• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 
41 /**
42  * DOC: GPUVM
43  *
44  * GPUVM is similar to the legacy gart on older asics, however
45  * rather than there being a single global gart table
46  * for the entire GPU, there are multiple VM page tables active
47  * at any given time.  The VM page tables can contain a mix
48  * vram pages and system memory pages and system memory pages
49  * can be mapped as snooped (cached system pages) or unsnooped
50  * (uncached system pages).
51  * Each VM has an ID associated with it and there is a page table
52  * associated with each VMID.  When execting a command buffer,
53  * the kernel tells the the ring what VMID to use for that command
54  * buffer.  VMIDs are allocated dynamically as commands are submitted.
55  * The userspace drivers maintain their own address space and the kernel
56  * sets up their pages tables accordingly when they submit their
57  * command buffers and a VMID is assigned.
58  * Cayman/Trinity support up to 8 active VMs at any given time;
59  * SI supports 16.
60  */
61 
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64 
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 		     START, LAST, static, amdgpu_vm_it)
67 
68 #undef START
69 #undef LAST
70 
71 /**
72  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73  */
74 struct amdgpu_prt_cb {
75 
76 	/**
77 	 * @adev: amdgpu device
78 	 */
79 	struct amdgpu_device *adev;
80 
81 	/**
82 	 * @cb: callback
83 	 */
84 	struct dma_fence_cb cb;
85 };
86 
87 /*
88  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89  * happens while holding this lock anywhere to prevent deadlocks when
90  * an MMU notifier runs in reclaim-FS context.
91  */
amdgpu_vm_eviction_lock(struct amdgpu_vm * vm)92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 	mutex_lock(&vm->eviction_lock);
95 	vm->saved_flags = memalloc_nofs_save();
96 }
97 
amdgpu_vm_eviction_trylock(struct amdgpu_vm * vm)98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 	if (mutex_trylock(&vm->eviction_lock)) {
101 		vm->saved_flags = memalloc_nofs_save();
102 		return 1;
103 	}
104 	return 0;
105 }
106 
amdgpu_vm_eviction_unlock(struct amdgpu_vm * vm)107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 	memalloc_nofs_restore(vm->saved_flags);
110 	mutex_unlock(&vm->eviction_lock);
111 }
112 
113 /**
114  * amdgpu_vm_level_shift - return the addr shift for each level
115  *
116  * @adev: amdgpu_device pointer
117  * @level: VMPT level
118  *
119  * Returns:
120  * The number of bits the pfn needs to be right shifted for a level.
121  */
amdgpu_vm_level_shift(struct amdgpu_device * adev,unsigned level)122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 				      unsigned level)
124 {
125 	switch (level) {
126 	case AMDGPU_VM_PDB2:
127 	case AMDGPU_VM_PDB1:
128 	case AMDGPU_VM_PDB0:
129 		return 9 * (AMDGPU_VM_PDB0 - level) +
130 			adev->vm_manager.block_size;
131 	case AMDGPU_VM_PTB:
132 		return 0;
133 	default:
134 		return ~0;
135 	}
136 }
137 
138 /**
139  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140  *
141  * @adev: amdgpu_device pointer
142  * @level: VMPT level
143  *
144  * Returns:
145  * The number of entries in a page directory or page table.
146  */
amdgpu_vm_num_entries(struct amdgpu_device * adev,unsigned level)147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 				      unsigned level)
149 {
150 	unsigned shift = amdgpu_vm_level_shift(adev,
151 					       adev->vm_manager.root_level);
152 
153 	if (level == adev->vm_manager.root_level)
154 		/* For the root directory */
155 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 			>> shift;
157 	else if (level != AMDGPU_VM_PTB)
158 		/* Everything in between */
159 		return 512;
160 	else
161 		/* For the page tables on the leaves */
162 		return AMDGPU_VM_PTE_COUNT(adev);
163 }
164 
165 /**
166  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167  *
168  * @adev: amdgpu_device pointer
169  *
170  * Returns:
171  * The number of entries in the root page directory which needs the ATS setting.
172  */
amdgpu_vm_num_ats_entries(struct amdgpu_device * adev)173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 	unsigned shift;
176 
177 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180 
181 /**
182  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183  *
184  * @adev: amdgpu_device pointer
185  * @level: VMPT level
186  *
187  * Returns:
188  * The mask to extract the entry number of a PD/PT from an address.
189  */
amdgpu_vm_entries_mask(struct amdgpu_device * adev,unsigned int level)190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 				       unsigned int level)
192 {
193 	if (level <= adev->vm_manager.root_level)
194 		return 0xffffffff;
195 	else if (level != AMDGPU_VM_PTB)
196 		return 0x1ff;
197 	else
198 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200 
201 /**
202  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203  *
204  * @adev: amdgpu_device pointer
205  * @level: VMPT level
206  *
207  * Returns:
208  * The size of the BO for a page directory or page table in bytes.
209  */
amdgpu_vm_bo_size(struct amdgpu_device * adev,unsigned level)210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214 
215 /**
216  * amdgpu_vm_bo_evicted - vm_bo is evicted
217  *
218  * @vm_bo: vm_bo which is evicted
219  *
220  * State for PDs/PTs and per VM BOs which are not at the location they should
221  * be.
222  */
amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base * vm_bo)223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 	struct amdgpu_vm *vm = vm_bo->vm;
226 	struct amdgpu_bo *bo = vm_bo->bo;
227 
228 	vm_bo->moved = true;
229 	if (bo->tbo.type == ttm_bo_type_kernel)
230 		list_move(&vm_bo->vm_status, &vm->evicted);
231 	else
232 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235  * amdgpu_vm_bo_moved - vm_bo is moved
236  *
237  * @vm_bo: vm_bo which is moved
238  *
239  * State for per VM BOs which are moved, but that change is not yet reflected
240  * in the page tables.
241  */
amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base * vm_bo)242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246 
247 /**
248  * amdgpu_vm_bo_idle - vm_bo is idle
249  *
250  * @vm_bo: vm_bo which is now idle
251  *
252  * State for PDs/PTs and per VM BOs which have gone through the state machine
253  * and are now idle.
254  */
amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base * vm_bo)255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 	vm_bo->moved = false;
259 }
260 
261 /**
262  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263  *
264  * @vm_bo: vm_bo which is now invalidated
265  *
266  * State for normal BOs which are invalidated and that change not yet reflected
267  * in the PTs.
268  */
amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base * vm_bo)269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 	spin_lock(&vm_bo->vm->invalidated_lock);
272 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 	spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275 
276 /**
277  * amdgpu_vm_bo_relocated - vm_bo is reloacted
278  *
279  * @vm_bo: vm_bo which is relocated
280  *
281  * State for PDs/PTs which needs to update their parent PD.
282  * For the root PD, just move to idle state.
283  */
amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base * vm_bo)284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 	if (vm_bo->bo->parent)
287 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 	else
289 		amdgpu_vm_bo_idle(vm_bo);
290 }
291 
292 /**
293  * amdgpu_vm_bo_done - vm_bo is done
294  *
295  * @vm_bo: vm_bo which is now done
296  *
297  * State for normal BOs which are invalidated and that change has been updated
298  * in the PTs.
299  */
amdgpu_vm_bo_done(struct amdgpu_vm_bo_base * vm_bo)300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 	spin_lock(&vm_bo->vm->invalidated_lock);
303 	list_del_init(&vm_bo->vm_status);
304 	spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306 
307 /**
308  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309  *
310  * @base: base structure for tracking BO usage in a VM
311  * @vm: vm to which bo is to be added
312  * @bo: amdgpu buffer object
313  *
314  * Initialize a bo_va_base structure and add it to the appropriate lists
315  *
316  */
amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base * base,struct amdgpu_vm * vm,struct amdgpu_bo * bo)317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 				   struct amdgpu_vm *vm,
319 				   struct amdgpu_bo *bo)
320 {
321 	base->vm = vm;
322 	base->bo = bo;
323 	base->next = NULL;
324 	INIT_LIST_HEAD(&base->vm_status);
325 
326 	if (!bo)
327 		return;
328 	base->next = bo->vm_bo;
329 	bo->vm_bo = base;
330 
331 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 		return;
333 
334 	vm->bulk_moveable = false;
335 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 		amdgpu_vm_bo_relocated(base);
337 	else
338 		amdgpu_vm_bo_idle(base);
339 
340 	if (bo->preferred_domains &
341 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 		return;
343 
344 	/*
345 	 * we checked all the prerequisites, but it looks like this per vm bo
346 	 * is currently evicted. add the bo to the evicted list to make sure it
347 	 * is validated on next vm use to avoid fault.
348 	 * */
349 	amdgpu_vm_bo_evicted(base);
350 }
351 
352 /**
353  * amdgpu_vm_pt_parent - get the parent page directory
354  *
355  * @pt: child page table
356  *
357  * Helper to get the parent entry for the child page table. NULL if we are at
358  * the root page directory.
359  */
amdgpu_vm_pt_parent(struct amdgpu_vm_pt * pt)360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 	struct amdgpu_bo *parent = pt->base.bo->parent;
363 
364 	if (!parent)
365 		return NULL;
366 
367 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369 
370 /*
371  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372  */
373 struct amdgpu_vm_pt_cursor {
374 	uint64_t pfn;
375 	struct amdgpu_vm_pt *parent;
376 	struct amdgpu_vm_pt *entry;
377 	unsigned level;
378 };
379 
380 /**
381  * amdgpu_vm_pt_start - start PD/PT walk
382  *
383  * @adev: amdgpu_device pointer
384  * @vm: amdgpu_vm structure
385  * @start: start address of the walk
386  * @cursor: state to initialize
387  *
388  * Initialize a amdgpu_vm_pt_cursor to start a walk.
389  */
amdgpu_vm_pt_start(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,struct amdgpu_vm_pt_cursor * cursor)390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 			       struct amdgpu_vm *vm, uint64_t start,
392 			       struct amdgpu_vm_pt_cursor *cursor)
393 {
394 	cursor->pfn = start;
395 	cursor->parent = NULL;
396 	cursor->entry = &vm->root;
397 	cursor->level = adev->vm_manager.root_level;
398 }
399 
400 /**
401  * amdgpu_vm_pt_descendant - go to child node
402  *
403  * @adev: amdgpu_device pointer
404  * @cursor: current state
405  *
406  * Walk to the child node of the current node.
407  * Returns:
408  * True if the walk was possible, false otherwise.
409  */
amdgpu_vm_pt_descendant(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 				    struct amdgpu_vm_pt_cursor *cursor)
412 {
413 	unsigned mask, shift, idx;
414 
415 	if (!cursor->entry->entries)
416 		return false;
417 
418 	BUG_ON(!cursor->entry->base.bo);
419 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 	shift = amdgpu_vm_level_shift(adev, cursor->level);
421 
422 	++cursor->level;
423 	idx = (cursor->pfn >> shift) & mask;
424 	cursor->parent = cursor->entry;
425 	cursor->entry = &cursor->entry->entries[idx];
426 	return true;
427 }
428 
429 /**
430  * amdgpu_vm_pt_sibling - go to sibling node
431  *
432  * @adev: amdgpu_device pointer
433  * @cursor: current state
434  *
435  * Walk to the sibling node of the current node.
436  * Returns:
437  * True if the walk was possible, false otherwise.
438  */
amdgpu_vm_pt_sibling(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 				 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 	unsigned shift, num_entries;
443 
444 	/* Root doesn't have a sibling */
445 	if (!cursor->parent)
446 		return false;
447 
448 	/* Go to our parents and see if we got a sibling */
449 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451 
452 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 		return false;
454 
455 	cursor->pfn += 1ULL << shift;
456 	cursor->pfn &= ~((1ULL << shift) - 1);
457 	++cursor->entry;
458 	return true;
459 }
460 
461 /**
462  * amdgpu_vm_pt_ancestor - go to parent node
463  *
464  * @cursor: current state
465  *
466  * Walk to the parent node of the current node.
467  * Returns:
468  * True if the walk was possible, false otherwise.
469  */
amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor * cursor)470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 	if (!cursor->parent)
473 		return false;
474 
475 	--cursor->level;
476 	cursor->entry = cursor->parent;
477 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 	return true;
479 }
480 
481 /**
482  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483  *
484  * @adev: amdgpu_device pointer
485  * @cursor: current state
486  *
487  * Walk the PD/PT tree to the next node.
488  */
amdgpu_vm_pt_next(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 			      struct amdgpu_vm_pt_cursor *cursor)
491 {
492 	/* First try a newborn child */
493 	if (amdgpu_vm_pt_descendant(adev, cursor))
494 		return;
495 
496 	/* If that didn't worked try to find a sibling */
497 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 		/* No sibling, go to our parents and grandparents */
499 		if (!amdgpu_vm_pt_ancestor(cursor)) {
500 			cursor->pfn = ~0ll;
501 			return;
502 		}
503 	}
504 }
505 
506 /**
507  * amdgpu_vm_pt_first_dfs - start a deep first search
508  *
509  * @adev: amdgpu_device structure
510  * @vm: amdgpu_vm structure
511  * @start: optional cursor to start with
512  * @cursor: state to initialize
513  *
514  * Starts a deep first traversal of the PD/PT tree.
