1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31 8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)34 u8 can_dlc2len(u8 can_dlc)
35 {
36 return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
41 9, 9, 9, 9, /* 9 - 12 */
42 10, 10, 10, 10, /* 13 - 16 */
43 11, 11, 11, 11, /* 17 - 20 */
44 12, 12, 12, 12, /* 21 - 24 */
45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)52 u8 can_len2dlc(u8 len)
53 {
54 if (unlikely(len > 64))
55 return 0xF;
56
57 return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64 /* Bit-timing calculation derived from:
65 *
66 * Code based on LinCAN sources and H8S2638 project
67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68 * Copyright 2005 Stanislav Marek
69 * email: pisa@cmp.felk.cvut.cz
70 *
71 * Calculates proper bit-timing parameters for a specified bit-rate
72 * and sample-point, which can then be used to set the bit-timing
73 * registers of the CAN controller. You can find more information
74 * in the header file linux/can/netlink.h.
75 */
76 static int
can_update_sample_point(const struct can_bittiming_const * btc,unsigned int sample_point_nominal,unsigned int tseg,unsigned int * tseg1_ptr,unsigned int * tseg2_ptr,unsigned int * sample_point_error_ptr)77 can_update_sample_point(const struct can_bittiming_const *btc,
78 unsigned int sample_point_nominal, unsigned int tseg,
79 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80 unsigned int *sample_point_error_ptr)
81 {
82 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83 unsigned int sample_point, best_sample_point = 0;
84 unsigned int tseg1, tseg2;
85 int i;
86
87 for (i = 0; i <= 1; i++) {
88 tseg2 = tseg + CAN_SYNC_SEG -
89 (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90 1000 - i;
91 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92 tseg1 = tseg - tseg2;
93 if (tseg1 > btc->tseg1_max) {
94 tseg1 = btc->tseg1_max;
95 tseg2 = tseg - tseg1;
96 }
97
98 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99 (tseg + CAN_SYNC_SEG);
100 sample_point_error = abs(sample_point_nominal - sample_point);
101
102 if (sample_point <= sample_point_nominal &&
103 sample_point_error < best_sample_point_error) {
104 best_sample_point = sample_point;
105 best_sample_point_error = sample_point_error;
106 *tseg1_ptr = tseg1;
107 *tseg2_ptr = tseg2;
108 }
109 }
110
111 if (sample_point_error_ptr)
112 *sample_point_error_ptr = best_sample_point_error;
113
114 return best_sample_point;
115 }
116
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118 const struct can_bittiming_const *btc)
119 {
120 struct can_priv *priv = netdev_priv(dev);
121 unsigned int bitrate; /* current bitrate */
122 unsigned int bitrate_error; /* difference between current and nominal value */
123 unsigned int best_bitrate_error = UINT_MAX;
124 unsigned int sample_point_error; /* difference between current and nominal value */
125 unsigned int best_sample_point_error = UINT_MAX;
126 unsigned int sample_point_nominal; /* nominal sample point */
127 unsigned int best_tseg = 0; /* current best value for tseg */
128 unsigned int best_brp = 0; /* current best value for brp */
129 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130 u64 v64;
131
132 /* Use CiA recommended sample points */
133 if (bt->sample_point) {
134 sample_point_nominal = bt->sample_point;
135 } else {
136 if (bt->bitrate > 800000)
137 sample_point_nominal = 750;
138 else if (bt->bitrate > 500000)
139 sample_point_nominal = 800;
140 else
141 sample_point_nominal = 875;
142 }
143
144 /* tseg even = round down, odd = round up */
145 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152 /* choose brp step which is possible in system */
153 brp = (brp / btc->brp_inc) * btc->brp_inc;
154 if (brp < btc->brp_min || brp > btc->brp_max)
155 continue;
156
157 bitrate = priv->clock.freq / (brp * tsegall);
158 bitrate_error = abs(bt->bitrate - bitrate);
159
160 /* tseg brp biterror */
161 if (bitrate_error > best_bitrate_error)
162 continue;
163
164 /* reset sample point error if we have a better bitrate */
165 if (bitrate_error < best_bitrate_error)
166 best_sample_point_error = UINT_MAX;
167
168 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169 &tseg1, &tseg2, &sample_point_error);
170 if (sample_point_error > best_sample_point_error)
171 continue;
172
173 best_sample_point_error = sample_point_error;
174 best_bitrate_error = bitrate_error;
175 best_tseg = tseg / 2;
176 best_brp = brp;
177
178 if (bitrate_error == 0 && sample_point_error == 0)
179 break;
180 }
181
182 if (best_bitrate_error) {
183 /* Error in one-tenth of a percent */
184 v64 = (u64)best_bitrate_error * 1000;
185 do_div(v64, bt->bitrate);
186 bitrate_error = (u32)v64;
187 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188 netdev_err(dev,
189 "bitrate error %d.%d%% too high\n",
190 bitrate_error / 10, bitrate_error % 10);
191 return -EDOM;
192 }
193 netdev_warn(dev, "bitrate error %d.%d%%\n",
194 bitrate_error / 10, bitrate_error % 10);
195 }
196
197 /* real sample point */
198 bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199 best_tseg, &tseg1, &tseg2,
200 NULL);
201
202 v64 = (u64)best_brp * 1000 * 1000 * 1000;
203 do_div(v64, priv->clock.freq);
204 bt->tq = (u32)v64;
205 bt->prop_seg = tseg1 / 2;
206 bt->phase_seg1 = tseg1 - bt->prop_seg;
207 bt->phase_seg2 = tseg2;
208
209 /* check for sjw user settings */
210 if (!bt->sjw || !btc->sjw_max) {
211 bt->sjw = 1;
212 } else {
213 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214 if (bt->sjw > btc->sjw_max)
215 bt->sjw = btc->sjw_max;
216 /* bt->sjw must not be higher than tseg2 */
217 if (tseg2 < bt->sjw)
218 bt->sjw = tseg2;
219 }
220
221 bt->brp = best_brp;
222
223 /* real bitrate */
224 bt->bitrate = priv->clock.freq /
225 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227 return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231 const struct can_bittiming_const *btc)
232 {
233 netdev_err(dev, "bit-timing calculation not available\n");
234 return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240 * prescaler value brp. You can find more information in the header
241 * file linux/can/netlink.h.
