1 /*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 "NONE",
51 "aic7901",
52 "aic7902",
53 "aic7901A"
54 };
55
56 /*
57 * Hardware error codes.
58 */
59 struct ahd_hard_error_entry {
60 uint8_t errno;
61 const char *errmesg;
62 };
63
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 { DSCTMOUT, "Discard Timer has timed out" },
66 { ILLOPCODE, "Illegal Opcode in sequencer program" },
67 { SQPARERR, "Sequencer Parity Error" },
68 { DPARERR, "Data-path Parity Error" },
69 { MPARERR, "Scratch or SCB Memory Parity Error" },
70 { CIOPARERR, "CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
77 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
78 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
79 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
80 { P_COMMAND, MSG_NOOP, "in Command phase" },
81 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
82 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
83 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
84 { P_BUSFREE, MSG_NOOP, "while idle" },
85 { 0, MSG_NOOP, "in unknown phase" }
86 };
87
88 /*
89 * In most cases we only wish to itterate over real phases, so
90 * exclude the last element from the count.
91 */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96
97 /**************************** Function Declarations ***************************/
98 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 u_int lqistat1);
101 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 u_int busfreetime);
103 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void ahd_force_renegotiation(struct ahd_softc *ahd,
106 struct ahd_devinfo *devinfo);
107
108 static struct ahd_tmode_tstate*
109 ahd_alloc_tstate(struct ahd_softc *ahd,
110 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void ahd_free_tstate(struct ahd_softc *ahd,
113 u_int scsi_id, char channel, int force);
114 #endif
115 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 struct ahd_initiator_tinfo *,
117 u_int *period,
118 u_int *ppr_options,
119 role_t role);
120 static void ahd_update_neg_table(struct ahd_softc *ahd,
121 struct ahd_devinfo *devinfo,
122 struct ahd_transinfo *tinfo);
123 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
125 struct ahd_devinfo *devinfo);
126 static void ahd_scb_devinfo(struct ahd_softc *ahd,
127 struct ahd_devinfo *devinfo,
128 struct scb *scb);
129 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 struct ahd_devinfo *devinfo,
131 struct scb *scb);
132 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_construct_sdtr(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 u_int period, u_int offset);
137 static void ahd_construct_wdtr(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 u_int bus_width);
140 static void ahd_construct_ppr(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo,
142 u_int period, u_int offset,
143 u_int bus_width, u_int ppr_options);
144 static void ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 AHDMSG_1B,
148 AHDMSG_2B,
149 AHDMSG_EXT
150 } ahd_msgtype;
151 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 u_int msgval, int full);
153 static int ahd_parse_msg(struct ahd_softc *ahd,
154 struct ahd_devinfo *devinfo);
155 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
156 struct ahd_devinfo *devinfo);
157 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 struct ahd_devinfo *devinfo);
159 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void ahd_handle_devreset(struct ahd_softc *ahd,
161 struct ahd_devinfo *devinfo,
162 u_int lun, cam_status status,
163 char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo,
167 struct scb *scb);
168 #endif
169
170 static u_int ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 ahd_dmamap_cb;
174 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int ahd_init_scbdata(struct ahd_softc *ahd);
176 static void ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void ahd_add_col_list(struct ahd_softc *ahd,
180 struct scb *scb, u_int col_idx);
181 static void ahd_rem_col_list(struct ahd_softc *ahd,
182 struct scb *scb);
183 static void ahd_chip_init(struct ahd_softc *ahd);
184 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 struct scb *prev_scb,
186 struct scb *scb);
187 static int ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 char channel, int lun, u_int tag,
190 role_t role, uint32_t status,
191 ahd_search_action action,
192 u_int *list_head, u_int *list_tail,
193 u_int tid);
194 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
195 u_int tid_prev, u_int tid_cur,
196 u_int tid_next);
197 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 u_int scbid);
199 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 u_int prev, u_int next, u_int tid);
201 static void ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void ahd_loadseq(struct ahd_softc *ahd);
207 static int ahd_check_patch(struct ahd_softc *ahd,
208 const struct patch **start_patch,
209 u_int start_instr, u_int *skip_addr);
210 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 u_int address);
212 static void ahd_download_instr(struct ahd_softc *ahd,
213 u_int instrptr, uint8_t *dconsts);
214 static int ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 struct scb *scb);
217 static void ahd_run_data_fifo(struct ahd_softc *ahd,
218 struct scb *scb);
219
220 #ifdef AHD_TARGET_MODE
221 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
222 struct ahd_tmode_lstate *lstate,
223 u_int initiator_id,
224 u_int event_type,
225 u_int event_arg);
226 static void ahd_update_scsiid(struct ahd_softc *ahd,
227 u_int targid_mask);
228 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
229 struct target_cmd *cmd);
230 #endif
231
232 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 char channel, int lun, u_int tag,
234 role_t role, uint32_t status);
235 static void ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 u_int scbid);
238 static void ahd_calc_residual(struct ahd_softc *ahd,
239 struct scb *scb);
240 static void ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void ahd_clear_intstat(struct ahd_softc *ahd);
242 static void ahd_enable_coalescing(struct ahd_softc *ahd,
243 int enable);
244 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void ahd_freeze_devq(struct ahd_softc *ahd,
246 struct scb *scb);
247 static void ahd_handle_scb_status(struct ahd_softc *ahd,
248 struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void ahd_shutdown(void *arg);
251 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
252 u_int timer,
253 u_int maxcmds,
254 u_int mincmds);
255 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 int target, char channel, int lun,
259 u_int tag, role_t role);
260
261 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
262
263 /*************************** Interrupt Services *******************************/
264 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void ahd_handle_scsiint(struct ahd_softc *ahd,
271 u_int intstat);
272
273 /************************ Sequencer Execution Control *************************/
274 void
ahd_set_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 if (ahd->src_mode == src && ahd->dst_mode == dst)
278 return;
279 #ifdef AHD_DEBUG
280 if (ahd->src_mode == AHD_MODE_UNKNOWN
281 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 panic("Setting mode prior to saving it.\n");
283 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 ahd_build_mode_state(ahd, src, dst));
286 #endif
287 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 ahd->src_mode = src;
289 ahd->dst_mode = dst;
290 }
291
292 static void
ahd_update_modes(struct ahd_softc * ahd)293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 ahd_mode_state mode_ptr;
296 ahd_mode src;
297 ahd_mode dst;
298
299 mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 ahd_known_modes(ahd, src, dst);
306 }
307
308 static void
ahd_assert_modes(struct ahd_softc * ahd,ahd_mode srcmode,ahd_mode dstmode,const char * file,int line)309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 panic("%s:%s:%d: Mode assertion failed.\n",
316 ahd_name(ahd), file, line);
317 }
318 #endif
319 }
320
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323
324 ahd_mode_state
ahd_save_modes(struct ahd_softc * ahd)325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 if (ahd->src_mode == AHD_MODE_UNKNOWN
328 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 ahd_update_modes(ahd);
330
331 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333
334 void
ahd_restore_modes(struct ahd_softc * ahd,ahd_mode_state state)335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 ahd_mode src;
338 ahd_mode dst;
339
340 ahd_extract_mode_state(ahd, state, &src, &dst);
341 ahd_set_modes(ahd, src, dst);
342 }
343
344 /*
345 * Determine whether the sequencer has halted code execution.
346 * Returns non-zero status if the sequencer is stopped.
347 */
348 int
ahd_is_paused(struct ahd_softc * ahd)349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353
354 /*
355 * Request that the sequencer stop and wait, indefinitely, for it
356 * to stop. The sequencer will only acknowledge that it is paused
357 * once it has reached an instruction boundary and PAUSEDIS is
358 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
359 * for critical sections.
360 */
361 void
ahd_pause(struct ahd_softc * ahd)362 ahd_pause(struct ahd_softc *ahd)
363 {
364 ahd_outb(ahd, HCNTRL, ahd->pause);
365
366 /*
367 * Since the sequencer can disable pausing in a critical section, we
368 * must loop until it actually stops.
369 */
370 while (ahd_is_paused(ahd) == 0)
371 ;
372 }
373
374 /*
375 * Allow the sequencer to continue program execution.
376 * We check here to ensure that no additional interrupt
377 * sources that would cause the sequencer to halt have been
378 * asserted. If, for example, a SCSI bus reset is detected
379 * while we are fielding a different, pausing, interrupt type,
380 * we don't want to release the sequencer before going back
381 * into our interrupt handler and dealing with this new
382 * condition.
383 */
384 void
ahd_unpause(struct ahd_softc * ahd)385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 /*
388 * Automatically restore our modes to those saved
389 * prior to the first change of the mode.
390 */
391 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 ahd_reset_cmds_pending(ahd);
395 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 }
397
398 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 ahd_outb(ahd, HCNTRL, ahd->unpause);
400
401 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403
404 /*********************** Scatter Gather List Handling *************************/
405 void *
ahd_sg_setup(struct ahd_softc * ahd,struct scb * scb,void * sgptr,dma_addr_t addr,bus_size_t len,int last)406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 scb->sg_count++;
410 if (sizeof(dma_addr_t) > 4
411 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 struct ahd_dma64_seg *sg;
413
414 sg = (struct ahd_dma64_seg *)sgptr;
415 sg->addr = ahd_htole64(addr);
416 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 return (sg + 1);
418 } else {
419 struct ahd_dma_seg *sg;
420
421 sg = (struct ahd_dma_seg *)sgptr;
422 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 | (last ? AHD_DMA_LAST_SEG : 0));
425 return (sg + 1);
426 }
427 }
428
429 static void
ahd_setup_scb_common(struct ahd_softc * ahd,struct scb * scb)430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 /* XXX Handle target mode SCBs. */
433 scb->crc_retry_count = 0;
434 if ((scb->flags & SCB_PACKETIZED) != 0) {
435 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
436 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 } else {
438 if (ahd_get_transfer_length(scb) & 0x01)
439 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 else
441 scb->hscb->task_attribute = 0;
442 }
443
444 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 ahd_htole32(scb->sense_busaddr);
448 }
449
450 static void
ahd_setup_data_scb(struct ahd_softc * ahd,struct scb * scb)451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 /*
454 * Copy the first SG into the "current" data ponter area.
455 */
456 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 struct ahd_dma64_seg *sg;
458
459 sg = (struct ahd_dma64_seg *)scb->sg_list;
460 scb->hscb->dataptr = sg->addr;
461 scb->hscb->datacnt = sg->len;
462 } else {
463 struct ahd_dma_seg *sg;
464 uint32_t *dataptr_words;
465
466 sg = (struct ahd_dma_seg *)scb->sg_list;
467 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 dataptr_words[0] = sg->addr;
469 dataptr_words[1] = 0;
470 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 uint64_t high_addr;
472
473 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 }
476 scb->hscb->datacnt = sg->len;
477 }
478 /*
479 * Note where to find the SG entries in bus space.
480 * We also set the full residual flag which the
481 * sequencer will clear as soon as a data transfer
482 * occurs.
483 */
484 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486
487 static void
ahd_setup_noxfer_scb(struct ahd_softc * ahd,struct scb * scb)488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 scb->hscb->dataptr = 0;
492 scb->hscb->datacnt = 0;
493 }
494
495 /************************** Memory mapping routines ***************************/
496 static void *
ahd_sg_bus_to_virt(struct ahd_softc * ahd,struct scb * scb,uint32_t sg_busaddr)497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 dma_addr_t sg_offset;
500
501 /* sg_list_phys points to entry 1, not 0 */
502 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505
506 static uint32_t
ahd_sg_virt_to_bus(struct ahd_softc * ahd,struct scb * scb,void * sg)507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 dma_addr_t sg_offset;
510
511 /* sg_list_phys points to entry 1, not 0 */
512 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 - ahd_sg_size(ahd);
514
515 return (scb->sg_list_busaddr + sg_offset);
516 }
517
518 static void
ahd_sync_scb(struct ahd_softc * ahd,struct scb * scb,int op)519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 scb->hscb_map->dmamap,
523 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 /*len*/sizeof(*scb->hscb), op);
525 }
526
527 void
ahd_sync_sglist(struct ahd_softc * ahd,struct scb * scb,int op)528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 if (scb->sg_count == 0)
531 return;
532
533 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 scb->sg_map->dmamap,
535 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538
539 static void
ahd_sync_sense(struct ahd_softc * ahd,struct scb * scb,int op)540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 scb->sense_map->dmamap,
544 /*offset*/scb->sense_busaddr,
545 /*len*/AHD_SENSE_BUFSIZE, op);
546 }
547
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
ahd_targetcmd_offset(struct ahd_softc * ahd,u_int index)550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 return (((uint8_t *)&ahd->targetcmds[index])
553 - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559 * Return pointers to the transfer negotiation information
560 * for the specified our_id/remote_id pair.
561 */
562 struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc * ahd,char channel,u_int our_id,u_int remote_id,struct ahd_tmode_tstate ** tstate)563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 /*
567 * Transfer data structures are stored from the perspective
568 * of the target role. Since the parameters for a connection
569 * in the initiator role to a given target are the same as
570 * when the roles are reversed, we pretend we are the target.
571 */
572 if (channel == 'B')
573 our_id += 8;
574 *tstate = ahd->enabled_targets[our_id];
575 return (&(*tstate)->transinfo[remote_id]);
576 }
577
578 uint16_t
ahd_inw(struct ahd_softc * ahd,u_int port)579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 /*
582 * Read high byte first as some registers increment
583 * or have other side effects when the low byte is
584 * read.
585 */
586 uint16_t r = ahd_inb(ahd, port+1) << 8;
587 return r | ahd_inb(ahd, port);
588 }
589
590 void
ahd_outw(struct ahd_softc * ahd,u_int port,u_int value)591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 /*
594 * Write low byte first to accommodate registers
595 * such as PRGMCNT where the order maters.
596 */
597 ahd_outb(ahd, port, value & 0xFF);
598 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600
601 uint32_t
ahd_inl(struct ahd_softc * ahd,u_int port)602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 return ((ahd_inb(ahd, port))
605 | (ahd_inb(ahd, port+1) << 8)
606 | (ahd_inb(ahd, port+2) << 16)
607 | (ahd_inb(ahd, port+3) << 24));
608 }
609
610 void
ahd_outl(struct ahd_softc * ahd,u_int port,uint32_t value)611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 ahd_outb(ahd, port, (value) & 0xFF);
614 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618
619 uint64_t
ahd_inq(struct ahd_softc * ahd,u_int port)620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 return ((ahd_inb(ahd, port))
623 | (ahd_inb(ahd, port+1) << 8)
624 | (ahd_inb(ahd, port+2) << 16)
625 | (ahd_inb(ahd, port+3) << 24)
626 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631
632 void
ahd_outq(struct ahd_softc * ahd,u_int port,uint64_t value)633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 ahd_outb(ahd, port, value & 0xFF);
636 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644
645 u_int
ahd_get_scbptr(struct ahd_softc * ahd)646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652
653 void
ahd_set_scbptr(struct ahd_softc * ahd,u_int scbptr)654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669
670 static void
ahd_set_hnscb_qoff(struct ahd_softc * ahd,u_int value)671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683
684 static void
ahd_set_hescb_qoff(struct ahd_softc * ahd,u_int value)685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 ahd_outb(ahd, HESCB_QOFF, value);
688 }
689
690 static u_int
ahd_get_snscb_qoff(struct ahd_softc * ahd)691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 u_int oldvalue;
694
695 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 return (oldvalue);
699 }
700
701 static void
ahd_set_snscb_qoff(struct ahd_softc * ahd,u_int value)702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716
717 static void
ahd_set_sescb_qoff(struct ahd_softc * ahd,u_int value)718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 ahd_outb(ahd, SESCB_QOFF, value);
722 }
723
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732
733 static void
ahd_set_sdscb_qoff(struct ahd_softc * ahd,u_int value)734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740
741 u_int
ahd_inb_scbram(struct ahd_softc * ahd,u_int offset)742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 u_int value;
745
746 /*
747 * Workaround PCI-X Rev A. hardware bug.
748 * After a host read of SCB memory, the chip
749 * may become confused into thinking prefetch
750 * was required. This starts the discard timer
751 * running and can cause an unexpected discard
752 * timer interrupt. The work around is to read
753 * a normal register prior to the exhaustion of
754 * the discard timer. The mode pointer register
755 * has no side effects and so serves well for
756 * this purpose.
757 *
758 * Razor #528
759 */
760 value = ahd_inb(ahd, offset);
761 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 ahd_inb(ahd, MODE_PTR);
763 return (value);
764 }
765
766 u_int
ahd_inw_scbram(struct ahd_softc * ahd,u_int offset)767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 return (ahd_inb_scbram(ahd, offset)
770 | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772
773 static uint32_t
ahd_inl_scbram(struct ahd_softc * ahd,u_int offset)774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 return (ahd_inw_scbram(ahd, offset)
777 | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779
780 static uint64_t
ahd_inq_scbram(struct ahd_softc * ahd,u_int offset)781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 return (ahd_inl_scbram(ahd, offset)
784 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786
787 struct scb *
ahd_lookup_scb(struct ahd_softc * ahd,u_int tag)788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 struct scb* scb;
791
792 if (tag >= AHD_SCB_MAX)
793 return (NULL);
794 scb = ahd->scb_data.scbindex[tag];
795 if (scb != NULL)
796 ahd_sync_scb(ahd, scb,
797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 return (scb);
799 }
800
801 static void
ahd_swap_with_next_hscb(struct ahd_softc * ahd,struct scb * scb)802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 struct hardware_scb *q_hscb;
805 struct map_node *q_hscb_map;
806 uint32_t saved_hscb_busaddr;
807
808 /*
809 * Our queuing method is a bit tricky. The card
810 * knows in advance which HSCB (by address) to download,
811 * and we can't disappoint it. To achieve this, the next
812 * HSCB to download is saved off in ahd->next_queued_hscb.
813 * When we are called to queue "an arbitrary scb",
814 * we copy the contents of the incoming HSCB to the one
815 * the sequencer knows about, swap HSCB pointers and
816 * finally assign the SCB to the tag indexed location
817 * in the scb_array. This makes sure that we can still
818 * locate the correct SCB by SCB_TAG.
819 */
820 q_hscb = ahd->next_queued_hscb;
821 q_hscb_map = ahd->next_queued_hscb_map;
822 saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826
827 /* Now swap HSCB pointers. */
828 ahd->next_queued_hscb = scb->hscb;
829 ahd->next_queued_hscb_map = scb->hscb_map;
830 scb->hscb = q_hscb;
831 scb->hscb_map = q_hscb_map;
832
833 /* Now define the mapping from tag to SCB in the scbindex */
834 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836
837 /*
838 * Tell the sequencer about a new transaction to execute.
839 */
840 void
ahd_queue_scb(struct ahd_softc * ahd,struct scb * scb)841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 ahd_swap_with_next_hscb(ahd, scb);
844
845 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 panic("Attempt to queue invalid SCB tag %x\n",
847 SCB_GET_TAG(scb));
848
849 /*
850 * Keep a history of SCBs we've downloaded in the qinfifo.
851 */
852 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 ahd->qinfifonext++;
854
855 if (scb->sg_count != 0)
856 ahd_setup_data_scb(ahd, scb);
857 else
858 ahd_setup_noxfer_scb(ahd, scb);
859 ahd_setup_scb_common(ahd, scb);
860
861 /*
862 * Make sure our data is consistent from the
863 * perspective of the adapter.
864 */
865 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866
867 #ifdef AHD_DEBUG
868 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 uint64_t host_dataptr;
870
871 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 ahd_name(ahd),
874 SCB_GET_TAG(scb), scb->hscb->scsiid,
875 ahd_le32toh(scb->hscb->hscb_busaddr),
876 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 (u_int)(host_dataptr & 0xFFFFFFFF),
878 ahd_le32toh(scb->hscb->datacnt));
879 }
880 #endif
881 /* Tell the adapter about the newly queued SCB */
882 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884
885 /************************** Interrupt Processing ******************************/
886 static void
ahd_sync_qoutfifo(struct ahd_softc * ahd,int op)887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 /*offset*/0,
891 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893
894 static void
ahd_sync_tqinfifo(struct ahd_softc * ahd,int op)895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 ahd->shared_data_map.dmamap,
901 ahd_targetcmd_offset(ahd, 0),
902 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 op);
904 }
905 #endif
906 }
907
908 /*
909 * See if the firmware has posted any completed commands
910 * into our in-core command complete fifos.
911 */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
ahd_check_cmdcmpltqueues(struct ahd_softc * ahd)915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 u_int retval;
918
919 retval = 0;
920 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 == ahd->qoutfifonext_valid_tag)
925 retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 if ((ahd->flags & AHD_TARGETROLE) != 0
928 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 ahd->shared_data_map.dmamap,
931 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 /*len*/sizeof(struct target_cmd),
933 BUS_DMASYNC_POSTREAD);
934 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 retval |= AHD_RUN_TQINFIFO;
936 }
937 #endif
938 return (retval);
939 }
940
941 /*
942 * Catch an interrupt from the adapter
943 */
944 int
ahd_intr(struct ahd_softc * ahd)945 ahd_intr(struct ahd_softc *ahd)
946 {
947 u_int intstat;
948
949 if ((ahd->pause & INTEN) == 0) {
950 /*
951 * Our interrupt is not enabled on the chip
952 * and may be disabled for re-entrancy reasons,
953 * so just return. This is likely just a shared
954 * interrupt.
955 */
956 return (0);
957 }
958
959 /*
960 * Instead of directly reading the interrupt status register,
961 * infer the cause of the interrupt by checking our in-core
962 * completion queues. This avoids a costly PCI bus read in
963 * most cases.
964 */
965 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 intstat = CMDCMPLT;
968 else
969 intstat = ahd_inb(ahd, INTSTAT);
970
971 if ((intstat & INT_PEND) == 0)
972 return (0);
973
974 if (intstat & CMDCMPLT) {
975 ahd_outb(ahd, CLRINT, CLRCMDINT);
976
977 /*
978 * Ensure that the chip sees that we've cleared
979 * this interrupt before we walk the output fifo.
980 * Otherwise, we may, due to posted bus writes,
981 * clear the interrupt after we finish the scan,
982 * and after the sequencer has added new entries
983 * and asserted the interrupt again.
984 */
985 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 if (ahd_is_paused(ahd)) {
987 /*
988 * Potentially lost SEQINT.
989 * If SEQINTCODE is non-zero,
990 * simulate the SEQINT.
991 */
992 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 intstat |= SEQINT;
994 }
995 } else {
996 ahd_flush_device_writes(ahd);
997 }
998 ahd_run_qoutfifo(ahd);
999 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 }
1006
1007 /*
1008 * Handle statuses that may invalidate our cached
1009 * copy of INTSTAT separately.
1010 */
1011 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 /* Hot eject. Do nothing */
1013 } else if (intstat & HWERRINT) {
1014 ahd_handle_hwerrint(ahd);
1015 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 ahd->bus_intr(ahd);
1017 } else {
1018
1019 if ((intstat & SEQINT) != 0)
1020 ahd_handle_seqint(ahd, intstat);
1021
1022 if ((intstat & SCSIINT) != 0)
1023 ahd_handle_scsiint(ahd, intstat);
1024 }
1025 return (1);
1026 }
1027
1028 /******************************** Private Inlines *****************************/
1029 static inline void
ahd_assert_atn(struct ahd_softc * ahd)1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034
1035 /*
1036 * Determine if the current connection has a packetized
1037 * agreement. This does not necessarily mean that we
1038 * are currently in a packetized transfer. We could
1039 * just as easily be sending or receiving a message.
1040 */
1041 static int
ahd_currently_packetized(struct ahd_softc * ahd)1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 ahd_mode_state saved_modes;
1045 int packetized;
1046
1047 saved_modes = ahd_save_modes(ahd);
1048 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 /*
1050 * The packetized bit refers to the last
1051 * connection, not the current one. Check
1052 * for non-zero LQISTATE instead.
1053 */
1054 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 } else {
1057 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 }
1060 ahd_restore_modes(ahd, saved_modes);
1061 return (packetized);
1062 }
1063
1064 static inline int
ahd_set_active_fifo(struct ahd_softc * ahd)1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 u_int active_fifo;
1068
1069 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 switch (active_fifo) {
1072 case 0:
1073 case 1:
1074 ahd_set_modes(ahd, active_fifo, active_fifo);
1075 return (1);
1076 default:
1077 return (0);
1078 }
1079 }
1080
1081 static inline void
ahd_unbusy_tcl(struct ahd_softc * ahd,u_int tcl)1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086
1087 /*
1088 * Determine whether the sequencer reported a residual
1089 * for this SCB/transaction.
1090 */
1091 static inline void
ahd_update_residual(struct ahd_softc * ahd,struct scb * scb)1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 uint32_t sgptr;
1095
1096 sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 if ((sgptr & SG_STATUS_VALID) != 0)
1098 ahd_calc_residual(ahd, scb);
1099 }
1100
1101 static inline void
ahd_complete_scb(struct ahd_softc * ahd,struct scb * scb)1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 uint32_t sgptr;
1105
1106 sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 if ((sgptr & SG_STATUS_VALID) != 0)
1108 ahd_handle_scb_status(ahd, scb);
1109 else
1110 ahd_done(ahd, scb);
1111 }
1112
1113
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116 * Restart the sequencer program from address zero
1117 */
1118 static void
ahd_restart(struct ahd_softc * ahd)1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121
1122 ahd_pause(ahd);
1123
1124 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125
1126 /* No more pending messages */
1127 ahd_clear_msg_state(ahd);
1128 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1129 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
1130 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 ahd_outb(ahd, SEQINTCTL, 0);
1132 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 ahd_outb(ahd, SEQ_FLAGS, 0);
1134 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 ahd_outb(ahd, SAVED_LUN, 0xFF);
1136
1137 /*
1138 * Ensure that the sequencer's idea of TQINPOS
1139 * matches our own. The sequencer increments TQINPOS
1140 * only after it sees a DMA complete and a reset could
1141 * occur before the increment leaving the kernel to believe
1142 * the command arrived but the sequencer to not.
1143 */
1144 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145
1146 /* Always allow reselection */
1147 ahd_outb(ahd, SCSISEQ1,
1148 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150
1151 /*
1152 * Clear any pending sequencer interrupt. It is no
1153 * longer relevant since we're resetting the Program
1154 * Counter.
1155 */
1156 ahd_outb(ahd, CLRINT, CLRSEQINT);
1157
1158 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 ahd_unpause(ahd);
1160 }
1161
1162 static void
ahd_clear_fifo(struct ahd_softc * ahd,u_int fifo)1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 ahd_mode_state saved_modes;
1166
1167 #ifdef AHD_DEBUG
1168 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 saved_modes = ahd_save_modes(ahd);
1172 ahd_set_modes(ahd, fifo, fifo);
1173 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 ahd_outb(ahd, SG_STATE, 0);
1178 ahd_restore_modes(ahd, saved_modes);
1179 }
1180
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183 * Flush and completed commands that are sitting in the command
1184 * complete queues down on the chip but have yet to be dma'ed back up.
1185 */
1186 static void
ahd_flush_qoutfifo(struct ahd_softc * ahd)1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 struct scb *scb;
1190 ahd_mode_state saved_modes;
1191 u_int saved_scbptr;
1192 u_int ccscbctl;
1193 u_int scbid;
1194 u_int next_scbid;
1195
1196 saved_modes = ahd_save_modes(ahd);
1197
1198 /*
1199 * Flush the good status FIFO for completed packetized commands.
1200 */
1201 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 saved_scbptr = ahd_get_scbptr(ahd);
1203 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 u_int fifo_mode;
1205 u_int i;
1206
1207 scbid = ahd_inw(ahd, GSFIFO);
1208 scb = ahd_lookup_scb(ahd, scbid);
1209 if (scb == NULL) {
1210 printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 ahd_name(ahd), scbid);
1212 continue;
1213 }
1214 /*
1215 * Determine if this transaction is still active in
1216 * any FIFO. If it is, we must flush that FIFO to
1217 * the host before completing the command.
1218 */
1219 fifo_mode = 0;
1220 rescan_fifos:
1221 for (i = 0; i < 2; i++) {
1222 /* Toggle to the other mode. */
1223 fifo_mode ^= 1;
1224 ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225
1226 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 continue;
1228
1229 ahd_run_data_fifo(ahd, scb);
1230
1231 /*
1232 * Running this FIFO may cause a CFG4DATA for
1233 * this same transaction to assert in the other
1234 * FIFO or a new snapshot SAVEPTRS interrupt
1235 * in this FIFO. Even running a FIFO may not
1236 * clear the transaction if we are still waiting
1237 * for data to drain to the host. We must loop
1238 * until the transaction is not active in either
1239 * FIFO just to be sure. Reset our loop counter
1240 * so we will visit both FIFOs again before
1241 * declaring this transaction finished. We
1242 * also delay a bit so that status has a chance
1243 * to change before we look at this FIFO again.
1244 */
1245 ahd_delay(200);
1246 goto rescan_fifos;
1247 }
1248 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 ahd_set_scbptr(ahd, scbid);
1250 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 & SG_LIST_NULL) != 0)) {
1254 u_int comp_head;
1255
1256 /*
1257 * The transfer completed with a residual.
1258 * Place this SCB on the complete DMA list
1259 * so that we update our in-core copy of the
1260 * SCB before completing the command.
1261 */
1262 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 ahd_outb(ahd, SCB_SGPTR,
1264 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 | SG_STATUS_VALID);
1266 ahd_outw(ahd, SCB_TAG, scbid);
1267 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 if (SCBID_IS_NULL(comp_head)) {
1270 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 } else {
1273 u_int tail;
1274
1275 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 ahd_set_scbptr(ahd, tail);
1277 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 ahd_set_scbptr(ahd, scbid);
1280 }
1281 } else
1282 ahd_complete_scb(ahd, scb);
1283 }
1284 ahd_set_scbptr(ahd, saved_scbptr);
1285
1286 /*
1287 * Setup for command channel portion of flush.
1288 */
1289 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290
1291 /*
1292 * Wait for any inprogress DMA to complete and clear DMA state
1293 * if this is for an SCB in the qinfifo.
1294 */
1295 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296
1297 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 if ((ccscbctl & ARRDONE) != 0)
1299 break;
1300 } else if ((ccscbctl & CCSCBDONE) != 0)
1301 break;
1302 ahd_delay(200);
1303 }
1304 /*
1305 * We leave the sequencer to cleanup in the case of DMA's to
1306 * update the qoutfifo. In all other cases (DMA's to the
1307 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 * we disable the DMA engine so that the sequencer will not
1309 * attempt to handle the DMA completion.
1310 */
1311 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313
1314 /*
1315 * Complete any SCBs that just finished
1316 * being DMA'ed into the qoutfifo.
1317 */
1318 ahd_run_qoutfifo(ahd);
1319
1320 saved_scbptr = ahd_get_scbptr(ahd);
1321 /*
1322 * Manually update/complete any completed SCBs that are waiting to be
1323 * DMA'ed back up to the host.
1324 */
1325 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 while (!SCBID_IS_NULL(scbid)) {
1327 uint8_t *hscb_ptr;
1328 u_int i;
1329
1330 ahd_set_scbptr(ahd, scbid);
1331 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 scb = ahd_lookup_scb(ahd, scbid);
1333 if (scb == NULL) {
1334 printk("%s: Warning - DMA-up and complete "
1335 "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 continue;
1337 }
1338 hscb_ptr = (uint8_t *)scb->hscb;
1339 for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341
1342 ahd_complete_scb(ahd, scb);
1343 scbid = next_scbid;
1344 }
1345 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347
1348 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 while (!SCBID_IS_NULL(scbid)) {
1350
1351 ahd_set_scbptr(ahd, scbid);
1352 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 scb = ahd_lookup_scb(ahd, scbid);
1354 if (scb == NULL) {
1355 printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 ahd_name(ahd), scbid);
1357 continue;
1358 }
1359
1360 ahd_complete_scb(ahd, scb);
1361 scbid = next_scbid;
1362 }
1363 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364
1365 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 while (!SCBID_IS_NULL(scbid)) {
1367
1368 ahd_set_scbptr(ahd, scbid);
1369 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 scb = ahd_lookup_scb(ahd, scbid);
1371 if (scb == NULL) {
1372 printk("%s: Warning - Complete SCB %d invalid\n",
1373 ahd_name(ahd), scbid);
1374 continue;
1375 }
1376
1377 ahd_complete_scb(ahd, scb);
1378 scbid = next_scbid;
1379 }
1380 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381
1382 /*
1383 * Restore state.
1384 */
1385 ahd_set_scbptr(ahd, saved_scbptr);
1386 ahd_restore_modes(ahd, saved_modes);
1387 ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389
1390 /*
1391 * Determine if an SCB for a packetized transaction
1392 * is active in a FIFO.
1393 */
1394 static int
ahd_scb_active_in_fifo(struct ahd_softc * ahd,struct scb * scb)1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397
1398 /*
1399 * The FIFO is only active for our transaction if
1400 * the SCBPTR matches the SCB's ID and the firmware
1401 * has installed a handler for the FIFO or we have
1402 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 */
1404 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 return (0);
1408
1409 return (1);
1410 }
1411
1412 /*
1413 * Run a data fifo to completion for a transaction we know
1414 * has completed across the SCSI bus (good status has been
1415 * received). We are already set to the correct FIFO mode
1416 * on entry to this routine.
1417 *
1418 * This function attempts to operate exactly as the firmware
1419 * would when running this FIFO. Care must be taken to update
1420 * this routine any time the firmware's FIFO algorithm is
1421 * changed.
1422 */
1423 static void
ahd_run_data_fifo(struct ahd_softc * ahd,struct scb * scb)1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 u_int seqintsrc;
1427
1428 seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 if ((seqintsrc & CFG4DATA) != 0) {
1430 uint32_t datacnt;
1431 uint32_t sgptr;
1432
1433 /*
1434 * Clear full residual flag.
1435 */
1436 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 ahd_outb(ahd, SCB_SGPTR, sgptr);
1438
1439 /*
1440 * Load datacnt and address.
1441 */
1442 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 sgptr |= LAST_SEG;
1445 ahd_outb(ahd, SG_STATE, 0);
1446 } else
1447 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452
1453 /*
1454 * Initialize Residual Fields.
1455 */
1456 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458
1459 /*
1460 * Mark the SCB as having a FIFO in use.
1461 */
1462 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464
1465 /*
1466 * Install a "fake" handler for this FIFO.
1467 */
1468 ahd_outw(ahd, LONGJMP_ADDR, 0);
1469
1470 /*
1471 * Notify the hardware that we have satisfied
1472 * this sequencer interrupt.
1473 */
1474 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 } else if ((seqintsrc & SAVEPTRS) != 0) {
1476 uint32_t sgptr;
1477 uint32_t resid;
1478
1479 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 /*
1481 * Snapshot Save Pointers. All that
1482 * is necessary to clear the snapshot
1483 * is a CLRCHN.
1484 */
1485 goto clrchn;
1486 }
1487
1488 /*
1489 * Disable S/G fetch so the DMA engine
1490 * is available to future users.
1491 */
1492 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 ahd_outb(ahd, CCSGCTL, 0);
1494 ahd_outb(ahd, SG_STATE, 0);
1495
1496 /*
1497 * Flush the data FIFO. Strickly only
1498 * necessary for Rev A parts.
1499 */
1500 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501
1502 /*
1503 * Calculate residual.
1504 */
1505 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 resid = ahd_inl(ahd, SHCNT);
1507 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 /*
1511 * Must back up to the correct S/G element.
1512 * Typically this just means resetting our
1513 * low byte to the offset in the SG_CACHE,
1514 * but if we wrapped, we have to correct
1515 * the other bytes of the sgptr too.
1516 */
1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 && (sgptr & 0x80) == 0)
1519 sgptr -= 0x100;
1520 sgptr &= ~0xFF;
1521 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 & SG_ADDR_MASK;
1523 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 sgptr | SG_LIST_NULL);
1528 }
1529 /*
1530 * Save Pointers.
1531 */
1532 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 ahd_outl(ahd, SCB_DATACNT, resid);
1534 ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 ahd_outb(ahd, SEQIMODE,
1537 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 /*
1539 * If the data is to the SCSI bus, we are
1540 * done, otherwise wait for FIFOEMP.
1541 */
1542 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 goto clrchn;
1544 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 uint32_t sgptr;
1546 uint64_t data_addr;
1547 uint32_t data_len;
1548 u_int dfcntrl;
1549
1550 /*
1551 * Disable S/G fetch so the DMA engine
1552 * is available to future users. We won't
1553 * be using the DMA engine to load segments.
1554 */
1555 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 ahd_outb(ahd, CCSGCTL, 0);
1557 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 }
1559
1560 /*
1561 * Wait for the DMA engine to notice that the
1562 * host transfer is enabled and that there is
1563 * space in the S/G FIFO for new segments before
1564 * loading more segments.
1565 */
1566 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568
1569 /*
1570 * Determine the offset of the next S/G
1571 * element to load.
1572 */
1573 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 sgptr &= SG_PTR_MASK;
1575 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 struct ahd_dma64_seg *sg;
1577
1578 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 data_addr = sg->addr;
1580 data_len = sg->len;
1581 sgptr += sizeof(*sg);
1582 } else {
1583 struct ahd_dma_seg *sg;
1584
1585 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 data_addr <<= 8;
1588 data_addr |= sg->addr;
1589 data_len = sg->len;
1590 sgptr += sizeof(*sg);
1591 }
1592
1593 /*
1594 * Update residual information.
1595 */
1596 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598
1599 /*
1600 * Load the S/G.
1601 */
1602 if (data_len & AHD_DMA_LAST_SEG) {
1603 sgptr |= LAST_SEG;
1604 ahd_outb(ahd, SG_STATE, 0);
1605 }
1606 ahd_outq(ahd, HADDR, data_addr);
1607 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609
1610 /*
1611 * Advertise the segment to the hardware.
1612 */
1613 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 /*
1616 * Use SCSIENWRDIS so that SCSIEN
1617 * is never modified by this
1618 * operation.
1619 */
1620 dfcntrl |= SCSIENWRDIS;
1621 }
1622 ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 }
1624 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625
1626 /*
1627 * Transfer completed to the end of SG list
1628 * and has flushed to the host.
1629 */
1630 ahd_outb(ahd, SCB_SGPTR,
1631 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 goto clrchn;
1633 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 /*
1636 * Clear any handler for this FIFO, decrement
1637 * the FIFO use count for the SCB, and release
1638 * the FIFO.
1639 */
1640 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 }
1645 }
1646
1647 /*
1648 * Look for entries in the QoutFIFO that have completed.
1649 * The valid_tag completion field indicates the validity
1650 * of the entry - the valid value toggles each time through
1651 * the queue. We use the sg_status field in the completion
1652 * entry to avoid referencing the hscb if the completion
1653 * occurred with no errors and no residual. sg_status is
1654 * a copy of the first byte (little endian) of the sgptr
1655 * hscb field.
1656 */
1657 static void
ahd_run_qoutfifo(struct ahd_softc * ahd)1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 struct ahd_completion *completion;
1661 struct scb *scb;
1662 u_int scb_index;
1663
1664 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 panic("ahd_run_qoutfifo recursion");
1666 ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 for (;;) {
1669 completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670
1671 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 break;
1673
1674 scb_index = ahd_le16toh(completion->tag);
1675 scb = ahd_lookup_scb(ahd, scb_index);
1676 if (scb == NULL) {
1677 printk("%s: WARNING no command for scb %d "
1678 "(cmdcmplt)\nQOUTPOS = %d\n",
1679 ahd_name(ahd), scb_index,
1680 ahd->qoutfifonext);
1681 ahd_dump_card_state(ahd);
1682 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 ahd_handle_scb_status(ahd, scb);
1684 } else {
1685 ahd_done(ahd, scb);
1686 }
1687
1688 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 if (ahd->qoutfifonext == 0)
1690 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 }
1692 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694
1695 /************************* Interrupt Handling *********************************/
1696 static void
ahd_handle_hwerrint(struct ahd_softc * ahd)1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 /*
1700 * Some catastrophic hardware error has occurred.
