• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <xen/swiotlb-xen.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
arm_dma_buffer_find(void * virt)77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
arm_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     unsigned long attrs)
128 {
129 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
arm_coherent_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     unsigned long attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
arm_dma_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir, unsigned long attrs)
157 {
158 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
159 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
160 				      handle & ~PAGE_MASK, size, dir);
161 }
162 
arm_dma_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)163 static void arm_dma_sync_single_for_cpu(struct device *dev,
164 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
165 {
166 	unsigned int offset = handle & (PAGE_SIZE - 1);
167 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
168 	__dma_page_dev_to_cpu(page, offset, size, dir);
169 }
170 
arm_dma_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)171 static void arm_dma_sync_single_for_device(struct device *dev,
172 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
173 {
174 	unsigned int offset = handle & (PAGE_SIZE - 1);
175 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
176 	__dma_page_cpu_to_dev(page, offset, size, dir);
177 }
178 
179 /*
180  * Return whether the given device DMA address mask can be supported
181  * properly.  For example, if your device can only drive the low 24-bits
182  * during bus mastering, then you would pass 0x00ffffff as the mask
183  * to this function.
184  */
arm_dma_supported(struct device * dev,u64 mask)185 static int arm_dma_supported(struct device *dev, u64 mask)
186 {
187 	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
188 
189 	/*
190 	 * Translate the device's DMA mask to a PFN limit.  This
191 	 * PFN number includes the page which we can DMA to.
192 	 */
193 	return dma_to_pfn(dev, mask) >= max_dma_pfn;
194 }
195 
196 const struct dma_map_ops arm_dma_ops = {
197 	.alloc			= arm_dma_alloc,
198 	.free			= arm_dma_free,
199 	.alloc_pages		= dma_direct_alloc_pages,
200 	.free_pages		= dma_direct_free_pages,
201 	.mmap			= arm_dma_mmap,
202 	.get_sgtable		= arm_dma_get_sgtable,
203 	.map_page		= arm_dma_map_page,
204 	.unmap_page		= arm_dma_unmap_page,
205 	.map_sg			= arm_dma_map_sg,
206 	.unmap_sg		= arm_dma_unmap_sg,
207 	.map_resource		= dma_direct_map_resource,
208 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
209 	.sync_single_for_device	= arm_dma_sync_single_for_device,
210 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
211 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
212 	.dma_supported		= arm_dma_supported,
213 	.get_required_mask	= dma_direct_get_required_mask,
214 };
215 EXPORT_SYMBOL(arm_dma_ops);
216 
217 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
218 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
219 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
220 				  dma_addr_t handle, unsigned long attrs);
221 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
222 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
223 		 unsigned long attrs);
224 
225 const struct dma_map_ops arm_coherent_dma_ops = {
226 	.alloc			= arm_coherent_dma_alloc,
227 	.free			= arm_coherent_dma_free,
228 	.alloc_pages		= dma_direct_alloc_pages,
229 	.free_pages		= dma_direct_free_pages,
230 	.mmap			= arm_coherent_dma_mmap,
231 	.get_sgtable		= arm_dma_get_sgtable,
232 	.map_page		= arm_coherent_dma_map_page,
233 	.map_sg			= arm_dma_map_sg,
234 	.map_resource		= dma_direct_map_resource,
235 	.dma_supported		= arm_dma_supported,
236 	.get_required_mask	= dma_direct_get_required_mask,
237 };
238 EXPORT_SYMBOL(arm_coherent_dma_ops);
239 
__dma_clear_buffer(struct page * page,size_t size,int coherent_flag)240 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
241 {
242 	/*
243 	 * Ensure that the allocated pages are zeroed, and that any data
244 	 * lurking in the kernel direct-mapped region is invalidated.
245 	 */
246 	if (PageHighMem(page)) {
247 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
248 		phys_addr_t end = base + size;
249 		while (size > 0) {
250 			void *ptr = kmap_atomic(page);
251 			memset(ptr, 0, PAGE_SIZE);
252 			if (coherent_flag != COHERENT)
253 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
254 			kunmap_atomic(ptr);
255 			page++;
256 			size -= PAGE_SIZE;
257 		}
258 		if (coherent_flag != COHERENT)
259 			outer_flush_range(base, end);
260 	} else {
261 		void *ptr = page_address(page);
262 		memset(ptr, 0, size);
263 		if (coherent_flag != COHERENT) {
264 			dmac_flush_range(ptr, ptr + size);
265 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
266 		}
267 	}
268 }
269 
270 /*
271  * Allocate a DMA buffer for 'dev' of size 'size' using the
272  * specified gfp mask.  Note that 'size' must be page aligned.
