_power(struct acpi_device * device,int * state_p)374 int acpi_device_update_power(struct acpi_device *device, int *state_p)
375 {
376 int state;
377 int result;
378
379 if (device->power.state == ACPI_STATE_UNKNOWN) {
380 result = acpi_bus_init_power(device);
381 if (!result && state_p)
382 *state_p = device->power.state;
383
384 return result;
385 }
386
387 result = acpi_device_get_power(device, &state);
388 if (result)
389 return result;
390
391 if (state == ACPI_STATE_UNKNOWN) {
392 state = ACPI_STATE_D0;
393 result = acpi_device_set_power(device, state);
394 if (result)
395 return result;
396 } else {
397 if (device->power.flags.power_resources) {
398 /*
399 * We don't need to really switch the state, bu we need
400 * to update the power resources' reference counters.
401 */
402 result = acpi_power_transition(device, state);
403 if (result)
404 return result;
405 }
406 device->power.state = state;
407 }
408 if (state_p)
409 *state_p = state;
410
411 return 0;
412 }
413 EXPORT_SYMBOL_GPL(acpi_device_update_power);
414
acpi_bus_update_power(acpi_handle handle,int * state_p)415 int acpi_bus_update_power(acpi_handle handle, int *state_p)
416 {
417 struct acpi_device *device;
418 int result;
419
420 result = acpi_bus_get_device(handle, &device);
421 return result ? result : acpi_device_update_power(device, state_p);
422 }
423 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
424
acpi_bus_power_manageable(acpi_handle handle)425 bool acpi_bus_power_manageable(acpi_handle handle)
426 {
427 struct acpi_device *device;
428 int result;
429
430 result = acpi_bus_get_device(handle, &device);
431 return result ? false : device->flags.power_manageable;
432 }
433 EXPORT_SYMBOL(acpi_bus_power_manageable);
434
435 #ifdef CONFIG_PM
436 static DEFINE_MUTEX(acpi_pm_notifier_lock);
437 static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
438
acpi_pm_wakeup_event(struct device * dev)439 void acpi_pm_wakeup_event(struct device *dev)
440 {
441 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
442 }
443 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
444
acpi_pm_notify_handler(acpi_handle handle,u32 val,void * not_used)445 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
446 {
447 struct acpi_device *adev;
448
449 if (val != ACPI_NOTIFY_DEVICE_WAKE)
450 return;
451
452 acpi_handle_debug(handle, "Wake notify\n");
453
454 adev = acpi_bus_get_acpi_device(handle);
455 if (!adev)
456 return;
457
458 mutex_lock(&acpi_pm_notifier_lock);
459
460 if (adev->wakeup.flags.notifier_present) {
461 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
462 if (adev->wakeup.context.func) {
463 acpi_handle_debug(handle, "Running %pS for %s\n",
464 adev->wakeup.context.func,
465 dev_name(adev->wakeup.context.dev));
466 adev->wakeup.context.func(&adev->wakeup.context);
467 }
468 }
469
470 mutex_unlock(&acpi_pm_notifier_lock);
471
472 acpi_bus_put_acpi_device(adev);
473 }
474
475 /**
476 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
477 * @adev: ACPI device to add the notify handler for.
478 * @dev: Device to generate a wakeup event for while handling the notification.
479 * @func: Work function to execute when handling the notification.
480 *
481 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
482 * PM wakeup events. For example, wakeup events may be generated for bridges
483 * if one of the devices below the bridge is signaling wakeup, even if the
484 * bridge itself doesn't have a wakeup GPE associated with it.
