1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40
41 /**
42 * DOC: GPUVM
43 *
44 * GPUVM is similar to the legacy gart on older asics, however
45 * rather than there being a single global gart table
46 * for the entire GPU, there are multiple VM page tables active
47 * at any given time. The VM page tables can contain a mix
48 * vram pages and system memory pages and system memory pages
49 * can be mapped as snooped (cached system pages) or unsnooped
50 * (uncached system pages).
51 * Each VM has an ID associated with it and there is a page table
52 * associated with each VMID. When execting a command buffer,
53 * the kernel tells the the ring what VMID to use for that command
54 * buffer. VMIDs are allocated dynamically as commands are submitted.
55 * The userspace drivers maintain their own address space and the kernel
56 * sets up their pages tables accordingly when they submit their
57 * command buffers and a VMID is assigned.
58 * Cayman/Trinity support up to 8 active VMs at any given time;
59 * SI supports 16.
60 */
61
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 START, LAST, static, amdgpu_vm_it)
67
68 #undef START
69 #undef LAST
70
71 /**
72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73 */
74 struct amdgpu_prt_cb {
75
76 /**
77 * @adev: amdgpu device
78 */
79 struct amdgpu_device *adev;
80
81 /**
82 * @cb: callback
83 */
84 struct dma_fence_cb cb;
85 };
86
87 /*
88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89 * happens while holding this lock anywhere to prevent deadlocks when
90 * an MMU notifier runs in reclaim-FS context.
91 */
amdgpu_vm_eviction_lock(struct amdgpu_vm * vm)92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 mutex_lock(&vm->eviction_lock);
95 vm->saved_flags = memalloc_nofs_save();
96 }
97
amdgpu_vm_eviction_trylock(struct amdgpu_vm * vm)98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 if (mutex_trylock(&vm->eviction_lock)) {
101 vm->saved_flags = memalloc_nofs_save();
102 return 1;
103 }
104 return 0;
105 }
106
amdgpu_vm_eviction_unlock(struct amdgpu_vm * vm)107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 memalloc_nofs_restore(vm->saved_flags);
110 mutex_unlock(&vm->eviction_lock);
111 }
112
113 /**
114 * amdgpu_vm_level_shift - return the addr shift for each level
115 *
116 * @adev: amdgpu_device pointer
117 * @level: VMPT level
118 *
119 * Returns:
120 * The number of bits the pfn needs to be right shifted for a level.
121 */
amdgpu_vm_level_shift(struct amdgpu_device * adev,unsigned level)122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 unsigned level)
124 {
125 switch (level) {
126 case AMDGPU_VM_PDB2:
127 case AMDGPU_VM_PDB1:
128 case AMDGPU_VM_PDB0:
129 return 9 * (AMDGPU_VM_PDB0 - level) +
130 adev->vm_manager.block_size;
131 case AMDGPU_VM_PTB:
132 return 0;
133 default:
134 return ~0;
135 }
136 }
137
138 /**
139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140 *
141 * @adev: amdgpu_device pointer
142 * @level: VMPT level
143 *
144 * Returns:
145 * The number of entries in a page directory or page table.
146 */
amdgpu_vm_num_entries(struct amdgpu_device * adev,unsigned level)147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 unsigned level)
149 {
150 unsigned shift = amdgpu_vm_level_shift(adev,
151 adev->vm_manager.root_level);
152
153 if (level == adev->vm_manager.root_level)
154 /* For the root directory */
155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 >> shift;
157 else if (level != AMDGPU_VM_PTB)
158 /* Everything in between */
159 return 512;
160 else
161 /* For the page tables on the leaves */
162 return AMDGPU_VM_PTE_COUNT(adev);
163 }
164
165 /**
166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167 *
168 * @adev: amdgpu_device pointer
169 *
170 * Returns:
171 * The number of entries in the root page directory which needs the ATS setting.
172 */
amdgpu_vm_num_ats_entries(struct amdgpu_device * adev)173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 unsigned shift;
176
177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180
181 /**
182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183 *
184 * @adev: amdgpu_device pointer
185 * @level: VMPT level
186 *
187 * Returns:
188 * The mask to extract the entry number of a PD/PT from an address.
189 */
amdgpu_vm_entries_mask(struct amdgpu_device * adev,unsigned int level)190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 unsigned int level)
192 {
193 if (level <= adev->vm_manager.root_level)
194 return 0xffffffff;
195 else if (level != AMDGPU_VM_PTB)
196 return 0x1ff;
197 else
198 return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200
201 /**
202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203 *
204 * @adev: amdgpu_device pointer
205 * @level: VMPT level
206 *
207 * Returns:
208 * The size of the BO for a page directory or page table in bytes.
209 */
amdgpu_vm_bo_size(struct amdgpu_device * adev,unsigned level)210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214
215 /**
216 * amdgpu_vm_bo_evicted - vm_bo is evicted
217 *
218 * @vm_bo: vm_bo which is evicted
219 *
220 * State for PDs/PTs and per VM BOs which are not at the location they should
221 * be.
222 */
amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base * vm_bo)223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 struct amdgpu_vm *vm = vm_bo->vm;
226 struct amdgpu_bo *bo = vm_bo->bo;
227
228 vm_bo->moved = true;
229 if (bo->tbo.type == ttm_bo_type_kernel)
230 list_move(&vm_bo->vm_status, &vm->evicted);
231 else
232 list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235 * amdgpu_vm_bo_moved - vm_bo is moved
236 *
237 * @vm_bo: vm_bo which is moved
238 *
239 * State for per VM BOs which are moved, but that change is not yet reflected
240 * in the page tables.
241 */
amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base * vm_bo)242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246
247 /**
248 * amdgpu_vm_bo_idle - vm_bo is idle
249 *
250 * @vm_bo: vm_bo which is now idle
251 *
252 * State for PDs/PTs and per VM BOs which have gone through the state machine
253 * and are now idle.
254 */
amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base * vm_bo)255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 vm_bo->moved = false;
259 }
260
261 /**
262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263 *
264 * @vm_bo: vm_bo which is now invalidated
265 *
266 * State for normal BOs which are invalidated and that change not yet reflected
267 * in the PTs.
268 */
amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base * vm_bo)269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 spin_lock(&vm_bo->vm->invalidated_lock);
272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275
276 /**
277 * amdgpu_vm_bo_relocated - vm_bo is reloacted
278 *
279 * @vm_bo: vm_bo which is relocated
280 *
281 * State for PDs/PTs which needs to update their parent PD.
282 * For the root PD, just move to idle state.
283 */
amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base * vm_bo)284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 if (vm_bo->bo->parent)
287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 else
289 amdgpu_vm_bo_idle(vm_bo);
290 }
291
292 /**
293 * amdgpu_vm_bo_done - vm_bo is done
294 *
295 * @vm_bo: vm_bo which is now done
296 *
297 * State for normal BOs which are invalidated and that change has been updated
298 * in the PTs.
299 */
amdgpu_vm_bo_done(struct amdgpu_vm_bo_base * vm_bo)300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 spin_lock(&vm_bo->vm->invalidated_lock);
303 list_del_init(&vm_bo->vm_status);
304 spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306
307 /**
308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309 *
310 * @base: base structure for tracking BO usage in a VM
311 * @vm: vm to which bo is to be added
312 * @bo: amdgpu buffer object
313 *
314 * Initialize a bo_va_base structure and add it to the appropriate lists
315 *
316 */
amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base * base,struct amdgpu_vm * vm,struct amdgpu_bo * bo)317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 struct amdgpu_vm *vm,
319 struct amdgpu_bo *bo)
320 {
321 base->vm = vm;
322 base->bo = bo;
323 base->next = NULL;
324 INIT_LIST_HEAD(&base->vm_status);
325
326 if (!bo)
327 return;
328 base->next = bo->vm_bo;
329 bo->vm_bo = base;
330
331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 return;
333
334 vm->bulk_moveable = false;
335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 amdgpu_vm_bo_relocated(base);
337 else
338 amdgpu_vm_bo_idle(base);
339
340 if (bo->preferred_domains &
341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 return;
343
344 /*
345 * we checked all the prerequisites, but it looks like this per vm bo
346 * is currently evicted. add the bo to the evicted list to make sure it
347 * is validated on next vm use to avoid fault.
348 * */
349 amdgpu_vm_bo_evicted(base);
350 }
351
352 /**
353 * amdgpu_vm_pt_parent - get the parent page directory
354 *
355 * @pt: child page table
356 *
357 * Helper to get the parent entry for the child page table. NULL if we are at
358 * the root page directory.
359 */
amdgpu_vm_pt_parent(struct amdgpu_vm_pt * pt)360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 struct amdgpu_bo *parent = pt->base.bo->parent;
363
364 if (!parent)
365 return NULL;
366
367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369
370 /*
371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372 */
373 struct amdgpu_vm_pt_cursor {
374 uint64_t pfn;
375 struct amdgpu_vm_pt *parent;
376 struct amdgpu_vm_pt *entry;
377 unsigned level;
378 };
379
380 /**
381 * amdgpu_vm_pt_start - start PD/PT walk
382 *
383 * @adev: amdgpu_device pointer
384 * @vm: amdgpu_vm structure
385 * @start: start address of the walk
386 * @cursor: state to initialize
387 *
388 * Initialize a amdgpu_vm_pt_cursor to start a walk.
389 */
amdgpu_vm_pt_start(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,struct amdgpu_vm_pt_cursor * cursor)390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 struct amdgpu_vm *vm, uint64_t start,
392 struct amdgpu_vm_pt_cursor *cursor)
393 {
394 cursor->pfn = start;
395 cursor->parent = NULL;
396 cursor->entry = &vm->root;
397 cursor->level = adev->vm_manager.root_level;
398 }
399
400 /**
401 * amdgpu_vm_pt_descendant - go to child node
402 *
403 * @adev: amdgpu_device pointer
404 * @cursor: current state
405 *
406 * Walk to the child node of the current node.
407 * Returns:
408 * True if the walk was possible, false otherwise.
409 */
amdgpu_vm_pt_descendant(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 struct amdgpu_vm_pt_cursor *cursor)
412 {
413 unsigned mask, shift, idx;
414
415 if (!cursor->entry->entries)
416 return false;
417
418 BUG_ON(!cursor->entry->base.bo);
419 mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 shift = amdgpu_vm_level_shift(adev, cursor->level);
421
422 ++cursor->level;
423 idx = (cursor->pfn >> shift) & mask;
424 cursor->parent = cursor->entry;
425 cursor->entry = &cursor->entry->entries[idx];
426 return true;
427 }
428
429 /**
430 * amdgpu_vm_pt_sibling - go to sibling node
431 *
432 * @adev: amdgpu_device pointer
433 * @cursor: current state
434 *
435 * Walk to the sibling node of the current node.
436 * Returns:
437 * True if the walk was possible, false otherwise.
438 */
amdgpu_vm_pt_sibling(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 unsigned shift, num_entries;
443
444 /* Root doesn't have a sibling */
445 if (!cursor->parent)
446 return false;
447
448 /* Go to our parents and see if we got a sibling */
449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451
452 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 return false;
454
455 cursor->pfn += 1ULL << shift;
456 cursor->pfn &= ~((1ULL << shift) - 1);
457 ++cursor->entry;
458 return true;
459 }
460
461 /**
462 * amdgpu_vm_pt_ancestor - go to parent node
463 *
464 * @cursor: current state
465 *
466 * Walk to the parent node of the current node.
467 * Returns:
468 * True if the walk was possible, false otherwise.
469 */
amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor * cursor)470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 if (!cursor->parent)
473 return false;
474
475 --cursor->level;
476 cursor->entry = cursor->parent;
477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 return true;
479 }
480
481 /**
482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483 *
484 * @adev: amdgpu_device pointer
485 * @cursor: current state
486 *
487 * Walk the PD/PT tree to the next node.
488 */
amdgpu_vm_pt_next(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 struct amdgpu_vm_pt_cursor *cursor)
491 {
492 /* First try a newborn child */
493 if (amdgpu_vm_pt_descendant(adev, cursor))
494 return;
495
496 /* If that didn't worked try to find a sibling */
497 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 /* No sibling, go to our parents and grandparents */
499 if (!amdgpu_vm_pt_ancestor(cursor)) {
500 cursor->pfn = ~0ll;
501 return;
502 }
503 }
504 }
505
506 /**
507 * amdgpu_vm_pt_first_dfs - start a deep first search
508 *
509 * @adev: amdgpu_device structure
510 * @vm: amdgpu_vm structure
511 * @start: optional cursor to start with
512 * @cursor: state to initialize
513 *
514 * Starts a deep first traversal of the PD/PT tree.