273  */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,int coherent_flag)274 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
275 				       gfp_t gfp, int coherent_flag)
276 {
277 	unsigned long order = get_order(size);
278 	struct page *page, *p, *e;
279 
280 	page = alloc_pages(gfp, order);
281 	if (!page)
282 		return NULL;
283 
284 	/*
285 	 * Now split the huge page and free the excess pages
286 	 */
287 	split_page(page, order);
288 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
289 		__free_page(p);
290 
291 	__dma_clear_buffer(page, size, coherent_flag);
292 
293 	return page;
294 }
295 
296 /*
297  * Free a DMA buffer.  'size' must be page aligned.
298  */
__dma_free_buffer(struct page * page,size_t size)299 static void __dma_free_buffer(struct page *page, size_t size)
300 {
301 	struct page *e = page + (size >> PAGE_SHIFT);
302 
303 	while (page < e) {
304 		__free_page(page);
305 		page++;
306 	}
307 }
308 
309 static void *__alloc_from_contiguous(struct device *dev, size_t size,
310 				     pgprot_t prot, struct page **ret_page,
311 				     const void *caller, bool want_vaddr,
312 				     int coherent_flag, gfp_t gfp);
313 
314 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
315 				 pgprot_t prot, struct page **ret_page,
316 				 const void *caller, bool want_vaddr);
317 
318 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
319 static struct gen_pool *atomic_pool __ro_after_init;
320 
321 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
322 
early_coherent_pool(char * p)323 static int __init early_coherent_pool(char *p)
324 {
325 	atomic_pool_size = memparse(p, &p);
326 	return 0;
327 }
328 early_param("coherent_pool", early_coherent_pool);
329 
330 /*
331  * Initialise the coherent pool for atomic allocations.
332  */
atomic_pool_init(void)333 static int __init atomic_pool_init(void)
334 {
335 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
336 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
337 	struct page *page;
338 	void *ptr;
339 
340 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
341 	if (!atomic_pool)
342 		goto out;
343 	/*
344 	 * The atomic pool is only used for non-coherent allocations
345 	 * so we must pass NORMAL for coherent_flag.
346 	 */
347 	if (dev_get_cma_area(NULL))
348 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
349 				      &page, atomic_pool_init, true, NORMAL,
350 				      GFP_KERNEL);
351 	else
352 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
353 					   &page, atomic_pool_init, true);
354 	if (ptr) {
355 		int ret;
356 
357 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
358 					page_to_phys(page),
359 					atomic_pool_size, -1);
360 		if (ret)
361 			goto destroy_genpool;
362 
363 		gen_pool_set_algo(atomic_pool,
364 				gen_pool_first_fit_order_align,
365 				NULL);
366 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
367 		       atomic_pool_size / 1024);
368 		return 0;
369 	}
370 
371 destroy_genpool:
372 	gen_pool_destroy(atomic_pool);
373 	atomic_pool = NULL;
374 out:
375 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
376 	       atomic_pool_size / 1024);
377 	return -ENOMEM;
378 }
379 /*
380  * CMA is activated by core_initcall, so we must be called after it.
381  */
382 postcore_initcall(atomic_pool_init);
383 
384 struct dma_contig_early_reserve {
385 	phys_addr_t base;
386 	unsigned long size;
387 };
388 
389 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
390 
391 static int dma_mmu_remap_num __initdata;
392 
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)393 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
394 {
395 	dma_mmu_remap[dma_mmu_remap_num].base = base;
396 	dma_mmu_remap[dma_mmu_remap_num].size = size;
397 	dma_mmu_remap_num++;
398 }
399 
dma_contiguous_remap(void)400 void __init dma_contiguous_remap(void)
401 {
402 	int i;
403 	for (i = 0; i < dma_mmu_remap_num; i++) {
404 		phys_addr_t start = dma_mmu_remap[i].base;
405 		phys_addr_t end = start + dma_mmu_remap[i].size;
406 		struct map_desc map;
407 		unsigned long addr;
408 
409 		if (end > arm_lowmem_limit)
410 			end = arm_lowmem_limit;
411 		if (start >= end)
412 			continue;
413 
414 		map.pfn = __phys_to_pfn(start);
415 		map.virtual = __phys_to_virt(start);
416 		map.length = end - start;
417 		map.type = MT_MEMORY_DMA_READY;
418 
419 		/*
420 		 * Clear previous low-memory mapping to ensure that the
421 		 * TLB does not see any conflicting entries, then flush
422 		 * the TLB of the old entries before creating new mappings.