1701 * Print it for the user and disable the controller.
1702 */
1703 int i;
1704 int error;
1705
1706 error = ahd_inb(ahd, ERROR);
1707 for (i = 0; i < num_errors; i++) {
1708 if ((error & ahd_hard_errors[i].errno) != 0)
1709 printk("%s: hwerrint, %s\n",
1710 ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 }
1712
1713 ahd_dump_card_state(ahd);
1714 panic("BRKADRINT");
1715
1716 /* Tell everyone that this HBA is no longer available */
1717 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 CAM_NO_HBA);
1720
1721 /* Tell the system that this controller has gone away. */
1722 ahd_free(ahd);
1723 }
1724
1725 #ifdef AHD_DEBUG
1726 static void
ahd_dump_sglist(struct scb * scb)1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 int i;
1730
1731 if (scb->sg_count > 0) {
1732 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 struct ahd_dma64_seg *sg_list;
1734
1735 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 for (i = 0; i < scb->sg_count; i++) {
1737 uint64_t addr;
1738
1739 addr = ahd_le64toh(sg_list[i].addr);
1740 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1741 i,
1742 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1743 (uint32_t)(addr & 0xFFFFFFFF),
1744 sg_list[i].len & AHD_SG_LEN_MASK,
1745 (sg_list[i].len & AHD_DMA_LAST_SEG)
1746 ? " Last" : "");
1747 }
1748 } else {
1749 struct ahd_dma_seg *sg_list;
1750
1751 sg_list = (struct ahd_dma_seg*)scb->sg_list;
1752 for (i = 0; i < scb->sg_count; i++) {
1753 uint32_t len;
1754
1755 len = ahd_le32toh(sg_list[i].len);
1756 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1757 i,
1758 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1759 ahd_le32toh(sg_list[i].addr),
1760 len & AHD_SG_LEN_MASK,
1761 len & AHD_DMA_LAST_SEG ? " Last" : "");
1762 }
1763 }
1764 }
1765 }
1766 #endif /* AHD_DEBUG */
1767
1768 static void
ahd_handle_seqint(struct ahd_softc * ahd,u_int intstat)1769 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1770 {
1771 u_int seqintcode;
1772
1773 /*
1774 * Save the sequencer interrupt code and clear the SEQINT
1775 * bit. We will unpause the sequencer, if appropriate,
1776 * after servicing the request.
1777 */
1778 seqintcode = ahd_inb(ahd, SEQINTCODE);
1779 ahd_outb(ahd, CLRINT, CLRSEQINT);
1780 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1781 /*
1782 * Unpause the sequencer and let it clear
1783 * SEQINT by writing NO_SEQINT to it. This
1784 * will cause the sequencer to be paused again,
1785 * which is the expected state of this routine.
1786 */
1787 ahd_unpause(ahd);
1788 while (!ahd_is_paused(ahd))
1789 ;
1790 ahd_outb(ahd, CLRINT, CLRSEQINT);
1791 }
1792 ahd_update_modes(ahd);
1793 #ifdef AHD_DEBUG
1794 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1795 printk("%s: Handle Seqint Called for code %d\n",
1796 ahd_name(ahd), seqintcode);
1797 #endif
1798 switch (seqintcode) {
1799 case ENTERING_NONPACK:
1800 {
1801 struct scb *scb;
1802 u_int scbid;
1803
1804 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1805 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1806 scbid = ahd_get_scbptr(ahd);
1807 scb = ahd_lookup_scb(ahd, scbid);
1808 if (scb == NULL) {
1809 /*
1810 * Somehow need to know if this
1811 * is from a selection or reselection.
1812 * From that, we can determine target
1813 * ID so we at least have an I_T nexus.
1814 */
1815 } else {
1816 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1817 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1818 ahd_outb(ahd, SEQ_FLAGS, 0x0);
1819 }
1820 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1821 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1822 /*
1823 * Phase change after read stream with
1824 * CRC error with P0 asserted on last
1825 * packet.
1826 */
1827 #ifdef AHD_DEBUG
1828 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1829 printk("%s: Assuming LQIPHASE_NLQ with "
1830 "P0 assertion\n", ahd_name(ahd));
1831 #endif
1832 }
1833 #ifdef AHD_DEBUG
1834 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1835 printk("%s: Entering NONPACK\n", ahd_name(ahd));
1836 #endif
1837 break;
1838 }
1839 case INVALID_SEQINT:
1840 printk("%s: Invalid Sequencer interrupt occurred, "
1841 "resetting channel.\n",
1842 ahd_name(ahd));
1843 #ifdef AHD_DEBUG
1844 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845 ahd_dump_card_state(ahd);
1846 #endif
1847 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1848 break;
1849 case STATUS_OVERRUN:
1850 {
1851 struct scb *scb;
1852 u_int scbid;
1853
1854 scbid = ahd_get_scbptr(ahd);
1855 scb = ahd_lookup_scb(ahd, scbid);
1856 if (scb != NULL)
1857 ahd_print_path(ahd, scb);
1858 else
1859 printk("%s: ", ahd_name(ahd));
1860 printk("SCB %d Packetized Status Overrun", scbid);
1861 ahd_dump_card_state(ahd);
1862 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1863 break;
1864 }
1865 case CFG4ISTAT_INTR:
1866 {
1867 struct scb *scb;
1868 u_int scbid;
1869
1870 scbid = ahd_get_scbptr(ahd);
1871 scb = ahd_lookup_scb(ahd, scbid);
1872 if (scb == NULL) {
1873 ahd_dump_card_state(ahd);
1874 printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1875 panic("For safety");
1876 }
1877 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1878 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1879 ahd_outb(ahd, HCNT + 2, 0);
1880 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1881 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1882 break;
1883 }
1884 case ILLEGAL_PHASE:
1885 {
1886 u_int bus_phase;
1887
1888 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1889 printk("%s: ILLEGAL_PHASE 0x%x\n",
1890 ahd_name(ahd), bus_phase);
1891
1892 switch (bus_phase) {
1893 case P_DATAOUT:
1894 case P_DATAIN:
1895 case P_DATAOUT_DT:
1896 case P_DATAIN_DT:
1897 case P_MESGOUT:
1898 case P_STATUS:
1899 case P_MESGIN:
1900 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1901 printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1902 break;
1903 case P_COMMAND:
1904 {
1905 struct ahd_devinfo devinfo;
1906 struct scb *scb;
1907 u_int scbid;
1908
1909 /*
1910 * If a target takes us into the command phase
1911 * assume that it has been externally reset and
1912 * has thus lost our previous packetized negotiation
1913 * agreement. Since we have not sent an identify
1914 * message and may not have fully qualified the
1915 * connection, we change our command to TUR, assert
1916 * ATN and ABORT the task when we go to message in
1917 * phase. The OSM will see the REQUEUE_REQUEST
1918 * status and retry the command.
1919 */
1920 scbid = ahd_get_scbptr(ahd);
1921 scb = ahd_lookup_scb(ahd, scbid);
1922 if (scb == NULL) {
1923 printk("Invalid phase with no valid SCB. "
1924 "Resetting bus.\n");
1925 ahd_reset_channel(ahd, 'A',
1926 /*Initiate Reset*/TRUE);
1927 break;
1928 }
1929 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1930 SCB_GET_TARGET(ahd, scb),
1931 SCB_GET_LUN(scb),
1932 SCB_GET_CHANNEL(ahd, scb),
1933 ROLE_INITIATOR);
1934 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1935 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1936 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1937 /*offset*/0, /*ppr_options*/0,
1938 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1939 /* Hand-craft TUR command */
1940 ahd_outb(ahd, SCB_CDB_STORE, 0);
1941 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1942 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1943 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1944 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1945 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1946 ahd_outb(ahd, SCB_CDB_LEN, 6);
1947 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1948 scb->hscb->control |= MK_MESSAGE;
1949 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1950 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1951 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1952 /*
1953 * The lun is 0, regardless of the SCB's lun
1954 * as we have not sent an identify message.
1955 */
1956 ahd_outb(ahd, SAVED_LUN, 0);
1957 ahd_outb(ahd, SEQ_FLAGS, 0);
1958 ahd_assert_atn(ahd);
1959 scb->flags &= ~SCB_PACKETIZED;
1960 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1961 ahd_freeze_devq(ahd, scb);
1962 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1963 ahd_freeze_scb(scb);
1964
1965 /* Notify XPT */
1966 ahd_send_async(ahd, devinfo.channel, devinfo.target,
1967 CAM_LUN_WILDCARD, AC_SENT_BDR);
1968
1969 /*
1970 * Allow the sequencer to continue with
1971 * non-pack processing.
1972 */
1973 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1974 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1975 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1976 ahd_outb(ahd, CLRLQOINT1, 0);
1977 }
1978 #ifdef AHD_DEBUG
1979 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1980 ahd_print_path(ahd, scb);
1981 printk("Unexpected command phase from "
1982 "packetized target\n");
1983 }
1984 #endif
1985 break;
1986 }
1987 }
1988 break;
1989 }
1990 case CFG4OVERRUN:
1991 {
1992 struct scb *scb;
1993 u_int scb_index;
1994
1995 #ifdef AHD_DEBUG
1996 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1997 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1998 ahd_inb(ahd, MODE_PTR));
1999 }
2000 #endif
2001 scb_index = ahd_get_scbptr(ahd);
2002 scb = ahd_lookup_scb(ahd, scb_index);
2003 if (scb == NULL) {
2004 /*
2005 * Attempt to transfer to an SCB that is
2006 * not outstanding.
2007 */
2008 ahd_assert_atn(ahd);
2009 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2010 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2011 ahd->msgout_len = 1;
2012 ahd->msgout_index = 0;
2013 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2014 /*
2015 * Clear status received flag to prevent any
2016 * attempt to complete this bogus SCB.
2017 */
2018 ahd_outb(ahd, SCB_CONTROL,
2019 ahd_inb_scbram(ahd, SCB_CONTROL)
2020 & ~STATUS_RCVD);
2021 }
2022 break;
2023 }
2024 case DUMP_CARD_STATE:
2025 {
2026 ahd_dump_card_state(ahd);
2027 break;
2028 }
2029 case PDATA_REINIT:
2030 {
2031 #ifdef AHD_DEBUG
2032 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2033 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2034 "SG_CACHE_SHADOW = 0x%x\n",
2035 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2036 ahd_inb(ahd, SG_CACHE_SHADOW));
2037 }
2038 #endif
2039 ahd_reinitialize_dataptrs(ahd);
2040 break;
2041 }
2042 case HOST_MSG_LOOP:
2043 {
2044 struct ahd_devinfo devinfo;
2045
2046 /*
2047 * The sequencer has encountered a message phase
2048 * that requires host assistance for completion.
2049 * While handling the message phase(s), we will be
2050 * notified by the sequencer after each byte is
2051 * transferred so we can track bus phase changes.
2052 *
2053 * If this is the first time we've seen a HOST_MSG_LOOP
2054 * interrupt, initialize the state of the host message
2055 * loop.
2056 */
2057 ahd_fetch_devinfo(ahd, &devinfo);
2058 if (ahd->msg_type == MSG_TYPE_NONE) {
2059 struct scb *scb;
2060 u_int scb_index;
2061 u_int bus_phase;
2062
2063 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2064 if (bus_phase != P_MESGIN
2065 && bus_phase != P_MESGOUT) {
2066 printk("ahd_intr: HOST_MSG_LOOP bad "
2067 "phase 0x%x\n", bus_phase);
2068 /*
2069 * Probably transitioned to bus free before
2070 * we got here. Just punt the message.
2071 */
2072 ahd_dump_card_state(ahd);
2073 ahd_clear_intstat(ahd);
2074 ahd_restart(ahd);
2075 return;
2076 }
2077
2078 scb_index = ahd_get_scbptr(ahd);
2079 scb = ahd_lookup_scb(ahd, scb_index);
2080 if (devinfo.role == ROLE_INITIATOR) {
2081 if (bus_phase == P_MESGOUT)
2082 ahd_setup_initiator_msgout(ahd,
2083 &devinfo,
2084 scb);
2085 else {
2086 ahd->msg_type =
2087 MSG_TYPE_INITIATOR_MSGIN;
2088 ahd->msgin_index = 0;
2089 }
2090 }
2091 #ifdef AHD_TARGET_MODE
2092 else {
2093 if (bus_phase == P_MESGOUT) {
2094 ahd->msg_type =
2095 MSG_TYPE_TARGET_MSGOUT;
2096 ahd->msgin_index = 0;
2097 }
2098 else
2099 ahd_setup_target_msgin(ahd,
2100 &devinfo,
2101 scb);
2102 }
2103 #endif
2104 }
2105
2106 ahd_handle_message_phase(ahd);
2107 break;
2108 }
2109 case NO_MATCH:
2110 {
2111 /* Ensure we don't leave the selection hardware on */
2112 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2113 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2114
2115 printk("%s:%c:%d: no active SCB for reconnecting "
2116 "target - issuing BUS DEVICE RESET\n",
2117 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2118 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2119 "REG0 == 0x%x ACCUM = 0x%x\n",
2120 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2121 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2122 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2123 "SINDEX == 0x%x\n",
2124 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2125 ahd_find_busy_tcl(ahd,
2126 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2127 ahd_inb(ahd, SAVED_LUN))),
2128 ahd_inw(ahd, SINDEX));
2129 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2130 "SCB_CONTROL == 0x%x\n",
2131 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2132 ahd_inb_scbram(ahd, SCB_LUN),
2133 ahd_inb_scbram(ahd, SCB_CONTROL));
2134 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2135 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2136 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2137 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2138 ahd_dump_card_state(ahd);
2139 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2140 ahd->msgout_len = 1;
2141 ahd->msgout_index = 0;
2142 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2143 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2144 ahd_assert_atn(ahd);
2145 break;
2146 }
2147 case PROTO_VIOLATION:
2148 {
2149 ahd_handle_proto_violation(ahd);
2150 break;
2151 }
2152 case IGN_WIDE_RES:
2153 {
2154 struct ahd_devinfo devinfo;
2155
2156 ahd_fetch_devinfo(ahd, &devinfo);
2157 ahd_handle_ign_wide_residue(ahd, &devinfo);
2158 break;
2159 }
2160 case BAD_PHASE:
2161 {
2162 u_int lastphase;
2163
2164 lastphase = ahd_inb(ahd, LASTPHASE);
2165 printk("%s:%c:%d: unknown scsi bus phase %x, "
2166 "lastphase = 0x%x. Attempting to continue\n",
2167 ahd_name(ahd), 'A',
2168 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2169 lastphase, ahd_inb(ahd, SCSISIGI));
2170 break;
2171 }
2172 case MISSED_BUSFREE:
2173 {
2174 u_int lastphase;
2175
2176 lastphase = ahd_inb(ahd, LASTPHASE);
2177 printk("%s:%c:%d: Missed busfree. "
2178 "Lastphase = 0x%x, Curphase = 0x%x\n",
2179 ahd_name(ahd), 'A',
2180 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2181 lastphase, ahd_inb(ahd, SCSISIGI));
2182 ahd_restart(ahd);
2183 return;
2184 }
2185 case DATA_OVERRUN:
2186 {
2187 /*
2188 * When the sequencer detects an overrun, it
2189 * places the controller in "BITBUCKET" mode
2190 * and allows the target to complete its transfer.
2191 * Unfortunately, none of the counters get updated
2192 * when the controller is in this mode, so we have
2193 * no way of knowing how large the overrun was.
2194 */
2195 struct scb *scb;
2196 u_int scbindex;
2197 #ifdef AHD_DEBUG
2198 u_int lastphase;
2199 #endif
2200
2201 scbindex = ahd_get_scbptr(ahd);
2202 scb = ahd_lookup_scb(ahd, scbindex);
2203 #ifdef AHD_DEBUG
2204 lastphase = ahd_inb(ahd, LASTPHASE);
2205 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2206 ahd_print_path(ahd, scb);
2207 printk("data overrun detected %s. Tag == 0x%x.\n",
2208 ahd_lookup_phase_entry(lastphase)->phasemsg,
2209 SCB_GET_TAG(scb));
2210 ahd_print_path(ahd, scb);
2211 printk("%s seen Data Phase. Length = %ld. "
2212 "NumSGs = %d.\n",
2213 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2214 ? "Have" : "Haven't",
2215 ahd_get_transfer_length(scb), scb->sg_count);
2216 ahd_dump_sglist(scb);
2217 }
2218 #endif
2219
2220 /*
2221 * Set this and it will take effect when the
2222 * target does a command complete.
2223 */
2224 ahd_freeze_devq(ahd, scb);
2225 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2226 ahd_freeze_scb(scb);
2227 break;
2228 }
2229 case MKMSG_FAILED:
2230 {
2231 struct ahd_devinfo devinfo;
2232 struct scb *scb;
2233 u_int scbid;
2234
2235 ahd_fetch_devinfo(ahd, &devinfo);
2236 printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2237 ahd_name(ahd), devinfo.channel, devinfo.target,
2238 devinfo.lun);
2239 scbid = ahd_get_scbptr(ahd);
2240 scb = ahd_lookup_scb(ahd, scbid);
2241 if (scb != NULL
2242 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2243 /*
2244 * Ensure that we didn't put a second instance of this
2245 * SCB into the QINFIFO.
2246 */
2247 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2248 SCB_GET_CHANNEL(ahd, scb),
2249 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2250 ROLE_INITIATOR, /*status*/0,
2251 SEARCH_REMOVE);
2252 ahd_outb(ahd, SCB_CONTROL,
2253 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2254 break;
2255 }
2256 case TASKMGMT_FUNC_COMPLETE:
2257 {
2258 u_int scbid;
2259 struct scb *scb;
2260
2261 scbid = ahd_get_scbptr(ahd);
2262 scb = ahd_lookup_scb(ahd, scbid);
2263 if (scb != NULL) {
2264 u_int lun;
2265 u_int tag;
2266 cam_status error;
2267
2268 ahd_print_path(ahd, scb);
2269 printk("Task Management Func 0x%x Complete\n",
2270 scb->hscb->task_management);
2271 lun = CAM_LUN_WILDCARD;
2272 tag = SCB_LIST_NULL;
2273
2274 switch (scb->hscb->task_management) {
2275 case SIU_TASKMGMT_ABORT_TASK:
2276 tag = SCB_GET_TAG(scb);
2277 fallthrough;
2278 case SIU_TASKMGMT_ABORT_TASK_SET:
2279 case SIU_TASKMGMT_CLEAR_TASK_SET:
2280 lun = scb->hscb->lun;
2281 error = CAM_REQ_ABORTED;
2282 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2283 'A', lun, tag, ROLE_INITIATOR,
2284 error);
2285 break;
2286 case SIU_TASKMGMT_LUN_RESET:
2287 lun = scb->hscb->lun;
2288 fallthrough;
2289 case SIU_TASKMGMT_TARGET_RESET:
2290 {
2291 struct ahd_devinfo devinfo;
2292
2293 ahd_scb_devinfo(ahd, &devinfo, scb);
2294 error = CAM_BDR_SENT;
2295 ahd_handle_devreset(ahd, &devinfo, lun,
2296 CAM_BDR_SENT,
2297 lun != CAM_LUN_WILDCARD
2298 ? "Lun Reset"
2299 : "Target Reset",
2300 /*verbose_level*/0);
2301 break;
2302 }
2303 default:
2304 panic("Unexpected TaskMgmt Func\n");
2305 break;
2306 }
2307 }
2308 break;
2309 }
2310 case TASKMGMT_CMD_CMPLT_OKAY:
2311 {
2312 u_int scbid;
2313 struct scb *scb;
2314
2315 /*
2316 * An ABORT TASK TMF failed to be delivered before
2317 * the targeted command completed normally.
2318 */
2319 scbid = ahd_get_scbptr(ahd);
2320 scb = ahd_lookup_scb(ahd, scbid);
2321 if (scb != NULL) {
2322 /*
2323 * Remove the second instance of this SCB from
2324 * the QINFIFO if it is still there.
2325 */
2326 ahd_print_path(ahd, scb);
2327 printk("SCB completes before TMF\n");
2328 /*
2329 * Handle losing the race. Wait until any
2330 * current selection completes. We will then
2331 * set the TMF back to zero in this SCB so that
2332 * the sequencer doesn't bother to issue another
2333 * sequencer interrupt for its completion.
2334 */
2335 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2336 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2337 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2338 ;
2339 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2340 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2341 SCB_GET_CHANNEL(ahd, scb),
2342 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2343 ROLE_INITIATOR, /*status*/0,
2344 SEARCH_REMOVE);
2345 }
2346 break;
2347 }
2348 case TRACEPOINT0:
2349 case TRACEPOINT1:
2350 case TRACEPOINT2:
2351 case TRACEPOINT3:
2352 printk("%s: Tracepoint %d\n", ahd_name(ahd),
2353 seqintcode - TRACEPOINT0);
2354 break;
2355 case NO_SEQINT:
2356 break;
2357 case SAW_HWERR:
2358 ahd_handle_hwerrint(ahd);
2359 break;
2360 default:
2361 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2362 seqintcode);
2363 break;
2364 }
2365 /*
2366 * The sequencer is paused immediately on
2367 * a SEQINT, so we should restart it when
2368 * we're done.
2369 */
2370 ahd_unpause(ahd);
2371 }
2372
2373 static void
ahd_handle_scsiint(struct ahd_softc * ahd,u_int intstat)2374 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2375 {
2376 struct scb *scb;
2377 u_int status0;
2378 u_int status3;
2379 u_int status;
2380 u_int lqistat1;
2381 u_int lqostat0;
2382 u_int scbid;
2383 u_int busfreetime;
2384
2385 ahd_update_modes(ahd);
2386 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2387
2388 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2389 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2390 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2391 lqistat1 = ahd_inb(ahd, LQISTAT1);
2392 lqostat0 = ahd_inb(ahd, LQOSTAT0);
2393 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2394
2395 /*
2396 * Ignore external resets after a bus reset.
2397 */
2398 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2399 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2400 return;
2401 }
2402
2403 /*
2404 * Clear bus reset flag
2405 */
2406 ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2407
2408 if ((status0 & (SELDI|SELDO)) != 0) {
2409 u_int simode0;
2410
2411 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2412 simode0 = ahd_inb(ahd, SIMODE0);
2413 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2414 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2415 }
2416 scbid = ahd_get_scbptr(ahd);
2417 scb = ahd_lookup_scb(ahd, scbid);
2418 if (scb != NULL
2419 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2420 scb = NULL;
2421
2422 if ((status0 & IOERR) != 0) {
2423 u_int now_lvd;
2424
2425 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2426 printk("%s: Transceiver State Has Changed to %s mode\n",
2427 ahd_name(ahd), now_lvd ? "LVD" : "SE");
2428 ahd_outb(ahd, CLRSINT0, CLRIOERR);
2429 /*
2430 * A change in I/O mode is equivalent to a bus reset.
2431 */
2432 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2433 ahd_pause(ahd);
2434 ahd_setup_iocell_workaround(ahd);
2435 ahd_unpause(ahd);
2436 } else if ((status0 & OVERRUN) != 0) {
2437
2438 printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2439 ahd_name(ahd));
2440 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2441 } else if ((status & SCSIRSTI) != 0) {
2442
2443 printk("%s: Someone reset channel A\n", ahd_name(ahd));
2444 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2445 } else if ((status & SCSIPERR) != 0) {
2446
2447 /* Make sure the sequencer is in a safe location. */
2448 ahd_clear_critical_section(ahd);
2449
2450 ahd_handle_transmission_error(ahd);
2451 } else if (lqostat0 != 0) {
2452
2453 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2454 ahd_outb(ahd, CLRLQOINT0, lqostat0);
2455 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2456 ahd_outb(ahd, CLRLQOINT1, 0);
2457 } else if ((status & SELTO) != 0) {
2458 /* Stop the selection */
2459 ahd_outb(ahd, SCSISEQ0, 0);
2460
2461 /* Make sure the sequencer is in a safe location. */
2462 ahd_clear_critical_section(ahd);
2463
2464 /* No more pending messages */
2465 ahd_clear_msg_state(ahd);
2466
2467 /* Clear interrupt state */
2468 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2469
2470 /*
2471 * Although the driver does not care about the
2472 * 'Selection in Progress' status bit, the busy
2473 * LED does. SELINGO is only cleared by a successful
2474 * selection, so we must manually clear it to insure
2475 * the LED turns off just incase no future successful
2476 * selections occur (e.g. no devices on the bus).
2477 */
2478 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2479
2480 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2481 scb = ahd_lookup_scb(ahd, scbid);
2482 if (scb == NULL) {
2483 printk("%s: ahd_intr - referenced scb not "
2484 "valid during SELTO scb(0x%x)\n",
2485 ahd_name(ahd), scbid);
2486 ahd_dump_card_state(ahd);
2487 } else {
2488 struct ahd_devinfo devinfo;
2489 #ifdef AHD_DEBUG
2490 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2491 ahd_print_path(ahd, scb);
2492 printk("Saw Selection Timeout for SCB 0x%x\n",
2493 scbid);
2494 }
2495 #endif
2496 ahd_scb_devinfo(ahd, &devinfo, scb);
2497 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2498 ahd_freeze_devq(ahd, scb);
2499
2500 /*
2501 * Cancel any pending transactions on the device
2502 * now that it seems to be missing. This will
2503 * also revert us to async/narrow transfers until
2504 * we can renegotiate with the device.
2505 */
2506 ahd_handle_devreset(ahd, &devinfo,
2507 CAM_LUN_WILDCARD,
2508 CAM_SEL_TIMEOUT,
2509 "Selection Timeout",
2510 /*verbose_level*/1);
2511 }
2512 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2513 ahd_iocell_first_selection(ahd);
2514 ahd_unpause(ahd);
2515 } else if ((status0 & (SELDI|SELDO)) != 0) {
2516
2517 ahd_iocell_first_selection(ahd);
2518 ahd_unpause(ahd);
2519 } else if (status3 != 0) {
2520 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2521 ahd_name(ahd), status3);
2522 ahd_outb(ahd, CLRSINT3, status3);
2523 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2524
2525 /* Make sure the sequencer is in a safe location. */
2526 ahd_clear_critical_section(ahd);
2527
2528 ahd_handle_lqiphase_error(ahd, lqistat1);
2529 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2530 /*
2531 * This status can be delayed during some
2532 * streaming operations. The SCSIPHASE
2533 * handler has already dealt with this case
2534 * so just clear the error.
2535 */
2536 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2537 } else if ((status & BUSFREE) != 0
2538 || (lqistat1 & LQOBUSFREE) != 0) {
2539 u_int lqostat1;
2540 int restart;
2541 int clear_fifo;
2542 int packetized;
2543 u_int mode;
2544
2545 /*
2546 * Clear our selection hardware as soon as possible.
2547 * We may have an entry in the waiting Q for this target,
2548 * that is affected by this busfree and we don't want to
2549 * go about selecting the target while we handle the event.
2550 */
2551 ahd_outb(ahd, SCSISEQ0, 0);
2552
2553 /* Make sure the sequencer is in a safe location. */
2554 ahd_clear_critical_section(ahd);
2555
2556 /*
2557 * Determine what we were up to at the time of
2558 * the busfree.
2559 */
2560 mode = AHD_MODE_SCSI;
2561 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2562 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2563 switch (busfreetime) {
2564 case BUSFREE_DFF0:
2565 case BUSFREE_DFF1:
2566 {
2567 mode = busfreetime == BUSFREE_DFF0
2568 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2569 ahd_set_modes(ahd, mode, mode);
2570 scbid = ahd_get_scbptr(ahd);
2571 scb = ahd_lookup_scb(ahd, scbid);
2572 if (scb == NULL) {
2573 printk("%s: Invalid SCB %d in DFF%d "
2574 "during unexpected busfree\n",
2575 ahd_name(ahd), scbid, mode);
2576 packetized = 0;
2577 } else
2578 packetized = (scb->flags & SCB_PACKETIZED) != 0;
2579 clear_fifo = 1;
2580 break;
2581 }
2582 case BUSFREE_LQO:
2583 clear_fifo = 0;
2584 packetized = 1;
2585 break;
2586 default:
2587 clear_fifo = 0;
2588 packetized = (lqostat1 & LQOBUSFREE) != 0;
2589 if (!packetized
2590 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2591 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2592 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2593 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2594 /*
2595 * Assume packetized if we are not
2596 * on the bus in a non-packetized
2597 * capacity and any pending selection
2598 * was a packetized selection.
2599 */
2600 packetized = 1;
2601 break;
2602 }
2603
2604 #ifdef AHD_DEBUG
2605 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2606 printk("Saw Busfree. Busfreetime = 0x%x.\n",
2607 busfreetime);
2608 #endif
2609 /*
2610 * Busfrees that occur in non-packetized phases are
2611 * handled by the nonpkt_busfree handler.
2612 */
2613 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2614 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2615 } else {
2616 packetized = 0;
2617 restart = ahd_handle_nonpkt_busfree(ahd);
2618 }
2619 /*
2620 * Clear the busfree interrupt status. The setting of
2621 * the interrupt is a pulse, so in a perfect world, we
2622 * would not need to muck with the ENBUSFREE logic. This
2623 * would ensure that if the bus moves on to another
2624 * connection, busfree protection is still in force. If
2625 * BUSFREEREV is broken, however, we must manually clear
2626 * the ENBUSFREE if the busfree occurred during a non-pack
2627 * connection so that we don't get false positives during
2628 * future, packetized, connections.
2629 */
2630 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2631 if (packetized == 0
2632 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2633 ahd_outb(ahd, SIMODE1,
2634 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2635
2636 if (clear_fifo)
2637 ahd_clear_fifo(ahd, mode);
2638
2639 ahd_clear_msg_state(ahd);
2640 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2641 if (restart) {
2642 ahd_restart(ahd);
2643 } else {
2644 ahd_unpause(ahd);
2645 }
2646 } else {
2647 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2648 ahd_name(ahd), status);
2649 ahd_dump_card_state(ahd);
2650 ahd_clear_intstat(ahd);
2651 ahd_unpause(ahd);
2652 }
2653 }
2654
2655 static void
ahd_handle_transmission_error(struct ahd_softc * ahd)2656 ahd_handle_transmission_error(struct ahd_softc *ahd)
2657 {
2658 struct scb *scb;
2659 u_int scbid;
2660 u_int lqistat1;
2661 u_int msg_out;
2662 u_int curphase;
2663 u_int lastphase;
2664 u_int perrdiag;
2665 u_int cur_col;
2666 int silent;
2667
2668 scb = NULL;
2669 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2670 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2671 ahd_inb(ahd, LQISTAT2);
2672 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2673 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2674 u_int lqistate;
2675
2676 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2677 lqistate = ahd_inb(ahd, LQISTATE);
2678 if ((lqistate >= 0x1E && lqistate <= 0x24)
2679 || (lqistate == 0x29)) {
2680 #ifdef AHD_DEBUG
2681 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2682 printk("%s: NLQCRC found via LQISTATE\n",
2683 ahd_name(ahd));
2684 }
2685 #endif
2686 lqistat1 |= LQICRCI_NLQ;
2687 }
2688 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2689 }
2690
2691 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2692 lastphase = ahd_inb(ahd, LASTPHASE);
2693 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2694 perrdiag = ahd_inb(ahd, PERRDIAG);
2695 msg_out = MSG_INITIATOR_DET_ERR;
2696 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2697
2698 /*
2699 * Try to find the SCB associated with this error.
2700 */
2701 silent = FALSE;
2702 if (lqistat1 == 0
2703 || (lqistat1 & LQICRCI_NLQ) != 0) {
2704 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2705 ahd_set_active_fifo(ahd);
2706 scbid = ahd_get_scbptr(ahd);
2707 scb = ahd_lookup_scb(ahd, scbid);
2708 if (scb != NULL && SCB_IS_SILENT(scb))
2709 silent = TRUE;
2710 }
2711
2712 cur_col = 0;
2713 if (silent == FALSE) {
2714 printk("%s: Transmission error detected\n", ahd_name(ahd));
2715 ahd_lqistat1_print(lqistat1, &cur_col, 50);
2716 ahd_lastphase_print(lastphase, &cur_col, 50);
2717 ahd_scsisigi_print(curphase, &cur_col, 50);
2718 ahd_perrdiag_print(perrdiag, &cur_col, 50);
2719 printk("\n");
2720 ahd_dump_card_state(ahd);
2721 }
2722
2723 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2724 if (silent == FALSE) {
2725 printk("%s: Gross protocol error during incoming "
2726 "packet. lqistat1 == 0x%x. Resetting bus.\n",
2727 ahd_name(ahd), lqistat1);
2728 }
2729 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2730 return;
2731 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2732 /*
2733 * A CRC error has been detected on an incoming LQ.
2734 * The bus is currently hung on the last ACK.
2735 * Hit LQIRETRY to release the last ack, and
2736 * wait for the sequencer to determine that ATNO
2737 * is asserted while in message out to take us
2738 * to our host message loop. No NONPACKREQ or
2739 * LQIPHASE type errors will occur in this
2740 * scenario. After this first LQIRETRY, the LQI
2741 * manager will be in ISELO where it will
2742 * happily sit until another packet phase begins.
2743 * Unexpected bus free detection is enabled
2744 * through any phases that occur after we release
2745 * this last ack until the LQI manager sees a
2746 * packet phase. This implies we may have to
2747 * ignore a perfectly valid "unexected busfree"
2748 * after our "initiator detected error" message is
2749 * sent. A busfree is the expected response after
2750 * we tell the target that it's L_Q was corrupted.
2751 * (SPI4R09 10.7.3.3.3)
2752 */
2753 ahd_outb(ahd, LQCTL2, LQIRETRY);
2754 printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2755 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2756 /*
2757 * We detected a CRC error in a NON-LQ packet.
2758 * The hardware has varying behavior in this situation
2759 * depending on whether this packet was part of a
2760 * stream or not.
2761 *
2762 * PKT by PKT mode:
2763 * The hardware has already acked the complete packet.
2764 * If the target honors our outstanding ATN condition,
2765 * we should be (or soon will be) in MSGOUT phase.
2766 * This will trigger the LQIPHASE_LQ status bit as the
2767 * hardware was expecting another LQ. Unexpected
2768 * busfree detection is enabled. Once LQIPHASE_LQ is
2769 * true (first entry into host message loop is much
2770 * the same), we must clear LQIPHASE_LQ and hit
2771 * LQIRETRY so the hardware is ready to handle
2772 * a future LQ. NONPACKREQ will not be asserted again
2773 * once we hit LQIRETRY until another packet is
2774 * processed. The target may either go busfree
2775 * or start another packet in response to our message.
2776 *
2777 * Read Streaming P0 asserted:
2778 * If we raise ATN and the target completes the entire
2779 * stream (P0 asserted during the last packet), the
2780 * hardware will ack all data and return to the ISTART
2781 * state. When the target reponds to our ATN condition,
2782 * LQIPHASE_LQ will be asserted. We should respond to
2783 * this with an LQIRETRY to prepare for any future
2784 * packets. NONPACKREQ will not be asserted again
2785 * once we hit LQIRETRY until another packet is
2786 * processed. The target may either go busfree or
2787 * start another packet in response to our message.
2788 * Busfree detection is enabled.
2789 *
2790 * Read Streaming P0 not asserted:
2791 * If we raise ATN and the target transitions to
2792 * MSGOUT in or after a packet where P0 is not
2793 * asserted, the hardware will assert LQIPHASE_NLQ.
2794 * We should respond to the LQIPHASE_NLQ with an
2795 * LQIRETRY. Should the target stay in a non-pkt
2796 * phase after we send our message, the hardware
2797 * will assert LQIPHASE_LQ. Recovery is then just as
2798 * listed above for the read streaming with P0 asserted.
2799 * Busfree detection is enabled.
2800 */
2801 if (silent == FALSE)
2802 printk("LQICRC_NLQ\n");
2803 if (scb == NULL) {
2804 printk("%s: No SCB valid for LQICRC_NLQ. "
2805 "Resetting bus\n", ahd_name(ahd));
2806 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2807 return;
2808 }
2809 } else if ((lqistat1 & LQIBADLQI) != 0) {
2810 printk("Need to handle BADLQI!\n");
2811 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2812 return;
2813 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2814 if ((curphase & ~P_DATAIN_DT) != 0) {
2815 /* Ack the byte. So we can continue. */
2816 if (silent == FALSE)
2817 printk("Acking %s to clear perror\n",
2818 ahd_lookup_phase_entry(curphase)->phasemsg);
2819 ahd_inb(ahd, SCSIDAT);
2820 }
2821
2822 if (curphase == P_MESGIN)
2823 msg_out = MSG_PARITY_ERROR;
2824 }
2825
2826 /*
2827 * We've set the hardware to assert ATN if we
2828 * get a parity error on "in" phases, so all we
2829 * need to do is stuff the message buffer with
2830 * the appropriate message. "In" phases have set
2831 * mesg_out to something other than MSG_NOP.
2832 */
2833 ahd->send_msg_perror = msg_out;
2834 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2835 scb->flags |= SCB_TRANSMISSION_ERROR;
2836 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2837 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2838 ahd_unpause(ahd);
2839 }
2840
2841 static void
ahd_handle_lqiphase_error(struct ahd_softc * ahd,u_int lqistat1)2842 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2843 {
2844 /*
2845 * Clear the sources of the interrupts.
2846 */
2847 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2848 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2849
2850 /*
2851 * If the "illegal" phase changes were in response
2852 * to our ATN to flag a CRC error, AND we ended up
2853 * on packet boundaries, clear the error, restart the
2854 * LQI manager as appropriate, and go on our merry
2855 * way toward sending the message. Otherwise, reset
2856 * the bus to clear the error.
2857 */
2858 ahd_set_active_fifo(ahd);
2859 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2860 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2861 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2862 printk("LQIRETRY for LQIPHASE_LQ\n");
2863 ahd_outb(ahd, LQCTL2, LQIRETRY);
2864 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2865 printk("LQIRETRY for LQIPHASE_NLQ\n");
2866 ahd_outb(ahd, LQCTL2, LQIRETRY);
2867 } else
2868 panic("ahd_handle_lqiphase_error: No phase errors\n");
2869 ahd_dump_card_state(ahd);
2870 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2871 ahd_unpause(ahd);
2872 } else {
2873 printk("Resetting Channel for LQI Phase error\n");
2874 ahd_dump_card_state(ahd);
2875 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2876 }
2877 }
2878
2879 /*
2880 * Packetized unexpected or expected busfree.
2881 * Entered in mode based on busfreetime.
2882 */
2883 static int
ahd_handle_pkt_busfree(struct ahd_softc * ahd,u_int busfreetime)2884 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2885 {
2886 u_int lqostat1;
2887
2888 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2889 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2890 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2891 if ((lqostat1 & LQOBUSFREE) != 0) {
2892 struct scb *scb;
2893 u_int scbid;
2894 u_int saved_scbptr;
2895 u_int waiting_h;
2896 u_int waiting_t;
2897 u_int next;
2898
2899 /*
2900 * The LQO manager detected an unexpected busfree
2901 * either:
2902 *
2903 * 1) During an outgoing LQ.
2904 * 2) After an outgoing LQ but before the first
2905 * REQ of the command packet.
2906 * 3) During an outgoing command packet.
2907 *
2908 * In all cases, CURRSCB is pointing to the
2909 * SCB that encountered the failure. Clean
2910 * up the queue, clear SELDO and LQOBUSFREE,
2911 * and allow the sequencer to restart the select
2912 * out at its lesure.
2913 */
2914 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2915 scbid = ahd_inw(ahd, CURRSCB);
2916 scb = ahd_lookup_scb(ahd, scbid);
2917 if (scb == NULL)
2918 panic("SCB not valid during LQOBUSFREE");
2919 /*
2920 * Clear the status.