485 */
acpi_add_pm_notifier(struct acpi_device * adev,struct device * dev,void (* func)(struct acpi_device_wakeup_context * context))486 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
487 void (*func)(struct acpi_device_wakeup_context *context))
488 {
489 acpi_status status = AE_ALREADY_EXISTS;
490
491 if (!dev && !func)
492 return AE_BAD_PARAMETER;
493
494 mutex_lock(&acpi_pm_notifier_install_lock);
495
496 if (adev->wakeup.flags.notifier_present)
497 goto out;
498
499 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
500 acpi_pm_notify_handler, NULL);
501 if (ACPI_FAILURE(status))
502 goto out;
503
504 mutex_lock(&acpi_pm_notifier_lock);
505 adev->wakeup.ws = wakeup_source_register(&adev->dev,
506 dev_name(&adev->dev));
507 adev->wakeup.context.dev = dev;
508 adev->wakeup.context.func = func;
509 adev->wakeup.flags.notifier_present = true;
510 mutex_unlock(&acpi_pm_notifier_lock);
511
512 out:
513 mutex_unlock(&acpi_pm_notifier_install_lock);
514 return status;
515 }
516
517 /**
518 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
519 * @adev: ACPI device to remove the notifier from.
520 */
acpi_remove_pm_notifier(struct acpi_device * adev)521 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
522 {
523 acpi_status status = AE_BAD_PARAMETER;
524
525 mutex_lock(&acpi_pm_notifier_install_lock);
526
527 if (!adev->wakeup.flags.notifier_present)
528 goto out;
529
530 status = acpi_remove_notify_handler(adev->handle,
531 ACPI_SYSTEM_NOTIFY,
532 acpi_pm_notify_handler);
533 if (ACPI_FAILURE(status))
534 goto out;
535
536 mutex_lock(&acpi_pm_notifier_lock);
537 adev->wakeup.context.func = NULL;
538 adev->wakeup.context.dev = NULL;
539 wakeup_source_unregister(adev->wakeup.ws);
540 adev->wakeup.flags.notifier_present = false;
541 mutex_unlock(&acpi_pm_notifier_lock);
542
543 out:
544 mutex_unlock(&acpi_pm_notifier_install_lock);
545 return status;
546 }
547
acpi_bus_can_wakeup(acpi_handle handle)548 bool acpi_bus_can_wakeup(acpi_handle handle)
549 {
550 struct acpi_device *device;
551 int result;
552
553 result = acpi_bus_get_device(handle, &device);
554 return result ? false : device->wakeup.flags.valid;
555 }
556 EXPORT_SYMBOL(acpi_bus_can_wakeup);
557
acpi_pm_device_can_wakeup(struct device * dev)558 bool acpi_pm_device_can_wakeup(struct device *dev)
559 {
560 struct acpi_device *adev = ACPI_COMPANION(dev);
561
562 return adev ? acpi_device_can_wakeup(adev) : false;
563 }
564
565 /**
566 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
567 * @dev: Device whose preferred target power state to return.
568 * @adev: ACPI device node corresponding to @dev.
569 * @target_state: System state to match the resultant device state.
570 * @d_min_p: Location to store the highest power state available to the device.
571 * @d_max_p: Location to store the lowest power state available to the device.
572 *
573 * Find the lowest power (highest number) and highest power (lowest number) ACPI
574 * device power states that the device can be in while the system is in the
575 * state represented by @target_state. Store the integer numbers representing
576 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
577 * respectively.
578 *
579 * Callers must ensure that @dev and @adev are valid pointers and that @adev
580 * actually corresponds to @dev before using this function.
581 *
582 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
583 * returns a value that doesn't make sense. The memory locations pointed to by
584 * @d_max_p and @d_min_p are only modified on success.
585 */
acpi_dev_pm_get_state(struct device * dev,struct acpi_device * adev,u32 target_state,int * d_min_p,int * d_max_p)586 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
587 u32 target_state, int *d_min_p, int *d_max_p)
588 {
589 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
590 acpi_handle handle = adev->handle;
591 unsigned long long ret;
592 int d_min, d_max;
593 bool wakeup = false;
594 bool has_sxd = false;
595 acpi_status status;
596
597 /*
598 * If the system state is S0, the lowest power state the device can be
599 * in is D3cold, unless the device has _S0W and is supposed to signal
600 * wakeup, in which case the return value of _S0W has to be used as the
601 * lowest power state available to the device.