515 */
amdgpu_vm_pt_first_dfs(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt_cursor * cursor)516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 struct amdgpu_vm *vm,
518 struct amdgpu_vm_pt_cursor *start,
519 struct amdgpu_vm_pt_cursor *cursor)
520 {
521 if (start)
522 *cursor = *start;
523 else
524 amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527
528 /**
529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530 *
531 * @start: starting point for the search
532 * @entry: current entry
533 *
534 * Returns:
535 * True when the search should continue, false otherwise.
536 */
amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt * entry)537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 struct amdgpu_vm_pt *entry)
539 {
540 return entry && (!start || entry != start->entry);
541 }
542
543 /**
544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545 *
546 * @adev: amdgpu_device structure
547 * @cursor: current state
548 *
549 * Move the cursor to the next node in a deep first search.
550 */
amdgpu_vm_pt_next_dfs(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 struct amdgpu_vm_pt_cursor *cursor)
553 {
554 if (!cursor->entry)
555 return;
556
557 if (!cursor->parent)
558 cursor->entry = NULL;
559 else if (amdgpu_vm_pt_sibling(adev, cursor))
560 while (amdgpu_vm_pt_descendant(adev, cursor));
561 else
562 amdgpu_vm_pt_ancestor(cursor);
563 }
564
565 /*
566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567 */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 amdgpu_vm_pt_continue_dfs((start), (entry)); \
572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573
574 /**
575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576 *
577 * @vm: vm providing the BOs
578 * @validated: head of validation list
579 * @entry: entry to add
580 *
581 * Add the page directory to the list of BOs to
582 * validate for command submission.
583 */
amdgpu_vm_get_pd_bo(struct amdgpu_vm * vm,struct list_head * validated,struct amdgpu_bo_list_entry * entry)584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 struct list_head *validated,
586 struct amdgpu_bo_list_entry *entry)
587 {
588 entry->priority = 0;
589 entry->tv.bo = &vm->root.base.bo->tbo;
590 /* Two for VM updates, one for TTM and one for the CS job */
591 entry->tv.num_shared = 4;
592 entry->user_pages = NULL;
593 list_add(&entry->tv.head, validated);
594 }
595
596 /**
597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598 *
599 * @bo: BO which was removed from the LRU
600 *
601 * Make sure the bulk_moveable flag is updated when a BO is removed from the
602 * LRU.
603 */
amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object * bo)604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 struct amdgpu_bo *abo;
607 struct amdgpu_vm_bo_base *bo_base;
608
609 if (!amdgpu_bo_is_amdgpu_bo(bo))
610 return;
611
612 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613 return;
614
615 abo = ttm_to_amdgpu_bo(bo);
616 if (!abo->parent)
617 return;
618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 struct amdgpu_vm *vm = bo_base->vm;
620
621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 vm->bulk_moveable = false;
623 }
624
625 }
626 /**
627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628 *
629 * @adev: amdgpu device pointer
630 * @vm: vm providing the BOs
631 *
632 * Move all BOs to the end of LRU and remember their positions to put them
633 * together.
634 */
amdgpu_vm_move_to_lru_tail(struct amdgpu_device * adev,struct amdgpu_vm * vm)635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 struct amdgpu_vm *vm)
637 {
638 struct amdgpu_vm_bo_base *bo_base;
639
640 if (vm->bulk_moveable) {
641 spin_lock(&ttm_bo_glob.lru_lock);
642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 spin_unlock(&ttm_bo_glob.lru_lock);
644 return;
645 }
646
647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648
649 spin_lock(&ttm_bo_glob.lru_lock);
650 list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 struct amdgpu_bo *bo = bo_base->bo;
652
653 if (!bo->parent)
654 continue;
655
656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657 if (bo->shadow)
658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659 &vm->lru_bulk_move);
660 }
661 spin_unlock(&ttm_bo_glob.lru_lock);
662
663 vm->bulk_moveable = true;
664 }
665
666 /**
667 * amdgpu_vm_validate_pt_bos - validate the page table BOs
668 *
669 * @adev: amdgpu device pointer
670 * @vm: vm providing the BOs
671 * @validate: callback to do the validation
672 * @param: parameter for the validation callback
673 *
674 * Validate the page table BOs on command submission if neccessary.
675 *
676 * Returns:
677 * Validation result.
678 */
amdgpu_vm_validate_pt_bos(struct amdgpu_device * adev,struct amdgpu_vm * vm,int (* validate)(void * p,struct amdgpu_bo * bo),void * param)679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680 int (*validate)(void *p, struct amdgpu_bo *bo),
681 void *param)
682 {
683 struct amdgpu_vm_bo_base *bo_base, *tmp;
684 int r;
685
686 vm->bulk_moveable &= list_empty(&vm->evicted);
687
688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689 struct amdgpu_bo *bo = bo_base->bo;
690
691 r = validate(param, bo);
692 if (r)
693 return r;
694
695 if (bo->tbo.type != ttm_bo_type_kernel) {
696 amdgpu_vm_bo_moved(bo_base);
697 } else {
698 vm->update_funcs->map_table(bo);
699 amdgpu_vm_bo_relocated(bo_base);
700 }
701 }
702
703 amdgpu_vm_eviction_lock(vm);
704 vm->evicting = false;
705 amdgpu_vm_eviction_unlock(vm);
706
707 return 0;
708 }
709
710 /**
711 * amdgpu_vm_ready - check VM is ready for updates
712 *
713 * @vm: VM to check
714 *
715 * Check if all VM PDs/PTs are ready for updates
716 *
717 * Returns:
718 * True if VM is not evicting.
719 */
amdgpu_vm_ready(struct amdgpu_vm * vm)720 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721 {
722 bool ret;
723
724 amdgpu_vm_eviction_lock(vm);
725 ret = !vm->evicting;
726 amdgpu_vm_eviction_unlock(vm);
727
728 return ret && list_empty(&vm->evicted);
729 }
730
731 /**
732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
733 *
734 * @adev: amdgpu_device pointer
735 * @vm: VM to clear BO from
736 * @bo: BO to clear
737 * @immediate: use an immediate update
738 *
739 * Root PD needs to be reserved when calling this.
740 *
741 * Returns:
742 * 0 on success, errno otherwise.
743 */
amdgpu_vm_clear_bo(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo,bool immediate)744 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
745 struct amdgpu_vm *vm,
746 struct amdgpu_bo *bo,
747 bool immediate)
748 {
749 struct ttm_operation_ctx ctx = { true, false };
750 unsigned level = adev->vm_manager.root_level;
751 struct amdgpu_vm_update_params params;
752 struct amdgpu_bo *ancestor = bo;
753 unsigned entries, ats_entries;
754 uint64_t addr;
755 int r;
756
757 /* Figure out our place in the hierarchy */
758 if (ancestor->parent) {
759 ++level;
760 while (ancestor->parent->parent) {
761 ++level;
762 ancestor = ancestor->parent;
763 }
764 }
765
766 entries = amdgpu_bo_size(bo) / 8;
767 if (!vm->pte_support_ats) {
768 ats_entries = 0;
769
770 } else if (!bo->parent) {
771 ats_entries = amdgpu_vm_num_ats_entries(adev);
772 ats_entries = min(ats_entries, entries);
773 entries -= ats_entries;
774
775 } else {
776 struct amdgpu_vm_pt *pt;
777
778 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
779 ats_entries = amdgpu_vm_num_ats_entries(adev);
780 if ((pt - vm->root.entries) >= ats_entries) {
781 ats_entries = 0;
782 } else {
783 ats_entries = entries;
784 entries = 0;
785 }
786 }
787
788 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
789 if (r)
790 return r;
791
792 if (bo->shadow) {
793 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
794 &ctx);
795 if (r)
796 return r;
797 }
798
799 r = vm->update_funcs->map_table(bo);
800 if (r)
801 return r;
802
803 memset(¶ms, 0, sizeof(params));
804 params.adev = adev;
805 params.vm = vm;
806 params.immediate = immediate;
807
808 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
809 if (r)
810 return r;
811
812 addr = 0;
813 if (ats_entries) {
814 uint64_t value = 0, flags;
815
816 flags = AMDGPU_PTE_DEFAULT_ATC;
817 if (level != AMDGPU_VM_PTB) {
818 /* Handle leaf PDEs as PTEs */
819 flags |= AMDGPU_PDE_PTE;
820 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
821 }
822
823 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries,
824 value, flags);
825 if (r)
826 return r;
827
828 addr += ats_entries * 8;
829 }
830
831 if (entries) {
832 uint64_t value = 0, flags = 0;
833
834 if (adev->asic_type >= CHIP_VEGA10) {
835 if (level != AMDGPU_VM_PTB) {
836 /* Handle leaf PDEs as PTEs */
837 flags |= AMDGPU_PDE_PTE;
838 amdgpu_gmc_get_vm_pde(adev, level,
839 &value, &flags);
840 } else {
841 /* Workaround for fault priority problem on GMC9 */
842 flags = AMDGPU_PTE_EXECUTABLE;
843 }
844 }
845
846 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries,
847 value, flags);
848 if (r)
849 return r;
850 }
851
852 return vm->update_funcs->commit(¶ms, NULL);
853 }
854
855 /**
856 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
857 *
858 * @adev: amdgpu_device pointer
859 * @vm: requesting vm
860 * @level: the page table level
861 * @immediate: use a immediate update
862 * @bp: resulting BO allocation parameters
863 */
amdgpu_vm_bo_param(struct amdgpu_device * adev,struct amdgpu_vm * vm,int level,bool immediate,struct amdgpu_bo_param * bp)864 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
865 int level, bool immediate,
866 struct amdgpu_bo_param *bp)
867 {
868 memset(bp, 0, sizeof(*bp));
869
870 bp->size = amdgpu_vm_bo_size(adev, level);
871 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
872 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
873 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
874 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
875 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
876 if (vm->use_cpu_for_update)
877 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
878 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
879 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
880 bp->type = ttm_bo_type_kernel;
881 bp->no_wait_gpu = immediate;
882 if (vm->root.base.bo)
883 bp->resv = vm->root.base.bo->tbo.base.resv;
884 }
885
886 /**
887 * amdgpu_vm_alloc_pts - Allocate a specific page table
888 *
889 * @adev: amdgpu_device pointer
890 * @vm: VM to allocate page tables for
891 * @cursor: Which page table to allocate
892 * @immediate: use an immediate update
893 *
894 * Make sure a specific page table or directory is allocated.
895 *
896 * Returns:
897 * 1 if page table needed to be allocated, 0 if page table was already
898 * allocated, negative errno if an error occurred.
899 */
amdgpu_vm_alloc_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * cursor,bool immediate)900 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
901 struct amdgpu_vm *vm,
902 struct amdgpu_vm_pt_cursor *cursor,
903 bool immediate)
904 {
905 struct amdgpu_vm_pt *entry = cursor->entry;
906 struct amdgpu_bo_param bp;
907 struct amdgpu_bo *pt;
908 int r;
909
910 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
911 unsigned num_entries;
912
913 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
914 entry->entries = kvmalloc_array(num_entries,
915 sizeof(*entry->entries),
916 GFP_KERNEL | __GFP_ZERO);
917 if (!entry->entries)
918 return -ENOMEM;
919 }
920
921 if (entry->base.bo)
922 return 0;
923
924 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
925
926 r = amdgpu_bo_create(adev, &bp, &pt);
927 if (r)
928 return r;
929
930 /* Keep a reference to the root directory to avoid
931 * freeing them up in the wrong order.
932 */
933 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
934 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
935
936 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
937 if (r)
938 goto error_free_pt;
939
940 return 0;
941
942 error_free_pt:
943 amdgpu_bo_unref(&pt->shadow);
944 amdgpu_bo_unref(&pt);
945 return r;
946 }
947
948 /**
949 * amdgpu_vm_free_table - fre one PD/PT
950 *
951 * @entry: PDE to free
952 */
amdgpu_vm_free_table(struct amdgpu_vm_pt * entry)953 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
954 {
955 if (entry->base.bo) {
956 entry->base.bo->vm_bo = NULL;
957 list_del(&entry->base.vm_status);
958 amdgpu_bo_unref(&entry->base.bo->shadow);
959 amdgpu_bo_unref(&entry->base.bo);
960 }
961 kvfree(entry->entries);
962 entry->entries = NULL;
963 }
964
965 /**
966 * amdgpu_vm_free_pts - free PD/PT levels
967 *
968 * @adev: amdgpu device structure
969 * @vm: amdgpu vm structure
970 * @start: optional cursor where to start freeing PDs/PTs
971 *
972 * Free the page directory or page table level and all sub levels.