2921 */
2922 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2923 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2924 ahd_outb(ahd, CLRLQOINT1, 0);
2925 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2926 ahd_flush_device_writes(ahd);
2927 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2928
2929 /*
2930 * Return the LQO manager to its idle loop. It will
2931 * not do this automatically if the busfree occurs
2932 * after the first REQ of either the LQ or command
2933 * packet or between the LQ and command packet.
2934 */
2935 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2936
2937 /*
2938 * Update the waiting for selection queue so
2939 * we restart on the correct SCB.
2940 */
2941 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2942 saved_scbptr = ahd_get_scbptr(ahd);
2943 if (waiting_h != scbid) {
2944
2945 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2946 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2947 if (waiting_t == waiting_h) {
2948 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2949 next = SCB_LIST_NULL;
2950 } else {
2951 ahd_set_scbptr(ahd, waiting_h);
2952 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2953 }
2954 ahd_set_scbptr(ahd, scbid);
2955 ahd_outw(ahd, SCB_NEXT2, next);
2956 }
2957 ahd_set_scbptr(ahd, saved_scbptr);
2958 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2959 if (SCB_IS_SILENT(scb) == FALSE) {
2960 ahd_print_path(ahd, scb);
2961 printk("Probable outgoing LQ CRC error. "
2962 "Retrying command\n");
2963 }
2964 scb->crc_retry_count++;
2965 } else {
2966 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2967 ahd_freeze_scb(scb);
2968 ahd_freeze_devq(ahd, scb);
2969 }
2970 /* Return unpausing the sequencer. */
2971 return (0);
2972 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2973 /*
2974 * Ignore what are really parity errors that
2975 * occur on the last REQ of a free running
2976 * clock prior to going busfree. Some drives
2977 * do not properly active negate just before
2978 * going busfree resulting in a parity glitch.
2979 */
2980 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2981 #ifdef AHD_DEBUG
2982 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2983 printk("%s: Parity on last REQ detected "
2984 "during busfree phase.\n",
2985 ahd_name(ahd));
2986 #endif
2987 /* Return unpausing the sequencer. */
2988 return (0);
2989 }
2990 if (ahd->src_mode != AHD_MODE_SCSI) {
2991 u_int scbid;
2992 struct scb *scb;
2993
2994 scbid = ahd_get_scbptr(ahd);
2995 scb = ahd_lookup_scb(ahd, scbid);
2996 ahd_print_path(ahd, scb);
2997 printk("Unexpected PKT busfree condition\n");
2998 ahd_dump_card_state(ahd);
2999 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3000 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3001 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3002
3003 /* Return restarting the sequencer. */
3004 return (1);
3005 }
3006 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3007 ahd_dump_card_state(ahd);
3008 /* Restart the sequencer. */
3009 return (1);
3010 }
3011
3012 /*
3013 * Non-packetized unexpected or expected busfree.
3014 */
3015 static int
ahd_handle_nonpkt_busfree(struct ahd_softc * ahd)3016 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3017 {
3018 struct ahd_devinfo devinfo;
3019 struct scb *scb;
3020 u_int lastphase;
3021 u_int saved_scsiid;
3022 u_int saved_lun;
3023 u_int target;
3024 u_int initiator_role_id;
3025 u_int scbid;
3026 u_int ppr_busfree;
3027 int printerror;
3028
3029 /*
3030 * Look at what phase we were last in. If its message out,
3031 * chances are pretty good that the busfree was in response
3032 * to one of our abort requests.
3033 */
3034 lastphase = ahd_inb(ahd, LASTPHASE);
3035 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3036 saved_lun = ahd_inb(ahd, SAVED_LUN);
3037 target = SCSIID_TARGET(ahd, saved_scsiid);
3038 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3039 ahd_compile_devinfo(&devinfo, initiator_role_id,
3040 target, saved_lun, 'A', ROLE_INITIATOR);
3041 printerror = 1;
3042
3043 scbid = ahd_get_scbptr(ahd);
3044 scb = ahd_lookup_scb(ahd, scbid);
3045 if (scb != NULL
3046 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3047 scb = NULL;
3048
3049 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3050 if (lastphase == P_MESGOUT) {
3051 u_int tag;
3052
3053 tag = SCB_LIST_NULL;
3054 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3055 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3056 int found;
3057 int sent_msg;
3058
3059 if (scb == NULL) {
3060 ahd_print_devinfo(ahd, &devinfo);
3061 printk("Abort for unidentified "
3062 "connection completed.\n");
3063 /* restart the sequencer. */
3064 return (1);
3065 }
3066 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3067 ahd_print_path(ahd, scb);
3068 printk("SCB %d - Abort%s Completed.\n",
3069 SCB_GET_TAG(scb),
3070 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3071
3072 if (sent_msg == MSG_ABORT_TAG)
3073 tag = SCB_GET_TAG(scb);
3074
3075 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3076 /*
3077 * This abort is in response to an
3078 * unexpected switch to command phase
3079 * for a packetized connection. Since
3080 * the identify message was never sent,
3081 * "saved lun" is 0. We really want to
3082 * abort only the SCB that encountered
3083 * this error, which could have a different
3084 * lun. The SCB will be retried so the OS
3085 * will see the UA after renegotiating to
3086 * packetized.
3087 */
3088 tag = SCB_GET_TAG(scb);
3089 saved_lun = scb->hscb->lun;
3090 }
3091 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3092 tag, ROLE_INITIATOR,
3093 CAM_REQ_ABORTED);
3094 printk("found == 0x%x\n", found);
3095 printerror = 0;
3096 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3097 MSG_BUS_DEV_RESET, TRUE)) {
3098 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3099 CAM_BDR_SENT, "Bus Device Reset",
3100 /*verbose_level*/0);
3101 printerror = 0;
3102 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3103 && ppr_busfree == 0) {
3104 struct ahd_initiator_tinfo *tinfo;
3105 struct ahd_tmode_tstate *tstate;
3106
3107 /*
3108 * PPR Rejected.
3109 *
3110 * If the previous negotiation was packetized,
3111 * this could be because the device has been
3112 * reset without our knowledge. Force our
3113 * current negotiation to async and retry the
3114 * negotiation. Otherwise retry the command
3115 * with non-ppr negotiation.
3116 */
3117 #ifdef AHD_DEBUG
3118 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3119 printk("PPR negotiation rejected busfree.\n");
3120 #endif
3121 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3122 devinfo.our_scsiid,
3123 devinfo.target, &tstate);
3124 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3125 ahd_set_width(ahd, &devinfo,
3126 MSG_EXT_WDTR_BUS_8_BIT,
3127 AHD_TRANS_CUR,
3128 /*paused*/TRUE);
3129 ahd_set_syncrate(ahd, &devinfo,
3130 /*period*/0, /*offset*/0,
3131 /*ppr_options*/0,
3132 AHD_TRANS_CUR,
3133 /*paused*/TRUE);
3134 /*
3135 * The expect PPR busfree handler below
3136 * will effect the retry and necessary
3137 * abort.
3138 */
3139 } else {
3140 tinfo->curr.transport_version = 2;
3141 tinfo->goal.transport_version = 2;
3142 tinfo->goal.ppr_options = 0;
3143 if (scb != NULL) {
3144 /*
3145 * Remove any SCBs in the waiting
3146 * for selection queue that may
3147 * also be for this target so that
3148 * command ordering is preserved.
3149 */
3150 ahd_freeze_devq(ahd, scb);
3151 ahd_qinfifo_requeue_tail(ahd, scb);
3152 }
3153 printerror = 0;
3154 }
3155 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3156 && ppr_busfree == 0) {
3157 /*
3158 * Negotiation Rejected. Go-narrow and
3159 * retry command.
3160 */
3161 #ifdef AHD_DEBUG
3162 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3163 printk("WDTR negotiation rejected busfree.\n");
3164 #endif
3165 ahd_set_width(ahd, &devinfo,
3166 MSG_EXT_WDTR_BUS_8_BIT,
3167 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3168 /*paused*/TRUE);
3169 if (scb != NULL) {
3170 /*
3171 * Remove any SCBs in the waiting for
3172 * selection queue that may also be for
3173 * this target so that command ordering
3174 * is preserved.
3175 */
3176 ahd_freeze_devq(ahd, scb);
3177 ahd_qinfifo_requeue_tail(ahd, scb);
3178 }
3179 printerror = 0;
3180 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3181 && ppr_busfree == 0) {
3182 /*
3183 * Negotiation Rejected. Go-async and
3184 * retry command.
3185 */
3186 #ifdef AHD_DEBUG
3187 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3188 printk("SDTR negotiation rejected busfree.\n");
3189 #endif
3190 ahd_set_syncrate(ahd, &devinfo,
3191 /*period*/0, /*offset*/0,
3192 /*ppr_options*/0,
3193 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3194 /*paused*/TRUE);
3195 if (scb != NULL) {
3196 /*
3197 * Remove any SCBs in the waiting for
3198 * selection queue that may also be for
3199 * this target so that command ordering
3200 * is preserved.
3201 */
3202 ahd_freeze_devq(ahd, scb);
3203 ahd_qinfifo_requeue_tail(ahd, scb);
3204 }
3205 printerror = 0;
3206 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3207 && ahd_sent_msg(ahd, AHDMSG_1B,
3208 MSG_INITIATOR_DET_ERR, TRUE)) {
3209
3210 #ifdef AHD_DEBUG
3211 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3212 printk("Expected IDE Busfree\n");
3213 #endif
3214 printerror = 0;
3215 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3216 && ahd_sent_msg(ahd, AHDMSG_1B,
3217 MSG_MESSAGE_REJECT, TRUE)) {
3218
3219 #ifdef AHD_DEBUG
3220 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3221 printk("Expected QAS Reject Busfree\n");
3222 #endif
3223 printerror = 0;
3224 }
3225 }
3226
3227 /*
3228 * The busfree required flag is honored at the end of
3229 * the message phases. We check it last in case we
3230 * had to send some other message that caused a busfree.
3231 */
3232 if (scb != NULL && printerror != 0
3233 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3234 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3235
3236 ahd_freeze_devq(ahd, scb);
3237 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3238 ahd_freeze_scb(scb);
3239 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3240 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3241 SCB_GET_CHANNEL(ahd, scb),
3242 SCB_GET_LUN(scb), SCB_LIST_NULL,
3243 ROLE_INITIATOR, CAM_REQ_ABORTED);
3244 } else {
3245 #ifdef AHD_DEBUG
3246 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3247 printk("PPR Negotiation Busfree.\n");
3248 #endif
3249 ahd_done(ahd, scb);
3250 }
3251 printerror = 0;
3252 }
3253 if (printerror != 0) {
3254 int aborted;
3255
3256 aborted = 0;
3257 if (scb != NULL) {
3258 u_int tag;
3259
3260 if ((scb->hscb->control & TAG_ENB) != 0)
3261 tag = SCB_GET_TAG(scb);
3262 else
3263 tag = SCB_LIST_NULL;
3264 ahd_print_path(ahd, scb);
3265 aborted = ahd_abort_scbs(ahd, target, 'A',
3266 SCB_GET_LUN(scb), tag,
3267 ROLE_INITIATOR,
3268 CAM_UNEXP_BUSFREE);
3269 } else {
3270 /*
3271 * We had not fully identified this connection,
3272 * so we cannot abort anything.
3273 */
3274 printk("%s: ", ahd_name(ahd));
3275 }
3276 printk("Unexpected busfree %s, %d SCBs aborted, "
3277 "PRGMCNT == 0x%x\n",
3278 ahd_lookup_phase_entry(lastphase)->phasemsg,
3279 aborted,
3280 ahd_inw(ahd, PRGMCNT));
3281 ahd_dump_card_state(ahd);
3282 if (lastphase != P_BUSFREE)
3283 ahd_force_renegotiation(ahd, &devinfo);
3284 }
3285 /* Always restart the sequencer. */
3286 return (1);
3287 }
3288
3289 static void
ahd_handle_proto_violation(struct ahd_softc * ahd)3290 ahd_handle_proto_violation(struct ahd_softc *ahd)
3291 {
3292 struct ahd_devinfo devinfo;
3293 struct scb *scb;
3294 u_int scbid;
3295 u_int seq_flags;
3296 u_int curphase;
3297 u_int lastphase;
3298 int found;
3299
3300 ahd_fetch_devinfo(ahd, &devinfo);
3301 scbid = ahd_get_scbptr(ahd);
3302 scb = ahd_lookup_scb(ahd, scbid);
3303 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3304 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3305 lastphase = ahd_inb(ahd, LASTPHASE);
3306 if ((seq_flags & NOT_IDENTIFIED) != 0) {
3307
3308 /*
3309 * The reconnecting target either did not send an
3310 * identify message, or did, but we didn't find an SCB
3311 * to match.
3312 */
3313 ahd_print_devinfo(ahd, &devinfo);
3314 printk("Target did not send an IDENTIFY message. "
3315 "LASTPHASE = 0x%x.\n", lastphase);
3316 scb = NULL;
3317 } else if (scb == NULL) {
3318 /*
3319 * We don't seem to have an SCB active for this
3320 * transaction. Print an error and reset the bus.
3321 */
3322 ahd_print_devinfo(ahd, &devinfo);
3323 printk("No SCB found during protocol violation\n");
3324 goto proto_violation_reset;
3325 } else {
3326 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3327 if ((seq_flags & NO_CDB_SENT) != 0) {
3328 ahd_print_path(ahd, scb);
3329 printk("No or incomplete CDB sent to device.\n");
3330 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3331 & STATUS_RCVD) == 0) {
3332 /*
3333 * The target never bothered to provide status to
3334 * us prior to completing the command. Since we don't
3335 * know the disposition of this command, we must attempt
3336 * to abort it. Assert ATN and prepare to send an abort
3337 * message.
3338 */
3339 ahd_print_path(ahd, scb);
3340 printk("Completed command without status.\n");
3341 } else {
3342 ahd_print_path(ahd, scb);
3343 printk("Unknown protocol violation.\n");
3344 ahd_dump_card_state(ahd);
3345 }
3346 }
3347 if ((lastphase & ~P_DATAIN_DT) == 0
3348 || lastphase == P_COMMAND) {
3349 proto_violation_reset:
3350 /*
3351 * Target either went directly to data
3352 * phase or didn't respond to our ATN.
3353 * The only safe thing to do is to blow
3354 * it away with a bus reset.
3355 */
3356 found = ahd_reset_channel(ahd, 'A', TRUE);
3357 printk("%s: Issued Channel %c Bus Reset. "
3358 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3359 } else {
3360 /*
3361 * Leave the selection hardware off in case
3362 * this abort attempt will affect yet to
3363 * be sent commands.
3364 */
3365 ahd_outb(ahd, SCSISEQ0,
3366 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3367 ahd_assert_atn(ahd);
3368 ahd_outb(ahd, MSG_OUT, HOST_MSG);
3369 if (scb == NULL) {
3370 ahd_print_devinfo(ahd, &devinfo);
3371 ahd->msgout_buf[0] = MSG_ABORT_TASK;
3372 ahd->msgout_len = 1;
3373 ahd->msgout_index = 0;
3374 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3375 } else {
3376 ahd_print_path(ahd, scb);
3377 scb->flags |= SCB_ABORT;
3378 }
3379 printk("Protocol violation %s. Attempting to abort.\n",
3380 ahd_lookup_phase_entry(curphase)->phasemsg);
3381 }
3382 }
3383
3384 /*
3385 * Force renegotiation to occur the next time we initiate
3386 * a command to the current device.
3387 */
3388 static void
ahd_force_renegotiation(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3389 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3390 {
3391 struct ahd_initiator_tinfo *targ_info;
3392 struct ahd_tmode_tstate *tstate;
3393
3394 #ifdef AHD_DEBUG
3395 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3396 ahd_print_devinfo(ahd, devinfo);
3397 printk("Forcing renegotiation\n");
3398 }
3399 #endif
3400 targ_info = ahd_fetch_transinfo(ahd,
3401 devinfo->channel,
3402 devinfo->our_scsiid,
3403 devinfo->target,
3404 &tstate);
3405 ahd_update_neg_request(ahd, devinfo, tstate,
3406 targ_info, AHD_NEG_IF_NON_ASYNC);
3407 }
3408
3409 #define AHD_MAX_STEPS 2000
3410 static void
ahd_clear_critical_section(struct ahd_softc * ahd)3411 ahd_clear_critical_section(struct ahd_softc *ahd)
3412 {
3413 ahd_mode_state saved_modes;
3414 int stepping;
3415 int steps;
3416 int first_instr;
3417 u_int simode0;
3418 u_int simode1;
3419 u_int simode3;
3420 u_int lqimode0;
3421 u_int lqimode1;
3422 u_int lqomode0;
3423 u_int lqomode1;
3424
3425 if (ahd->num_critical_sections == 0)
3426 return;
3427
3428 stepping = FALSE;
3429 steps = 0;
3430 first_instr = 0;
3431 simode0 = 0;
3432 simode1 = 0;
3433 simode3 = 0;
3434 lqimode0 = 0;
3435 lqimode1 = 0;
3436 lqomode0 = 0;
3437 lqomode1 = 0;
3438 saved_modes = ahd_save_modes(ahd);
3439 for (;;) {
3440 struct cs *cs;
3441 u_int seqaddr;
3442 u_int i;
3443
3444 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3445 seqaddr = ahd_inw(ahd, CURADDR);
3446
3447 cs = ahd->critical_sections;
3448 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3449
3450 if (cs->begin < seqaddr && cs->end >= seqaddr)
3451 break;
3452 }
3453
3454 if (i == ahd->num_critical_sections)
3455 break;
3456
3457 if (steps > AHD_MAX_STEPS) {
3458 printk("%s: Infinite loop in critical section\n"
3459 "%s: First Instruction 0x%x now 0x%x\n",
3460 ahd_name(ahd), ahd_name(ahd), first_instr,
3461 seqaddr);
3462 ahd_dump_card_state(ahd);
3463 panic("critical section loop");
3464 }
3465
3466 steps++;
3467 #ifdef AHD_DEBUG
3468 if ((ahd_debug & AHD_SHOW_MISC) != 0)
3469 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3470 seqaddr);
3471 #endif
3472 if (stepping == FALSE) {
3473
3474 first_instr = seqaddr;
3475 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3476 simode0 = ahd_inb(ahd, SIMODE0);
3477 simode3 = ahd_inb(ahd, SIMODE3);
3478 lqimode0 = ahd_inb(ahd, LQIMODE0);
3479 lqimode1 = ahd_inb(ahd, LQIMODE1);
3480 lqomode0 = ahd_inb(ahd, LQOMODE0);
3481 lqomode1 = ahd_inb(ahd, LQOMODE1);
3482 ahd_outb(ahd, SIMODE0, 0);
3483 ahd_outb(ahd, SIMODE3, 0);
3484 ahd_outb(ahd, LQIMODE0, 0);
3485 ahd_outb(ahd, LQIMODE1, 0);
3486 ahd_outb(ahd, LQOMODE0, 0);
3487 ahd_outb(ahd, LQOMODE1, 0);
3488 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3489 simode1 = ahd_inb(ahd, SIMODE1);
3490 /*
3491 * We don't clear ENBUSFREE. Unfortunately
3492 * we cannot re-enable busfree detection within
3493 * the current connection, so we must leave it
3494 * on while single stepping.
3495 */
3496 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3497 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3498 stepping = TRUE;
3499 }
3500 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3501 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3502 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3503 ahd_outb(ahd, HCNTRL, ahd->unpause);
3504 while (!ahd_is_paused(ahd))
3505 ahd_delay(200);
3506 ahd_update_modes(ahd);
3507 }
3508 if (stepping) {
3509 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3510 ahd_outb(ahd, SIMODE0, simode0);
3511 ahd_outb(ahd, SIMODE3, simode3);
3512 ahd_outb(ahd, LQIMODE0, lqimode0);
3513 ahd_outb(ahd, LQIMODE1, lqimode1);
3514 ahd_outb(ahd, LQOMODE0, lqomode0);
3515 ahd_outb(ahd, LQOMODE1, lqomode1);
3516 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3517 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3518 ahd_outb(ahd, SIMODE1, simode1);
3519 /*
3520 * SCSIINT seems to glitch occasionally when
3521 * the interrupt masks are restored. Clear SCSIINT
3522 * one more time so that only persistent errors
3523 * are seen as a real interrupt.
3524 */
3525 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3526 }
3527 ahd_restore_modes(ahd, saved_modes);
3528 }
3529
3530 /*
3531 * Clear any pending interrupt status.
3532 */
3533 static void
ahd_clear_intstat(struct ahd_softc * ahd)3534 ahd_clear_intstat(struct ahd_softc *ahd)
3535 {
3536 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3537 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3538 /* Clear any interrupt conditions this may have caused */
3539 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3540 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3541 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3542 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3543 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3544 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3545 |CLRLQOATNPKT|CLRLQOTCRC);
3546 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3547 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3548 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3549 ahd_outb(ahd, CLRLQOINT0, 0);
3550 ahd_outb(ahd, CLRLQOINT1, 0);
3551 }
3552 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3553 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3554 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3555 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3556 |CLRIOERR|CLROVERRUN);
3557 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3558 }
3559
3560 /**************************** Debugging Routines ******************************/
3561 #ifdef AHD_DEBUG
3562 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3563 #endif
3564
3565 #if 0
3566 void
3567 ahd_print_scb(struct scb *scb)
3568 {
3569 struct hardware_scb *hscb;
3570 int i;
3571
3572 hscb = scb->hscb;
3573 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3574 (void *)scb,
3575 hscb->control,
3576 hscb->scsiid,
3577 hscb->lun,
3578 hscb->cdb_len);
3579 printk("Shared Data: ");
3580 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3581 printk("%#02x", hscb->shared_data.idata.cdb[i]);
3582 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3583 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3584 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3585 ahd_le32toh(hscb->datacnt),
3586 ahd_le32toh(hscb->sgptr),
3587 SCB_GET_TAG(scb));
3588 ahd_dump_sglist(scb);
3589 }
3590 #endif /* 0 */
3591
3592 /************************* Transfer Negotiation *******************************/
3593 /*
3594 * Allocate per target mode instance (ID we respond to as a target)
3595 * transfer negotiation data structures.
3596 */
3597 static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel)3598 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3599 {
3600 struct ahd_tmode_tstate *master_tstate;
3601 struct ahd_tmode_tstate *tstate;
3602 int i;
3603
3604 master_tstate = ahd->enabled_targets[ahd->our_id];
3605 if (ahd->enabled_targets[scsi_id] != NULL
3606 && ahd->enabled_targets[scsi_id] != master_tstate)
3607 panic("%s: ahd_alloc_tstate - Target already allocated",
3608 ahd_name(ahd));
3609 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3610 if (tstate == NULL)
3611 return (NULL);
3612
3613 /*
3614 * If we have allocated a master tstate, copy user settings from
3615 * the master tstate (taken from SRAM or the EEPROM) for this
3616 * channel, but reset our current and goal settings to async/narrow
3617 * until an initiator talks to us.
3618 */
3619 if (master_tstate != NULL) {
3620 memcpy(tstate, master_tstate, sizeof(*tstate));
3621 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3622 for (i = 0; i < 16; i++) {
3623 memset(&tstate->transinfo[i].curr, 0,
3624 sizeof(tstate->transinfo[i].curr));
3625 memset(&tstate->transinfo[i].goal, 0,
3626 sizeof(tstate->transinfo[i].goal));
3627 }
3628 } else
3629 memset(tstate, 0, sizeof(*tstate));
3630 ahd->enabled_targets[scsi_id] = tstate;
3631 return (tstate);
3632 }
3633
3634 #ifdef AHD_TARGET_MODE
3635 /*
3636 * Free per target mode instance (ID we respond to as a target)
3637 * transfer negotiation data structures.
3638 */
3639 static void
ahd_free_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel,int force)3640 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3641 {
3642 struct ahd_tmode_tstate *tstate;
3643
3644 /*
3645 * Don't clean up our "master" tstate.
3646 * It has our default user settings.
3647 */
3648 if (scsi_id == ahd->our_id
3649 && force == FALSE)
3650 return;
3651
3652 tstate = ahd->enabled_targets[scsi_id];
3653 kfree(tstate);
3654 ahd->enabled_targets[scsi_id] = NULL;
3655 }
3656 #endif
3657
3658 /*
3659 * Called when we have an active connection to a target on the bus,
3660 * this function finds the nearest period to the input period limited
3661 * by the capabilities of the bus connectivity of and sync settings for
3662 * the target.
3663 */
3664 static void
ahd_devlimited_syncrate(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * period,u_int * ppr_options,role_t role)3665 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3666 struct ahd_initiator_tinfo *tinfo,
3667 u_int *period, u_int *ppr_options, role_t role)
3668 {
3669 struct ahd_transinfo *transinfo;
3670 u_int maxsync;
3671
3672 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3673 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3674 maxsync = AHD_SYNCRATE_PACED;
3675 } else {
3676 maxsync = AHD_SYNCRATE_ULTRA;
3677 /* Can't do DT related options on an SE bus */
3678 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3679 }
3680 /*
3681 * Never allow a value higher than our current goal
3682 * period otherwise we may allow a target initiated
3683 * negotiation to go above the limit as set by the
3684 * user. In the case of an initiator initiated
3685 * sync negotiation, we limit based on the user
3686 * setting. This allows the system to still accept
3687 * incoming negotiations even if target initiated
3688 * negotiation is not performed.
3689 */
3690 if (role == ROLE_TARGET)
3691 transinfo = &tinfo->user;
3692 else
3693 transinfo = &tinfo->goal;
3694 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3695 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3696 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3697 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3698 }
3699 if (transinfo->period == 0) {
3700 *period = 0;
3701 *ppr_options = 0;
3702 } else {
3703 *period = max(*period, (u_int)transinfo->period);
3704 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3705 }
3706 }
3707
3708 /*
3709 * Look up the valid period to SCSIRATE conversion in our table.
3710 * Return the period and offset that should be sent to the target
3711 * if this was the beginning of an SDTR.
3712 */
3713 void
ahd_find_syncrate(struct ahd_softc * ahd,u_int * period,u_int * ppr_options,u_int maxsync)3714 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3715 u_int *ppr_options, u_int maxsync)
3716 {
3717 if (*period < maxsync)
3718 *period = maxsync;
3719
3720 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3721 && *period > AHD_SYNCRATE_MIN_DT)
3722 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3723
3724 if (*period > AHD_SYNCRATE_MIN)
3725 *period = 0;
3726
3727 /* Honor PPR option conformance rules. */
3728 if (*period > AHD_SYNCRATE_PACED)
3729 *ppr_options &= ~MSG_EXT_PPR_RTI;
3730
3731 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3732 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3733
3734 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3735 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3736
3737 /* Skip all PACED only entries if IU is not available */
3738 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3739 && *period < AHD_SYNCRATE_DT)
3740 *period = AHD_SYNCRATE_DT;
3741
3742 /* Skip all DT only entries if DT is not available */
3743 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3744 && *period < AHD_SYNCRATE_ULTRA2)
3745 *period = AHD_SYNCRATE_ULTRA2;
3746 }
3747
3748 /*
3749 * Truncate the given synchronous offset to a value the
3750 * current adapter type and syncrate are capable of.
3751 */
3752 static void
ahd_validate_offset(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int period,u_int * offset,int wide,role_t role)3753 ahd_validate_offset(struct ahd_softc *ahd,
3754 struct ahd_initiator_tinfo *tinfo,
3755 u_int period, u_int *offset, int wide,
3756 role_t role)
3757 {
3758 u_int maxoffset;
3759
3760 /* Limit offset to what we can do */
3761 if (period == 0)
3762 maxoffset = 0;
3763 else if (period <= AHD_SYNCRATE_PACED) {
3764 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3765 maxoffset = MAX_OFFSET_PACED_BUG;
3766 else
3767 maxoffset = MAX_OFFSET_PACED;
3768 } else
3769 maxoffset = MAX_OFFSET_NON_PACED;
3770 *offset = min(*offset, maxoffset);
3771 if (tinfo != NULL) {
3772 if (role == ROLE_TARGET)
3773 *offset = min(*offset, (u_int)tinfo->user.offset);
3774 else
3775 *offset = min(*offset, (u_int)tinfo->goal.offset);
3776 }
3777 }
3778
3779 /*
3780 * Truncate the given transfer width parameter to a value the
3781 * current adapter type is capable of.
3782 */
3783 static void
ahd_validate_width(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * bus_width,role_t role)3784 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3785 u_int *bus_width, role_t role)
3786 {
3787 switch (*bus_width) {
3788 default:
3789 if (ahd->features & AHD_WIDE) {
3790 /* Respond Wide */
3791 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3792 break;
3793 }
3794 fallthrough;
3795 case MSG_EXT_WDTR_BUS_8_BIT:
3796 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3797 break;
3798 }
3799 if (tinfo != NULL) {
3800 if (role == ROLE_TARGET)
3801 *bus_width = min((u_int)tinfo->user.width, *bus_width);
3802 else
3803 *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3804 }
3805 }
3806
3807 /*
3808 * Update the bitmask of targets for which the controller should
3809 * negotiate with at the next convenient opportunity. This currently
3810 * means the next time we send the initial identify messages for
3811 * a new transaction.
3812 */
3813 int
ahd_update_neg_request(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_tmode_tstate * tstate,struct ahd_initiator_tinfo * tinfo,ahd_neg_type neg_type)3814 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3815 struct ahd_tmode_tstate *tstate,
3816 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3817 {
3818 u_int auto_negotiate_orig;
3819
3820 auto_negotiate_orig = tstate->auto_negotiate;
3821 if (neg_type == AHD_NEG_ALWAYS) {
3822 /*
3823 * Force our "current" settings to be
3824 * unknown so that unless a bus reset
3825 * occurs the need to renegotiate is
3826 * recorded persistently.
3827 */
3828 if ((ahd->features & AHD_WIDE) != 0)
3829 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3830 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3831 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3832 }
3833 if (tinfo->curr.period != tinfo->goal.period
3834 || tinfo->curr.width != tinfo->goal.width
3835 || tinfo->curr.offset != tinfo->goal.offset
3836 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3837 || (neg_type == AHD_NEG_IF_NON_ASYNC
3838 && (tinfo->goal.offset != 0
3839 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3840 || tinfo->goal.ppr_options != 0)))
3841 tstate->auto_negotiate |= devinfo->target_mask;
3842 else
3843 tstate->auto_negotiate &= ~devinfo->target_mask;
3844
3845 return (auto_negotiate_orig != tstate->auto_negotiate);
3846 }
3847
3848 /*
3849 * Update the user/goal/curr tables of synchronous negotiation
3850 * parameters as well as, in the case of a current or active update,
3851 * any data structures on the host controller. In the case of an
3852 * active update, the specified target is currently talking to us on
3853 * the bus, so the transfer parameter update must take effect
3854 * immediately.
3855 */
3856 void
ahd_set_syncrate(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int ppr_options,u_int type,int paused)3857 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3858 u_int period, u_int offset, u_int ppr_options,
3859 u_int type, int paused)
3860 {
3861 struct ahd_initiator_tinfo *tinfo;
3862 struct ahd_tmode_tstate *tstate;
3863 u_int old_period;
3864 u_int old_offset;
3865 u_int old_ppr;
3866 int active;
3867 int update_needed;
3868
3869 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3870 update_needed = 0;
3871
3872 if (period == 0 || offset == 0) {
3873 period = 0;
3874 offset = 0;
3875 }
3876
3877 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3878 devinfo->target, &tstate);
3879
3880 if ((type & AHD_TRANS_USER) != 0) {
3881 tinfo->user.period = period;
3882 tinfo->user.offset = offset;
3883 tinfo->user.ppr_options = ppr_options;
3884 }
3885
3886 if ((type & AHD_TRANS_GOAL) != 0) {
3887 tinfo->goal.period = period;
3888 tinfo->goal.offset = offset;
3889 tinfo->goal.ppr_options = ppr_options;
3890 }
3891
3892 old_period = tinfo->curr.period;
3893 old_offset = tinfo->curr.offset;
3894 old_ppr = tinfo->curr.ppr_options;
3895
3896 if ((type & AHD_TRANS_CUR) != 0
3897 && (old_period != period
3898 || old_offset != offset
3899 || old_ppr != ppr_options)) {
3900
3901 update_needed++;
3902
3903 tinfo->curr.period = period;
3904 tinfo->curr.offset = offset;
3905 tinfo->curr.ppr_options = ppr_options;
3906
3907 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3908 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3909 if (bootverbose) {
3910 if (offset != 0) {
3911 int options;
3912
3913 printk("%s: target %d synchronous with "
3914 "period = 0x%x, offset = 0x%x",
3915 ahd_name(ahd), devinfo->target,
3916 period, offset);
3917 options = 0;
3918 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3919 printk("(RDSTRM");
3920 options++;
3921 }
3922 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3923 printk("%s", options ? "|DT" : "(DT");
3924 options++;
3925 }
3926 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3927 printk("%s", options ? "|IU" : "(IU");
3928 options++;
3929 }
3930 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3931 printk("%s", options ? "|RTI" : "(RTI");
3932 options++;
3933 }
3934 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3935 printk("%s", options ? "|QAS" : "(QAS");
3936 options++;
3937 }
3938 if (options != 0)
3939 printk(")\n");
3940 else
3941 printk("\n");
3942 } else {
3943 printk("%s: target %d using "
3944 "asynchronous transfers%s\n",
3945 ahd_name(ahd), devinfo->target,
3946 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3947 ? "(QAS)" : "");
3948 }
3949 }
3950 }
3951 /*
3952 * Always refresh the neg-table to handle the case of the
3953 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3954 * We will always renegotiate in that case if this is a
3955 * packetized request. Also manage the busfree expected flag
3956 * from this common routine so that we catch changes due to
3957 * WDTR or SDTR messages.
3958 */
3959 if ((type & AHD_TRANS_CUR) != 0) {
3960 if (!paused)
3961 ahd_pause(ahd);
3962 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3963 if (!paused)
3964 ahd_unpause(ahd);
3965 if (ahd->msg_type != MSG_TYPE_NONE) {
3966 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3967 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3968 #ifdef AHD_DEBUG
3969 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3970 ahd_print_devinfo(ahd, devinfo);
3971 printk("Expecting IU Change busfree\n");
3972 }
3973 #endif
3974 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3975 | MSG_FLAG_IU_REQ_CHANGED;
3976 }
3977 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3978 #ifdef AHD_DEBUG
3979 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3980 printk("PPR with IU_REQ outstanding\n");
3981 #endif
3982 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3983 }
3984 }
3985 }
3986
3987 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3988 tinfo, AHD_NEG_TO_GOAL);
3989
3990 if (update_needed && active)
3991 ahd_update_pending_scbs(ahd);
3992 }
3993
3994 /*
3995 * Update the user/goal/curr tables of wide negotiation
3996 * parameters as well as, in the case of a current or active update,
3997 * any data structures on the host controller. In the case of an
3998 * active update, the specified target is currently talking to us on
3999 * the bus, so the transfer parameter update must take effect
4000 * immediately.
4001 */
4002 void
ahd_set_width(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int width,u_int type,int paused)4003 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4004 u_int width, u_int type, int paused)
4005 {
4006 struct ahd_initiator_tinfo *tinfo;
4007 struct ahd_tmode_tstate *tstate;
4008 u_int oldwidth;
4009 int active;
4010 int update_needed;
4011
4012 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4013 update_needed = 0;
4014 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4015 devinfo->target, &tstate);
4016
4017 if ((type & AHD_TRANS_USER) != 0)
4018 tinfo->user.width = width;
4019
4020 if ((type & AHD_TRANS_GOAL) != 0)
4021 tinfo->goal.width = width;
4022
4023 oldwidth = tinfo->curr.width;
4024 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4025
4026 update_needed++;
4027
4028 tinfo->curr.width = width;
4029 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4030 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4031 if (bootverbose) {
4032 printk("%s: target %d using %dbit transfers\n",
4033 ahd_name(ahd), devinfo->target,
4034 8 * (0x01 << width));
4035 }
4036 }
4037
4038 if ((type & AHD_TRANS_CUR) != 0) {
4039 if (!paused)
4040 ahd_pause(ahd);
4041 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4042 if (!paused)
4043 ahd_unpause(ahd);
4044 }
4045
4046 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4047 tinfo, AHD_NEG_TO_GOAL);
4048 if (update_needed && active)
4049 ahd_update_pending_scbs(ahd);
4050
4051 }
4052
4053 /*
4054 * Update the current state of tagged queuing for a given target.
4055 */
4056 static void
ahd_set_tags(struct ahd_softc * ahd,struct scsi_cmnd * cmd,struct ahd_devinfo * devinfo,ahd_queue_alg alg)4057 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4058 struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4059 {
4060 struct scsi_device *sdev = cmd->device;
4061
4062 ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4063 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4064 devinfo->lun, AC_TRANSFER_NEG);
4065 }
4066
4067 static void
ahd_update_neg_table(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_transinfo * tinfo)4068 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4069 struct ahd_transinfo *tinfo)
4070 {
4071 ahd_mode_state saved_modes;
4072 u_int period;
4073 u_int ppr_opts;
4074 u_int con_opts;
4075 u_int offset;
4076 u_int saved_negoaddr;
4077 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4078
4079 saved_modes = ahd_save_modes(ahd);
4080 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4081
4082 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4083 ahd_outb(ahd, NEGOADDR, devinfo->target);
4084 period = tinfo->period;
4085 offset = tinfo->offset;
4086 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4087 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4088 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4089 con_opts = 0;
4090 if (period == 0)
4091 period = AHD_SYNCRATE_ASYNC;
4092 if (period == AHD_SYNCRATE_160) {
4093
4094 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4095 /*
4096 * When the SPI4 spec was finalized, PACE transfers
4097 * was not made a configurable option in the PPR
4098 * message. Instead it is assumed to be enabled for
4099 * any syncrate faster than 80MHz. Nevertheless,
4100 * Harpoon2A4 allows this to be configurable.
4101 *
4102 * Harpoon2A4 also assumes at most 2 data bytes per
4103 * negotiated REQ/ACK offset. Paced transfers take
4104 * 4, so we must adjust our offset.
4105 */
4106 ppr_opts |= PPROPT_PACE;
4107 offset *= 2;
4108
4109 /*
4110 * Harpoon2A assumed that there would be a
4111 * fallback rate between 160MHz and 80MHz,
4112 * so 7 is used as the period factor rather
4113 * than 8 for 160MHz.
4114 */
4115 period = AHD_SYNCRATE_REVA_160;
4116 }
4117 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4118 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4119 ~AHD_PRECOMP_MASK;
4120 } else {
4121 /*
4122 * Precomp should be disabled for non-paced transfers.
4123 */
4124 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4125
4126 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4127 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4128 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4129 /*
4130 * Slow down our CRC interval to be
4131 * compatible with non-packetized
4132 * U160 devices that can't handle a
4133 * CRC at full speed.
4134 */
4135 con_opts |= ENSLOWCRC;
4136 }
4137
4138 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4139 /*
4140 * On H2A4, revert to a slower slewrate
4141 * on non-paced transfers.
4142 */
4143 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4144 ~AHD_SLEWRATE_MASK;
4145 }
4146 }
4147
4148 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4149 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4150 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4151 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4152
4153 ahd_outb(ahd, NEGPERIOD, period);
4154 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4155 ahd_outb(ahd, NEGOFFSET, offset);
4156
4157 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4158 con_opts |= WIDEXFER;
4159
4160 /*
4161 * Slow down our CRC interval to be
4162 * compatible with packetized U320 devices
4163 * that can't handle a CRC at full speed
4164 */
4165 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4166 con_opts |= ENSLOWCRC;
4167 }
4168
4169 /*
4170 * During packetized transfers, the target will
4171 * give us the opportunity to send command packets
4172 * without us asserting attention.
