• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 		hbss = container_of(bss->pub.hidden_beacon_bss,
162 				    struct cfg80211_internal_bss,
163 				    pub);
164 		hbss->refcount--;
165 		if (hbss->refcount == 0)
166 			bss_free(hbss);
167 	}
168 
169 	if (bss->pub.transmitted_bss) {
170 		struct cfg80211_internal_bss *tbss;
171 
172 		tbss = container_of(bss->pub.transmitted_bss,
173 				    struct cfg80211_internal_bss,
174 				    pub);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 		return true;
226 
227 	/*
228 	 * non inheritance element format is:
229 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 	 * Both lists are optional. Both lengths are mandatory.
231 	 * This means valid length is:
232 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 	 */
234 	id_len = non_inherit_elem->data[1];
235 	if (non_inherit_elem->datalen < 3 + id_len)
236 		return true;
237 
238 	ext_id_len = non_inherit_elem->data[2 + id_len];
239 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 		return true;
241 
242 	if (elem->id == WLAN_EID_EXTENSION) {
243 		if (!ext_id_len)
244 			return true;
245 		loop_len = ext_id_len;
246 		list = &non_inherit_elem->data[3 + id_len];
247 		id = elem->data[0];
248 	} else {
249 		if (!id_len)
250 			return true;
251 		loop_len = id_len;
252 		list = &non_inherit_elem->data[2];
253 		id = elem->id;
254 	}
255 
256 	for (i = 0; i < loop_len; i++) {
257 		if (list[i] == id)
258 			return false;
259 	}
260 
261 	return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264 
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266 					    const u8 *ie, size_t ie_len,
267 					    u8 **pos, u8 *buf, size_t buf_len)
268 {
269 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270 		    elem->data + elem->datalen > ie + ie_len))
271 		return 0;
272 
273 	if (elem->datalen + 2 > buf + buf_len - *pos)
274 		return 0;
275 
276 	memcpy(*pos, elem, elem->datalen + 2);
277 	*pos += elem->datalen + 2;
278 
279 	/* Finish if it is not fragmented  */
280 	if (elem->datalen != 255)
281 		return *pos - buf;
282 
283 	ie_len = ie + ie_len - elem->data - elem->datalen;
284 	ie = (const u8 *)elem->data + elem->datalen;
285 
286 	for_each_element(elem, ie, ie_len) {
287 		if (elem->id != WLAN_EID_FRAGMENT)
288 			break;
289 
290 		if (elem->datalen + 2 > buf + buf_len - *pos)
291 			return 0;
292 
293 		memcpy(*pos, elem, elem->datalen + 2);
294 		*pos += elem->datalen + 2;
295 
296 		if (elem->datalen != 255)
297 			break;
298 	}
299 
300 	return *pos - buf;
301 }
302 
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304 				  const u8 *subie, size_t subie_len,
305 				  u8 *new_ie, size_t new_ie_len)
306 {
307 	const struct element *non_inherit_elem, *parent, *sub;
308 	u8 *pos = new_ie;
309 	u8 id, ext_id;
310 	unsigned int match_len;
311 
312 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313 						  subie, subie_len);
314 
315 	/* We copy the elements one by one from the parent to the generated
316 	 * elements.
317 	 * If they are not inherited (included in subie or in the non
318 	 * inheritance element), then we copy all occurrences the first time
319 	 * we see this element type.
320 	 */
321 	for_each_element(parent, ie, ielen) {
322 		if (parent->id == WLAN_EID_FRAGMENT)
323 			continue;
324 
325 		if (parent->id == WLAN_EID_EXTENSION) {
326 			if (parent->datalen < 1)
327 				continue;
328 
329 			id = WLAN_EID_EXTENSION;
330 			ext_id = parent->data[0];
331 			match_len = 1;
332 		} else {
333 			id = parent->id;
334 			match_len = 0;
335 		}
336 
337 		/* Find first occurrence in subie */
338 		sub = cfg80211_find_elem_match(id, subie, subie_len,
339 					       &ext_id, match_len, 0);
340 
341 		/* Copy from parent if not in subie and inherited */
342 		if (!sub &&
343 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344 			if (!cfg80211_copy_elem_with_frags(parent,
345 							   ie, ielen,
346 							   &pos, new_ie,
347 							   new_ie_len))
348 				return 0;
349 
350 			continue;
351 		}
352 
353 		/* Already copied if an earlier element had the same type */
354 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355 					     &ext_id, match_len, 0))
356 			continue;
357 
358 		/* Not inheriting, copy all similar elements from subie */
359 		while (sub) {
360 			if (!cfg80211_copy_elem_with_frags(sub,
361 							   subie, subie_len,
362 							   &pos, new_ie,
363 							   new_ie_len))
364 				return 0;
365 
366 			sub = cfg80211_find_elem_match(id,
367 						       sub->data + sub->datalen,
368 						       subie_len + subie -
369 						       (sub->data +
370 							sub->datalen),
371 						       &ext_id, match_len, 0);
372 		}
373 	}
374 
375 	/* The above misses elements that are included in subie but not in the
376 	 * parent, so do a pass over subie and append those.
377 	 * Skip the non-tx BSSID caps and non-inheritance element.
378 	 */
379 	for_each_element(sub, subie, subie_len) {
380 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381 			continue;
382 
383 		if (sub->id == WLAN_EID_FRAGMENT)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_EXTENSION) {
387 			if (sub->datalen < 1)
388 				continue;
389 
390 			id = WLAN_EID_EXTENSION;
391 			ext_id = sub->data[0];
392 			match_len = 1;
393 
394 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395 				continue;
396 		} else {
397 			id = sub->id;
398 			match_len = 0;
399 		}
400 
401 		/* Processed if one was included in the parent */
402 		if (cfg80211_find_elem_match(id, ie, ielen,
403 					     &ext_id, match_len, 0))
404 			continue;
405 
406 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407 						   &pos, new_ie, new_ie_len))
408 			return 0;
409 	}
410 
411 	return pos - new_ie;
412 }
413 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415 		   const u8 *ssid, size_t ssid_len)
416 {
417 	const struct cfg80211_bss_ies *ies;
418 	const u8 *ssidie;
419 
420 	if (bssid && !ether_addr_equal(a->bssid, bssid))
421 		return false;
422 
423 	if (!ssid)
424 		return true;
425 
426 	ies = rcu_access_pointer(a->ies);
427 	if (!ies)
428 		return false;
429 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
430 	if (!ssidie)
431 		return false;
432 	if (ssidie[1] != ssid_len)
433 		return false;
434 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
435 }
436 
437 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439 			   struct cfg80211_bss *nontrans_bss)
440 {
441 	const u8 *ssid;
442 	size_t ssid_len;
443 	struct cfg80211_bss *bss = NULL;
444 
445 	rcu_read_lock();
446 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
447 	if (!ssid) {
448 		rcu_read_unlock();
449 		return -EINVAL;
450 	}
451 	ssid_len = ssid[1];
452 	ssid = ssid + 2;
453 
454 	/* check if nontrans_bss is in the list */
455 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
457 			rcu_read_unlock();
458 			return 0;
459 		}
460 	}
461 
462 	rcu_read_unlock();
463 
464 	/*
465 	 * This is a bit weird - it's not on the list, but already on another
466 	 * one! The only way that could happen is if there's some BSSID/SSID
467 	 * shared by multiple APs in their multi-BSSID profiles, potentially
468 	 * with hidden SSID mixed in ... ignore it.
469 	 */
470 	if (!list_empty(&nontrans_bss->nontrans_list))
471 		return -EINVAL;
472 
473 	/* add to the list */
474 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
475 	return 0;
476 }
477 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)478 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
479 				  unsigned long expire_time)
480 {
481 	struct cfg80211_internal_bss *bss, *tmp;
482 	bool expired = false;
483 
484 	lockdep_assert_held(&rdev->bss_lock);
485 
486 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
487 		if (atomic_read(&bss->hold))
488 			continue;
489 		if (!time_after(expire_time, bss->ts))
490 			continue;
491 
492 		if (__cfg80211_unlink_bss(rdev, bss))
493 			expired = true;
494 	}
495 
496 	if (expired)
497 		rdev->bss_generation++;
498 }
499 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)500 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
501 {
502 	struct cfg80211_internal_bss *bss, *oldest = NULL;
503 	bool ret;
504 
505 	lockdep_assert_held(&rdev->bss_lock);
506 
507 	list_for_each_entry(bss, &rdev->bss_list, list) {
508 		if (atomic_read(&bss->hold))
509 			continue;
510 
511 		if (!list_empty(&bss->hidden_list) &&
512 		    !bss->pub.hidden_beacon_bss)
513 			continue;
514 
515 		if (oldest && time_before(oldest->ts, bss->ts))
516 			continue;
517 		oldest = bss;
518 	}
519 
520 	if (WARN_ON(!oldest))
521 		return false;
522 
523 	/*
524 	 * The callers make sure to increase rdev->bss_generation if anything
525 	 * gets removed (and a new entry added), so there's no need to also do
526 	 * it here.
527 	 */
528 
529 	ret = __cfg80211_unlink_bss(rdev, oldest);
530 	WARN_ON(!ret);
531 	return ret;
532 }
533 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)534 static u8 cfg80211_parse_bss_param(u8 data,
535 				   struct cfg80211_colocated_ap *coloc_ap)
536 {
537 	coloc_ap->oct_recommended =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
539 	coloc_ap->same_ssid =
540 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
541 	coloc_ap->multi_bss =
542 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
543 	coloc_ap->transmitted_bssid =
544 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
545 	coloc_ap->unsolicited_probe =
546 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
547 	coloc_ap->colocated_ess =
548 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
549 
550 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
551 }
552 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)553 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
554 				    const struct element **elem, u32 *s_ssid)
555 {
556 
557 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
558 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
559 		return -EINVAL;
560 
561 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
562 	return 0;
563 }
564 
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)565 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
566 {
567 	struct cfg80211_colocated_ap *ap, *tmp_ap;
568 
569 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
570 		list_del(&ap->list);
571 		kfree(ap);
572 	}
573 }
574 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)575 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
576 				  const u8 *pos, u8 length,
577 				  const struct element *ssid_elem,
578 				  int s_ssid_tmp)
579 {
580 	/* skip the TBTT offset */
581 	pos++;
582 
583 	memcpy(entry->bssid, pos, ETH_ALEN);
584 	pos += ETH_ALEN;
585 
586 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
587 		memcpy(&entry->short_ssid, pos,
588 		       sizeof(entry->short_ssid));
589 		entry->short_ssid_valid = true;
590 		pos += 4;
591 	}
592 
593 	/* skip non colocated APs */
594 	if (!cfg80211_parse_bss_param(*pos, entry))
595 		return -EINVAL;
596 	pos++;
597 
598 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
599 		/*
600 		 * no information about the short ssid. Consider the entry valid
601 		 * for now. It would later be dropped in case there are explicit
602 		 * SSIDs that need to be matched
603 		 */
604 		if (!entry->same_ssid)
605 			return 0;
606 	}
607 
608 	if (entry->same_ssid) {
609 		entry->short_ssid = s_ssid_tmp;
610 		entry->short_ssid_valid = true;
611 
612 		/*
613 		 * This is safe because we validate datalen in
614 		 * cfg80211_parse_colocated_ap(), before calling this
615 		 * function.