242 */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244 const struct can_bittiming_const *btc)
245 {
246 struct can_priv *priv = netdev_priv(dev);
247 int tseg1, alltseg;
248 u64 brp64;
249
250 tseg1 = bt->prop_seg + bt->phase_seg1;
251 if (!bt->sjw)
252 bt->sjw = 1;
253 if (bt->sjw > btc->sjw_max ||
254 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256 return -ERANGE;
257
258 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259 if (btc->brp_inc > 1)
260 do_div(brp64, btc->brp_inc);
261 brp64 += 500000000UL - 1;
262 do_div(brp64, 1000000000UL); /* the practicable BRP */
263 if (btc->brp_inc > 1)
264 brp64 *= btc->brp_inc;
265 bt->brp = (u32)brp64;
266
267 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268 return -EINVAL;
269
270 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274 return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
can_validate_bitrate(struct net_device * dev,struct can_bittiming * bt,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280 const u32 *bitrate_const,
281 const unsigned int bitrate_const_cnt)
282 {
283 struct can_priv *priv = netdev_priv(dev);
284 unsigned int i;
285
286 for (i = 0; i < bitrate_const_cnt; i++) {
287 if (bt->bitrate == bitrate_const[i])
288 break;
289 }
290
291 if (i >= priv->bitrate_const_cnt)
292 return -EINVAL;
293
294 return 0;
295 }
296
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298 const struct can_bittiming_const *btc,
299 const u32 *bitrate_const,
300 const unsigned int bitrate_const_cnt)
301 {
302 int err;
303
304 /* Depending on the given can_bittiming parameter structure the CAN
305 * timing parameters are calculated based on the provided bitrate OR
306 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307 * provided directly which are then checked and fixed up.
308 */
309 if (!bt->tq && bt->bitrate && btc)
310 err = can_calc_bittiming(dev, bt, btc);
311 else if (bt->tq && !bt->bitrate && btc)
312 err = can_fixup_bittiming(dev, bt, btc);
313 else if (!bt->tq && bt->bitrate && bitrate_const)
314 err = can_validate_bitrate(dev, bt, bitrate_const,
315 bitrate_const_cnt);
316 else
317 err = -EINVAL;
318
319 return err;
320 }
321
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)322 static void can_update_state_error_stats(struct net_device *dev,
323 enum can_state new_state)
324 {
325 struct can_priv *priv = netdev_priv(dev);
326
327 if (new_state <= priv->state)
328 return;
329
330 switch (new_state) {
331 case CAN_STATE_ERROR_WARNING:
332 priv->can_stats.error_warning++;
333 break;
334 case CAN_STATE_ERROR_PASSIVE:
335 priv->can_stats.error_passive++;
336 break;
337 case CAN_STATE_BUS_OFF:
338 priv->can_stats.bus_off++;
339 break;
340 default:
341 break;
342 }
343 }
344
can_tx_state_to_frame(struct net_device * dev,enum can_state state)345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347 switch (state) {
348 case CAN_STATE_ERROR_ACTIVE:
349 return CAN_ERR_CRTL_ACTIVE;
350 case CAN_STATE_ERROR_WARNING:
351 return CAN_ERR_CRTL_TX_WARNING;
352 case CAN_STATE_ERROR_PASSIVE:
353 return CAN_ERR_CRTL_TX_PASSIVE;
354 default:
355 return 0;
356 }
357 }
358
can_rx_state_to_frame(struct net_device * dev,enum can_state state)359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361 switch (state) {
362 case CAN_STATE_ERROR_ACTIVE:
363 return CAN_ERR_CRTL_ACTIVE;
364 case CAN_STATE_ERROR_WARNING:
365 return CAN_ERR_CRTL_RX_WARNING;
366 case CAN_STATE_ERROR_PASSIVE:
367 return CAN_ERR_CRTL_RX_PASSIVE;
368 default:
369 return 0;
370 }
371 }
372
can_get_state_str(const enum can_state state)373 static const char *can_get_state_str(const enum can_state state)
374 {
375 switch (state) {
376 case CAN_STATE_ERROR_ACTIVE:
377 return "Error Active";
378 case CAN_STATE_ERROR_WARNING:
379 return "Error Warning";
380 case CAN_STATE_ERROR_PASSIVE:
381 return "Error Passive";
382 case CAN_STATE_BUS_OFF:
383 return "Bus Off";
384 case CAN_STATE_STOPPED:
385 return "Stopped";
386 case CAN_STATE_SLEEPING:
387 return "Sleeping";
388 default:
389 return "<unknown>";
390 }
391
392 return "<unknown>";
393 }
394