4173 */
4174 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4175 con_opts |= ENAUTOATNO;
4176 ahd_outb(ahd, NEGCONOPTS, con_opts);
4177 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4178 ahd_restore_modes(ahd, saved_modes);
4179 }
4180
4181 /*
4182 * When the transfer settings for a connection change, setup for
4183 * negotiation in pending SCBs to effect the change as quickly as
4184 * possible. We also cancel any negotiations that are scheduled
4185 * for inflight SCBs that have not been started yet.
4186 */
4187 static void
ahd_update_pending_scbs(struct ahd_softc * ahd)4188 ahd_update_pending_scbs(struct ahd_softc *ahd)
4189 {
4190 struct scb *pending_scb;
4191 int pending_scb_count;
4192 int paused;
4193 u_int saved_scbptr;
4194 ahd_mode_state saved_modes;
4195
4196 /*
4197 * Traverse the pending SCB list and ensure that all of the
4198 * SCBs there have the proper settings. We can only safely
4199 * clear the negotiation required flag (setting requires the
4200 * execution queue to be modified) and this is only possible
4201 * if we are not already attempting to select out for this
4202 * SCB. For this reason, all callers only call this routine
4203 * if we are changing the negotiation settings for the currently
4204 * active transaction on the bus.
4205 */
4206 pending_scb_count = 0;
4207 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4208 struct ahd_devinfo devinfo;
4209 struct ahd_tmode_tstate *tstate;
4210
4211 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4212 ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
4213 devinfo.target, &tstate);
4214 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4215 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4216 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4217 pending_scb->hscb->control &= ~MK_MESSAGE;
4218 }
4219 ahd_sync_scb(ahd, pending_scb,
4220 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4221 pending_scb_count++;
4222 }
4223
4224 if (pending_scb_count == 0)
4225 return;
4226
4227 if (ahd_is_paused(ahd)) {
4228 paused = 1;
4229 } else {
4230 paused = 0;
4231 ahd_pause(ahd);
4232 }
4233
4234 /*
4235 * Force the sequencer to reinitialize the selection for
4236 * the command at the head of the execution queue if it
4237 * has already been setup. The negotiation changes may
4238 * effect whether we select-out with ATN. It is only
4239 * safe to clear ENSELO when the bus is not free and no
4240 * selection is in progres or completed.
4241 */
4242 saved_modes = ahd_save_modes(ahd);
4243 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4244 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4245 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4246 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4247 saved_scbptr = ahd_get_scbptr(ahd);
4248 /* Ensure that the hscbs down on the card match the new information */
4249 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4250 u_int scb_tag;
4251 u_int control;
4252
4253 scb_tag = SCB_GET_TAG(pending_scb);
4254 ahd_set_scbptr(ahd, scb_tag);
4255 control = ahd_inb_scbram(ahd, SCB_CONTROL);
4256 control &= ~MK_MESSAGE;
4257 control |= pending_scb->hscb->control & MK_MESSAGE;
4258 ahd_outb(ahd, SCB_CONTROL, control);
4259 }
4260 ahd_set_scbptr(ahd, saved_scbptr);
4261 ahd_restore_modes(ahd, saved_modes);
4262
4263 if (paused == 0)
4264 ahd_unpause(ahd);
4265 }
4266
4267 /**************************** Pathing Information *****************************/
4268 static void
ahd_fetch_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4269 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4270 {
4271 ahd_mode_state saved_modes;
4272 u_int saved_scsiid;
4273 role_t role;
4274 int our_id;
4275
4276 saved_modes = ahd_save_modes(ahd);
4277 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4278
4279 if (ahd_inb(ahd, SSTAT0) & TARGET)
4280 role = ROLE_TARGET;
4281 else
4282 role = ROLE_INITIATOR;
4283
4284 if (role == ROLE_TARGET
4285 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4286 /* We were selected, so pull our id from TARGIDIN */
4287 our_id = ahd_inb(ahd, TARGIDIN) & OID;
4288 } else if (role == ROLE_TARGET)
4289 our_id = ahd_inb(ahd, TOWNID);
4290 else
4291 our_id = ahd_inb(ahd, IOWNID);
4292
4293 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4294 ahd_compile_devinfo(devinfo,
4295 our_id,
4296 SCSIID_TARGET(ahd, saved_scsiid),
4297 ahd_inb(ahd, SAVED_LUN),
4298 SCSIID_CHANNEL(ahd, saved_scsiid),
4299 role);
4300 ahd_restore_modes(ahd, saved_modes);
4301 }
4302
4303 void
ahd_print_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4304 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4305 {
4306 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4307 devinfo->target, devinfo->lun);
4308 }
4309
4310 static const struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)4311 ahd_lookup_phase_entry(int phase)
4312 {
4313 const struct ahd_phase_table_entry *entry;
4314 const struct ahd_phase_table_entry *last_entry;
4315
4316 /*
4317 * num_phases doesn't include the default entry which
4318 * will be returned if the phase doesn't match.
4319 */
4320 last_entry = &ahd_phase_table[num_phases];
4321 for (entry = ahd_phase_table; entry < last_entry; entry++) {
4322 if (phase == entry->phase)
4323 break;
4324 }
4325 return (entry);
4326 }
4327
4328 void
ahd_compile_devinfo(struct ahd_devinfo * devinfo,u_int our_id,u_int target,u_int lun,char channel,role_t role)4329 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4330 u_int lun, char channel, role_t role)
4331 {
4332 devinfo->our_scsiid = our_id;
4333 devinfo->target = target;
4334 devinfo->lun = lun;
4335 devinfo->target_offset = target;
4336 devinfo->channel = channel;
4337 devinfo->role = role;
4338 if (channel == 'B')
4339 devinfo->target_offset += 8;
4340 devinfo->target_mask = (0x01 << devinfo->target_offset);
4341 }
4342
4343 static void
ahd_scb_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4344 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4345 struct scb *scb)
4346 {
4347 role_t role;
4348 int our_id;
4349
4350 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4351 role = ROLE_INITIATOR;
4352 if ((scb->hscb->control & TARGET_SCB) != 0)
4353 role = ROLE_TARGET;
4354 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4355 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4356 }
4357
4358
4359 /************************ Message Phase Processing ****************************/
4360 /*
4361 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4362 * or enters the initial message out phase, we are interrupted. Fill our
4363 * outgoing message buffer with the appropriate message and beging handing
4364 * the message phase(s) manually.
4365 */
4366 static void
ahd_setup_initiator_msgout(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4367 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4368 struct scb *scb)
4369 {
4370 /*
4371 * To facilitate adding multiple messages together,
4372 * each routine should increment the index and len
4373 * variables instead of setting them explicitly.
4374 */
4375 ahd->msgout_index = 0;
4376 ahd->msgout_len = 0;
4377
4378 if (ahd_currently_packetized(ahd))
4379 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4380
4381 if (ahd->send_msg_perror
4382 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4383 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4384 ahd->msgout_len++;
4385 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4386 #ifdef AHD_DEBUG
4387 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4388 printk("Setting up for Parity Error delivery\n");
4389 #endif
4390 return;
4391 } else if (scb == NULL) {
4392 printk("%s: WARNING. No pending message for "
4393 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4394 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4395 ahd->msgout_len++;
4396 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4397 return;
4398 }
4399
4400 if ((scb->flags & SCB_DEVICE_RESET) == 0
4401 && (scb->flags & SCB_PACKETIZED) == 0
4402 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4403 u_int identify_msg;
4404
4405 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4406 if ((scb->hscb->control & DISCENB) != 0)
4407 identify_msg |= MSG_IDENTIFY_DISCFLAG;
4408 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4409 ahd->msgout_len++;
4410
4411 if ((scb->hscb->control & TAG_ENB) != 0) {
4412 ahd->msgout_buf[ahd->msgout_index++] =
4413 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4414 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4415 ahd->msgout_len += 2;
4416 }
4417 }
4418
4419 if (scb->flags & SCB_DEVICE_RESET) {
4420 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4421 ahd->msgout_len++;
4422 ahd_print_path(ahd, scb);
4423 printk("Bus Device Reset Message Sent\n");
4424 /*
4425 * Clear our selection hardware in advance of
4426 * the busfree. We may have an entry in the waiting
4427 * Q for this target, and we don't want to go about
4428 * selecting while we handle the busfree and blow it
4429 * away.
4430 */
4431 ahd_outb(ahd, SCSISEQ0, 0);
4432 } else if ((scb->flags & SCB_ABORT) != 0) {
4433
4434 if ((scb->hscb->control & TAG_ENB) != 0) {
4435 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4436 } else {
4437 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4438 }
4439 ahd->msgout_len++;
4440 ahd_print_path(ahd, scb);
4441 printk("Abort%s Message Sent\n",
4442 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4443 /*
4444 * Clear our selection hardware in advance of
4445 * the busfree. We may have an entry in the waiting
4446 * Q for this target, and we don't want to go about
4447 * selecting while we handle the busfree and blow it
4448 * away.
4449 */
4450 ahd_outb(ahd, SCSISEQ0, 0);
4451 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4452 ahd_build_transfer_msg(ahd, devinfo);
4453 /*
4454 * Clear our selection hardware in advance of potential
4455 * PPR IU status change busfree. We may have an entry in
4456 * the waiting Q for this target, and we don't want to go
4457 * about selecting while we handle the busfree and blow
4458 * it away.
4459 */
4460 ahd_outb(ahd, SCSISEQ0, 0);
4461 } else {
4462 printk("ahd_intr: AWAITING_MSG for an SCB that "
4463 "does not have a waiting message\n");
4464 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4465 devinfo->target_mask);
4466 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4467 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4468 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4469 scb->flags);
4470 }
4471
4472 /*
4473 * Clear the MK_MESSAGE flag from the SCB so we aren't
4474 * asked to send this message again.
4475 */
4476 ahd_outb(ahd, SCB_CONTROL,
4477 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4478 scb->hscb->control &= ~MK_MESSAGE;
4479 ahd->msgout_index = 0;
4480 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4481 }
4482
4483 /*
4484 * Build an appropriate transfer negotiation message for the
4485 * currently active target.
4486 */
4487 static void
ahd_build_transfer_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4488 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4489 {
4490 /*
4491 * We need to initiate transfer negotiations.
4492 * If our current and goal settings are identical,
4493 * we want to renegotiate due to a check condition.
4494 */
4495 struct ahd_initiator_tinfo *tinfo;
4496 struct ahd_tmode_tstate *tstate;
4497 int dowide;
4498 int dosync;
4499 int doppr;
4500 u_int period;
4501 u_int ppr_options;
4502 u_int offset;
4503
4504 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4505 devinfo->target, &tstate);
4506 /*
4507 * Filter our period based on the current connection.
4508 * If we can't perform DT transfers on this segment (not in LVD
4509 * mode for instance), then our decision to issue a PPR message
4510 * may change.
4511 */
4512 period = tinfo->goal.period;
4513 offset = tinfo->goal.offset;
4514 ppr_options = tinfo->goal.ppr_options;
4515 /* Target initiated PPR is not allowed in the SCSI spec */
4516 if (devinfo->role == ROLE_TARGET)
4517 ppr_options = 0;
4518 ahd_devlimited_syncrate(ahd, tinfo, &period,
4519 &ppr_options, devinfo->role);
4520 dowide = tinfo->curr.width != tinfo->goal.width;
4521 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4522 /*
4523 * Only use PPR if we have options that need it, even if the device
4524 * claims to support it. There might be an expander in the way
4525 * that doesn't.
4526 */
4527 doppr = ppr_options != 0;
4528
4529 if (!dowide && !dosync && !doppr) {
4530 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4531 dosync = tinfo->goal.offset != 0;
4532 }
4533
4534 if (!dowide && !dosync && !doppr) {
4535 /*
4536 * Force async with a WDTR message if we have a wide bus,
4537 * or just issue an SDTR with a 0 offset.
4538 */
4539 if ((ahd->features & AHD_WIDE) != 0)
4540 dowide = 1;
4541 else
4542 dosync = 1;
4543
4544 if (bootverbose) {
4545 ahd_print_devinfo(ahd, devinfo);
4546 printk("Ensuring async\n");
4547 }
4548 }
4549 /* Target initiated PPR is not allowed in the SCSI spec */
4550 if (devinfo->role == ROLE_TARGET)
4551 doppr = 0;
4552
4553 /*
4554 * Both the PPR message and SDTR message require the
4555 * goal syncrate to be limited to what the target device
4556 * is capable of handling (based on whether an LVD->SE
4557 * expander is on the bus), so combine these two cases.
4558 * Regardless, guarantee that if we are using WDTR and SDTR
4559 * messages that WDTR comes first.
4560 */
4561 if (doppr || (dosync && !dowide)) {
4562
4563 offset = tinfo->goal.offset;
4564 ahd_validate_offset(ahd, tinfo, period, &offset,
4565 doppr ? tinfo->goal.width
4566 : tinfo->curr.width,
4567 devinfo->role);
4568 if (doppr) {
4569 ahd_construct_ppr(ahd, devinfo, period, offset,
4570 tinfo->goal.width, ppr_options);
4571 } else {
4572 ahd_construct_sdtr(ahd, devinfo, period, offset);
4573 }
4574 } else {
4575 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4576 }
4577 }
4578
4579 /*
4580 * Build a synchronous negotiation message in our message
4581 * buffer based on the input parameters.
4582 */
4583 static void
ahd_construct_sdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset)4584 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4585 u_int period, u_int offset)
4586 {
4587 if (offset == 0)
4588 period = AHD_ASYNC_XFER_PERIOD;
4589 ahd->msgout_index += spi_populate_sync_msg(
4590 ahd->msgout_buf + ahd->msgout_index, period, offset);
4591 ahd->msgout_len += 5;
4592 if (bootverbose) {
4593 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4594 ahd_name(ahd), devinfo->channel, devinfo->target,
4595 devinfo->lun, period, offset);
4596 }
4597 }
4598
4599 /*
4600 * Build a wide negotiateion message in our message
4601 * buffer based on the input parameters.
4602 */
4603 static void
ahd_construct_wdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int bus_width)4604 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4605 u_int bus_width)
4606 {
4607 ahd->msgout_index += spi_populate_width_msg(
4608 ahd->msgout_buf + ahd->msgout_index, bus_width);
4609 ahd->msgout_len += 4;
4610 if (bootverbose) {
4611 printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4612 ahd_name(ahd), devinfo->channel, devinfo->target,
4613 devinfo->lun, bus_width);
4614 }
4615 }
4616
4617 /*
4618 * Build a parallel protocol request message in our message
4619 * buffer based on the input parameters.
4620 */
4621 static void
ahd_construct_ppr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int bus_width,u_int ppr_options)4622 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4623 u_int period, u_int offset, u_int bus_width,
4624 u_int ppr_options)
4625 {
4626 /*
4627 * Always request precompensation from
4628 * the other target if we are running
4629 * at paced syncrates.
4630 */
4631 if (period <= AHD_SYNCRATE_PACED)
4632 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4633 if (offset == 0)
4634 period = AHD_ASYNC_XFER_PERIOD;
4635 ahd->msgout_index += spi_populate_ppr_msg(
4636 ahd->msgout_buf + ahd->msgout_index, period, offset,
4637 bus_width, ppr_options);
4638 ahd->msgout_len += 8;
4639 if (bootverbose) {
4640 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4641 "offset %x, ppr_options %x\n", ahd_name(ahd),
4642 devinfo->channel, devinfo->target, devinfo->lun,
4643 bus_width, period, offset, ppr_options);
4644 }
4645 }
4646
4647 /*
4648 * Clear any active message state.
4649 */
4650 static void
ahd_clear_msg_state(struct ahd_softc * ahd)4651 ahd_clear_msg_state(struct ahd_softc *ahd)
4652 {
4653 ahd_mode_state saved_modes;
4654
4655 saved_modes = ahd_save_modes(ahd);
4656 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4657 ahd->send_msg_perror = 0;
4658 ahd->msg_flags = MSG_FLAG_NONE;
4659 ahd->msgout_len = 0;
4660 ahd->msgin_index = 0;
4661 ahd->msg_type = MSG_TYPE_NONE;
4662 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4663 /*
4664 * The target didn't care to respond to our
4665 * message request, so clear ATN.
4666 */
4667 ahd_outb(ahd, CLRSINT1, CLRATNO);
4668 }
4669 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4670 ahd_outb(ahd, SEQ_FLAGS2,
4671 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4672 ahd_restore_modes(ahd, saved_modes);
4673 }
4674
4675 /*
4676 * Manual message loop handler.
4677 */
4678 static void
ahd_handle_message_phase(struct ahd_softc * ahd)4679 ahd_handle_message_phase(struct ahd_softc *ahd)
4680 {
4681 struct ahd_devinfo devinfo;
4682 u_int bus_phase;
4683 int end_session;
4684
4685 ahd_fetch_devinfo(ahd, &devinfo);
4686 end_session = FALSE;
4687 bus_phase = ahd_inb(ahd, LASTPHASE);
4688
4689 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4690 printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4691 ahd_outb(ahd, LQCTL2, LQIRETRY);
4692 }
4693 reswitch:
4694 switch (ahd->msg_type) {
4695 case MSG_TYPE_INITIATOR_MSGOUT:
4696 {
4697 int lastbyte;
4698 int phasemis;
4699 int msgdone;
4700
4701 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4702 panic("HOST_MSG_LOOP interrupt with no active message");
4703
4704 #ifdef AHD_DEBUG
4705 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4706 ahd_print_devinfo(ahd, &devinfo);
4707 printk("INITIATOR_MSG_OUT");
4708 }
4709 #endif
4710 phasemis = bus_phase != P_MESGOUT;
4711 if (phasemis) {
4712 #ifdef AHD_DEBUG
4713 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4714 printk(" PHASEMIS %s\n",
4715 ahd_lookup_phase_entry(bus_phase)
4716 ->phasemsg);
4717 }
4718 #endif
4719 if (bus_phase == P_MESGIN) {
4720 /*
4721 * Change gears and see if
4722 * this messages is of interest to
4723 * us or should be passed back to
4724 * the sequencer.
4725 */
4726 ahd_outb(ahd, CLRSINT1, CLRATNO);
4727 ahd->send_msg_perror = 0;
4728 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4729 ahd->msgin_index = 0;
4730 goto reswitch;
4731 }
4732 end_session = TRUE;
4733 break;
4734 }
4735
4736 if (ahd->send_msg_perror) {
4737 ahd_outb(ahd, CLRSINT1, CLRATNO);
4738 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4739 #ifdef AHD_DEBUG
4740 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4741 printk(" byte 0x%x\n", ahd->send_msg_perror);
4742 #endif
4743 /*
4744 * If we are notifying the target of a CRC error
4745 * during packetized operations, the target is
4746 * within its rights to acknowledge our message
4747 * with a busfree.
4748 */
4749 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4750 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4751 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4752
4753 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4754 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4755 break;
4756 }
4757
4758 msgdone = ahd->msgout_index == ahd->msgout_len;
4759 if (msgdone) {
4760 /*
4761 * The target has requested a retry.
4762 * Re-assert ATN, reset our message index to
4763 * 0, and try again.
4764 */
4765 ahd->msgout_index = 0;
4766 ahd_assert_atn(ahd);
4767 }
4768
4769 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4770 if (lastbyte) {
4771 /* Last byte is signified by dropping ATN */
4772 ahd_outb(ahd, CLRSINT1, CLRATNO);
4773 }
4774
4775 /*
4776 * Clear our interrupt status and present
4777 * the next byte on the bus.
4778 */
4779 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4780 #ifdef AHD_DEBUG
4781 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4782 printk(" byte 0x%x\n",
4783 ahd->msgout_buf[ahd->msgout_index]);
4784 #endif
4785 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4786 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4787 break;
4788 }
4789 case MSG_TYPE_INITIATOR_MSGIN:
4790 {
4791 int phasemis;
4792 int message_done;
4793
4794 #ifdef AHD_DEBUG
4795 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4796 ahd_print_devinfo(ahd, &devinfo);
4797 printk("INITIATOR_MSG_IN");
4798 }
4799 #endif
4800 phasemis = bus_phase != P_MESGIN;
4801 if (phasemis) {
4802 #ifdef AHD_DEBUG
4803 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4804 printk(" PHASEMIS %s\n",
4805 ahd_lookup_phase_entry(bus_phase)
4806 ->phasemsg);
4807 }
4808 #endif
4809 ahd->msgin_index = 0;
4810 if (bus_phase == P_MESGOUT
4811 && (ahd->send_msg_perror != 0
4812 || (ahd->msgout_len != 0
4813 && ahd->msgout_index == 0))) {
4814 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4815 goto reswitch;
4816 }
4817 end_session = TRUE;
4818 break;
4819 }
4820
4821 /* Pull the byte in without acking it */
4822 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4823 #ifdef AHD_DEBUG
4824 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4825 printk(" byte 0x%x\n",
4826 ahd->msgin_buf[ahd->msgin_index]);
4827 #endif
4828
4829 message_done = ahd_parse_msg(ahd, &devinfo);
4830
4831 if (message_done) {
4832 /*
4833 * Clear our incoming message buffer in case there
4834 * is another message following this one.
4835 */
4836 ahd->msgin_index = 0;
4837
4838 /*
4839 * If this message illicited a response,
4840 * assert ATN so the target takes us to the
4841 * message out phase.
4842 */
4843 if (ahd->msgout_len != 0) {
4844 #ifdef AHD_DEBUG
4845 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4846 ahd_print_devinfo(ahd, &devinfo);
4847 printk("Asserting ATN for response\n");
4848 }
4849 #endif
4850 ahd_assert_atn(ahd);
4851 }
4852 } else
4853 ahd->msgin_index++;
4854
4855 if (message_done == MSGLOOP_TERMINATED) {
4856 end_session = TRUE;
4857 } else {
4858 /* Ack the byte */
4859 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4860 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4861 }
4862 break;
4863 }
4864 case MSG_TYPE_TARGET_MSGIN:
4865 {
4866 int msgdone;
4867 int msgout_request;
4868
4869 /*
4870 * By default, the message loop will continue.
4871 */
4872 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4873
4874 if (ahd->msgout_len == 0)
4875 panic("Target MSGIN with no active message");
4876
4877 /*
4878 * If we interrupted a mesgout session, the initiator
4879 * will not know this until our first REQ. So, we
4880 * only honor mesgout requests after we've sent our
4881 * first byte.
4882 */
4883 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4884 && ahd->msgout_index > 0)
4885 msgout_request = TRUE;
4886 else
4887 msgout_request = FALSE;
4888
4889 if (msgout_request) {
4890
4891 /*
4892 * Change gears and see if
4893 * this messages is of interest to
4894 * us or should be passed back to
4895 * the sequencer.
4896 */
4897 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4898 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4899 ahd->msgin_index = 0;
4900 /* Dummy read to REQ for first byte */
4901 ahd_inb(ahd, SCSIDAT);
4902 ahd_outb(ahd, SXFRCTL0,
4903 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4904 break;
4905 }
4906
4907 msgdone = ahd->msgout_index == ahd->msgout_len;
4908 if (msgdone) {
4909 ahd_outb(ahd, SXFRCTL0,
4910 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4911 end_session = TRUE;
4912 break;
4913 }
4914
4915 /*
4916 * Present the next byte on the bus.
4917 */
4918 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4919 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4920 break;
4921 }
4922 case MSG_TYPE_TARGET_MSGOUT:
4923 {
4924 int lastbyte;
4925 int msgdone;
4926
4927 /*
4928 * By default, the message loop will continue.
4929 */
4930 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4931
4932 /*
4933 * The initiator signals that this is
4934 * the last byte by dropping ATN.
4935 */
4936 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4937
4938 /*
4939 * Read the latched byte, but turn off SPIOEN first
4940 * so that we don't inadvertently cause a REQ for the
4941 * next byte.
4942 */
4943 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4944 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4945 msgdone = ahd_parse_msg(ahd, &devinfo);
4946 if (msgdone == MSGLOOP_TERMINATED) {
4947 /*
4948 * The message is *really* done in that it caused
4949 * us to go to bus free. The sequencer has already
4950 * been reset at this point, so pull the ejection
4951 * handle.
4952 */
4953 return;
4954 }
4955
4956 ahd->msgin_index++;
4957
4958 /*
4959 * XXX Read spec about initiator dropping ATN too soon
4960 * and use msgdone to detect it.
4961 */
4962 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4963 ahd->msgin_index = 0;
4964
4965 /*
4966 * If this message illicited a response, transition
4967 * to the Message in phase and send it.
4968 */
4969 if (ahd->msgout_len != 0) {
4970 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4971 ahd_outb(ahd, SXFRCTL0,
4972 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4973 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4974 ahd->msgin_index = 0;
4975 break;
4976 }
4977 }
4978
4979 if (lastbyte)
4980 end_session = TRUE;
4981 else {
4982 /* Ask for the next byte. */
4983 ahd_outb(ahd, SXFRCTL0,
4984 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4985 }
4986
4987 break;
4988 }
4989 default:
4990 panic("Unknown REQINIT message type");
4991 }
4992
4993 if (end_session) {
4994 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4995 printk("%s: Returning to Idle Loop\n",
4996 ahd_name(ahd));
4997 ahd_clear_msg_state(ahd);
4998
4999 /*
5000 * Perform the equivalent of a clear_target_state.
5001 */
5002 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5003 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5004 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5005 } else {
5006 ahd_clear_msg_state(ahd);
5007 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5008 }
5009 }
5010 }
5011
5012 /*
5013 * See if we sent a particular extended message to the target.
5014 * If "full" is true, return true only if the target saw the full
5015 * message. If "full" is false, return true if the target saw at
5016 * least the first byte of the message.
5017 */
5018 static int
ahd_sent_msg(struct ahd_softc * ahd,ahd_msgtype type,u_int msgval,int full)5019 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5020 {
5021 int found;
5022 u_int index;
5023
5024 found = FALSE;
5025 index = 0;
5026
5027 while (index < ahd->msgout_len) {
5028 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5029 u_int end_index;
5030
5031 end_index = index + 1 + ahd->msgout_buf[index + 1];
5032 if (ahd->msgout_buf[index+2] == msgval
5033 && type == AHDMSG_EXT) {
5034
5035 if (full) {
5036 if (ahd->msgout_index > end_index)
5037 found = TRUE;
5038 } else if (ahd->msgout_index > index)
5039 found = TRUE;
5040 }
5041 index = end_index;
5042 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5043 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5044
5045 /* Skip tag type and tag id or residue param*/
5046 index += 2;
5047 } else {
5048 /* Single byte message */
5049 if (type == AHDMSG_1B
5050 && ahd->msgout_index > index
5051 && (ahd->msgout_buf[index] == msgval
5052 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5053 && msgval == MSG_IDENTIFYFLAG)))
5054 found = TRUE;
5055 index++;
5056 }
5057
5058 if (found)
5059 break;
5060 }
5061 return (found);
5062 }
5063
5064 /*
5065 * Wait for a complete incoming message, parse it, and respond accordingly.
5066 */
5067 static int
ahd_parse_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5068 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5069 {
5070 struct ahd_initiator_tinfo *tinfo;
5071 struct ahd_tmode_tstate *tstate;
5072 int reject;
5073 int done;
5074 int response;
5075
5076 done = MSGLOOP_IN_PROG;
5077 response = FALSE;
5078 reject = FALSE;
5079 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5080 devinfo->target, &tstate);
5081
5082 /*
5083 * Parse as much of the message as is available,
5084 * rejecting it if we don't support it. When
5085 * the entire message is available and has been
5086 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5087 * that we have parsed an entire message.
5088 *
5089 * In the case of extended messages, we accept the length
5090 * byte outright and perform more checking once we know the
5091 * extended message type.
5092 */
5093 switch (ahd->msgin_buf[0]) {
5094 case MSG_DISCONNECT:
5095 case MSG_SAVEDATAPOINTER:
5096 case MSG_CMDCOMPLETE:
5097 case MSG_RESTOREPOINTERS:
5098 case MSG_IGN_WIDE_RESIDUE:
5099 /*
5100 * End our message loop as these are messages
5101 * the sequencer handles on its own.
5102 */
5103 done = MSGLOOP_TERMINATED;
5104 break;
5105 case MSG_MESSAGE_REJECT:
5106 response = ahd_handle_msg_reject(ahd, devinfo);
5107 fallthrough;
5108 case MSG_NOOP:
5109 done = MSGLOOP_MSGCOMPLETE;
5110 break;
5111 case MSG_EXTENDED:
5112 {
5113 /* Wait for enough of the message to begin validation */
5114 if (ahd->msgin_index < 2)
5115 break;
5116 switch (ahd->msgin_buf[2]) {
5117 case MSG_EXT_SDTR:
5118 {
5119 u_int period;
5120 u_int ppr_options;
5121 u_int offset;
5122 u_int saved_offset;
5123
5124 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5125 reject = TRUE;
5126 break;
5127 }
5128
5129 /*
5130 * Wait until we have both args before validating
5131 * and acting on this message.
5132 *
5133 * Add one to MSG_EXT_SDTR_LEN to account for
5134 * the extended message preamble.
5135 */
5136 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5137 break;
5138
5139 period = ahd->msgin_buf[3];
5140 ppr_options = 0;
5141 saved_offset = offset = ahd->msgin_buf[4];
5142 ahd_devlimited_syncrate(ahd, tinfo, &period,
5143 &ppr_options, devinfo->role);
5144 ahd_validate_offset(ahd, tinfo, period, &offset,
5145 tinfo->curr.width, devinfo->role);
5146 if (bootverbose) {
5147 printk("(%s:%c:%d:%d): Received "
5148 "SDTR period %x, offset %x\n\t"
5149 "Filtered to period %x, offset %x\n",
5150 ahd_name(ahd), devinfo->channel,
5151 devinfo->target, devinfo->lun,
5152 ahd->msgin_buf[3], saved_offset,
5153 period, offset);
5154 }
5155 ahd_set_syncrate(ahd, devinfo, period,
5156 offset, ppr_options,
5157 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5158 /*paused*/TRUE);
5159
5160 /*
5161 * See if we initiated Sync Negotiation
5162 * and didn't have to fall down to async
5163 * transfers.
5164 */
5165 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5166 /* We started it */
5167 if (saved_offset != offset) {
5168 /* Went too low - force async */
5169 reject = TRUE;
5170 }
5171 } else {
5172 /*
5173 * Send our own SDTR in reply
5174 */
5175 if (bootverbose
5176 && devinfo->role == ROLE_INITIATOR) {
5177 printk("(%s:%c:%d:%d): Target "
5178 "Initiated SDTR\n",
5179 ahd_name(ahd), devinfo->channel,
5180 devinfo->target, devinfo->lun);
5181 }
5182 ahd->msgout_index = 0;
5183 ahd->msgout_len = 0;
5184 ahd_construct_sdtr(ahd, devinfo,
5185 period, offset);
5186 ahd->msgout_index = 0;
5187 response = TRUE;
5188 }
5189 done = MSGLOOP_MSGCOMPLETE;
5190 break;
5191 }
5192 case MSG_EXT_WDTR:
5193 {
5194 u_int bus_width;
5195 u_int saved_width;
5196 u_int sending_reply;
5197
5198 sending_reply = FALSE;
5199 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5200 reject = TRUE;
5201 break;
5202 }
5203
5204 /*
5205 * Wait until we have our arg before validating
5206 * and acting on this message.
5207 *
5208 * Add one to MSG_EXT_WDTR_LEN to account for
5209 * the extended message preamble.
5210 */
5211 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5212 break;
5213
5214 bus_width = ahd->msgin_buf[3];
5215 saved_width = bus_width;
5216 ahd_validate_width(ahd, tinfo, &bus_width,
5217 devinfo->role);
5218 if (bootverbose) {
5219 printk("(%s:%c:%d:%d): Received WDTR "
5220 "%x filtered to %x\n",
5221 ahd_name(ahd), devinfo->channel,
5222 devinfo->target, devinfo->lun,
5223 saved_width, bus_width);
5224 }
5225
5226 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5227 /*
5228 * Don't send a WDTR back to the
5229 * target, since we asked first.
5230 * If the width went higher than our
5231 * request, reject it.
5232 */
5233 if (saved_width > bus_width) {
5234 reject = TRUE;
5235 printk("(%s:%c:%d:%d): requested %dBit "
5236 "transfers. Rejecting...\n",
5237 ahd_name(ahd), devinfo->channel,
5238 devinfo->target, devinfo->lun,
5239 8 * (0x01 << bus_width));
5240 bus_width = 0;
5241 }
5242 } else {
5243 /*
5244 * Send our own WDTR in reply
5245 */
5246 if (bootverbose
5247 && devinfo->role == ROLE_INITIATOR) {
5248 printk("(%s:%c:%d:%d): Target "
5249 "Initiated WDTR\n",
5250 ahd_name(ahd), devinfo->channel,
5251 devinfo->target, devinfo->lun);
5252 }
5253 ahd->msgout_index = 0;
5254 ahd->msgout_len = 0;
5255 ahd_construct_wdtr(ahd, devinfo, bus_width);
5256 ahd->msgout_index = 0;
5257 response = TRUE;
5258 sending_reply = TRUE;
5259 }
5260 /*
5261 * After a wide message, we are async, but
5262 * some devices don't seem to honor this portion
5263 * of the spec. Force a renegotiation of the
5264 * sync component of our transfer agreement even
5265 * if our goal is async. By updating our width
5266 * after forcing the negotiation, we avoid
5267 * renegotiating for width.
5268 */
5269 ahd_update_neg_request(ahd, devinfo, tstate,
5270 tinfo, AHD_NEG_ALWAYS);
5271 ahd_set_width(ahd, devinfo, bus_width,
5272 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5273 /*paused*/TRUE);
5274 if (sending_reply == FALSE && reject == FALSE) {
5275
5276 /*
5277 * We will always have an SDTR to send.
5278 */
5279 ahd->msgout_index = 0;
5280 ahd->msgout_len = 0;
5281 ahd_build_transfer_msg(ahd, devinfo);
5282 ahd->msgout_index = 0;
5283 response = TRUE;
5284 }
5285 done = MSGLOOP_MSGCOMPLETE;
5286 break;
5287 }
5288 case MSG_EXT_PPR:
5289 {
5290 u_int period;
5291 u_int offset;
5292 u_int bus_width;
5293 u_int ppr_options;
5294 u_int saved_width;
5295 u_int saved_offset;
5296 u_int saved_ppr_options;
5297
5298 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5299 reject = TRUE;
5300 break;
5301 }
5302
5303 /*
5304 * Wait until we have all args before validating
5305 * and acting on this message.
5306 *
5307 * Add one to MSG_EXT_PPR_LEN to account for
5308 * the extended message preamble.
5309 */
5310 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5311 break;
5312
5313 period = ahd->msgin_buf[3];
5314 offset = ahd->msgin_buf[5];
5315 bus_width = ahd->msgin_buf[6];
5316 saved_width = bus_width;
5317 ppr_options = ahd->msgin_buf[7];
5318 /*
5319 * According to the spec, a DT only
5320 * period factor with no DT option
5321 * set implies async.
5322 */
5323 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5324 && period <= 9)
5325 offset = 0;
5326 saved_ppr_options = ppr_options;
5327 saved_offset = offset;
5328
5329 /*
5330 * Transfer options are only available if we
5331 * are negotiating wide.
5332 */
5333 if (bus_width == 0)
5334 ppr_options &= MSG_EXT_PPR_QAS_REQ;
5335
5336 ahd_validate_width(ahd, tinfo, &bus_width,
5337 devinfo->role);
5338 ahd_devlimited_syncrate(ahd, tinfo, &period,
5339 &ppr_options, devinfo->role);
5340 ahd_validate_offset(ahd, tinfo, period, &offset,
5341 bus_width, devinfo->role);
5342
5343 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5344 /*
5345 * If we are unable to do any of the
5346 * requested options (we went too low),
5347 * then we'll have to reject the message.
5348 */
5349 if (saved_width > bus_width
5350 || saved_offset != offset
5351 || saved_ppr_options != ppr_options) {
5352 reject = TRUE;
5353 period = 0;
5354 offset = 0;
5355 bus_width = 0;
5356 ppr_options = 0;
5357 }
5358 } else {
5359 if (devinfo->role != ROLE_TARGET)
5360 printk("(%s:%c:%d:%d): Target "
5361 "Initiated PPR\n",
5362 ahd_name(ahd), devinfo->channel,
5363 devinfo->target, devinfo->lun);
5364 else
5365 printk("(%s:%c:%d:%d): Initiator "
5366 "Initiated PPR\n",
5367 ahd_name(ahd), devinfo->channel,
5368 devinfo->target, devinfo->lun);
5369 ahd->msgout_index = 0;
5370 ahd->msgout_len = 0;
5371 ahd_construct_ppr(ahd, devinfo, period, offset,
5372 bus_width, ppr_options);
5373 ahd->msgout_index = 0;
5374 response = TRUE;
5375 }
5376 if (bootverbose) {
5377 printk("(%s:%c:%d:%d): Received PPR width %x, "
5378 "period %x, offset %x,options %x\n"
5379 "\tFiltered to width %x, period %x, "
5380 "offset %x, options %x\n",
5381 ahd_name(ahd), devinfo->channel,
5382 devinfo->target, devinfo->lun,
5383 saved_width, ahd->msgin_buf[3],
5384 saved_offset, saved_ppr_options,
5385 bus_width, period, offset, ppr_options);
5386 }
5387 ahd_set_width(ahd, devinfo, bus_width,
5388 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5389 /*paused*/TRUE);
5390 ahd_set_syncrate(ahd, devinfo, period,
5391 offset, ppr_options,
5392 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5393 /*paused*/TRUE);
5394
5395 done = MSGLOOP_MSGCOMPLETE;
5396 break;
5397 }
5398 default:
5399 /* Unknown extended message. Reject it. */
5400 reject = TRUE;
5401 break;
5402 }
5403 break;
5404 }
5405 #ifdef AHD_TARGET_MODE
5406 case MSG_BUS_DEV_RESET:
5407 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5408 CAM_BDR_SENT,
5409 "Bus Device Reset Received",
5410 /*verbose_level*/0);
5411 ahd_restart(ahd);
5412 done = MSGLOOP_TERMINATED;
5413 break;
5414 case MSG_ABORT_TAG:
5415 case MSG_ABORT:
5416 case MSG_CLEAR_QUEUE:
5417 {
5418 int tag;
5419
5420 /* Target mode messages */
5421 if (devinfo->role != ROLE_TARGET) {
5422 reject = TRUE;
5423 break;
5424 }
5425 tag = SCB_LIST_NULL;
5426 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5427 tag = ahd_inb(ahd, INITIATOR_TAG);
5428 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5429 devinfo->lun, tag, ROLE_TARGET,
5430 CAM_REQ_ABORTED);
5431
5432 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5433 if (tstate != NULL) {
5434 struct ahd_tmode_lstate* lstate;
5435
5436 lstate = tstate->enabled_luns[devinfo->lun];
5437 if (lstate != NULL) {
5438 ahd_queue_lstate_event(ahd, lstate,
5439 devinfo->our_scsiid,
5440 ahd->msgin_buf[0],
5441 /*arg*/tag);
5442 ahd_send_lstate_events(ahd, lstate);
5443 }
5444 }
5445 ahd_restart(ahd);
5446 done = MSGLOOP_TERMINATED;
5447 break;
5448 }
5449 #endif
5450 case MSG_QAS_REQUEST:
5451 #ifdef AHD_DEBUG
5452 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5453 printk("%s: QAS request. SCSISIGI == 0x%x\n",
5454 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5455 #endif
5456 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5457 fallthrough;
5458 case MSG_TERM_IO_PROC:
5459 default:
5460 reject = TRUE;
5461 break;
5462 }
5463
5464 if (reject) {
5465 /*
5466 * Setup to reject the message.