616 		 */
617 		memcpy(&entry->ssid, &ssid_elem->data,
618 		       ssid_elem->datalen);
619 		entry->ssid_len = ssid_elem->datalen;
620 	}
621 	return 0;
622 }
623 
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)624 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
625 				       struct list_head *list)
626 {
627 	struct ieee80211_neighbor_ap_info *ap_info;
628 	const struct element *elem, *ssid_elem;
629 	const u8 *pos, *end;
630 	u32 s_ssid_tmp;
631 	int n_coloc = 0, ret;
632 	LIST_HEAD(ap_list);
633 
634 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
635 				  ies->len);
636 	if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
637 		return 0;
638 
639 	pos = elem->data;
640 	end = pos + elem->datalen;
641 
642 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
643 	if (ret)
644 		return 0;
645 
646 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
647 	while (pos + sizeof(*ap_info) <= end) {
648 		enum nl80211_band band;
649 		int freq;
650 		u8 length, i, count;
651 
652 		ap_info = (void *)pos;
653 		count = u8_get_bits(ap_info->tbtt_info_hdr,
654 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
655 		length = ap_info->tbtt_info_len;
656 
657 		pos += sizeof(*ap_info);
658 
659 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
660 						       &band))
661 			break;
662 
663 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
664 
665 		if (end - pos < count * ap_info->tbtt_info_len)
666 			break;
667 
668 		/*
669 		 * TBTT info must include bss param + BSSID +
670 		 * (short SSID or same_ssid bit to be set).
671 		 * ignore other options, and move to the
672 		 * next AP info
673 		 */
674 		if (band != NL80211_BAND_6GHZ ||
675 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
676 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
677 			pos += count * ap_info->tbtt_info_len;
678 			continue;
679 		}
680 
681 		for (i = 0; i < count; i++) {
682 			struct cfg80211_colocated_ap *entry;
683 
684 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
685 					GFP_ATOMIC);
686 
687 			if (!entry)
688 				break;
689 
690 			entry->center_freq = freq;
691 
692 			if (!cfg80211_parse_ap_info(entry, pos, length,
693 						    ssid_elem, s_ssid_tmp)) {
694 				n_coloc++;
695 				list_add_tail(&entry->list, &ap_list);
696 			} else {
697 				kfree(entry);
698 			}
699 
700 			pos += ap_info->tbtt_info_len;
701 		}
702 	}
703 
704 	if (pos != end) {
705 		cfg80211_free_coloc_ap_list(&ap_list);
706 		return 0;
707 	}
708 
709 	list_splice_tail(&ap_list, list);
710 	return n_coloc;
711 }
712 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)713 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
714 					struct ieee80211_channel *chan,
715 					bool add_to_6ghz)
716 {
717 	int i;
718 	u32 n_channels = request->n_channels;
719 	struct cfg80211_scan_6ghz_params *params =
720 		&request->scan_6ghz_params[request->n_6ghz_params];
721 
722 	for (i = 0; i < n_channels; i++) {
723 		if (request->channels[i] == chan) {
724 			if (add_to_6ghz)
725 				params->channel_idx = i;
726 			return;
727 		}
728 	}
729 
730 	request->channels[n_channels] = chan;
731 	if (add_to_6ghz)
732 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
733 			n_channels;
734 
735 	request->n_channels++;
736 }
737 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)738 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
739 				     struct cfg80211_scan_request *request)
740 {
741 	int i;
742 	u32 s_ssid;
743 
744 	for (i = 0; i < request->n_ssids; i++) {
745 		/* wildcard ssid in the scan request */
746 		if (!request->ssids[i].ssid_len) {
747 			if (ap->multi_bss && !ap->transmitted_bssid)
748 				continue;
749 
750 			return true;
751 		}
752 
753 		if (ap->ssid_len &&
754 		    ap->ssid_len == request->ssids[i].ssid_len) {
755 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
756 				    ap->ssid_len))
757 				return true;
758 		} else if (ap->short_ssid_valid) {
759 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
760 					   request->ssids[i].ssid_len);
761 
762 			if (ap->short_ssid == s_ssid)
763 				return true;
764 		}
765 	}
766 
767 	return false;
768 }
769 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)770 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
771 {
772 	u8 i;
773 	struct cfg80211_colocated_ap *ap;
774 	int n_channels, count = 0, err;
775 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
776 	LIST_HEAD(coloc_ap_list);
777 	bool need_scan_psc;
778 	const struct ieee80211_sband_iftype_data *iftd;
779 
780 	rdev_req->scan_6ghz = true;
781 
782 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
783 		return -EOPNOTSUPP;
784 
785 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
786 					       rdev_req->wdev->iftype);
787 	if (!iftd || !iftd->he_cap.has_he)
788 		return -EOPNOTSUPP;
789 
790 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
791 
792 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
793 		struct cfg80211_internal_bss *intbss;
794 
795 		spin_lock_bh(&rdev->bss_lock);
796 		list_for_each_entry(intbss, &rdev->bss_list, list) {
797 			struct cfg80211_bss *res = &intbss->pub;
798 			const struct cfg80211_bss_ies *ies;
799 
800 			ies = rcu_access_pointer(res->ies);
801 			count += cfg80211_parse_colocated_ap(ies,
802 							     &coloc_ap_list);
803 		}
804 		spin_unlock_bh(&rdev->bss_lock);
805 	}
806 
807 	request = kzalloc(struct_size(request, channels, n_channels) +
808 			  sizeof(*request->scan_6ghz_params) * count,
809 			  GFP_KERNEL);
810 	if (!request) {
811 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
812 		return -ENOMEM;
813 	}
814 
815 	*request = *rdev_req;
816 	request->n_channels = 0;
817 	request->scan_6ghz_params =
818 		(void *)&request->channels[n_channels];
819 
820 	/*
821 	 * PSC channels should not be scanned if all the reported co-located APs
822 	 * are indicating that all APs in the same ESS are co-located
823 	 */
824 	if (count) {
825 		need_scan_psc = false;
826 
827 		list_for_each_entry(ap, &coloc_ap_list, list) {
828 			if (!ap->colocated_ess) {
829 				need_scan_psc = true;
830 				break;
831 			}
832 		}
833 	} else {
834 		need_scan_psc = true;
835 	}
836 
837 	/*
838 	 * add to the scan request the channels that need to be scanned
839 	 * regardless of the collocated APs (PSC channels or all channels
840 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
841 	 */
842 	for (i = 0; i < rdev_req->n_channels; i++) {
843 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
844 		    ((need_scan_psc &&
845 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
846 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
847 			cfg80211_scan_req_add_chan(request,
848 						   rdev_req->channels[i],
849 						   false);
850 		}
851 	}
852 
853 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
854 		goto skip;
855 
856 	list_for_each_entry(ap, &coloc_ap_list, list) {
857 		bool found = false;
858 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
859 			&request->scan_6ghz_params[request->n_6ghz_params];
860 		struct ieee80211_channel *chan =
861 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
862 
863 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
864 			continue;
865 
866 		for (i = 0; i < rdev_req->n_channels; i++) {
867 			if (rdev_req->channels[i] == chan)
868 				found = true;
869 		}
870 
871 		if (!found)
872 			continue;
873 
874 		if (request->n_ssids > 0 &&
875 		    !cfg80211_find_ssid_match(ap, request))
876 			continue;
877 
878 		if (!is_broadcast_ether_addr(request->bssid) &&
879 		    !ether_addr_equal(request->bssid, ap->bssid))
880 			continue;
881 
882 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
883 			continue;
884 
885 		cfg80211_scan_req_add_chan(request, chan, true);
886 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
887 		scan_6ghz_params->short_ssid = ap->short_ssid;
888 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
889 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
890 
891 		/*
892 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
893 		 * set to false, then all the APs that the scan logic is
894 		 * interested with on the channel are collocated and thus there
895 		 * is no need to perform the initial PSC channel listen.
896 		 */
897 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
898 			scan_6ghz_params->psc_no_listen = true;
899 
900 		request->n_6ghz_params++;
901 	}
902 
903 skip:
904 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
905 
906 	if (request->n_channels) {
907 		struct cfg80211_scan_request *old = rdev->int_scan_req;
908 
909 		rdev->int_scan_req = request;
910 
911 		/*
912 		 * If this scan follows a previous scan, save the scan start
913 		 * info from the first part of the scan
914 		 */
915 		if (old)
916 			rdev->int_scan_req->info = old->info;
917 
918 		err = rdev_scan(rdev, request);
919 		if (err) {
920 			rdev->int_scan_req = old;
921 			kfree(request);
922 		} else {
923 			kfree(old);
924 		}
925 
926 		return err;
927 	}
928 
929 	kfree(request);
930 	return -EINVAL;
931 }
932 
cfg80211_scan(struct cfg80211_registered_device * rdev)933 int cfg80211_scan(struct cfg80211_registered_device *rdev)
934 {
935 	struct cfg80211_scan_request *request;
936 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
937 	u32 n_channels = 0, idx, i;
938 
939 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
940 		return rdev_scan(rdev, rdev_req);
941 
942 	for (i = 0; i < rdev_req->n_channels; i++) {
943 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
944 			n_channels++;
945 	}
946 
947 	if (!n_channels)
948 		return cfg80211_scan_6ghz(rdev);
949 
950 	request = kzalloc(struct_size(request, channels, n_channels),
951 			  GFP_KERNEL);
952 	if (!request)
953 		return -ENOMEM;
954 
955 	*request = *rdev_req;
956 	request->n_channels = n_channels;
957 
958 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
959 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
960 			request->channels[idx++] = rdev_req->channels[i];
961 	}
962 
963 	rdev_req->scan_6ghz = false;
964 	rdev->int_scan_req = request;
965 	return rdev_scan(rdev, request);
966 }
967 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)968 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
969 			   bool send_message)
970 {
971 	struct cfg80211_scan_request *request, *rdev_req;
972 	struct wireless_dev *wdev;
973 	struct sk_buff *msg;
974 #ifdef CONFIG_CFG80211_WEXT
975 	union iwreq_data wrqu;
976 #endif
977 
978 	ASSERT_RTNL();
979 
980 	if (rdev->scan_msg) {
981 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
982 		rdev->scan_msg = NULL;
983 		return;
984 	}
985 
986 	rdev_req = rdev->scan_req;
987 	if (!rdev_req)
988 		return;
989 
990 	wdev = rdev_req->wdev;
991 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
992 
993 	if (wdev_running(wdev) &&
994 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
995 	    !rdev_req->scan_6ghz && !request->info.aborted &&
996 	    !cfg80211_scan_6ghz(rdev))
997 		return;
998 
999 	/*
1000 	 * This must be before sending the other events!
1001 	 * Otherwise, wpa_supplicant gets completely confused with
1002 	 * wext events.