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396 enum can_state tx_state, enum can_state rx_state)
397 {
398 struct can_priv *priv = netdev_priv(dev);
399 enum can_state new_state = max(tx_state, rx_state);
400
401 if (unlikely(new_state == priv->state)) {
402 netdev_warn(dev, "%s: oops, state did not change", __func__);
403 return;
404 }
405
406 netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407 can_get_state_str(priv->state), priv->state,
408 can_get_state_str(new_state), new_state);
409
410 can_update_state_error_stats(dev, new_state);
411 priv->state = new_state;
412
413 if (!cf)
414 return;
415
416 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417 cf->can_id |= CAN_ERR_BUSOFF;
418 return;
419 }
420
421 cf->can_id |= CAN_ERR_CRTL;
422 cf->data[1] |= tx_state >= rx_state ?
423 can_tx_state_to_frame(dev, tx_state) : 0;
424 cf->data[1] |= tx_state <= rx_state ?
425 can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428
429 /* Local echo of CAN messages
430 *
431 * CAN network devices *should* support a local echo functionality
432 * (see Documentation/networking/can.rst). To test the handling of CAN
433 * interfaces that do not support the local echo both driver types are
434 * implemented. In the case that the driver does not support the echo
435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436 * to perform the echo as a fallback solution.
437 */
can_flush_echo_skb(struct net_device * dev)438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440 struct can_priv *priv = netdev_priv(dev);
441 struct net_device_stats *stats = &dev->stats;
442 int i;
443
444 for (i = 0; i < priv->echo_skb_max; i++) {
445 if (priv->echo_skb[i]) {
446 kfree_skb(priv->echo_skb[i]);
447 priv->echo_skb[i] = NULL;
448 stats->tx_dropped++;
449 stats->tx_aborted_errors++;
450 }
451 }
452 }
453
454 /* Put the skb on the stack to be looped backed locally lateron
455 *
456 * The function is typically called in the start_xmit function
457 * of the device driver. The driver must protect access to
458 * priv->echo_skb, if necessary.
459 */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461 unsigned int idx)
462 {
463 struct can_priv *priv = netdev_priv(dev);
464
465 BUG_ON(idx >= priv->echo_skb_max);
466
467 /* check flag whether this packet has to be looped back */
468 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469 (skb->protocol != htons(ETH_P_CAN) &&
470 skb->protocol != htons(ETH_P_CANFD))) {
471 kfree_skb(skb);
472 return 0;
473 }
474
475 if (!priv->echo_skb[idx]) {
476 skb = can_create_echo_skb(skb);
477 if (!skb)
478 return -ENOMEM;
479
480 /* make settings for echo to reduce code in irq context */
481 skb->pkt_type = PACKET_BROADCAST;
482 skb->ip_summed = CHECKSUM_UNNECESSARY;
483 skb->dev = dev;
484
485 /* save this skb for tx interrupt echo handling */
486 priv->echo_skb[idx] = skb;
487 } else {
488 /* locking problem with netif_stop_queue() ?? */
489 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490 kfree_skb(skb);
491 return -EBUSY;
492 }
493
494 return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498 struct sk_buff *
__can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501 struct can_priv *priv = netdev_priv(dev);
502
503 if (idx >= priv->echo_skb_max) {
504 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505 __func__, idx, priv->echo_skb_max);
506 return NULL;
507 }
508
509 if (priv->echo_skb[idx]) {
510 /* Using "struct canfd_frame::len" for the frame
511 * length is supported on both CAN and CANFD frames.
512 */
513 struct sk_buff *skb = priv->echo_skb[idx];
514 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515
516 /* get the real payload length for netdev statistics */
517 if (cf->can_id & CAN_RTR_FLAG)
518 *len_ptr = 0;
519 else
520 *len_ptr = cf->len;
521
522 priv->echo_skb[idx] = NULL;
523
524 return skb;
525 }
526
527 return NULL;
528 }
529
530 /* Get the skb from the stack and loop it back locally
531 *
532 * The function is typically called when the TX done interrupt
533 * is handled in the device driver. The driver must protect
534 * access to priv->echo_skb, if necessary.