973 */
amdgpu_vm_free_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start)974 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
975 struct amdgpu_vm *vm,
976 struct amdgpu_vm_pt_cursor *start)
977 {
978 struct amdgpu_vm_pt_cursor cursor;
979 struct amdgpu_vm_pt *entry;
980
981 vm->bulk_moveable = false;
982
983 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
984 amdgpu_vm_free_table(entry);
985
986 if (start)
987 amdgpu_vm_free_table(start->entry);
988 }
989
990 /**
991 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
992 *
993 * @adev: amdgpu_device pointer
994 */
amdgpu_vm_check_compute_bug(struct amdgpu_device * adev)995 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
996 {
997 const struct amdgpu_ip_block *ip_block;
998 bool has_compute_vm_bug;
999 struct amdgpu_ring *ring;
1000 int i;
1001
1002 has_compute_vm_bug = false;
1003
1004 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1005 if (ip_block) {
1006 /* Compute has a VM bug for GFX version < 7.
1007 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1008 if (ip_block->version->major <= 7)
1009 has_compute_vm_bug = true;
1010 else if (ip_block->version->major == 8)
1011 if (adev->gfx.mec_fw_version < 673)
1012 has_compute_vm_bug = true;
1013 }
1014
1015 for (i = 0; i < adev->num_rings; i++) {
1016 ring = adev->rings[i];
1017 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1018 /* only compute rings */
1019 ring->has_compute_vm_bug = has_compute_vm_bug;
1020 else
1021 ring->has_compute_vm_bug = false;
1022 }
1023 }
1024
1025 /**
1026 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1027 *
1028 * @ring: ring on which the job will be submitted
1029 * @job: job to submit
1030 *
1031 * Returns:
1032 * True if sync is needed.
1033 */
amdgpu_vm_need_pipeline_sync(struct amdgpu_ring * ring,struct amdgpu_job * job)1034 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1035 struct amdgpu_job *job)
1036 {
1037 struct amdgpu_device *adev = ring->adev;
1038 unsigned vmhub = ring->funcs->vmhub;
1039 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1040 struct amdgpu_vmid *id;
1041 bool gds_switch_needed;
1042 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1043
1044 if (job->vmid == 0)
1045 return false;
1046 id = &id_mgr->ids[job->vmid];
1047 gds_switch_needed = ring->funcs->emit_gds_switch && (
1048 id->gds_base != job->gds_base ||
1049 id->gds_size != job->gds_size ||
1050 id->gws_base != job->gws_base ||
1051 id->gws_size != job->gws_size ||
1052 id->oa_base != job->oa_base ||
1053 id->oa_size != job->oa_size);
1054
1055 if (amdgpu_vmid_had_gpu_reset(adev, id))
1056 return true;
1057
1058 return vm_flush_needed || gds_switch_needed;
1059 }
1060
1061 /**
1062 * amdgpu_vm_flush - hardware flush the vm
1063 *
1064 * @ring: ring to use for flush
1065 * @job: related job
1066 * @need_pipe_sync: is pipe sync needed
1067 *
1068 * Emit a VM flush when it is necessary.
1069 *
1070 * Returns:
1071 * 0 on success, errno otherwise.
1072 */
amdgpu_vm_flush(struct amdgpu_ring * ring,struct amdgpu_job * job,bool need_pipe_sync)1073 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1074 bool need_pipe_sync)
1075 {
1076 struct amdgpu_device *adev = ring->adev;
1077 unsigned vmhub = ring->funcs->vmhub;
1078 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1079 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1080 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1081 id->gds_base != job->gds_base ||
1082 id->gds_size != job->gds_size ||
1083 id->gws_base != job->gws_base ||
1084 id->gws_size != job->gws_size ||
1085 id->oa_base != job->oa_base ||
1086 id->oa_size != job->oa_size);
1087 bool vm_flush_needed = job->vm_needs_flush;
1088 struct dma_fence *fence = NULL;
1089 bool pasid_mapping_needed = false;
1090 unsigned patch_offset = 0;
1091 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1092 int r;
1093
1094 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1095 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1096
1097 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1098 gds_switch_needed = true;
1099 vm_flush_needed = true;
1100 pasid_mapping_needed = true;
1101 }
1102
1103 mutex_lock(&id_mgr->lock);
1104 if (id->pasid != job->pasid || !id->pasid_mapping ||
1105 !dma_fence_is_signaled(id->pasid_mapping))
1106 pasid_mapping_needed = true;
1107 mutex_unlock(&id_mgr->lock);
1108
1109 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1110 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1111 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1112 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1113 ring->funcs->emit_wreg;
1114
1115 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1116 return 0;
1117
1118 if (ring->funcs->init_cond_exec)
1119 patch_offset = amdgpu_ring_init_cond_exec(ring);
1120
1121 if (need_pipe_sync)
1122 amdgpu_ring_emit_pipeline_sync(ring);
1123
1124 if (vm_flush_needed) {
1125 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1126 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1127 }
1128
1129 if (pasid_mapping_needed)
1130 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1131
1132 if (vm_flush_needed || pasid_mapping_needed) {
1133 r = amdgpu_fence_emit(ring, &fence, 0);
1134 if (r)
1135 return r;
1136 }
1137
1138 if (vm_flush_needed) {
1139 mutex_lock(&id_mgr->lock);
1140 dma_fence_put(id->last_flush);
1141 id->last_flush = dma_fence_get(fence);
1142 id->current_gpu_reset_count =
1143 atomic_read(&adev->gpu_reset_counter);
1144 mutex_unlock(&id_mgr->lock);
1145 }
1146
1147 if (pasid_mapping_needed) {
1148 mutex_lock(&id_mgr->lock);
1149 id->pasid = job->pasid;
1150 dma_fence_put(id->pasid_mapping);
1151 id->pasid_mapping = dma_fence_get(fence);
1152 mutex_unlock(&id_mgr->lock);
1153 }
1154 dma_fence_put(fence);
1155
1156 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1157 id->gds_base = job->gds_base;
1158 id->gds_size = job->gds_size;
1159 id->gws_base = job->gws_base;
1160 id->gws_size = job->gws_size;
1161 id->oa_base = job->oa_base;
1162 id->oa_size = job->oa_size;
1163 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1164 job->gds_size, job->gws_base,
1165 job->gws_size, job->oa_base,
1166 job->oa_size);
1167 }
1168
1169 if (ring->funcs->patch_cond_exec)
1170 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1171
1172 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1173 if (ring->funcs->emit_switch_buffer) {
1174 amdgpu_ring_emit_switch_buffer(ring);
1175 amdgpu_ring_emit_switch_buffer(ring);
1176 }
1177 return 0;
1178 }
1179
1180 /**
1181 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1182 *
1183 * @vm: requested vm
1184 * @bo: requested buffer object
1185 *
1186 * Find @bo inside the requested vm.
1187 * Search inside the @bos vm list for the requested vm
1188 * Returns the found bo_va or NULL if none is found
1189 *
1190 * Object has to be reserved!
1191 *
1192 * Returns:
1193 * Found bo_va or NULL.
1194 */
amdgpu_vm_bo_find(struct amdgpu_vm * vm,struct amdgpu_bo * bo)1195 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1196 struct amdgpu_bo *bo)
1197 {
1198 struct amdgpu_vm_bo_base *base;
1199
1200 for (base = bo->vm_bo; base; base = base->next) {
1201 if (base->vm != vm)
1202 continue;
1203
1204 return container_of(base, struct amdgpu_bo_va, base);
1205 }
1206 return NULL;
1207 }
1208
1209 /**
1210 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1211 *
1212 * @pages_addr: optional DMA address to use for lookup
1213 * @addr: the unmapped addr
1214 *
1215 * Look up the physical address of the page that the pte resolves
1216 * to.
1217 *
1218 * Returns:
1219 * The pointer for the page table entry.
1220 */
amdgpu_vm_map_gart(const dma_addr_t * pages_addr,uint64_t addr)1221 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1222 {
1223 uint64_t result;
1224
1225 /* page table offset */
1226 result = pages_addr[addr >> PAGE_SHIFT];
1227
1228 /* in case cpu page size != gpu page size*/
1229 result |= addr & (~PAGE_MASK);
1230
1231 result &= 0xFFFFFFFFFFFFF000ULL;
1232
1233 return result;
1234 }
1235
1236 /**
1237 * amdgpu_vm_update_pde - update a single level in the hierarchy
1238 *
1239 * @params: parameters for the update
1240 * @vm: requested vm
1241 * @entry: entry to update
1242 *
1243 * Makes sure the requested entry in parent is up to date.
1244 */
amdgpu_vm_update_pde(struct amdgpu_vm_update_params * params,struct amdgpu_vm * vm,struct amdgpu_vm_pt * entry)1245 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1246 struct amdgpu_vm *vm,
1247 struct amdgpu_vm_pt *entry)
1248 {
1249 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1250 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1251 uint64_t pde, pt, flags;
1252 unsigned level;
1253
1254 for (level = 0, pbo = bo->parent; pbo; ++level)
1255 pbo = pbo->parent;
1256
1257 level += params->adev->vm_manager.root_level;
1258 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1259 pde = (entry - parent->entries) * 8;
1260 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1261 }
1262
1263 /**
1264 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1265 *
1266 * @adev: amdgpu_device pointer
1267 * @vm: related vm
1268 *
1269 * Mark all PD level as invalid after an error.
1270 */
amdgpu_vm_invalidate_pds(struct amdgpu_device * adev,struct amdgpu_vm * vm)1271 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1272 struct amdgpu_vm *vm)
1273 {
1274 struct amdgpu_vm_pt_cursor cursor;
1275 struct amdgpu_vm_pt *entry;
1276
1277 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1278 if (entry->base.bo && !entry->base.moved)
1279 amdgpu_vm_bo_relocated(&entry->base);
1280 }
1281
1282 /**
1283 * amdgpu_vm_update_pdes - make sure that all directories are valid
1284 *
1285 * @adev: amdgpu_device pointer
1286 * @vm: requested vm
1287 * @immediate: submit immediately to the paging queue
1288 *
1289 * Makes sure all directories are up to date.
1290 *
1291 * Returns:
1292 * 0 for success, error for failure.
1293 */
amdgpu_vm_update_pdes(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate)1294 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1295 struct amdgpu_vm *vm, bool immediate)
1296 {
1297 struct amdgpu_vm_update_params params;
1298 int r;
1299
1300 if (list_empty(&vm->relocated))
1301 return 0;
1302
1303 memset(¶ms, 0, sizeof(params));
1304 params.adev = adev;
1305 params.vm = vm;
1306 params.immediate = immediate;
1307
1308 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
1309 if (r)
1310 return r;
1311
1312 while (!list_empty(&vm->relocated)) {
1313 struct amdgpu_vm_pt *entry;
1314
1315 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1316 base.vm_status);
1317 amdgpu_vm_bo_idle(&entry->base);
1318
1319 r = amdgpu_vm_update_pde(¶ms, vm, entry);
1320 if (r)
1321 goto error;
1322 }
1323
1324 r = vm->update_funcs->commit(¶ms, &vm->last_update);
1325 if (r)
1326 goto error;
1327 return 0;
1328
1329 error:
1330 amdgpu_vm_invalidate_pds(adev, vm);
1331 return r;
1332 }
1333
1334 /*
1335 * amdgpu_vm_update_flags - figure out flags for PTE updates
1336 *
1337 * Make sure to set the right flags for the PTEs at the desired level.
1338 */
amdgpu_vm_update_flags(struct amdgpu_vm_update_params * params,struct amdgpu_bo * bo,unsigned level,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1339 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1340 struct amdgpu_bo *bo, unsigned level,
1341 uint64_t pe, uint64_t addr,
1342 unsigned count, uint32_t incr,
1343 uint64_t flags)
1344
1345 {
1346 if (level != AMDGPU_VM_PTB) {
1347 flags |= AMDGPU_PDE_PTE;
1348 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1349
1350 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1351 !(flags & AMDGPU_PTE_VALID) &&
1352 !(flags & AMDGPU_PTE_PRT)) {
1353
1354 /* Workaround for fault priority problem on GMC9 */
1355 flags |= AMDGPU_PTE_EXECUTABLE;
1356 }
1357
1358 params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1359 flags);
1360 }
1361
1362 /**
1363 * amdgpu_vm_fragment - get fragment for PTEs
1364 *
1365 * @params: see amdgpu_vm_update_params definition
1366 * @start: first PTE to handle
1367 * @end: last PTE to handle
1368 * @flags: hw mapping flags
1369 * @frag: resulting fragment size
1370 * @frag_end: end of this fragment
1371 *
1372 * Returns the first possible fragment for the start and end address.