5467 */
5468 ahd->msgout_index = 0;
5469 ahd->msgout_len = 1;
5470 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5471 done = MSGLOOP_MSGCOMPLETE;
5472 response = TRUE;
5473 }
5474
5475 if (done != MSGLOOP_IN_PROG && !response)
5476 /* Clear the outgoing message buffer */
5477 ahd->msgout_len = 0;
5478
5479 return (done);
5480 }
5481
5482 /*
5483 * Process a message reject message.
5484 */
5485 static int
ahd_handle_msg_reject(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5486 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5487 {
5488 /*
5489 * What we care about here is if we had an
5490 * outstanding SDTR or WDTR message for this
5491 * target. If we did, this is a signal that
5492 * the target is refusing negotiation.
5493 */
5494 struct scb *scb;
5495 struct ahd_initiator_tinfo *tinfo;
5496 struct ahd_tmode_tstate *tstate;
5497 u_int scb_index;
5498 u_int last_msg;
5499 int response = 0;
5500
5501 scb_index = ahd_get_scbptr(ahd);
5502 scb = ahd_lookup_scb(ahd, scb_index);
5503 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5504 devinfo->our_scsiid,
5505 devinfo->target, &tstate);
5506 /* Might be necessary */
5507 last_msg = ahd_inb(ahd, LAST_MSG);
5508
5509 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5510 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5511 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5512 /*
5513 * Target may not like our SPI-4 PPR Options.
5514 * Attempt to negotiate 80MHz which will turn
5515 * off these options.
5516 */
5517 if (bootverbose) {
5518 printk("(%s:%c:%d:%d): PPR Rejected. "
5519 "Trying simple U160 PPR\n",
5520 ahd_name(ahd), devinfo->channel,
5521 devinfo->target, devinfo->lun);
5522 }
5523 tinfo->goal.period = AHD_SYNCRATE_DT;
5524 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5525 | MSG_EXT_PPR_QAS_REQ
5526 | MSG_EXT_PPR_DT_REQ;
5527 } else {
5528 /*
5529 * Target does not support the PPR message.
5530 * Attempt to negotiate SPI-2 style.
5531 */
5532 if (bootverbose) {
5533 printk("(%s:%c:%d:%d): PPR Rejected. "
5534 "Trying WDTR/SDTR\n",
5535 ahd_name(ahd), devinfo->channel,
5536 devinfo->target, devinfo->lun);
5537 }
5538 tinfo->goal.ppr_options = 0;
5539 tinfo->curr.transport_version = 2;
5540 tinfo->goal.transport_version = 2;
5541 }
5542 ahd->msgout_index = 0;
5543 ahd->msgout_len = 0;
5544 ahd_build_transfer_msg(ahd, devinfo);
5545 ahd->msgout_index = 0;
5546 response = 1;
5547 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5548
5549 /* note 8bit xfers */
5550 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5551 "8bit transfers\n", ahd_name(ahd),
5552 devinfo->channel, devinfo->target, devinfo->lun);
5553 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5554 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5555 /*paused*/TRUE);
5556 /*
5557 * No need to clear the sync rate. If the target
5558 * did not accept the command, our syncrate is
5559 * unaffected. If the target started the negotiation,
5560 * but rejected our response, we already cleared the
5561 * sync rate before sending our WDTR.
5562 */
5563 if (tinfo->goal.offset != tinfo->curr.offset) {
5564
5565 /* Start the sync negotiation */
5566 ahd->msgout_index = 0;
5567 ahd->msgout_len = 0;
5568 ahd_build_transfer_msg(ahd, devinfo);
5569 ahd->msgout_index = 0;
5570 response = 1;
5571 }
5572 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5573 /* note asynch xfers and clear flag */
5574 ahd_set_syncrate(ahd, devinfo, /*period*/0,
5575 /*offset*/0, /*ppr_options*/0,
5576 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5577 /*paused*/TRUE);
5578 printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5579 "Using asynchronous transfers\n",
5580 ahd_name(ahd), devinfo->channel,
5581 devinfo->target, devinfo->lun);
5582 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5583 int tag_type;
5584 int mask;
5585
5586 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5587
5588 if (tag_type == MSG_SIMPLE_TASK) {
5589 printk("(%s:%c:%d:%d): refuses tagged commands. "
5590 "Performing non-tagged I/O\n", ahd_name(ahd),
5591 devinfo->channel, devinfo->target, devinfo->lun);
5592 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5593 mask = ~0x23;
5594 } else {
5595 printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5596 "Performing simple queue tagged I/O only\n",
5597 ahd_name(ahd), devinfo->channel, devinfo->target,
5598 devinfo->lun, tag_type == MSG_ORDERED_TASK
5599 ? "ordered" : "head of queue");
5600 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5601 mask = ~0x03;
5602 }
5603
5604 /*
5605 * Resend the identify for this CCB as the target
5606 * may believe that the selection is invalid otherwise.
5607 */
5608 ahd_outb(ahd, SCB_CONTROL,
5609 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5610 scb->hscb->control &= mask;
5611 ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5612 /*type*/MSG_SIMPLE_TASK);
5613 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5614 ahd_assert_atn(ahd);
5615 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5616 SCB_GET_TAG(scb));
5617
5618 /*
5619 * Requeue all tagged commands for this target
5620 * currently in our possession so they can be
5621 * converted to untagged commands.
5622 */
5623 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5624 SCB_GET_CHANNEL(ahd, scb),
5625 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5626 ROLE_INITIATOR, CAM_REQUEUE_REQ,
5627 SEARCH_COMPLETE);
5628 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5629 /*
5630 * Most likely the device believes that we had
5631 * previously negotiated packetized.
5632 */
5633 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5634 | MSG_FLAG_IU_REQ_CHANGED;
5635
5636 ahd_force_renegotiation(ahd, devinfo);
5637 ahd->msgout_index = 0;
5638 ahd->msgout_len = 0;
5639 ahd_build_transfer_msg(ahd, devinfo);
5640 ahd->msgout_index = 0;
5641 response = 1;
5642 } else {
5643 /*
5644 * Otherwise, we ignore it.
5645 */
5646 printk("%s:%c:%d: Message reject for %x -- ignored\n",
5647 ahd_name(ahd), devinfo->channel, devinfo->target,
5648 last_msg);
5649 }
5650 return (response);
5651 }
5652
5653 /*
5654 * Process an ingnore wide residue message.
5655 */
5656 static void
ahd_handle_ign_wide_residue(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5657 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5658 {
5659 u_int scb_index;
5660 struct scb *scb;
5661
5662 scb_index = ahd_get_scbptr(ahd);
5663 scb = ahd_lookup_scb(ahd, scb_index);
5664 /*
5665 * XXX Actually check data direction in the sequencer?
5666 * Perhaps add datadir to some spare bits in the hscb?
5667 */
5668 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5669 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5670 /*
5671 * Ignore the message if we haven't
5672 * seen an appropriate data phase yet.
5673 */
5674 } else {
5675 /*
5676 * If the residual occurred on the last
5677 * transfer and the transfer request was
5678 * expected to end on an odd count, do
5679 * nothing. Otherwise, subtract a byte
5680 * and update the residual count accordingly.
5681 */
5682 uint32_t sgptr;
5683
5684 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5685 if ((sgptr & SG_LIST_NULL) != 0
5686 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5687 & SCB_XFERLEN_ODD) != 0) {
5688 /*
5689 * If the residual occurred on the last
5690 * transfer and the transfer request was
5691 * expected to end on an odd count, do
5692 * nothing.
5693 */
5694 } else {
5695 uint32_t data_cnt;
5696 uint64_t data_addr;
5697 uint32_t sglen;
5698
5699 /* Pull in the rest of the sgptr */
5700 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5701 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5702 if ((sgptr & SG_LIST_NULL) != 0) {
5703 /*
5704 * The residual data count is not updated
5705 * for the command run to completion case.
5706 * Explicitly zero the count.
5707 */
5708 data_cnt &= ~AHD_SG_LEN_MASK;
5709 }
5710 data_addr = ahd_inq(ahd, SHADDR);
5711 data_cnt += 1;
5712 data_addr -= 1;
5713 sgptr &= SG_PTR_MASK;
5714 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5715 struct ahd_dma64_seg *sg;
5716
5717 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5718
5719 /*
5720 * The residual sg ptr points to the next S/G
5721 * to load so we must go back one.
5722 */
5723 sg--;
5724 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5725 if (sg != scb->sg_list
5726 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5727
5728 sg--;
5729 sglen = ahd_le32toh(sg->len);
5730 /*
5731 * Preserve High Address and SG_LIST
5732 * bits while setting the count to 1.
5733 */
5734 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5735 data_addr = ahd_le64toh(sg->addr)
5736 + (sglen & AHD_SG_LEN_MASK)
5737 - 1;
5738
5739 /*
5740 * Increment sg so it points to the
5741 * "next" sg.
5742 */
5743 sg++;
5744 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5745 sg);
5746 }
5747 } else {
5748 struct ahd_dma_seg *sg;
5749
5750 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5751
5752 /*
5753 * The residual sg ptr points to the next S/G
5754 * to load so we must go back one.
5755 */
5756 sg--;
5757 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5758 if (sg != scb->sg_list
5759 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5760
5761 sg--;
5762 sglen = ahd_le32toh(sg->len);
5763 /*
5764 * Preserve High Address and SG_LIST
5765 * bits while setting the count to 1.
5766 */
5767 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5768 data_addr = ahd_le32toh(sg->addr)
5769 + (sglen & AHD_SG_LEN_MASK)
5770 - 1;
5771
5772 /*
5773 * Increment sg so it points to the
5774 * "next" sg.
5775 */
5776 sg++;
5777 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5778 sg);
5779 }
5780 }
5781 /*
5782 * Toggle the "oddness" of the transfer length
5783 * to handle this mid-transfer ignore wide
5784 * residue. This ensures that the oddness is
5785 * correct for subsequent data transfers.
5786 */
5787 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5788 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5789 ^ SCB_XFERLEN_ODD);
5790
5791 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5792 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5793 /*
5794 * The FIFO's pointers will be updated if/when the
5795 * sequencer re-enters a data phase.
5796 */
5797 }
5798 }
5799 }
5800
5801
5802 /*
5803 * Reinitialize the data pointers for the active transfer
5804 * based on its current residual.
5805 */
5806 static void
ahd_reinitialize_dataptrs(struct ahd_softc * ahd)5807 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5808 {
5809 struct scb *scb;
5810 ahd_mode_state saved_modes;
5811 u_int scb_index;
5812 u_int wait;
5813 uint32_t sgptr;
5814 uint32_t resid;
5815 uint64_t dataptr;
5816
5817 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5818 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5819
5820 scb_index = ahd_get_scbptr(ahd);
5821 scb = ahd_lookup_scb(ahd, scb_index);
5822
5823 /*
5824 * Release and reacquire the FIFO so we
5825 * have a clean slate.
5826 */
5827 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5828 wait = 1000;
5829 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5830 ahd_delay(100);
5831 if (wait == 0) {
5832 ahd_print_path(ahd, scb);
5833 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5834 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5835 }
5836 saved_modes = ahd_save_modes(ahd);
5837 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5838 ahd_outb(ahd, DFFSTAT,
5839 ahd_inb(ahd, DFFSTAT)
5840 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5841
5842 /*
5843 * Determine initial values for data_addr and data_cnt
5844 * for resuming the data phase.
5845 */
5846 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5847 sgptr &= SG_PTR_MASK;
5848
5849 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5850 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5851 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5852
5853 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5854 struct ahd_dma64_seg *sg;
5855
5856 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5857
5858 /* The residual sg_ptr always points to the next sg */
5859 sg--;
5860
5861 dataptr = ahd_le64toh(sg->addr)
5862 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5863 - resid;
5864 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5865 } else {
5866 struct ahd_dma_seg *sg;
5867
5868 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5869
5870 /* The residual sg_ptr always points to the next sg */
5871 sg--;
5872
5873 dataptr = ahd_le32toh(sg->addr)
5874 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5875 - resid;
5876 ahd_outb(ahd, HADDR + 4,
5877 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5878 }
5879 ahd_outl(ahd, HADDR, dataptr);
5880 ahd_outb(ahd, HCNT + 2, resid >> 16);
5881 ahd_outb(ahd, HCNT + 1, resid >> 8);
5882 ahd_outb(ahd, HCNT, resid);
5883 }
5884
5885 /*
5886 * Handle the effects of issuing a bus device reset message.
5887 */
5888 static void
ahd_handle_devreset(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int lun,cam_status status,char * message,int verbose_level)5889 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5890 u_int lun, cam_status status, char *message,
5891 int verbose_level)
5892 {
5893 #ifdef AHD_TARGET_MODE
5894 struct ahd_tmode_tstate* tstate;
5895 #endif
5896 int found;
5897
5898 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5899 lun, SCB_LIST_NULL, devinfo->role,
5900 status);
5901
5902 #ifdef AHD_TARGET_MODE
5903 /*
5904 * Send an immediate notify ccb to all target mord peripheral
5905 * drivers affected by this action.
5906 */
5907 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5908 if (tstate != NULL) {
5909 u_int cur_lun;
5910 u_int max_lun;
5911
5912 if (lun != CAM_LUN_WILDCARD) {
5913 cur_lun = 0;
5914 max_lun = AHD_NUM_LUNS - 1;
5915 } else {
5916 cur_lun = lun;
5917 max_lun = lun;
5918 }
5919 for (;cur_lun <= max_lun; cur_lun++) {
5920 struct ahd_tmode_lstate* lstate;
5921
5922 lstate = tstate->enabled_luns[cur_lun];
5923 if (lstate == NULL)
5924 continue;
5925
5926 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5927 MSG_BUS_DEV_RESET, /*arg*/0);
5928 ahd_send_lstate_events(ahd, lstate);
5929 }
5930 }
5931 #endif
5932
5933 /*
5934 * Go back to async/narrow transfers and renegotiate.
5935 */
5936 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5937 AHD_TRANS_CUR, /*paused*/TRUE);
5938 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5939 /*ppr_options*/0, AHD_TRANS_CUR,
5940 /*paused*/TRUE);
5941
5942 if (status != CAM_SEL_TIMEOUT)
5943 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5944 CAM_LUN_WILDCARD, AC_SENT_BDR);
5945
5946 if (message != NULL && bootverbose)
5947 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5948 message, devinfo->channel, devinfo->target, found);
5949 }
5950
5951 #ifdef AHD_TARGET_MODE
5952 static void
ahd_setup_target_msgin(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)5953 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5954 struct scb *scb)
5955 {
5956
5957 /*
5958 * To facilitate adding multiple messages together,
5959 * each routine should increment the index and len
5960 * variables instead of setting them explicitly.
5961 */
5962 ahd->msgout_index = 0;
5963 ahd->msgout_len = 0;
5964
5965 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5966 ahd_build_transfer_msg(ahd, devinfo);
5967 else
5968 panic("ahd_intr: AWAITING target message with no message");
5969
5970 ahd->msgout_index = 0;
5971 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5972 }
5973 #endif
5974 /**************************** Initialization **********************************/
5975 static u_int
ahd_sglist_size(struct ahd_softc * ahd)5976 ahd_sglist_size(struct ahd_softc *ahd)
5977 {
5978 bus_size_t list_size;
5979
5980 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5981 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5982 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5983 return (list_size);
5984 }
5985
5986 /*
5987 * Calculate the optimum S/G List allocation size. S/G elements used
5988 * for a given transaction must be physically contiguous. Assume the
5989 * OS will allocate full pages to us, so it doesn't make sense to request
5990 * less than a page.
5991 */
5992 static u_int
ahd_sglist_allocsize(struct ahd_softc * ahd)5993 ahd_sglist_allocsize(struct ahd_softc *ahd)
5994 {
5995 bus_size_t sg_list_increment;
5996 bus_size_t sg_list_size;
5997 bus_size_t max_list_size;
5998 bus_size_t best_list_size;
5999
6000 /* Start out with the minimum required for AHD_NSEG. */
6001 sg_list_increment = ahd_sglist_size(ahd);
6002 sg_list_size = sg_list_increment;
6003
6004 /* Get us as close as possible to a page in size. */
6005 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6006 sg_list_size += sg_list_increment;
6007
6008 /*
6009 * Try to reduce the amount of wastage by allocating
6010 * multiple pages.
6011 */
6012 best_list_size = sg_list_size;
6013 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6014 if (max_list_size < 4 * PAGE_SIZE)
6015 max_list_size = 4 * PAGE_SIZE;
6016 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6017 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6018 while ((sg_list_size + sg_list_increment) <= max_list_size
6019 && (sg_list_size % PAGE_SIZE) != 0) {
6020 bus_size_t new_mod;
6021 bus_size_t best_mod;
6022
6023 sg_list_size += sg_list_increment;
6024 new_mod = sg_list_size % PAGE_SIZE;
6025 best_mod = best_list_size % PAGE_SIZE;
6026 if (new_mod > best_mod || new_mod == 0) {
6027 best_list_size = sg_list_size;
6028 }
6029 }
6030 return (best_list_size);
6031 }
6032
6033 /*
6034 * Allocate a controller structure for a new device
6035 * and perform initial initializion.
6036 */
6037 struct ahd_softc *
ahd_alloc(void * platform_arg,char * name)6038 ahd_alloc(void *platform_arg, char *name)
6039 {
6040 struct ahd_softc *ahd;
6041
6042 ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6043 if (!ahd) {
6044 printk("aic7xxx: cannot malloc softc!\n");
6045 kfree(name);
6046 return NULL;
6047 }
6048
6049 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6050 if (ahd->seep_config == NULL) {
6051 kfree(ahd);
6052 kfree(name);
6053 return (NULL);
6054 }
6055 LIST_INIT(&ahd->pending_scbs);
6056 /* We don't know our unit number until the OSM sets it */
6057 ahd->name = name;
6058 ahd->unit = -1;
6059 ahd->description = NULL;
6060 ahd->bus_description = NULL;
6061 ahd->channel = 'A';
6062 ahd->chip = AHD_NONE;
6063 ahd->features = AHD_FENONE;
6064 ahd->bugs = AHD_BUGNONE;
6065 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6066 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6067 timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6068 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6069 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6070 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6071 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6072 ahd->int_coalescing_stop_threshold =
6073 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6074
6075 #ifdef AHD_DEBUG
6076 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6077 printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6078 ahd_name(ahd), (u_int)sizeof(struct scb),
6079 (u_int)sizeof(struct hardware_scb));
6080 }
6081 #endif
6082 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6083 ahd_free(ahd);
6084 ahd = NULL;
6085 }
6086 return (ahd);
6087 }
6088
6089 int
ahd_softc_init(struct ahd_softc * ahd)6090 ahd_softc_init(struct ahd_softc *ahd)
6091 {
6092
6093 ahd->unpause = 0;
6094 ahd->pause = PAUSE;
6095 return (0);
6096 }
6097
6098 void
ahd_set_unit(struct ahd_softc * ahd,int unit)6099 ahd_set_unit(struct ahd_softc *ahd, int unit)
6100 {
6101 ahd->unit = unit;
6102 }
6103
6104 void
ahd_set_name(struct ahd_softc * ahd,char * name)6105 ahd_set_name(struct ahd_softc *ahd, char *name)
6106 {
6107 kfree(ahd->name);
6108 ahd->name = name;
6109 }
6110
6111 void
ahd_free(struct ahd_softc * ahd)6112 ahd_free(struct ahd_softc *ahd)
6113 {
6114 int i;
6115
6116 switch (ahd->init_level) {
6117 default:
6118 case 5:
6119 ahd_shutdown(ahd);
6120 fallthrough;
6121 case 4:
6122 ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6123 ahd->shared_data_map.dmamap);
6124 fallthrough;
6125 case 3:
6126 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6127 ahd->shared_data_map.dmamap);
6128 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6129 ahd->shared_data_map.dmamap);
6130 fallthrough;
6131 case 2:
6132 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6133 case 1:
6134 break;
6135 case 0:
6136 break;
6137 }
6138
6139 ahd_platform_free(ahd);
6140 ahd_fini_scbdata(ahd);
6141 for (i = 0; i < AHD_NUM_TARGETS; i++) {
6142 struct ahd_tmode_tstate *tstate;
6143
6144 tstate = ahd->enabled_targets[i];
6145 if (tstate != NULL) {
6146 #ifdef AHD_TARGET_MODE
6147 int j;
6148
6149 for (j = 0; j < AHD_NUM_LUNS; j++) {
6150 struct ahd_tmode_lstate *lstate;
6151
6152 lstate = tstate->enabled_luns[j];
6153 if (lstate != NULL) {
6154 xpt_free_path(lstate->path);
6155 kfree(lstate);
6156 }
6157 }
6158 #endif
6159 kfree(tstate);
6160 }
6161 }
6162 #ifdef AHD_TARGET_MODE
6163 if (ahd->black_hole != NULL) {
6164 xpt_free_path(ahd->black_hole->path);
6165 kfree(ahd->black_hole);
6166 }
6167 #endif
6168 kfree(ahd->name);
6169 kfree(ahd->seep_config);
6170 kfree(ahd->saved_stack);
6171 kfree(ahd);
6172 return;
6173 }
6174
6175 static void
ahd_shutdown(void * arg)6176 ahd_shutdown(void *arg)
6177 {
6178 struct ahd_softc *ahd;
6179
6180 ahd = (struct ahd_softc *)arg;
6181
6182 /*
6183 * Stop periodic timer callbacks.
6184 */
6185 del_timer_sync(&ahd->stat_timer);
6186
6187 /* This will reset most registers to 0, but not all */
6188 ahd_reset(ahd, /*reinit*/FALSE);
6189 }
6190
6191 /*
6192 * Reset the controller and record some information about it
6193 * that is only available just after a reset. If "reinit" is
6194 * non-zero, this reset occurred after initial configuration
6195 * and the caller requests that the chip be fully reinitialized
6196 * to a runable state. Chip interrupts are *not* enabled after
6197 * a reinitialization. The caller must enable interrupts via
6198 * ahd_intr_enable().
6199 */
6200 int
ahd_reset(struct ahd_softc * ahd,int reinit)6201 ahd_reset(struct ahd_softc *ahd, int reinit)
6202 {
6203 u_int sxfrctl1;
6204 int wait;
6205 uint32_t cmd;
6206
6207 /*
6208 * Preserve the value of the SXFRCTL1 register for all channels.
6209 * It contains settings that affect termination and we don't want
6210 * to disturb the integrity of the bus.
6211 */
6212 ahd_pause(ahd);
6213 ahd_update_modes(ahd);
6214 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6215 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6216
6217 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6218 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6219 uint32_t mod_cmd;
6220
6221 /*
6222 * A4 Razor #632
6223 * During the assertion of CHIPRST, the chip
6224 * does not disable its parity logic prior to
6225 * the start of the reset. This may cause a
6226 * parity error to be detected and thus a
6227 * spurious SERR or PERR assertion. Disable
6228 * PERR and SERR responses during the CHIPRST.
6229 */
6230 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6231 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6232 mod_cmd, /*bytes*/2);
6233 }
6234 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6235
6236 /*
6237 * Ensure that the reset has finished. We delay 1000us
6238 * prior to reading the register to make sure the chip
6239 * has sufficiently completed its reset to handle register
6240 * accesses.
6241 */
6242 wait = 1000;
6243 do {
6244 ahd_delay(1000);
6245 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6246
6247 if (wait == 0) {
6248 printk("%s: WARNING - Failed chip reset! "
6249 "Trying to initialize anyway.\n", ahd_name(ahd));
6250 }
6251 ahd_outb(ahd, HCNTRL, ahd->pause);
6252
6253 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6254 /*
6255 * Clear any latched PCI error status and restore
6256 * previous SERR and PERR response enables.
6257 */
6258 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6259 0xFF, /*bytes*/1);
6260 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6261 cmd, /*bytes*/2);
6262 }
6263
6264 /*
6265 * Mode should be SCSI after a chip reset, but lets
6266 * set it just to be safe. We touch the MODE_PTR
6267 * register directly so as to bypass the lazy update
6268 * code in ahd_set_modes().
6269 */
6270 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6271 ahd_outb(ahd, MODE_PTR,
6272 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6273
6274 /*
6275 * Restore SXFRCTL1.
6276 *
6277 * We must always initialize STPWEN to 1 before we
6278 * restore the saved values. STPWEN is initialized
6279 * to a tri-state condition which can only be cleared
6280 * by turning it on.
6281 */
6282 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6283 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6284
6285 /* Determine chip configuration */
6286 ahd->features &= ~AHD_WIDE;
6287 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6288 ahd->features |= AHD_WIDE;
6289
6290 /*
6291 * If a recovery action has forced a chip reset,
6292 * re-initialize the chip to our liking.
6293 */
6294 if (reinit != 0)
6295 ahd_chip_init(ahd);
6296
6297 return (0);
6298 }
6299
6300 /*
6301 * Determine the number of SCBs available on the controller
6302 */
6303 static int
ahd_probe_scbs(struct ahd_softc * ahd)6304 ahd_probe_scbs(struct ahd_softc *ahd) {
6305 int i;
6306
6307 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6308 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6309 for (i = 0; i < AHD_SCB_MAX; i++) {
6310 int j;
6311
6312 ahd_set_scbptr(ahd, i);
6313 ahd_outw(ahd, SCB_BASE, i);
6314 for (j = 2; j < 64; j++)
6315 ahd_outb(ahd, SCB_BASE+j, 0);
6316 /* Start out life as unallocated (needing an abort) */
6317 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6318 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6319 break;
6320 ahd_set_scbptr(ahd, 0);
6321 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6322 break;
6323 }
6324 return (i);
6325 }
6326
6327 static void
ahd_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)6328 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6329 {
6330 dma_addr_t *baddr;
6331
6332 baddr = (dma_addr_t *)arg;
6333 *baddr = segs->ds_addr;
6334 }
6335
6336 static void
ahd_initialize_hscbs(struct ahd_softc * ahd)6337 ahd_initialize_hscbs(struct ahd_softc *ahd)
6338 {
6339 int i;
6340
6341 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6342 ahd_set_scbptr(ahd, i);
6343
6344 /* Clear the control byte. */
6345 ahd_outb(ahd, SCB_CONTROL, 0);
6346
6347 /* Set the next pointer */
6348 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6349 }
6350 }
6351
6352 static int
ahd_init_scbdata(struct ahd_softc * ahd)6353 ahd_init_scbdata(struct ahd_softc *ahd)
6354 {
6355 struct scb_data *scb_data;
6356 int i;
6357
6358 scb_data = &ahd->scb_data;
6359 TAILQ_INIT(&scb_data->free_scbs);
6360 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6361 LIST_INIT(&scb_data->free_scb_lists[i]);
6362 LIST_INIT(&scb_data->any_dev_free_scb_list);
6363 SLIST_INIT(&scb_data->hscb_maps);
6364 SLIST_INIT(&scb_data->sg_maps);
6365 SLIST_INIT(&scb_data->sense_maps);
6366
6367 /* Determine the number of hardware SCBs and initialize them */
6368 scb_data->maxhscbs = ahd_probe_scbs(ahd);
6369 if (scb_data->maxhscbs == 0) {
6370 printk("%s: No SCB space found\n", ahd_name(ahd));
6371 return (ENXIO);
6372 }
6373
6374 ahd_initialize_hscbs(ahd);
6375
6376 /*
6377 * Create our DMA tags. These tags define the kinds of device
6378 * accessible memory allocations and memory mappings we will
6379 * need to perform during normal operation.
6380 *
6381 * Unless we need to further restrict the allocation, we rely
6382 * on the restrictions of the parent dmat, hence the common
6383 * use of MAXADDR and MAXSIZE.
6384 */
6385
6386 /* DMA tag for our hardware scb structures */
6387 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6388 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6389 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6390 /*highaddr*/BUS_SPACE_MAXADDR,
6391 /*filter*/NULL, /*filterarg*/NULL,
6392 PAGE_SIZE, /*nsegments*/1,
6393 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6394 /*flags*/0, &scb_data->hscb_dmat) != 0) {
6395 goto error_exit;
6396 }
6397
6398 scb_data->init_level++;
6399
6400 /* DMA tag for our S/G structures. */
6401 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6402 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6403 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6404 /*highaddr*/BUS_SPACE_MAXADDR,
6405 /*filter*/NULL, /*filterarg*/NULL,
6406 ahd_sglist_allocsize(ahd), /*nsegments*/1,
6407 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6408 /*flags*/0, &scb_data->sg_dmat) != 0) {
6409 goto error_exit;
6410 }
6411 #ifdef AHD_DEBUG
6412 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6413 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6414 ahd_sglist_allocsize(ahd));
6415 #endif
6416
6417 scb_data->init_level++;
6418
6419 /* DMA tag for our sense buffers. We allocate in page sized chunks */
6420 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6421 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6422 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6423 /*highaddr*/BUS_SPACE_MAXADDR,
6424 /*filter*/NULL, /*filterarg*/NULL,
6425 PAGE_SIZE, /*nsegments*/1,
6426 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6427 /*flags*/0, &scb_data->sense_dmat) != 0) {
6428 goto error_exit;
6429 }
6430
6431 scb_data->init_level++;
6432
6433 /* Perform initial CCB allocation */
6434 ahd_alloc_scbs(ahd);
6435
6436 if (scb_data->numscbs == 0) {
6437 printk("%s: ahd_init_scbdata - "
6438 "Unable to allocate initial scbs\n",
6439 ahd_name(ahd));
6440 goto error_exit;
6441 }
6442
6443 /*
6444 * Note that we were successful
6445 */
6446 return (0);
6447
6448 error_exit:
6449
6450 return (ENOMEM);
6451 }
6452
6453 static struct scb *
ahd_find_scb_by_tag(struct ahd_softc * ahd,u_int tag)6454 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6455 {
6456 struct scb *scb;
6457
6458 /*
6459 * Look on the pending list.
6460 */
6461 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6462 if (SCB_GET_TAG(scb) == tag)
6463 return (scb);
6464 }
6465
6466 /*
6467 * Then on all of the collision free lists.
6468 */
6469 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6470 struct scb *list_scb;
6471
6472 list_scb = scb;
6473 do {
6474 if (SCB_GET_TAG(list_scb) == tag)
6475 return (list_scb);
6476 list_scb = LIST_NEXT(list_scb, collision_links);
6477 } while (list_scb);
6478 }
6479
6480 /*
6481 * And finally on the generic free list.
6482 */
6483 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6484 if (SCB_GET_TAG(scb) == tag)
6485 return (scb);
6486 }
6487
6488 return (NULL);
6489 }
6490
6491 static void
ahd_fini_scbdata(struct ahd_softc * ahd)6492 ahd_fini_scbdata(struct ahd_softc *ahd)
6493 {
6494 struct scb_data *scb_data;
6495
6496 scb_data = &ahd->scb_data;
6497 if (scb_data == NULL)
6498 return;
6499
6500 switch (scb_data->init_level) {
6501 default:
6502 case 7:
6503 {
6504 struct map_node *sns_map;
6505
6506 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6507 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6508 ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6509 sns_map->dmamap);
6510 ahd_dmamem_free(ahd, scb_data->sense_dmat,
6511 sns_map->vaddr, sns_map->dmamap);
6512 kfree(sns_map);
6513 }
6514 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6515 }
6516 fallthrough;
6517 case 6:
6518 {
6519 struct map_node *sg_map;
6520
6521 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6522 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6523 ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6524 sg_map->dmamap);
6525 ahd_dmamem_free(ahd, scb_data->sg_dmat,
6526 sg_map->vaddr, sg_map->dmamap);
6527 kfree(sg_map);
6528 }
6529 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6530 }
6531 fallthrough;
6532 case 5:
6533 {
6534 struct map_node *hscb_map;
6535
6536 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6537 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6538 ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6539 hscb_map->dmamap);
6540 ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6541 hscb_map->vaddr, hscb_map->dmamap);
6542 kfree(hscb_map);
6543 }
6544 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6545 /* FALLTHROUGH */
6546 }
6547 case 4:
6548 case 3:
6549 case 2:
6550 case 1:
6551 case 0:
6552 break;
6553 }
6554 }
6555
6556 /*
6557 * DSP filter Bypass must be enabled until the first selection
6558 * after a change in bus mode (Razor #491 and #493).
6559 */
6560 static void
ahd_setup_iocell_workaround(struct ahd_softc * ahd)6561 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6562 {
6563 ahd_mode_state saved_modes;
6564
6565 saved_modes = ahd_save_modes(ahd);
6566 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6567 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6568 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6569 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6570 #ifdef AHD_DEBUG
6571 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6572 printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6573 #endif
6574 ahd_restore_modes(ahd, saved_modes);
6575 ahd->flags &= ~AHD_HAD_FIRST_SEL;
6576 }
6577
6578 static void
ahd_iocell_first_selection(struct ahd_softc * ahd)6579 ahd_iocell_first_selection(struct ahd_softc *ahd)
6580 {
6581 ahd_mode_state saved_modes;
6582 u_int sblkctl;
6583
6584 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6585 return;
6586 saved_modes = ahd_save_modes(ahd);
6587 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6588 sblkctl = ahd_inb(ahd, SBLKCTL);
6589 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6590 #ifdef AHD_DEBUG
6591 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6592 printk("%s: iocell first selection\n", ahd_name(ahd));
6593 #endif
6594 if ((sblkctl & ENAB40) != 0) {
6595 ahd_outb(ahd, DSPDATACTL,
6596 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6597 #ifdef AHD_DEBUG
6598 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6599 printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6600 #endif
6601 }
6602 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6603 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6604 ahd_restore_modes(ahd, saved_modes);
6605 ahd->flags |= AHD_HAD_FIRST_SEL;
6606 }
6607
6608 /*************************** SCB Management ***********************************/
6609 static void
ahd_add_col_list(struct ahd_softc * ahd,struct scb * scb,u_int col_idx)6610 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6611 {
6612 struct scb_list *free_list;
6613 struct scb_tailq *free_tailq;
6614 struct scb *first_scb;
6615
6616 scb->flags |= SCB_ON_COL_LIST;
6617 AHD_SET_SCB_COL_IDX(scb, col_idx);
6618 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6619 free_tailq = &ahd->scb_data.free_scbs;
6620 first_scb = LIST_FIRST(free_list);
6621 if (first_scb != NULL) {
6622 LIST_INSERT_AFTER(first_scb, scb, collision_links);
6623 } else {
6624 LIST_INSERT_HEAD(free_list, scb, collision_links);
6625 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6626 }
6627 }
6628
6629 static void
ahd_rem_col_list(struct ahd_softc * ahd,struct scb * scb)6630 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6631 {
6632 struct scb_list *free_list;
6633 struct scb_tailq *free_tailq;
6634 struct scb *first_scb;
6635 u_int col_idx;
6636
6637 scb->flags &= ~SCB_ON_COL_LIST;
6638 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6639 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6640 free_tailq = &ahd->scb_data.free_scbs;
6641 first_scb = LIST_FIRST(free_list);
6642 if (first_scb == scb) {
6643 struct scb *next_scb;
6644
6645 /*
6646 * Maintain order in the collision free
6647 * lists for fairness if this device has
6648 * other colliding tags active.
6649 */
6650 next_scb = LIST_NEXT(scb, collision_links);
6651 if (next_scb != NULL) {
6652 TAILQ_INSERT_AFTER(free_tailq, scb,
6653 next_scb, links.tqe);
6654 }
6655 TAILQ_REMOVE(free_tailq, scb, links.tqe);
6656 }
6657 LIST_REMOVE(scb, collision_links);
6658 }
6659
6660 /*
6661 * Get a free scb. If there are none, see if we can allocate a new SCB.
6662 */
6663 struct scb *
ahd_get_scb(struct ahd_softc * ahd,u_int col_idx)6664 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6665 {
6666 struct scb *scb;
6667 int tries;
6668
6669 tries = 0;
6670 look_again:
6671 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6672 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6673 ahd_rem_col_list(ahd, scb);
6674 goto found;
6675 }
6676 }
6677 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6678
6679 if (tries++ != 0)
6680 return (NULL);
6681 ahd_alloc_scbs(ahd);
6682 goto look_again;
6683 }
6684 LIST_REMOVE(scb, links.le);
6685 if (col_idx != AHD_NEVER_COL_IDX
6686 && (scb->col_scb != NULL)
6687 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6688 LIST_REMOVE(scb->col_scb, links.le);
6689 ahd_add_col_list(ahd, scb->col_scb, col_idx);
6690 }
6691 found:
6692 scb->flags |= SCB_ACTIVE;
6693 return (scb);
6694 }
6695
6696 /*
6697 * Return an SCB resource to the free list.
6698 */
6699 void
ahd_free_scb(struct ahd_softc * ahd,struct scb * scb)6700 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6701 {
6702 /* Clean up for the next user */
6703 scb->flags = SCB_FLAG_NONE;
6704 scb->hscb->control = 0;
6705 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6706
6707 if (scb->col_scb == NULL) {
6708
6709 /*
6710 * No collision possible. Just free normally.
6711 */
6712 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6713 scb, links.le);
6714 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6715
6716 /*
6717 * The SCB we might have collided with is on
6718 * a free collision list. Put both SCBs on
6719 * the generic list.
6720 */
6721 ahd_rem_col_list(ahd, scb->col_scb);
6722 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6723 scb, links.le);
6724 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6725 scb->col_scb, links.le);
6726 } else if ((scb->col_scb->flags
6727 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6728 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6729
6730 /*
6731 * The SCB we might collide with on the next allocation
6732 * is still active in a non-packetized, tagged, context.
6733 * Put us on the SCB collision list.
6734 */
6735 ahd_add_col_list(ahd, scb,
6736 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6737 } else {
6738 /*
6739 * The SCB we might collide with on the next allocation
6740 * is either active in a packetized context, or free.
6741 * Since we can't collide, put this SCB on the generic
6742 * free list.