535 */
can_get_echo_skb(struct net_device * dev,unsigned int idx)536 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537 {
538 struct sk_buff *skb;
539 u8 len;
540
541 skb = __can_get_echo_skb(dev, idx, &len);
542 if (!skb)
543 return 0;
544
545 skb_get(skb);
546 if (netif_rx(skb) == NET_RX_SUCCESS)
547 dev_consume_skb_any(skb);
548 else
549 dev_kfree_skb_any(skb);
550
551 return len;
552 }
553 EXPORT_SYMBOL_GPL(can_get_echo_skb);
554
555 /* Remove the skb from the stack and free it.
556 *
557 * The function is typically called when TX failed.
558 */
can_free_echo_skb(struct net_device * dev,unsigned int idx)559 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560 {
561 struct can_priv *priv = netdev_priv(dev);
562
563 BUG_ON(idx >= priv->echo_skb_max);
564
565 if (priv->echo_skb[idx]) {
566 dev_kfree_skb_any(priv->echo_skb[idx]);
567 priv->echo_skb[idx] = NULL;
568 }
569 }
570 EXPORT_SYMBOL_GPL(can_free_echo_skb);
571
572 /* CAN device restart for bus-off recovery */
can_restart(struct net_device * dev)573 static void can_restart(struct net_device *dev)
574 {
575 struct can_priv *priv = netdev_priv(dev);
576 struct net_device_stats *stats = &dev->stats;
577 struct sk_buff *skb;
578 struct can_frame *cf;
579 int err;
580
581 if (netif_carrier_ok(dev))
582 netdev_err(dev, "Attempt to restart for bus-off recovery, but carrier is OK?\n");
583
584 /* No synchronization needed because the device is bus-off and
585 * no messages can come in or go out.
586 */
587 can_flush_echo_skb(dev);
588
589 /* send restart message upstream */
590 skb = alloc_can_err_skb(dev, &cf);
591 if (!skb)
592 goto restart;
593
594 cf->can_id |= CAN_ERR_RESTARTED;
595
596 stats->rx_packets++;
597 stats->rx_bytes += cf->can_dlc;
598
599 netif_rx_ni(skb);
600
601 restart:
602 netdev_dbg(dev, "restarted\n");
603 priv->can_stats.restarts++;
604
605 /* Now restart the device */
606 netif_carrier_on(dev);
607 err = priv->do_set_mode(dev, CAN_MODE_START);
608 if (err) {
609 netdev_err(dev, "Error %d during restart", err);
610 netif_carrier_off(dev);
611 }
612 }
613
can_restart_work(struct work_struct * work)614 static void can_restart_work(struct work_struct *work)
615 {
616 struct delayed_work *dwork = to_delayed_work(work);
617 struct can_priv *priv = container_of(dwork, struct can_priv,
618 restart_work);
619
620 can_restart(priv->dev);
621 }
622
can_restart_now(struct net_device * dev)623 int can_restart_now(struct net_device *dev)
624 {
625 struct can_priv *priv = netdev_priv(dev);
626
627 /* A manual restart is only permitted if automatic restart is
628 * disabled and the device is in the bus-off state
629 */
630 if (priv->restart_ms)
631 return -EINVAL;
632 if (priv->state != CAN_STATE_BUS_OFF)
633 return -EBUSY;
634
635 cancel_delayed_work_sync(&priv->restart_work);
636 can_restart(dev);
637
638 return 0;
639 }
640
641 /* CAN bus-off
642 *
643 * This functions should be called when the device goes bus-off to
644 * tell the netif layer that no more packets can be sent or received.
645 * If enabled, a timer is started to trigger bus-off recovery.