602 */
603 d_min = ACPI_STATE_D0;
604 d_max = ACPI_STATE_D3_COLD;
605
606 /*
607 * If present, _SxD methods return the minimum D-state (highest power
608 * state) we can use for the corresponding S-states. Otherwise, the
609 * minimum D-state is D0 (ACPI 3.x).
610 */
611 if (target_state > ACPI_STATE_S0) {
612 /*
613 * We rely on acpi_evaluate_integer() not clobbering the integer
614 * provided if AE_NOT_FOUND is returned.
615 */
616 ret = d_min;
617 status = acpi_evaluate_integer(handle, method, NULL, &ret);
618 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
619 || ret > ACPI_STATE_D3_COLD)
620 return -ENODATA;
621
622 /*
623 * We need to handle legacy systems where D3hot and D3cold are
624 * the same and 3 is returned in both cases, so fall back to
625 * D3cold if D3hot is not a valid state.
626 */
627 if (!adev->power.states[ret].flags.valid) {
628 if (ret == ACPI_STATE_D3_HOT)
629 ret = ACPI_STATE_D3_COLD;
630 else
631 return -ENODATA;
632 }
633
634 if (status == AE_OK)
635 has_sxd = true;
636
637 d_min = ret;
638 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
639 && adev->wakeup.sleep_state >= target_state;
640 } else {
641 wakeup = adev->wakeup.flags.valid;
642 }
643
644 /*
645 * If _PRW says we can wake up the system from the target sleep state,
646 * the D-state returned by _SxD is sufficient for that (we assume a
647 * wakeup-aware driver if wake is set). Still, if _SxW exists
648 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
649 * can wake the system. _S0W may be valid, too.
650 */
651 if (wakeup) {
652 method[3] = 'W';
653 status = acpi_evaluate_integer(handle, method, NULL, &ret);
654 if (status == AE_NOT_FOUND) {
655 /* No _SxW. In this case, the ACPI spec says that we
656 * must not go into any power state deeper than the
657 * value returned from _SxD.
658 */
659 if (has_sxd && target_state > ACPI_STATE_S0)
660 d_max = d_min;
661 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
662 /* Fall back to D3cold if ret is not a valid state. */
663 if (!adev->power.states[ret].flags.valid)
664 ret = ACPI_STATE_D3_COLD;
665
666 d_max = ret > d_min ? ret : d_min;
667 } else {
668 return -ENODATA;
669 }
670 }
671
672 if (d_min_p)
673 *d_min_p = d_min;
674
675 if (d_max_p)
676 *d_max_p = d_max;
677
678 return 0;
679 }
680
681 /**
682 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
683 * @dev: Device whose preferred target power state to return.
684 * @d_min_p: Location to store the upper limit of the allowed states range.
685 * @d_max_in: Deepest low-power state to take into consideration.
686 * Return value: Preferred power state of the device on success, -ENODEV
687 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
688 * incorrect, or -ENODATA on ACPI method failure.
689 *
690 * The caller must ensure that @dev is valid before using this function.
691 */
acpi_pm_device_sleep_state(struct device * dev,int * d_min_p,int d_max_in)692 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
693 {
694 struct acpi_device *adev;
695 int ret, d_min, d_max;
696
697 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
698 return -EINVAL;
699
700 if (d_max_in > ACPI_STATE_D2) {
701 enum pm_qos_flags_status stat;
702
703 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
704 if (stat == PM_QOS_FLAGS_ALL)
705 d_max_in = ACPI_STATE_D2;
706 }
707
708 adev = ACPI_COMPANION(dev);
709 if (!adev) {
710 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
711 return -ENODEV;
712 }
713
714 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
715 &d_min, &d_max);
716 if (ret)
717 return ret;
718
719 if (d_max_in < d_min)
720 return -EINVAL;
721
722 if (d_max > d_max_in) {
723 for (d_max = d_max_in; d_max > d_min; d_max--) {
724 if (adev->power.states[d_max].flags.valid)
725 break;
726 }
727 }
728
729 if (d_min_p)
730 *d_min_p = d_min;
731
732 return d_max;
733 }
734 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
735
736 /**
737 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
738 * @context: Device wakeup context.