423 		 *
424 		 * This ensures that any speculatively loaded TLB entries
425 		 * (even though they may be rare) can not cause any problems,
426 		 * and ensures that this code is architecturally compliant.
427 		 */
428 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
429 		     addr += PMD_SIZE)
430 			pmd_clear(pmd_off_k(addr));
431 
432 		flush_tlb_kernel_range(__phys_to_virt(start),
433 				       __phys_to_virt(end));
434 
435 		iotable_init(&map, 1);
436 	}
437 }
438 
__dma_update_pte(pte_t * pte,unsigned long addr,void * data)439 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
440 {
441 	struct page *page = virt_to_page(addr);
442 	pgprot_t prot = *(pgprot_t *)data;
443 
444 	set_pte_ext(pte, mk_pte(page, prot), 0);
445 	return 0;
446 }
447 
__dma_remap(struct page * page,size_t size,pgprot_t prot)448 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
449 {
450 	unsigned long start = (unsigned long) page_address(page);
451 	unsigned end = start + size;
452 
453 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
454 	flush_tlb_kernel_range(start, end);
455 }
456 
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr)457 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
458 				 pgprot_t prot, struct page **ret_page,
459 				 const void *caller, bool want_vaddr)
460 {
461 	struct page *page;
462 	void *ptr = NULL;
463 	/*
464 	 * __alloc_remap_buffer is only called when the device is
465 	 * non-coherent
466 	 */
467 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
468 	if (!page)
469 		return NULL;
470 	if (!want_vaddr)
471 		goto out;
472 
473 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
474 	if (!ptr) {
475 		__dma_free_buffer(page, size);
476 		return NULL;
477 	}
478 
479  out:
480 	*ret_page = page;
481 	return ptr;
482 }
483 
__alloc_from_pool(size_t size,struct page ** ret_page)484 static void *__alloc_from_pool(size_t size, struct page **ret_page)
485 {
486 	unsigned long val;
487 	void *ptr = NULL;
488 
489 	if (!atomic_pool) {
490 		WARN(1, "coherent pool not initialised!\n");
491 		return NULL;
492 	}
493 
494 	val = gen_pool_alloc(atomic_pool, size);
495 	if (val) {
496 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
497 
498 		*ret_page = phys_to_page(phys);
499 		ptr = (void *)val;
500 	}
501 
502 	return ptr;
503 }
504 
__in_atomic_pool(void * start,size_t size)505 static bool __in_atomic_pool(void *start, size_t size)
506 {
507 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
508 }
509 
__free_from_pool(void * start,size_t size)510 static int __free_from_pool(void *start, size_t size)
511 {
512 	if (!__in_atomic_pool(start, size))
513 		return 0;
514 
515 	gen_pool_free(atomic_pool, (unsigned long)start, size);
516 
517 	return 1;
518 }
519 
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr,int coherent_flag,gfp_t gfp)520 static void *__alloc_from_contiguous(struct device *dev, size_t size,
521 				     pgprot_t prot, struct page **ret_page,
522 				     const void *caller, bool want_vaddr,
523 				     int coherent_flag, gfp_t gfp)
524 {
525 	unsigned long order = get_order(size);
526 	size_t count = size >> PAGE_SHIFT;
527 	struct page *page;
528 	void *ptr = NULL;
529 
530 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
531 	if (!page)
532 		return NULL;
533 
534 	__dma_clear_buffer(page, size, coherent_flag);
535 
536 	if (!want_vaddr)
537 		goto out;
538 
539 	if (PageHighMem(page)) {
540 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
541 		if (!ptr) {
542 			dma_release_from_contiguous(dev, page, count);
543 			return NULL;
544 		}
545 	} else {
546 		__dma_remap(page, size, prot);
547 		ptr = page_address(page);
548 	}
549 
550  out:
551 	*ret_page = page;
552 	return ptr;
553 }
554 
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size,bool want_vaddr)555 static void __free_from_contiguous(struct device *dev, struct page *page,
556 				   void *cpu_addr, size_t size, bool want_vaddr)
557 {
558 	if (want_vaddr) {
559 		if (PageHighMem(page))
560 			dma_common_free_remap(cpu_addr, size);
561 		else
562 			__dma_remap(page, size, PAGE_KERNEL);
563 	}
564 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
565 }
566 
__get_dma_pgprot(unsigned long attrs,pgprot_t prot)567 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
568 {
569 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
570 			pgprot_writecombine(prot) :
571 			pgprot_dmacoherent(prot);