646 */
can_bus_off(struct net_device * dev)647 void can_bus_off(struct net_device *dev)
648 {
649 struct can_priv *priv = netdev_priv(dev);
650
651 if (priv->restart_ms)
652 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
653 priv->restart_ms);
654 else
655 netdev_info(dev, "bus-off\n");
656
657 netif_carrier_off(dev);
658
659 if (priv->restart_ms)
660 schedule_delayed_work(&priv->restart_work,
661 msecs_to_jiffies(priv->restart_ms));
662 }
663 EXPORT_SYMBOL_GPL(can_bus_off);
664
can_setup(struct net_device * dev)665 static void can_setup(struct net_device *dev)
666 {
667 dev->type = ARPHRD_CAN;
668 dev->mtu = CAN_MTU;
669 dev->hard_header_len = 0;
670 dev->addr_len = 0;
671 dev->tx_queue_len = 10;
672
673 /* New-style flags. */
674 dev->flags = IFF_NOARP;
675 dev->features = NETIF_F_HW_CSUM;
676 }
677
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)678 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
679 {
680 struct sk_buff *skb;
681
682 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
683 sizeof(struct can_frame));
684 if (unlikely(!skb))
685 return NULL;
686
687 skb->protocol = htons(ETH_P_CAN);
688 skb->pkt_type = PACKET_BROADCAST;
689 skb->ip_summed = CHECKSUM_UNNECESSARY;
690
691 skb_reset_mac_header(skb);
692 skb_reset_network_header(skb);
693 skb_reset_transport_header(skb);
694
695 can_skb_reserve(skb);
696 can_skb_prv(skb)->ifindex = dev->ifindex;
697 can_skb_prv(skb)->skbcnt = 0;
698
699 *cf = skb_put_zero(skb, sizeof(struct can_frame));
700
701 return skb;
702 }
703 EXPORT_SYMBOL_GPL(alloc_can_skb);
704
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)705 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
706 struct canfd_frame **cfd)
707 {
708 struct sk_buff *skb;
709
710 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
711 sizeof(struct canfd_frame));
712 if (unlikely(!skb))
713 return NULL;
714
715 skb->protocol = htons(ETH_P_CANFD);
716 skb->pkt_type = PACKET_BROADCAST;
717 skb->ip_summed = CHECKSUM_UNNECESSARY;
718
719 skb_reset_mac_header(skb);
720 skb_reset_network_header(skb);
721 skb_reset_transport_header(skb);
722
723 can_skb_reserve(skb);
724 can_skb_prv(skb)->ifindex = dev->ifindex;
725 can_skb_prv(skb)->skbcnt = 0;
726
727 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
728
729 return skb;
730 }
731 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
732
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)733 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
734 {
735 struct sk_buff *skb;
736
737 skb = alloc_can_skb(dev, cf);
738 if (unlikely(!skb))
739 return NULL;
740
741 (*cf)->can_id = CAN_ERR_FLAG;
742 (*cf)->can_dlc = CAN_ERR_DLC;
743
744 return skb;
745 }
746 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
747
748 /* Allocate and setup space for the CAN network device */
alloc_candev_mqs(int sizeof_priv,unsigned int echo_skb_max,unsigned int txqs,unsigned int rxqs)749 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
750 unsigned int txqs, unsigned int rxqs)
751 {
752 struct can_ml_priv *can_ml;
753 struct net_device *dev;
754 struct can_priv *priv;
755 int size;
756
757 /* We put the driver's priv, the CAN mid layer priv and the
758 * echo skb into the netdevice's priv. The memory layout for
759 * the netdev_priv is like this:
760 *
761 * +-------------------------+
762 * | driver's priv |
763 * +-------------------------+
764 * | struct can_ml_priv |
765 * +-------------------------+
766 * | array of struct sk_buff |
767 * +-------------------------+
768 */
769
770 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
771
772 if (echo_skb_max)
773 size = ALIGN(size, sizeof(struct sk_buff *)) +
774 echo_skb_max * sizeof(struct sk_buff *);
775
776 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
777 txqs, rxqs);
778 if (!dev)
779 return NULL;
780
781 priv = netdev_priv(dev);
782 priv->dev = dev;
783
784 can_ml = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
785 can_set_ml_priv(dev, can_ml);
786
787 if (echo_skb_max) {
788 priv->echo_skb_max = echo_skb_max;
789 priv->echo_skb = (void *)priv +
790 (size - echo_skb_max * sizeof(struct sk_buff *));
791 }
792
793 priv->state = CAN_STATE_STOPPED;
794
795 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
796
797 return dev;
798 }
799 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
800
801 /* Free space of the CAN network device */
free_candev(struct net_device * dev)802 void free_candev(struct net_device *dev)
803 {
804 free_netdev(dev);
805 }
806 EXPORT_SYMBOL_GPL(free_candev);
807
808 /* changing MTU and control mode for CAN/CANFD devices */
can_change_mtu(struct net_device * dev,int new_mtu)809 int can_change_mtu(struct net_device *dev, int new_mtu)
810 {
811 struct can_priv *priv = netdev_priv(dev);
812
813 /* Do not allow changing the MTU while running */
814 if (dev->flags & IFF_UP)
815 return -EBUSY;
816
817 /* allow change of MTU according to the CANFD ability of the device */
818 switch (new_mtu) {
819 case CAN_MTU:
820 /* 'CANFD-only' controllers can not switch to CAN_MTU */
821 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
822 return -EINVAL;
823
824 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
825 break;
826
827 case CANFD_MTU:
828 /* check for potential CANFD ability */
829 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
830 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
831 return -EINVAL;
832
833 priv->ctrlmode |= CAN_CTRLMODE_FD;
834 break;
835
836 default:
837 return -EINVAL;
838 }
839
840 dev->mtu = new_mtu;
841 return 0;
842 }
843 EXPORT_SYMBOL_GPL(can_change_mtu);
844
845 /* Common open function when the device gets opened.
846 *
847 * This function should be called in the open function of the device
848 * driver.