1373 */
amdgpu_vm_fragment(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t flags,unsigned int * frag,uint64_t * frag_end)1374 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1375 uint64_t start, uint64_t end, uint64_t flags,
1376 unsigned int *frag, uint64_t *frag_end)
1377 {
1378 /**
1379 * The MC L1 TLB supports variable sized pages, based on a fragment
1380 * field in the PTE. When this field is set to a non-zero value, page
1381 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1382 * flags are considered valid for all PTEs within the fragment range
1383 * and corresponding mappings are assumed to be physically contiguous.
1384 *
1385 * The L1 TLB can store a single PTE for the whole fragment,
1386 * significantly increasing the space available for translation
1387 * caching. This leads to large improvements in throughput when the
1388 * TLB is under pressure.
1389 *
1390 * The L2 TLB distributes small and large fragments into two
1391 * asymmetric partitions. The large fragment cache is significantly
1392 * larger. Thus, we try to use large fragments wherever possible.
1393 * Userspace can support this by aligning virtual base address and
1394 * allocation size to the fragment size.
1395 *
1396 * Starting with Vega10 the fragment size only controls the L1. The L2
1397 * is now directly feed with small/huge/giant pages from the walker.
1398 */
1399 unsigned max_frag;
1400
1401 if (params->adev->asic_type < CHIP_VEGA10)
1402 max_frag = params->adev->vm_manager.fragment_size;
1403 else
1404 max_frag = 31;
1405
1406 /* system pages are non continuously */
1407 if (params->pages_addr) {
1408 *frag = 0;
1409 *frag_end = end;
1410 return;
1411 }
1412
1413 /* This intentionally wraps around if no bit is set */
1414 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1415 if (*frag >= max_frag) {
1416 *frag = max_frag;
1417 *frag_end = end & ~((1ULL << max_frag) - 1);
1418 } else {
1419 *frag_end = start + (1 << *frag);
1420 }
1421 }
1422
1423 /**
1424 * amdgpu_vm_update_ptes - make sure that page tables are valid
1425 *
1426 * @params: see amdgpu_vm_update_params definition
1427 * @start: start of GPU address range
1428 * @end: end of GPU address range
1429 * @dst: destination address to map to, the next dst inside the function
1430 * @flags: mapping flags
1431 *
1432 * Update the page tables in the range @start - @end.
1433 *
1434 * Returns:
1435 * 0 for success, -EINVAL for failure.
1436 */
amdgpu_vm_update_ptes(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t dst,uint64_t flags)1437 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1438 uint64_t start, uint64_t end,
1439 uint64_t dst, uint64_t flags)
1440 {
1441 struct amdgpu_device *adev = params->adev;
1442 struct amdgpu_vm_pt_cursor cursor;
1443 uint64_t frag_start = start, frag_end;
1444 unsigned int frag;
1445 int r;
1446
1447 /* figure out the initial fragment */
1448 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1449
1450 /* walk over the address space and update the PTs */
1451 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1452 while (cursor.pfn < end) {
1453 unsigned shift, parent_shift, mask;
1454 uint64_t incr, entry_end, pe_start;
1455 struct amdgpu_bo *pt;
1456
1457 if (!params->unlocked) {
1458 /* make sure that the page tables covering the
1459 * address range are actually allocated
1460 */
1461 r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1462 &cursor, params->immediate);
1463 if (r)
1464 return r;
1465 }
1466
1467 shift = amdgpu_vm_level_shift(adev, cursor.level);
1468 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1469 if (params->unlocked) {
1470 /* Unlocked updates are only allowed on the leaves */
1471 if (amdgpu_vm_pt_descendant(adev, &cursor))
1472 continue;
1473 } else if (adev->asic_type < CHIP_VEGA10 &&
1474 (flags & AMDGPU_PTE_VALID)) {
1475 /* No huge page support before GMC v9 */
1476 if (cursor.level != AMDGPU_VM_PTB) {
1477 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1478 return -ENOENT;
1479 continue;
1480 }
1481 } else if (frag < shift) {
1482 /* We can't use this level when the fragment size is
1483 * smaller than the address shift. Go to the next
1484 * child entry and try again.
1485 */
1486 if (amdgpu_vm_pt_descendant(adev, &cursor))
1487 continue;
1488 } else if (frag >= parent_shift) {
1489 /* If the fragment size is even larger than the parent
1490 * shift we should go up one level and check it again.
1491 */
1492 if (!amdgpu_vm_pt_ancestor(&cursor))
1493 return -EINVAL;
1494 continue;
1495 }
1496
1497 pt = cursor.entry->base.bo;
1498 if (!pt) {
1499 /* We need all PDs and PTs for mapping something, */
1500 if (flags & AMDGPU_PTE_VALID)
1501 return -ENOENT;
1502
1503 /* but unmapping something can happen at a higher
1504 * level.
1505 */
1506 if (!amdgpu_vm_pt_ancestor(&cursor))
1507 return -EINVAL;
1508
1509 pt = cursor.entry->base.bo;
1510 shift = parent_shift;
1511 frag_end = max(frag_end, ALIGN(frag_start + 1,
1512 1ULL << shift));
1513 }
1514
1515 /* Looks good so far, calculate parameters for the update */
1516 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1517 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1518 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1519 entry_end = ((uint64_t)mask + 1) << shift;
1520 entry_end += cursor.pfn & ~(entry_end - 1);
1521 entry_end = min(entry_end, end);
1522
1523 do {
1524 struct amdgpu_vm *vm = params->vm;
1525 uint64_t upd_end = min(entry_end, frag_end);
1526 unsigned nptes = (upd_end - frag_start) >> shift;
1527 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1528
1529 /* This can happen when we set higher level PDs to
1530 * silent to stop fault floods.
1531 */
1532 nptes = max(nptes, 1u);
1533
1534 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1535 nptes, dst, incr, upd_flags,
1536 vm->task_info.pid,
1537 vm->immediate.fence_context);
1538 amdgpu_vm_update_flags(params, pt, cursor.level,
1539 pe_start, dst, nptes, incr,
1540 upd_flags);
1541
1542 pe_start += nptes * 8;
1543 dst += nptes * incr;
1544
1545 frag_start = upd_end;
1546 if (frag_start >= frag_end) {
1547 /* figure out the next fragment */
1548 amdgpu_vm_fragment(params, frag_start, end,
1549 flags, &frag, &frag_end);
1550 if (frag < shift)
1551 break;
1552 }
1553 } while (frag_start < entry_end);
1554
1555 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1556 /* Free all child entries.
1557 * Update the tables with the flags and addresses and free up subsequent
1558 * tables in the case of huge pages or freed up areas.
1559 * This is the maximum you can free, because all other page tables are not
1560 * completely covered by the range and so potentially still in use.
1561 */
1562 while (cursor.pfn < frag_start) {
1563 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1564 amdgpu_vm_pt_next(adev, &cursor);
1565 }
1566
1567 } else if (frag >= shift) {
1568 /* or just move on to the next on the same level. */
1569 amdgpu_vm_pt_next(adev, &cursor);
1570 }
1571 }
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1578 *
1579 * @adev: amdgpu_device pointer
1580 * @vm: requested vm
1581 * @immediate: immediate submission in a page fault
1582 * @unlocked: unlocked invalidation during MM callback
1583 * @resv: fences we need to sync to
1584 * @start: start of mapped range
1585 * @last: last mapped entry
1586 * @flags: flags for the entries
1587 * @addr: addr to set the area to
1588 * @pages_addr: DMA addresses to use for mapping
1589 * @fence: optional resulting fence
1590 *
1591 * Fill in the page table entries between @start and @last.
1592 *
1593 * Returns:
1594 * 0 for success, -EINVAL for failure.
1595 */
amdgpu_vm_bo_update_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate,bool unlocked,struct dma_resv * resv,uint64_t start,uint64_t last,uint64_t flags,uint64_t addr,dma_addr_t * pages_addr,struct dma_fence ** fence)1596 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1597 struct amdgpu_vm *vm, bool immediate,
1598 bool unlocked, struct dma_resv *resv,
1599 uint64_t start, uint64_t last,
1600 uint64_t flags, uint64_t addr,
1601 dma_addr_t *pages_addr,
1602 struct dma_fence **fence)
1603 {
1604 struct amdgpu_vm_update_params params;
1605 enum amdgpu_sync_mode sync_mode;
1606 int r;
1607
1608 memset(¶ms, 0, sizeof(params));
1609 params.adev = adev;
1610 params.vm = vm;
1611 params.immediate = immediate;
1612 params.pages_addr = pages_addr;
1613 params.unlocked = unlocked;
1614
1615 /* Implicitly sync to command submissions in the same VM before
1616 * unmapping. Sync to moving fences before mapping.
1617 */
1618 if (!(flags & AMDGPU_PTE_VALID))
1619 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1620 else
1621 sync_mode = AMDGPU_SYNC_EXPLICIT;
1622
1623 amdgpu_vm_eviction_lock(vm);
1624 if (vm->evicting) {
1625 r = -EBUSY;
1626 goto error_unlock;
1627 }
1628
1629 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1630 struct dma_fence *tmp = dma_fence_get_stub();
1631
1632 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1633 swap(vm->last_unlocked, tmp);
1634 dma_fence_put(tmp);
1635 }
1636
1637 r = vm->update_funcs->prepare(¶ms, resv, sync_mode);
1638 if (r)
1639 goto error_unlock;
1640
1641 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags);
1642 if (r)
1643 goto error_unlock;
1644
1645 r = vm->update_funcs->commit(¶ms, fence);
1646
1647 error_unlock:
1648 amdgpu_vm_eviction_unlock(vm);
1649 return r;
1650 }
1651
1652 /**
1653 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1654 *
1655 * @adev: amdgpu_device pointer
1656 * @resv: fences we need to sync to
1657 * @pages_addr: DMA addresses to use for mapping
1658 * @vm: requested vm
1659 * @mapping: mapped range and flags to use for the update
1660 * @flags: HW flags for the mapping
1661 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1662 * @nodes: array of drm_mm_nodes with the MC addresses
1663 * @fence: optional resulting fence
1664 *
1665 * Split the mapping into smaller chunks so that each update fits
1666 * into a SDMA IB.
1667 *
1668 * Returns:
1669 * 0 for success, -EINVAL for failure.
1670 */
amdgpu_vm_bo_split_mapping(struct amdgpu_device * adev,struct dma_resv * resv,dma_addr_t * pages_addr,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,uint64_t flags,struct amdgpu_device * bo_adev,struct drm_mm_node * nodes,struct dma_fence ** fence)1671 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1672 struct dma_resv *resv,
1673 dma_addr_t *pages_addr,
1674 struct amdgpu_vm *vm,
1675 struct amdgpu_bo_va_mapping *mapping,
1676 uint64_t flags,
1677 struct amdgpu_device *bo_adev,
1678 struct drm_mm_node *nodes,
1679 struct dma_fence **fence)
1680 {
1681 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1682 uint64_t pfn, start = mapping->start;
1683 int r;
1684
1685 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1686 * but in case of something, we filter the flags in first place
1687 */
1688 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1689 flags &= ~AMDGPU_PTE_READABLE;
1690 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1691 flags &= ~AMDGPU_PTE_WRITEABLE;
1692
1693 /* Apply ASIC specific mapping flags */
1694 amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1695
1696 trace_amdgpu_vm_bo_update(mapping);
1697
1698 pfn = mapping->offset >> PAGE_SHIFT;
1699 if (nodes) {
1700 while (pfn >= nodes->size) {
1701 pfn -= nodes->size;
1702 ++nodes;
1703 }
1704 }
1705
1706 do {
1707 dma_addr_t *dma_addr = NULL;
1708 uint64_t max_entries;
1709 uint64_t addr, last;
1710
1711 max_entries = mapping->last - start + 1;
1712 if (nodes) {
1713 addr = nodes->start << PAGE_SHIFT;
1714 max_entries = min((nodes->size - pfn) *
1715 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1716 } else {
1717 addr = 0;
1718 }
1719
1720 if (pages_addr) {
1721 uint64_t count;
1722
1723 for (count = 1;
1724 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1725 ++count) {
1726 uint64_t idx = pfn + count;
1727
1728 if (pages_addr[idx] !=
1729 (pages_addr[idx - 1] + PAGE_SIZE))
1730 break;
1731 }
1732
1733 if (count < min_linear_pages) {
1734 addr = pfn << PAGE_SHIFT;
1735 dma_addr = pages_addr;
1736 } else {
1737 addr = pages_addr[pfn];
1738 max_entries = count *
1739 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1740 }
1741
1742 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1743 addr += bo_adev->vm_manager.vram_base_offset;
1744 addr += pfn << PAGE_SHIFT;
1745 }
1746
1747 last = start + max_entries - 1;
1748 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1749 start, last, flags, addr,
1750 dma_addr, fence);
1751 if (r)
1752 return r;
1753
1754 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1755 if (nodes && nodes->size == pfn) {
1756 pfn = 0;
1757 ++nodes;
1758 }
1759 start = last + 1;
1760
1761 } while (unlikely(start != mapping->last + 1));
1762
1763 return 0;
1764 }
1765
1766 /**
1767 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1768 *
1769 * @adev: amdgpu_device pointer
1770 * @bo_va: requested BO and VM object
1771 * @clear: if true clear the entries
1772 *
1773 * Fill in the page table entries for @bo_va.