572 	return prot;
573 }
574 
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)575 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
576 				   struct page **ret_page)
577 {
578 	struct page *page;
579 	/* __alloc_simple_buffer is only called when the device is coherent */
580 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
581 	if (!page)
582 		return NULL;
583 
584 	*ret_page = page;
585 	return page_address(page);
586 }
587 
simple_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)588 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
589 				    struct page **ret_page)
590 {
591 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
592 				     ret_page);
593 }
594 
simple_allocator_free(struct arm_dma_free_args * args)595 static void simple_allocator_free(struct arm_dma_free_args *args)
596 {
597 	__dma_free_buffer(args->page, args->size);
598 }
599 
600 static struct arm_dma_allocator simple_allocator = {
601 	.alloc = simple_allocator_alloc,
602 	.free = simple_allocator_free,
603 };
604 
cma_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)605 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
606 				 struct page **ret_page)
607 {
608 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
609 				       ret_page, args->caller,
610 				       args->want_vaddr, args->coherent_flag,
611 				       args->gfp);
612 }
613 
cma_allocator_free(struct arm_dma_free_args * args)614 static void cma_allocator_free(struct arm_dma_free_args *args)
615 {
616 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
617 			       args->size, args->want_vaddr);
618 }
619 
620 static struct arm_dma_allocator cma_allocator = {
621 	.alloc = cma_allocator_alloc,
622 	.free = cma_allocator_free,
623 };
624 
pool_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)625 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
626 				  struct page **ret_page)
627 {
628 	return __alloc_from_pool(args->size, ret_page);
629 }
630 
pool_allocator_free(struct arm_dma_free_args * args)631 static void pool_allocator_free(struct arm_dma_free_args *args)
632 {
633 	__free_from_pool(args->cpu_addr, args->size);
634 }
635 
636 static struct arm_dma_allocator pool_allocator = {
637 	.alloc = pool_allocator_alloc,
638 	.free = pool_allocator_free,
639 };
640 
remap_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)641 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
642 				   struct page **ret_page)
643 {
644 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
645 				    args->prot, ret_page, args->caller,
646 				    args->want_vaddr);
647 }
648 
remap_allocator_free(struct arm_dma_free_args * args)649 static void remap_allocator_free(struct arm_dma_free_args *args)
650 {
651 	if (args->want_vaddr)
652 		dma_common_free_remap(args->cpu_addr, args->size);
653 
654 	__dma_free_buffer(args->page, args->size);
655 }
656 
657 static struct arm_dma_allocator remap_allocator = {
658 	.alloc = remap_allocator_alloc,
659 	.free = remap_allocator_free,
660 };
661 
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,unsigned long attrs,const void * caller)662 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
663 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
664 			 unsigned long attrs, const void *caller)
665 {
666 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
667 	struct page *page = NULL;
668 	void *addr;
669 	bool allowblock, cma;
670 	struct arm_dma_buffer *buf;
671 	struct arm_dma_alloc_args args = {
672 		.dev = dev,
673 		.size = PAGE_ALIGN(size),
674 		.gfp = gfp,
675 		.prot = prot,
676 		.caller = caller,
677 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
678 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
679 	};
680 
681 #ifdef CONFIG_DMA_API_DEBUG
682 	u64 limit = (mask + 1) & ~mask;
683 	if (limit && size >= limit) {
684 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
685 			size, mask);
686 		return NULL;
687 	}
688 #endif
689 
690 	buf = kzalloc(sizeof(*buf),
691 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
692 	if (!buf)
693 		return NULL;
694 
695 	if (mask < 0xffffffffULL)
696 		gfp |= GFP_DMA;
697 
698 	/*
699 	 * Following is a work-around (a.k.a. hack) to prevent pages
700 	 * with __GFP_COMP being passed to split_page() which cannot
701 	 * handle them.  The real problem is that this flag probably
702 	 * should be 0 on ARM as it is not supported on this
703 	 * platform; see CONFIG_HUGETLBFS.