849 */
open_candev(struct net_device * dev)850 int open_candev(struct net_device *dev)
851 {
852 struct can_priv *priv = netdev_priv(dev);
853
854 if (!priv->bittiming.bitrate) {
855 netdev_err(dev, "bit-timing not yet defined\n");
856 return -EINVAL;
857 }
858
859 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
860 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
861 (!priv->data_bittiming.bitrate ||
862 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
863 netdev_err(dev, "incorrect/missing data bit-timing\n");
864 return -EINVAL;
865 }
866
867 /* Switch carrier on if device was stopped while in bus-off state */
868 if (!netif_carrier_ok(dev))
869 netif_carrier_on(dev);
870
871 return 0;
872 }
873 EXPORT_SYMBOL_GPL(open_candev);
874
875 #ifdef CONFIG_OF
876 /* Common function that can be used to understand the limitation of
877 * a transceiver when it provides no means to determine these limitations
878 * at runtime.
879 */
of_can_transceiver(struct net_device * dev)880 void of_can_transceiver(struct net_device *dev)
881 {
882 struct device_node *dn;
883 struct can_priv *priv = netdev_priv(dev);
884 struct device_node *np = dev->dev.parent->of_node;
885 int ret;
886
887 dn = of_get_child_by_name(np, "can-transceiver");
888 if (!dn)
889 return;
890
891 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
892 of_node_put(dn);
893 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
894 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
895 }
896 EXPORT_SYMBOL_GPL(of_can_transceiver);
897 #endif
898
899 /* Common close function for cleanup before the device gets closed.
900 *
901 * This function should be called in the close function of the device
902 * driver.
903 */
close_candev(struct net_device * dev)904 void close_candev(struct net_device *dev)
905 {
906 struct can_priv *priv = netdev_priv(dev);
907
908 cancel_delayed_work_sync(&priv->restart_work);
909 can_flush_echo_skb(dev);
910 }
911 EXPORT_SYMBOL_GPL(close_candev);
912
913 /* CAN netlink interface */
914 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
915 [IFLA_CAN_STATE] = { .type = NLA_U32 },
916 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
917 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
918 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
919 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
920 [IFLA_CAN_BITTIMING_CONST]
921 = { .len = sizeof(struct can_bittiming_const) },
922 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
923 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
924 [IFLA_CAN_DATA_BITTIMING]
925 = { .len = sizeof(struct can_bittiming) },
926 [IFLA_CAN_DATA_BITTIMING_CONST]
927 = { .len = sizeof(struct can_bittiming_const) },
928 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 },
929 };
930
can_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)931 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
932 struct netlink_ext_ack *extack)
933 {
934 bool is_can_fd = false;
935
936 /* Make sure that valid CAN FD configurations always consist of
937 * - nominal/arbitration bittiming
938 * - data bittiming
939 * - control mode with CAN_CTRLMODE_FD set
940 */
941
942 if (!data)
943 return 0;
944
945 if (data[IFLA_CAN_CTRLMODE]) {
946 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
947
948 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
949 }
950
951 if (is_can_fd) {
952 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
953 return -EOPNOTSUPP;
954 }
955
956 if (data[IFLA_CAN_DATA_BITTIMING]) {
957 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
958 return -EOPNOTSUPP;
959 }
960
961 return 0;
962 }
963
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)964 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
965 struct nlattr *data[],
966 struct netlink_ext_ack *extack)
967 {
968 struct can_priv *priv = netdev_priv(dev);
969 int err;
970
971 /* We need synchronization with dev->stop() */
972 ASSERT_RTNL();
973
974 if (data[IFLA_CAN_BITTIMING]) {
975 struct can_bittiming bt;
976
977 /* Do not allow changing bittiming while running */
978 if (dev->flags & IFF_UP)
979 return -EBUSY;
980
981 /* Calculate bittiming parameters based on
982 * bittiming_const if set, otherwise pass bitrate
983 * directly via do_set_bitrate(). Bail out if neither
984 * is given.