515  */
amdgpu_vm_pt_first_dfs(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt_cursor * cursor)516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 				   struct amdgpu_vm *vm,
518 				   struct amdgpu_vm_pt_cursor *start,
519 				   struct amdgpu_vm_pt_cursor *cursor)
520 {
521 	if (start)
522 		*cursor = *start;
523 	else
524 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 	while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527 
528 /**
529  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530  *
531  * @start: starting point for the search
532  * @entry: current entry
533  *
534  * Returns:
535  * True when the search should continue, false otherwise.
536  */
amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt * entry)537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 				      struct amdgpu_vm_pt *entry)
539 {
540 	return entry && (!start || entry != start->entry);
541 }
542 
543 /**
544  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545  *
546  * @adev: amdgpu_device structure
547  * @cursor: current state
548  *
549  * Move the cursor to the next node in a deep first search.
550  */
amdgpu_vm_pt_next_dfs(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 				  struct amdgpu_vm_pt_cursor *cursor)
553 {
554 	if (!cursor->entry)
555 		return;
556 
557 	if (!cursor->parent)
558 		cursor->entry = NULL;
559 	else if (amdgpu_vm_pt_sibling(adev, cursor))
560 		while (amdgpu_vm_pt_descendant(adev, cursor));
561 	else
562 		amdgpu_vm_pt_ancestor(cursor);
563 }
564 
565 /*
566  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567  */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
569 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
572 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573 
574 /**
575  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576  *
577  * @vm: vm providing the BOs
578  * @validated: head of validation list
579  * @entry: entry to add
580  *
581  * Add the page directory to the list of BOs to
582  * validate for command submission.
583  */
amdgpu_vm_get_pd_bo(struct amdgpu_vm * vm,struct list_head * validated,struct amdgpu_bo_list_entry * entry)584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 			 struct list_head *validated,
586 			 struct amdgpu_bo_list_entry *entry)
587 {
588 	entry->priority = 0;
589 	entry->tv.bo = &vm->root.base.bo->tbo;
590 	/* Two for VM updates, one for TTM and one for the CS job */
591 	entry->tv.num_shared = 4;
592 	entry->user_pages = NULL;
593 	list_add(&entry->tv.head, validated);
594 }
595 
596 /**
597  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598  *
599  * @bo: BO which was removed from the LRU
600  *
601  * Make sure the bulk_moveable flag is updated when a BO is removed from the
602  * LRU.
603  */
amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object * bo)604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 	struct amdgpu_bo *abo;
607 	struct amdgpu_vm_bo_base *bo_base;
608 
609 	if (!amdgpu_bo_is_amdgpu_bo(bo))
610 		return;
611 
612 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613 		return;
614 
615 	abo = ttm_to_amdgpu_bo(bo);
616 	if (!abo->parent)
617 		return;
618 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 		struct amdgpu_vm *vm = bo_base->vm;
620 
621 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 			vm->bulk_moveable = false;
623 	}
624 
625 }
626 /**
627  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628  *
629  * @adev: amdgpu device pointer
630  * @vm: vm providing the BOs
631  *
632  * Move all BOs to the end of LRU and remember their positions to put them
633  * together.
634  */
amdgpu_vm_move_to_lru_tail(struct amdgpu_device * adev,struct amdgpu_vm * vm)635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 				struct amdgpu_vm *vm)
637 {
638 	struct amdgpu_vm_bo_base *bo_base;
639 
640 	if (vm->bulk_moveable) {
641 		spin_lock(&ttm_bo_glob.lru_lock);
642 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 		spin_unlock(&ttm_bo_glob.lru_lock);
644 		return;
645 	}
646 
647 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648 
649 	spin_lock(&ttm_bo_glob.lru_lock);
650 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 		struct amdgpu_bo *bo = bo_base->bo;
652 
653 		if (!bo->parent)
654 			continue;
655 
656 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657 		if (bo->shadow)
658 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659 						&vm->lru_bulk_move);
660 	}
661 	spin_unlock(&ttm_bo_glob.lru_lock);
662 
663 	vm->bulk_moveable = true;
664 }
665 
666 /**
667  * amdgpu_vm_validate_pt_bos - validate the page table BOs
668  *
669  * @adev: amdgpu device pointer
670  * @vm: vm providing the BOs
671  * @validate: callback to do the validation
672  * @param: parameter for the validation callback
673  *
674  * Validate the page table BOs on command submission if neccessary.
675  *
676  * Returns:
677  * Validation result.
678  */
amdgpu_vm_validate_pt_bos(struct amdgpu_device * adev,struct amdgpu_vm * vm,int (* validate)(void * p,struct amdgpu_bo * bo),void * param)679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680 			      int (*validate)(void *p, struct amdgpu_bo *bo),
681 			      void *param)
682 {
683 	struct amdgpu_vm_bo_base *bo_base, *tmp;
684 	int r;
685 
686 	vm->bulk_moveable &= list_empty(&vm->evicted);
687 
688 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689 		struct amdgpu_bo *bo = bo_base->bo;
690 
691 		r = validate(param, bo);
692 		if (r)
693 			return r;
694 
695 		if (bo->tbo.type != ttm_bo_type_kernel) {
696 			amdgpu_vm_bo_moved(bo_base);
697 		} else {
698 			vm->update_funcs->map_table(bo);
699 			amdgpu_vm_bo_relocated(bo_base);
700 		}
701 	}
702 
703 	amdgpu_vm_eviction_lock(vm);
704 	vm->evicting = false;
705 	amdgpu_vm_eviction_unlock(vm);
706 
707 	return 0;
708 }
709 
710 /**
711  * amdgpu_vm_ready - check VM is ready for updates
712  *
713  * @vm: VM to check
714  *
715  * Check if all VM PDs/PTs are ready for updates
716  *
717  * Returns:
718  * True if VM is not evicting.
719  */
amdgpu_vm_ready(struct amdgpu_vm * vm)720 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721 {
722 	bool ret;
723 
724 	amdgpu_vm_eviction_lock(vm);
725 	ret = !vm->evicting;
726 	amdgpu_vm_eviction_unlock(vm);
727 
728 	return ret && list_empty(&vm->evicted);
729 }
730 
731 /**
732  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
733  *
734  * @adev: amdgpu_device pointer
735  * @vm: VM to clear BO from
736  * @bo: BO to clear
737  * @immediate: use an immediate update
738  *
739  * Root PD needs to be reserved when calling this.
740  *
741  * Returns:
742  * 0 on success, errno otherwise.
743  */
amdgpu_vm_clear_bo(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo,bool immediate)744 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
745 			      struct amdgpu_vm *vm,
746 			      struct amdgpu_bo *bo,
747 			      bool immediate)
748 {
749 	struct ttm_operation_ctx ctx = { true, false };
750 	unsigned level = adev->vm_manager.root_level;
751 	struct amdgpu_vm_update_params params;
752 	struct amdgpu_bo *ancestor = bo;
753 	unsigned entries, ats_entries;
754 	uint64_t addr;
755 	int r;
756 
757 	/* Figure out our place in the hierarchy */
758 	if (ancestor->parent) {
759 		++level;
760 		while (ancestor->parent->parent) {
761 			++level;
762 			ancestor = ancestor->parent;
763 		}
764 	}
765 
766 	entries = amdgpu_bo_size(bo) / 8;
767 	if (!vm->pte_support_ats) {
768 		ats_entries = 0;
769 
770 	} else if (!bo->parent) {
771 		ats_entries = amdgpu_vm_num_ats_entries(adev);
772 		ats_entries = min(ats_entries, entries);
773 		entries -= ats_entries;
774 
775 	} else {
776 		struct amdgpu_vm_pt *pt;
777 
778 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
779 		ats_entries = amdgpu_vm_num_ats_entries(adev);
780 		if ((pt - vm->root.entries) >= ats_entries) {
781 			ats_entries = 0;
782 		} else {
783 			ats_entries = entries;
784 			entries = 0;
785 		}
786 	}
787 
788 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
789 	if (r)
790 		return r;
791 
792 	if (bo->shadow) {
793 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
794 				    &ctx);
795 		if (r)
796 			return r;
797 	}
798 
799 	r = vm->update_funcs->map_table(bo);
800 	if (r)
801 		return r;
802 
803 	memset(&params, 0, sizeof(params));
804 	params.adev = adev;
805 	params.vm = vm;
806 	params.immediate = immediate;
807 
808 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
809 	if (r)
810 		return r;
811 
812 	addr = 0;
813 	if (ats_entries) {
814 		uint64_t value = 0, flags;
815 
816 		flags = AMDGPU_PTE_DEFAULT_ATC;
817 		if (level != AMDGPU_VM_PTB) {
818 			/* Handle leaf PDEs as PTEs */
819 			flags |= AMDGPU_PDE_PTE;
820 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
821 		}
822 
823 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
824 					     value, flags);
825 		if (r)
826 			return r;
827 
828 		addr += ats_entries * 8;
829 	}
830 
831 	if (entries) {
832 		uint64_t value = 0, flags = 0;
833 
834 		if (adev->asic_type >= CHIP_VEGA10) {
835 			if (level != AMDGPU_VM_PTB) {
836 				/* Handle leaf PDEs as PTEs */
837 				flags |= AMDGPU_PDE_PTE;
838 				amdgpu_gmc_get_vm_pde(adev, level,
839 						      &value, &flags);
840 			} else {
841 				/* Workaround for fault priority problem on GMC9 */
842 				flags = AMDGPU_PTE_EXECUTABLE;
843 			}
844 		}
845 
846 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
847 					     value, flags);
848 		if (r)
849 			return r;
850 	}
851 
852 	return vm->update_funcs->commit(&params, NULL);
853 }
854 
855 /**
856  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
857  *
858  * @adev: amdgpu_device pointer
859  * @vm: requesting vm
860  * @level: the page table level
861  * @immediate: use a immediate update
862  * @bp: resulting BO allocation parameters
863  */
amdgpu_vm_bo_param(struct amdgpu_device * adev,struct amdgpu_vm * vm,int level,bool immediate,struct amdgpu_bo_param * bp)864 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
865 			       int level, bool immediate,
866 			       struct amdgpu_bo_param *bp)
867 {
868 	memset(bp, 0, sizeof(*bp));
869 
870 	bp->size = amdgpu_vm_bo_size(adev, level);
871 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
872 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
873 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
874 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
875 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
876 	if (vm->use_cpu_for_update)
877 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
878 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
879 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
880 	bp->type = ttm_bo_type_kernel;
881 	bp->no_wait_gpu = immediate;
882 	if (vm->root.base.bo)
883 		bp->resv = vm->root.base.bo->tbo.base.resv;
884 }
885 
886 /**
887  * amdgpu_vm_alloc_pts - Allocate a specific page table
888  *
889  * @adev: amdgpu_device pointer
890  * @vm: VM to allocate page tables for
891  * @cursor: Which page table to allocate
892  * @immediate: use an immediate update
893  *
894  * Make sure a specific page table or directory is allocated.
895  *
896  * Returns:
897  * 1 if page table needed to be allocated, 0 if page table was already
898  * allocated, negative errno if an error occurred.
899  */
amdgpu_vm_alloc_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * cursor,bool immediate)900 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
901 			       struct amdgpu_vm *vm,
902 			       struct amdgpu_vm_pt_cursor *cursor,
903 			       bool immediate)
904 {
905 	struct amdgpu_vm_pt *entry = cursor->entry;
906 	struct amdgpu_bo_param bp;
907 	struct amdgpu_bo *pt;
908 	int r;
909 
910 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
911 		unsigned num_entries;
912 
913 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
914 		entry->entries = kvmalloc_array(num_entries,
915 						sizeof(*entry->entries),
916 						GFP_KERNEL | __GFP_ZERO);
917 		if (!entry->entries)
918 			return -ENOMEM;
919 	}
920 
921 	if (entry->base.bo)
922 		return 0;
923 
924 	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
925 
926 	r = amdgpu_bo_create(adev, &bp, &pt);
927 	if (r)
928 		return r;
929 
930 	/* Keep a reference to the root directory to avoid
931 	 * freeing them up in the wrong order.