1003 	 */
1004 	if (wdev->netdev)
1005 		cfg80211_sme_scan_done(wdev->netdev);
1006 
1007 	if (!request->info.aborted &&
1008 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1009 		/* flush entries from previous scans */
1010 		spin_lock_bh(&rdev->bss_lock);
1011 		__cfg80211_bss_expire(rdev, request->scan_start);
1012 		spin_unlock_bh(&rdev->bss_lock);
1013 	}
1014 
1015 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1016 
1017 #ifdef CONFIG_CFG80211_WEXT
1018 	if (wdev->netdev && !request->info.aborted) {
1019 		memset(&wrqu, 0, sizeof(wrqu));
1020 
1021 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1022 	}
1023 #endif
1024 
1025 	if (wdev->netdev)
1026 		dev_put(wdev->netdev);
1027 
1028 	kfree(rdev->int_scan_req);
1029 	rdev->int_scan_req = NULL;
1030 
1031 	kfree(rdev->scan_req);
1032 	rdev->scan_req = NULL;
1033 
1034 	if (!send_message)
1035 		rdev->scan_msg = msg;
1036 	else
1037 		nl80211_send_scan_msg(rdev, msg);
1038 }
1039 
__cfg80211_scan_done(struct work_struct * wk)1040 void __cfg80211_scan_done(struct work_struct *wk)
1041 {
1042 	struct cfg80211_registered_device *rdev;
1043 
1044 	rdev = container_of(wk, struct cfg80211_registered_device,
1045 			    scan_done_wk);
1046 
1047 	rtnl_lock();
1048 	___cfg80211_scan_done(rdev, true);
1049 	rtnl_unlock();
1050 }
1051 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1052 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1053 			struct cfg80211_scan_info *info)
1054 {
1055 	struct cfg80211_scan_info old_info = request->info;
1056 
1057 	trace_cfg80211_scan_done(request, info);
1058 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1059 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1060 
1061 	request->info = *info;
1062 
1063 	/*
1064 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1065 	 * be of the first part. In such a case old_info.scan_start_tsf should
1066 	 * be non zero.
1067 	 */
1068 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1069 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1070 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1071 		       sizeof(request->info.tsf_bssid));
1072 	}
1073 
1074 	request->notified = true;
1075 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1076 }
1077 EXPORT_SYMBOL(cfg80211_scan_done);
1078 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1079 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1080 				 struct cfg80211_sched_scan_request *req)
1081 {
1082 	ASSERT_RTNL();
1083 
1084 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1085 }
1086 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1087 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1088 					struct cfg80211_sched_scan_request *req)
1089 {
1090 	ASSERT_RTNL();
1091 
1092 	list_del_rcu(&req->list);
1093 	kfree_rcu(req, rcu_head);
1094 }
1095 
1096 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1097 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1098 {
1099 	struct cfg80211_sched_scan_request *pos;
1100 
1101 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1102 				lockdep_rtnl_is_held()) {
1103 		if (pos->reqid == reqid)
1104 			return pos;
1105 	}
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * Determines if a scheduled scan request can be handled. When a legacy
1111  * scheduled scan is running no other scheduled scan is allowed regardless
1112  * whether the request is for legacy or multi-support scan. When a multi-support
1113  * scheduled scan is running a request for legacy scan is not allowed. In this
1114  * case a request for multi-support scan can be handled if resources are
1115  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1116  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1117 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1118 				     bool want_multi)
1119 {
1120 	struct cfg80211_sched_scan_request *pos;
1121 	int i = 0;
1122 
1123 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1124 		/* request id zero means legacy in progress */
1125 		if (!i && !pos->reqid)
1126 			return -EINPROGRESS;
1127 		i++;
1128 	}
1129 
1130 	if (i) {
1131 		/* no legacy allowed when multi request(s) are active */
1132 		if (!want_multi)
1133 			return -EINPROGRESS;
1134 
1135 		/* resource limit reached */
1136 		if (i == rdev->wiphy.max_sched_scan_reqs)
1137 			return -ENOSPC;
1138 	}
1139 	return 0;
1140 }
1141 
cfg80211_sched_scan_results_wk(struct work_struct * work)1142 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1143 {
1144 	struct cfg80211_registered_device *rdev;
1145 	struct cfg80211_sched_scan_request *req, *tmp;
1146 
1147 	rdev = container_of(work, struct cfg80211_registered_device,
1148 			   sched_scan_res_wk);
1149 
1150 	rtnl_lock();
1151 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1152 		if (req->report_results) {
1153 			req->report_results = false;
1154 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1155 				/* flush entries from previous scans */
1156 				spin_lock_bh(&rdev->bss_lock);
1157 				__cfg80211_bss_expire(rdev, req->scan_start);
1158 				spin_unlock_bh(&rdev->bss_lock);
1159 				req->scan_start = jiffies;
1160 			}
1161 			nl80211_send_sched_scan(req,
1162 						NL80211_CMD_SCHED_SCAN_RESULTS);
1163 		}
1164 	}
1165 	rtnl_unlock();
1166 }
1167 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1168 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1169 {
1170 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1171 	struct cfg80211_sched_scan_request *request;
1172 
1173 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1174 	/* ignore if we're not scanning */
1175 
1176 	rcu_read_lock();
1177 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1178 	if (request) {
1179 		request->report_results = true;
1180 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1181 	}
1182 	rcu_read_unlock();
1183 }
1184 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1185 
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)1186 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1187 {
1188 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1189 
1190 	ASSERT_RTNL();
1191 
1192 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1193 
1194 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1195 }
1196 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1197 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1198 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1199 {
1200 	rtnl_lock();
1201 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1202 	rtnl_unlock();
1203 }
1204 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1205 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1206 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1207 				 struct cfg80211_sched_scan_request *req,
1208 				 bool driver_initiated)
1209 {
1210 	ASSERT_RTNL();
1211 
1212 	if (!driver_initiated) {
1213 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1214 		if (err)
1215 			return err;
1216 	}
1217 
1218 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1219 
1220 	cfg80211_del_sched_scan_req(rdev, req);
1221 
1222 	return 0;
1223 }
1224 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1225 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1226 			       u64 reqid, bool driver_initiated)
1227 {
1228 	struct cfg80211_sched_scan_request *sched_scan_req;
1229 
1230 	ASSERT_RTNL();
1231 
1232 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1233 	if (!sched_scan_req)
1234 		return -ENOENT;
1235 
1236 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1237 					    driver_initiated);
1238 }
1239 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1240 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1241                       unsigned long age_secs)
1242 {
1243 	struct cfg80211_internal_bss *bss;
1244 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1245 
1246 	spin_lock_bh(&rdev->bss_lock);
1247 	list_for_each_entry(bss, &rdev->bss_list, list)
1248 		bss->ts -= age_jiffies;
1249 	spin_unlock_bh(&rdev->bss_lock);
1250 }
1251 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1252 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1253 {
1254 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1255 }
1256 
cfg80211_bss_flush(struct wiphy * wiphy)1257 void cfg80211_bss_flush(struct wiphy *wiphy)
1258 {
1259 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1260 
1261 	spin_lock_bh(&rdev->bss_lock);
1262 	__cfg80211_bss_expire(rdev, jiffies);
1263 	spin_unlock_bh(&rdev->bss_lock);
1264 }
1265 EXPORT_SYMBOL(cfg80211_bss_flush);
1266 
1267 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1268 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1269 			 const u8 *match, unsigned int match_len,
1270 			 unsigned int match_offset)
1271 {
1272 	const struct element *elem;
1273 
1274 	for_each_element_id(elem, eid, ies, len) {
1275 		if (elem->datalen >= match_offset + match_len &&
1276 		    !memcmp(elem->data + match_offset, match, match_len))
1277 			return elem;
1278 	}
1279 
1280 	return NULL;
1281 }
1282 EXPORT_SYMBOL(cfg80211_find_elem_match);
1283 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1284 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1285 						const u8 *ies,
1286 						unsigned int len)
1287 {
1288 	const struct element *elem;
1289 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1290 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1291 
1292 	if (WARN_ON(oui_type > 0xff))
1293 		return NULL;
1294 
1295 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1296 					match, match_len, 0);
1297 
1298 	if (!elem || elem->datalen < 4)
1299 		return NULL;
1300 
1301 	return elem;
1302 }
1303 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1304 
1305 /**
1306  * enum bss_compare_mode - BSS compare mode
1307  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1308  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1309  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1310  */
1311 enum bss_compare_mode {
1312 	BSS_CMP_REGULAR,
1313 	BSS_CMP_HIDE_ZLEN,
1314 	BSS_CMP_HIDE_NUL,
1315 };
1316 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1317 static int cmp_bss(struct cfg80211_bss *a,
1318 		   struct cfg80211_bss *b,
1319 		   enum bss_compare_mode mode)
1320 {
1321 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1322 	const u8 *ie1 = NULL;
1323 	const u8 *ie2 = NULL;
1324 	int i, r;
1325 
1326 	if (a->channel != b->channel)
1327 		return b->channel->center_freq - a->channel->center_freq;
1328 
1329 	a_ies = rcu_access_pointer(a->ies);
1330 	if (!a_ies)
1331 		return -1;
1332 	b_ies = rcu_access_pointer(b->ies);
1333 	if (!b_ies)
1334 		return 1;
1335 
1336 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1337 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1338 				       a_ies->data, a_ies->len);
1339 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1340 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1341 				       b_ies->data, b_ies->len);
1342 	if (ie1 && ie2) {
1343 		int mesh_id_cmp;
1344 
1345 		if (ie1[1] == ie2[1])
1346 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1347 		else
1348 			mesh_id_cmp = ie2[1] - ie1[1];
1349 
1350 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1351 				       a_ies->data, a_ies->len);
1352 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1353 				       b_ies->data, b_ies->len);
1354 		if (ie1 && ie2) {
1355 			if (mesh_id_cmp)
1356 				return mesh_id_cmp;
1357 			if (ie1[1] != ie2[1])
1358 				return ie2[1] - ie1[1];
1359 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1360 		}
1361 	}
1362 
1363 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1364 	if (r)
1365 		return r;
1366 
1367 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1368 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1369 
1370 	if (!ie1 && !ie2)
1371 		return 0;
1372 
1373 	/*
1374 	 * Note that with "hide_ssid", the function returns a match if
1375 	 * the already-present BSS ("b") is a hidden SSID beacon for
1376 	 * the new BSS ("a").
1377 	 */
1378 
1379 	/* sort missing IE before (left of) present IE */
1380 	if (!ie1)
1381 		return -1;
1382 	if (!ie2)
1383 		return 1;
1384 
1385 	switch (mode) {
1386 	case BSS_CMP_HIDE_ZLEN:
1387 		/*
1388 		 * In ZLEN mode we assume the BSS entry we're
1389 		 * looking for has a zero-length SSID. So if
1390 		 * the one we're looking at right now has that,
1391 		 * return 0. Otherwise, return the difference
1392 		 * in length, but since we're looking for the
1393 		 * 0-length it's really equivalent to returning
1394 		 * the length of the one we're looking at.
1395 		 *
1396 		 * No content comparison is needed as we assume
1397 		 * the content length is zero.