739 */
acpi_pm_notify_work_func(struct acpi_device_wakeup_context * context)740 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
741 {
742 struct device *dev = context->dev;
743
744 if (dev) {
745 pm_wakeup_event(dev, 0);
746 pm_request_resume(dev);
747 }
748 }
749
750 static DEFINE_MUTEX(acpi_wakeup_lock);
751
__acpi_device_wakeup_enable(struct acpi_device * adev,u32 target_state)752 static int __acpi_device_wakeup_enable(struct acpi_device *adev,
753 u32 target_state)
754 {
755 struct acpi_device_wakeup *wakeup = &adev->wakeup;
756 acpi_status status;
757 int error = 0;
758
759 mutex_lock(&acpi_wakeup_lock);
760
761 if (wakeup->enable_count >= INT_MAX) {
762 acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
763 goto out;
764 }
765 if (wakeup->enable_count > 0)
766 goto inc;
767
768 error = acpi_enable_wakeup_device_power(adev, target_state);
769 if (error)
770 goto out;
771
772 status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
773 if (ACPI_FAILURE(status)) {
774 acpi_disable_wakeup_device_power(adev);
775 error = -EIO;
776 goto out;
777 }
778
779 acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
780 (unsigned int)wakeup->gpe_number);
781
782 inc:
783 wakeup->enable_count++;
784
785 out:
786 mutex_unlock(&acpi_wakeup_lock);
787 return error;
788 }
789
790 /**
791 * acpi_device_wakeup_enable - Enable wakeup functionality for device.
792 * @adev: ACPI device to enable wakeup functionality for.
793 * @target_state: State the system is transitioning into.
794 *
795 * Enable the GPE associated with @adev so that it can generate wakeup signals
796 * for the device in response to external (remote) events and enable wakeup
797 * power for it.
798 *
799 * Callers must ensure that @adev is a valid ACPI device node before executing
800 * this function.
801 */
acpi_device_wakeup_enable(struct acpi_device * adev,u32 target_state)802 static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
803 {
804 return __acpi_device_wakeup_enable(adev, target_state);
805 }
806
807 /**
808 * acpi_device_wakeup_disable - Disable wakeup functionality for device.
809 * @adev: ACPI device to disable wakeup functionality for.
810 *
811 * Disable the GPE associated with @adev and disable wakeup power for it.
812 *
813 * Callers must ensure that @adev is a valid ACPI device node before executing
814 * this function.
815 */
acpi_device_wakeup_disable(struct acpi_device * adev)816 static void acpi_device_wakeup_disable(struct acpi_device *adev)
817 {
818 struct acpi_device_wakeup *wakeup = &adev->wakeup;
819
820 mutex_lock(&acpi_wakeup_lock);
821
822 if (!wakeup->enable_count)
823 goto out;
824
825 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
826 acpi_disable_wakeup_device_power(adev);
827
828 wakeup->enable_count--;
829
830 out:
831 mutex_unlock(&acpi_wakeup_lock);
832 }
833
834 /**
835 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
836 * @dev: Device to enable/disable to generate wakeup events.
837 * @enable: Whether to enable or disable the wakeup functionality.
838 */
acpi_pm_set_device_wakeup(struct device * dev,bool enable)839 int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
840 {
841 struct acpi_device *adev;
842 int error;
843
844 adev = ACPI_COMPANION(dev);
845 if (!adev) {
846 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
847 return -ENODEV;
848 }
849
850 if (!acpi_device_can_wakeup(adev))
851 return -EINVAL;
852
853 if (!enable) {
854 acpi_device_wakeup_disable(adev);
855 dev_dbg(dev, "Wakeup disabled by ACPI\n");
856 return 0;
857 }
858
859 error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
860 if (!error)
861 dev_dbg(dev, "Wakeup enabled by ACPI\n");
862
863 return error;
864 }
865 EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
866
867 /**
868 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
869 * @dev: Device to put into a low-power state.
870 * @adev: ACPI device node corresponding to @dev.
871 * @system_state: System state to choose the device state for.