6743 */
6744 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6745 scb, links.le);
6746 }
6747
6748 ahd_platform_scb_free(ahd, scb);
6749 }
6750
6751 static void
ahd_alloc_scbs(struct ahd_softc * ahd)6752 ahd_alloc_scbs(struct ahd_softc *ahd)
6753 {
6754 struct scb_data *scb_data;
6755 struct scb *next_scb;
6756 struct hardware_scb *hscb;
6757 struct map_node *hscb_map;
6758 struct map_node *sg_map;
6759 struct map_node *sense_map;
6760 uint8_t *segs;
6761 uint8_t *sense_data;
6762 dma_addr_t hscb_busaddr;
6763 dma_addr_t sg_busaddr;
6764 dma_addr_t sense_busaddr;
6765 int newcount;
6766 int i;
6767
6768 scb_data = &ahd->scb_data;
6769 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6770 /* Can't allocate any more */
6771 return;
6772
6773 if (scb_data->scbs_left != 0) {
6774 int offset;
6775
6776 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6777 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6778 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6779 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6780 } else {
6781 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6782
6783 if (hscb_map == NULL)
6784 return;
6785
6786 /* Allocate the next batch of hardware SCBs */
6787 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6788 (void **)&hscb_map->vaddr,
6789 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6790 kfree(hscb_map);
6791 return;
6792 }
6793
6794 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6795
6796 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6797 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6798 &hscb_map->physaddr, /*flags*/0);
6799
6800 hscb = (struct hardware_scb *)hscb_map->vaddr;
6801 hscb_busaddr = hscb_map->physaddr;
6802 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6803 }
6804
6805 if (scb_data->sgs_left != 0) {
6806 int offset;
6807
6808 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6809 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6810 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6811 segs = sg_map->vaddr + offset;
6812 sg_busaddr = sg_map->physaddr + offset;
6813 } else {
6814 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6815
6816 if (sg_map == NULL)
6817 return;
6818
6819 /* Allocate the next batch of S/G lists */
6820 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6821 (void **)&sg_map->vaddr,
6822 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6823 kfree(sg_map);
6824 return;
6825 }
6826
6827 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6828
6829 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6830 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6831 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6832
6833 segs = sg_map->vaddr;
6834 sg_busaddr = sg_map->physaddr;
6835 scb_data->sgs_left =
6836 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6837 #ifdef AHD_DEBUG
6838 if (ahd_debug & AHD_SHOW_MEMORY)
6839 printk("Mapped SG data\n");
6840 #endif
6841 }
6842
6843 if (scb_data->sense_left != 0) {
6844 int offset;
6845
6846 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6847 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6848 sense_data = sense_map->vaddr + offset;
6849 sense_busaddr = sense_map->physaddr + offset;
6850 } else {
6851 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6852
6853 if (sense_map == NULL)
6854 return;
6855
6856 /* Allocate the next batch of sense buffers */
6857 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6858 (void **)&sense_map->vaddr,
6859 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6860 kfree(sense_map);
6861 return;
6862 }
6863
6864 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6865
6866 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6867 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6868 &sense_map->physaddr, /*flags*/0);
6869
6870 sense_data = sense_map->vaddr;
6871 sense_busaddr = sense_map->physaddr;
6872 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6873 #ifdef AHD_DEBUG
6874 if (ahd_debug & AHD_SHOW_MEMORY)
6875 printk("Mapped sense data\n");
6876 #endif
6877 }
6878
6879 newcount = min(scb_data->sense_left, scb_data->scbs_left);
6880 newcount = min(newcount, scb_data->sgs_left);
6881 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6882 for (i = 0; i < newcount; i++) {
6883 struct scb_platform_data *pdata;
6884 u_int col_tag;
6885
6886 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6887 if (next_scb == NULL)
6888 break;
6889
6890 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6891 if (pdata == NULL) {
6892 kfree(next_scb);
6893 break;
6894 }
6895 next_scb->platform_data = pdata;
6896 next_scb->hscb_map = hscb_map;
6897 next_scb->sg_map = sg_map;
6898 next_scb->sense_map = sense_map;
6899 next_scb->sg_list = segs;
6900 next_scb->sense_data = sense_data;
6901 next_scb->sense_busaddr = sense_busaddr;
6902 memset(hscb, 0, sizeof(*hscb));
6903 next_scb->hscb = hscb;
6904 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6905
6906 /*
6907 * The sequencer always starts with the second entry.
6908 * The first entry is embedded in the scb.
6909 */
6910 next_scb->sg_list_busaddr = sg_busaddr;
6911 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6912 next_scb->sg_list_busaddr
6913 += sizeof(struct ahd_dma64_seg);
6914 else
6915 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6916 next_scb->ahd_softc = ahd;
6917 next_scb->flags = SCB_FLAG_NONE;
6918 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6919 col_tag = scb_data->numscbs ^ 0x100;
6920 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6921 if (next_scb->col_scb != NULL)
6922 next_scb->col_scb->col_scb = next_scb;
6923 ahd_free_scb(ahd, next_scb);
6924 hscb++;
6925 hscb_busaddr += sizeof(*hscb);
6926 segs += ahd_sglist_size(ahd);
6927 sg_busaddr += ahd_sglist_size(ahd);
6928 sense_data += AHD_SENSE_BUFSIZE;
6929 sense_busaddr += AHD_SENSE_BUFSIZE;
6930 scb_data->numscbs++;
6931 scb_data->sense_left--;
6932 scb_data->scbs_left--;
6933 scb_data->sgs_left--;
6934 }
6935 }
6936
6937 void
ahd_controller_info(struct ahd_softc * ahd,char * buf)6938 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6939 {
6940 const char *speed;
6941 const char *type;
6942 int len;
6943
6944 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6945 buf += len;
6946
6947 speed = "Ultra320 ";
6948 if ((ahd->features & AHD_WIDE) != 0) {
6949 type = "Wide ";
6950 } else {
6951 type = "Single ";
6952 }
6953 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6954 speed, type, ahd->channel, ahd->our_id);
6955 buf += len;
6956
6957 sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6958 ahd->scb_data.maxhscbs);
6959 }
6960
6961 static const char *channel_strings[] = {
6962 "Primary Low",
6963 "Primary High",
6964 "Secondary Low",
6965 "Secondary High"
6966 };
6967
6968 static const char *termstat_strings[] = {
6969 "Terminated Correctly",
6970 "Over Terminated",
6971 "Under Terminated",
6972 "Not Configured"
6973 };
6974
6975 /***************************** Timer Facilities *******************************/
6976 static void
ahd_timer_reset(struct timer_list * timer,int usec)6977 ahd_timer_reset(struct timer_list *timer, int usec)
6978 {
6979 del_timer(timer);
6980 timer->expires = jiffies + (usec * HZ)/1000000;
6981 add_timer(timer);
6982 }
6983
6984 /*
6985 * Start the board, ready for normal operation
6986 */
6987 int
ahd_init(struct ahd_softc * ahd)6988 ahd_init(struct ahd_softc *ahd)
6989 {
6990 uint8_t *next_vaddr;
6991 dma_addr_t next_baddr;
6992 size_t driver_data_size;
6993 int i;
6994 int error;
6995 u_int warn_user;
6996 uint8_t current_sensing;
6997 uint8_t fstat;
6998
6999 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7000
7001 ahd->stack_size = ahd_probe_stack_size(ahd);
7002 ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7003 GFP_ATOMIC);
7004 if (ahd->saved_stack == NULL)
7005 return (ENOMEM);
7006
7007 /*
7008 * Verify that the compiler hasn't over-aggressively
7009 * padded important structures.
7010 */
7011 if (sizeof(struct hardware_scb) != 64)
7012 panic("Hardware SCB size is incorrect");
7013
7014 #ifdef AHD_DEBUG
7015 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7016 ahd->flags |= AHD_SEQUENCER_DEBUG;
7017 #endif
7018
7019 /*
7020 * Default to allowing initiator operations.
7021 */
7022 ahd->flags |= AHD_INITIATORROLE;
7023
7024 /*
7025 * Only allow target mode features if this unit has them enabled.
7026 */
7027 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7028 ahd->features &= ~AHD_TARGETMODE;
7029
7030 ahd->init_level++;
7031
7032 /*
7033 * DMA tag for our command fifos and other data in system memory
7034 * the card's sequencer must be able to access. For initiator
7035 * roles, we need to allocate space for the qoutfifo. When providing
7036 * for the target mode role, we must additionally provide space for
7037 * the incoming target command fifo.
7038 */
7039 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7040 + sizeof(struct hardware_scb);
7041 if ((ahd->features & AHD_TARGETMODE) != 0)
7042 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7043 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7044 driver_data_size += PKT_OVERRUN_BUFSIZE;
7045 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7046 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7047 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7048 /*highaddr*/BUS_SPACE_MAXADDR,
7049 /*filter*/NULL, /*filterarg*/NULL,
7050 driver_data_size,
7051 /*nsegments*/1,
7052 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7053 /*flags*/0, &ahd->shared_data_dmat) != 0) {
7054 return (ENOMEM);
7055 }
7056
7057 ahd->init_level++;
7058
7059 /* Allocation of driver data */
7060 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7061 (void **)&ahd->shared_data_map.vaddr,
7062 BUS_DMA_NOWAIT,
7063 &ahd->shared_data_map.dmamap) != 0) {
7064 return (ENOMEM);
7065 }
7066
7067 ahd->init_level++;
7068
7069 /* And permanently map it in */
7070 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7071 ahd->shared_data_map.vaddr, driver_data_size,
7072 ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7073 /*flags*/0);
7074 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7075 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7076 next_baddr = ahd->shared_data_map.physaddr
7077 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7078 if ((ahd->features & AHD_TARGETMODE) != 0) {
7079 ahd->targetcmds = (struct target_cmd *)next_vaddr;
7080 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7081 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7082 }
7083
7084 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7085 ahd->overrun_buf = next_vaddr;
7086 next_vaddr += PKT_OVERRUN_BUFSIZE;
7087 next_baddr += PKT_OVERRUN_BUFSIZE;
7088 }
7089
7090 /*
7091 * We need one SCB to serve as the "next SCB". Since the
7092 * tag identifier in this SCB will never be used, there is
7093 * no point in using a valid HSCB tag from an SCB pulled from
7094 * the standard free pool. So, we allocate this "sentinel"
7095 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7096 */
7097 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7098 ahd->next_queued_hscb_map = &ahd->shared_data_map;
7099 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7100
7101 ahd->init_level++;
7102
7103 /* Allocate SCB data now that buffer_dmat is initialized */
7104 if (ahd_init_scbdata(ahd) != 0)
7105 return (ENOMEM);
7106
7107 if ((ahd->flags & AHD_INITIATORROLE) == 0)
7108 ahd->flags &= ~AHD_RESET_BUS_A;
7109
7110 /*
7111 * Before committing these settings to the chip, give
7112 * the OSM one last chance to modify our configuration.
7113 */
7114 ahd_platform_init(ahd);
7115
7116 /* Bring up the chip. */
7117 ahd_chip_init(ahd);
7118
7119 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7120
7121 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7122 goto init_done;
7123
7124 /*
7125 * Verify termination based on current draw and
7126 * warn user if the bus is over/under terminated.
7127 */
7128 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7129 CURSENSE_ENB);
7130 if (error != 0) {
7131 printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7132 goto init_done;
7133 }
7134 for (i = 20, fstat = FLX_FSTAT_BUSY;
7135 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7136 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7137 if (error != 0) {
7138 printk("%s: current sensing timeout 2\n",
7139 ahd_name(ahd));
7140 goto init_done;
7141 }
7142 }
7143 if (i == 0) {
7144 printk("%s: Timedout during current-sensing test\n",
7145 ahd_name(ahd));
7146 goto init_done;
7147 }
7148
7149 /* Latch Current Sensing status. */
7150 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
7151 if (error != 0) {
7152 printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7153 goto init_done;
7154 }
7155
7156 /* Diable current sensing. */
7157 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7158
7159 #ifdef AHD_DEBUG
7160 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7161 printk("%s: current_sensing == 0x%x\n",
7162 ahd_name(ahd), current_sensing);
7163 }
7164 #endif
7165 warn_user = 0;
7166 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7167 u_int term_stat;
7168
7169 term_stat = (current_sensing & FLX_CSTAT_MASK);
7170 switch (term_stat) {
7171 case FLX_CSTAT_OVER:
7172 case FLX_CSTAT_UNDER:
7173 warn_user++;
7174 fallthrough;
7175 case FLX_CSTAT_INVALID:
7176 case FLX_CSTAT_OKAY:
7177 if (warn_user == 0 && bootverbose == 0)
7178 break;
7179 printk("%s: %s Channel %s\n", ahd_name(ahd),
7180 channel_strings[i], termstat_strings[term_stat]);
7181 break;
7182 }
7183 }
7184 if (warn_user) {
7185 printk("%s: WARNING. Termination is not configured correctly.\n"
7186 "%s: WARNING. SCSI bus operations may FAIL.\n",
7187 ahd_name(ahd), ahd_name(ahd));
7188 }
7189 init_done:
7190 ahd_restart(ahd);
7191 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7192 return (0);
7193 }
7194
7195 /*
7196 * (Re)initialize chip state after a chip reset.
7197 */
7198 static void
ahd_chip_init(struct ahd_softc * ahd)7199 ahd_chip_init(struct ahd_softc *ahd)
7200 {
7201 uint32_t busaddr;
7202 u_int sxfrctl1;
7203 u_int scsiseq_template;
7204 u_int wait;
7205 u_int i;
7206 u_int target;
7207
7208 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7209 /*
7210 * Take the LED out of diagnostic mode
7211 */
7212 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7213
7214 /*
7215 * Return HS_MAILBOX to its default value.
7216 */
7217 ahd->hs_mailbox = 0;
7218 ahd_outb(ahd, HS_MAILBOX, 0);
7219
7220 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7221 ahd_outb(ahd, IOWNID, ahd->our_id);
7222 ahd_outb(ahd, TOWNID, ahd->our_id);
7223 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7224 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7225 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7226 && (ahd->seltime != STIMESEL_MIN)) {
7227 /*
7228 * The selection timer duration is twice as long
7229 * as it should be. Halve it by adding "1" to
7230 * the user specified setting.
7231 */
7232 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7233 } else {
7234 sxfrctl1 |= ahd->seltime;
7235 }
7236
7237 ahd_outb(ahd, SXFRCTL0, DFON);
7238 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7239 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7240
7241 /*
7242 * Now that termination is set, wait for up
7243 * to 500ms for our transceivers to settle. If
7244 * the adapter does not have a cable attached,
7245 * the transceivers may never settle, so don't
7246 * complain if we fail here.
7247 */
7248 for (wait = 10000;
7249 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7250 wait--)
7251 ahd_delay(100);
7252
7253 /* Clear any false bus resets due to the transceivers settling */
7254 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7255 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7256
7257 /* Initialize mode specific S/G state. */
7258 for (i = 0; i < 2; i++) {
7259 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7260 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7261 ahd_outb(ahd, SG_STATE, 0);
7262 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7263 ahd_outb(ahd, SEQIMODE,
7264 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7265 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7266 }
7267
7268 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7269 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7270 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7271 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7272 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7273 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7274 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7275 } else {
7276 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7277 }
7278 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7279 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7280 /*
7281 * Do not issue a target abort when a split completion
7282 * error occurs. Let our PCIX interrupt handler deal
7283 * with it instead. H2A4 Razor #625
7284 */
7285 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7286
7287 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7288 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7289
7290 /*
7291 * Tweak IOCELL settings.
7292 */
7293 if ((ahd->flags & AHD_HP_BOARD) != 0) {
7294 for (i = 0; i < NUMDSPS; i++) {
7295 ahd_outb(ahd, DSPSELECT, i);
7296 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7297 }
7298 #ifdef AHD_DEBUG
7299 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7300 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7301 WRTBIASCTL_HP_DEFAULT);
7302 #endif
7303 }
7304 ahd_setup_iocell_workaround(ahd);
7305
7306 /*
7307 * Enable LQI Manager interrupts.
7308 */
7309 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7310 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7311 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7312 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7313 /*
7314 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7315 * manually for the command phase at the start of a packetized
7316 * selection case. ENLQOBUSFREE should be made redundant by
7317 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7318 * events fail to assert the BUSFREE interrupt so we must
7319 * also enable LQOBUSFREE interrupts.
7320 */
7321 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7322
7323 /*
7324 * Setup sequencer interrupt handlers.
7325 */
7326 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7327 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7328
7329 /*
7330 * Setup SCB Offset registers.
7331 */
7332 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7333 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7334 pkt_long_lun));
7335 } else {
7336 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7337 }
7338 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7339 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7340 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7341 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7342 shared_data.idata.cdb));
7343 ahd_outb(ahd, QNEXTPTR,
7344 offsetof(struct hardware_scb, next_hscb_busaddr));
7345 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7346 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7347 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7348 ahd_outb(ahd, LUNLEN,
7349 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7350 } else {
7351 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7352 }
7353 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7354 ahd_outb(ahd, MAXCMD, 0xFF);
7355 ahd_outb(ahd, SCBAUTOPTR,
7356 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7357
7358 /* We haven't been enabled for target mode yet. */
7359 ahd_outb(ahd, MULTARGID, 0);
7360 ahd_outb(ahd, MULTARGID + 1, 0);
7361
7362 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7363 /* Initialize the negotiation table. */
7364 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7365 /*
7366 * Clear the spare bytes in the neg table to avoid
7367 * spurious parity errors.
7368 */
7369 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7370 ahd_outb(ahd, NEGOADDR, target);
7371 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7372 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7373 ahd_outb(ahd, ANNEXDAT, 0);
7374 }
7375 }
7376 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7377 struct ahd_devinfo devinfo;
7378 struct ahd_initiator_tinfo *tinfo;
7379 struct ahd_tmode_tstate *tstate;
7380
7381 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7382 target, &tstate);
7383 ahd_compile_devinfo(&devinfo, ahd->our_id,
7384 target, CAM_LUN_WILDCARD,
7385 'A', ROLE_INITIATOR);
7386 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7387 }
7388
7389 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7390 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7391
7392 #ifdef NEEDS_MORE_TESTING
7393 /*
7394 * Always enable abort on incoming L_Qs if this feature is
7395 * supported. We use this to catch invalid SCB references.
7396 */
7397 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7398 ahd_outb(ahd, LQCTL1, ABORTPENDING);
7399 else
7400 #endif
7401 ahd_outb(ahd, LQCTL1, 0);
7402
7403 /* All of our queues are empty */
7404 ahd->qoutfifonext = 0;
7405 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7406 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7407 for (i = 0; i < AHD_QOUT_SIZE; i++)
7408 ahd->qoutfifo[i].valid_tag = 0;
7409 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7410
7411 ahd->qinfifonext = 0;
7412 for (i = 0; i < AHD_QIN_SIZE; i++)
7413 ahd->qinfifo[i] = SCB_LIST_NULL;
7414
7415 if ((ahd->features & AHD_TARGETMODE) != 0) {
7416 /* All target command blocks start out invalid. */
7417 for (i = 0; i < AHD_TMODE_CMDS; i++)
7418 ahd->targetcmds[i].cmd_valid = 0;
7419 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7420 ahd->tqinfifonext = 1;
7421 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7422 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7423 }
7424
7425 /* Initialize Scratch Ram. */
7426 ahd_outb(ahd, SEQ_FLAGS, 0);
7427 ahd_outb(ahd, SEQ_FLAGS2, 0);
7428
7429 /* We don't have any waiting selections */
7430 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7431 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7432 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7433 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7434 for (i = 0; i < AHD_NUM_TARGETS; i++)
7435 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7436
7437 /*
7438 * Nobody is waiting to be DMAed into the QOUTFIFO.
7439 */
7440 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7441 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7442 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7443 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7444 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7445
7446 /*
7447 * The Freeze Count is 0.
7448 */
7449 ahd->qfreeze_cnt = 0;
7450 ahd_outw(ahd, QFREEZE_COUNT, 0);
7451 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7452
7453 /*
7454 * Tell the sequencer where it can find our arrays in memory.
7455 */
7456 busaddr = ahd->shared_data_map.physaddr;
7457 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7458 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7459
7460 /*
7461 * Setup the allowed SCSI Sequences based on operational mode.
7462 * If we are a target, we'll enable select in operations once
7463 * we've had a lun enabled.
7464 */
7465 scsiseq_template = ENAUTOATNP;
7466 if ((ahd->flags & AHD_INITIATORROLE) != 0)
7467 scsiseq_template |= ENRSELI;
7468 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7469
7470 /* There are no busy SCBs yet. */
7471 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7472 int lun;
7473
7474 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7475 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7476 }
7477
7478 /*
7479 * Initialize the group code to command length table.
7480 * Vendor Unique codes are set to 0 so we only capture
7481 * the first byte of the cdb. These can be overridden
7482 * when target mode is enabled.
7483 */
7484 ahd_outb(ahd, CMDSIZE_TABLE, 5);
7485 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7486 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7487 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7488 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7489 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7490 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7491 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7492
7493 /* Tell the sequencer of our initial queue positions */
7494 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7495 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7496 ahd->qinfifonext = 0;
7497 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7498 ahd_set_hescb_qoff(ahd, 0);
7499 ahd_set_snscb_qoff(ahd, 0);
7500 ahd_set_sescb_qoff(ahd, 0);
7501 ahd_set_sdscb_qoff(ahd, 0);
7502
7503 /*
7504 * Tell the sequencer which SCB will be the next one it receives.
7505 */
7506 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7507 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7508
7509 /*
7510 * Default to coalescing disabled.
7511 */
7512 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7513 ahd_outw(ahd, CMDS_PENDING, 0);
7514 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7515 ahd->int_coalescing_maxcmds,
7516 ahd->int_coalescing_mincmds);
7517 ahd_enable_coalescing(ahd, FALSE);
7518
7519 ahd_loadseq(ahd);
7520 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7521
7522 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7523 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7524
7525 negodat3 |= ENSLOWCRC;
7526 ahd_outb(ahd, NEGCONOPTS, negodat3);
7527 negodat3 = ahd_inb(ahd, NEGCONOPTS);
7528 if (!(negodat3 & ENSLOWCRC))
7529 printk("aic79xx: failed to set the SLOWCRC bit\n");
7530 else
7531 printk("aic79xx: SLOWCRC bit set\n");
7532 }
7533 }
7534
7535 /*
7536 * Setup default device and controller settings.
7537 * This should only be called if our probe has
7538 * determined that no configuration data is available.
7539 */
7540 int
ahd_default_config(struct ahd_softc * ahd)7541 ahd_default_config(struct ahd_softc *ahd)
7542 {
7543 int targ;
7544
7545 ahd->our_id = 7;
7546
7547 /*
7548 * Allocate a tstate to house information for our
7549 * initiator presence on the bus as well as the user
7550 * data for any target mode initiator.
7551 */
7552 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7553 printk("%s: unable to allocate ahd_tmode_tstate. "
7554 "Failing attach\n", ahd_name(ahd));
7555 return (ENOMEM);
7556 }
7557
7558 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7559 struct ahd_devinfo devinfo;
7560 struct ahd_initiator_tinfo *tinfo;
7561 struct ahd_tmode_tstate *tstate;
7562 uint16_t target_mask;
7563
7564 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7565 targ, &tstate);
7566 /*
7567 * We support SPC2 and SPI4.
7568 */
7569 tinfo->user.protocol_version = 4;
7570 tinfo->user.transport_version = 4;
7571
7572 target_mask = 0x01 << targ;
7573 ahd->user_discenable |= target_mask;
7574 tstate->discenable |= target_mask;
7575 ahd->user_tagenable |= target_mask;
7576 #ifdef AHD_FORCE_160
7577 tinfo->user.period = AHD_SYNCRATE_DT;
7578 #else
7579 tinfo->user.period = AHD_SYNCRATE_160;
7580 #endif
7581 tinfo->user.offset = MAX_OFFSET;
7582 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7583 | MSG_EXT_PPR_WR_FLOW
7584 | MSG_EXT_PPR_HOLD_MCS
7585 | MSG_EXT_PPR_IU_REQ
7586 | MSG_EXT_PPR_QAS_REQ
7587 | MSG_EXT_PPR_DT_REQ;
7588 if ((ahd->features & AHD_RTI) != 0)
7589 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7590
7591 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7592
7593 /*
7594 * Start out Async/Narrow/Untagged and with
7595 * conservative protocol support.
7596 */
7597 tinfo->goal.protocol_version = 2;
7598 tinfo->goal.transport_version = 2;
7599 tinfo->curr.protocol_version = 2;
7600 tinfo->curr.transport_version = 2;
7601 ahd_compile_devinfo(&devinfo, ahd->our_id,
7602 targ, CAM_LUN_WILDCARD,
7603 'A', ROLE_INITIATOR);
7604 tstate->tagenable &= ~target_mask;
7605 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7606 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7607 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7608 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7609 /*paused*/TRUE);
7610 }
7611 return (0);
7612 }
7613
7614 /*
7615 * Parse device configuration information.
7616 */
7617 int
ahd_parse_cfgdata(struct ahd_softc * ahd,struct seeprom_config * sc)7618 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7619 {
7620 int targ;
7621 int max_targ;
7622
7623 max_targ = sc->max_targets & CFMAXTARG;
7624 ahd->our_id = sc->brtime_id & CFSCSIID;
7625
7626 /*
7627 * Allocate a tstate to house information for our
7628 * initiator presence on the bus as well as the user
7629 * data for any target mode initiator.
7630 */
7631 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7632 printk("%s: unable to allocate ahd_tmode_tstate. "
7633 "Failing attach\n", ahd_name(ahd));
7634 return (ENOMEM);
7635 }
7636
7637 for (targ = 0; targ < max_targ; targ++) {
7638 struct ahd_devinfo devinfo;
7639 struct ahd_initiator_tinfo *tinfo;
7640 struct ahd_transinfo *user_tinfo;
7641 struct ahd_tmode_tstate *tstate;
7642 uint16_t target_mask;
7643
7644 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7645 targ, &tstate);
7646 user_tinfo = &tinfo->user;
7647
7648 /*
7649 * We support SPC2 and SPI4.
7650 */
7651 tinfo->user.protocol_version = 4;
7652 tinfo->user.transport_version = 4;
7653
7654 target_mask = 0x01 << targ;
7655 ahd->user_discenable &= ~target_mask;
7656 tstate->discenable &= ~target_mask;
7657 ahd->user_tagenable &= ~target_mask;
7658 if (sc->device_flags[targ] & CFDISC) {
7659 tstate->discenable |= target_mask;
7660 ahd->user_discenable |= target_mask;
7661 ahd->user_tagenable |= target_mask;
7662 } else {
7663 /*
7664 * Cannot be packetized without disconnection.
7665 */
7666 sc->device_flags[targ] &= ~CFPACKETIZED;
7667 }
7668
7669 user_tinfo->ppr_options = 0;
7670 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7671 if (user_tinfo->period < CFXFER_ASYNC) {
7672 if (user_tinfo->period <= AHD_PERIOD_10MHz)
7673 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7674 user_tinfo->offset = MAX_OFFSET;
7675 } else {
7676 user_tinfo->offset = 0;
7677 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7678 }
7679 #ifdef AHD_FORCE_160
7680 if (user_tinfo->period <= AHD_SYNCRATE_160)
7681 user_tinfo->period = AHD_SYNCRATE_DT;
7682 #endif
7683
7684 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7685 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7686 | MSG_EXT_PPR_WR_FLOW
7687 | MSG_EXT_PPR_HOLD_MCS
7688 | MSG_EXT_PPR_IU_REQ;
7689 if ((ahd->features & AHD_RTI) != 0)
7690 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7691 }
7692
7693 if ((sc->device_flags[targ] & CFQAS) != 0)
7694 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7695
7696 if ((sc->device_flags[targ] & CFWIDEB) != 0)
7697 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7698 else
7699 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7700 #ifdef AHD_DEBUG
7701 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7702 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7703 user_tinfo->period, user_tinfo->offset,
7704 user_tinfo->ppr_options);
7705 #endif
7706 /*
7707 * Start out Async/Narrow/Untagged and with
7708 * conservative protocol support.
7709 */
7710 tstate->tagenable &= ~target_mask;
7711 tinfo->goal.protocol_version = 2;
7712 tinfo->goal.transport_version = 2;
7713 tinfo->curr.protocol_version = 2;
7714 tinfo->curr.transport_version = 2;
7715 ahd_compile_devinfo(&devinfo, ahd->our_id,
7716 targ, CAM_LUN_WILDCARD,
7717 'A', ROLE_INITIATOR);
7718 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7719 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7720 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7721 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7722 /*paused*/TRUE);
7723 }
7724
7725 ahd->flags &= ~AHD_SPCHK_ENB_A;
7726 if (sc->bios_control & CFSPARITY)
7727 ahd->flags |= AHD_SPCHK_ENB_A;
7728
7729 ahd->flags &= ~AHD_RESET_BUS_A;
7730 if (sc->bios_control & CFRESETB)
7731 ahd->flags |= AHD_RESET_BUS_A;
7732
7733 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7734 if (sc->bios_control & CFEXTEND)
7735 ahd->flags |= AHD_EXTENDED_TRANS_A;
7736
7737 ahd->flags &= ~AHD_BIOS_ENABLED;
7738 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7739 ahd->flags |= AHD_BIOS_ENABLED;
7740
7741 ahd->flags &= ~AHD_STPWLEVEL_A;
7742 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7743 ahd->flags |= AHD_STPWLEVEL_A;
7744
7745 return (0);
7746 }
7747
7748 /*
7749 * Parse device configuration information.
7750 */
7751 int
ahd_parse_vpddata(struct ahd_softc * ahd,struct vpd_config * vpd)7752 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7753 {
7754 int error;
7755
7756 error = ahd_verify_vpd_cksum(vpd);
7757 if (error == 0)
7758 return (EINVAL);
7759 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7760 ahd->flags |= AHD_BOOT_CHANNEL;
7761 return (0);
7762 }
7763
7764 void
ahd_intr_enable(struct ahd_softc * ahd,int enable)7765 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7766 {
7767 u_int hcntrl;
7768
7769 hcntrl = ahd_inb(ahd, HCNTRL);
7770 hcntrl &= ~INTEN;
7771 ahd->pause &= ~INTEN;
7772 ahd->unpause &= ~INTEN;
7773 if (enable) {
7774 hcntrl |= INTEN;
7775 ahd->pause |= INTEN;
7776 ahd->unpause |= INTEN;
7777 }
7778 ahd_outb(ahd, HCNTRL, hcntrl);
7779 }
7780
7781 static void
ahd_update_coalescing_values(struct ahd_softc * ahd,u_int timer,u_int maxcmds,u_int mincmds)7782 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7783 u_int mincmds)
7784 {
7785 if (timer > AHD_TIMER_MAX_US)
7786 timer = AHD_TIMER_MAX_US;
7787 ahd->int_coalescing_timer = timer;
7788
7789 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7790 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7791 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7792 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7793 ahd->int_coalescing_maxcmds = maxcmds;
7794 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7795 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7796 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7797 }
7798
7799 static void
ahd_enable_coalescing(struct ahd_softc * ahd,int enable)7800 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7801 {
7802
7803 ahd->hs_mailbox &= ~ENINT_COALESCE;
7804 if (enable)
7805 ahd->hs_mailbox |= ENINT_COALESCE;
7806 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7807 ahd_flush_device_writes(ahd);
7808 ahd_run_qoutfifo(ahd);
7809 }
7810
7811 /*
7812 * Ensure that the card is paused in a location
7813 * outside of all critical sections and that all
7814 * pending work is completed prior to returning.
7815 * This routine should only be called from outside
7816 * an interrupt context.
7817 */
7818 void
ahd_pause_and_flushwork(struct ahd_softc * ahd)7819 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7820 {
7821 u_int intstat;
7822 u_int maxloops;
7823
7824 maxloops = 1000;
7825 ahd->flags |= AHD_ALL_INTERRUPTS;
7826 ahd_pause(ahd);
7827 /*
7828 * Freeze the outgoing selections. We do this only
7829 * until we are safely paused without further selections
7830 * pending.
7831 */
7832 ahd->qfreeze_cnt--;
7833 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7834 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7835 do {
7836
7837 ahd_unpause(ahd);
7838 /*
7839 * Give the sequencer some time to service
7840 * any active selections.
7841 */
7842 ahd_delay(500);
7843
7844 ahd_intr(ahd);
7845 ahd_pause(ahd);
7846 intstat = ahd_inb(ahd, INTSTAT);
7847 if ((intstat & INT_PEND) == 0) {
7848 ahd_clear_critical_section(ahd);
7849 intstat = ahd_inb(ahd, INTSTAT);
7850 }
7851 } while (--maxloops
7852 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7853 && ((intstat & INT_PEND) != 0
7854 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7855 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7856
7857 if (maxloops == 0) {
7858 printk("Infinite interrupt loop, INTSTAT = %x",
7859 ahd_inb(ahd, INTSTAT));
7860 }
7861 ahd->qfreeze_cnt++;
7862 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7863
7864 ahd_flush_qoutfifo(ahd);
7865
7866 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7867 }
7868
7869 #ifdef CONFIG_PM
7870 int
ahd_suspend(struct ahd_softc * ahd)7871 ahd_suspend(struct ahd_softc *ahd)
7872 {
7873
7874 ahd_pause_and_flushwork(ahd);
7875
7876 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7877 ahd_unpause(ahd);
7878 return (EBUSY);
7879 }
7880 ahd_shutdown(ahd);
7881 return (0);
7882 }
7883
7884 void
ahd_resume(struct ahd_softc * ahd)7885 ahd_resume(struct ahd_softc *ahd)
7886 {
7887
7888 ahd_reset(ahd, /*reinit*/TRUE);
7889 ahd_intr_enable(ahd, TRUE);
7890 ahd_restart(ahd);
7891 }
7892 #endif
7893
7894 /************************** Busy Target Table *********************************/
7895 /*
7896 * Set SCBPTR to the SCB that contains the busy
7897 * table entry for TCL. Return the offset into
7898 * the SCB that contains the entry for TCL.
7899 * saved_scbid is dereferenced and set to the
7900 * scbid that should be restored once manipualtion
7901 * of the TCL entry is complete.
7902 */
7903 static inline u_int
ahd_index_busy_tcl(struct ahd_softc * ahd,u_int * saved_scbid,u_int tcl)7904 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7905 {
7906 /*
7907 * Index to the SCB that contains the busy entry.
7908 */
7909 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7910 *saved_scbid = ahd_get_scbptr(ahd);
7911 ahd_set_scbptr(ahd, TCL_LUN(tcl)
7912 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7913
7914 /*
7915 * And now calculate the SCB offset to the entry.
7916 * Each entry is 2 bytes wide, hence the
7917 * multiplication by 2.
7918 */
7919 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7920 }
7921
7922 /*
7923 * Return the untagged transaction id for a given target/channel lun.
7924 */
7925 static u_int
ahd_find_busy_tcl(struct ahd_softc * ahd,u_int tcl)7926 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7927 {
7928 u_int scbid;
7929 u_int scb_offset;
7930 u_int saved_scbptr;
7931
7932 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7933 scbid = ahd_inw_scbram(ahd, scb_offset);
7934 ahd_set_scbptr(ahd, saved_scbptr);
7935 return (scbid);
7936 }
7937
7938 static void
ahd_busy_tcl(struct ahd_softc * ahd,u_int tcl,u_int scbid)7939 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7940 {
7941 u_int scb_offset;
7942 u_int saved_scbptr;
7943
7944 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7945 ahd_outw(ahd, scb_offset, scbid);
7946 ahd_set_scbptr(ahd, saved_scbptr);
7947 }
7948
7949 /************************** SCB and SCB queue management **********************/
7950 static int
ahd_match_scb(struct ahd_softc * ahd,struct scb * scb,int target,char channel,int lun,u_int tag,role_t role)7951 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7952 char channel, int lun, u_int tag, role_t role)
7953 {
7954 int targ = SCB_GET_TARGET(ahd, scb);
7955 char chan = SCB_GET_CHANNEL(ahd, scb);
7956 int slun = SCB_GET_LUN(scb);
7957 int match;
7958
7959 match = ((chan == channel) || (channel == ALL_CHANNELS));
7960 if (match != 0)
7961 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7962 if (match != 0)
7963 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7964 if (match != 0) {
7965 #ifdef AHD_TARGET_MODE
7966 int group;
7967
7968 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7969 if (role == ROLE_INITIATOR) {
7970 match = (group != XPT_FC_GROUP_TMODE)
7971 && ((tag == SCB_GET_TAG(scb))
7972 || (tag == SCB_LIST_NULL));
7973 } else if (role == ROLE_TARGET) {
7974 match = (group == XPT_FC_GROUP_TMODE)
7975 && ((tag == scb->io_ctx->csio.tag_id)
7976 || (tag == SCB_LIST_NULL));
7977 }
7978 #else /* !AHD_TARGET_MODE */
7979 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7980 #endif /* AHD_TARGET_MODE */
7981 }
7982
7983 return match;
7984 }
7985
7986 static void
ahd_freeze_devq(struct ahd_softc * ahd,struct scb * scb)7987 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7988 {
7989 int target;
7990 char channel;
7991 int lun;
7992
7993 target = SCB_GET_TARGET(ahd, scb);
7994 lun = SCB_GET_LUN(scb);
7995 channel = SCB_GET_CHANNEL(ahd, scb);
7996
7997 ahd_search_qinfifo(ahd, target, channel, lun,
7998 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7999 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8000
8001 ahd_platform_freeze_devq(ahd, scb);
8002 }
8003
8004 void
ahd_qinfifo_requeue_tail(struct ahd_softc * ahd,struct scb * scb)8005 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8006 {
8007 struct scb *prev_scb;
8008 ahd_mode_state saved_modes;
8009
8010 saved_modes = ahd_save_modes(ahd);
8011 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8012 prev_scb = NULL;
8013 if (ahd_qinfifo_count(ahd) != 0) {
8014 u_int prev_tag;
8015 u_int prev_pos;
8016
8017 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8018 prev_tag = ahd->qinfifo[prev_pos];
8019 prev_scb = ahd_lookup_scb(ahd, prev_tag);
8020 }
8021 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8022 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8023 ahd_restore_modes(ahd, saved_modes);
8024 }
8025
8026 static void
ahd_qinfifo_requeue(struct ahd_softc * ahd,struct scb * prev_scb,struct scb * scb)8027 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8028 struct scb *scb)
8029 {
8030 if (prev_scb == NULL) {
8031 uint32_t busaddr;
8032
8033 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8034 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8035 } else {
8036 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8037 ahd_sync_scb(ahd, prev_scb,
8038 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8039 }
8040 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8041 ahd->qinfifonext++;
8042 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8043 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8044 }
8045
8046 static int
ahd_qinfifo_count(struct ahd_softc * ahd)8047 ahd_qinfifo_count(struct ahd_softc *ahd)
8048 {
8049 u_int qinpos;
8050 u_int wrap_qinpos;
8051 u_int wrap_qinfifonext;
8052
8053 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8054 qinpos = ahd_get_snscb_qoff(ahd);
8055 wrap_qinpos = AHD_QIN_WRAP(qinpos);
8056 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8057 if (wrap_qinfifonext >= wrap_qinpos)
8058 return (wrap_qinfifonext - wrap_qinpos);
8059 else
8060 return (wrap_qinfifonext
8061 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8062 }
8063
8064 static void
ahd_reset_cmds_pending(struct ahd_softc * ahd)8065 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8066 {
8067 struct scb *scb;
8068 ahd_mode_state saved_modes;
8069 u_int pending_cmds;
8070
8071 saved_modes = ahd_save_modes(ahd);
8072 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8073
8074 /*
8075 * Don't count any commands as outstanding that the
8076 * sequencer has already marked for completion.
8077 */
8078 ahd_flush_qoutfifo(ahd);
8079
8080 pending_cmds = 0;
8081 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8082 pending_cmds++;
8083 }
8084 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8085 ahd_restore_modes(ahd, saved_modes);
8086 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8087 }
8088
8089 static void
ahd_done_with_status(struct ahd_softc * ahd,struct scb * scb,uint32_t status)8090 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8091 {
8092 cam_status ostat;
8093 cam_status cstat;
8094
8095 ostat = ahd_get_transaction_status(scb);
8096 if (ostat == CAM_REQ_INPROG)
8097 ahd_set_transaction_status(scb, status);
8098 cstat = ahd_get_transaction_status(scb);
8099 if (cstat != CAM_REQ_CMP)
8100 ahd_freeze_scb(scb);
8101 ahd_done(ahd, scb);
8102 }
8103
8104 int
ahd_search_qinfifo(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action)8105 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8106 int lun, u_int tag, role_t role, uint32_t status,
8107 ahd_search_action action)
8108 {
8109 struct scb *scb;
8110 struct scb *mk_msg_scb;
8111 struct scb *prev_scb;
8112 ahd_mode_state saved_modes;
8113 u_int qinstart;
8114 u_int qinpos;
8115 u_int qintail;
8116 u_int tid_next;
8117 u_int tid_prev;
8118 u_int scbid;
8119 u_int seq_flags2;
8120 u_int savedscbptr;
8121 uint32_t busaddr;
8122 int found;
8123 int targets;
8124
8125 /* Must be in CCHAN mode */
8126 saved_modes = ahd_save_modes(ahd);
8127 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8128
8129 /*
8130 * Halt any pending SCB DMA. The sequencer will reinitiate
8131 * this dma if the qinfifo is not empty once we unpause.
8132 */
8133 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8134 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8135 ahd_outb(ahd, CCSCBCTL,
8136 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8137 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8138 ;
8139 }
8140 /* Determine sequencer's position in the qinfifo. */
8141 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8142 qinstart = ahd_get_snscb_qoff(ahd);
8143 qinpos = AHD_QIN_WRAP(qinstart);
8144 found = 0;
8145 prev_scb = NULL;
8146
8147 if (action == SEARCH_PRINT) {
8148 printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8149 qinstart, ahd->qinfifonext);
8150 }
8151
8152 /*
8153 * Start with an empty queue. Entries that are not chosen
8154 * for removal will be re-added to the queue as we go.