1398 		 */
1399 		return ie2[1];
1400 	case BSS_CMP_REGULAR:
1401 	default:
1402 		/* sort by length first, then by contents */
1403 		if (ie1[1] != ie2[1])
1404 			return ie2[1] - ie1[1];
1405 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1406 	case BSS_CMP_HIDE_NUL:
1407 		if (ie1[1] != ie2[1])
1408 			return ie2[1] - ie1[1];
1409 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1410 		for (i = 0; i < ie2[1]; i++)
1411 			if (ie2[i + 2])
1412 				return -1;
1413 		return 0;
1414 	}
1415 }
1416 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1417 static bool cfg80211_bss_type_match(u16 capability,
1418 				    enum nl80211_band band,
1419 				    enum ieee80211_bss_type bss_type)
1420 {
1421 	bool ret = true;
1422 	u16 mask, val;
1423 
1424 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1425 		return ret;
1426 
1427 	if (band == NL80211_BAND_60GHZ) {
1428 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1429 		switch (bss_type) {
1430 		case IEEE80211_BSS_TYPE_ESS:
1431 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1432 			break;
1433 		case IEEE80211_BSS_TYPE_PBSS:
1434 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1435 			break;
1436 		case IEEE80211_BSS_TYPE_IBSS:
1437 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1438 			break;
1439 		default:
1440 			return false;
1441 		}
1442 	} else {
1443 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1444 		switch (bss_type) {
1445 		case IEEE80211_BSS_TYPE_ESS:
1446 			val = WLAN_CAPABILITY_ESS;
1447 			break;
1448 		case IEEE80211_BSS_TYPE_IBSS:
1449 			val = WLAN_CAPABILITY_IBSS;
1450 			break;
1451 		case IEEE80211_BSS_TYPE_MBSS:
1452 			val = 0;
1453 			break;
1454 		default:
1455 			return false;
1456 		}
1457 	}
1458 
1459 	ret = ((capability & mask) == val);
1460 	return ret;
1461 }
1462 
1463 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1464 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1465 				      struct ieee80211_channel *channel,
1466 				      const u8 *bssid,
1467 				      const u8 *ssid, size_t ssid_len,
1468 				      enum ieee80211_bss_type bss_type,
1469 				      enum ieee80211_privacy privacy)
1470 {
1471 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1472 	struct cfg80211_internal_bss *bss, *res = NULL;
1473 	unsigned long now = jiffies;
1474 	int bss_privacy;
1475 
1476 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1477 			       privacy);
1478 
1479 	spin_lock_bh(&rdev->bss_lock);
1480 
1481 	list_for_each_entry(bss, &rdev->bss_list, list) {
1482 		if (!cfg80211_bss_type_match(bss->pub.capability,
1483 					     bss->pub.channel->band, bss_type))
1484 			continue;
1485 
1486 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1487 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1488 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1489 			continue;
1490 		if (channel && bss->pub.channel != channel)
1491 			continue;
1492 		if (!is_valid_ether_addr(bss->pub.bssid))
1493 			continue;
1494 		/* Don't get expired BSS structs */
1495 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1496 		    !atomic_read(&bss->hold))
1497 			continue;
1498 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1499 			res = bss;
1500 			bss_ref_get(rdev, res);
1501 			break;
1502 		}
1503 	}
1504 
1505 	spin_unlock_bh(&rdev->bss_lock);
1506 	if (!res)
1507 		return NULL;
1508 	trace_cfg80211_return_bss(&res->pub);
1509 	return &res->pub;
1510 }
1511 EXPORT_SYMBOL(cfg80211_get_bss);
1512 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1513 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1514 			  struct cfg80211_internal_bss *bss)
1515 {
1516 	struct rb_node **p = &rdev->bss_tree.rb_node;
1517 	struct rb_node *parent = NULL;
1518 	struct cfg80211_internal_bss *tbss;
1519 	int cmp;
1520 
1521 	while (*p) {
1522 		parent = *p;
1523 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1524 
1525 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1526 
1527 		if (WARN_ON(!cmp)) {
1528 			/* will sort of leak this BSS */
1529 			return;
1530 		}
1531 
1532 		if (cmp < 0)
1533 			p = &(*p)->rb_left;
1534 		else
1535 			p = &(*p)->rb_right;
1536 	}
1537 
1538 	rb_link_node(&bss->rbn, parent, p);
1539 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1540 }
1541 
1542 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1543 rb_find_bss(struct cfg80211_registered_device *rdev,
1544 	    struct cfg80211_internal_bss *res,
1545 	    enum bss_compare_mode mode)
1546 {
1547 	struct rb_node *n = rdev->bss_tree.rb_node;
1548 	struct cfg80211_internal_bss *bss;
1549 	int r;
1550 
1551 	while (n) {
1552 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1553 		r = cmp_bss(&res->pub, &bss->pub, mode);
1554 
1555 		if (r == 0)
1556 			return bss;
1557 		else if (r < 0)
1558 			n = n->rb_left;
1559 		else
1560 			n = n->rb_right;
1561 	}
1562 
1563 	return NULL;
1564 }
1565 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1566 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1567 				   struct cfg80211_internal_bss *new)
1568 {
1569 	const struct cfg80211_bss_ies *ies;
1570 	struct cfg80211_internal_bss *bss;
1571 	const u8 *ie;
1572 	int i, ssidlen;
1573 	u8 fold = 0;
1574 	u32 n_entries = 0;
1575 
1576 	ies = rcu_access_pointer(new->pub.beacon_ies);
1577 	if (WARN_ON(!ies))
1578 		return false;
1579 
1580 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1581 	if (!ie) {
1582 		/* nothing to do */
1583 		return true;
1584 	}
1585 
1586 	ssidlen = ie[1];
1587 	for (i = 0; i < ssidlen; i++)
1588 		fold |= ie[2 + i];
1589 
1590 	if (fold) {
1591 		/* not a hidden SSID */
1592 		return true;
1593 	}
1594 
1595 	/* This is the bad part ... */
1596 
1597 	list_for_each_entry(bss, &rdev->bss_list, list) {
1598 		/*
1599 		 * we're iterating all the entries anyway, so take the
1600 		 * opportunity to validate the list length accounting
1601 		 */
1602 		n_entries++;
1603 
1604 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1605 			continue;
1606 		if (bss->pub.channel != new->pub.channel)
1607 			continue;
1608 		if (bss->pub.scan_width != new->pub.scan_width)
1609 			continue;
1610 		if (rcu_access_pointer(bss->pub.beacon_ies))
1611 			continue;
1612 		ies = rcu_access_pointer(bss->pub.ies);
1613 		if (!ies)
1614 			continue;
1615 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1616 		if (!ie)
1617 			continue;
1618 		if (ssidlen && ie[1] != ssidlen)
1619 			continue;
1620 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1621 			continue;
1622 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1623 			list_del(&bss->hidden_list);
1624 		/* combine them */
1625 		list_add(&bss->hidden_list, &new->hidden_list);
1626 		bss->pub.hidden_beacon_bss = &new->pub;
1627 		new->refcount += bss->refcount;
1628 		rcu_assign_pointer(bss->pub.beacon_ies,
1629 				   new->pub.beacon_ies);
1630 	}
1631 
1632 	WARN_ONCE(n_entries != rdev->bss_entries,
1633 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1634 		  rdev->bss_entries, n_entries);
1635 
1636 	return true;
1637 }
1638 
1639 struct cfg80211_non_tx_bss {
1640 	struct cfg80211_bss *tx_bss;
1641 	u8 max_bssid_indicator;
1642 	u8 bssid_index;
1643 };
1644 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1645 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1646 					 const struct cfg80211_bss_ies *new_ies,
1647 					 const struct cfg80211_bss_ies *old_ies)
1648 {
1649 	struct cfg80211_internal_bss *bss;
1650 
1651 	/* Assign beacon IEs to all sub entries */
1652 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1653 		const struct cfg80211_bss_ies *ies;
1654 
1655 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1656 		WARN_ON(ies != old_ies);
1657 
1658 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1659 	}
1660 }
1661 
1662 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1663 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1664 			  struct cfg80211_internal_bss *known,
1665 			  struct cfg80211_internal_bss *new,
1666 			  bool signal_valid)
1667 {
1668 	lockdep_assert_held(&rdev->bss_lock);
1669 
1670 	/* Update IEs */
1671 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1672 		const struct cfg80211_bss_ies *old;
1673 
1674 		old = rcu_access_pointer(known->pub.proberesp_ies);
1675 
1676 		rcu_assign_pointer(known->pub.proberesp_ies,
1677 				   new->pub.proberesp_ies);
1678 		/* Override possible earlier Beacon frame IEs */
1679 		rcu_assign_pointer(known->pub.ies,
1680 				   new->pub.proberesp_ies);
1681 		if (old)
1682 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1683 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1684 		const struct cfg80211_bss_ies *old;
1685 
1686 		if (known->pub.hidden_beacon_bss &&
1687 		    !list_empty(&known->hidden_list)) {
1688 			const struct cfg80211_bss_ies *f;
1689 
1690 			/* The known BSS struct is one of the probe
1691 			 * response members of a group, but we're
1692 			 * receiving a beacon (beacon_ies in the new
1693 			 * bss is used). This can only mean that the
1694 			 * AP changed its beacon from not having an
1695 			 * SSID to showing it, which is confusing so
1696 			 * drop this information.
1697 			 */
1698 
1699 			f = rcu_access_pointer(new->pub.beacon_ies);
1700 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1701 			return false;
1702 		}
1703 
1704 		old = rcu_access_pointer(known->pub.beacon_ies);
1705 
1706 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1707 
1708 		/* Override IEs if they were from a beacon before */
1709 		if (old == rcu_access_pointer(known->pub.ies))
1710 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1711 
1712 		cfg80211_update_hidden_bsses(known,
1713 					     rcu_access_pointer(new->pub.beacon_ies),
1714 					     old);
1715 
1716 		if (old)
1717 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1718 	}
1719 
1720 	known->pub.beacon_interval = new->pub.beacon_interval;
1721 
1722 	/* don't update the signal if beacon was heard on
1723 	 * adjacent channel.
1724 	 */
1725 	if (signal_valid)
1726 		known->pub.signal = new->pub.signal;
1727 	known->pub.capability = new->pub.capability;
1728 	known->ts = new->ts;
1729 	known->ts_boottime = new->ts_boottime;
1730 	known->parent_tsf = new->parent_tsf;
1731 	known->pub.chains = new->pub.chains;
1732 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1733 	       IEEE80211_MAX_CHAINS);
1734 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1735 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1736 	known->pub.bssid_index = new->pub.bssid_index;
1737 
1738 	return true;
1739 }
1740 
1741 /* Returned bss is reference counted and must be cleaned up appropriately. */
1742 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1743 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1744 		    struct cfg80211_internal_bss *tmp,
1745 		    bool signal_valid, unsigned long ts)
1746 {
1747 	struct cfg80211_internal_bss *found = NULL;
1748 
1749 	if (WARN_ON(!tmp->pub.channel))
1750 		return NULL;
1751 
1752 	tmp->ts = ts;
1753 
1754 	spin_lock_bh(&rdev->bss_lock);
1755 
1756 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1757 		spin_unlock_bh(&rdev->bss_lock);
1758 		return NULL;
1759 	}
1760 
1761 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1762 
1763 	if (found) {
1764 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1765 			goto drop;
1766 	} else {
1767 		struct cfg80211_internal_bss *new;
1768 		struct cfg80211_internal_bss *hidden;
1769 		struct cfg80211_bss_ies *ies;
1770 
1771 		/*
1772 		 * create a copy -- the "res" variable that is passed in
1773 		 * is allocated on the stack since it's not needed in the
1774 		 * more common case of an update
1775 		 */
1776 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1777 			      GFP_ATOMIC);
1778 		if (!new) {
1779 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1780 			if (ies)
1781 				kfree_rcu(ies, rcu_head);
1782 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1783 			if (ies)
1784 				kfree_rcu(ies, rcu_head);
1785 			goto drop;
1786 		}
1787 		memcpy(new, tmp, sizeof(*new));
1788 		new->refcount = 1;
1789 		INIT_LIST_HEAD(&new->hidden_list);
1790 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1791 		/* we'll set this later if it was non-NULL */
1792 		new->pub.transmitted_bss = NULL;
1793 
1794 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1795 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1796 			if (!hidden)
1797 				hidden = rb_find_bss(rdev, tmp,
1798 						     BSS_CMP_HIDE_NUL);
1799 			if (hidden) {
1800 				new->pub.hidden_beacon_bss = &hidden->pub;
1801 				list_add(&new->hidden_list,
1802 					 &hidden->hidden_list);
1803 				hidden->refcount++;
1804 
1805 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1806 				rcu_assign_pointer(new->pub.beacon_ies,
1807 						   hidden->pub.beacon_ies);
1808 				if (ies)
1809 					kfree_rcu(ies, rcu_head);
1810 			}
1811 		} else {
1812 			/*
1813 			 * Ok so we found a beacon, and don't have an entry. If
1814 			 * it's a beacon with hidden SSID, we might be in for an
1815 			 * expensive search for any probe responses that should
1816 			 * be grouped with this beacon for updates ...