704 	 */
705 	gfp &= ~(__GFP_COMP);
706 	args.gfp = gfp;
707 
708 	*handle = DMA_MAPPING_ERROR;
709 	allowblock = gfpflags_allow_blocking(gfp);
710 	cma = allowblock ? dev_get_cma_area(dev) : false;
711 
712 	if (cma)
713 		buf->allocator = &cma_allocator;
714 	else if (is_coherent)
715 		buf->allocator = &simple_allocator;
716 	else if (allowblock)
717 		buf->allocator = &remap_allocator;
718 	else
719 		buf->allocator = &pool_allocator;
720 
721 	addr = buf->allocator->alloc(&args, &page);
722 
723 	if (page) {
724 		unsigned long flags;
725 
726 		*handle = pfn_to_dma(dev, page_to_pfn(page));
727 		buf->virt = args.want_vaddr ? addr : page;
728 
729 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
730 		list_add(&buf->list, &arm_dma_bufs);
731 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
732 	} else {
733 		kfree(buf);
734 	}
735 
736 	return args.want_vaddr ? addr : page;
737 }
738 
739 /*
740  * Allocate DMA-coherent memory space and return both the kernel remapped
741  * virtual and bus address for that space.
742  */
arm_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)743 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
744 		    gfp_t gfp, unsigned long attrs)
745 {
746 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
747 
748 	return __dma_alloc(dev, size, handle, gfp, prot, false,
749 			   attrs, __builtin_return_address(0));
750 }
751 
arm_coherent_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)752 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
753 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
754 {
755 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
756 			   attrs, __builtin_return_address(0));
757 }
758 
__arm_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)759 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
760 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
761 		 unsigned long attrs)
762 {
763 	int ret = -ENXIO;
764 	unsigned long nr_vma_pages = vma_pages(vma);
765 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
766 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
767 	unsigned long off = vma->vm_pgoff;
768 
769 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
770 		return ret;
771 
772 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
773 		ret = remap_pfn_range(vma, vma->vm_start,
774 				      pfn + off,
775 				      vma->vm_end - vma->vm_start,
776 				      vma->vm_page_prot);
777 	}
778 
779 	return ret;
780 }
781 
782 /*
783  * Create userspace mapping for the DMA-coherent memory.
784  */
arm_coherent_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)785 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
786 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
787 		 unsigned long attrs)
788 {
789 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
790 }
791 
arm_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)792 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
793 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
794 		 unsigned long attrs)
795 {
796 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
797 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
798 }
799 
800 /*
801  * Free a buffer as defined by the above mapping.
802  */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,bool is_coherent)803 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
804 			   dma_addr_t handle, unsigned long attrs,
805 			   bool is_coherent)
806 {
807 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
808 	struct arm_dma_buffer *buf;
809 	struct arm_dma_free_args args = {
810 		.dev = dev,
811 		.size = PAGE_ALIGN(size),
812 		.cpu_addr = cpu_addr,
813 		.page = page,
814 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
815 	};
816 
817 	buf = arm_dma_buffer_find(cpu_addr);
818 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
819 		return;
820 
821 	buf->allocator->free(&args);
822 	kfree(buf);
823 }
824 
arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)825 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
826 		  dma_addr_t handle, unsigned long attrs)
827 {
828 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
829 }
830 
arm_coherent_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)831 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 				  dma_addr_t handle, unsigned long attrs)
833 {
834 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
835 }
836 
arm_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,unsigned long attrs)837 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
838 		 void *cpu_addr, dma_addr_t handle, size_t size,
839 		 unsigned long attrs)
840 {
841 	unsigned long pfn = dma_to_pfn(dev, handle);
842 	struct page *page;
843 	int ret;
844 
845 	/* If the PFN is not valid, we do not have a struct page */
846 	if (!pfn_valid(pfn))
847 		return -ENXIO;
848 
849 	page = pfn_to_page(pfn);
850 
851 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
852 	if (unlikely(ret))
853 		return ret;
854 
855 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
856 	return 0;
857 }
858 
dma_cache_maint_page(struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))859 static void dma_cache_maint_page(struct page *page, unsigned long offset,
860 	size_t size, enum dma_data_direction dir,
861 	void (*op)(const void *, size_t, int))
862 {
863 	unsigned long pfn;
864 	size_t left = size;
865 
866 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
867 	offset %= PAGE_SIZE;
868 
869 	/*
870 	 * A single sg entry may refer to multiple physically contiguous
871 	 * pages.  But we still need to process highmem pages individually.
872 	 * If highmem is not configured then the bulk of this loop gets
873 	 * optimized out.