872 */
acpi_dev_pm_low_power(struct device * dev,struct acpi_device * adev,u32 system_state)873 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
874 u32 system_state)
875 {
876 int ret, state;
877
878 if (!acpi_device_power_manageable(adev))
879 return 0;
880
881 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
882 return ret ? ret : acpi_device_set_power(adev, state);
883 }
884
885 /**
886 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
887 * @adev: ACPI device node to put into the full-power state.
888 */
acpi_dev_pm_full_power(struct acpi_device * adev)889 static int acpi_dev_pm_full_power(struct acpi_device *adev)
890 {
891 return acpi_device_power_manageable(adev) ?
892 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
893 }
894
895 /**
896 * acpi_dev_suspend - Put device into a low-power state using ACPI.
897 * @dev: Device to put into a low-power state.
898 * @wakeup: Whether or not to enable wakeup for the device.
899 *
900 * Put the given device into a low-power state using the standard ACPI
901 * mechanism. Set up remote wakeup if desired, choose the state to put the
902 * device into (this checks if remote wakeup is expected to work too), and set
903 * the power state of the device.
904 */
acpi_dev_suspend(struct device * dev,bool wakeup)905 int acpi_dev_suspend(struct device *dev, bool wakeup)
906 {
907 struct acpi_device *adev = ACPI_COMPANION(dev);
908 u32 target_state = acpi_target_system_state();
909 int error;
910
911 if (!adev)
912 return 0;
913
914 if (wakeup && acpi_device_can_wakeup(adev)) {
915 error = acpi_device_wakeup_enable(adev, target_state);
916 if (error)
917 return -EAGAIN;
918 } else {
919 wakeup = false;
920 }
921
922 error = acpi_dev_pm_low_power(dev, adev, target_state);
923 if (error && wakeup)
924 acpi_device_wakeup_disable(adev);
925
926 return error;
927 }
928 EXPORT_SYMBOL_GPL(acpi_dev_suspend);
929
930 /**
931 * acpi_dev_resume - Put device into the full-power state using ACPI.
932 * @dev: Device to put into the full-power state.
933 *
934 * Put the given device into the full-power state using the standard ACPI
935 * mechanism. Set the power state of the device to ACPI D0 and disable wakeup.
936 */
acpi_dev_resume(struct device * dev)937 int acpi_dev_resume(struct device *dev)
938 {
939 struct acpi_device *adev = ACPI_COMPANION(dev);
940 int error;
941
942 if (!adev)
943 return 0;
944
945 error = acpi_dev_pm_full_power(adev);
946 acpi_device_wakeup_disable(adev);
947 return error;
948 }
949 EXPORT_SYMBOL_GPL(acpi_dev_resume);
950
951 /**
952 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
953 * @dev: Device to suspend.
954 *
955 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
956 * it into a runtime low-power state.
957 */
acpi_subsys_runtime_suspend(struct device * dev)958 int acpi_subsys_runtime_suspend(struct device *dev)
959 {
960 int ret = pm_generic_runtime_suspend(dev);
961 return ret ? ret : acpi_dev_suspend(dev, true);
962 }
963 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
964
965 /**
966 * acpi_subsys_runtime_resume - Resume device using ACPI.
967 * @dev: Device to Resume.
968 *
969 * Use ACPI to put the given device into the full-power state and carry out the
970 * generic runtime resume procedure for it.
971 */
acpi_subsys_runtime_resume(struct device * dev)972 int acpi_subsys_runtime_resume(struct device *dev)
973 {
974 int ret = acpi_dev_resume(dev);
975 return ret ? ret : pm_generic_runtime_resume(dev);
976 }
977 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
978
979 #ifdef CONFIG_PM_SLEEP
acpi_dev_needs_resume(struct device * dev,struct acpi_device * adev)980 static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
981 {
982 u32 sys_target = acpi_target_system_state();
983 int ret, state;
984
985 if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
986 device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
987 return true;
988
989 if (sys_target == ACPI_STATE_S0)
990 return false;
991
992 if (adev->power.flags.dsw_present)
993 return true;
994
995 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
996 if (ret)
997 return true;
998
999 return state != adev->power.state;
1000 }
1001
1002 /**
1003 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1004 * @dev: Device to prepare.