1817 			 */
1818 			if (!cfg80211_combine_bsses(rdev, new)) {
1819 				bss_ref_put(rdev, new);
1820 				goto drop;
1821 			}
1822 		}
1823 
1824 		if (rdev->bss_entries >= bss_entries_limit &&
1825 		    !cfg80211_bss_expire_oldest(rdev)) {
1826 			bss_ref_put(rdev, new);
1827 			goto drop;
1828 		}
1829 
1830 		/* This must be before the call to bss_ref_get */
1831 		if (tmp->pub.transmitted_bss) {
1832 			struct cfg80211_internal_bss *pbss =
1833 				container_of(tmp->pub.transmitted_bss,
1834 					     struct cfg80211_internal_bss,
1835 					     pub);
1836 
1837 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1838 			bss_ref_get(rdev, pbss);
1839 		}
1840 
1841 		list_add_tail(&new->list, &rdev->bss_list);
1842 		rdev->bss_entries++;
1843 		rb_insert_bss(rdev, new);
1844 		found = new;
1845 	}
1846 
1847 	rdev->bss_generation++;
1848 	bss_ref_get(rdev, found);
1849 	spin_unlock_bh(&rdev->bss_lock);
1850 
1851 	return found;
1852  drop:
1853 	spin_unlock_bh(&rdev->bss_lock);
1854 	return NULL;
1855 }
1856 
1857 /*
1858  * Update RX channel information based on the available frame payload
1859  * information. This is mainly for the 2.4 GHz band where frames can be received
1860  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1861  * element to indicate the current (transmitting) channel, but this might also
1862  * be needed on other bands if RX frequency does not match with the actual
1863  * operating channel of a BSS.
1864  */
1865 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1866 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1867 			 struct ieee80211_channel *channel,
1868 			 enum nl80211_bss_scan_width scan_width)
1869 {
1870 	const u8 *tmp;
1871 	u32 freq;
1872 	int channel_number = -1;
1873 	struct ieee80211_channel *alt_channel;
1874 
1875 	if (channel->band == NL80211_BAND_S1GHZ) {
1876 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1877 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1878 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1879 
1880 			channel_number = s1gop->primary_ch;
1881 		}
1882 	} else {
1883 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1884 		if (tmp && tmp[1] == 1) {
1885 			channel_number = tmp[2];
1886 		} else {
1887 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1888 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1889 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1890 
1891 				channel_number = htop->primary_chan;
1892 			}
1893 		}
1894 	}
1895 
1896 	if (channel_number < 0) {
1897 		/* No channel information in frame payload */
1898 		return channel;
1899 	}
1900 
1901 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1902 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1903 	if (!alt_channel) {
1904 		if (channel->band == NL80211_BAND_2GHZ) {
1905 			/*
1906 			 * Better not allow unexpected channels when that could
1907 			 * be going beyond the 1-11 range (e.g., discovering
1908 			 * BSS on channel 12 when radio is configured for
1909 			 * channel 11.
1910 			 */
1911 			return NULL;
1912 		}
1913 
1914 		/* No match for the payload channel number - ignore it */
1915 		return channel;
1916 	}
1917 
1918 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1919 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1920 		/*
1921 		 * Ignore channel number in 5 and 10 MHz channels where there
1922 		 * may not be an n:1 or 1:n mapping between frequencies and
1923 		 * channel numbers.
1924 		 */
1925 		return channel;
1926 	}
1927 
1928 	/*
1929 	 * Use the channel determined through the payload channel number
1930 	 * instead of the RX channel reported by the driver.
1931 	 */
1932 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1933 		return NULL;
1934 	return alt_channel;
1935 }
1936 
1937 /* Returned bss is reference counted and must be cleaned up appropriately. */
1938 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1939 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1940 				struct cfg80211_inform_bss *data,
1941 				enum cfg80211_bss_frame_type ftype,
1942 				const u8 *bssid, u64 tsf, u16 capability,
1943 				u16 beacon_interval, const u8 *ie, size_t ielen,
1944 				struct cfg80211_non_tx_bss *non_tx_data,
1945 				gfp_t gfp)
1946 {
1947 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1948 	struct cfg80211_bss_ies *ies;
1949 	struct ieee80211_channel *channel;
1950 	struct cfg80211_internal_bss tmp = {}, *res;
1951 	int bss_type;
1952 	bool signal_valid;
1953 	unsigned long ts;
1954 
1955 	if (WARN_ON(!wiphy))
1956 		return NULL;
1957 
1958 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1959 		    (data->signal < 0 || data->signal > 100)))
1960 		return NULL;
1961 
1962 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1963 					   data->scan_width);
1964 	if (!channel)
1965 		return NULL;
1966 
1967 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1968 	tmp.pub.channel = channel;
1969 	tmp.pub.scan_width = data->scan_width;
1970 	tmp.pub.signal = data->signal;
1971 	tmp.pub.beacon_interval = beacon_interval;
1972 	tmp.pub.capability = capability;
1973 	tmp.ts_boottime = data->boottime_ns;
1974 	if (non_tx_data) {
1975 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1976 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1977 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1978 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1979 	} else {
1980 		ts = jiffies;
1981 	}
1982 
1983 	/*
1984 	 * If we do not know here whether the IEs are from a Beacon or Probe
1985 	 * Response frame, we need to pick one of the options and only use it
1986 	 * with the driver that does not provide the full Beacon/Probe Response
1987 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1988 	 * override the IEs pointer should we have received an earlier
1989 	 * indication of Probe Response data.
1990 	 */
1991 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1992 	if (!ies)
1993 		return NULL;
1994 	ies->len = ielen;
1995 	ies->tsf = tsf;
1996 	ies->from_beacon = false;
1997 	memcpy(ies->data, ie, ielen);
1998 
1999 	switch (ftype) {
2000 	case CFG80211_BSS_FTYPE_BEACON:
2001 		ies->from_beacon = true;
2002 		fallthrough;
2003 	case CFG80211_BSS_FTYPE_UNKNOWN:
2004 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2005 		break;
2006 	case CFG80211_BSS_FTYPE_PRESP:
2007 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2008 		break;
2009 	}
2010 	rcu_assign_pointer(tmp.pub.ies, ies);
2011 
2012 	signal_valid = data->chan == channel;
2013 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2014 	if (!res)
2015 		return NULL;
2016 
2017 	if (channel->band == NL80211_BAND_60GHZ) {
2018 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2019 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2020 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2021 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2022 	} else {
2023 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2024 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2025 	}
2026 
2027 	if (non_tx_data) {
2028 		/* this is a nontransmitting bss, we need to add it to
2029 		 * transmitting bss' list if it is not there
2030 		 */
2031 		spin_lock_bh(&rdev->bss_lock);
2032 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2033 					       &res->pub)) {
2034 			if (__cfg80211_unlink_bss(rdev, res)) {
2035 				rdev->bss_generation++;
2036 				res = NULL;
2037 			}
2038 		}
2039 		spin_unlock_bh(&rdev->bss_lock);
2040 
2041 		if (!res)
2042 			return NULL;
2043 	}
2044 
2045 	trace_cfg80211_return_bss(&res->pub);
2046 	/* cfg80211_bss_update gives us a referenced result */
2047 	return &res->pub;
2048 }
2049 
2050 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2051 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2052 				   const struct element *mbssid_elem,
2053 				   const struct element *sub_elem)
2054 {
2055 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2056 	const struct element *next_mbssid;
2057 	const struct element *next_sub;
2058 
2059 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2060 					 mbssid_end,
2061 					 ielen - (mbssid_end - ie));
2062 
2063 	/*
2064 	 * If it is not the last subelement in current MBSSID IE or there isn't
2065 	 * a next MBSSID IE - profile is complete.
2066 	*/
2067 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2068 	    !next_mbssid)
2069 		return NULL;
2070 
2071 	/* For any length error, just return NULL */
2072 
2073 	if (next_mbssid->datalen < 4)
2074 		return NULL;
2075 
2076 	next_sub = (void *)&next_mbssid->data[1];
2077 
2078 	if (next_mbssid->data + next_mbssid->datalen <
2079 	    next_sub->data + next_sub->datalen)
2080 		return NULL;
2081 
2082 	if (next_sub->id != 0 || next_sub->datalen < 2)
2083 		return NULL;
2084 
2085 	/*
2086 	 * Check if the first element in the next sub element is a start
2087 	 * of a new profile
2088 	 */
2089 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2090 	       NULL : next_mbssid;
2091 }
2092 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2093 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2094 			      const struct element *mbssid_elem,
2095 			      const struct element *sub_elem,
2096 			      u8 *merged_ie, size_t max_copy_len)
2097 {
2098 	size_t copied_len = sub_elem->datalen;
2099 	const struct element *next_mbssid;
2100 
2101 	if (sub_elem->datalen > max_copy_len)
2102 		return 0;
2103 
2104 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2105 
2106 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2107 								mbssid_elem,
2108 								sub_elem))) {
2109 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2110 
2111 		if (copied_len + next_sub->datalen > max_copy_len)
2112 			break;
2113 		memcpy(merged_ie + copied_len, next_sub->data,
2114 		       next_sub->datalen);
2115 		copied_len += next_sub->datalen;
2116 	}
2117 
2118 	return copied_len;
2119 }
2120 EXPORT_SYMBOL(cfg80211_merge_profile);
2121 
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2122 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2123 				       struct cfg80211_inform_bss *data,
2124 				       enum cfg80211_bss_frame_type ftype,
2125 				       const u8 *bssid, u64 tsf,
2126 				       u16 beacon_interval, const u8 *ie,
2127 				       size_t ielen,
2128 				       struct cfg80211_non_tx_bss *non_tx_data,
2129 				       gfp_t gfp)
2130 {
2131 	const u8 *mbssid_index_ie;
2132 	const struct element *elem, *sub;
2133 	size_t new_ie_len;
2134 	u8 new_bssid[ETH_ALEN];
2135 	u8 *new_ie, *profile;
2136 	u64 seen_indices = 0;
2137 	u16 capability;
2138 	struct cfg80211_bss *bss;
2139 
2140 	if (!non_tx_data)
2141 		return;
2142 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2143 		return;
2144 	if (!wiphy->support_mbssid)
2145 		return;
2146 	if (wiphy->support_only_he_mbssid &&
2147 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2148 		return;
2149 
2150 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2151 	if (!new_ie)
2152 		return;
2153 
2154 	profile = kmalloc(ielen, gfp);
2155 	if (!profile)
2156 		goto out;
2157 
2158 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2159 		if (elem->datalen < 4)
2160 			continue;
2161 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2162 			continue;
2163 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2164 			u8 profile_len;
2165 
2166 			if (sub->id != 0 || sub->datalen < 4) {
2167 				/* not a valid BSS profile */
2168 				continue;
2169 			}
2170 
2171 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2172 			    sub->data[1] != 2) {
2173 				/* The first element within the Nontransmitted
2174 				 * BSSID Profile is not the Nontransmitted
2175 				 * BSSID Capability element.