932 	 */
933 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
934 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
935 
936 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
937 	if (r)
938 		goto error_free_pt;
939 
940 	return 0;
941 
942 error_free_pt:
943 	amdgpu_bo_unref(&pt->shadow);
944 	amdgpu_bo_unref(&pt);
945 	return r;
946 }
947 
948 /**
949  * amdgpu_vm_free_table - fre one PD/PT
950  *
951  * @entry: PDE to free
952  */
amdgpu_vm_free_table(struct amdgpu_vm_pt * entry)953 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
954 {
955 	if (entry->base.bo) {
956 		entry->base.bo->vm_bo = NULL;
957 		list_del(&entry->base.vm_status);
958 		amdgpu_bo_unref(&entry->base.bo->shadow);
959 		amdgpu_bo_unref(&entry->base.bo);
960 	}
961 	kvfree(entry->entries);
962 	entry->entries = NULL;
963 }
964 
965 /**
966  * amdgpu_vm_free_pts - free PD/PT levels
967  *
968  * @adev: amdgpu device structure
969  * @vm: amdgpu vm structure
970  * @start: optional cursor where to start freeing PDs/PTs
971  *
972  * Free the page directory or page table level and all sub levels.
973  */
amdgpu_vm_free_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start)974 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
975 			       struct amdgpu_vm *vm,
976 			       struct amdgpu_vm_pt_cursor *start)
977 {
978 	struct amdgpu_vm_pt_cursor cursor;
979 	struct amdgpu_vm_pt *entry;
980 
981 	vm->bulk_moveable = false;
982 
983 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
984 		amdgpu_vm_free_table(entry);
985 
986 	if (start)
987 		amdgpu_vm_free_table(start->entry);
988 }
989 
990 /**
991  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
992  *
993  * @adev: amdgpu_device pointer
994  */
amdgpu_vm_check_compute_bug(struct amdgpu_device * adev)995 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
996 {
997 	const struct amdgpu_ip_block *ip_block;
998 	bool has_compute_vm_bug;
999 	struct amdgpu_ring *ring;
1000 	int i;
1001 
1002 	has_compute_vm_bug = false;
1003 
1004 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1005 	if (ip_block) {
1006 		/* Compute has a VM bug for GFX version < 7.
1007 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1008 		if (ip_block->version->major <= 7)
1009 			has_compute_vm_bug = true;
1010 		else if (ip_block->version->major == 8)
1011 			if (adev->gfx.mec_fw_version < 673)
1012 				has_compute_vm_bug = true;
1013 	}
1014 
1015 	for (i = 0; i < adev->num_rings; i++) {
1016 		ring = adev->rings[i];
1017 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1018 			/* only compute rings */
1019 			ring->has_compute_vm_bug = has_compute_vm_bug;
1020 		else
1021 			ring->has_compute_vm_bug = false;
1022 	}
1023 }
1024 
1025 /**
1026  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1027  *
1028  * @ring: ring on which the job will be submitted
1029  * @job: job to submit
1030  *
1031  * Returns:
1032  * True if sync is needed.
1033  */
amdgpu_vm_need_pipeline_sync(struct amdgpu_ring * ring,struct amdgpu_job * job)1034 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1035 				  struct amdgpu_job *job)
1036 {
1037 	struct amdgpu_device *adev = ring->adev;
1038 	unsigned vmhub = ring->funcs->vmhub;
1039 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1040 	struct amdgpu_vmid *id;
1041 	bool gds_switch_needed;
1042 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1043 
1044 	if (job->vmid == 0)
1045 		return false;
1046 	id = &id_mgr->ids[job->vmid];
1047 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1048 		id->gds_base != job->gds_base ||
1049 		id->gds_size != job->gds_size ||
1050 		id->gws_base != job->gws_base ||
1051 		id->gws_size != job->gws_size ||
1052 		id->oa_base != job->oa_base ||
1053 		id->oa_size != job->oa_size);
1054 
1055 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1056 		return true;
1057 
1058 	return vm_flush_needed || gds_switch_needed;
1059 }
1060 
1061 /**
1062  * amdgpu_vm_flush - hardware flush the vm
1063  *
1064  * @ring: ring to use for flush
1065  * @job:  related job
1066  * @need_pipe_sync: is pipe sync needed
1067  *
1068  * Emit a VM flush when it is necessary.
1069  *
1070  * Returns:
1071  * 0 on success, errno otherwise.
1072  */
amdgpu_vm_flush(struct amdgpu_ring * ring,struct amdgpu_job * job,bool need_pipe_sync)1073 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1074 		    bool need_pipe_sync)
1075 {
1076 	struct amdgpu_device *adev = ring->adev;
1077 	unsigned vmhub = ring->funcs->vmhub;
1078 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1079 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1080 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1081 		id->gds_base != job->gds_base ||
1082 		id->gds_size != job->gds_size ||
1083 		id->gws_base != job->gws_base ||
1084 		id->gws_size != job->gws_size ||
1085 		id->oa_base != job->oa_base ||
1086 		id->oa_size != job->oa_size);
1087 	bool vm_flush_needed = job->vm_needs_flush;
1088 	struct dma_fence *fence = NULL;
1089 	bool pasid_mapping_needed = false;
1090 	unsigned patch_offset = 0;
1091 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1092 	int r;
1093 
1094 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1095 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1096 
1097 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1098 		gds_switch_needed = true;
1099 		vm_flush_needed = true;
1100 		pasid_mapping_needed = true;
1101 	}
1102 
1103 	mutex_lock(&id_mgr->lock);
1104 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1105 	    !dma_fence_is_signaled(id->pasid_mapping))
1106 		pasid_mapping_needed = true;
1107 	mutex_unlock(&id_mgr->lock);
1108 
1109 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1110 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1111 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1112 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1113 		ring->funcs->emit_wreg;
1114 
1115 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1116 		return 0;
1117 
1118 	if (ring->funcs->init_cond_exec)
1119 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1120 
1121 	if (need_pipe_sync)
1122 		amdgpu_ring_emit_pipeline_sync(ring);
1123 
1124 	if (vm_flush_needed) {
1125 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1126 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1127 	}
1128 
1129 	if (pasid_mapping_needed)
1130 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1131 
1132 	if (vm_flush_needed || pasid_mapping_needed) {
1133 		r = amdgpu_fence_emit(ring, &fence, 0);
1134 		if (r)
1135 			return r;
1136 	}
1137 
1138 	if (vm_flush_needed) {
1139 		mutex_lock(&id_mgr->lock);
1140 		dma_fence_put(id->last_flush);
1141 		id->last_flush = dma_fence_get(fence);
1142 		id->current_gpu_reset_count =
1143 			atomic_read(&adev->gpu_reset_counter);
1144 		mutex_unlock(&id_mgr->lock);
1145 	}
1146 
1147 	if (pasid_mapping_needed) {
1148 		mutex_lock(&id_mgr->lock);
1149 		id->pasid = job->pasid;
1150 		dma_fence_put(id->pasid_mapping);
1151 		id->pasid_mapping = dma_fence_get(fence);
1152 		mutex_unlock(&id_mgr->lock);
1153 	}
1154 	dma_fence_put(fence);
1155 
1156 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1157 		id->gds_base = job->gds_base;
1158 		id->gds_size = job->gds_size;
1159 		id->gws_base = job->gws_base;
1160 		id->gws_size = job->gws_size;
1161 		id->oa_base = job->oa_base;
1162 		id->oa_size = job->oa_size;
1163 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1164 					    job->gds_size, job->gws_base,
1165 					    job->gws_size, job->oa_base,
1166 					    job->oa_size);
1167 	}
1168 
1169 	if (ring->funcs->patch_cond_exec)
1170 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1171 
1172 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1173 	if (ring->funcs->emit_switch_buffer) {
1174 		amdgpu_ring_emit_switch_buffer(ring);
1175 		amdgpu_ring_emit_switch_buffer(ring);
1176 	}
1177 	return 0;
1178 }
1179 
1180 /**
1181  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1182  *
1183  * @vm: requested vm
1184  * @bo: requested buffer object
1185  *
1186  * Find @bo inside the requested vm.
1187  * Search inside the @bos vm list for the requested vm
1188  * Returns the found bo_va or NULL if none is found
1189  *
1190  * Object has to be reserved!
1191  *
1192  * Returns:
1193  * Found bo_va or NULL.
1194  */
amdgpu_vm_bo_find(struct amdgpu_vm * vm,struct amdgpu_bo * bo)1195 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1196 				       struct amdgpu_bo *bo)
1197 {
1198 	struct amdgpu_vm_bo_base *base;
1199 
1200 	for (base = bo->vm_bo; base; base = base->next) {
1201 		if (base->vm != vm)
1202 			continue;
1203 
1204 		return container_of(base, struct amdgpu_bo_va, base);
1205 	}
1206 	return NULL;
1207 }
1208 
1209 /**
1210  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1211  *
1212  * @pages_addr: optional DMA address to use for lookup
1213  * @addr: the unmapped addr
1214  *
1215  * Look up the physical address of the page that the pte resolves
1216  * to.
1217  *
1218  * Returns:
1219  * The pointer for the page table entry.
1220  */
amdgpu_vm_map_gart(const dma_addr_t * pages_addr,uint64_t addr)1221 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1222 {
1223 	uint64_t result;
1224 
1225 	/* page table offset */
1226 	result = pages_addr[addr >> PAGE_SHIFT];
1227 
1228 	/* in case cpu page size != gpu page size*/
1229 	result |= addr & (~PAGE_MASK);
1230 
1231 	result &= 0xFFFFFFFFFFFFF000ULL;
1232 
1233 	return result;
1234 }
1235 
1236 /**
1237  * amdgpu_vm_update_pde - update a single level in the hierarchy
1238  *
1239  * @params: parameters for the update
1240  * @vm: requested vm
1241  * @entry: entry to update
1242  *
1243  * Makes sure the requested entry in parent is up to date.
1244  */
amdgpu_vm_update_pde(struct amdgpu_vm_update_params * params,struct amdgpu_vm * vm,struct amdgpu_vm_pt * entry)1245 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1246 				struct amdgpu_vm *vm,
1247 				struct amdgpu_vm_pt *entry)
1248 {
1249 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1250 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1251 	uint64_t pde, pt, flags;
1252 	unsigned level;
1253 
1254 	for (level = 0, pbo = bo->parent; pbo; ++level)
1255 		pbo = pbo->parent;
1256 
1257 	level += params->adev->vm_manager.root_level;
1258 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1259 	pde = (entry - parent->entries) * 8;
1260 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1261 }
1262 
1263 /**
1264  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1265  *
1266  * @adev: amdgpu_device pointer
1267  * @vm: related vm
1268  *
1269  * Mark all PD level as invalid after an error.
1270  */
amdgpu_vm_invalidate_pds(struct amdgpu_device * adev,struct amdgpu_vm * vm)1271 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1272 				     struct amdgpu_vm *vm)
1273 {
1274 	struct amdgpu_vm_pt_cursor cursor;
1275 	struct amdgpu_vm_pt *entry;
1276 
1277 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1278 		if (entry->base.bo && !entry->base.moved)
1279 			amdgpu_vm_bo_relocated(&entry->base);
1280 }
1281 
1282 /**
1283  * amdgpu_vm_update_pdes - make sure that all directories are valid
1284  *
1285  * @adev: amdgpu_device pointer
1286  * @vm: requested vm
1287  * @immediate: submit immediately to the paging queue
1288  *
1289  * Makes sure all directories are up to date.
1290  *
1291  * Returns:
1292  * 0 for success, error for failure.
1293  */
amdgpu_vm_update_pdes(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate)1294 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1295 			  struct amdgpu_vm *vm, bool immediate)
1296 {
1297 	struct amdgpu_vm_update_params params;
1298 	int r;
1299 
1300 	if (list_empty(&vm->relocated))
1301 		return 0;
1302 
1303 	memset(&params, 0, sizeof(params));
1304 	params.adev = adev;
1305 	params.vm = vm;
1306 	params.immediate = immediate;
1307 
1308 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1309 	if (r)
1310 		return r;
1311 
1312 	while (!list_empty(&vm->relocated)) {
1313 		struct amdgpu_vm_pt *entry;
1314 
1315 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1316 					 base.vm_status);
1317 		amdgpu_vm_bo_idle(&entry->base);
1318 
1319 		r = amdgpu_vm_update_pde(&params, vm, entry);
1320 		if (r)
1321 			goto error;
1322 	}
1323 
1324 	r = vm->update_funcs->commit(&params, &vm->last_update);
1325 	if (r)
1326 		goto error;
1327 	return 0;
1328 
1329 error:
1330 	amdgpu_vm_invalidate_pds(adev, vm);
1331 	return r;
1332 }
1333 
1334 /*
1335  * amdgpu_vm_update_flags - figure out flags for PTE updates
1336  *
1337  * Make sure to set the right flags for the PTEs at the desired level.