1774 *
1775 * Returns:
1776 * 0 for success, -EINVAL for failure.
1777 */
amdgpu_vm_bo_update(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,bool clear)1778 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1779 bool clear)
1780 {
1781 struct amdgpu_bo *bo = bo_va->base.bo;
1782 struct amdgpu_vm *vm = bo_va->base.vm;
1783 struct amdgpu_bo_va_mapping *mapping;
1784 dma_addr_t *pages_addr = NULL;
1785 struct ttm_resource *mem;
1786 struct drm_mm_node *nodes;
1787 struct dma_fence **last_update;
1788 struct dma_resv *resv;
1789 uint64_t flags;
1790 struct amdgpu_device *bo_adev = adev;
1791 int r;
1792
1793 if (clear || !bo) {
1794 mem = NULL;
1795 nodes = NULL;
1796 resv = vm->root.base.bo->tbo.base.resv;
1797 } else {
1798 struct drm_gem_object *obj = &bo->tbo.base;
1799 struct ttm_dma_tt *ttm;
1800
1801 resv = bo->tbo.base.resv;
1802 if (obj->import_attach && bo_va->is_xgmi) {
1803 struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1804 struct drm_gem_object *gobj = dma_buf->priv;
1805 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1806
1807 if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1808 bo = gem_to_amdgpu_bo(gobj);
1809 }
1810 mem = &bo->tbo.mem;
1811 nodes = mem->mm_node;
1812 if (mem->mem_type == TTM_PL_TT) {
1813 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1814 pages_addr = ttm->dma_address;
1815 }
1816 }
1817
1818 if (bo) {
1819 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1820
1821 if (amdgpu_bo_encrypted(bo))
1822 flags |= AMDGPU_PTE_TMZ;
1823
1824 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1825 } else {
1826 flags = 0x0;
1827 }
1828
1829 if (clear || (bo && bo->tbo.base.resv ==
1830 vm->root.base.bo->tbo.base.resv))
1831 last_update = &vm->last_update;
1832 else
1833 last_update = &bo_va->last_pt_update;
1834
1835 if (!clear && bo_va->base.moved) {
1836 bo_va->base.moved = false;
1837 list_splice_init(&bo_va->valids, &bo_va->invalids);
1838
1839 } else if (bo_va->cleared != clear) {
1840 list_splice_init(&bo_va->valids, &bo_va->invalids);
1841 }
1842
1843 list_for_each_entry(mapping, &bo_va->invalids, list) {
1844 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1845 mapping, flags, bo_adev, nodes,
1846 last_update);
1847 if (r)
1848 return r;
1849 }
1850
1851 /* If the BO is not in its preferred location add it back to
1852 * the evicted list so that it gets validated again on the
1853 * next command submission.
1854 */
1855 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1856 uint32_t mem_type = bo->tbo.mem.mem_type;
1857
1858 if (!(bo->preferred_domains &
1859 amdgpu_mem_type_to_domain(mem_type)))
1860 amdgpu_vm_bo_evicted(&bo_va->base);
1861 else
1862 amdgpu_vm_bo_idle(&bo_va->base);
1863 } else {
1864 amdgpu_vm_bo_done(&bo_va->base);
1865 }
1866
1867 list_splice_init(&bo_va->invalids, &bo_va->valids);
1868 bo_va->cleared = clear;
1869
1870 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1871 list_for_each_entry(mapping, &bo_va->valids, list)
1872 trace_amdgpu_vm_bo_mapping(mapping);
1873 }
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * amdgpu_vm_update_prt_state - update the global PRT state
1880 *
1881 * @adev: amdgpu_device pointer
1882 */
amdgpu_vm_update_prt_state(struct amdgpu_device * adev)1883 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1884 {
1885 unsigned long flags;
1886 bool enable;
1887
1888 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1889 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1890 adev->gmc.gmc_funcs->set_prt(adev, enable);
1891 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1892 }
1893
1894 /**
1895 * amdgpu_vm_prt_get - add a PRT user
1896 *
1897 * @adev: amdgpu_device pointer
1898 */
amdgpu_vm_prt_get(struct amdgpu_device * adev)1899 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1900 {
1901 if (!adev->gmc.gmc_funcs->set_prt)
1902 return;
1903
1904 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1905 amdgpu_vm_update_prt_state(adev);
1906 }
1907
1908 /**
1909 * amdgpu_vm_prt_put - drop a PRT user
1910 *
1911 * @adev: amdgpu_device pointer
1912 */
amdgpu_vm_prt_put(struct amdgpu_device * adev)1913 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1914 {
1915 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1916 amdgpu_vm_update_prt_state(adev);
1917 }
1918
1919 /**
1920 * amdgpu_vm_prt_cb - callback for updating the PRT status
1921 *
1922 * @fence: fence for the callback
1923 * @_cb: the callback function
1924 */
amdgpu_vm_prt_cb(struct dma_fence * fence,struct dma_fence_cb * _cb)1925 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1926 {
1927 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1928
1929 amdgpu_vm_prt_put(cb->adev);
1930 kfree(cb);
1931 }
1932
1933 /**
1934 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1935 *
1936 * @adev: amdgpu_device pointer
1937 * @fence: fence for the callback
1938 */
amdgpu_vm_add_prt_cb(struct amdgpu_device * adev,struct dma_fence * fence)1939 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1940 struct dma_fence *fence)
1941 {
1942 struct amdgpu_prt_cb *cb;
1943
1944 if (!adev->gmc.gmc_funcs->set_prt)
1945 return;
1946
1947 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1948 if (!cb) {
1949 /* Last resort when we are OOM */
1950 if (fence)
1951 dma_fence_wait(fence, false);
1952
1953 amdgpu_vm_prt_put(adev);
1954 } else {
1955 cb->adev = adev;
1956 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1957 amdgpu_vm_prt_cb))
1958 amdgpu_vm_prt_cb(fence, &cb->cb);
1959 }
1960 }
1961
1962 /**
1963 * amdgpu_vm_free_mapping - free a mapping
1964 *
1965 * @adev: amdgpu_device pointer
1966 * @vm: requested vm
1967 * @mapping: mapping to be freed
1968 * @fence: fence of the unmap operation
1969 *
1970 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1971 */
amdgpu_vm_free_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,struct dma_fence * fence)1972 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1973 struct amdgpu_vm *vm,
1974 struct amdgpu_bo_va_mapping *mapping,
1975 struct dma_fence *fence)
1976 {
1977 if (mapping->flags & AMDGPU_PTE_PRT)
1978 amdgpu_vm_add_prt_cb(adev, fence);
1979 kfree(mapping);
1980 }
1981
1982 /**
1983 * amdgpu_vm_prt_fini - finish all prt mappings
1984 *
1985 * @adev: amdgpu_device pointer
1986 * @vm: requested vm
1987 *
1988 * Register a cleanup callback to disable PRT support after VM dies.
1989 */
amdgpu_vm_prt_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)1990 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1991 {
1992 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1993 struct dma_fence *excl, **shared;
1994 unsigned i, shared_count;
1995 int r;
1996
1997 r = dma_resv_get_fences_rcu(resv, &excl,
1998 &shared_count, &shared);
1999 if (r) {
2000 /* Not enough memory to grab the fence list, as last resort
2001 * block for all the fences to complete.
2002 */
2003 dma_resv_wait_timeout_rcu(resv, true, false,
2004 MAX_SCHEDULE_TIMEOUT);
2005 return;
2006 }
2007
2008 /* Add a callback for each fence in the reservation object */
2009 amdgpu_vm_prt_get(adev);
2010 amdgpu_vm_add_prt_cb(adev, excl);
2011
2012 for (i = 0; i < shared_count; ++i) {
2013 amdgpu_vm_prt_get(adev);
2014 amdgpu_vm_add_prt_cb(adev, shared[i]);
2015 }
2016
2017 kfree(shared);
2018 }
2019
2020 /**
2021 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2022 *
2023 * @adev: amdgpu_device pointer
2024 * @vm: requested vm
2025 * @fence: optional resulting fence (unchanged if no work needed to be done
2026 * or if an error occurred)
2027 *
2028 * Make sure all freed BOs are cleared in the PT.
2029 * PTs have to be reserved and mutex must be locked!
2030 *
2031 * Returns:
2032 * 0 for success.
2033 *
2034 */
amdgpu_vm_clear_freed(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct dma_fence ** fence)2035 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2036 struct amdgpu_vm *vm,
2037 struct dma_fence **fence)
2038 {
2039 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2040 struct amdgpu_bo_va_mapping *mapping;
2041 uint64_t init_pte_value = 0;
2042 struct dma_fence *f = NULL;
2043 int r;
2044
2045 while (!list_empty(&vm->freed)) {
2046 mapping = list_first_entry(&vm->freed,
2047 struct amdgpu_bo_va_mapping, list);
2048 list_del(&mapping->list);
2049
2050 if (vm->pte_support_ats &&
2051 mapping->start < AMDGPU_GMC_HOLE_START)
2052 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2053
2054 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2055 mapping->start, mapping->last,
2056 init_pte_value, 0, NULL, &f);
2057 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2058 if (r) {
2059 dma_fence_put(f);
2060 return r;
2061 }
2062 }
2063
2064 if (fence && f) {
2065 dma_fence_put(*fence);
2066 *fence = f;
2067 } else {
2068 dma_fence_put(f);
2069 }
2070
2071 return 0;
2072
2073 }
2074
2075 /**
2076 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2077 *
2078 * @adev: amdgpu_device pointer
2079 * @vm: requested vm
2080 *
2081 * Make sure all BOs which are moved are updated in the PTs.
2082 *
2083 * Returns:
2084 * 0 for success.
2085 *
2086 * PTs have to be reserved!
2087 */
amdgpu_vm_handle_moved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2088 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2089 struct amdgpu_vm *vm)
2090 {
2091 struct amdgpu_bo_va *bo_va, *tmp;
2092 struct dma_resv *resv;
2093 bool clear;
2094 int r;
2095
2096 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2097 /* Per VM BOs never need to bo cleared in the page tables */
2098 r = amdgpu_vm_bo_update(adev, bo_va, false);
2099 if (r)
2100 return r;
2101 }
2102
2103 spin_lock(&vm->invalidated_lock);
2104 while (!list_empty(&vm->invalidated)) {
2105 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2106 base.vm_status);
2107 resv = bo_va->base.bo->tbo.base.resv;
2108 spin_unlock(&vm->invalidated_lock);
2109
2110 /* Try to reserve the BO to avoid clearing its ptes */
2111 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2112 clear = false;
2113 /* Somebody else is using the BO right now */
2114 else
2115 clear = true;
2116
2117 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2118 if (r)
2119 return r;
2120
2121 if (!clear)
2122 dma_resv_unlock(resv);
2123 spin_lock(&vm->invalidated_lock);
2124 }
2125 spin_unlock(&vm->invalidated_lock);
2126
2127 return 0;
2128 }
2129
2130 /**
2131 * amdgpu_vm_bo_add - add a bo to a specific vm
2132 *
2133 * @adev: amdgpu_device pointer
2134 * @vm: requested vm
2135 * @bo: amdgpu buffer object
2136 *
2137 * Add @bo into the requested vm.
2138 * Add @bo to the list of bos associated with the vm
2139 *
2140 * Returns:
2141 * Newly added bo_va or NULL for failure
2142 *
2143 * Object has to be reserved!