2176 				 */
2177 				continue;
2178 			}
2179 
2180 			memset(profile, 0, ielen);
2181 			profile_len = cfg80211_merge_profile(ie, ielen,
2182 							     elem,
2183 							     sub,
2184 							     profile,
2185 							     ielen);
2186 
2187 			/* found a Nontransmitted BSSID Profile */
2188 			mbssid_index_ie = cfg80211_find_ie
2189 				(WLAN_EID_MULTI_BSSID_IDX,
2190 				 profile, profile_len);
2191 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2192 			    mbssid_index_ie[2] == 0 ||
2193 			    mbssid_index_ie[2] > 46) {
2194 				/* No valid Multiple BSSID-Index element */
2195 				continue;
2196 			}
2197 
2198 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2199 				/* We don't support legacy split of a profile */
2200 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2201 						    mbssid_index_ie[2]);
2202 
2203 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2204 
2205 			non_tx_data->bssid_index = mbssid_index_ie[2];
2206 			non_tx_data->max_bssid_indicator = elem->data[0];
2207 
2208 			cfg80211_gen_new_bssid(bssid,
2209 					       non_tx_data->max_bssid_indicator,
2210 					       non_tx_data->bssid_index,
2211 					       new_bssid);
2212 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2213 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2214 							 profile,
2215 							 profile_len, new_ie,
2216 							 IEEE80211_MAX_DATA_LEN);
2217 			if (!new_ie_len)
2218 				continue;
2219 
2220 			capability = get_unaligned_le16(profile + 2);
2221 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2222 							      ftype,
2223 							      new_bssid, tsf,
2224 							      capability,
2225 							      beacon_interval,
2226 							      new_ie,
2227 							      new_ie_len,
2228 							      non_tx_data,
2229 							      gfp);
2230 			if (!bss)
2231 				break;
2232 			cfg80211_put_bss(wiphy, bss);
2233 		}
2234 	}
2235 
2236 out:
2237 	kfree(new_ie);
2238 	kfree(profile);
2239 }
2240 
2241 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2242 cfg80211_inform_bss_data(struct wiphy *wiphy,
2243 			 struct cfg80211_inform_bss *data,
2244 			 enum cfg80211_bss_frame_type ftype,
2245 			 const u8 *bssid, u64 tsf, u16 capability,
2246 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2247 			 gfp_t gfp)
2248 {
2249 	struct cfg80211_bss *res;
2250 	struct cfg80211_non_tx_bss non_tx_data;
2251 
2252 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2253 					      capability, beacon_interval, ie,
2254 					      ielen, NULL, gfp);
2255 	if (!res)
2256 		return NULL;
2257 	non_tx_data.tx_bss = res;
2258 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2259 				   beacon_interval, ie, ielen, &non_tx_data,
2260 				   gfp);
2261 	return res;
2262 }
2263 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2264 
2265 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2266 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2267 				 struct cfg80211_inform_bss *data,
2268 				 struct ieee80211_mgmt *mgmt, size_t len,
2269 				 struct cfg80211_non_tx_bss *non_tx_data,
2270 				 gfp_t gfp)
2271 {
2272 	enum cfg80211_bss_frame_type ftype;
2273 	const u8 *ie = mgmt->u.probe_resp.variable;
2274 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2275 				      u.probe_resp.variable);
2276 
2277 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2278 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2279 
2280 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2281 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2282 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2283 				   ie, ielen, non_tx_data, gfp);
2284 }
2285 
2286 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2287 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2288 				   struct cfg80211_bss *nontrans_bss,
2289 				   struct ieee80211_mgmt *mgmt, size_t len)
2290 {
2291 	u8 *ie, *new_ie, *pos;
2292 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2293 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2294 				      u.probe_resp.variable);
2295 	size_t new_ie_len;
2296 	struct cfg80211_bss_ies *new_ies;
2297 	const struct cfg80211_bss_ies *old;
2298 	size_t cpy_len;
2299 
2300 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2301 
2302 	ie = mgmt->u.probe_resp.variable;
2303 
2304 	new_ie_len = ielen;
2305 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2306 	if (!trans_ssid)
2307 		return;
2308 	new_ie_len -= trans_ssid[1];
2309 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2310 	/*
2311 	 * It's not valid to have the MBSSID element before SSID
2312 	 * ignore if that happens - the code below assumes it is
2313 	 * after (while copying things inbetween).
2314 	 */
2315 	if (!mbssid || mbssid < trans_ssid)
2316 		return;
2317 	new_ie_len -= mbssid[1];
2318 
2319 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2320 	if (!nontrans_ssid)
2321 		return;
2322 
2323 	new_ie_len += nontrans_ssid[1];
2324 
2325 	/* generate new ie for nontrans BSS
2326 	 * 1. replace SSID with nontrans BSS' SSID
2327 	 * 2. skip MBSSID IE
2328 	 */
2329 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2330 	if (!new_ie)
2331 		return;
2332 
2333 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2334 	if (!new_ies)
2335 		goto out_free;
2336 
2337 	pos = new_ie;
2338 
2339 	/* copy the nontransmitted SSID */
2340 	cpy_len = nontrans_ssid[1] + 2;
2341 	memcpy(pos, nontrans_ssid, cpy_len);
2342 	pos += cpy_len;
2343 	/* copy the IEs between SSID and MBSSID */
2344 	cpy_len = trans_ssid[1] + 2;
2345 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2346 	pos += (mbssid - (trans_ssid + cpy_len));
2347 	/* copy the IEs after MBSSID */
2348 	cpy_len = mbssid[1] + 2;
2349 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2350 
2351 	/* update ie */
2352 	new_ies->len = new_ie_len;
2353 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2354 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2355 	memcpy(new_ies->data, new_ie, new_ie_len);
2356 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2357 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2358 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2359 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2360 		if (old)
2361 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2362 	} else {
2363 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2364 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2365 		cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2366 					     new_ies, old);
2367 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2368 		if (old)
2369 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2370 	}
2371 
2372 out_free:
2373 	kfree(new_ie);
2374 }
2375 
2376 /* cfg80211_inform_bss_width_frame helper */
2377 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2378 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2379 				      struct cfg80211_inform_bss *data,
2380 				      struct ieee80211_mgmt *mgmt, size_t len,
2381 				      gfp_t gfp)
2382 {
2383 	struct cfg80211_internal_bss tmp = {}, *res;
2384 	struct cfg80211_bss_ies *ies;
2385 	struct ieee80211_channel *channel;
2386 	bool signal_valid;
2387 	struct ieee80211_ext *ext = NULL;
2388 	u8 *bssid, *variable;
2389 	u16 capability, beacon_int;
2390 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2391 					     u.probe_resp.variable);
2392 	int bss_type;
2393 
2394 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2395 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2396 
2397 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2398 
2399 	if (WARN_ON(!mgmt))
2400 		return NULL;
2401 
2402 	if (WARN_ON(!wiphy))
2403 		return NULL;
2404 
2405 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2406 		    (data->signal < 0 || data->signal > 100)))
2407 		return NULL;
2408 
2409 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2410 		ext = (void *) mgmt;
2411 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2412 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2413 			min_hdr_len = offsetof(struct ieee80211_ext,
2414 					       u.s1g_short_beacon.variable);
2415 	}
2416 
2417 	if (WARN_ON(len < min_hdr_len))
2418 		return NULL;
2419 
2420 	ielen = len - min_hdr_len;
2421 	variable = mgmt->u.probe_resp.variable;
2422 	if (ext) {
2423 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2424 			variable = ext->u.s1g_short_beacon.variable;
2425 		else
2426 			variable = ext->u.s1g_beacon.variable;
2427 	}
2428 
2429 	channel = cfg80211_get_bss_channel(wiphy, variable,
2430 					   ielen, data->chan, data->scan_width);
2431 	if (!channel)
2432 		return NULL;
2433 
2434 	if (ext) {
2435 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2436 		const struct element *elem;
2437 
2438 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2439 					  variable, ielen);
2440 		if (!elem)
2441 			return NULL;
2442 		if (elem->datalen < sizeof(*compat))
2443 			return NULL;
2444 		compat = (void *)elem->data;
2445 		bssid = ext->u.s1g_beacon.sa;
2446 		capability = le16_to_cpu(compat->compat_info);
2447 		beacon_int = le16_to_cpu(compat->beacon_int);
2448 	} else {
2449 		bssid = mgmt->bssid;
2450 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2451 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2452 	}
2453 
2454 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2455 	if (!ies)
2456 		return NULL;
2457 	ies->len = ielen;
2458 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2459 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2460 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2461 	memcpy(ies->data, variable, ielen);
2462 
2463 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2464 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2465 	else
2466 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2467 	rcu_assign_pointer(tmp.pub.ies, ies);
2468 
2469 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2470 	tmp.pub.beacon_interval = beacon_int;
2471 	tmp.pub.capability = capability;
2472 	tmp.pub.channel = channel;
2473 	tmp.pub.scan_width = data->scan_width;
2474 	tmp.pub.signal = data->signal;
2475 	tmp.ts_boottime = data->boottime_ns;
2476 	tmp.parent_tsf = data->parent_tsf;
2477 	tmp.pub.chains = data->chains;
2478 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2479 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2480 
2481 	signal_valid = data->chan == channel;
2482 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2483 				  jiffies);
2484 	if (!res)
2485 		return NULL;
2486 
2487 	if (channel->band == NL80211_BAND_60GHZ) {
2488 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2489 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2490 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2491 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2492 	} else {
2493 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2494 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2495 	}
2496 
2497 	trace_cfg80211_return_bss(&res->pub);
2498 	/* cfg80211_bss_update gives us a referenced result */
2499 	return &res->pub;
2500 }
2501 
2502 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2503 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2504 			       struct cfg80211_inform_bss *data,
2505 			       struct ieee80211_mgmt *mgmt, size_t len,
2506 			       gfp_t gfp)
2507 {
2508 	struct cfg80211_bss *res, *tmp_bss;
2509 	const u8 *ie = mgmt->u.probe_resp.variable;
2510 	const struct cfg80211_bss_ies *ies1, *ies2;
2511 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2512 				      u.probe_resp.variable);
2513 	struct cfg80211_non_tx_bss non_tx_data = {};
2514 
2515 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2516 						    len, gfp);
2517 
2518 	/* don't do any further MBSSID handling for S1G */
2519 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2520 		return res;
2521 
2522 	if (!res || !wiphy->support_mbssid ||
2523 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2524 		return res;
2525 	if (wiphy->support_only_he_mbssid &&
2526 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2527 		return res;
2528 
2529 	non_tx_data.tx_bss = res;
2530 	/* process each non-transmitting bss */
2531 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2532 					 &non_tx_data, gfp);
2533 
2534 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2535 
2536 	/* check if the res has other nontransmitting bss which is not
2537 	 * in MBSSID IE
2538 	 */
2539 	ies1 = rcu_access_pointer(res->ies);
2540 
2541 	/* go through nontrans_list, if the timestamp of the BSS is
2542 	 * earlier than the timestamp of the transmitting BSS then
2543 	 * update it
2544 	 */
2545 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2546 			    nontrans_list) {
2547 		ies2 = rcu_access_pointer(tmp_bss->ies);
2548 		if (ies2->tsf < ies1->tsf)
2549 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2550 							   mgmt, len);
2551 	}
2552 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2553 
2554 	return res;
2555 }
2556 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2557 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2558 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2559 {
2560 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2561 	struct cfg80211_internal_bss *bss;
2562 
2563 	if (!pub)
2564 		return;
2565 
2566 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2567 
2568 	spin_lock_bh(&rdev->bss_lock);
2569 	bss_ref_get(rdev, bss);
2570 	spin_unlock_bh(&rdev->bss_lock);
2571 }
2572 EXPORT_SYMBOL(cfg80211_ref_bss);
2573 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2574 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2575 {
2576 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2577 	struct cfg80211_internal_bss *bss;
2578 
2579 	if (!pub)
2580 		return;
2581 
2582 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2583 
2584 	spin_lock_bh(&rdev->bss_lock);
2585 	bss_ref_put(rdev, bss);
2586 	spin_unlock_bh(&rdev->bss_lock);
2587 }
2588 EXPORT_SYMBOL(cfg80211_put_bss);
2589 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2590 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2591 {
2592 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2593 	struct cfg80211_internal_bss *bss, *tmp1;
2594 	struct cfg80211_bss *nontrans_bss, *tmp;
2595 
2596 	if (WARN_ON(!pub))
2597 		return;
2598 
2599 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2600 
2601 	spin_lock_bh(&rdev->bss_lock);
2602 	if (list_empty(&bss->list))
2603 		goto out;
2604 
2605 	list_for_each_entry_safe(nontrans_bss, tmp,
2606 				 &pub->nontrans_list,
2607 				 nontrans_list) {
2608 		tmp1 = container_of(nontrans_bss,
2609 				    struct cfg80211_internal_bss, pub);
2610 		if (__cfg80211_unlink_bss(rdev, tmp1))
2611 			rdev->bss_generation++;
2612 	}
2613 
2614 	if (__cfg80211_unlink_bss(rdev, bss))
2615 		rdev->bss_generation++;
2616 out:
2617 	spin_unlock_bh(&rdev->bss_lock);
2618 }
2619 EXPORT_SYMBOL(cfg80211_unlink_bss);
2620 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2621 void cfg80211_bss_iter(struct wiphy *wiphy,
2622 		       struct cfg80211_chan_def *chandef,
2623 		       void (*iter)(struct wiphy *wiphy,
2624 				    struct cfg80211_bss *bss,
2625 				    void *data),
2626 		       void *iter_data)
2627 {
2628 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2629 	struct cfg80211_internal_bss *bss;
2630 
2631 	spin_lock_bh(&rdev->bss_lock);
2632 
2633 	list_for_each_entry(bss, &rdev->bss_list, list) {
2634 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2635 			iter(wiphy, &bss->pub, iter_data);
2636 	}
2637 
2638 	spin_unlock_bh(&rdev->bss_lock);
2639 }
2640 EXPORT_SYMBOL(cfg80211_bss_iter);
2641 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2642 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2643 				     struct ieee80211_channel *chan)
2644 {
2645 	struct wiphy *wiphy = wdev->wiphy;
2646 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2647 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2648 	struct cfg80211_internal_bss *new = NULL;
2649 	struct cfg80211_internal_bss *bss;
2650 	struct cfg80211_bss *nontrans_bss;
2651 	struct cfg80211_bss *tmp;
2652 
2653 	spin_lock_bh(&rdev->bss_lock);
2654 
2655 	/*
2656 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2657 	 * changing the control channel, so no need to update in such a case.