1338  */
amdgpu_vm_update_flags(struct amdgpu_vm_update_params * params,struct amdgpu_bo * bo,unsigned level,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1339 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1340 				   struct amdgpu_bo *bo, unsigned level,
1341 				   uint64_t pe, uint64_t addr,
1342 				   unsigned count, uint32_t incr,
1343 				   uint64_t flags)
1344 
1345 {
1346 	if (level != AMDGPU_VM_PTB) {
1347 		flags |= AMDGPU_PDE_PTE;
1348 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1349 
1350 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1351 		   !(flags & AMDGPU_PTE_VALID) &&
1352 		   !(flags & AMDGPU_PTE_PRT)) {
1353 
1354 		/* Workaround for fault priority problem on GMC9 */
1355 		flags |= AMDGPU_PTE_EXECUTABLE;
1356 	}
1357 
1358 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1359 					 flags);
1360 }
1361 
1362 /**
1363  * amdgpu_vm_fragment - get fragment for PTEs
1364  *
1365  * @params: see amdgpu_vm_update_params definition
1366  * @start: first PTE to handle
1367  * @end: last PTE to handle
1368  * @flags: hw mapping flags
1369  * @frag: resulting fragment size
1370  * @frag_end: end of this fragment
1371  *
1372  * Returns the first possible fragment for the start and end address.
1373  */
amdgpu_vm_fragment(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t flags,unsigned int * frag,uint64_t * frag_end)1374 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1375 			       uint64_t start, uint64_t end, uint64_t flags,
1376 			       unsigned int *frag, uint64_t *frag_end)
1377 {
1378 	/**
1379 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1380 	 * field in the PTE. When this field is set to a non-zero value, page
1381 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1382 	 * flags are considered valid for all PTEs within the fragment range
1383 	 * and corresponding mappings are assumed to be physically contiguous.
1384 	 *
1385 	 * The L1 TLB can store a single PTE for the whole fragment,
1386 	 * significantly increasing the space available for translation
1387 	 * caching. This leads to large improvements in throughput when the
1388 	 * TLB is under pressure.
1389 	 *
1390 	 * The L2 TLB distributes small and large fragments into two
1391 	 * asymmetric partitions. The large fragment cache is significantly
1392 	 * larger. Thus, we try to use large fragments wherever possible.
1393 	 * Userspace can support this by aligning virtual base address and
1394 	 * allocation size to the fragment size.
1395 	 *
1396 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1397 	 * is now directly feed with small/huge/giant pages from the walker.
1398 	 */
1399 	unsigned max_frag;
1400 
1401 	if (params->adev->asic_type < CHIP_VEGA10)
1402 		max_frag = params->adev->vm_manager.fragment_size;
1403 	else
1404 		max_frag = 31;
1405 
1406 	/* system pages are non continuously */
1407 	if (params->pages_addr) {
1408 		*frag = 0;
1409 		*frag_end = end;
1410 		return;
1411 	}
1412 
1413 	/* This intentionally wraps around if no bit is set */
1414 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1415 	if (*frag >= max_frag) {
1416 		*frag = max_frag;
1417 		*frag_end = end & ~((1ULL << max_frag) - 1);
1418 	} else {
1419 		*frag_end = start + (1 << *frag);
1420 	}
1421 }
1422 
1423 /**
1424  * amdgpu_vm_update_ptes - make sure that page tables are valid
1425  *
1426  * @params: see amdgpu_vm_update_params definition
1427  * @start: start of GPU address range
1428  * @end: end of GPU address range
1429  * @dst: destination address to map to, the next dst inside the function
1430  * @flags: mapping flags
1431  *
1432  * Update the page tables in the range @start - @end.
1433  *
1434  * Returns:
1435  * 0 for success, -EINVAL for failure.
1436  */
amdgpu_vm_update_ptes(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t dst,uint64_t flags)1437 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1438 				 uint64_t start, uint64_t end,
1439 				 uint64_t dst, uint64_t flags)
1440 {
1441 	struct amdgpu_device *adev = params->adev;
1442 	struct amdgpu_vm_pt_cursor cursor;
1443 	uint64_t frag_start = start, frag_end;
1444 	unsigned int frag;
1445 	int r;
1446 
1447 	/* figure out the initial fragment */
1448 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1449 
1450 	/* walk over the address space and update the PTs */
1451 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1452 	while (cursor.pfn < end) {
1453 		unsigned shift, parent_shift, mask;
1454 		uint64_t incr, entry_end, pe_start;
1455 		struct amdgpu_bo *pt;
1456 
1457 		if (!params->unlocked) {
1458 			/* make sure that the page tables covering the
1459 			 * address range are actually allocated
1460 			 */
1461 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1462 						&cursor, params->immediate);
1463 			if (r)
1464 				return r;
1465 		}
1466 
1467 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1468 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1469 		if (params->unlocked) {
1470 			/* Unlocked updates are only allowed on the leaves */
1471 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1472 				continue;
1473 		} else if (adev->asic_type < CHIP_VEGA10 &&
1474 			   (flags & AMDGPU_PTE_VALID)) {
1475 			/* No huge page support before GMC v9 */
1476 			if (cursor.level != AMDGPU_VM_PTB) {
1477 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1478 					return -ENOENT;
1479 				continue;
1480 			}
1481 		} else if (frag < shift) {
1482 			/* We can't use this level when the fragment size is
1483 			 * smaller than the address shift. Go to the next
1484 			 * child entry and try again.
1485 			 */
1486 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1487 				continue;
1488 		} else if (frag >= parent_shift) {
1489 			/* If the fragment size is even larger than the parent
1490 			 * shift we should go up one level and check it again.
1491 			 */
1492 			if (!amdgpu_vm_pt_ancestor(&cursor))
1493 				return -EINVAL;
1494 			continue;
1495 		}
1496 
1497 		pt = cursor.entry->base.bo;
1498 		if (!pt) {
1499 			/* We need all PDs and PTs for mapping something, */
1500 			if (flags & AMDGPU_PTE_VALID)
1501 				return -ENOENT;
1502 
1503 			/* but unmapping something can happen at a higher
1504 			 * level.
1505 			 */
1506 			if (!amdgpu_vm_pt_ancestor(&cursor))
1507 				return -EINVAL;
1508 
1509 			pt = cursor.entry->base.bo;
1510 			shift = parent_shift;
1511 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1512 				   1ULL << shift));
1513 		}
1514 
1515 		/* Looks good so far, calculate parameters for the update */
1516 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1517 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1518 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1519 		entry_end = ((uint64_t)mask + 1) << shift;
1520 		entry_end += cursor.pfn & ~(entry_end - 1);
1521 		entry_end = min(entry_end, end);
1522 
1523 		do {
1524 			struct amdgpu_vm *vm = params->vm;
1525 			uint64_t upd_end = min(entry_end, frag_end);
1526 			unsigned nptes = (upd_end - frag_start) >> shift;
1527 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1528 
1529 			/* This can happen when we set higher level PDs to
1530 			 * silent to stop fault floods.
1531 			 */
1532 			nptes = max(nptes, 1u);
1533 
1534 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1535 						    nptes, dst, incr, upd_flags,
1536 						    vm->task_info.pid,
1537 						    vm->immediate.fence_context);
1538 			amdgpu_vm_update_flags(params, pt, cursor.level,
1539 					       pe_start, dst, nptes, incr,
1540 					       upd_flags);
1541 
1542 			pe_start += nptes * 8;
1543 			dst += nptes * incr;
1544 
1545 			frag_start = upd_end;
1546 			if (frag_start >= frag_end) {
1547 				/* figure out the next fragment */
1548 				amdgpu_vm_fragment(params, frag_start, end,
1549 						   flags, &frag, &frag_end);
1550 				if (frag < shift)
1551 					break;
1552 			}
1553 		} while (frag_start < entry_end);
1554 
1555 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1556 			/* Free all child entries.
1557 			 * Update the tables with the flags and addresses and free up subsequent
1558 			 * tables in the case of huge pages or freed up areas.
1559 			 * This is the maximum you can free, because all other page tables are not
1560 			 * completely covered by the range and so potentially still in use.
1561 			 */
1562 			while (cursor.pfn < frag_start) {
1563 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1564 				amdgpu_vm_pt_next(adev, &cursor);
1565 			}
1566 
1567 		} else if (frag >= shift) {
1568 			/* or just move on to the next on the same level. */
1569 			amdgpu_vm_pt_next(adev, &cursor);
1570 		}
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /**
1577  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1578  *
1579  * @adev: amdgpu_device pointer
1580  * @vm: requested vm
1581  * @immediate: immediate submission in a page fault
1582  * @unlocked: unlocked invalidation during MM callback
1583  * @resv: fences we need to sync to
1584  * @start: start of mapped range
1585  * @last: last mapped entry
1586  * @flags: flags for the entries
1587  * @addr: addr to set the area to
1588  * @pages_addr: DMA addresses to use for mapping
1589  * @fence: optional resulting fence
1590  *
1591  * Fill in the page table entries between @start and @last.
1592  *
1593  * Returns:
1594  * 0 for success, -EINVAL for failure.
1595  */
amdgpu_vm_bo_update_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate,bool unlocked,struct dma_resv * resv,uint64_t start,uint64_t last,uint64_t flags,uint64_t addr,dma_addr_t * pages_addr,struct dma_fence ** fence)1596 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1597 				       struct amdgpu_vm *vm, bool immediate,
1598 				       bool unlocked, struct dma_resv *resv,
1599 				       uint64_t start, uint64_t last,
1600 				       uint64_t flags, uint64_t addr,
1601 				       dma_addr_t *pages_addr,
1602 				       struct dma_fence **fence)
1603 {
1604 	struct amdgpu_vm_update_params params;
1605 	enum amdgpu_sync_mode sync_mode;
1606 	int r;
1607 
1608 	memset(&params, 0, sizeof(params));
1609 	params.adev = adev;
1610 	params.vm = vm;
1611 	params.immediate = immediate;
1612 	params.pages_addr = pages_addr;
1613 	params.unlocked = unlocked;
1614 
1615 	/* Implicitly sync to command submissions in the same VM before
1616 	 * unmapping. Sync to moving fences before mapping.
1617 	 */
1618 	if (!(flags & AMDGPU_PTE_VALID))
1619 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1620 	else
1621 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1622 
1623 	amdgpu_vm_eviction_lock(vm);
1624 	if (vm->evicting) {
1625 		r = -EBUSY;
1626 		goto error_unlock;
1627 	}
1628 
1629 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1630 		struct dma_fence *tmp = dma_fence_get_stub();
1631 
1632 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1633 		swap(vm->last_unlocked, tmp);
1634 		dma_fence_put(tmp);
1635 	}
1636 
1637 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1638 	if (r)
1639 		goto error_unlock;
1640 
1641 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1642 	if (r)
1643 		goto error_unlock;
1644 
1645 	r = vm->update_funcs->commit(&params, fence);
1646 
1647 error_unlock:
1648 	amdgpu_vm_eviction_unlock(vm);
1649 	return r;
1650 }
1651 
1652 /**
1653  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1654  *
1655  * @adev: amdgpu_device pointer
1656  * @resv: fences we need to sync to
1657  * @pages_addr: DMA addresses to use for mapping
1658  * @vm: requested vm
1659  * @mapping: mapped range and flags to use for the update
1660  * @flags: HW flags for the mapping
1661  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1662  * @nodes: array of drm_mm_nodes with the MC addresses
1663  * @fence: optional resulting fence
1664  *
1665  * Split the mapping into smaller chunks so that each update fits
1666  * into a SDMA IB.
1667  *
1668  * Returns:
1669  * 0 for success, -EINVAL for failure.