2144 */
amdgpu_vm_bo_add(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)2145 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2146 struct amdgpu_vm *vm,
2147 struct amdgpu_bo *bo)
2148 {
2149 struct amdgpu_bo_va *bo_va;
2150
2151 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2152 if (bo_va == NULL) {
2153 return NULL;
2154 }
2155 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2156
2157 bo_va->ref_count = 1;
2158 INIT_LIST_HEAD(&bo_va->valids);
2159 INIT_LIST_HEAD(&bo_va->invalids);
2160
2161 if (!bo)
2162 return bo_va;
2163
2164 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2165 bo_va->is_xgmi = true;
2166 /* Power up XGMI if it can be potentially used */
2167 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2168 }
2169
2170 return bo_va;
2171 }
2172
2173
2174 /**
2175 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2176 *
2177 * @adev: amdgpu_device pointer
2178 * @bo_va: bo_va to store the address
2179 * @mapping: the mapping to insert
2180 *
2181 * Insert a new mapping into all structures.
2182 */
amdgpu_vm_bo_insert_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,struct amdgpu_bo_va_mapping * mapping)2183 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2184 struct amdgpu_bo_va *bo_va,
2185 struct amdgpu_bo_va_mapping *mapping)
2186 {
2187 struct amdgpu_vm *vm = bo_va->base.vm;
2188 struct amdgpu_bo *bo = bo_va->base.bo;
2189
2190 mapping->bo_va = bo_va;
2191 list_add(&mapping->list, &bo_va->invalids);
2192 amdgpu_vm_it_insert(mapping, &vm->va);
2193
2194 if (mapping->flags & AMDGPU_PTE_PRT)
2195 amdgpu_vm_prt_get(adev);
2196
2197 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2198 !bo_va->base.moved) {
2199 list_move(&bo_va->base.vm_status, &vm->moved);
2200 }
2201 trace_amdgpu_vm_bo_map(bo_va, mapping);
2202 }
2203
2204 /**
2205 * amdgpu_vm_bo_map - map bo inside a vm
2206 *
2207 * @adev: amdgpu_device pointer
2208 * @bo_va: bo_va to store the address
2209 * @saddr: where to map the BO
2210 * @offset: requested offset in the BO
2211 * @size: BO size in bytes
2212 * @flags: attributes of pages (read/write/valid/etc.)
2213 *
2214 * Add a mapping of the BO at the specefied addr into the VM.
2215 *
2216 * Returns:
2217 * 0 for success, error for failure.
2218 *
2219 * Object has to be reserved and unreserved outside!
2220 */
amdgpu_vm_bo_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2221 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2222 struct amdgpu_bo_va *bo_va,
2223 uint64_t saddr, uint64_t offset,
2224 uint64_t size, uint64_t flags)
2225 {
2226 struct amdgpu_bo_va_mapping *mapping, *tmp;
2227 struct amdgpu_bo *bo = bo_va->base.bo;
2228 struct amdgpu_vm *vm = bo_va->base.vm;
2229 uint64_t eaddr;
2230
2231 /* validate the parameters */
2232 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
2233 return -EINVAL;
2234 if (saddr + size <= saddr || offset + size <= offset)
2235 return -EINVAL;
2236
2237 /* make sure object fit at this offset */
2238 eaddr = saddr + size - 1;
2239 if ((bo && offset + size > amdgpu_bo_size(bo)) ||
2240 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2241 return -EINVAL;
2242
2243 saddr /= AMDGPU_GPU_PAGE_SIZE;
2244 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2245
2246 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2247 if (tmp) {
2248 /* bo and tmp overlap, invalid addr */
2249 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2250 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2251 tmp->start, tmp->last + 1);
2252 return -EINVAL;
2253 }
2254
2255 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2256 if (!mapping)
2257 return -ENOMEM;
2258
2259 mapping->start = saddr;
2260 mapping->last = eaddr;
2261 mapping->offset = offset;
2262 mapping->flags = flags;
2263
2264 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2265
2266 return 0;
2267 }
2268
2269 /**
2270 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2271 *
2272 * @adev: amdgpu_device pointer
2273 * @bo_va: bo_va to store the address
2274 * @saddr: where to map the BO
2275 * @offset: requested offset in the BO
2276 * @size: BO size in bytes
2277 * @flags: attributes of pages (read/write/valid/etc.)
2278 *
2279 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2280 * mappings as we do so.
2281 *
2282 * Returns:
2283 * 0 for success, error for failure.
2284 *
2285 * Object has to be reserved and unreserved outside!
2286 */
amdgpu_vm_bo_replace_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2287 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2288 struct amdgpu_bo_va *bo_va,
2289 uint64_t saddr, uint64_t offset,
2290 uint64_t size, uint64_t flags)
2291 {
2292 struct amdgpu_bo_va_mapping *mapping;
2293 struct amdgpu_bo *bo = bo_va->base.bo;
2294 uint64_t eaddr;
2295 int r;
2296
2297 /* validate the parameters */
2298 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK)
2299 return -EINVAL;
2300 if (saddr + size <= saddr || offset + size <= offset)
2301 return -EINVAL;
2302
2303 /* make sure object fit at this offset */
2304 eaddr = saddr + size - 1;
2305 if ((bo && offset + size > amdgpu_bo_size(bo)) ||
2306 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2307 return -EINVAL;
2308
2309 /* Allocate all the needed memory */
2310 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2311 if (!mapping)
2312 return -ENOMEM;
2313
2314 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2315 if (r) {
2316 kfree(mapping);
2317 return r;
2318 }
2319
2320 saddr /= AMDGPU_GPU_PAGE_SIZE;
2321 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2322
2323 mapping->start = saddr;
2324 mapping->last = eaddr;
2325 mapping->offset = offset;
2326 mapping->flags = flags;
2327
2328 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2329
2330 return 0;
2331 }
2332
2333 /**
2334 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2335 *
2336 * @adev: amdgpu_device pointer
2337 * @bo_va: bo_va to remove the address from
2338 * @saddr: where to the BO is mapped
2339 *
2340 * Remove a mapping of the BO at the specefied addr from the VM.
2341 *
2342 * Returns:
2343 * 0 for success, error for failure.
2344 *
2345 * Object has to be reserved and unreserved outside!
2346 */
amdgpu_vm_bo_unmap(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr)2347 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2348 struct amdgpu_bo_va *bo_va,
2349 uint64_t saddr)
2350 {
2351 struct amdgpu_bo_va_mapping *mapping;
2352 struct amdgpu_vm *vm = bo_va->base.vm;
2353 bool valid = true;
2354
2355 saddr /= AMDGPU_GPU_PAGE_SIZE;
2356
2357 list_for_each_entry(mapping, &bo_va->valids, list) {
2358 if (mapping->start == saddr)
2359 break;
2360 }
2361
2362 if (&mapping->list == &bo_va->valids) {
2363 valid = false;
2364
2365 list_for_each_entry(mapping, &bo_va->invalids, list) {
2366 if (mapping->start == saddr)
2367 break;
2368 }
2369
2370 if (&mapping->list == &bo_va->invalids)
2371 return -ENOENT;
2372 }
2373
2374 list_del(&mapping->list);
2375 amdgpu_vm_it_remove(mapping, &vm->va);
2376 mapping->bo_va = NULL;
2377 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2378
2379 if (valid)
2380 list_add(&mapping->list, &vm->freed);
2381 else
2382 amdgpu_vm_free_mapping(adev, vm, mapping,
2383 bo_va->last_pt_update);
2384
2385 return 0;
2386 }
2387
2388 /**
2389 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2390 *
2391 * @adev: amdgpu_device pointer
2392 * @vm: VM structure to use
2393 * @saddr: start of the range
2394 * @size: size of the range
2395 *
2396 * Remove all mappings in a range, split them as appropriate.
2397 *
2398 * Returns:
2399 * 0 for success, error for failure.
2400 */
amdgpu_vm_bo_clear_mappings(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t saddr,uint64_t size)2401 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2402 struct amdgpu_vm *vm,
2403 uint64_t saddr, uint64_t size)
2404 {
2405 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2406 LIST_HEAD(removed);
2407 uint64_t eaddr;
2408
2409 eaddr = saddr + size - 1;
2410 saddr /= AMDGPU_GPU_PAGE_SIZE;
2411 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2412
2413 /* Allocate all the needed memory */
2414 before = kzalloc(sizeof(*before), GFP_KERNEL);
2415 if (!before)
2416 return -ENOMEM;
2417 INIT_LIST_HEAD(&before->list);
2418
2419 after = kzalloc(sizeof(*after), GFP_KERNEL);
2420 if (!after) {
2421 kfree(before);
2422 return -ENOMEM;
2423 }
2424 INIT_LIST_HEAD(&after->list);
2425
2426 /* Now gather all removed mappings */
2427 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2428 while (tmp) {
2429 /* Remember mapping split at the start */
2430 if (tmp->start < saddr) {
2431 before->start = tmp->start;
2432 before->last = saddr - 1;
2433 before->offset = tmp->offset;
2434 before->flags = tmp->flags;
2435 before->bo_va = tmp->bo_va;
2436 list_add(&before->list, &tmp->bo_va->invalids);
2437 }
2438
2439 /* Remember mapping split at the end */
2440 if (tmp->last > eaddr) {
2441 after->start = eaddr + 1;
2442 after->last = tmp->last;
2443 after->offset = tmp->offset;
2444 after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2445 after->flags = tmp->flags;
2446 after->bo_va = tmp->bo_va;
2447 list_add(&after->list, &tmp->bo_va->invalids);
2448 }
2449
2450 list_del(&tmp->list);
2451 list_add(&tmp->list, &removed);
2452
2453 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2454 }
2455
2456 /* And free them up */
2457 list_for_each_entry_safe(tmp, next, &removed, list) {
2458 amdgpu_vm_it_remove(tmp, &vm->va);
2459 list_del(&tmp->list);
2460
2461 if (tmp->start < saddr)
2462 tmp->start = saddr;
2463 if (tmp->last > eaddr)
2464 tmp->last = eaddr;
2465
2466 tmp->bo_va = NULL;
2467 list_add(&tmp->list, &vm->freed);
2468 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2469 }
2470
2471 /* Insert partial mapping before the range */
2472 if (!list_empty(&before->list)) {
2473 amdgpu_vm_it_insert(before, &vm->va);
2474 if (before->flags & AMDGPU_PTE_PRT)
2475 amdgpu_vm_prt_get(adev);
2476 } else {
2477 kfree(before);
2478 }
2479
2480 /* Insert partial mapping after the range */
2481 if (!list_empty(&after->list)) {
2482 amdgpu_vm_it_insert(after, &vm->va);
2483 if (after->flags & AMDGPU_PTE_PRT)
2484 amdgpu_vm_prt_get(adev);
2485 } else {
2486 kfree(after);
2487 }
2488
2489 return 0;
2490 }
2491
2492 /**
2493 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2494 *
2495 * @vm: the requested VM
2496 * @addr: the address
2497 *
2498 * Find a mapping by it's address.
2499 *
2500 * Returns:
2501 * The amdgpu_bo_va_mapping matching for addr or NULL
2502 *
2503 */
amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm * vm,uint64_t addr)2504 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2505 uint64_t addr)
2506 {
2507 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2508 }
2509
2510 /**
2511 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2512 *
2513 * @vm: the requested vm
2514 * @ticket: CS ticket
2515 *
2516 * Trace all mappings of BOs reserved during a command submission.
2517 */
amdgpu_vm_bo_trace_cs(struct amdgpu_vm * vm,struct ww_acquire_ctx * ticket)2518 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2519 {
2520 struct amdgpu_bo_va_mapping *mapping;
2521
2522 if (!trace_amdgpu_vm_bo_cs_enabled())
2523 return;
2524
2525 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2526 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2527 if (mapping->bo_va && mapping->bo_va->base.bo) {
2528 struct amdgpu_bo *bo;
2529
2530 bo = mapping->bo_va->base.bo;
2531 if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2532 ticket)
2533 continue;
2534 }
2535
2536 trace_amdgpu_vm_bo_cs(mapping);
2537 }
2538 }
2539
2540 /**
2541 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2542 *
2543 * @adev: amdgpu_device pointer
2544 * @bo_va: requested bo_va
2545 *
2546 * Remove @bo_va->bo from the requested vm.
2547 *
2548 * Object have to be reserved!