874 	 */
875 	do {
876 		size_t len = left;
877 		void *vaddr;
878 
879 		page = pfn_to_page(pfn);
880 
881 		if (PageHighMem(page)) {
882 			if (len + offset > PAGE_SIZE)
883 				len = PAGE_SIZE - offset;
884 
885 			if (cache_is_vipt_nonaliasing()) {
886 				vaddr = kmap_atomic(page);
887 				op(vaddr + offset, len, dir);
888 				kunmap_atomic(vaddr);
889 			} else {
890 				vaddr = kmap_high_get(page);
891 				if (vaddr) {
892 					op(vaddr + offset, len, dir);
893 					kunmap_high(page);
894 				}
895 			}
896 		} else {
897 			vaddr = page_address(page) + offset;
898 			op(vaddr, len, dir);
899 		}
900 		offset = 0;
901 		pfn++;
902 		left -= len;
903 	} while (left);
904 }
905 
906 /*
907  * Make an area consistent for devices.
908  * Note: Drivers should NOT use this function directly, as it will break
909  * platforms with CONFIG_DMABOUNCE.
910  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
911  */
__dma_page_cpu_to_dev(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)912 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
913 	size_t size, enum dma_data_direction dir)
914 {
915 	phys_addr_t paddr;
916 
917 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
918 
919 	paddr = page_to_phys(page) + off;
920 	if (dir == DMA_FROM_DEVICE) {
921 		outer_inv_range(paddr, paddr + size);
922 	} else {
923 		outer_clean_range(paddr, paddr + size);
924 	}
925 	/* FIXME: non-speculating: flush on bidirectional mappings? */
926 }
927 
__dma_page_dev_to_cpu(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)928 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
929 	size_t size, enum dma_data_direction dir)
930 {
931 	phys_addr_t paddr = page_to_phys(page) + off;
932 
933 	/* FIXME: non-speculating: not required */
934 	/* in any case, don't bother invalidating if DMA to device */
935 	if (dir != DMA_TO_DEVICE) {
936 		outer_inv_range(paddr, paddr + size);
937 
938 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
939 	}
940 
941 	/*
942 	 * Mark the D-cache clean for these pages to avoid extra flushing.
943 	 */
944 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
945 		unsigned long pfn;
946 		size_t left = size;
947 
948 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
949 		off %= PAGE_SIZE;
950 		if (off) {
951 			pfn++;
952 			left -= PAGE_SIZE - off;
953 		}
954 		while (left >= PAGE_SIZE) {
955 			page = pfn_to_page(pfn++);
956 			set_bit(PG_dcache_clean, &page->flags);
957 			left -= PAGE_SIZE;
958 		}
959 	}
960 }
961 
962 /**
963  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
964  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965  * @sg: list of buffers
966  * @nents: number of buffers to map
967  * @dir: DMA transfer direction
968  *
969  * Map a set of buffers described by scatterlist in streaming mode for DMA.
970  * This is the scatter-gather version of the dma_map_single interface.
971  * Here the scatter gather list elements are each tagged with the
972  * appropriate dma address and length.  They are obtained via
973  * sg_dma_{address,length}.
974  *
975  * Device ownership issues as mentioned for dma_map_single are the same
976  * here.
977  */
arm_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)978 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
979 		enum dma_data_direction dir, unsigned long attrs)
980 {
981 	const struct dma_map_ops *ops = get_dma_ops(dev);
982 	struct scatterlist *s;
983 	int i, j;
984 
985 	for_each_sg(sg, s, nents, i) {
986 #ifdef CONFIG_NEED_SG_DMA_LENGTH
987 		s->dma_length = s->length;
988 #endif
989 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
990 						s->length, dir, attrs);
991 		if (dma_mapping_error(dev, s->dma_address))
992 			goto bad_mapping;
993 	}
994 	return nents;
995 
996  bad_mapping:
997 	for_each_sg(sg, s, i, j)
998 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
999 	return 0;
1000 }
1001 
1002 /**
1003  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1004  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1005  * @sg: list of buffers
1006  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1007  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1008  *
1009  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1010  * rules concerning calls here are the same as for dma_unmap_single().
1011  */
arm_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1012 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1013 		enum dma_data_direction dir, unsigned long attrs)
1014 {
1015 	const struct dma_map_ops *ops = get_dma_ops(dev);
1016 	struct scatterlist *s;
1017 
1018 	int i;
1019 
1020 	for_each_sg(sg, s, nents, i)
1021 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1022 }
1023 
1024 /**
1025  * arm_dma_sync_sg_for_cpu
1026  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1027  * @sg: list of buffers
1028  * @nents: number of buffers to map (returned from dma_map_sg)
1029  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1030  */
arm_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1031 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1032 			int nents, enum dma_data_direction dir)
1033 {
1034 	const struct dma_map_ops *ops = get_dma_ops(dev);
1035 	struct scatterlist *s;
1036 	int i;
1037 
1038 	for_each_sg(sg, s, nents, i)
1039 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1040 					 dir);
1041 }
1042 
1043 /**
1044  * arm_dma_sync_sg_for_device
1045  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046  * @sg: list of buffers
1047  * @nents: number of buffers to map (returned from dma_map_sg)
1048  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1049  */
arm_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1050 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1051 			int nents, enum dma_data_direction dir)
1052 {
1053 	const struct dma_map_ops *ops = get_dma_ops(dev);
1054 	struct scatterlist *s;
1055 	int i;
1056 
1057 	for_each_sg(sg, s, nents, i)
1058 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1059 					    dir);
1060 }
1061 
arm_get_dma_map_ops(bool coherent)1062 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1063 {
1064 	/*
1065 	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1066 	 * 32-bits, which then can't be addressed by devices that only support
1067 	 * 32-bit DMA.