1005 */
acpi_subsys_prepare(struct device * dev)1006 int acpi_subsys_prepare(struct device *dev)
1007 {
1008 struct acpi_device *adev = ACPI_COMPANION(dev);
1009
1010 if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1011 int ret = dev->driver->pm->prepare(dev);
1012
1013 if (ret < 0)
1014 return ret;
1015
1016 if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1017 return 0;
1018 }
1019
1020 return !acpi_dev_needs_resume(dev, adev);
1021 }
1022 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1023
1024 /**
1025 * acpi_subsys_complete - Finalize device's resume during system resume.
1026 * @dev: Device to handle.
1027 */
acpi_subsys_complete(struct device * dev)1028 void acpi_subsys_complete(struct device *dev)
1029 {
1030 pm_generic_complete(dev);
1031 /*
1032 * If the device had been runtime-suspended before the system went into
1033 * the sleep state it is going out of and it has never been resumed till
1034 * now, resume it in case the firmware powered it up.
1035 */
1036 if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1037 pm_request_resume(dev);
1038 }
1039 EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1040
1041 /**
1042 * acpi_subsys_suspend - Run the device driver's suspend callback.
1043 * @dev: Device to handle.
1044 *
1045 * Follow PCI and resume devices from runtime suspend before running their
1046 * system suspend callbacks, unless the driver can cope with runtime-suspended
1047 * devices during system suspend and there are no ACPI-specific reasons for
1048 * resuming them.
1049 */
acpi_subsys_suspend(struct device * dev)1050 int acpi_subsys_suspend(struct device *dev)
1051 {
1052 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1053 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1054 pm_runtime_resume(dev);
1055
1056 return pm_generic_suspend(dev);
1057 }
1058 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1059
1060 /**
1061 * acpi_subsys_suspend_late - Suspend device using ACPI.
1062 * @dev: Device to suspend.
1063 *
1064 * Carry out the generic late suspend procedure for @dev and use ACPI to put
1065 * it into a low-power state during system transition into a sleep state.
1066 */
acpi_subsys_suspend_late(struct device * dev)1067 int acpi_subsys_suspend_late(struct device *dev)
1068 {
1069 int ret;
1070
1071 if (dev_pm_skip_suspend(dev))
1072 return 0;
1073
1074 ret = pm_generic_suspend_late(dev);
1075 return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1076 }
1077 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1078
1079 /**
1080 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1081 * @dev: Device to suspend.
1082 */
acpi_subsys_suspend_noirq(struct device * dev)1083 int acpi_subsys_suspend_noirq(struct device *dev)
1084 {
1085 int ret;
1086
1087 if (dev_pm_skip_suspend(dev))
1088 return 0;
1089
1090 ret = pm_generic_suspend_noirq(dev);
1091 if (ret)
1092 return ret;
1093
1094 /*
1095 * If the target system sleep state is suspend-to-idle, it is sufficient
1096 * to check whether or not the device's wakeup settings are good for
1097 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
1098 * acpi_subsys_complete() to take care of fixing up the device's state
1099 * anyway, if need be.
1100 */
1101 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1102 dev->power.may_skip_resume = false;
1103
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1107
1108 /**
1109 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1110 * @dev: Device to handle.
1111 */
acpi_subsys_resume_noirq(struct device * dev)1112 static int acpi_subsys_resume_noirq(struct device *dev)
1113 {
1114 if (dev_pm_skip_resume(dev))
1115 return 0;
1116
1117 return pm_generic_resume_noirq(dev);
1118 }
1119
1120 /**
1121 * acpi_subsys_resume_early - Resume device using ACPI.
1122 * @dev: Device to Resume.
1123 *
1124 * Use ACPI to put the given device into the full-power state and carry out the
1125 * generic early resume procedure for it during system transition into the
1126 * working state.