1670  */
amdgpu_vm_bo_split_mapping(struct amdgpu_device * adev,struct dma_resv * resv,dma_addr_t * pages_addr,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,uint64_t flags,struct amdgpu_device * bo_adev,struct drm_mm_node * nodes,struct dma_fence ** fence)1671 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1672 				      struct dma_resv *resv,
1673 				      dma_addr_t *pages_addr,
1674 				      struct amdgpu_vm *vm,
1675 				      struct amdgpu_bo_va_mapping *mapping,
1676 				      uint64_t flags,
1677 				      struct amdgpu_device *bo_adev,
1678 				      struct drm_mm_node *nodes,
1679 				      struct dma_fence **fence)
1680 {
1681 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1682 	uint64_t pfn, start = mapping->start;
1683 	int r;
1684 
1685 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1686 	 * but in case of something, we filter the flags in first place
1687 	 */
1688 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1689 		flags &= ~AMDGPU_PTE_READABLE;
1690 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1691 		flags &= ~AMDGPU_PTE_WRITEABLE;
1692 
1693 	/* Apply ASIC specific mapping flags */
1694 	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1695 
1696 	trace_amdgpu_vm_bo_update(mapping);
1697 
1698 	pfn = mapping->offset >> PAGE_SHIFT;
1699 	if (nodes) {
1700 		while (pfn >= nodes->size) {
1701 			pfn -= nodes->size;
1702 			++nodes;
1703 		}
1704 	}
1705 
1706 	do {
1707 		dma_addr_t *dma_addr = NULL;
1708 		uint64_t max_entries;
1709 		uint64_t addr, last;
1710 
1711 		max_entries = mapping->last - start + 1;
1712 		if (nodes) {
1713 			addr = nodes->start << PAGE_SHIFT;
1714 			max_entries = min((nodes->size - pfn) *
1715 				AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1716 		} else {
1717 			addr = 0;
1718 		}
1719 
1720 		if (pages_addr) {
1721 			uint64_t count;
1722 
1723 			for (count = 1;
1724 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1725 			     ++count) {
1726 				uint64_t idx = pfn + count;
1727 
1728 				if (pages_addr[idx] !=
1729 				    (pages_addr[idx - 1] + PAGE_SIZE))
1730 					break;
1731 			}
1732 
1733 			if (count < min_linear_pages) {
1734 				addr = pfn << PAGE_SHIFT;
1735 				dma_addr = pages_addr;
1736 			} else {
1737 				addr = pages_addr[pfn];
1738 				max_entries = count *
1739 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1740 			}
1741 
1742 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1743 			addr += bo_adev->vm_manager.vram_base_offset;
1744 			addr += pfn << PAGE_SHIFT;
1745 		}
1746 
1747 		last = start + max_entries - 1;
1748 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1749 						start, last, flags, addr,
1750 						dma_addr, fence);
1751 		if (r)
1752 			return r;
1753 
1754 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1755 		if (nodes && nodes->size == pfn) {
1756 			pfn = 0;
1757 			++nodes;
1758 		}
1759 		start = last + 1;
1760 
1761 	} while (unlikely(start != mapping->last + 1));
1762 
1763 	return 0;
1764 }
1765 
1766 /**
1767  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1768  *
1769  * @adev: amdgpu_device pointer
1770  * @bo_va: requested BO and VM object
1771  * @clear: if true clear the entries
1772  *
1773  * Fill in the page table entries for @bo_va.
1774  *
1775  * Returns:
1776  * 0 for success, -EINVAL for failure.
1777  */
amdgpu_vm_bo_update(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,bool clear)1778 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1779 			bool clear)
1780 {
1781 	struct amdgpu_bo *bo = bo_va->base.bo;
1782 	struct amdgpu_vm *vm = bo_va->base.vm;
1783 	struct amdgpu_bo_va_mapping *mapping;
1784 	dma_addr_t *pages_addr = NULL;
1785 	struct ttm_resource *mem;
1786 	struct drm_mm_node *nodes;
1787 	struct dma_fence **last_update;
1788 	struct dma_resv *resv;
1789 	uint64_t flags;
1790 	struct amdgpu_device *bo_adev = adev;
1791 	int r;
1792 
1793 	if (clear || !bo) {
1794 		mem = NULL;
1795 		nodes = NULL;
1796 		resv = vm->root.base.bo->tbo.base.resv;
1797 	} else {
1798 		struct drm_gem_object *obj = &bo->tbo.base;
1799 		struct ttm_dma_tt *ttm;
1800 
1801 		resv = bo->tbo.base.resv;
1802 		if (obj->import_attach && bo_va->is_xgmi) {
1803 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1804 			struct drm_gem_object *gobj = dma_buf->priv;
1805 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1806 
1807 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1808 				bo = gem_to_amdgpu_bo(gobj);
1809 		}
1810 		mem = &bo->tbo.mem;
1811 		nodes = mem->mm_node;
1812 		if (mem->mem_type == TTM_PL_TT) {
1813 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1814 			pages_addr = ttm->dma_address;
1815 		}
1816 	}
1817 
1818 	if (bo) {
1819 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1820 
1821 		if (amdgpu_bo_encrypted(bo))
1822 			flags |= AMDGPU_PTE_TMZ;
1823 
1824 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1825 	} else {
1826 		flags = 0x0;
1827 	}
1828 
1829 	if (clear || (bo && bo->tbo.base.resv ==
1830 		      vm->root.base.bo->tbo.base.resv))
1831 		last_update = &vm->last_update;
1832 	else
1833 		last_update = &bo_va->last_pt_update;
1834 
1835 	if (!clear && bo_va->base.moved) {
1836 		bo_va->base.moved = false;
1837 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1838 
1839 	} else if (bo_va->cleared != clear) {
1840 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1841 	}
1842 
1843 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1844 		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1845 					       mapping, flags, bo_adev, nodes,
1846 					       last_update);
1847 		if (r)
1848 			return r;
1849 	}
1850 
1851 	/* If the BO is not in its preferred location add it back to
1852 	 * the evicted list so that it gets validated again on the
1853 	 * next command submission.
1854 	 */
1855 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1856 		uint32_t mem_type = bo->tbo.mem.mem_type;
1857 
1858 		if (!(bo->preferred_domains &
1859 		      amdgpu_mem_type_to_domain(mem_type)))
1860 			amdgpu_vm_bo_evicted(&bo_va->base);
1861 		else
1862 			amdgpu_vm_bo_idle(&bo_va->base);
1863 	} else {
1864 		amdgpu_vm_bo_done(&bo_va->base);
1865 	}
1866 
1867 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1868 	bo_va->cleared = clear;
1869 
1870 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1871 		list_for_each_entry(mapping, &bo_va->valids, list)
1872 			trace_amdgpu_vm_bo_mapping(mapping);
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  * amdgpu_vm_update_prt_state - update the global PRT state
1880  *
1881  * @adev: amdgpu_device pointer
1882  */
amdgpu_vm_update_prt_state(struct amdgpu_device * adev)1883 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1884 {
1885 	unsigned long flags;
1886 	bool enable;
1887 
1888 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1889 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1890 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1891 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1892 }
1893 
1894 /**
1895  * amdgpu_vm_prt_get - add a PRT user
1896  *
1897  * @adev: amdgpu_device pointer
1898  */
amdgpu_vm_prt_get(struct amdgpu_device * adev)1899 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1900 {
1901 	if (!adev->gmc.gmc_funcs->set_prt)
1902 		return;
1903 
1904 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1905 		amdgpu_vm_update_prt_state(adev);
1906 }
1907 
1908 /**
1909  * amdgpu_vm_prt_put - drop a PRT user
1910  *
1911  * @adev: amdgpu_device pointer
1912  */
amdgpu_vm_prt_put(struct amdgpu_device * adev)1913 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1914 {
1915 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1916 		amdgpu_vm_update_prt_state(adev);
1917 }
1918 
1919 /**
1920  * amdgpu_vm_prt_cb - callback for updating the PRT status
1921  *
1922  * @fence: fence for the callback
1923  * @_cb: the callback function
1924  */
amdgpu_vm_prt_cb(struct dma_fence * fence,struct dma_fence_cb * _cb)1925 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1926 {
1927 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1928 
1929 	amdgpu_vm_prt_put(cb->adev);
1930 	kfree(cb);
1931 }
1932 
1933 /**
1934  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1935  *
1936  * @adev: amdgpu_device pointer
1937  * @fence: fence for the callback
1938  */
amdgpu_vm_add_prt_cb(struct amdgpu_device * adev,struct dma_fence * fence)1939 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1940 				 struct dma_fence *fence)
1941 {
1942 	struct amdgpu_prt_cb *cb;
1943 
1944 	if (!adev->gmc.gmc_funcs->set_prt)
1945 		return;
1946 
1947 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1948 	if (!cb) {
1949 		/* Last resort when we are OOM */
1950 		if (fence)
1951 			dma_fence_wait(fence, false);
1952 
1953 		amdgpu_vm_prt_put(adev);
1954 	} else {
1955 		cb->adev = adev;
1956 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1957 						     amdgpu_vm_prt_cb))
1958 			amdgpu_vm_prt_cb(fence, &cb->cb);
1959 	}
1960 }
1961 
1962 /**
1963  * amdgpu_vm_free_mapping - free a mapping
1964  *
1965  * @adev: amdgpu_device pointer
1966  * @vm: requested vm
1967  * @mapping: mapping to be freed
1968  * @fence: fence of the unmap operation
1969  *
1970  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1971  */
amdgpu_vm_free_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,struct dma_fence * fence)1972 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1973 				   struct amdgpu_vm *vm,
1974 				   struct amdgpu_bo_va_mapping *mapping,
1975 				   struct dma_fence *fence)
1976 {
1977 	if (mapping->flags & AMDGPU_PTE_PRT)
1978 		amdgpu_vm_add_prt_cb(adev, fence);
1979 	kfree(mapping);
1980 }
1981 
1982 /**
1983  * amdgpu_vm_prt_fini - finish all prt mappings
1984  *
1985  * @adev: amdgpu_device pointer
1986  * @vm: requested vm
1987  *
1988  * Register a cleanup callback to disable PRT support after VM dies.
1989  */
amdgpu_vm_prt_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)1990 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1991 {
1992 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1993 	struct dma_fence *excl, **shared;
1994 	unsigned i, shared_count;
1995 	int r;
1996 
1997 	r = dma_resv_get_fences_rcu(resv, &excl,
1998 					      &shared_count, &shared);
1999 	if (r) {
2000 		/* Not enough memory to grab the fence list, as last resort
2001 		 * block for all the fences to complete.
2002 		 */
2003 		dma_resv_wait_timeout_rcu(resv, true, false,
2004 						    MAX_SCHEDULE_TIMEOUT);
2005 		return;
2006 	}
2007 
2008 	/* Add a callback for each fence in the reservation object */
2009 	amdgpu_vm_prt_get(adev);
2010 	amdgpu_vm_add_prt_cb(adev, excl);
2011 
2012 	for (i = 0; i < shared_count; ++i) {
2013 		amdgpu_vm_prt_get(adev);
2014 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2015 	}
2016 
2017 	kfree(shared);
2018 }
2019 
2020 /**
2021  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2022  *
2023  * @adev: amdgpu_device pointer
2024  * @vm: requested vm
2025  * @fence: optional resulting fence (unchanged if no work needed to be done
2026  * or if an error occurred)
2027  *
2028  * Make sure all freed BOs are cleared in the PT.
2029  * PTs have to be reserved and mutex must be locked!
2030  *
2031  * Returns:
2032  * 0 for success.
2033  *
2034  */
amdgpu_vm_clear_freed(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct dma_fence ** fence)2035 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2036 			  struct amdgpu_vm *vm,
2037 			  struct dma_fence **fence)
2038 {
2039 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2040 	struct amdgpu_bo_va_mapping *mapping;
2041 	uint64_t init_pte_value = 0;
2042 	struct dma_fence *f = NULL;
2043 	int r;
2044 
2045 	while (!list_empty(&vm->freed)) {
2046 		mapping = list_first_entry(&vm->freed,
2047 			struct amdgpu_bo_va_mapping, list);
2048 		list_del(&mapping->list);
2049 
2050 		if (vm->pte_support_ats &&
2051 		    mapping->start < AMDGPU_GMC_HOLE_START)
2052 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2053 
2054 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2055 						mapping->start, mapping->last,
2056 						init_pte_value, 0, NULL, &f);
2057 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2058 		if (r) {
2059 			dma_fence_put(f);
2060 			return r;
2061 		}
2062 	}
2063 
2064 	if (fence && f) {
2065 		dma_fence_put(*fence);
2066 		*fence = f;
2067 	} else {
2068 		dma_fence_put(f);
2069 	}
2070 
2071 	return 0;
2072 
2073 }
2074 
2075 /**
2076  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2077  *
2078  * @adev: amdgpu_device pointer
2079  * @vm: requested vm
2080  *
2081  * Make sure all BOs which are moved are updated in the PTs.
2082  *
2083  * Returns:
2084  * 0 for success.
2085  *
2086  * PTs have to be reserved!
2087  */
amdgpu_vm_handle_moved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2088 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2089 			   struct amdgpu_vm *vm)
2090 {
2091 	struct amdgpu_bo_va *bo_va, *tmp;
2092 	struct dma_resv *resv;
2093 	bool clear;
2094 	int r;
2095 
2096 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2097 		/* Per VM BOs never need to bo cleared in the page tables */
2098 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2099 		if (r)
2100 			return r;
2101 	}
2102 
2103 	spin_lock(&vm->invalidated_lock);
2104 	while (!list_empty(&vm->invalidated)) {
2105 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2106 					 base.vm_status);
2107 		resv = bo_va->base.bo->tbo.base.resv;
2108 		spin_unlock(&vm->invalidated_lock);
2109 
2110 		/* Try to reserve the BO to avoid clearing its ptes */
2111 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2112 			clear = false;
2113 		/* Somebody else is using the BO right now */
2114 		else
2115 			clear = true;
2116 
2117 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2118 		if (r)
2119 			return r;
2120 
2121 		if (!clear)
2122 			dma_resv_unlock(resv);
2123 		spin_lock(&vm->invalidated_lock);
2124 	}
2125 	spin_unlock(&vm->invalidated_lock);
2126 
2127 	return 0;
2128 }
2129 
2130 /**
2131  * amdgpu_vm_bo_add - add a bo to a specific vm
2132  *
2133  * @adev: amdgpu_device pointer
2134  * @vm: requested vm
2135  * @bo: amdgpu buffer object
2136  *
2137  * Add @bo into the requested vm.