8155 */
8156 ahd->qinfifonext = qinstart;
8157 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8158 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8159
8160 while (qinpos != qintail) {
8161 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8162 if (scb == NULL) {
8163 printk("qinpos = %d, SCB index = %d\n",
8164 qinpos, ahd->qinfifo[qinpos]);
8165 panic("Loop 1\n");
8166 }
8167
8168 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8169 /*
8170 * We found an scb that needs to be acted on.
8171 */
8172 found++;
8173 switch (action) {
8174 case SEARCH_COMPLETE:
8175 if ((scb->flags & SCB_ACTIVE) == 0)
8176 printk("Inactive SCB in qinfifo\n");
8177 ahd_done_with_status(ahd, scb, status);
8178 fallthrough;
8179 case SEARCH_REMOVE:
8180 break;
8181 case SEARCH_PRINT:
8182 printk(" 0x%x", ahd->qinfifo[qinpos]);
8183 fallthrough;
8184 case SEARCH_COUNT:
8185 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8186 prev_scb = scb;
8187 break;
8188 }
8189 } else {
8190 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8191 prev_scb = scb;
8192 }
8193 qinpos = AHD_QIN_WRAP(qinpos+1);
8194 }
8195
8196 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8197
8198 if (action == SEARCH_PRINT)
8199 printk("\nWAITING_TID_QUEUES:\n");
8200
8201 /*
8202 * Search waiting for selection lists. We traverse the
8203 * list of "their ids" waiting for selection and, if
8204 * appropriate, traverse the SCBs of each "their id"
8205 * looking for matches.
8206 */
8207 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8208 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8209 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8210 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8211 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8212 } else
8213 mk_msg_scb = NULL;
8214 savedscbptr = ahd_get_scbptr(ahd);
8215 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8216 tid_prev = SCB_LIST_NULL;
8217 targets = 0;
8218 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8219 u_int tid_head;
8220 u_int tid_tail;
8221
8222 targets++;
8223 if (targets > AHD_NUM_TARGETS)
8224 panic("TID LIST LOOP");
8225
8226 if (scbid >= ahd->scb_data.numscbs) {
8227 printk("%s: Waiting TID List inconsistency. "
8228 "SCB index == 0x%x, yet numscbs == 0x%x.",
8229 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8230 ahd_dump_card_state(ahd);
8231 panic("for safety");
8232 }
8233 scb = ahd_lookup_scb(ahd, scbid);
8234 if (scb == NULL) {
8235 printk("%s: SCB = 0x%x Not Active!\n",
8236 ahd_name(ahd), scbid);
8237 panic("Waiting TID List traversal\n");
8238 }
8239 ahd_set_scbptr(ahd, scbid);
8240 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8241 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8242 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8243 tid_prev = scbid;
8244 continue;
8245 }
8246
8247 /*
8248 * We found a list of scbs that needs to be searched.
8249 */
8250 if (action == SEARCH_PRINT)
8251 printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8252 tid_head = scbid;
8253 found += ahd_search_scb_list(ahd, target, channel,
8254 lun, tag, role, status,
8255 action, &tid_head, &tid_tail,
8256 SCB_GET_TARGET(ahd, scb));
8257 /*
8258 * Check any MK_MESSAGE SCB that is still waiting to
8259 * enter this target's waiting for selection queue.
8260 */
8261 if (mk_msg_scb != NULL
8262 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8263 lun, tag, role)) {
8264
8265 /*
8266 * We found an scb that needs to be acted on.
8267 */
8268 found++;
8269 switch (action) {
8270 case SEARCH_COMPLETE:
8271 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8272 printk("Inactive SCB pending MK_MSG\n");
8273 ahd_done_with_status(ahd, mk_msg_scb, status);
8274 fallthrough;
8275 case SEARCH_REMOVE:
8276 {
8277 u_int tail_offset;
8278
8279 printk("Removing MK_MSG scb\n");
8280
8281 /*
8282 * Reset our tail to the tail of the
8283 * main per-target list.
8284 */
8285 tail_offset = WAITING_SCB_TAILS
8286 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8287 ahd_outw(ahd, tail_offset, tid_tail);
8288
8289 seq_flags2 &= ~PENDING_MK_MESSAGE;
8290 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8291 ahd_outw(ahd, CMDS_PENDING,
8292 ahd_inw(ahd, CMDS_PENDING)-1);
8293 mk_msg_scb = NULL;
8294 break;
8295 }
8296 case SEARCH_PRINT:
8297 printk(" 0x%x", SCB_GET_TAG(scb));
8298 fallthrough;
8299 case SEARCH_COUNT:
8300 break;
8301 }
8302 }
8303
8304 if (mk_msg_scb != NULL
8305 && SCBID_IS_NULL(tid_head)
8306 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8307 SCB_LIST_NULL, ROLE_UNKNOWN)) {
8308
8309 /*
8310 * When removing the last SCB for a target
8311 * queue with a pending MK_MESSAGE scb, we
8312 * must queue the MK_MESSAGE scb.
8313 */
8314 printk("Queueing mk_msg_scb\n");
8315 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8316 seq_flags2 &= ~PENDING_MK_MESSAGE;
8317 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8318 mk_msg_scb = NULL;
8319 }
8320 if (tid_head != scbid)
8321 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8322 if (!SCBID_IS_NULL(tid_head))
8323 tid_prev = tid_head;
8324 if (action == SEARCH_PRINT)
8325 printk(")\n");
8326 }
8327
8328 /* Restore saved state. */
8329 ahd_set_scbptr(ahd, savedscbptr);
8330 ahd_restore_modes(ahd, saved_modes);
8331 return (found);
8332 }
8333
8334 static int
ahd_search_scb_list(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action,u_int * list_head,u_int * list_tail,u_int tid)8335 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8336 int lun, u_int tag, role_t role, uint32_t status,
8337 ahd_search_action action, u_int *list_head,
8338 u_int *list_tail, u_int tid)
8339 {
8340 struct scb *scb;
8341 u_int scbid;
8342 u_int next;
8343 u_int prev;
8344 int found;
8345
8346 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8347 found = 0;
8348 prev = SCB_LIST_NULL;
8349 next = *list_head;
8350 *list_tail = SCB_LIST_NULL;
8351 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8352 if (scbid >= ahd->scb_data.numscbs) {
8353 printk("%s:SCB List inconsistency. "
8354 "SCB == 0x%x, yet numscbs == 0x%x.",
8355 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8356 ahd_dump_card_state(ahd);
8357 panic("for safety");
8358 }
8359 scb = ahd_lookup_scb(ahd, scbid);
8360 if (scb == NULL) {
8361 printk("%s: SCB = %d Not Active!\n",
8362 ahd_name(ahd), scbid);
8363 panic("Waiting List traversal\n");
8364 }
8365 ahd_set_scbptr(ahd, scbid);
8366 *list_tail = scbid;
8367 next = ahd_inw_scbram(ahd, SCB_NEXT);
8368 if (ahd_match_scb(ahd, scb, target, channel,
8369 lun, SCB_LIST_NULL, role) == 0) {
8370 prev = scbid;
8371 continue;
8372 }
8373 found++;
8374 switch (action) {
8375 case SEARCH_COMPLETE:
8376 if ((scb->flags & SCB_ACTIVE) == 0)
8377 printk("Inactive SCB in Waiting List\n");
8378 ahd_done_with_status(ahd, scb, status);
8379 fallthrough;
8380 case SEARCH_REMOVE:
8381 ahd_rem_wscb(ahd, scbid, prev, next, tid);
8382 *list_tail = prev;
8383 if (SCBID_IS_NULL(prev))
8384 *list_head = next;
8385 break;
8386 case SEARCH_PRINT:
8387 printk("0x%x ", scbid);
8388 fallthrough;
8389 case SEARCH_COUNT:
8390 prev = scbid;
8391 break;
8392 }
8393 if (found > AHD_SCB_MAX)
8394 panic("SCB LIST LOOP");
8395 }
8396 if (action == SEARCH_COMPLETE
8397 || action == SEARCH_REMOVE)
8398 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8399 return (found);
8400 }
8401
8402 static void
ahd_stitch_tid_list(struct ahd_softc * ahd,u_int tid_prev,u_int tid_cur,u_int tid_next)8403 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8404 u_int tid_cur, u_int tid_next)
8405 {
8406 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8407
8408 if (SCBID_IS_NULL(tid_cur)) {
8409
8410 /* Bypass current TID list */
8411 if (SCBID_IS_NULL(tid_prev)) {
8412 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8413 } else {
8414 ahd_set_scbptr(ahd, tid_prev);
8415 ahd_outw(ahd, SCB_NEXT2, tid_next);
8416 }
8417 if (SCBID_IS_NULL(tid_next))
8418 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8419 } else {
8420
8421 /* Stitch through tid_cur */
8422 if (SCBID_IS_NULL(tid_prev)) {
8423 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8424 } else {
8425 ahd_set_scbptr(ahd, tid_prev);
8426 ahd_outw(ahd, SCB_NEXT2, tid_cur);
8427 }
8428 ahd_set_scbptr(ahd, tid_cur);
8429 ahd_outw(ahd, SCB_NEXT2, tid_next);
8430
8431 if (SCBID_IS_NULL(tid_next))
8432 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8433 }
8434 }
8435
8436 /*
8437 * Manipulate the waiting for selection list and return the
8438 * scb that follows the one that we remove.
8439 */
8440 static u_int
ahd_rem_wscb(struct ahd_softc * ahd,u_int scbid,u_int prev,u_int next,u_int tid)8441 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8442 u_int prev, u_int next, u_int tid)
8443 {
8444 u_int tail_offset;
8445
8446 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8447 if (!SCBID_IS_NULL(prev)) {
8448 ahd_set_scbptr(ahd, prev);
8449 ahd_outw(ahd, SCB_NEXT, next);
8450 }
8451
8452 /*
8453 * SCBs that have MK_MESSAGE set in them may
8454 * cause the tail pointer to be updated without
8455 * setting the next pointer of the previous tail.
8456 * Only clear the tail if the removed SCB was
8457 * the tail.
8458 */
8459 tail_offset = WAITING_SCB_TAILS + (2 * tid);
8460 if (SCBID_IS_NULL(next)
8461 && ahd_inw(ahd, tail_offset) == scbid)
8462 ahd_outw(ahd, tail_offset, prev);
8463
8464 ahd_add_scb_to_free_list(ahd, scbid);
8465 return (next);
8466 }
8467
8468 /*
8469 * Add the SCB as selected by SCBPTR onto the on chip list of
8470 * free hardware SCBs. This list is empty/unused if we are not
8471 * performing SCB paging.
8472 */
8473 static void
ahd_add_scb_to_free_list(struct ahd_softc * ahd,u_int scbid)8474 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8475 {
8476 /* XXX Need some other mechanism to designate "free". */
8477 /*
8478 * Invalidate the tag so that our abort
8479 * routines don't think it's active.
8480 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8481 */
8482 }
8483
8484 /******************************** Error Handling ******************************/
8485 /*
8486 * Abort all SCBs that match the given description (target/channel/lun/tag),
8487 * setting their status to the passed in status if the status has not already
8488 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8489 * is paused before it is called.
8490 */
8491 static int
ahd_abort_scbs(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)8492 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8493 int lun, u_int tag, role_t role, uint32_t status)
8494 {
8495 struct scb *scbp;
8496 struct scb *scbp_next;
8497 u_int i, j;
8498 u_int maxtarget;
8499 u_int minlun;
8500 u_int maxlun;
8501 int found;
8502 ahd_mode_state saved_modes;
8503
8504 /* restore this when we're done */
8505 saved_modes = ahd_save_modes(ahd);
8506 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8507
8508 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8509 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8510
8511 /*
8512 * Clean out the busy target table for any untagged commands.
8513 */
8514 i = 0;
8515 maxtarget = 16;
8516 if (target != CAM_TARGET_WILDCARD) {
8517 i = target;
8518 if (channel == 'B')
8519 i += 8;
8520 maxtarget = i + 1;
8521 }
8522
8523 if (lun == CAM_LUN_WILDCARD) {
8524 minlun = 0;
8525 maxlun = AHD_NUM_LUNS_NONPKT;
8526 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8527 minlun = maxlun = 0;
8528 } else {
8529 minlun = lun;
8530 maxlun = lun + 1;
8531 }
8532
8533 if (role != ROLE_TARGET) {
8534 for (;i < maxtarget; i++) {
8535 for (j = minlun;j < maxlun; j++) {
8536 u_int scbid;
8537 u_int tcl;
8538
8539 tcl = BUILD_TCL_RAW(i, 'A', j);
8540 scbid = ahd_find_busy_tcl(ahd, tcl);
8541 scbp = ahd_lookup_scb(ahd, scbid);
8542 if (scbp == NULL
8543 || ahd_match_scb(ahd, scbp, target, channel,
8544 lun, tag, role) == 0)
8545 continue;
8546 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8547 }
8548 }
8549 }
8550
8551 /*
8552 * Don't abort commands that have already completed,
8553 * but haven't quite made it up to the host yet.
8554 */
8555 ahd_flush_qoutfifo(ahd);
8556
8557 /*
8558 * Go through the pending CCB list and look for
8559 * commands for this target that are still active.
8560 * These are other tagged commands that were
8561 * disconnected when the reset occurred.
8562 */
8563 scbp_next = LIST_FIRST(&ahd->pending_scbs);
8564 while (scbp_next != NULL) {
8565 scbp = scbp_next;
8566 scbp_next = LIST_NEXT(scbp, pending_links);
8567 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8568 cam_status ostat;
8569
8570 ostat = ahd_get_transaction_status(scbp);
8571 if (ostat == CAM_REQ_INPROG)
8572 ahd_set_transaction_status(scbp, status);
8573 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8574 ahd_freeze_scb(scbp);
8575 if ((scbp->flags & SCB_ACTIVE) == 0)
8576 printk("Inactive SCB on pending list\n");
8577 ahd_done(ahd, scbp);
8578 found++;
8579 }
8580 }
8581 ahd_restore_modes(ahd, saved_modes);
8582 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8583 ahd->flags |= AHD_UPDATE_PEND_CMDS;
8584 return found;
8585 }
8586
8587 static void
ahd_reset_current_bus(struct ahd_softc * ahd)8588 ahd_reset_current_bus(struct ahd_softc *ahd)
8589 {
8590 uint8_t scsiseq;
8591
8592 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8593 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8594 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8595 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8596 ahd_flush_device_writes(ahd);
8597 ahd_delay(AHD_BUSRESET_DELAY);
8598 /* Turn off the bus reset */
8599 ahd_outb(ahd, SCSISEQ0, scsiseq);
8600 ahd_flush_device_writes(ahd);
8601 ahd_delay(AHD_BUSRESET_DELAY);
8602 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8603 /*
8604 * 2A Razor #474
8605 * Certain chip state is not cleared for
8606 * SCSI bus resets that we initiate, so
8607 * we must reset the chip.
8608 */
8609 ahd_reset(ahd, /*reinit*/TRUE);
8610 ahd_intr_enable(ahd, /*enable*/TRUE);
8611 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8612 }
8613
8614 ahd_clear_intstat(ahd);
8615 }
8616
8617 int
ahd_reset_channel(struct ahd_softc * ahd,char channel,int initiate_reset)8618 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8619 {
8620 struct ahd_devinfo caminfo;
8621 u_int initiator;
8622 u_int target;
8623 u_int max_scsiid;
8624 int found;
8625 u_int fifo;
8626 u_int next_fifo;
8627 uint8_t scsiseq;
8628
8629 /*
8630 * Check if the last bus reset is cleared
8631 */
8632 if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8633 printk("%s: bus reset still active\n",
8634 ahd_name(ahd));
8635 return 0;
8636 }
8637 ahd->flags |= AHD_BUS_RESET_ACTIVE;
8638
8639 ahd->pending_device = NULL;
8640
8641 ahd_compile_devinfo(&caminfo,
8642 CAM_TARGET_WILDCARD,
8643 CAM_TARGET_WILDCARD,
8644 CAM_LUN_WILDCARD,
8645 channel, ROLE_UNKNOWN);
8646 ahd_pause(ahd);
8647
8648 /* Make sure the sequencer is in a safe location. */
8649 ahd_clear_critical_section(ahd);
8650
8651 /*
8652 * Run our command complete fifos to ensure that we perform
8653 * completion processing on any commands that 'completed'
8654 * before the reset occurred.
8655 */
8656 ahd_run_qoutfifo(ahd);
8657 #ifdef AHD_TARGET_MODE
8658 if ((ahd->flags & AHD_TARGETROLE) != 0) {
8659 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8660 }
8661 #endif
8662 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8663
8664 /*
8665 * Disable selections so no automatic hardware
8666 * functions will modify chip state.
8667 */
8668 ahd_outb(ahd, SCSISEQ0, 0);
8669 ahd_outb(ahd, SCSISEQ1, 0);
8670
8671 /*
8672 * Safely shut down our DMA engines. Always start with
8673 * the FIFO that is not currently active (if any are
8674 * actively connected).
8675 */
8676 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8677 if (next_fifo > CURRFIFO_1)
8678 /* If disconneced, arbitrarily start with FIFO1. */
8679 next_fifo = fifo = 0;
8680 do {
8681 next_fifo ^= CURRFIFO_1;
8682 ahd_set_modes(ahd, next_fifo, next_fifo);
8683 ahd_outb(ahd, DFCNTRL,
8684 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8685 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8686 ahd_delay(10);
8687 /*
8688 * Set CURRFIFO to the now inactive channel.
8689 */
8690 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8691 ahd_outb(ahd, DFFSTAT, next_fifo);
8692 } while (next_fifo != fifo);
8693
8694 /*
8695 * Reset the bus if we are initiating this reset
8696 */
8697 ahd_clear_msg_state(ahd);
8698 ahd_outb(ahd, SIMODE1,
8699 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8700
8701 if (initiate_reset)
8702 ahd_reset_current_bus(ahd);
8703
8704 ahd_clear_intstat(ahd);
8705
8706 /*
8707 * Clean up all the state information for the
8708 * pending transactions on this bus.
8709 */
8710 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8711 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8712 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8713
8714 /*
8715 * Cleanup anything left in the FIFOs.
8716 */
8717 ahd_clear_fifo(ahd, 0);
8718 ahd_clear_fifo(ahd, 1);
8719
8720 /*
8721 * Clear SCSI interrupt status
8722 */
8723 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8724
8725 /*
8726 * Reenable selections
8727 */
8728 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8729 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8730 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8731
8732 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8733 #ifdef AHD_TARGET_MODE
8734 /*
8735 * Send an immediate notify ccb to all target more peripheral
8736 * drivers affected by this action.
8737 */
8738 for (target = 0; target <= max_scsiid; target++) {
8739 struct ahd_tmode_tstate* tstate;
8740 u_int lun;
8741
8742 tstate = ahd->enabled_targets[target];
8743 if (tstate == NULL)
8744 continue;
8745 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8746 struct ahd_tmode_lstate* lstate;
8747
8748 lstate = tstate->enabled_luns[lun];
8749 if (lstate == NULL)
8750 continue;
8751
8752 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8753 EVENT_TYPE_BUS_RESET, /*arg*/0);
8754 ahd_send_lstate_events(ahd, lstate);
8755 }
8756 }
8757 #endif
8758 /*
8759 * Revert to async/narrow transfers until we renegotiate.
8760 */
8761 for (target = 0; target <= max_scsiid; target++) {
8762
8763 if (ahd->enabled_targets[target] == NULL)
8764 continue;
8765 for (initiator = 0; initiator <= max_scsiid; initiator++) {
8766 struct ahd_devinfo devinfo;
8767
8768 ahd_compile_devinfo(&devinfo, target, initiator,
8769 CAM_LUN_WILDCARD,
8770 'A', ROLE_UNKNOWN);
8771 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8772 AHD_TRANS_CUR, /*paused*/TRUE);
8773 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8774 /*offset*/0, /*ppr_options*/0,
8775 AHD_TRANS_CUR, /*paused*/TRUE);
8776 }
8777 }
8778
8779 /* Notify the XPT that a bus reset occurred */
8780 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8781 CAM_LUN_WILDCARD, AC_BUS_RESET);
8782
8783 ahd_restart(ahd);
8784
8785 return (found);
8786 }
8787
8788 /**************************** Statistics Processing ***************************/
8789 static void
ahd_stat_timer(struct timer_list * t)8790 ahd_stat_timer(struct timer_list *t)
8791 {
8792 struct ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8793 u_long s;
8794 int enint_coal;
8795
8796 ahd_lock(ahd, &s);
8797
8798 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8799 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8800 enint_coal |= ENINT_COALESCE;
8801 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8802 enint_coal &= ~ENINT_COALESCE;
8803
8804 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8805 ahd_enable_coalescing(ahd, enint_coal);
8806 #ifdef AHD_DEBUG
8807 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8808 printk("%s: Interrupt coalescing "
8809 "now %sabled. Cmds %d\n",
8810 ahd_name(ahd),
8811 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8812 ahd->cmdcmplt_total);
8813 #endif
8814 }
8815
8816 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8817 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8818 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8819 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8820 ahd_unlock(ahd, &s);
8821 }
8822
8823 /****************************** Status Processing *****************************/
8824
8825 static void
ahd_handle_scsi_status(struct ahd_softc * ahd,struct scb * scb)8826 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8827 {
8828 struct hardware_scb *hscb;
8829 int paused;
8830
8831 /*
8832 * The sequencer freezes its select-out queue
8833 * anytime a SCSI status error occurs. We must
8834 * handle the error and increment our qfreeze count
8835 * to allow the sequencer to continue. We don't
8836 * bother clearing critical sections here since all
8837 * operations are on data structures that the sequencer
8838 * is not touching once the queue is frozen.
8839 */
8840 hscb = scb->hscb;
8841
8842 if (ahd_is_paused(ahd)) {
8843 paused = 1;
8844 } else {
8845 paused = 0;
8846 ahd_pause(ahd);
8847 }
8848
8849 /* Freeze the queue until the client sees the error. */
8850 ahd_freeze_devq(ahd, scb);
8851 ahd_freeze_scb(scb);
8852 ahd->qfreeze_cnt++;
8853 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8854
8855 if (paused == 0)
8856 ahd_unpause(ahd);
8857
8858 /* Don't want to clobber the original sense code */
8859 if ((scb->flags & SCB_SENSE) != 0) {
8860 /*
8861 * Clear the SCB_SENSE Flag and perform
8862 * a normal command completion.
8863 */
8864 scb->flags &= ~SCB_SENSE;
8865 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8866 ahd_done(ahd, scb);
8867 return;
8868 }
8869 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8870 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8871 switch (hscb->shared_data.istatus.scsi_status) {
8872 case STATUS_PKT_SENSE:
8873 {
8874 struct scsi_status_iu_header *siu;
8875
8876 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8877 siu = (struct scsi_status_iu_header *)scb->sense_data;
8878 ahd_set_scsi_status(scb, siu->status);
8879 #ifdef AHD_DEBUG
8880 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8881 ahd_print_path(ahd, scb);
8882 printk("SCB 0x%x Received PKT Status of 0x%x\n",
8883 SCB_GET_TAG(scb), siu->status);
8884 printk("\tflags = 0x%x, sense len = 0x%x, "
8885 "pktfail = 0x%x\n",
8886 siu->flags, scsi_4btoul(siu->sense_length),
8887 scsi_4btoul(siu->pkt_failures_length));
8888 }
8889 #endif
8890 if ((siu->flags & SIU_RSPVALID) != 0) {
8891 ahd_print_path(ahd, scb);
8892 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8893 printk("Unable to parse pkt_failures\n");
8894 } else {
8895
8896 switch (SIU_PKTFAIL_CODE(siu)) {
8897 case SIU_PFC_NONE:
8898 printk("No packet failure found\n");
8899 break;
8900 case SIU_PFC_CIU_FIELDS_INVALID:
8901 printk("Invalid Command IU Field\n");
8902 break;
8903 case SIU_PFC_TMF_NOT_SUPPORTED:
8904 printk("TMF not supported\n");
8905 break;
8906 case SIU_PFC_TMF_FAILED:
8907 printk("TMF failed\n");
8908 break;
8909 case SIU_PFC_INVALID_TYPE_CODE:
8910 printk("Invalid L_Q Type code\n");
8911 break;
8912 case SIU_PFC_ILLEGAL_REQUEST:
8913 printk("Illegal request\n");
8914 default:
8915 break;
8916 }
8917 }
8918 if (siu->status == SCSI_STATUS_OK)
8919 ahd_set_transaction_status(scb,
8920 CAM_REQ_CMP_ERR);
8921 }
8922 if ((siu->flags & SIU_SNSVALID) != 0) {
8923 scb->flags |= SCB_PKT_SENSE;
8924 #ifdef AHD_DEBUG
8925 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8926 printk("Sense data available\n");
8927 #endif
8928 }
8929 ahd_done(ahd, scb);
8930 break;
8931 }
8932 case SCSI_STATUS_CMD_TERMINATED:
8933 case SCSI_STATUS_CHECK_COND:
8934 {
8935 struct ahd_devinfo devinfo;
8936 struct ahd_dma_seg *sg;
8937 struct scsi_sense *sc;
8938 struct ahd_initiator_tinfo *targ_info;
8939 struct ahd_tmode_tstate *tstate;
8940 struct ahd_transinfo *tinfo;
8941 #ifdef AHD_DEBUG
8942 if (ahd_debug & AHD_SHOW_SENSE) {
8943 ahd_print_path(ahd, scb);
8944 printk("SCB %d: requests Check Status\n",
8945 SCB_GET_TAG(scb));
8946 }
8947 #endif
8948
8949 if (ahd_perform_autosense(scb) == 0)
8950 break;
8951
8952 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8953 SCB_GET_TARGET(ahd, scb),
8954 SCB_GET_LUN(scb),
8955 SCB_GET_CHANNEL(ahd, scb),
8956 ROLE_INITIATOR);
8957 targ_info = ahd_fetch_transinfo(ahd,
8958 devinfo.channel,
8959 devinfo.our_scsiid,
8960 devinfo.target,
8961 &tstate);
8962 tinfo = &targ_info->curr;
8963 sg = scb->sg_list;
8964 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8965 /*
8966 * Save off the residual if there is one.
8967 */
8968 ahd_update_residual(ahd, scb);
8969 #ifdef AHD_DEBUG
8970 if (ahd_debug & AHD_SHOW_SENSE) {
8971 ahd_print_path(ahd, scb);
8972 printk("Sending Sense\n");
8973 }
8974 #endif
8975 scb->sg_count = 0;
8976 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8977 ahd_get_sense_bufsize(ahd, scb),
8978 /*last*/TRUE);
8979 sc->opcode = REQUEST_SENSE;
8980 sc->byte2 = 0;
8981 if (tinfo->protocol_version <= SCSI_REV_2
8982 && SCB_GET_LUN(scb) < 8)
8983 sc->byte2 = SCB_GET_LUN(scb) << 5;
8984 sc->unused[0] = 0;
8985 sc->unused[1] = 0;
8986 sc->length = ahd_get_sense_bufsize(ahd, scb);
8987 sc->control = 0;
8988
8989 /*
8990 * We can't allow the target to disconnect.
8991 * This will be an untagged transaction and
8992 * having the target disconnect will make this
8993 * transaction indestinguishable from outstanding
8994 * tagged transactions.
8995 */
8996 hscb->control = 0;
8997
8998 /*
8999 * This request sense could be because the
9000 * the device lost power or in some other
9001 * way has lost our transfer negotiations.
9002 * Renegotiate if appropriate. Unit attention
9003 * errors will be reported before any data
9004 * phases occur.
9005 */
9006 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9007 ahd_update_neg_request(ahd, &devinfo,
9008 tstate, targ_info,
9009 AHD_NEG_IF_NON_ASYNC);
9010 }
9011 if (tstate->auto_negotiate & devinfo.target_mask) {
9012 hscb->control |= MK_MESSAGE;
9013 scb->flags &=
9014 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9015 scb->flags |= SCB_AUTO_NEGOTIATE;
9016 }
9017 hscb->cdb_len = sizeof(*sc);
9018 ahd_setup_data_scb(ahd, scb);
9019 scb->flags |= SCB_SENSE;
9020 ahd_queue_scb(ahd, scb);
9021 break;
9022 }
9023 case SCSI_STATUS_OK:
9024 printk("%s: Interrupted for status of 0???\n",
9025 ahd_name(ahd));
9026 fallthrough;
9027 default:
9028 ahd_done(ahd, scb);
9029 break;
9030 }
9031 }
9032
9033 static void
ahd_handle_scb_status(struct ahd_softc * ahd,struct scb * scb)9034 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9035 {
9036 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9037 ahd_handle_scsi_status(ahd, scb);
9038 } else {
9039 ahd_calc_residual(ahd, scb);
9040 ahd_done(ahd, scb);
9041 }
9042 }
9043
9044 /*
9045 * Calculate the residual for a just completed SCB.
9046 */
9047 static void
ahd_calc_residual(struct ahd_softc * ahd,struct scb * scb)9048 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9049 {
9050 struct hardware_scb *hscb;
9051 struct initiator_status *spkt;
9052 uint32_t sgptr;
9053 uint32_t resid_sgptr;
9054 uint32_t resid;
9055
9056 /*
9057 * 5 cases.
9058 * 1) No residual.
9059 * SG_STATUS_VALID clear in sgptr.
9060 * 2) Transferless command
9061 * 3) Never performed any transfers.
9062 * sgptr has SG_FULL_RESID set.
9063 * 4) No residual but target did not
9064 * save data pointers after the
9065 * last transfer, so sgptr was
9066 * never updated.
9067 * 5) We have a partial residual.
9068 * Use residual_sgptr to determine
9069 * where we are.
9070 */
9071
9072 hscb = scb->hscb;
9073 sgptr = ahd_le32toh(hscb->sgptr);
9074 if ((sgptr & SG_STATUS_VALID) == 0)
9075 /* Case 1 */
9076 return;
9077 sgptr &= ~SG_STATUS_VALID;
9078
9079 if ((sgptr & SG_LIST_NULL) != 0)
9080 /* Case 2 */
9081 return;
9082
9083 /*
9084 * Residual fields are the same in both
9085 * target and initiator status packets,
9086 * so we can always use the initiator fields
9087 * regardless of the role for this SCB.
9088 */
9089 spkt = &hscb->shared_data.istatus;
9090 resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9091 if ((sgptr & SG_FULL_RESID) != 0) {
9092 /* Case 3 */
9093 resid = ahd_get_transfer_length(scb);
9094 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9095 /* Case 4 */
9096 return;
9097 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9098 ahd_print_path(ahd, scb);
9099 printk("data overrun detected Tag == 0x%x.\n",
9100 SCB_GET_TAG(scb));
9101 ahd_freeze_devq(ahd, scb);
9102 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9103 ahd_freeze_scb(scb);
9104 return;
9105 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9106 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9107 /* NOTREACHED */
9108 } else {
9109 struct ahd_dma_seg *sg;
9110
9111 /*
9112 * Remainder of the SG where the transfer
9113 * stopped.
9114 */
9115 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9116 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9117
9118 /* The residual sg_ptr always points to the next sg */
9119 sg--;
9120
9121 /*
9122 * Add up the contents of all residual
9123 * SG segments that are after the SG where
9124 * the transfer stopped.
9125 */
9126 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9127 sg++;
9128 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9129 }
9130 }
9131 if ((scb->flags & SCB_SENSE) == 0)
9132 ahd_set_residual(scb, resid);
9133 else
9134 ahd_set_sense_residual(scb, resid);
9135
9136 #ifdef AHD_DEBUG
9137 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9138 ahd_print_path(ahd, scb);
9139 printk("Handled %sResidual of %d bytes\n",
9140 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9141 }
9142 #endif
9143 }
9144
9145 /******************************* Target Mode **********************************/
9146 #ifdef AHD_TARGET_MODE
9147 /*
9148 * Add a target mode event to this lun's queue
9149 */
9150 static void
ahd_queue_lstate_event(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate,u_int initiator_id,u_int event_type,u_int event_arg)9151 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9152 u_int initiator_id, u_int event_type, u_int event_arg)
9153 {
9154 struct ahd_tmode_event *event;
9155 int pending;
9156
9157 xpt_freeze_devq(lstate->path, /*count*/1);
9158 if (lstate->event_w_idx >= lstate->event_r_idx)
9159 pending = lstate->event_w_idx - lstate->event_r_idx;
9160 else
9161 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9162 - (lstate->event_r_idx - lstate->event_w_idx);
9163
9164 if (event_type == EVENT_TYPE_BUS_RESET
9165 || event_type == MSG_BUS_DEV_RESET) {
9166 /*
9167 * Any earlier events are irrelevant, so reset our buffer.
9168 * This has the effect of allowing us to deal with reset
9169 * floods (an external device holding down the reset line)
9170 * without losing the event that is really interesting.
9171 */
9172 lstate->event_r_idx = 0;
9173 lstate->event_w_idx = 0;
9174 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9175 }
9176
9177 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9178 xpt_print_path(lstate->path);
9179 printk("immediate event %x:%x lost\n",
9180 lstate->event_buffer[lstate->event_r_idx].event_type,
9181 lstate->event_buffer[lstate->event_r_idx].event_arg);
9182 lstate->event_r_idx++;
9183 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9184 lstate->event_r_idx = 0;
9185 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9186 }
9187
9188 event = &lstate->event_buffer[lstate->event_w_idx];
9189 event->initiator_id = initiator_id;
9190 event->event_type = event_type;
9191 event->event_arg = event_arg;
9192 lstate->event_w_idx++;
9193 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9194 lstate->event_w_idx = 0;
9195 }
9196
9197 /*
9198 * Send any target mode events queued up waiting
9199 * for immediate notify resources.
9200 */
9201 void
ahd_send_lstate_events(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate)9202 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9203 {
9204 struct ccb_hdr *ccbh;
9205 struct ccb_immed_notify *inot;
9206
9207 while (lstate->event_r_idx != lstate->event_w_idx
9208 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9209 struct ahd_tmode_event *event;
9210
9211 event = &lstate->event_buffer[lstate->event_r_idx];
9212 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9213 inot = (struct ccb_immed_notify *)ccbh;
9214 switch (event->event_type) {
9215 case EVENT_TYPE_BUS_RESET:
9216 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9217 break;
9218 default:
9219 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9220 inot->message_args[0] = event->event_type;
9221 inot->message_args[1] = event->event_arg;
9222 break;
9223 }
9224 inot->initiator_id = event->initiator_id;
9225 inot->sense_len = 0;
9226 xpt_done((union ccb *)inot);
9227 lstate->event_r_idx++;
9228 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9229 lstate->event_r_idx = 0;
9230 }
9231 }
9232 #endif
9233
9234 /******************** Sequencer Program Patching/Download *********************/
9235
9236 #ifdef AHD_DUMP_SEQ
9237 void
ahd_dumpseq(struct ahd_softc * ahd)9238 ahd_dumpseq(struct ahd_softc* ahd)
9239 {
9240 int i;
9241 int max_prog;
9242
9243 max_prog = 2048;
9244
9245 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9246 ahd_outw(ahd, PRGMCNT, 0);
9247 for (i = 0; i < max_prog; i++) {
9248 uint8_t ins_bytes[4];
9249
9250 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9251 printk("0x%08x\n", ins_bytes[0] << 24
9252 | ins_bytes[1] << 16
9253 | ins_bytes[2] << 8
9254 | ins_bytes[3]);
9255 }
9256 }
9257 #endif
9258
9259 static void
ahd_loadseq(struct ahd_softc * ahd)9260 ahd_loadseq(struct ahd_softc *ahd)
9261 {
9262 struct cs cs_table[NUM_CRITICAL_SECTIONS];
9263 u_int begin_set[NUM_CRITICAL_SECTIONS];
9264 u_int end_set[NUM_CRITICAL_SECTIONS];
9265 const struct patch *cur_patch;
9266 u_int cs_count;
9267 u_int cur_cs;
9268 u_int i;
9269 int downloaded;
9270 u_int skip_addr;
9271 u_int sg_prefetch_cnt;
9272 u_int sg_prefetch_cnt_limit;
9273 u_int sg_prefetch_align;
9274 u_int sg_size;
9275 u_int cacheline_mask;
9276 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9277
9278 if (bootverbose)
9279 printk("%s: Downloading Sequencer Program...",
9280 ahd_name(ahd));
9281
9282 #if DOWNLOAD_CONST_COUNT != 8
9283 #error "Download Const Mismatch"
9284 #endif
9285 /*
9286 * Start out with 0 critical sections
9287 * that apply to this firmware load.
9288 */
9289 cs_count = 0;
9290 cur_cs = 0;
9291 memset(begin_set, 0, sizeof(begin_set));
9292 memset(end_set, 0, sizeof(end_set));
9293
9294 /*
9295 * Setup downloadable constant table.
9296 *
9297 * The computation for the S/G prefetch variables is
9298 * a bit complicated. We would like to always fetch
9299 * in terms of cachelined sized increments. However,
9300 * if the cacheline is not an even multiple of the
9301 * SG element size or is larger than our SG RAM, using
9302 * just the cache size might leave us with only a portion
9303 * of an SG element at the tail of a prefetch. If the
9304 * cacheline is larger than our S/G prefetch buffer less
9305 * the size of an SG element, we may round down to a cacheline
9306 * that doesn't contain any or all of the S/G of interest
9307 * within the bounds of our S/G ram. Provide variables to
9308 * the sequencer that will allow it to handle these edge
9309 * cases.
9310 */
9311 /* Start by aligning to the nearest cacheline. */
9312 sg_prefetch_align = ahd->pci_cachesize;
9313 if (sg_prefetch_align == 0)
9314 sg_prefetch_align = 8;
9315 /* Round down to the nearest power of 2. */
9316 while (powerof2(sg_prefetch_align) == 0)
9317 sg_prefetch_align--;
9318
9319 cacheline_mask = sg_prefetch_align - 1;
9320
9321 /*
9322 * If the cacheline boundary is greater than half our prefetch RAM
9323 * we risk not being able to fetch even a single complete S/G
9324 * segment if we align to that boundary.
9325 */
9326 if (sg_prefetch_align > CCSGADDR_MAX/2)
9327 sg_prefetch_align = CCSGADDR_MAX/2;
9328 /* Start by fetching a single cacheline. */
9329 sg_prefetch_cnt = sg_prefetch_align;
9330 /*
9331 * Increment the prefetch count by cachelines until
9332 * at least one S/G element will fit.
9333 */
9334 sg_size = sizeof(struct ahd_dma_seg);
9335 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9336 sg_size = sizeof(struct ahd_dma64_seg);
9337 while (sg_prefetch_cnt < sg_size)
9338 sg_prefetch_cnt += sg_prefetch_align;
9339 /*
9340 * If the cacheline is not an even multiple of
9341 * the S/G size, we may only get a partial S/G when
9342 * we align. Add a cacheline if this is the case.
9343 */
9344 if ((sg_prefetch_align % sg_size) != 0
9345 && (sg_prefetch_cnt < CCSGADDR_MAX))
9346 sg_prefetch_cnt += sg_prefetch_align;
9347 /*
9348 * Lastly, compute a value that the sequencer can use
9349 * to determine if the remainder of the CCSGRAM buffer
9350 * has a full S/G element in it.
9351 */
9352 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9353 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9354 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9355 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9356 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9357 download_consts[SG_SIZEOF] = sg_size;
9358 download_consts[PKT_OVERRUN_BUFOFFSET] =
9359 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9360 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9361 download_consts[CACHELINE_MASK] = cacheline_mask;
9362 cur_patch = patches;
9363 downloaded = 0;
9364 skip_addr = 0;
9365 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9366 ahd_outw(ahd, PRGMCNT, 0);
9367
9368 for (i = 0; i < sizeof(seqprog)/4; i++) {
9369 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9370 /*
9371 * Don't download this instruction as it
9372 * is in a patch that was removed.