1127 */
acpi_subsys_resume_early(struct device * dev)1128 static int acpi_subsys_resume_early(struct device *dev)
1129 {
1130 int ret;
1131
1132 if (dev_pm_skip_resume(dev))
1133 return 0;
1134
1135 ret = acpi_dev_resume(dev);
1136 return ret ? ret : pm_generic_resume_early(dev);
1137 }
1138
1139 /**
1140 * acpi_subsys_freeze - Run the device driver's freeze callback.
1141 * @dev: Device to handle.
1142 */
acpi_subsys_freeze(struct device * dev)1143 int acpi_subsys_freeze(struct device *dev)
1144 {
1145 /*
1146 * Resume all runtime-suspended devices before creating a snapshot
1147 * image of system memory, because the restore kernel generally cannot
1148 * be expected to always handle them consistently and they need to be
1149 * put into the runtime-active metastate during system resume anyway,
1150 * so it is better to ensure that the state saved in the image will be
1151 * always consistent with that.
1152 */
1153 pm_runtime_resume(dev);
1154
1155 return pm_generic_freeze(dev);
1156 }
1157 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1158
1159 /**
1160 * acpi_subsys_restore_early - Restore device using ACPI.
1161 * @dev: Device to restore.
1162 */
acpi_subsys_restore_early(struct device * dev)1163 int acpi_subsys_restore_early(struct device *dev)
1164 {
1165 int ret = acpi_dev_resume(dev);
1166 return ret ? ret : pm_generic_restore_early(dev);
1167 }
1168 EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1169
1170 /**
1171 * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1172 * @dev: Device to handle.
1173 *
1174 * Follow PCI and resume devices from runtime suspend before running their
1175 * system poweroff callbacks, unless the driver can cope with runtime-suspended
1176 * devices during system suspend and there are no ACPI-specific reasons for
1177 * resuming them.
1178 */
acpi_subsys_poweroff(struct device * dev)1179 int acpi_subsys_poweroff(struct device *dev)
1180 {
1181 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1182 acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1183 pm_runtime_resume(dev);
1184
1185 return pm_generic_poweroff(dev);
1186 }
1187 EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1188
1189 /**
1190 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1191 * @dev: Device to handle.
1192 *
1193 * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1194 * it into a low-power state during system transition into a sleep state.
1195 */
acpi_subsys_poweroff_late(struct device * dev)1196 static int acpi_subsys_poweroff_late(struct device *dev)
1197 {
1198 int ret;
1199
1200 if (dev_pm_skip_suspend(dev))
1201 return 0;
1202
1203 ret = pm_generic_poweroff_late(dev);
1204 if (ret)
1205 return ret;
1206
1207 return acpi_dev_suspend(dev, device_may_wakeup(dev));
1208 }
1209
1210 /**
1211 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1212 * @dev: Device to suspend.
1213 */
acpi_subsys_poweroff_noirq(struct device * dev)1214 static int acpi_subsys_poweroff_noirq(struct device *dev)
1215 {
1216 if (dev_pm_skip_suspend(dev))
1217 return 0;
1218
1219 return pm_generic_poweroff_noirq(dev);
1220 }
1221 #endif /* CONFIG_PM_SLEEP */
1222
1223 static struct dev_pm_domain acpi_general_pm_domain = {
1224 .ops = {
1225 .runtime_suspend = acpi_subsys_runtime_suspend,
1226 .runtime_resume = acpi_subsys_runtime_resume,
1227 #ifdef CONFIG_PM_SLEEP
1228 .prepare = acpi_subsys_prepare,
1229 .complete = acpi_subsys_complete,
1230 .suspend = acpi_subsys_suspend,
1231 .suspend_late = acpi_subsys_suspend_late,
1232 .suspend_noirq = acpi_subsys_suspend_noirq,
1233 .resume_noirq = acpi_subsys_resume_noirq,
1234 .resume_early = acpi_subsys_resume_early,
1235 .freeze = acpi_subsys_freeze,
1236 .poweroff = acpi_subsys_poweroff,
1237 .poweroff_late = acpi_subsys_poweroff_late,
1238 .poweroff_noirq = acpi_subsys_poweroff_noirq,
1239 .restore_early = acpi_subsys_restore_early,
1240 #endif
1241 },
1242 };
1243
1244 /**
1245 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1246 * @dev: Device to take care of.