2658 	 */
2659 	if (cbss->pub.channel == chan)
2660 		goto done;
2661 
2662 	/* use transmitting bss */
2663 	if (cbss->pub.transmitted_bss)
2664 		cbss = container_of(cbss->pub.transmitted_bss,
2665 				    struct cfg80211_internal_bss,
2666 				    pub);
2667 
2668 	cbss->pub.channel = chan;
2669 
2670 	list_for_each_entry(bss, &rdev->bss_list, list) {
2671 		if (!cfg80211_bss_type_match(bss->pub.capability,
2672 					     bss->pub.channel->band,
2673 					     wdev->conn_bss_type))
2674 			continue;
2675 
2676 		if (bss == cbss)
2677 			continue;
2678 
2679 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2680 			new = bss;
2681 			break;
2682 		}
2683 	}
2684 
2685 	if (new) {
2686 		/* to save time, update IEs for transmitting bss only */
2687 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2688 			new->pub.proberesp_ies = NULL;
2689 			new->pub.beacon_ies = NULL;
2690 		}
2691 
2692 		list_for_each_entry_safe(nontrans_bss, tmp,
2693 					 &new->pub.nontrans_list,
2694 					 nontrans_list) {
2695 			bss = container_of(nontrans_bss,
2696 					   struct cfg80211_internal_bss, pub);
2697 			if (__cfg80211_unlink_bss(rdev, bss))
2698 				rdev->bss_generation++;
2699 		}
2700 
2701 		WARN_ON(atomic_read(&new->hold));
2702 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2703 			rdev->bss_generation++;
2704 	}
2705 
2706 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2707 	rb_insert_bss(rdev, cbss);
2708 	rdev->bss_generation++;
2709 
2710 	list_for_each_entry_safe(nontrans_bss, tmp,
2711 				 &cbss->pub.nontrans_list,
2712 				 nontrans_list) {
2713 		bss = container_of(nontrans_bss,
2714 				   struct cfg80211_internal_bss, pub);
2715 		bss->pub.channel = chan;
2716 		rb_erase(&bss->rbn, &rdev->bss_tree);
2717 		rb_insert_bss(rdev, bss);
2718 		rdev->bss_generation++;
2719 	}
2720 
2721 done:
2722 	spin_unlock_bh(&rdev->bss_lock);
2723 }
2724 
2725 #ifdef CONFIG_CFG80211_WEXT
2726 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2727 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2728 {
2729 	struct cfg80211_registered_device *rdev;
2730 	struct net_device *dev;
2731 
2732 	ASSERT_RTNL();
2733 
2734 	dev = dev_get_by_index(net, ifindex);
2735 	if (!dev)
2736 		return ERR_PTR(-ENODEV);
2737 	if (dev->ieee80211_ptr)
2738 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2739 	else
2740 		rdev = ERR_PTR(-ENODEV);
2741 	dev_put(dev);
2742 	return rdev;
2743 }
2744 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2745 int cfg80211_wext_siwscan(struct net_device *dev,
2746 			  struct iw_request_info *info,
2747 			  union iwreq_data *wrqu, char *extra)
2748 {
2749 	struct cfg80211_registered_device *rdev;
2750 	struct wiphy *wiphy;
2751 	struct iw_scan_req *wreq = NULL;
2752 	struct cfg80211_scan_request *creq = NULL;
2753 	int i, err, n_channels = 0;
2754 	enum nl80211_band band;
2755 
2756 	if (!netif_running(dev))
2757 		return -ENETDOWN;
2758 
2759 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2760 		wreq = (struct iw_scan_req *)extra;
2761 
2762 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2763 
2764 	if (IS_ERR(rdev))
2765 		return PTR_ERR(rdev);
2766 
2767 	if (rdev->scan_req || rdev->scan_msg) {
2768 		err = -EBUSY;
2769 		goto out;
2770 	}
2771 
2772 	wiphy = &rdev->wiphy;
2773 
2774 	/* Determine number of channels, needed to allocate creq */
2775 	if (wreq && wreq->num_channels)
2776 		n_channels = wreq->num_channels;
2777 	else
2778 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2779 
2780 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2781 		       n_channels * sizeof(void *),
2782 		       GFP_ATOMIC);
2783 	if (!creq) {
2784 		err = -ENOMEM;
2785 		goto out;
2786 	}
2787 
2788 	creq->wiphy = wiphy;
2789 	creq->wdev = dev->ieee80211_ptr;
2790 	/* SSIDs come after channels */
2791 	creq->ssids = (void *)&creq->channels[n_channels];
2792 	creq->n_channels = n_channels;
2793 	creq->n_ssids = 1;
2794 	creq->scan_start = jiffies;
2795 
2796 	/* translate "Scan on frequencies" request */
2797 	i = 0;
2798 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2799 		int j;
2800 
2801 		if (!wiphy->bands[band])
2802 			continue;
2803 
2804 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2805 			/* ignore disabled channels */
2806 			if (wiphy->bands[band]->channels[j].flags &
2807 						IEEE80211_CHAN_DISABLED)
2808 				continue;
2809 
2810 			/* If we have a wireless request structure and the
2811 			 * wireless request specifies frequencies, then search
2812 			 * for the matching hardware channel.