2138  * Add @bo to the list of bos associated with the vm
2139  *
2140  * Returns:
2141  * Newly added bo_va or NULL for failure
2142  *
2143  * Object has to be reserved!
2144  */
amdgpu_vm_bo_add(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)2145 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2146 				      struct amdgpu_vm *vm,
2147 				      struct amdgpu_bo *bo)
2148 {
2149 	struct amdgpu_bo_va *bo_va;
2150 
2151 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2152 	if (bo_va == NULL) {
2153 		return NULL;
2154 	}
2155 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2156 
2157 	bo_va->ref_count = 1;
2158 	INIT_LIST_HEAD(&bo_va->valids);
2159 	INIT_LIST_HEAD(&bo_va->invalids);
2160 
2161 	if (!bo)
2162 		return bo_va;
2163 
2164 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2165 		bo_va->is_xgmi = true;
2166 		/* Power up XGMI if it can be potentially used */
2167 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2168 	}
2169 
2170 	return bo_va;
2171 }
2172 
2173 
2174 /**
2175  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2176  *
2177  * @adev: amdgpu_device pointer
2178  * @bo_va: bo_va to store the address
2179  * @mapping: the mapping to insert
2180  *
2181  * Insert a new mapping into all structures.
2182  */
amdgpu_vm_bo_insert_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,struct amdgpu_bo_va_mapping * mapping)2183 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2184 				    struct amdgpu_bo_va *bo_va,
2185 				    struct amdgpu_bo_va_mapping *mapping)
2186 {
2187 	struct amdgpu_vm *vm = bo_va->base.vm;
2188 	struct amdgpu_bo *bo = bo_va->base.bo;
2189 
2190 	mapping->bo_va = bo_va;
2191 	list_add(&mapping->list, &bo_va->invalids);
2192 	amdgpu_vm_it_insert(mapping, &vm->va);
2193 
2194 	if (mapping->flags & AMDGPU_PTE_PRT)
2195 		amdgpu_vm_prt_get(adev);
2196 
2197 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2198 	    !bo_va->base.moved) {
2199 		list_move(&bo_va->base.vm_status, &vm->moved);
2200 	}
2201 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2202 }
2203 
2204 /**
2205  * amdgpu_vm_bo_map - map bo inside a vm
2206  *
2207  * @adev: amdgpu_device pointer
2208  * @bo_va: bo_va to store the address
2209  * @saddr: where to map the BO
2210  * @offset: requested offset in the BO
2211  * @size: BO size in bytes
2212  * @flags: attributes of pages (read/write/valid/etc.)
2213  *
2214  * Add a mapping of the BO at the specefied addr into the VM.
2215  *
2216  * Returns:
2217  * 0 for success, error for failure.
2218  *
2219  * Object has to be reserved and unreserved outside!
2220  */
amdgpu_vm_bo_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2221 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2222 		     struct amdgpu_bo_va *bo_va,
2223 		     uint64_t saddr, uint64_t offset,
2224 		     uint64_t size, uint64_t flags)
2225 {
2226 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2227 	struct amdgpu_bo *bo = bo_va->base.bo;
2228 	struct amdgpu_vm *vm = bo_va->base.vm;
2229 	uint64_t eaddr;
2230 
2231 	/* validate the parameters */
2232 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
2233 		return -EINVAL;
2234 	if (saddr + size <= saddr || offset + size <= offset)
2235 		return -EINVAL;
2236 
2237 	/* make sure object fit at this offset */
2238 	eaddr = saddr + size - 1;
2239 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
2240 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2241 		return -EINVAL;
2242 
2243 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2244 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2245 
2246 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2247 	if (tmp) {
2248 		/* bo and tmp overlap, invalid addr */
2249 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2250 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2251 			tmp->start, tmp->last + 1);
2252 		return -EINVAL;
2253 	}
2254 
2255 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2256 	if (!mapping)
2257 		return -ENOMEM;
2258 
2259 	mapping->start = saddr;
2260 	mapping->last = eaddr;
2261 	mapping->offset = offset;
2262 	mapping->flags = flags;
2263 
2264 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2265 
2266 	return 0;
2267 }
2268 
2269 /**
2270  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2271  *
2272  * @adev: amdgpu_device pointer
2273  * @bo_va: bo_va to store the address
2274  * @saddr: where to map the BO
2275  * @offset: requested offset in the BO
2276  * @size: BO size in bytes
2277  * @flags: attributes of pages (read/write/valid/etc.)
2278  *
2279  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2280  * mappings as we do so.
2281  *
2282  * Returns:
2283  * 0 for success, error for failure.
2284  *
2285  * Object has to be reserved and unreserved outside!
2286  */
amdgpu_vm_bo_replace_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2287 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2288 			     struct amdgpu_bo_va *bo_va,
2289 			     uint64_t saddr, uint64_t offset,
2290 			     uint64_t size, uint64_t flags)
2291 {
2292 	struct amdgpu_bo_va_mapping *mapping;
2293 	struct amdgpu_bo *bo = bo_va->base.bo;
2294 	uint64_t eaddr;
2295 	int r;
2296 
2297 	/* validate the parameters */
2298 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
2299 		return -EINVAL;
2300 	if (saddr + size <= saddr || offset + size <= offset)
2301 		return -EINVAL;
2302 
2303 	/* make sure object fit at this offset */
2304 	eaddr = saddr + size - 1;
2305 	if ((bo && offset + size > amdgpu_bo_size(bo)) ||
2306 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2307 		return -EINVAL;
2308 
2309 	/* Allocate all the needed memory */
2310 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2311 	if (!mapping)
2312 		return -ENOMEM;
2313 
2314 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2315 	if (r) {
2316 		kfree(mapping);
2317 		return r;
2318 	}
2319 
2320 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2321 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2322 
2323 	mapping->start = saddr;
2324 	mapping->last = eaddr;
2325 	mapping->offset = offset;
2326 	mapping->flags = flags;
2327 
2328 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2329 
2330 	return 0;
2331 }
2332 
2333 /**
2334  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2335  *
2336  * @adev: amdgpu_device pointer
2337  * @bo_va: bo_va to remove the address from
2338  * @saddr: where to the BO is mapped
2339  *
2340  * Remove a mapping of the BO at the specefied addr from the VM.
2341  *
2342  * Returns:
2343  * 0 for success, error for failure.
2344  *
2345  * Object has to be reserved and unreserved outside!
2346  */
amdgpu_vm_bo_unmap(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr)2347 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2348 		       struct amdgpu_bo_va *bo_va,
2349 		       uint64_t saddr)
2350 {
2351 	struct amdgpu_bo_va_mapping *mapping;
2352 	struct amdgpu_vm *vm = bo_va->base.vm;
2353 	bool valid = true;
2354 
2355 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2356 
2357 	list_for_each_entry(mapping, &bo_va->valids, list) {
2358 		if (mapping->start == saddr)
2359 			break;
2360 	}
2361 
2362 	if (&mapping->list == &bo_va->valids) {
2363 		valid = false;
2364 
2365 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2366 			if (mapping->start == saddr)
2367 				break;
2368 		}
2369 
2370 		if (&mapping->list == &bo_va->invalids)
2371 			return -ENOENT;
2372 	}
2373 
2374 	list_del(&mapping->list);
2375 	amdgpu_vm_it_remove(mapping, &vm->va);
2376 	mapping->bo_va = NULL;
2377 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2378 
2379 	if (valid)
2380 		list_add(&mapping->list, &vm->freed);
2381 	else
2382 		amdgpu_vm_free_mapping(adev, vm, mapping,
2383 				       bo_va->last_pt_update);
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2390  *
2391  * @adev: amdgpu_device pointer
2392  * @vm: VM structure to use
2393  * @saddr: start of the range
2394  * @size: size of the range
2395  *
2396  * Remove all mappings in a range, split them as appropriate.
2397  *
2398  * Returns:
2399  * 0 for success, error for failure.
2400  */
amdgpu_vm_bo_clear_mappings(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t saddr,uint64_t size)2401 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2402 				struct amdgpu_vm *vm,
2403 				uint64_t saddr, uint64_t size)
2404 {
2405 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2406 	LIST_HEAD(removed);
2407 	uint64_t eaddr;
2408 
2409 	eaddr = saddr + size - 1;
2410 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2411 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2412 
2413 	/* Allocate all the needed memory */
2414 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2415 	if (!before)
2416 		return -ENOMEM;
2417 	INIT_LIST_HEAD(&before->list);
2418 
2419 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2420 	if (!after) {
2421 		kfree(before);
2422 		return -ENOMEM;
2423 	}
2424 	INIT_LIST_HEAD(&after->list);
2425 
2426 	/* Now gather all removed mappings */
2427 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2428 	while (tmp) {
2429 		/* Remember mapping split at the start */
2430 		if (tmp->start < saddr) {
2431 			before->start = tmp->start;
2432 			before->last = saddr - 1;
2433 			before->offset = tmp->offset;
2434 			before->flags = tmp->flags;
2435 			before->bo_va = tmp->bo_va;
2436 			list_add(&before->list, &tmp->bo_va->invalids);
2437 		}
2438 
2439 		/* Remember mapping split at the end */
2440 		if (tmp->last > eaddr) {
2441 			after->start = eaddr + 1;
2442 			after->last = tmp->last;
2443 			after->offset = tmp->offset;
2444 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2445 			after->flags = tmp->flags;
2446 			after->bo_va = tmp->bo_va;
2447 			list_add(&after->list, &tmp->bo_va->invalids);
2448 		}
2449 
2450 		list_del(&tmp->list);
2451 		list_add(&tmp->list, &removed);
2452 
2453 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2454 	}
2455 
2456 	/* And free them up */
2457 	list_for_each_entry_safe(tmp, next, &removed, list) {
2458 		amdgpu_vm_it_remove(tmp, &vm->va);
2459 		list_del(&tmp->list);
2460 
2461 		if (tmp->start < saddr)
2462 		    tmp->start = saddr;
2463 		if (tmp->last > eaddr)
2464 		    tmp->last = eaddr;
2465 
2466 		tmp->bo_va = NULL;
2467 		list_add(&tmp->list, &vm->freed);
2468 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2469 	}
2470 
2471 	/* Insert partial mapping before the range */
2472 	if (!list_empty(&before->list)) {
2473 		amdgpu_vm_it_insert(before, &vm->va);
2474 		if (before->flags & AMDGPU_PTE_PRT)
2475 			amdgpu_vm_prt_get(adev);
2476 	} else {
2477 		kfree(before);
2478 	}
2479 
2480 	/* Insert partial mapping after the range */
2481 	if (!list_empty(&after->list)) {
2482 		amdgpu_vm_it_insert(after, &vm->va);
2483 		if (after->flags & AMDGPU_PTE_PRT)
2484 			amdgpu_vm_prt_get(adev);
2485 	} else {
2486 		kfree(after);
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 /**
2493  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2494  *
2495  * @vm: the requested VM
2496  * @addr: the address
2497  *
2498  * Find a mapping by it's address.
2499  *
2500  * Returns:
2501  * The amdgpu_bo_va_mapping matching for addr or NULL
2502  *
2503  */
amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm * vm,uint64_t addr)2504 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2505 							 uint64_t addr)
2506 {
2507 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2508 }
2509 
2510 /**
2511  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2512  *
2513  * @vm: the requested vm
2514  * @ticket: CS ticket
2515  *
2516  * Trace all mappings of BOs reserved during a command submission.
2517  */
amdgpu_vm_bo_trace_cs(struct amdgpu_vm * vm,struct ww_acquire_ctx * ticket)2518 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2519 {
2520 	struct amdgpu_bo_va_mapping *mapping;
2521 
2522 	if (!trace_amdgpu_vm_bo_cs_enabled())
2523 		return;
2524 
2525 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2526 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2527 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2528 			struct amdgpu_bo *bo;
2529 
2530 			bo = mapping->bo_va->base.bo;
2531 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2532 			    ticket)
2533 				continue;
2534 		}
2535 
2536 		trace_amdgpu_vm_bo_cs(mapping);
2537 	}
2538 }
2539 
2540 /**
2541  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2542  *
2543  * @adev: amdgpu_device pointer
2544  * @bo_va: requested bo_va
2545  *
2546  * Remove @bo_va->bo from the requested vm.
2547  *
2548  * Object have to be reserved!