1247 * @power_off: Whether or not to try to remove power from the device.
1248 *
1249 * Remove the device from the general ACPI PM domain and remove its wakeup
1250 * notifier. If @power_off is set, additionally remove power from the device if
1251 * possible.
1252 *
1253 * Callers must ensure proper synchronization of this function with power
1254 * management callbacks.
1255 */
acpi_dev_pm_detach(struct device * dev,bool power_off)1256 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1257 {
1258 struct acpi_device *adev = ACPI_COMPANION(dev);
1259
1260 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1261 dev_pm_domain_set(dev, NULL);
1262 acpi_remove_pm_notifier(adev);
1263 if (power_off) {
1264 /*
1265 * If the device's PM QoS resume latency limit or flags
1266 * have been exposed to user space, they have to be
1267 * hidden at this point, so that they don't affect the
1268 * choice of the low-power state to put the device into.
1269 */
1270 dev_pm_qos_hide_latency_limit(dev);
1271 dev_pm_qos_hide_flags(dev);
1272 acpi_device_wakeup_disable(adev);
1273 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1274 }
1275 }
1276 }
1277
1278 /**
1279 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1280 * @dev: Device to prepare.
1281 * @power_on: Whether or not to power on the device.
1282 *
1283 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1284 * attached to it, install a wakeup notification handler for the device and
1285 * add it to the general ACPI PM domain. If @power_on is set, the device will
1286 * be put into the ACPI D0 state before the function returns.
1287 *
1288 * This assumes that the @dev's bus type uses generic power management callbacks
1289 * (or doesn't use any power management callbacks at all).
1290 *
1291 * Callers must ensure proper synchronization of this function with power
1292 * management callbacks.
1293 */
acpi_dev_pm_attach(struct device * dev,bool power_on)1294 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1295 {
1296 /*
1297 * Skip devices whose ACPI companions match the device IDs below,
1298 * because they require special power management handling incompatible
1299 * with the generic ACPI PM domain.
1300 */
1301 static const struct acpi_device_id special_pm_ids[] = {
1302 ACPI_FAN_DEVICE_IDS,
1303 {}
1304 };
1305 struct acpi_device *adev = ACPI_COMPANION(dev);
1306
1307 if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1308 return 0;
1309
1310 /*
1311 * Only attach the power domain to the first device if the
1312 * companion is shared by multiple. This is to prevent doing power
1313 * management twice.
1314 */
1315 if (!acpi_device_is_first_physical_node(adev, dev))
1316 return 0;
1317
1318 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1319 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1320 if (power_on) {
1321 acpi_dev_pm_full_power(adev);
1322 acpi_device_wakeup_disable(adev);
1323 }
1324
1325 dev->pm_domain->detach = acpi_dev_pm_detach;
1326 return 1;
1327 }
1328 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1329
1330 /**
1331 * acpi_storage_d3 - Check if D3 should be used in the suspend path
1332 * @dev: Device to check
1333 *
1334 * Return %true if the platform firmware wants @dev to be programmed
1335 * into D3hot or D3cold (if supported) in the suspend path, or %false
1336 * when there is no specific preference. On some platforms, if this
1337 * hint is ignored, @dev may remain unresponsive after suspending the
1338 * platform as a whole.
1339 *
1340 * Although the property has storage in the name it actually is
1341 * applied to the PCIe slot and plugging in a non-storage device the
1342 * same platform restrictions will likely apply.
1343 */
acpi_storage_d3(struct device * dev)1344 bool acpi_storage_d3(struct device *dev)
1345 {
1346 struct acpi_device *adev = ACPI_COMPANION(dev);
1347 u8 val;
1348
1349 if (!adev)
1350 return false;
1351 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1352 &val))
1353 return false;
1354 return val == 1;
1355 }
1356 EXPORT_SYMBOL_GPL(acpi_storage_d3);
1357
1358 #endif /* CONFIG_PM */
1359