2813 			 */
2814 			if (wreq && wreq->num_channels) {
2815 				int k;
2816 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2817 				for (k = 0; k < wreq->num_channels; k++) {
2818 					struct iw_freq *freq =
2819 						&wreq->channel_list[k];
2820 					int wext_freq =
2821 						cfg80211_wext_freq(freq);
2822 
2823 					if (wext_freq == wiphy_freq)
2824 						goto wext_freq_found;
2825 				}
2826 				goto wext_freq_not_found;
2827 			}
2828 
2829 		wext_freq_found:
2830 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2831 			i++;
2832 		wext_freq_not_found: ;
2833 		}
2834 	}
2835 	/* No channels found? */
2836 	if (!i) {
2837 		err = -EINVAL;
2838 		goto out;
2839 	}
2840 
2841 	/* Set real number of channels specified in creq->channels[] */
2842 	creq->n_channels = i;
2843 
2844 	/* translate "Scan for SSID" request */
2845 	if (wreq) {
2846 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2847 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2848 				err = -EINVAL;
2849 				goto out;
2850 			}
2851 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2852 			creq->ssids[0].ssid_len = wreq->essid_len;
2853 		}
2854 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2855 			creq->n_ssids = 0;
2856 	}
2857 
2858 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2859 		if (wiphy->bands[i])
2860 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2861 
2862 	eth_broadcast_addr(creq->bssid);
2863 
2864 	rdev->scan_req = creq;
2865 	err = rdev_scan(rdev, creq);
2866 	if (err) {
2867 		rdev->scan_req = NULL;
2868 		/* creq will be freed below */
2869 	} else {
2870 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2871 		/* creq now owned by driver */
2872 		creq = NULL;
2873 		dev_hold(dev);
2874 	}
2875  out:
2876 	kfree(creq);
2877 	return err;
2878 }
2879 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2880 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2881 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2882 				    const struct cfg80211_bss_ies *ies,
2883 				    char *current_ev, char *end_buf)
2884 {
2885 	const u8 *pos, *end, *next;
2886 	struct iw_event iwe;
2887 
2888 	if (!ies)
2889 		return current_ev;
2890 
2891 	/*
2892 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2893 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2894 	 */
2895 	pos = ies->data;
2896 	end = pos + ies->len;
2897 
2898 	while (end - pos > IW_GENERIC_IE_MAX) {
2899 		next = pos + 2 + pos[1];
2900 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2901 			next = next + 2 + next[1];
2902 
2903 		memset(&iwe, 0, sizeof(iwe));
2904 		iwe.cmd = IWEVGENIE;
2905 		iwe.u.data.length = next - pos;
2906 		current_ev = iwe_stream_add_point_check(info, current_ev,
2907 							end_buf, &iwe,
2908 							(void *)pos);
2909 		if (IS_ERR(current_ev))
2910 			return current_ev;
2911 		pos = next;
2912 	}
2913 
2914 	if (end > pos) {
2915 		memset(&iwe, 0, sizeof(iwe));
2916 		iwe.cmd = IWEVGENIE;
2917 		iwe.u.data.length = end - pos;
2918 		current_ev = iwe_stream_add_point_check(info, current_ev,
2919 							end_buf, &iwe,
2920 							(void *)pos);
2921 		if (IS_ERR(current_ev))
2922 			return current_ev;
2923 	}
2924 
2925 	return current_ev;
2926 }
2927 
2928 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2929 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2930 	      struct cfg80211_internal_bss *bss, char *current_ev,
2931 	      char *end_buf)
2932 {
2933 	const struct cfg80211_bss_ies *ies;
2934 	struct iw_event iwe;
2935 	const u8 *ie;
2936 	u8 buf[50];
2937 	u8 *cfg, *p, *tmp;
2938 	int rem, i, sig;
2939 	bool ismesh = false;
2940 
2941 	memset(&iwe, 0, sizeof(iwe));
2942 	iwe.cmd = SIOCGIWAP;
2943 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2944 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2945 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2946 						IW_EV_ADDR_LEN);
2947 	if (IS_ERR(current_ev))
2948 		return current_ev;
2949 
2950 	memset(&iwe, 0, sizeof(iwe));
2951 	iwe.cmd = SIOCGIWFREQ;
2952 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2953 	iwe.u.freq.e = 0;
2954 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2955 						IW_EV_FREQ_LEN);
2956 	if (IS_ERR(current_ev))
2957 		return current_ev;
2958 
2959 	memset(&iwe, 0, sizeof(iwe));
2960 	iwe.cmd = SIOCGIWFREQ;
2961 	iwe.u.freq.m = bss->pub.channel->center_freq;
2962 	iwe.u.freq.e = 6;
2963 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2964 						IW_EV_FREQ_LEN);
2965 	if (IS_ERR(current_ev))
2966 		return current_ev;
2967 
2968 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2969 		memset(&iwe, 0, sizeof(iwe));
2970 		iwe.cmd = IWEVQUAL;
2971 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2972 				     IW_QUAL_NOISE_INVALID |
2973 				     IW_QUAL_QUAL_UPDATED;
2974 		switch (wiphy->signal_type) {
2975 		case CFG80211_SIGNAL_TYPE_MBM:
2976 			sig = bss->pub.signal / 100;
2977 			iwe.u.qual.level = sig;
2978 			iwe.u.qual.updated |= IW_QUAL_DBM;
2979 			if (sig < -110)		/* rather bad */
2980 				sig = -110;
2981 			else if (sig > -40)	/* perfect */
2982 				sig = -40;
2983 			/* will give a range of 0 .. 70 */
2984 			iwe.u.qual.qual = sig + 110;
2985 			break;
2986 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2987 			iwe.u.qual.level = bss->pub.signal;
2988 			/* will give range 0 .. 100 */
2989 			iwe.u.qual.qual = bss->pub.signal;
2990 			break;
2991 		default:
2992 			/* not reached */
2993 			break;
2994 		}
2995 		current_ev = iwe_stream_add_event_check(info, current_ev,
2996 							end_buf, &iwe,
2997 							IW_EV_QUAL_LEN);
2998 		if (IS_ERR(current_ev))
2999 			return current_ev;
3000 	}
3001 
3002 	memset(&iwe, 0, sizeof(iwe));
3003 	iwe.cmd = SIOCGIWENCODE;
3004 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3005 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3006 	else
3007 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3008 	iwe.u.data.length = 0;
3009 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3010 						&iwe, "");
3011 	if (IS_ERR(current_ev))
3012 		return current_ev;
3013 
3014 	rcu_read_lock();
3015 	ies = rcu_dereference(bss->pub.ies);
3016 	rem = ies->len;
3017 	ie = ies->data;
3018 
3019 	while (rem >= 2) {
3020 		/* invalid data */
3021 		if (ie[1] > rem - 2)
3022 			break;
3023 
3024 		switch (ie[0]) {
3025 		case WLAN_EID_SSID:
3026 			memset(&iwe, 0, sizeof(iwe));
3027 			iwe.cmd = SIOCGIWESSID;
3028 			iwe.u.data.length = ie[1];
3029 			iwe.u.data.flags = 1;
3030 			current_ev = iwe_stream_add_point_check(info,
3031 								current_ev,
3032 								end_buf, &iwe,
3033 								(u8 *)ie + 2);
3034 			if (IS_ERR(current_ev))
3035 				goto unlock;
3036 			break;
3037 		case WLAN_EID_MESH_ID:
3038 			memset(&iwe, 0, sizeof(iwe));
3039 			iwe.cmd = SIOCGIWESSID;
3040 			iwe.u.data.length = ie[1];
3041 			iwe.u.data.flags = 1;
3042 			current_ev = iwe_stream_add_point_check(info,
3043 								current_ev,
3044 								end_buf, &iwe,
3045 								(u8 *)ie + 2);
3046 			if (IS_ERR(current_ev))
3047 				goto unlock;
3048 			break;
3049 		case WLAN_EID_MESH_CONFIG:
3050 			ismesh = true;
3051 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3052 				break;
3053 			cfg = (u8 *)ie + 2;
3054 			memset(&iwe, 0, sizeof(iwe));
3055 			iwe.cmd = IWEVCUSTOM;
3056 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3057 				"0x%02X", cfg[0]);
3058 			iwe.u.data.length = strlen(buf);
3059 			current_ev = iwe_stream_add_point_check(info,
3060 								current_ev,
3061 								end_buf,
3062 								&iwe, buf);
3063 			if (IS_ERR(current_ev))
3064 				goto unlock;
3065 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3066 				cfg[1]);
3067 			iwe.u.data.length = strlen(buf);
3068 			current_ev = iwe_stream_add_point_check(info,
3069 								current_ev,
3070 								end_buf,
3071 								&iwe, buf);
3072 			if (IS_ERR(current_ev))
3073 				goto unlock;
3074 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3075 				cfg[2]);
3076 			iwe.u.data.length = strlen(buf);
3077 			current_ev = iwe_stream_add_point_check(info,
3078 								current_ev,
3079 								end_buf,
3080 								&iwe, buf);
3081 			if (IS_ERR(current_ev))
3082 				goto unlock;
3083 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3084 			iwe.u.data.length = strlen(buf);
3085 			current_ev = iwe_stream_add_point_check(info,
3086 								current_ev,
3087 								end_buf,
3088 								&iwe, buf);
3089 			if (IS_ERR(current_ev))
3090 				goto unlock;
3091 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3092 			iwe.u.data.length = strlen(buf);
3093 			current_ev = iwe_stream_add_point_check(info,
3094 								current_ev,
3095 								end_buf,
3096 								&iwe, buf);
3097 			if (IS_ERR(current_ev))
3098 				goto unlock;
3099 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3100 			iwe.u.data.length = strlen(buf);
3101 			current_ev = iwe_stream_add_point_check(info,
3102 								current_ev,
3103 								end_buf,
3104 								&iwe, buf);
3105 			if (IS_ERR(current_ev))
3106 				goto unlock;
3107 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3108 			iwe.u.data.length = strlen(buf);
3109 			current_ev = iwe_stream_add_point_check(info,
3110 								current_ev,
3111 								end_buf,
3112 								&iwe, buf);
3113 			if (IS_ERR(current_ev))
3114 				goto unlock;
3115 			break;
3116 		case WLAN_EID_SUPP_RATES:
3117 		case WLAN_EID_EXT_SUPP_RATES:
3118 			/* display all supported rates in readable format */
3119 			p = current_ev + iwe_stream_lcp_len(info);
3120 
3121 			memset(&iwe, 0, sizeof(iwe));
3122 			iwe.cmd = SIOCGIWRATE;
3123 			/* Those two flags are ignored... */
3124 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3125 
3126 			for (i = 0; i < ie[1]; i++) {
3127 				iwe.u.bitrate.value =
3128 					((ie[i + 2] & 0x7f) * 500000);
3129 				tmp = p;
3130 				p = iwe_stream_add_value(info, current_ev, p,
3131 							 end_buf, &iwe,
3132 							 IW_EV_PARAM_LEN);
3133 				if (p == tmp) {
3134 					current_ev = ERR_PTR(-E2BIG);
3135 					goto unlock;
3136 				}
3137 			}
3138 			current_ev = p;
3139 			break;
3140 		}
3141 		rem -= ie[1] + 2;
3142 		ie += ie[1] + 2;
3143 	}
3144 
3145 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3146 	    ismesh) {
3147 		memset(&iwe, 0, sizeof(iwe));
3148 		iwe.cmd = SIOCGIWMODE;
3149 		if (ismesh)
3150 			iwe.u.mode = IW_MODE_MESH;
3151 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3152 			iwe.u.mode = IW_MODE_MASTER;
3153 		else
3154 			iwe.u.mode = IW_MODE_ADHOC;
3155 		current_ev = iwe_stream_add_event_check(info, current_ev,
3156 							end_buf, &iwe,
3157 							IW_EV_UINT_LEN);
3158 		if (IS_ERR(current_ev))
3159 			goto unlock;
3160 	}
3161 
3162 	memset(&iwe, 0, sizeof(iwe));
3163 	iwe.cmd = IWEVCUSTOM;
3164 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3165 	iwe.u.data.length = strlen(buf);
3166 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3167 						&iwe, buf);
3168 	if (IS_ERR(current_ev))
3169 		goto unlock;
3170 	memset(&iwe, 0, sizeof(iwe));
3171 	iwe.cmd = IWEVCUSTOM;
3172 	sprintf(buf, " Last beacon: %ums ago",
3173 		elapsed_jiffies_msecs(bss->ts));
3174 	iwe.u.data.length = strlen(buf);
3175 	current_ev = iwe_stream_add_point_check(info, current_ev,
3176 						end_buf, &iwe, buf);
3177 	if (IS_ERR(current_ev))
3178 		goto unlock;
3179 
3180 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3181 
3182  unlock:
3183 	rcu_read_unlock();
3184 	return current_ev;
3185 }
3186 
3187 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3188 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3189 				  struct iw_request_info *info,
3190 				  char *buf, size_t len)
3191 {
3192 	char *current_ev = buf;
3193 	char *end_buf = buf + len;
3194 	struct cfg80211_internal_bss *bss;
3195 	int err = 0;
3196 
3197 	spin_lock_bh(&rdev->bss_lock);
3198 	cfg80211_bss_expire(rdev);
3199 
3200 	list_for_each_entry(bss, &rdev->bss_list, list) {
3201 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3202 			err = -E2BIG;
3203 			break;
3204 		}
3205 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3206 					   current_ev, end_buf);
3207 		if (IS_ERR(current_ev)) {
3208 			err = PTR_ERR(current_ev);
3209 			break;
3210 		}
3211 	}
3212 	spin_unlock_bh(&rdev->bss_lock);
3213 
3214 	if (err)
3215 		return err;
3216 	return current_ev - buf;
3217 }
3218 
3219 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3220 int cfg80211_wext_giwscan(struct net_device *dev,
3221 			  struct iw_request_info *info,
3222 			  struct iw_point *data, char *extra)
3223 {
3224 	struct cfg80211_registered_device *rdev;
3225 	int res;
3226 
3227 	if (!netif_running(dev))
3228 		return -ENETDOWN;
3229 
3230 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3231 
3232 	if (IS_ERR(rdev))
3233 		return PTR_ERR(rdev);
3234 
3235 	if (rdev->scan_req || rdev->scan_msg)
3236 		return -EAGAIN;
3237 
3238 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3239 	data->length = 0;
3240 	if (res >= 0) {
3241 		data->length = res;
3242 		res = 0;
3243 	}
3244 
3245 	return res;
3246 }
3247 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3248 #endif
3249