2549  */
amdgpu_vm_bo_rmv(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va)2550 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2551 		      struct amdgpu_bo_va *bo_va)
2552 {
2553 	struct amdgpu_bo_va_mapping *mapping, *next;
2554 	struct amdgpu_bo *bo = bo_va->base.bo;
2555 	struct amdgpu_vm *vm = bo_va->base.vm;
2556 	struct amdgpu_vm_bo_base **base;
2557 
2558 	if (bo) {
2559 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2560 			vm->bulk_moveable = false;
2561 
2562 		for (base = &bo_va->base.bo->vm_bo; *base;
2563 		     base = &(*base)->next) {
2564 			if (*base != &bo_va->base)
2565 				continue;
2566 
2567 			*base = bo_va->base.next;
2568 			break;
2569 		}
2570 	}
2571 
2572 	spin_lock(&vm->invalidated_lock);
2573 	list_del(&bo_va->base.vm_status);
2574 	spin_unlock(&vm->invalidated_lock);
2575 
2576 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2577 		list_del(&mapping->list);
2578 		amdgpu_vm_it_remove(mapping, &vm->va);
2579 		mapping->bo_va = NULL;
2580 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2581 		list_add(&mapping->list, &vm->freed);
2582 	}
2583 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2584 		list_del(&mapping->list);
2585 		amdgpu_vm_it_remove(mapping, &vm->va);
2586 		amdgpu_vm_free_mapping(adev, vm, mapping,
2587 				       bo_va->last_pt_update);
2588 	}
2589 
2590 	dma_fence_put(bo_va->last_pt_update);
2591 
2592 	if (bo && bo_va->is_xgmi)
2593 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2594 
2595 	kfree(bo_va);
2596 }
2597 
2598 /**
2599  * amdgpu_vm_evictable - check if we can evict a VM
2600  *
2601  * @bo: A page table of the VM.
2602  *
2603  * Check if it is possible to evict a VM.
2604  */
amdgpu_vm_evictable(struct amdgpu_bo * bo)2605 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2606 {
2607 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2608 
2609 	/* Page tables of a destroyed VM can go away immediately */
2610 	if (!bo_base || !bo_base->vm)
2611 		return true;
2612 
2613 	/* Don't evict VM page tables while they are busy */
2614 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2615 		return false;
2616 
2617 	/* Try to block ongoing updates */
2618 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2619 		return false;
2620 
2621 	/* Don't evict VM page tables while they are updated */
2622 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2623 		amdgpu_vm_eviction_unlock(bo_base->vm);
2624 		return false;
2625 	}
2626 
2627 	bo_base->vm->evicting = true;
2628 	amdgpu_vm_eviction_unlock(bo_base->vm);
2629 	return true;
2630 }
2631 
2632 /**
2633  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2634  *
2635  * @adev: amdgpu_device pointer
2636  * @bo: amdgpu buffer object
2637  * @evicted: is the BO evicted
2638  *
2639  * Mark @bo as invalid.
2640  */
amdgpu_vm_bo_invalidate(struct amdgpu_device * adev,struct amdgpu_bo * bo,bool evicted)2641 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2642 			     struct amdgpu_bo *bo, bool evicted)
2643 {
2644 	struct amdgpu_vm_bo_base *bo_base;
2645 
2646 	/* shadow bo doesn't have bo base, its validation needs its parent */
2647 	if (bo->parent && bo->parent->shadow == bo)
2648 		bo = bo->parent;
2649 
2650 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2651 		struct amdgpu_vm *vm = bo_base->vm;
2652 
2653 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2654 			amdgpu_vm_bo_evicted(bo_base);
2655 			continue;
2656 		}
2657 
2658 		if (bo_base->moved)
2659 			continue;
2660 		bo_base->moved = true;
2661 
2662 		if (bo->tbo.type == ttm_bo_type_kernel)
2663 			amdgpu_vm_bo_relocated(bo_base);
2664 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2665 			amdgpu_vm_bo_moved(bo_base);
2666 		else
2667 			amdgpu_vm_bo_invalidated(bo_base);
2668 	}
2669 }
2670 
2671 /**
2672  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2673  *
2674  * @vm_size: VM size
2675  *
2676  * Returns:
2677  * VM page table as power of two
2678  */
amdgpu_vm_get_block_size(uint64_t vm_size)2679 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2680 {
2681 	/* Total bits covered by PD + PTs */
2682 	unsigned bits = ilog2(vm_size) + 18;
2683 
2684 	/* Make sure the PD is 4K in size up to 8GB address space.
2685 	   Above that split equal between PD and PTs */
2686 	if (vm_size <= 8)
2687 		return (bits - 9);
2688 	else
2689 		return ((bits + 3) / 2);
2690 }
2691 
2692 /**
2693  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2694  *
2695  * @adev: amdgpu_device pointer
2696  * @min_vm_size: the minimum vm size in GB if it's set auto
2697  * @fragment_size_default: Default PTE fragment size
2698  * @max_level: max VMPT level
2699  * @max_bits: max address space size in bits
2700  *
2701  */
amdgpu_vm_adjust_size(struct amdgpu_device * adev,uint32_t min_vm_size,uint32_t fragment_size_default,unsigned max_level,unsigned max_bits)2702 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2703 			   uint32_t fragment_size_default, unsigned max_level,
2704 			   unsigned max_bits)
2705 {
2706 	unsigned int max_size = 1 << (max_bits - 30);
2707 	unsigned int vm_size;
2708 	uint64_t tmp;
2709 
2710 	/* adjust vm size first */
2711 	if (amdgpu_vm_size != -1) {
2712 		vm_size = amdgpu_vm_size;
2713 		if (vm_size > max_size) {
2714 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2715 				 amdgpu_vm_size, max_size);
2716 			vm_size = max_size;
2717 		}
2718 	} else {
2719 		struct sysinfo si;
2720 		unsigned int phys_ram_gb;
2721 
2722 		/* Optimal VM size depends on the amount of physical
2723 		 * RAM available. Underlying requirements and
2724 		 * assumptions:
2725 		 *
2726 		 *  - Need to map system memory and VRAM from all GPUs
2727 		 *     - VRAM from other GPUs not known here
2728 		 *     - Assume VRAM <= system memory
2729 		 *  - On GFX8 and older, VM space can be segmented for
2730 		 *    different MTYPEs
2731 		 *  - Need to allow room for fragmentation, guard pages etc.
2732 		 *
2733 		 * This adds up to a rough guess of system memory x3.
2734 		 * Round up to power of two to maximize the available
2735 		 * VM size with the given page table size.
2736 		 */
2737 		si_meminfo(&si);
2738 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2739 			       (1 << 30) - 1) >> 30;
2740 		vm_size = roundup_pow_of_two(
2741 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2742 	}
2743 
2744 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2745 
2746 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2747 	if (amdgpu_vm_block_size != -1)
2748 		tmp >>= amdgpu_vm_block_size - 9;
2749 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2750 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2751 	switch (adev->vm_manager.num_level) {
2752 	case 3:
2753 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2754 		break;
2755 	case 2:
2756 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2757 		break;
2758 	case 1:
2759 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2760 		break;
2761 	default:
2762 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2763 	}
2764 	/* block size depends on vm size and hw setup*/
2765 	if (amdgpu_vm_block_size != -1)
2766 		adev->vm_manager.block_size =
2767 			min((unsigned)amdgpu_vm_block_size, max_bits
2768 			    - AMDGPU_GPU_PAGE_SHIFT
2769 			    - 9 * adev->vm_manager.num_level);
2770 	else if (adev->vm_manager.num_level > 1)
2771 		adev->vm_manager.block_size = 9;
2772 	else
2773 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2774 
2775 	if (amdgpu_vm_fragment_size == -1)
2776 		adev->vm_manager.fragment_size = fragment_size_default;
2777 	else
2778 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2779 
2780 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2781 		 vm_size, adev->vm_manager.num_level + 1,
2782 		 adev->vm_manager.block_size,
2783 		 adev->vm_manager.fragment_size);
2784 }
2785 
2786 /**
2787  * amdgpu_vm_wait_idle - wait for the VM to become idle
2788  *
2789  * @vm: VM object to wait for
2790  * @timeout: timeout to wait for VM to become idle
2791  */
amdgpu_vm_wait_idle(struct amdgpu_vm * vm,long timeout)2792 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2793 {
2794 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2795 					    true, true, timeout);
2796 	if (timeout <= 0)
2797 		return timeout;
2798 
2799 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2800 }
2801 
2802 /**
2803  * amdgpu_vm_init - initialize a vm instance
2804  *
2805  * @adev: amdgpu_device pointer
2806  * @vm: requested vm
2807  * @vm_context: Indicates if it GFX or Compute context
2808  * @pasid: Process address space identifier
2809  *
2810  * Init @vm fields.
2811  *
2812  * Returns:
2813  * 0 for success, error for failure.
2814  */
amdgpu_vm_init(struct amdgpu_device * adev,struct amdgpu_vm * vm,int vm_context,u32 pasid)2815 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2816 		   int vm_context, u32 pasid)
2817 {
2818 	struct amdgpu_bo_param bp;
2819 	struct amdgpu_bo *root;
2820 	int r, i;
2821 
2822 	vm->va = RB_ROOT_CACHED;
2823 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2824 		vm->reserved_vmid[i] = NULL;
2825 	INIT_LIST_HEAD(&vm->evicted);
2826 	INIT_LIST_HEAD(&vm->relocated);
2827 	INIT_LIST_HEAD(&vm->moved);
2828 	INIT_LIST_HEAD(&vm->idle);
2829 	INIT_LIST_HEAD(&vm->invalidated);
2830 	spin_lock_init(&vm->invalidated_lock);
2831 	INIT_LIST_HEAD(&vm->freed);
2832 
2833 
2834 	/* create scheduler entities for page table updates */
2835 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2836 				  adev->vm_manager.vm_pte_scheds,
2837 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2838 	if (r)
2839 		return r;
2840 
2841 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2842 				  adev->vm_manager.vm_pte_scheds,
2843 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2844 	if (r)
2845 		goto error_free_immediate;
2846 
2847 	vm->pte_support_ats = false;
2848 	vm->is_compute_context = false;
2849 
2850 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2851 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2852 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2853 
2854 		if (adev->asic_type == CHIP_RAVEN)
2855 			vm->pte_support_ats = true;
2856 	} else {
2857 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2858 						AMDGPU_VM_USE_CPU_FOR_GFX);
2859 	}
2860 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2861 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2862 	WARN_ONCE((vm->use_cpu_for_update &&
2863 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2864 		  "CPU update of VM recommended only for large BAR system\n");
2865 
2866 	if (vm->use_cpu_for_update)
2867 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2868 	else
2869 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2870 	vm->last_update = NULL;
2871 	vm->last_unlocked = dma_fence_get_stub();
2872 
2873 	mutex_init(&vm->eviction_lock);
2874 	vm->evicting = false;
2875 
2876 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2877 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2878 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2879 	r = amdgpu_bo_create(adev, &bp, &root);
2880 	if (r)
2881 		goto error_free_delayed;
2882 
2883 	r = amdgpu_bo_reserve(root, true);
2884 	if (r)
2885 		goto error_free_root;
2886 
2887 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2888 	if (r)
2889 		goto error_unreserve;
2890 
2891 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2892 
2893 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2894 	if (r)
2895 		goto error_unreserve;
2896 
2897 	amdgpu_bo_unreserve(vm->root.base.bo);
2898 
2899 	if (pasid) {
2900 		unsigned long flags;
2901 
2902 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2903 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2904 			      GFP_ATOMIC);
2905 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2906 		if (r < 0)
2907 			goto error_free_root;
2908 
2909 		vm->pasid = pasid;
2910 	}
2911 
2912 	INIT_KFIFO(vm->faults);
2913 
2914 	return 0;
2915 
2916 error_unreserve:
2917 	amdgpu_bo_unreserve(vm->root.base.bo);
2918 
2919 error_free_root:
2920 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2921 	amdgpu_bo_unref(&vm->root.base.bo);
2922 	vm->root.base.bo = NULL;
2923 
2924 error_free_delayed:
2925 	dma_fence_put(vm->last_unlocked);
2926 	drm_sched_entity_destroy(&vm->delayed);
2927 
2928 error_free_immediate:
2929 	drm_sched_entity_destroy(&vm->immediate);
2930 
2931 	return r;
2932 }
2933 
2934 /**
2935  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2936  *
2937  * @adev: amdgpu_device pointer
2938  * @vm: the VM to check
2939  *
2940  * check all entries of the root PD, if any subsequent PDs are allocated,
2941  * it means there are page table creating and filling, and is no a clean
2942  * VM
2943  *
2944  * Returns:
2945  *	0 if this VM is clean
2946  */
amdgpu_vm_check_clean_reserved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2947 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2948 	struct amdgpu_vm *vm)
2949 {
2950 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2951 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2952 	unsigned int i = 0;
2953 
2954 	if (!(vm->root.entries))
2955 		return 0;
2956 
2957 	for (i = 0; i < entries; i++) {
2958 		if (vm->root.entries[i].base.bo)
2959 			return -EINVAL;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 /**
2966  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2967  *
2968  * @adev: amdgpu_device pointer
2969  * @vm: requested vm
2970  * @pasid: pasid to use
2971  *
2972  * This only works on GFX VMs that don't have any BOs added and no
2973  * page tables allocated yet.