2549 */
amdgpu_vm_bo_rmv(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va)2550 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2551 struct amdgpu_bo_va *bo_va)
2552 {
2553 struct amdgpu_bo_va_mapping *mapping, *next;
2554 struct amdgpu_bo *bo = bo_va->base.bo;
2555 struct amdgpu_vm *vm = bo_va->base.vm;
2556 struct amdgpu_vm_bo_base **base;
2557
2558 if (bo) {
2559 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2560 vm->bulk_moveable = false;
2561
2562 for (base = &bo_va->base.bo->vm_bo; *base;
2563 base = &(*base)->next) {
2564 if (*base != &bo_va->base)
2565 continue;
2566
2567 *base = bo_va->base.next;
2568 break;
2569 }
2570 }
2571
2572 spin_lock(&vm->invalidated_lock);
2573 list_del(&bo_va->base.vm_status);
2574 spin_unlock(&vm->invalidated_lock);
2575
2576 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2577 list_del(&mapping->list);
2578 amdgpu_vm_it_remove(mapping, &vm->va);
2579 mapping->bo_va = NULL;
2580 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2581 list_add(&mapping->list, &vm->freed);
2582 }
2583 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2584 list_del(&mapping->list);
2585 amdgpu_vm_it_remove(mapping, &vm->va);
2586 amdgpu_vm_free_mapping(adev, vm, mapping,
2587 bo_va->last_pt_update);
2588 }
2589
2590 dma_fence_put(bo_va->last_pt_update);
2591
2592 if (bo && bo_va->is_xgmi)
2593 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2594
2595 kfree(bo_va);
2596 }
2597
2598 /**
2599 * amdgpu_vm_evictable - check if we can evict a VM
2600 *
2601 * @bo: A page table of the VM.
2602 *
2603 * Check if it is possible to evict a VM.
2604 */
amdgpu_vm_evictable(struct amdgpu_bo * bo)2605 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2606 {
2607 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2608
2609 /* Page tables of a destroyed VM can go away immediately */
2610 if (!bo_base || !bo_base->vm)
2611 return true;
2612
2613 /* Don't evict VM page tables while they are busy */
2614 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2615 return false;
2616
2617 /* Try to block ongoing updates */
2618 if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2619 return false;
2620
2621 /* Don't evict VM page tables while they are updated */
2622 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2623 amdgpu_vm_eviction_unlock(bo_base->vm);
2624 return false;
2625 }
2626
2627 bo_base->vm->evicting = true;
2628 amdgpu_vm_eviction_unlock(bo_base->vm);
2629 return true;
2630 }
2631
2632 /**
2633 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2634 *
2635 * @adev: amdgpu_device pointer
2636 * @bo: amdgpu buffer object
2637 * @evicted: is the BO evicted
2638 *
2639 * Mark @bo as invalid.
2640 */
amdgpu_vm_bo_invalidate(struct amdgpu_device * adev,struct amdgpu_bo * bo,bool evicted)2641 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2642 struct amdgpu_bo *bo, bool evicted)
2643 {
2644 struct amdgpu_vm_bo_base *bo_base;
2645
2646 /* shadow bo doesn't have bo base, its validation needs its parent */
2647 if (bo->parent && bo->parent->shadow == bo)
2648 bo = bo->parent;
2649
2650 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2651 struct amdgpu_vm *vm = bo_base->vm;
2652
2653 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2654 amdgpu_vm_bo_evicted(bo_base);
2655 continue;
2656 }
2657
2658 if (bo_base->moved)
2659 continue;
2660 bo_base->moved = true;
2661
2662 if (bo->tbo.type == ttm_bo_type_kernel)
2663 amdgpu_vm_bo_relocated(bo_base);
2664 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2665 amdgpu_vm_bo_moved(bo_base);
2666 else
2667 amdgpu_vm_bo_invalidated(bo_base);
2668 }
2669 }
2670
2671 /**
2672 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2673 *
2674 * @vm_size: VM size
2675 *
2676 * Returns:
2677 * VM page table as power of two
2678 */
amdgpu_vm_get_block_size(uint64_t vm_size)2679 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2680 {
2681 /* Total bits covered by PD + PTs */
2682 unsigned bits = ilog2(vm_size) + 18;
2683
2684 /* Make sure the PD is 4K in size up to 8GB address space.
2685 Above that split equal between PD and PTs */
2686 if (vm_size <= 8)
2687 return (bits - 9);
2688 else
2689 return ((bits + 3) / 2);
2690 }
2691
2692 /**
2693 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2694 *
2695 * @adev: amdgpu_device pointer
2696 * @min_vm_size: the minimum vm size in GB if it's set auto
2697 * @fragment_size_default: Default PTE fragment size
2698 * @max_level: max VMPT level
2699 * @max_bits: max address space size in bits
2700 *
2701 */
amdgpu_vm_adjust_size(struct amdgpu_device * adev,uint32_t min_vm_size,uint32_t fragment_size_default,unsigned max_level,unsigned max_bits)2702 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2703 uint32_t fragment_size_default, unsigned max_level,
2704 unsigned max_bits)
2705 {
2706 unsigned int max_size = 1 << (max_bits - 30);
2707 unsigned int vm_size;
2708 uint64_t tmp;
2709
2710 /* adjust vm size first */
2711 if (amdgpu_vm_size != -1) {
2712 vm_size = amdgpu_vm_size;
2713 if (vm_size > max_size) {
2714 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2715 amdgpu_vm_size, max_size);
2716 vm_size = max_size;
2717 }
2718 } else {
2719 struct sysinfo si;
2720 unsigned int phys_ram_gb;
2721
2722 /* Optimal VM size depends on the amount of physical
2723 * RAM available. Underlying requirements and
2724 * assumptions:
2725 *
2726 * - Need to map system memory and VRAM from all GPUs
2727 * - VRAM from other GPUs not known here
2728 * - Assume VRAM <= system memory
2729 * - On GFX8 and older, VM space can be segmented for
2730 * different MTYPEs
2731 * - Need to allow room for fragmentation, guard pages etc.
2732 *
2733 * This adds up to a rough guess of system memory x3.
2734 * Round up to power of two to maximize the available
2735 * VM size with the given page table size.
2736 */
2737 si_meminfo(&si);
2738 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2739 (1 << 30) - 1) >> 30;
2740 vm_size = roundup_pow_of_two(
2741 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2742 }
2743
2744 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2745
2746 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2747 if (amdgpu_vm_block_size != -1)
2748 tmp >>= amdgpu_vm_block_size - 9;
2749 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2750 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2751 switch (adev->vm_manager.num_level) {
2752 case 3:
2753 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2754 break;
2755 case 2:
2756 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2757 break;
2758 case 1:
2759 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2760 break;
2761 default:
2762 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2763 }
2764 /* block size depends on vm size and hw setup*/
2765 if (amdgpu_vm_block_size != -1)
2766 adev->vm_manager.block_size =
2767 min((unsigned)amdgpu_vm_block_size, max_bits
2768 - AMDGPU_GPU_PAGE_SHIFT
2769 - 9 * adev->vm_manager.num_level);
2770 else if (adev->vm_manager.num_level > 1)
2771 adev->vm_manager.block_size = 9;
2772 else
2773 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2774
2775 if (amdgpu_vm_fragment_size == -1)
2776 adev->vm_manager.fragment_size = fragment_size_default;
2777 else
2778 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2779
2780 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2781 vm_size, adev->vm_manager.num_level + 1,
2782 adev->vm_manager.block_size,
2783 adev->vm_manager.fragment_size);
2784 }
2785
2786 /**
2787 * amdgpu_vm_wait_idle - wait for the VM to become idle
2788 *
2789 * @vm: VM object to wait for
2790 * @timeout: timeout to wait for VM to become idle
2791 */
amdgpu_vm_wait_idle(struct amdgpu_vm * vm,long timeout)2792 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2793 {
2794 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2795 true, true, timeout);
2796 if (timeout <= 0)
2797 return timeout;
2798
2799 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2800 }
2801
2802 /**
2803 * amdgpu_vm_init - initialize a vm instance
2804 *
2805 * @adev: amdgpu_device pointer
2806 * @vm: requested vm
2807 * @vm_context: Indicates if it GFX or Compute context
2808 * @pasid: Process address space identifier
2809 *
2810 * Init @vm fields.
2811 *
2812 * Returns:
2813 * 0 for success, error for failure.
2814 */
amdgpu_vm_init(struct amdgpu_device * adev,struct amdgpu_vm * vm,int vm_context,u32 pasid)2815 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2816 int vm_context, u32 pasid)
2817 {
2818 struct amdgpu_bo_param bp;
2819 struct amdgpu_bo *root;
2820 int r, i;
2821
2822 vm->va = RB_ROOT_CACHED;
2823 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2824 vm->reserved_vmid[i] = NULL;
2825 INIT_LIST_HEAD(&vm->evicted);
2826 INIT_LIST_HEAD(&vm->relocated);
2827 INIT_LIST_HEAD(&vm->moved);
2828 INIT_LIST_HEAD(&vm->idle);
2829 INIT_LIST_HEAD(&vm->invalidated);
2830 spin_lock_init(&vm->invalidated_lock);
2831 INIT_LIST_HEAD(&vm->freed);
2832
2833
2834 /* create scheduler entities for page table updates */
2835 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2836 adev->vm_manager.vm_pte_scheds,
2837 adev->vm_manager.vm_pte_num_scheds, NULL);
2838 if (r)
2839 return r;
2840
2841 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2842 adev->vm_manager.vm_pte_scheds,
2843 adev->vm_manager.vm_pte_num_scheds, NULL);
2844 if (r)
2845 goto error_free_immediate;
2846
2847 vm->pte_support_ats = false;
2848 vm->is_compute_context = false;
2849
2850 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2851 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2852 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2853
2854 if (adev->asic_type == CHIP_RAVEN)
2855 vm->pte_support_ats = true;
2856 } else {
2857 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2858 AMDGPU_VM_USE_CPU_FOR_GFX);
2859 }
2860 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2861 vm->use_cpu_for_update ? "CPU" : "SDMA");
2862 WARN_ONCE((vm->use_cpu_for_update &&
2863 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2864 "CPU update of VM recommended only for large BAR system\n");
2865
2866 if (vm->use_cpu_for_update)
2867 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2868 else
2869 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2870 vm->last_update = NULL;
2871 vm->last_unlocked = dma_fence_get_stub();
2872
2873 mutex_init(&vm->eviction_lock);
2874 vm->evicting = false;
2875
2876 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2877 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2878 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2879 r = amdgpu_bo_create(adev, &bp, &root);
2880 if (r)
2881 goto error_free_delayed;
2882
2883 r = amdgpu_bo_reserve(root, true);
2884 if (r)
2885 goto error_free_root;
2886
2887 r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2888 if (r)
2889 goto error_unreserve;
2890
2891 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2892
2893 r = amdgpu_vm_clear_bo(adev, vm, root, false);
2894 if (r)
2895 goto error_unreserve;
2896
2897 amdgpu_bo_unreserve(vm->root.base.bo);
2898
2899 if (pasid) {
2900 unsigned long flags;
2901
2902 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2903 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2904 GFP_ATOMIC);
2905 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2906 if (r < 0)
2907 goto error_free_root;
2908
2909 vm->pasid = pasid;
2910 }
2911
2912 INIT_KFIFO(vm->faults);
2913
2914 return 0;
2915
2916 error_unreserve:
2917 amdgpu_bo_unreserve(vm->root.base.bo);
2918
2919 error_free_root:
2920 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2921 amdgpu_bo_unref(&vm->root.base.bo);
2922 vm->root.base.bo = NULL;
2923
2924 error_free_delayed:
2925 dma_fence_put(vm->last_unlocked);
2926 drm_sched_entity_destroy(&vm->delayed);
2927
2928 error_free_immediate:
2929 drm_sched_entity_destroy(&vm->immediate);
2930
2931 return r;
2932 }
2933
2934 /**
2935 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2936 *
2937 * @adev: amdgpu_device pointer
2938 * @vm: the VM to check
2939 *
2940 * check all entries of the root PD, if any subsequent PDs are allocated,
2941 * it means there are page table creating and filling, and is no a clean
2942 * VM
2943 *
2944 * Returns:
2945 * 0 if this VM is clean
2946 */
amdgpu_vm_check_clean_reserved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2947 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2948 struct amdgpu_vm *vm)
2949 {
2950 enum amdgpu_vm_level root = adev->vm_manager.root_level;
2951 unsigned int entries = amdgpu_vm_num_entries(adev, root);
2952 unsigned int i = 0;
2953
2954 if (!(vm->root.entries))
2955 return 0;
2956
2957 for (i = 0; i < entries; i++) {
2958 if (vm->root.entries[i].base.bo)
2959 return -EINVAL;
2960 }
2961
2962 return 0;
2963 }
2964
2965 /**
2966 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2967 *
2968 * @adev: amdgpu_device pointer
2969 * @vm: requested vm
2970 * @pasid: pasid to use
2971 *
2972 * This only works on GFX VMs that don't have any BOs added and no
2973 * page tables allocated yet.