985 */
986 if (!priv->bittiming_const && !priv->do_set_bittiming)
987 return -EOPNOTSUPP;
988
989 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
990 err = can_get_bittiming(dev, &bt,
991 priv->bittiming_const,
992 priv->bitrate_const,
993 priv->bitrate_const_cnt);
994 if (err)
995 return err;
996
997 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
998 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
999 priv->bitrate_max);
1000 return -EINVAL;
1001 }
1002
1003 memcpy(&priv->bittiming, &bt, sizeof(bt));
1004
1005 if (priv->do_set_bittiming) {
1006 /* Finally, set the bit-timing registers */
1007 err = priv->do_set_bittiming(dev);
1008 if (err)
1009 return err;
1010 }
1011 }
1012
1013 if (data[IFLA_CAN_CTRLMODE]) {
1014 struct can_ctrlmode *cm;
1015 u32 ctrlstatic;
1016 u32 maskedflags;
1017
1018 /* Do not allow changing controller mode while running */
1019 if (dev->flags & IFF_UP)
1020 return -EBUSY;
1021 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1022 ctrlstatic = priv->ctrlmode_static;
1023 maskedflags = cm->flags & cm->mask;
1024
1025 /* check whether provided bits are allowed to be passed */
1026 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1027 return -EOPNOTSUPP;
1028
1029 /* do not check for static fd-non-iso if 'fd' is disabled */
1030 if (!(maskedflags & CAN_CTRLMODE_FD))
1031 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1032
1033 /* make sure static options are provided by configuration */
1034 if ((maskedflags & ctrlstatic) != ctrlstatic)
1035 return -EOPNOTSUPP;
1036
1037 /* clear bits to be modified and copy the flag values */
1038 priv->ctrlmode &= ~cm->mask;
1039 priv->ctrlmode |= maskedflags;
1040
1041 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1042 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1043 dev->mtu = CANFD_MTU;
1044 else
1045 dev->mtu = CAN_MTU;
1046 }
1047
1048 if (data[IFLA_CAN_RESTART_MS]) {
1049 /* Do not allow changing restart delay while running */
1050 if (dev->flags & IFF_UP)
1051 return -EBUSY;
1052 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1053 }
1054
1055 if (data[IFLA_CAN_RESTART]) {
1056 /* Do not allow a restart while not running */
1057 if (!(dev->flags & IFF_UP))
1058 return -EINVAL;
1059 err = can_restart_now(dev);
1060 if (err)
1061 return err;
1062 }
1063
1064 if (data[IFLA_CAN_DATA_BITTIMING]) {
1065 struct can_bittiming dbt;
1066
1067 /* Do not allow changing bittiming while running */
1068 if (dev->flags & IFF_UP)
1069 return -EBUSY;
1070
1071 /* Calculate bittiming parameters based on
1072 * data_bittiming_const if set, otherwise pass bitrate
1073 * directly via do_set_bitrate(). Bail out if neither
1074 * is given.
1075 */
1076 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1077 return -EOPNOTSUPP;
1078
1079 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1080 sizeof(dbt));
1081 err = can_get_bittiming(dev, &dbt,
1082 priv->data_bittiming_const,
1083 priv->data_bitrate_const,
1084 priv->data_bitrate_const_cnt);
1085 if (err)
1086 return err;
1087
1088 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1089 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1090 priv->bitrate_max);
1091 return -EINVAL;
1092 }
1093
1094 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1095
1096 if (priv->do_set_data_bittiming) {
1097 /* Finally, set the bit-timing registers */
1098 err = priv->do_set_data_bittiming(dev);
1099 if (err)
1100 return err;
1101 }
1102 }
1103
1104 if (data[IFLA_CAN_TERMINATION]) {
1105 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1106 const unsigned int num_term = priv->termination_const_cnt;
1107 unsigned int i;
1108
1109 if (!priv->do_set_termination)
1110 return -EOPNOTSUPP;
1111
1112 /* check whether given value is supported by the interface */
1113 for (i = 0; i < num_term; i++) {
1114 if (termval == priv->termination_const[i])
1115 break;
1116 }
1117 if (i >= num_term)
1118 return -EINVAL;
1119
1120 /* Finally, set the termination value */
1121 err = priv->do_set_termination(dev, termval);
1122 if (err)
1123 return err;
1124
1125 priv->termination = termval;
1126 }
1127
1128 return 0;
1129 }
1130
can_get_size(const struct net_device * dev)1131 static size_t can_get_size(const struct net_device *dev)
1132 {
1133 struct can_priv *priv = netdev_priv(dev);
1134 size_t size = 0;
1135
1136 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1137 size += nla_total_size(sizeof(struct can_bittiming));
1138 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1139 size += nla_total_size(sizeof(struct can_bittiming_const));
1140 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1141 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1142 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1143 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1144 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1145 size += nla_total_size(sizeof(struct can_berr_counter));
1146 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1147 size += nla_total_size(sizeof(struct can_bittiming));
1148 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1149 size += nla_total_size(sizeof(struct can_bittiming_const));
1150 if (priv->termination_const) {
1151 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1152 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1153 priv->termination_const_cnt);
1154 }
1155 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1156 size += nla_total_size(sizeof(*priv->bitrate_const) *
1157 priv->bitrate_const_cnt);
1158 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1159 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1160 priv->data_bitrate_const_cnt);