2974  *
2975  * Changes the following VM parameters:
2976  * - use_cpu_for_update
2977  * - pte_supports_ats
2978  * - pasid (old PASID is released, because compute manages its own PASIDs)
2979  *
2980  * Reinitializes the page directory to reflect the changed ATS
2981  * setting.
2982  *
2983  * Returns:
2984  * 0 for success, -errno for errors.
2985  */
amdgpu_vm_make_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm,u32 pasid)2986 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2987 			   u32 pasid)
2988 {
2989 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2990 	int r;
2991 
2992 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2993 	if (r)
2994 		return r;
2995 
2996 	/* Sanity checks */
2997 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2998 	if (r)
2999 		goto unreserve_bo;
3000 
3001 	if (pasid) {
3002 		unsigned long flags;
3003 
3004 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3005 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3006 			      GFP_ATOMIC);
3007 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3008 
3009 		if (r == -ENOSPC)
3010 			goto unreserve_bo;
3011 		r = 0;
3012 	}
3013 
3014 	/* Check if PD needs to be reinitialized and do it before
3015 	 * changing any other state, in case it fails.
3016 	 */
3017 	if (pte_support_ats != vm->pte_support_ats) {
3018 		vm->pte_support_ats = pte_support_ats;
3019 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3020 		if (r)
3021 			goto free_idr;
3022 	}
3023 
3024 	/* Update VM state */
3025 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3026 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3027 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3028 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3029 	WARN_ONCE((vm->use_cpu_for_update &&
3030 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3031 		  "CPU update of VM recommended only for large BAR system\n");
3032 
3033 	if (vm->use_cpu_for_update) {
3034 		/* Sync with last SDMA update/clear before switching to CPU */
3035 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3036 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3037 		if (r)
3038 			goto free_idr;
3039 
3040 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3041 	} else {
3042 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3043 	}
3044 	dma_fence_put(vm->last_update);
3045 	vm->last_update = NULL;
3046 	vm->is_compute_context = true;
3047 
3048 	if (vm->pasid) {
3049 		unsigned long flags;
3050 
3051 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3052 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3053 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3054 
3055 		/* Free the original amdgpu allocated pasid
3056 		 * Will be replaced with kfd allocated pasid
3057 		 */
3058 		amdgpu_pasid_free(vm->pasid);
3059 		vm->pasid = 0;
3060 	}
3061 
3062 	/* Free the shadow bo for compute VM */
3063 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3064 
3065 	if (pasid)
3066 		vm->pasid = pasid;
3067 
3068 	goto unreserve_bo;
3069 
3070 free_idr:
3071 	if (pasid) {
3072 		unsigned long flags;
3073 
3074 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3075 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3076 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3077 	}
3078 unreserve_bo:
3079 	amdgpu_bo_unreserve(vm->root.base.bo);
3080 	return r;
3081 }
3082 
3083 /**
3084  * amdgpu_vm_release_compute - release a compute vm
3085  * @adev: amdgpu_device pointer
3086  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3087  *
3088  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3089  * pasid from vm. Compute should stop use of vm after this call.
3090  */
amdgpu_vm_release_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm)3091 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3092 {
3093 	if (vm->pasid) {
3094 		unsigned long flags;
3095 
3096 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3097 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3098 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3099 	}
3100 	vm->pasid = 0;
3101 	vm->is_compute_context = false;
3102 }
3103 
3104 /**
3105  * amdgpu_vm_fini - tear down a vm instance
3106  *
3107  * @adev: amdgpu_device pointer
3108  * @vm: requested vm
3109  *
3110  * Tear down @vm.
3111  * Unbind the VM and remove all bos from the vm bo list
3112  */
amdgpu_vm_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)3113 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3114 {
3115 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3116 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3117 	struct amdgpu_bo *root;
3118 	int i;
3119 
3120 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3121 
3122 	root = amdgpu_bo_ref(vm->root.base.bo);
3123 	amdgpu_bo_reserve(root, true);
3124 	if (vm->pasid) {
3125 		unsigned long flags;
3126 
3127 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3128 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3129 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3130 		vm->pasid = 0;
3131 	}
3132 
3133 	dma_fence_wait(vm->last_unlocked, false);
3134 	dma_fence_put(vm->last_unlocked);
3135 
3136 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3137 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3138 			amdgpu_vm_prt_fini(adev, vm);
3139 			prt_fini_needed = false;
3140 		}
3141 
3142 		list_del(&mapping->list);
3143 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3144 	}
3145 
3146 	amdgpu_vm_free_pts(adev, vm, NULL);
3147 	amdgpu_bo_unreserve(root);
3148 	amdgpu_bo_unref(&root);
3149 	WARN_ON(vm->root.base.bo);
3150 
3151 	drm_sched_entity_destroy(&vm->immediate);
3152 	drm_sched_entity_destroy(&vm->delayed);
3153 
3154 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3155 		dev_err(adev->dev, "still active bo inside vm\n");
3156 	}
3157 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3158 					     &vm->va.rb_root, rb) {
3159 		/* Don't remove the mapping here, we don't want to trigger a
3160 		 * rebalance and the tree is about to be destroyed anyway.
3161 		 */
3162 		list_del(&mapping->list);
3163 		kfree(mapping);
3164 	}
3165 
3166 	dma_fence_put(vm->last_update);
3167 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3168 		amdgpu_vmid_free_reserved(adev, vm, i);
3169 }
3170 
3171 /**
3172  * amdgpu_vm_manager_init - init the VM manager
3173  *
3174  * @adev: amdgpu_device pointer
3175  *
3176  * Initialize the VM manager structures
3177  */
amdgpu_vm_manager_init(struct amdgpu_device * adev)3178 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3179 {
3180 	unsigned i;
3181 
3182 	/* Concurrent flushes are only possible starting with Vega10 and
3183 	 * are broken on Navi10 and Navi14.
3184 	 */
3185 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3186 					      adev->asic_type == CHIP_NAVI10 ||
3187 					      adev->asic_type == CHIP_NAVI14);
3188 	amdgpu_vmid_mgr_init(adev);
3189 
3190 	adev->vm_manager.fence_context =
3191 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3192 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3193 		adev->vm_manager.seqno[i] = 0;
3194 
3195 	spin_lock_init(&adev->vm_manager.prt_lock);
3196 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3197 
3198 	/* If not overridden by the user, by default, only in large BAR systems
3199 	 * Compute VM tables will be updated by CPU
3200 	 */
3201 #ifdef CONFIG_X86_64
3202 	if (amdgpu_vm_update_mode == -1) {
3203 		/* For asic with VF MMIO access protection
3204 		 * avoid using CPU for VM table updates
3205 		 */
3206 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
3207 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
3208 			adev->vm_manager.vm_update_mode =
3209 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3210 		else
3211 			adev->vm_manager.vm_update_mode = 0;
3212 	} else
3213 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3214 #else
3215 	adev->vm_manager.vm_update_mode = 0;
3216 #endif
3217 
3218 	idr_init(&adev->vm_manager.pasid_idr);
3219 	spin_lock_init(&adev->vm_manager.pasid_lock);
3220 }
3221 
3222 /**
3223  * amdgpu_vm_manager_fini - cleanup VM manager
3224  *
3225  * @adev: amdgpu_device pointer
3226  *
3227  * Cleanup the VM manager and free resources.
3228  */
amdgpu_vm_manager_fini(struct amdgpu_device * adev)3229 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3230 {
3231 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3232 	idr_destroy(&adev->vm_manager.pasid_idr);
3233 
3234 	amdgpu_vmid_mgr_fini(adev);
3235 }
3236 
3237 /**
3238  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3239  *
3240  * @dev: drm device pointer
3241  * @data: drm_amdgpu_vm
3242  * @filp: drm file pointer
3243  *
3244  * Returns:
3245  * 0 for success, -errno for errors.
3246  */
amdgpu_vm_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)3247 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3248 {
3249 	union drm_amdgpu_vm *args = data;
3250 	struct amdgpu_device *adev = drm_to_adev(dev);
3251 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3252 	long timeout = msecs_to_jiffies(2000);
3253 	int r;
3254 
3255 	/* No valid flags defined yet */
3256 	if (args->in.flags)
3257 		return -EINVAL;
3258 
3259 	switch (args->in.op) {
3260 	case AMDGPU_VM_OP_RESERVE_VMID:
3261 		/* We only have requirement to reserve vmid from gfxhub */
3262 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3263 					       AMDGPU_GFXHUB_0);
3264 		if (r)
3265 			return r;
3266 		break;
3267 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3268 		if (amdgpu_sriov_runtime(adev))
3269 			timeout = 8 * timeout;
3270 
3271 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3272 		 * not referenced anymore.
3273 		 */
3274 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3275 		if (r)
3276 			return r;
3277 
3278 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3279 		if (r < 0)
3280 			return r;
3281 
3282 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3283 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3284 		break;
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 /**
3293  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3294  *
3295  * @adev: drm device pointer
3296  * @pasid: PASID identifier for VM
3297  * @task_info: task_info to fill.
3298  */
amdgpu_vm_get_task_info(struct amdgpu_device * adev,u32 pasid,struct amdgpu_task_info * task_info)3299 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3300 			 struct amdgpu_task_info *task_info)
3301 {
3302 	struct amdgpu_vm *vm;
3303 	unsigned long flags;
3304 
3305 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3306 
3307 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3308 	if (vm)
3309 		*task_info = vm->task_info;
3310 
3311 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3312 }
3313 
3314 /**
3315  * amdgpu_vm_set_task_info - Sets VMs task info.
3316  *
3317  * @vm: vm for which to set the info
3318  */
amdgpu_vm_set_task_info(struct amdgpu_vm * vm)3319 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3320 {
3321 	if (vm->task_info.pid)
3322 		return;
3323 
3324 	vm->task_info.pid = current->pid;
3325 	get_task_comm(vm->task_info.task_name, current);
3326 
3327 	if (current->group_leader->mm != current->mm)
3328 		return;
3329 
3330 	vm->task_info.tgid = current->group_leader->pid;
3331 	get_task_comm(vm->task_info.process_name, current->group_leader);
3332 }
3333 
3334 /**
3335  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3336  * @adev: amdgpu device pointer
3337  * @pasid: PASID of the VM
3338  * @addr: Address of the fault
3339  *
3340  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3341  * shouldn't be reported any more.
3342  */
amdgpu_vm_handle_fault(struct amdgpu_device * adev,u32 pasid,uint64_t addr)3343 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3344 			    uint64_t addr)
3345 {
3346 	struct amdgpu_bo *root;
3347 	uint64_t value, flags;
3348 	struct amdgpu_vm *vm;
3349 	long r;
3350 
3351 	spin_lock(&adev->vm_manager.pasid_lock);
3352 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3353 	if (vm)
3354 		root = amdgpu_bo_ref(vm->root.base.bo);
3355 	else
3356 		root = NULL;
3357 	spin_unlock(&adev->vm_manager.pasid_lock);
3358 
3359 	if (!root)
3360 		return false;
3361 
3362 	r = amdgpu_bo_reserve(root, true);
3363 	if (r)
3364 		goto error_unref;
3365 
3366 	/* Double check that the VM still exists */
3367 	spin_lock(&adev->vm_manager.pasid_lock);
3368 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3369 	if (vm && vm->root.base.bo != root)
3370 		vm = NULL;
3371 	spin_unlock(&adev->vm_manager.pasid_lock);
3372 	if (!vm)
3373 		goto error_unlock;
3374 
3375 	addr /= AMDGPU_GPU_PAGE_SIZE;
3376 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3377 		AMDGPU_PTE_SYSTEM;
3378 
3379 	if (vm->is_compute_context) {
3380 		/* Intentionally setting invalid PTE flag
3381 		 * combination to force a no-retry-fault
3382 		 */
3383 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3384 			AMDGPU_PTE_TF;
3385 		value = 0;
3386 
3387 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3388 		/* Redirect the access to the dummy page */
3389 		value = adev->dummy_page_addr;
3390 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3391 			AMDGPU_PTE_WRITEABLE;
3392 
3393 	} else {
3394 		/* Let the hw retry silently on the PTE */
3395 		value = 0;
3396 	}
3397 
3398 	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3399 					addr + 1, flags, value, NULL, NULL);
3400 	if (r)
3401 		goto error_unlock;
3402 
3403 	r = amdgpu_vm_update_pdes(adev, vm, true);
3404 
3405 error_unlock:
3406 	amdgpu_bo_unreserve(root);
3407 	if (r < 0)
3408 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3409 
3410 error_unref:
3411 	amdgpu_bo_unref(&root);
3412 
3413 	return false;
3414 }
3415