2974 *
2975 * Changes the following VM parameters:
2976 * - use_cpu_for_update
2977 * - pte_supports_ats
2978 * - pasid (old PASID is released, because compute manages its own PASIDs)
2979 *
2980 * Reinitializes the page directory to reflect the changed ATS
2981 * setting.
2982 *
2983 * Returns:
2984 * 0 for success, -errno for errors.
2985 */
amdgpu_vm_make_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm,u32 pasid)2986 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2987 u32 pasid)
2988 {
2989 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2990 int r;
2991
2992 r = amdgpu_bo_reserve(vm->root.base.bo, true);
2993 if (r)
2994 return r;
2995
2996 /* Sanity checks */
2997 r = amdgpu_vm_check_clean_reserved(adev, vm);
2998 if (r)
2999 goto unreserve_bo;
3000
3001 if (pasid) {
3002 unsigned long flags;
3003
3004 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3005 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3006 GFP_ATOMIC);
3007 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3008
3009 if (r == -ENOSPC)
3010 goto unreserve_bo;
3011 r = 0;
3012 }
3013
3014 /* Check if PD needs to be reinitialized and do it before
3015 * changing any other state, in case it fails.
3016 */
3017 if (pte_support_ats != vm->pte_support_ats) {
3018 vm->pte_support_ats = pte_support_ats;
3019 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3020 if (r)
3021 goto free_idr;
3022 }
3023
3024 /* Update VM state */
3025 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3026 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3027 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3028 vm->use_cpu_for_update ? "CPU" : "SDMA");
3029 WARN_ONCE((vm->use_cpu_for_update &&
3030 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3031 "CPU update of VM recommended only for large BAR system\n");
3032
3033 if (vm->use_cpu_for_update) {
3034 /* Sync with last SDMA update/clear before switching to CPU */
3035 r = amdgpu_bo_sync_wait(vm->root.base.bo,
3036 AMDGPU_FENCE_OWNER_UNDEFINED, true);
3037 if (r)
3038 goto free_idr;
3039
3040 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3041 } else {
3042 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3043 }
3044 dma_fence_put(vm->last_update);
3045 vm->last_update = NULL;
3046 vm->is_compute_context = true;
3047
3048 if (vm->pasid) {
3049 unsigned long flags;
3050
3051 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3052 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3053 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3054
3055 /* Free the original amdgpu allocated pasid
3056 * Will be replaced with kfd allocated pasid
3057 */
3058 amdgpu_pasid_free(vm->pasid);
3059 vm->pasid = 0;
3060 }
3061
3062 /* Free the shadow bo for compute VM */
3063 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3064
3065 if (pasid)
3066 vm->pasid = pasid;
3067
3068 goto unreserve_bo;
3069
3070 free_idr:
3071 if (pasid) {
3072 unsigned long flags;
3073
3074 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3075 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3076 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3077 }
3078 unreserve_bo:
3079 amdgpu_bo_unreserve(vm->root.base.bo);
3080 return r;
3081 }
3082
3083 /**
3084 * amdgpu_vm_release_compute - release a compute vm
3085 * @adev: amdgpu_device pointer
3086 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3087 *
3088 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3089 * pasid from vm. Compute should stop use of vm after this call.
3090 */
amdgpu_vm_release_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm)3091 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3092 {
3093 if (vm->pasid) {
3094 unsigned long flags;
3095
3096 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3097 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3098 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3099 }
3100 vm->pasid = 0;
3101 vm->is_compute_context = false;
3102 }
3103
3104 /**
3105 * amdgpu_vm_fini - tear down a vm instance
3106 *
3107 * @adev: amdgpu_device pointer
3108 * @vm: requested vm
3109 *
3110 * Tear down @vm.
3111 * Unbind the VM and remove all bos from the vm bo list
3112 */
amdgpu_vm_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)3113 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3114 {
3115 struct amdgpu_bo_va_mapping *mapping, *tmp;
3116 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3117 struct amdgpu_bo *root;
3118 int i;
3119
3120 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3121
3122 root = amdgpu_bo_ref(vm->root.base.bo);
3123 amdgpu_bo_reserve(root, true);
3124 if (vm->pasid) {
3125 unsigned long flags;
3126
3127 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3128 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3129 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3130 vm->pasid = 0;
3131 }
3132
3133 dma_fence_wait(vm->last_unlocked, false);
3134 dma_fence_put(vm->last_unlocked);
3135
3136 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3137 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3138 amdgpu_vm_prt_fini(adev, vm);
3139 prt_fini_needed = false;
3140 }
3141
3142 list_del(&mapping->list);
3143 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3144 }
3145
3146 amdgpu_vm_free_pts(adev, vm, NULL);
3147 amdgpu_bo_unreserve(root);
3148 amdgpu_bo_unref(&root);
3149 WARN_ON(vm->root.base.bo);
3150
3151 drm_sched_entity_destroy(&vm->immediate);
3152 drm_sched_entity_destroy(&vm->delayed);
3153
3154 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3155 dev_err(adev->dev, "still active bo inside vm\n");
3156 }
3157 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3158 &vm->va.rb_root, rb) {
3159 /* Don't remove the mapping here, we don't want to trigger a
3160 * rebalance and the tree is about to be destroyed anyway.
3161 */
3162 list_del(&mapping->list);
3163 kfree(mapping);
3164 }
3165
3166 dma_fence_put(vm->last_update);
3167 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3168 amdgpu_vmid_free_reserved(adev, vm, i);
3169 }
3170
3171 /**
3172 * amdgpu_vm_manager_init - init the VM manager
3173 *
3174 * @adev: amdgpu_device pointer
3175 *
3176 * Initialize the VM manager structures
3177 */
amdgpu_vm_manager_init(struct amdgpu_device * adev)3178 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3179 {
3180 unsigned i;
3181
3182 /* Concurrent flushes are only possible starting with Vega10 and
3183 * are broken on Navi10 and Navi14.
3184 */
3185 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3186 adev->asic_type == CHIP_NAVI10 ||
3187 adev->asic_type == CHIP_NAVI14);
3188 amdgpu_vmid_mgr_init(adev);
3189
3190 adev->vm_manager.fence_context =
3191 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3192 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3193 adev->vm_manager.seqno[i] = 0;
3194
3195 spin_lock_init(&adev->vm_manager.prt_lock);
3196 atomic_set(&adev->vm_manager.num_prt_users, 0);
3197
3198 /* If not overridden by the user, by default, only in large BAR systems
3199 * Compute VM tables will be updated by CPU
3200 */
3201 #ifdef CONFIG_X86_64
3202 if (amdgpu_vm_update_mode == -1) {
3203 /* For asic with VF MMIO access protection
3204 * avoid using CPU for VM table updates
3205 */
3206 if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
3207 !amdgpu_sriov_vf_mmio_access_protection(adev))
3208 adev->vm_manager.vm_update_mode =
3209 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3210 else
3211 adev->vm_manager.vm_update_mode = 0;
3212 } else
3213 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3214 #else
3215 adev->vm_manager.vm_update_mode = 0;
3216 #endif
3217
3218 idr_init(&adev->vm_manager.pasid_idr);
3219 spin_lock_init(&adev->vm_manager.pasid_lock);
3220 }
3221
3222 /**
3223 * amdgpu_vm_manager_fini - cleanup VM manager
3224 *
3225 * @adev: amdgpu_device pointer
3226 *
3227 * Cleanup the VM manager and free resources.
3228 */
amdgpu_vm_manager_fini(struct amdgpu_device * adev)3229 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3230 {
3231 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3232 idr_destroy(&adev->vm_manager.pasid_idr);
3233
3234 amdgpu_vmid_mgr_fini(adev);
3235 }
3236
3237 /**
3238 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3239 *
3240 * @dev: drm device pointer
3241 * @data: drm_amdgpu_vm
3242 * @filp: drm file pointer
3243 *
3244 * Returns:
3245 * 0 for success, -errno for errors.
3246 */
amdgpu_vm_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)3247 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3248 {
3249 union drm_amdgpu_vm *args = data;
3250 struct amdgpu_device *adev = drm_to_adev(dev);
3251 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3252 long timeout = msecs_to_jiffies(2000);
3253 int r;
3254
3255 /* No valid flags defined yet */
3256 if (args->in.flags)
3257 return -EINVAL;
3258
3259 switch (args->in.op) {
3260 case AMDGPU_VM_OP_RESERVE_VMID:
3261 /* We only have requirement to reserve vmid from gfxhub */
3262 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3263 AMDGPU_GFXHUB_0);
3264 if (r)
3265 return r;
3266 break;
3267 case AMDGPU_VM_OP_UNRESERVE_VMID:
3268 if (amdgpu_sriov_runtime(adev))
3269 timeout = 8 * timeout;
3270
3271 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3272 * not referenced anymore.
3273 */
3274 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3275 if (r)
3276 return r;
3277
3278 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3279 if (r < 0)
3280 return r;
3281
3282 amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3283 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3284 break;
3285 default:
3286 return -EINVAL;
3287 }
3288
3289 return 0;
3290 }
3291
3292 /**
3293 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3294 *
3295 * @adev: drm device pointer
3296 * @pasid: PASID identifier for VM
3297 * @task_info: task_info to fill.
3298 */
amdgpu_vm_get_task_info(struct amdgpu_device * adev,u32 pasid,struct amdgpu_task_info * task_info)3299 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3300 struct amdgpu_task_info *task_info)
3301 {
3302 struct amdgpu_vm *vm;
3303 unsigned long flags;
3304
3305 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3306
3307 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3308 if (vm)
3309 *task_info = vm->task_info;
3310
3311 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3312 }
3313
3314 /**
3315 * amdgpu_vm_set_task_info - Sets VMs task info.
3316 *
3317 * @vm: vm for which to set the info
3318 */
amdgpu_vm_set_task_info(struct amdgpu_vm * vm)3319 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3320 {
3321 if (vm->task_info.pid)
3322 return;
3323
3324 vm->task_info.pid = current->pid;
3325 get_task_comm(vm->task_info.task_name, current);
3326
3327 if (current->group_leader->mm != current->mm)
3328 return;
3329
3330 vm->task_info.tgid = current->group_leader->pid;
3331 get_task_comm(vm->task_info.process_name, current->group_leader);
3332 }
3333
3334 /**
3335 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3336 * @adev: amdgpu device pointer
3337 * @pasid: PASID of the VM
3338 * @addr: Address of the fault
3339 *
3340 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3341 * shouldn't be reported any more.
3342 */
amdgpu_vm_handle_fault(struct amdgpu_device * adev,u32 pasid,uint64_t addr)3343 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3344 uint64_t addr)
3345 {
3346 struct amdgpu_bo *root;
3347 uint64_t value, flags;
3348 struct amdgpu_vm *vm;
3349 long r;
3350
3351 spin_lock(&adev->vm_manager.pasid_lock);
3352 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3353 if (vm)
3354 root = amdgpu_bo_ref(vm->root.base.bo);
3355 else
3356 root = NULL;
3357 spin_unlock(&adev->vm_manager.pasid_lock);
3358
3359 if (!root)
3360 return false;
3361
3362 r = amdgpu_bo_reserve(root, true);
3363 if (r)
3364 goto error_unref;
3365
3366 /* Double check that the VM still exists */
3367 spin_lock(&adev->vm_manager.pasid_lock);
3368 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3369 if (vm && vm->root.base.bo != root)
3370 vm = NULL;
3371 spin_unlock(&adev->vm_manager.pasid_lock);
3372 if (!vm)
3373 goto error_unlock;
3374
3375 addr /= AMDGPU_GPU_PAGE_SIZE;
3376 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3377 AMDGPU_PTE_SYSTEM;
3378
3379 if (vm->is_compute_context) {
3380 /* Intentionally setting invalid PTE flag
3381 * combination to force a no-retry-fault
3382 */
3383 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3384 AMDGPU_PTE_TF;
3385 value = 0;
3386
3387 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3388 /* Redirect the access to the dummy page */
3389 value = adev->dummy_page_addr;
3390 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3391 AMDGPU_PTE_WRITEABLE;
3392
3393 } else {
3394 /* Let the hw retry silently on the PTE */
3395 value = 0;
3396 }
3397
3398 r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3399 addr + 1, flags, value, NULL, NULL);
3400 if (r)
3401 goto error_unlock;
3402
3403 r = amdgpu_vm_update_pdes(adev, vm, true);
3404
3405 error_unlock:
3406 amdgpu_bo_unreserve(root);
3407 if (r < 0)
3408 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3409
3410 error_unref:
3411 amdgpu_bo_unref(&root);
3412
3413 return false;
3414 }
3415