1161 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */
1162
1163 return size;
1164 }
1165
can_fill_info(struct sk_buff * skb,const struct net_device * dev)1166 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1167 {
1168 struct can_priv *priv = netdev_priv(dev);
1169 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1170 struct can_berr_counter bec = { };
1171 enum can_state state = priv->state;
1172
1173 if (priv->do_get_state)
1174 priv->do_get_state(dev, &state);
1175
1176 if ((priv->bittiming.bitrate &&
1177 nla_put(skb, IFLA_CAN_BITTIMING,
1178 sizeof(priv->bittiming), &priv->bittiming)) ||
1179
1180 (priv->bittiming_const &&
1181 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1182 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1183
1184 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1185 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1186 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1187 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1188
1189 (priv->do_get_berr_counter &&
1190 !priv->do_get_berr_counter(dev, &bec) &&
1191 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1192
1193 (priv->data_bittiming.bitrate &&
1194 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1195 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1196
1197 (priv->data_bittiming_const &&
1198 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1199 sizeof(*priv->data_bittiming_const),
1200 priv->data_bittiming_const)) ||
1201
1202 (priv->termination_const &&
1203 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1204 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1205 sizeof(*priv->termination_const) *
1206 priv->termination_const_cnt,
1207 priv->termination_const))) ||
1208
1209 (priv->bitrate_const &&
1210 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1211 sizeof(*priv->bitrate_const) *
1212 priv->bitrate_const_cnt,
1213 priv->bitrate_const)) ||
1214
1215 (priv->data_bitrate_const &&
1216 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1217 sizeof(*priv->data_bitrate_const) *
1218 priv->data_bitrate_const_cnt,
1219 priv->data_bitrate_const)) ||
1220
1221 (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1222 sizeof(priv->bitrate_max),
1223 &priv->bitrate_max))
1224 )
1225
1226 return -EMSGSIZE;
1227
1228 return 0;
1229 }
1230
can_get_xstats_size(const struct net_device * dev)1231 static size_t can_get_xstats_size(const struct net_device *dev)
1232 {
1233 return sizeof(struct can_device_stats);
1234 }
1235
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1236 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1237 {
1238 struct can_priv *priv = netdev_priv(dev);
1239
1240 if (nla_put(skb, IFLA_INFO_XSTATS,
1241 sizeof(priv->can_stats), &priv->can_stats))
1242 goto nla_put_failure;
1243 return 0;
1244
1245 nla_put_failure:
1246 return -EMSGSIZE;
1247 }
1248
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1249 static int can_newlink(struct net *src_net, struct net_device *dev,
1250 struct nlattr *tb[], struct nlattr *data[],
1251 struct netlink_ext_ack *extack)
1252 {
1253 return -EOPNOTSUPP;
1254 }
1255
can_dellink(struct net_device * dev,struct list_head * head)1256 static void can_dellink(struct net_device *dev, struct list_head *head)
1257 {
1258 }
1259
1260 static struct rtnl_link_ops can_link_ops __read_mostly = {
1261 .kind = "can",
1262 .netns_refund = true,
1263 .maxtype = IFLA_CAN_MAX,
1264 .policy = can_policy,
1265 .setup = can_setup,
1266 .validate = can_validate,
1267 .newlink = can_newlink,
1268 .changelink = can_changelink,
1269 .dellink = can_dellink,
1270 .get_size = can_get_size,
1271 .fill_info = can_fill_info,
1272 .get_xstats_size = can_get_xstats_size,
1273 .fill_xstats = can_fill_xstats,
1274 };
1275
1276 /* Register the CAN network device */
register_candev(struct net_device * dev)1277 int register_candev(struct net_device *dev)
1278 {
1279 struct can_priv *priv = netdev_priv(dev);
1280
1281 /* Ensure termination_const, termination_const_cnt and
1282 * do_set_termination consistency. All must be either set or
1283 * unset.
1284 */
1285 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1286 (!priv->termination_const != !priv->do_set_termination))
1287 return -EINVAL;
1288
1289 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1290 return -EINVAL;
1291
1292 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1293 return -EINVAL;
1294
1295 dev->rtnl_link_ops = &can_link_ops;
1296 netif_carrier_off(dev);
1297
1298 return register_netdev(dev);
1299 }
1300 EXPORT_SYMBOL_GPL(register_candev);
1301
1302 /* Unregister the CAN network device */
unregister_candev(struct net_device * dev)1303 void unregister_candev(struct net_device *dev)
1304 {
1305 unregister_netdev(dev);
1306 }
1307 EXPORT_SYMBOL_GPL(unregister_candev);
1308
1309 /* Test if a network device is a candev based device
1310 * and return the can_priv* if so.
1311 */
safe_candev_priv(struct net_device * dev)1312 struct can_priv *safe_candev_priv(struct net_device *dev)
1313 {
1314 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1315 return NULL;
1316
1317 return netdev_priv(dev);
1318 }
1319 EXPORT_SYMBOL_GPL(safe_candev_priv);
1320
can_dev_init(void)1321 static __init int can_dev_init(void)
1322 {
1323 int err;
1324
1325 can_led_notifier_init();
1326
1327 err = rtnl_link_register(&can_link_ops);
1328 if (!err)
1329 pr_info(MOD_DESC "\n");
1330
1331 return err;
1332 }
1333 module_init(can_dev_init);
1334
can_dev_exit(void)1335 static __exit void can_dev_exit(void)
1336 {
1337 rtnl_link_unregister(&can_link_ops);
1338
1339 can_led_notifier_exit();
1340 }
1341 module_exit(can_dev_exit);
1342
1343 MODULE_ALIAS_RTNL_LINK("can");
1344