9373 */
9374 continue;
9375 }
9376 /*
9377 * Move through the CS table until we find a CS
9378 * that might apply to this instruction.
9379 */
9380 for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9381 if (critical_sections[cur_cs].end <= i) {
9382 if (begin_set[cs_count] == TRUE
9383 && end_set[cs_count] == FALSE) {
9384 cs_table[cs_count].end = downloaded;
9385 end_set[cs_count] = TRUE;
9386 cs_count++;
9387 }
9388 continue;
9389 }
9390 if (critical_sections[cur_cs].begin <= i
9391 && begin_set[cs_count] == FALSE) {
9392 cs_table[cs_count].begin = downloaded;
9393 begin_set[cs_count] = TRUE;
9394 }
9395 break;
9396 }
9397 ahd_download_instr(ahd, i, download_consts);
9398 downloaded++;
9399 }
9400
9401 ahd->num_critical_sections = cs_count;
9402 if (cs_count != 0) {
9403
9404 cs_count *= sizeof(struct cs);
9405 ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
9406 if (ahd->critical_sections == NULL)
9407 panic("ahd_loadseq: Could not malloc");
9408 }
9409 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9410
9411 if (bootverbose) {
9412 printk(" %d instructions downloaded\n", downloaded);
9413 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9414 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9415 }
9416 }
9417
9418 static int
ahd_check_patch(struct ahd_softc * ahd,const struct patch ** start_patch,u_int start_instr,u_int * skip_addr)9419 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9420 u_int start_instr, u_int *skip_addr)
9421 {
9422 const struct patch *cur_patch;
9423 const struct patch *last_patch;
9424 u_int num_patches;
9425
9426 num_patches = ARRAY_SIZE(patches);
9427 last_patch = &patches[num_patches];
9428 cur_patch = *start_patch;
9429
9430 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9431
9432 if (cur_patch->patch_func(ahd) == 0) {
9433
9434 /* Start rejecting code */
9435 *skip_addr = start_instr + cur_patch->skip_instr;
9436 cur_patch += cur_patch->skip_patch;
9437 } else {
9438 /* Accepted this patch. Advance to the next
9439 * one and wait for our intruction pointer to
9440 * hit this point.
9441 */
9442 cur_patch++;
9443 }
9444 }
9445
9446 *start_patch = cur_patch;
9447 if (start_instr < *skip_addr)
9448 /* Still skipping */
9449 return (0);
9450
9451 return (1);
9452 }
9453
9454 static u_int
ahd_resolve_seqaddr(struct ahd_softc * ahd,u_int address)9455 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9456 {
9457 const struct patch *cur_patch;
9458 int address_offset;
9459 u_int skip_addr;
9460 u_int i;
9461
9462 address_offset = 0;
9463 cur_patch = patches;
9464 skip_addr = 0;
9465
9466 for (i = 0; i < address;) {
9467
9468 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9469
9470 if (skip_addr > i) {
9471 int end_addr;
9472
9473 end_addr = min(address, skip_addr);
9474 address_offset += end_addr - i;
9475 i = skip_addr;
9476 } else {
9477 i++;
9478 }
9479 }
9480 return (address - address_offset);
9481 }
9482
9483 static void
ahd_download_instr(struct ahd_softc * ahd,u_int instrptr,uint8_t * dconsts)9484 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9485 {
9486 union ins_formats instr;
9487 struct ins_format1 *fmt1_ins;
9488 struct ins_format3 *fmt3_ins;
9489 u_int opcode;
9490
9491 /*
9492 * The firmware is always compiled into a little endian format.
9493 */
9494 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9495
9496 fmt1_ins = &instr.format1;
9497 fmt3_ins = NULL;
9498
9499 /* Pull the opcode */
9500 opcode = instr.format1.opcode;
9501 switch (opcode) {
9502 case AIC_OP_JMP:
9503 case AIC_OP_JC:
9504 case AIC_OP_JNC:
9505 case AIC_OP_CALL:
9506 case AIC_OP_JNE:
9507 case AIC_OP_JNZ:
9508 case AIC_OP_JE:
9509 case AIC_OP_JZ:
9510 {
9511 fmt3_ins = &instr.format3;
9512 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9513 }
9514 fallthrough;
9515 case AIC_OP_OR:
9516 case AIC_OP_AND:
9517 case AIC_OP_XOR:
9518 case AIC_OP_ADD:
9519 case AIC_OP_ADC:
9520 case AIC_OP_BMOV:
9521 if (fmt1_ins->parity != 0) {
9522 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9523 }
9524 fmt1_ins->parity = 0;
9525 fallthrough;
9526 case AIC_OP_ROL:
9527 {
9528 int i, count;
9529
9530 /* Calculate odd parity for the instruction */
9531 for (i = 0, count = 0; i < 31; i++) {
9532 uint32_t mask;
9533
9534 mask = 0x01 << i;
9535 if ((instr.integer & mask) != 0)
9536 count++;
9537 }
9538 if ((count & 0x01) == 0)
9539 instr.format1.parity = 1;
9540
9541 /* The sequencer is a little endian cpu */
9542 instr.integer = ahd_htole32(instr.integer);
9543 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9544 break;
9545 }
9546 default:
9547 panic("Unknown opcode encountered in seq program");
9548 break;
9549 }
9550 }
9551
9552 static int
ahd_probe_stack_size(struct ahd_softc * ahd)9553 ahd_probe_stack_size(struct ahd_softc *ahd)
9554 {
9555 int last_probe;
9556
9557 last_probe = 0;
9558 while (1) {
9559 int i;
9560
9561 /*
9562 * We avoid using 0 as a pattern to avoid
9563 * confusion if the stack implementation
9564 * "back-fills" with zeros when "poping'
9565 * entries.
9566 */
9567 for (i = 1; i <= last_probe+1; i++) {
9568 ahd_outb(ahd, STACK, i & 0xFF);
9569 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9570 }
9571
9572 /* Verify */
9573 for (i = last_probe+1; i > 0; i--) {
9574 u_int stack_entry;
9575
9576 stack_entry = ahd_inb(ahd, STACK)
9577 |(ahd_inb(ahd, STACK) << 8);
9578 if (stack_entry != i)
9579 goto sized;
9580 }
9581 last_probe++;
9582 }
9583 sized:
9584 return (last_probe);
9585 }
9586
9587 int
ahd_print_register(const ahd_reg_parse_entry_t * table,u_int num_entries,const char * name,u_int address,u_int value,u_int * cur_column,u_int wrap_point)9588 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9589 const char *name, u_int address, u_int value,
9590 u_int *cur_column, u_int wrap_point)
9591 {
9592 int printed;
9593 u_int printed_mask;
9594
9595 if (cur_column != NULL && *cur_column >= wrap_point) {
9596 printk("\n");
9597 *cur_column = 0;
9598 }
9599 printed = printk("%s[0x%x]", name, value);
9600 if (table == NULL) {
9601 printed += printk(" ");
9602 *cur_column += printed;
9603 return (printed);
9604 }
9605 printed_mask = 0;
9606 while (printed_mask != 0xFF) {
9607 int entry;
9608
9609 for (entry = 0; entry < num_entries; entry++) {
9610 if (((value & table[entry].mask)
9611 != table[entry].value)
9612 || ((printed_mask & table[entry].mask)
9613 == table[entry].mask))
9614 continue;
9615
9616 printed += printk("%s%s",
9617 printed_mask == 0 ? ":(" : "|",
9618 table[entry].name);
9619 printed_mask |= table[entry].mask;
9620
9621 break;
9622 }
9623 if (entry >= num_entries)
9624 break;
9625 }
9626 if (printed_mask != 0)
9627 printed += printk(") ");
9628 else
9629 printed += printk(" ");
9630 if (cur_column != NULL)
9631 *cur_column += printed;
9632 return (printed);
9633 }
9634
9635 void
ahd_dump_card_state(struct ahd_softc * ahd)9636 ahd_dump_card_state(struct ahd_softc *ahd)
9637 {
9638 struct scb *scb;
9639 ahd_mode_state saved_modes;
9640 u_int dffstat;
9641 int paused;
9642 u_int scb_index;
9643 u_int saved_scb_index;
9644 u_int cur_col;
9645 int i;
9646
9647 if (ahd_is_paused(ahd)) {
9648 paused = 1;
9649 } else {
9650 paused = 0;
9651 ahd_pause(ahd);
9652 }
9653 saved_modes = ahd_save_modes(ahd);
9654 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9655 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9656 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9657 ahd_name(ahd),
9658 ahd_inw(ahd, CURADDR),
9659 ahd_build_mode_state(ahd, ahd->saved_src_mode,
9660 ahd->saved_dst_mode));
9661 if (paused)
9662 printk("Card was paused\n");
9663
9664 if (ahd_check_cmdcmpltqueues(ahd))
9665 printk("Completions are pending\n");
9666
9667 /*
9668 * Mode independent registers.
9669 */
9670 cur_col = 0;
9671 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9672 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9673 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9674 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9675 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9676 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9677 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9678 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9679 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9680 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9681 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9682 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9683 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9684 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9685 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9686 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9687 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9688 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9689 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9690 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9691 &cur_col, 50);
9692 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9693 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9694 &cur_col, 50);
9695 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9696 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9697 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9698 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9699 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9700 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9701 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9702 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9703 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9704 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9705 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9706 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9707 printk("\n");
9708 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9709 "CURRSCB 0x%x NEXTSCB 0x%x\n",
9710 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9711 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9712 ahd_inw(ahd, NEXTSCB));
9713 cur_col = 0;
9714 /* QINFIFO */
9715 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9716 CAM_LUN_WILDCARD, SCB_LIST_NULL,
9717 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9718 saved_scb_index = ahd_get_scbptr(ahd);
9719 printk("Pending list:");
9720 i = 0;
9721 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9722 if (i++ > AHD_SCB_MAX)
9723 break;
9724 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9725 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9726 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9727 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9728 &cur_col, 60);
9729 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9730 &cur_col, 60);
9731 }
9732 printk("\nTotal %d\n", i);
9733
9734 printk("Kernel Free SCB list: ");
9735 i = 0;
9736 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9737 struct scb *list_scb;
9738
9739 list_scb = scb;
9740 do {
9741 printk("%d ", SCB_GET_TAG(list_scb));
9742 list_scb = LIST_NEXT(list_scb, collision_links);
9743 } while (list_scb && i++ < AHD_SCB_MAX);
9744 }
9745
9746 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9747 if (i++ > AHD_SCB_MAX)
9748 break;
9749 printk("%d ", SCB_GET_TAG(scb));
9750 }
9751 printk("\n");
9752
9753 printk("Sequencer Complete DMA-inprog list: ");
9754 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9755 i = 0;
9756 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9757 ahd_set_scbptr(ahd, scb_index);
9758 printk("%d ", scb_index);
9759 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9760 }
9761 printk("\n");
9762
9763 printk("Sequencer Complete list: ");
9764 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9765 i = 0;
9766 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9767 ahd_set_scbptr(ahd, scb_index);
9768 printk("%d ", scb_index);
9769 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9770 }
9771 printk("\n");
9772
9773
9774 printk("Sequencer DMA-Up and Complete list: ");
9775 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9776 i = 0;
9777 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9778 ahd_set_scbptr(ahd, scb_index);
9779 printk("%d ", scb_index);
9780 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9781 }
9782 printk("\n");
9783 printk("Sequencer On QFreeze and Complete list: ");
9784 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9785 i = 0;
9786 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9787 ahd_set_scbptr(ahd, scb_index);
9788 printk("%d ", scb_index);
9789 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9790 }
9791 printk("\n");
9792 ahd_set_scbptr(ahd, saved_scb_index);
9793 dffstat = ahd_inb(ahd, DFFSTAT);
9794 for (i = 0; i < 2; i++) {
9795 #ifdef AHD_DEBUG
9796 struct scb *fifo_scb;
9797 #endif
9798 u_int fifo_scbptr;
9799
9800 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9801 fifo_scbptr = ahd_get_scbptr(ahd);
9802 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9803 ahd_name(ahd), i,
9804 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9805 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9806 cur_col = 0;
9807 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9808 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9809 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9810 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9811 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9812 &cur_col, 50);
9813 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9814 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9815 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9816 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9817 if (cur_col > 50) {
9818 printk("\n");
9819 cur_col = 0;
9820 }
9821 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9822 ahd_inl(ahd, SHADDR+4),
9823 ahd_inl(ahd, SHADDR),
9824 (ahd_inb(ahd, SHCNT)
9825 | (ahd_inb(ahd, SHCNT + 1) << 8)
9826 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9827 if (cur_col > 50) {
9828 printk("\n");
9829 cur_col = 0;
9830 }
9831 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9832 ahd_inl(ahd, HADDR+4),
9833 ahd_inl(ahd, HADDR),
9834 (ahd_inb(ahd, HCNT)
9835 | (ahd_inb(ahd, HCNT + 1) << 8)
9836 | (ahd_inb(ahd, HCNT + 2) << 16)));
9837 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9838 #ifdef AHD_DEBUG
9839 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9840 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9841 if (fifo_scb != NULL)
9842 ahd_dump_sglist(fifo_scb);
9843 }
9844 #endif
9845 }
9846 printk("\nLQIN: ");
9847 for (i = 0; i < 20; i++)
9848 printk("0x%x ", ahd_inb(ahd, LQIN + i));
9849 printk("\n");
9850 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9851 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9852 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9853 ahd_inb(ahd, OPTIONMODE));
9854 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9855 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9856 ahd_inb(ahd, MAXCMDCNT));
9857 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9858 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9859 ahd_inb(ahd, SAVED_LUN));
9860 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9861 printk("\n");
9862 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9863 cur_col = 0;
9864 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9865 printk("\n");
9866 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9867 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9868 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9869 ahd_inw(ahd, DINDEX));
9870 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9871 ahd_name(ahd), ahd_get_scbptr(ahd),
9872 ahd_inw_scbram(ahd, SCB_NEXT),
9873 ahd_inw_scbram(ahd, SCB_NEXT2));
9874 printk("CDB %x %x %x %x %x %x\n",
9875 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9876 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9877 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9878 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9879 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9880 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9881 printk("STACK:");
9882 for (i = 0; i < ahd->stack_size; i++) {
9883 ahd->saved_stack[i] =
9884 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9885 printk(" 0x%x", ahd->saved_stack[i]);
9886 }
9887 for (i = ahd->stack_size-1; i >= 0; i--) {
9888 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9889 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9890 }
9891 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9892 ahd_restore_modes(ahd, saved_modes);
9893 if (paused == 0)
9894 ahd_unpause(ahd);
9895 }
9896
9897 #if 0
9898 void
9899 ahd_dump_scbs(struct ahd_softc *ahd)
9900 {
9901 ahd_mode_state saved_modes;
9902 u_int saved_scb_index;
9903 int i;
9904
9905 saved_modes = ahd_save_modes(ahd);
9906 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9907 saved_scb_index = ahd_get_scbptr(ahd);
9908 for (i = 0; i < AHD_SCB_MAX; i++) {
9909 ahd_set_scbptr(ahd, i);
9910 printk("%3d", i);
9911 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9912 ahd_inb_scbram(ahd, SCB_CONTROL),
9913 ahd_inb_scbram(ahd, SCB_SCSIID),
9914 ahd_inw_scbram(ahd, SCB_NEXT),
9915 ahd_inw_scbram(ahd, SCB_NEXT2),
9916 ahd_inl_scbram(ahd, SCB_SGPTR),
9917 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9918 }
9919 printk("\n");
9920 ahd_set_scbptr(ahd, saved_scb_index);
9921 ahd_restore_modes(ahd, saved_modes);
9922 }
9923 #endif /* 0 */
9924
9925 /**************************** Flexport Logic **********************************/
9926 /*
9927 * Read count 16bit words from 16bit word address start_addr from the
9928 * SEEPROM attached to the controller, into buf, using the controller's
9929 * SEEPROM reading state machine. Optionally treat the data as a byte
9930 * stream in terms of byte order.
9931 */
9932 int
ahd_read_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count,int bytestream)9933 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9934 u_int start_addr, u_int count, int bytestream)
9935 {
9936 u_int cur_addr;
9937 u_int end_addr;
9938 int error;
9939
9940 /*
9941 * If we never make it through the loop even once,
9942 * we were passed invalid arguments.
9943 */
9944 error = EINVAL;
9945 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9946 end_addr = start_addr + count;
9947 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9948
9949 ahd_outb(ahd, SEEADR, cur_addr);
9950 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9951
9952 error = ahd_wait_seeprom(ahd);
9953 if (error)
9954 break;
9955 if (bytestream != 0) {
9956 uint8_t *bytestream_ptr;
9957
9958 bytestream_ptr = (uint8_t *)buf;
9959 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9960 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9961 } else {
9962 /*
9963 * ahd_inw() already handles machine byte order.
9964 */
9965 *buf = ahd_inw(ahd, SEEDAT);
9966 }
9967 buf++;
9968 }
9969 return (error);
9970 }
9971
9972 /*
9973 * Write count 16bit words from buf, into SEEPROM attache to the
9974 * controller starting at 16bit word address start_addr, using the
9975 * controller's SEEPROM writing state machine.
9976 */
9977 int
ahd_write_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count)9978 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9979 u_int start_addr, u_int count)
9980 {
9981 u_int cur_addr;
9982 u_int end_addr;
9983 int error;
9984 int retval;
9985
9986 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9987 error = ENOENT;
9988
9989 /* Place the chip into write-enable mode */
9990 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9991 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9992 error = ahd_wait_seeprom(ahd);
9993 if (error)
9994 return (error);
9995
9996 /*
9997 * Write the data. If we don't get through the loop at
9998 * least once, the arguments were invalid.
9999 */
10000 retval = EINVAL;
10001 end_addr = start_addr + count;
10002 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10003 ahd_outw(ahd, SEEDAT, *buf++);
10004 ahd_outb(ahd, SEEADR, cur_addr);
10005 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10006
10007 retval = ahd_wait_seeprom(ahd);
10008 if (retval)
10009 break;
10010 }
10011
10012 /*
10013 * Disable writes.
10014 */
10015 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10016 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10017 error = ahd_wait_seeprom(ahd);
10018 if (error)
10019 return (error);
10020 return (retval);
10021 }
10022
10023 /*
10024 * Wait ~100us for the serial eeprom to satisfy our request.
10025 */
10026 static int
ahd_wait_seeprom(struct ahd_softc * ahd)10027 ahd_wait_seeprom(struct ahd_softc *ahd)
10028 {
10029 int cnt;
10030
10031 cnt = 5000;
10032 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10033 ahd_delay(5);
10034
10035 if (cnt == 0)
10036 return (ETIMEDOUT);
10037 return (0);
10038 }
10039
10040 /*
10041 * Validate the two checksums in the per_channel
10042 * vital product data struct.
10043 */
10044 static int
ahd_verify_vpd_cksum(struct vpd_config * vpd)10045 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10046 {
10047 int i;
10048 int maxaddr;
10049 uint32_t checksum;
10050 uint8_t *vpdarray;
10051
10052 vpdarray = (uint8_t *)vpd;
10053 maxaddr = offsetof(struct vpd_config, vpd_checksum);
10054 checksum = 0;
10055 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10056 checksum = checksum + vpdarray[i];
10057 if (checksum == 0
10058 || (-checksum & 0xFF) != vpd->vpd_checksum)
10059 return (0);
10060
10061 checksum = 0;
10062 maxaddr = offsetof(struct vpd_config, checksum);
10063 for (i = offsetof(struct vpd_config, default_target_flags);
10064 i < maxaddr; i++)
10065 checksum = checksum + vpdarray[i];
10066 if (checksum == 0
10067 || (-checksum & 0xFF) != vpd->checksum)
10068 return (0);
10069 return (1);
10070 }
10071
10072 int
ahd_verify_cksum(struct seeprom_config * sc)10073 ahd_verify_cksum(struct seeprom_config *sc)
10074 {
10075 int i;
10076 int maxaddr;
10077 uint32_t checksum;
10078 uint16_t *scarray;
10079
10080 maxaddr = (sizeof(*sc)/2) - 1;
10081 checksum = 0;
10082 scarray = (uint16_t *)sc;
10083
10084 for (i = 0; i < maxaddr; i++)
10085 checksum = checksum + scarray[i];
10086 if (checksum == 0
10087 || (checksum & 0xFFFF) != sc->checksum) {
10088 return (0);
10089 } else {
10090 return (1);
10091 }
10092 }
10093
10094 int
ahd_acquire_seeprom(struct ahd_softc * ahd)10095 ahd_acquire_seeprom(struct ahd_softc *ahd)
10096 {
10097 /*
10098 * We should be able to determine the SEEPROM type
10099 * from the flexport logic, but unfortunately not
10100 * all implementations have this logic and there is
10101 * no programatic method for determining if the logic
10102 * is present.
10103 */
10104 return (1);
10105 #if 0
10106 uint8_t seetype;
10107 int error;
10108
10109 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10110 if (error != 0
10111 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10112 return (0);
10113 return (1);
10114 #endif
10115 }
10116
10117 void
ahd_release_seeprom(struct ahd_softc * ahd)10118 ahd_release_seeprom(struct ahd_softc *ahd)
10119 {
10120 /* Currently a no-op */
10121 }
10122
10123 /*
10124 * Wait at most 2 seconds for flexport arbitration to succeed.
10125 */
10126 static int
ahd_wait_flexport(struct ahd_softc * ahd)10127 ahd_wait_flexport(struct ahd_softc *ahd)
10128 {
10129 int cnt;
10130
10131 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10132 cnt = 1000000 * 2 / 5;
10133 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10134 ahd_delay(5);
10135
10136 if (cnt == 0)
10137 return (ETIMEDOUT);
10138 return (0);
10139 }
10140
10141 int
ahd_write_flexport(struct ahd_softc * ahd,u_int addr,u_int value)10142 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10143 {
10144 int error;
10145
10146 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10147 if (addr > 7)
10148 panic("ahd_write_flexport: address out of range");
10149 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10150 error = ahd_wait_flexport(ahd);
10151 if (error != 0)
10152 return (error);
10153 ahd_outb(ahd, BRDDAT, value);
10154 ahd_flush_device_writes(ahd);
10155 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10156 ahd_flush_device_writes(ahd);
10157 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10158 ahd_flush_device_writes(ahd);
10159 ahd_outb(ahd, BRDCTL, 0);
10160 ahd_flush_device_writes(ahd);
10161 return (0);
10162 }
10163
10164 int
ahd_read_flexport(struct ahd_softc * ahd,u_int addr,uint8_t * value)10165 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10166 {
10167 int error;
10168
10169 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10170 if (addr > 7)
10171 panic("ahd_read_flexport: address out of range");
10172 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10173 error = ahd_wait_flexport(ahd);
10174 if (error != 0)
10175 return (error);
10176 *value = ahd_inb(ahd, BRDDAT);
10177 ahd_outb(ahd, BRDCTL, 0);
10178 ahd_flush_device_writes(ahd);
10179 return (0);
10180 }
10181
10182 /************************* Target Mode ****************************************/
10183 #ifdef AHD_TARGET_MODE
10184 cam_status
ahd_find_tmode_devs(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb,struct ahd_tmode_tstate ** tstate,struct ahd_tmode_lstate ** lstate,int notfound_failure)10185 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10186 struct ahd_tmode_tstate **tstate,
10187 struct ahd_tmode_lstate **lstate,
10188 int notfound_failure)
10189 {
10190
10191 if ((ahd->features & AHD_TARGETMODE) == 0)
10192 return (CAM_REQ_INVALID);
10193
10194 /*
10195 * Handle the 'black hole' device that sucks up
10196 * requests to unattached luns on enabled targets.
10197 */
10198 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10199 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10200 *tstate = NULL;
10201 *lstate = ahd->black_hole;
10202 } else {
10203 u_int max_id;
10204
10205 max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10206 if (ccb->ccb_h.target_id >= max_id)
10207 return (CAM_TID_INVALID);
10208
10209 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10210 return (CAM_LUN_INVALID);
10211
10212 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10213 *lstate = NULL;
10214 if (*tstate != NULL)
10215 *lstate =
10216 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10217 }
10218
10219 if (notfound_failure != 0 && *lstate == NULL)
10220 return (CAM_PATH_INVALID);
10221
10222 return (CAM_REQ_CMP);
10223 }
10224
10225 void
ahd_handle_en_lun(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb)10226 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10227 {
10228 #if NOT_YET
10229 struct ahd_tmode_tstate *tstate;
10230 struct ahd_tmode_lstate *lstate;
10231 struct ccb_en_lun *cel;
10232 cam_status status;
10233 u_int target;
10234 u_int lun;
10235 u_int target_mask;
10236 u_long s;
10237 char channel;
10238
10239 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10240 /*notfound_failure*/FALSE);
10241
10242 if (status != CAM_REQ_CMP) {
10243 ccb->ccb_h.status = status;
10244 return;
10245 }
10246
10247 if ((ahd->features & AHD_MULTIROLE) != 0) {
10248 u_int our_id;
10249
10250 our_id = ahd->our_id;
10251 if (ccb->ccb_h.target_id != our_id) {
10252 if ((ahd->features & AHD_MULTI_TID) != 0
10253 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10254 /*
10255 * Only allow additional targets if
10256 * the initiator role is disabled.
10257 * The hardware cannot handle a re-select-in
10258 * on the initiator id during a re-select-out
10259 * on a different target id.
10260 */
10261 status = CAM_TID_INVALID;
10262 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10263 || ahd->enabled_luns > 0) {
10264 /*
10265 * Only allow our target id to change
10266 * if the initiator role is not configured
10267 * and there are no enabled luns which
10268 * are attached to the currently registered
10269 * scsi id.
10270 */
10271 status = CAM_TID_INVALID;
10272 }
10273 }
10274 }
10275
10276 if (status != CAM_REQ_CMP) {
10277 ccb->ccb_h.status = status;
10278 return;
10279 }
10280
10281 /*
10282 * We now have an id that is valid.
10283 * If we aren't in target mode, switch modes.
10284 */
10285 if ((ahd->flags & AHD_TARGETROLE) == 0
10286 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10287 u_long s;
10288
10289 printk("Configuring Target Mode\n");
10290 ahd_lock(ahd, &s);
10291 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10292 ccb->ccb_h.status = CAM_BUSY;
10293 ahd_unlock(ahd, &s);
10294 return;
10295 }
10296 ahd->flags |= AHD_TARGETROLE;
10297 if ((ahd->features & AHD_MULTIROLE) == 0)
10298 ahd->flags &= ~AHD_INITIATORROLE;
10299 ahd_pause(ahd);
10300 ahd_loadseq(ahd);
10301 ahd_restart(ahd);
10302 ahd_unlock(ahd, &s);
10303 }
10304 cel = &ccb->cel;
10305 target = ccb->ccb_h.target_id;
10306 lun = ccb->ccb_h.target_lun;
10307 channel = SIM_CHANNEL(ahd, sim);
10308 target_mask = 0x01 << target;
10309 if (channel == 'B')
10310 target_mask <<= 8;
10311
10312 if (cel->enable != 0) {
10313 u_int scsiseq1;
10314
10315 /* Are we already enabled?? */
10316 if (lstate != NULL) {
10317 xpt_print_path(ccb->ccb_h.path);
10318 printk("Lun already enabled\n");
10319 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10320 return;
10321 }
10322
10323 if (cel->grp6_len != 0
10324 || cel->grp7_len != 0) {
10325 /*
10326 * Don't (yet?) support vendor
10327 * specific commands.
10328 */
10329 ccb->ccb_h.status = CAM_REQ_INVALID;
10330 printk("Non-zero Group Codes\n");
10331 return;
10332 }
10333
10334 /*
10335 * Seems to be okay.
10336 * Setup our data structures.
10337 */
10338 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10339 tstate = ahd_alloc_tstate(ahd, target, channel);
10340 if (tstate == NULL) {
10341 xpt_print_path(ccb->ccb_h.path);
10342 printk("Couldn't allocate tstate\n");
10343 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10344 return;
10345 }
10346 }
10347 lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10348 if (lstate == NULL) {
10349 xpt_print_path(ccb->ccb_h.path);
10350 printk("Couldn't allocate lstate\n");
10351 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10352 return;
10353 }
10354 status = xpt_create_path(&lstate->path, /*periph*/NULL,
10355 xpt_path_path_id(ccb->ccb_h.path),
10356 xpt_path_target_id(ccb->ccb_h.path),
10357 xpt_path_lun_id(ccb->ccb_h.path));
10358 if (status != CAM_REQ_CMP) {
10359 kfree(lstate);
10360 xpt_print_path(ccb->ccb_h.path);
10361 printk("Couldn't allocate path\n");
10362 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10363 return;
10364 }
10365 SLIST_INIT(&lstate->accept_tios);
10366 SLIST_INIT(&lstate->immed_notifies);
10367 ahd_lock(ahd, &s);
10368 ahd_pause(ahd);
10369 if (target != CAM_TARGET_WILDCARD) {
10370 tstate->enabled_luns[lun] = lstate;
10371 ahd->enabled_luns++;
10372
10373 if ((ahd->features & AHD_MULTI_TID) != 0) {
10374 u_int targid_mask;
10375
10376 targid_mask = ahd_inw(ahd, TARGID);
10377 targid_mask |= target_mask;
10378 ahd_outw(ahd, TARGID, targid_mask);
10379 ahd_update_scsiid(ahd, targid_mask);
10380 } else {
10381 u_int our_id;
10382 char channel;
10383
10384 channel = SIM_CHANNEL(ahd, sim);
10385 our_id = SIM_SCSI_ID(ahd, sim);
10386
10387 /*
10388 * This can only happen if selections
10389 * are not enabled
10390 */
10391 if (target != our_id) {
10392 u_int sblkctl;
10393 char cur_channel;
10394 int swap;
10395
10396 sblkctl = ahd_inb(ahd, SBLKCTL);
10397 cur_channel = (sblkctl & SELBUSB)
10398 ? 'B' : 'A';
10399 if ((ahd->features & AHD_TWIN) == 0)
10400 cur_channel = 'A';
10401 swap = cur_channel != channel;
10402 ahd->our_id = target;
10403
10404 if (swap)
10405 ahd_outb(ahd, SBLKCTL,
10406 sblkctl ^ SELBUSB);
10407
10408 ahd_outb(ahd, SCSIID, target);
10409
10410 if (swap)
10411 ahd_outb(ahd, SBLKCTL, sblkctl);
10412 }
10413 }
10414 } else
10415 ahd->black_hole = lstate;
10416 /* Allow select-in operations */
10417 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10418 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10419 scsiseq1 |= ENSELI;
10420 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10421 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10422 scsiseq1 |= ENSELI;
10423 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10424 }
10425 ahd_unpause(ahd);
10426 ahd_unlock(ahd, &s);
10427 ccb->ccb_h.status = CAM_REQ_CMP;
10428 xpt_print_path(ccb->ccb_h.path);
10429 printk("Lun now enabled for target mode\n");
10430 } else {
10431 struct scb *scb;
10432 int i, empty;
10433
10434 if (lstate == NULL) {
10435 ccb->ccb_h.status = CAM_LUN_INVALID;
10436 return;
10437 }
10438
10439 ahd_lock(ahd, &s);
10440
10441 ccb->ccb_h.status = CAM_REQ_CMP;
10442 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10443 struct ccb_hdr *ccbh;
10444
10445 ccbh = &scb->io_ctx->ccb_h;
10446 if (ccbh->func_code == XPT_CONT_TARGET_IO
10447 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10448 printk("CTIO pending\n");
10449 ccb->ccb_h.status = CAM_REQ_INVALID;
10450 ahd_unlock(ahd, &s);
10451 return;
10452 }
10453 }
10454
10455 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10456 printk("ATIOs pending\n");
10457 ccb->ccb_h.status = CAM_REQ_INVALID;
10458 }
10459
10460 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10461 printk("INOTs pending\n");
10462 ccb->ccb_h.status = CAM_REQ_INVALID;
10463 }
10464
10465 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10466 ahd_unlock(ahd, &s);
10467 return;
10468 }
10469
10470 xpt_print_path(ccb->ccb_h.path);
10471 printk("Target mode disabled\n");
10472 xpt_free_path(lstate->path);
10473 kfree(lstate);
10474
10475 ahd_pause(ahd);
10476 /* Can we clean up the target too? */
10477 if (target != CAM_TARGET_WILDCARD) {
10478 tstate->enabled_luns[lun] = NULL;
10479 ahd->enabled_luns--;
10480 for (empty = 1, i = 0; i < 8; i++)
10481 if (tstate->enabled_luns[i] != NULL) {
10482 empty = 0;
10483 break;
10484 }
10485
10486 if (empty) {
10487 ahd_free_tstate(ahd, target, channel,
10488 /*force*/FALSE);
10489 if (ahd->features & AHD_MULTI_TID) {
10490 u_int targid_mask;
10491
10492 targid_mask = ahd_inw(ahd, TARGID);
10493 targid_mask &= ~target_mask;
10494 ahd_outw(ahd, TARGID, targid_mask);
10495 ahd_update_scsiid(ahd, targid_mask);
10496 }
10497 }
10498 } else {
10499
10500 ahd->black_hole = NULL;
10501
10502 /*
10503 * We can't allow selections without
10504 * our black hole device.
10505 */
10506 empty = TRUE;
10507 }
10508 if (ahd->enabled_luns == 0) {
10509 /* Disallow select-in */
10510 u_int scsiseq1;
10511
10512 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10513 scsiseq1 &= ~ENSELI;
10514 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10515 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10516 scsiseq1 &= ~ENSELI;
10517 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10518
10519 if ((ahd->features & AHD_MULTIROLE) == 0) {
10520 printk("Configuring Initiator Mode\n");
10521 ahd->flags &= ~AHD_TARGETROLE;
10522 ahd->flags |= AHD_INITIATORROLE;
10523 ahd_pause(ahd);
10524 ahd_loadseq(ahd);
10525 ahd_restart(ahd);
10526 /*
10527 * Unpaused. The extra unpause
10528 * that follows is harmless.
10529 */
10530 }
10531 }
10532 ahd_unpause(ahd);
10533 ahd_unlock(ahd, &s);
10534 }
10535 #endif
10536 }
10537
10538 static void
ahd_update_scsiid(struct ahd_softc * ahd,u_int targid_mask)10539 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10540 {
10541 #if NOT_YET
10542 u_int scsiid_mask;
10543 u_int scsiid;
10544
10545 if ((ahd->features & AHD_MULTI_TID) == 0)
10546 panic("ahd_update_scsiid called on non-multitid unit\n");
10547
10548 /*
10549 * Since we will rely on the TARGID mask
10550 * for selection enables, ensure that OID
10551 * in SCSIID is not set to some other ID
10552 * that we don't want to allow selections on.
10553 */
10554 if ((ahd->features & AHD_ULTRA2) != 0)
10555 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10556 else
10557 scsiid = ahd_inb(ahd, SCSIID);
10558 scsiid_mask = 0x1 << (scsiid & OID);
10559 if ((targid_mask & scsiid_mask) == 0) {
10560 u_int our_id;
10561
10562 /* ffs counts from 1 */
10563 our_id = ffs(targid_mask);
10564 if (our_id == 0)
10565 our_id = ahd->our_id;
10566 else
10567 our_id--;
10568 scsiid &= TID;
10569 scsiid |= our_id;
10570 }
10571 if ((ahd->features & AHD_ULTRA2) != 0)
10572 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10573 else
10574 ahd_outb(ahd, SCSIID, scsiid);
10575 #endif
10576 }
10577
10578 static void
ahd_run_tqinfifo(struct ahd_softc * ahd,int paused)10579 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10580 {
10581 struct target_cmd *cmd;
10582
10583 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10584 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10585
10586 /*
10587 * Only advance through the queue if we
10588 * have the resources to process the command.
10589 */
10590 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10591 break;
10592
10593 cmd->cmd_valid = 0;
10594 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10595 ahd->shared_data_map.dmamap,
10596 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10597 sizeof(struct target_cmd),
10598 BUS_DMASYNC_PREREAD);
10599 ahd->tqinfifonext++;
10600
10601 /*
10602 * Lazily update our position in the target mode incoming
10603 * command queue as seen by the sequencer.
10604 */
10605 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10606 u_int hs_mailbox;
10607
10608 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10609 hs_mailbox &= ~HOST_TQINPOS;
10610 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10611 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10612 }
10613 }
10614 }
10615
10616 static int
ahd_handle_target_cmd(struct ahd_softc * ahd,struct target_cmd * cmd)10617 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10618 {
10619 struct ahd_tmode_tstate *tstate;
10620 struct ahd_tmode_lstate *lstate;
10621 struct ccb_accept_tio *atio;
10622 uint8_t *byte;
10623 int initiator;
10624 int target;
10625 int lun;
10626
10627 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10628 target = SCSIID_OUR_ID(cmd->scsiid);
10629 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10630
10631 byte = cmd->bytes;
10632 tstate = ahd->enabled_targets[target];
10633 lstate = NULL;
10634 if (tstate != NULL)
10635 lstate = tstate->enabled_luns[lun];
10636
10637 /*
10638 * Commands for disabled luns go to the black hole driver.
10639 */
10640 if (lstate == NULL)
10641 lstate = ahd->black_hole;
10642
10643 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10644 if (atio == NULL) {
10645 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10646 /*
10647 * Wait for more ATIOs from the peripheral driver for this lun.
10648 */
10649 return (1);
10650 } else
10651 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10652 #ifdef AHD_DEBUG
10653 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10654 printk("Incoming command from %d for %d:%d%s\n",
10655 initiator, target, lun,
10656 lstate == ahd->black_hole ? "(Black Holed)" : "");
10657 #endif
10658 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10659
10660 if (lstate == ahd->black_hole) {
10661 /* Fill in the wildcards */
10662 atio->ccb_h.target_id = target;
10663 atio->ccb_h.target_lun = lun;
10664 }
10665
10666 /*
10667 * Package it up and send it off to
10668 * whomever has this lun enabled.
10669 */
10670 atio->sense_len = 0;
10671 atio->init_id = initiator;
10672 if (byte[0] != 0xFF) {
10673 /* Tag was included */
10674 atio->tag_action = *byte++;
10675 atio->tag_id = *byte++;
10676 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10677 } else {
10678 atio->ccb_h.flags = 0;
10679 }
10680 byte++;
10681
10682 /* Okay. Now determine the cdb size based on the command code */
10683 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10684 case 0:
10685 atio->cdb_len = 6;
10686 break;
10687 case 1:
10688 case 2:
10689 atio->cdb_len = 10;
10690 break;
10691 case 4:
10692 atio->cdb_len = 16;
10693 break;
10694 case 5:
10695 atio->cdb_len = 12;
10696 break;
10697 case 3:
10698 default:
10699 /* Only copy the opcode. */
10700 atio->cdb_len = 1;
10701 printk("Reserved or VU command code type encountered\n");
10702 break;
10703 }
10704
10705 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10706
10707 atio->ccb_h.status |= CAM_CDB_RECVD;
10708
10709 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10710 /*
10711 * We weren't allowed to disconnect.
10712 * We're hanging on the bus until a
10713 * continue target I/O comes in response
10714 * to this accept tio.
10715 */
10716 #ifdef AHD_DEBUG
10717 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10718 printk("Received Immediate Command %d:%d:%d - %p\n",
10719 initiator, target, lun, ahd->pending_device);
10720 #endif
10721 ahd->pending_device = lstate;
10722 ahd_freeze_ccb((union ccb *)atio);
10723 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10724 }
10725 xpt_done((union ccb*)atio);
10726 return (0);
10727 }
10728
10729 #endif
10730