1068 	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1069 	 * handles bounce buffering for us.
1070 	 */
1071 	if (IS_ENABLED(CONFIG_ARM_LPAE))
1072 		return NULL;
1073 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1074 }
1075 
1076 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1077 
__dma_info_to_prot(enum dma_data_direction dir,unsigned long attrs)1078 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1079 {
1080 	int prot = 0;
1081 
1082 	if (attrs & DMA_ATTR_PRIVILEGED)
1083 		prot |= IOMMU_PRIV;
1084 
1085 	switch (dir) {
1086 	case DMA_BIDIRECTIONAL:
1087 		return prot | IOMMU_READ | IOMMU_WRITE;
1088 	case DMA_TO_DEVICE:
1089 		return prot | IOMMU_READ;
1090 	case DMA_FROM_DEVICE:
1091 		return prot | IOMMU_WRITE;
1092 	default:
1093 		return prot;
1094 	}
1095 }
1096 
1097 /* IOMMU */
1098 
1099 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1100 
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)1101 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1102 				      size_t size)
1103 {
1104 	unsigned int order = get_order(size);
1105 	unsigned int align = 0;
1106 	unsigned int count, start;
1107 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1108 	unsigned long flags;
1109 	dma_addr_t iova;
1110 	int i;
1111 
1112 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1113 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1114 
1115 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1116 	align = (1 << order) - 1;
1117 
1118 	spin_lock_irqsave(&mapping->lock, flags);
1119 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1120 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1121 				mapping->bits, 0, count, align);
1122 
1123 		if (start > mapping->bits)
1124 			continue;
1125 
1126 		bitmap_set(mapping->bitmaps[i], start, count);
1127 		break;
1128 	}
1129 
1130 	/*
1131 	 * No unused range found. Try to extend the existing mapping
1132 	 * and perform a second attempt to reserve an IO virtual
1133 	 * address range of size bytes.
1134 	 */
1135 	if (i == mapping->nr_bitmaps) {
1136 		if (extend_iommu_mapping(mapping)) {
1137 			spin_unlock_irqrestore(&mapping->lock, flags);
1138 			return DMA_MAPPING_ERROR;
1139 		}
1140 
1141 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1142 				mapping->bits, 0, count, align);
1143 
1144 		if (start > mapping->bits) {
1145 			spin_unlock_irqrestore(&mapping->lock, flags);
1146 			return DMA_MAPPING_ERROR;
1147 		}
1148 
1149 		bitmap_set(mapping->bitmaps[i], start, count);
1150 	}
1151 	spin_unlock_irqrestore(&mapping->lock, flags);
1152 
1153 	iova = mapping->base + (mapping_size * i);
1154 	iova += start << PAGE_SHIFT;
1155 
1156 	return iova;
1157 }
1158 
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)1159 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1160 			       dma_addr_t addr, size_t size)
1161 {
1162 	unsigned int start, count;
1163 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1164 	unsigned long flags;
1165 	dma_addr_t bitmap_base;
1166 	u32 bitmap_index;
1167 
1168 	if (!size)
1169 		return;
1170 
1171 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1172 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1173 
1174 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1175 
1176 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1177 
1178 	if (addr + size > bitmap_base + mapping_size) {
1179 		/*
1180 		 * The address range to be freed reaches into the iova
1181 		 * range of the next bitmap. This should not happen as
1182 		 * we don't allow this in __alloc_iova (at the
1183 		 * moment).
1184 		 */
1185 		BUG();
1186 	} else
1187 		count = size >> PAGE_SHIFT;
1188 
1189 	spin_lock_irqsave(&mapping->lock, flags);
1190 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1191 	spin_unlock_irqrestore(&mapping->lock, flags);
1192 }
1193 
1194 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1195 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1196 
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,unsigned long attrs,int coherent_flag)1197 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1198 					  gfp_t gfp, unsigned long attrs,
1199 					  int coherent_flag)
1200 {
1201 	struct page **pages;
1202 	int count = size >> PAGE_SHIFT;
1203 	int array_size = count * sizeof(struct page *);
1204 	int i = 0;
1205 	int order_idx = 0;
1206 
1207 	if (array_size <= PAGE_SIZE)
1208 		pages = kzalloc(array_size, GFP_KERNEL);
1209 	else
1210 		pages = vzalloc(array_size);
1211 	if (!pages)
1212 		return NULL;
1213 
1214 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1215 	{
1216 		unsigned long order = get_order(size);
1217 		struct page *page;
1218 
1219 		page = dma_alloc_from_contiguous(dev, count, order,
1220 						 gfp & __GFP_NOWARN);
1221 		if (!page)
1222 			goto error;
1223 
1224 		__dma_clear_buffer(page, size, coherent_flag);
1225 
1226 		for (i = 0; i < count; i++)
1227 			pages[i] = page + i;
1228 
1229 		return pages;
1230 	}
1231 
1232 	/* Go straight to 4K chunks if caller says it's OK. */
1233 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1234 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1235 
1236 	/*
1237 	 * IOMMU can map any pages, so himem can also be used here
1238 	 */
1239 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1240 
1241 	while (count) {
1242 		int j, order;
1243 
1244 		order = iommu_order_array[order_idx];
1245 
1246 		/* Drop down when we get small */
1247 		if (__fls(count) < order) {
1248 			order_idx++;
1249 			continue;
1250 		}
1251 
1252 		if (order) {
1253 			/* See if it's easy to allocate a high-order chunk */
1254 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1255 
1256 			/* Go down a notch at first sign of pressure */
1257 			if (!pages[i]) {
1258 				order_idx++;
1259 				continue;
1260 			}
1261 		} else {
1262 			pages[i] = alloc_pages(gfp, 0);
1263 			if (!pages[i])
1264 				goto error;
1265 		}
1266 
1267 		if (order) {
1268 			split_page(pages[i], order);
1269 			j = 1 << order;
1270 			while (--j)
1271 				pages[i + j] = pages[i] + j;
1272 		}
1273 
1274 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1275 		i += 1 << order;
1276 		count -= 1 << order;
1277 	}
1278 
1279 	return pages;
1280 error:
1281 	while (i--)
1282 		if (pages[i])
1283 			__free_pages(pages[i], 0);
1284 	kvfree(pages);
1285 	return NULL;
1286 }
1287 
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)1288 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1289 			       size_t size, unsigned long attrs)
1290 {
1291 	int count = size >> PAGE_SHIFT;
1292 	int i;
1293 
1294 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1295 		dma_release_from_contiguous(dev, pages[0], count);
1296 	} else {
1297 		for (i = 0; i < count; i++)
1298 			if (pages[i])
1299 				__free_pages(pages[i], 0);
1300 	}
1301 
1302 	kvfree(pages);
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Create a mapping in device IO address space for specified pages
1308  */
1309 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)1310 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1311 		       unsigned long attrs)
1312 {
1313 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1314 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1315 	dma_addr_t dma_addr, iova;
1316 	int i;
1317 
1318 	dma_addr = __alloc_iova(mapping, size);
1319 	if (dma_addr == DMA_MAPPING_ERROR)
1320 		return dma_addr;
1321 
1322 	iova = dma_addr;
1323 	for (i = 0; i < count; ) {
1324 		int ret;
1325 
1326 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1327 		phys_addr_t phys = page_to_phys(pages[i]);
1328 		unsigned int len, j;
1329 
1330 		for (j = i + 1; j < count; j++, next_pfn++)
1331 			if (page_to_pfn(pages[j]) != next_pfn)
1332 				break;
1333 
1334 		len = (j - i) << PAGE_SHIFT;
1335 		ret = iommu_map(mapping->domain, iova, phys, len,
1336 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1337 		if (ret < 0)
1338 			goto fail;
1339 		iova += len;
1340 		i = j;
1341 	}
1342 	return dma_addr;
1343 fail:
1344 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1345 	__free_iova(mapping, dma_addr, size);
1346 	return DMA_MAPPING_ERROR;
1347 }
1348 
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1349 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1350 {
1351 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1352 
1353 	/*
1354 	 * add optional in-page offset from iova to size and align
1355 	 * result to page size
1356 	 */
1357 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1358 	iova &= PAGE_MASK;
1359 
1360 	iommu_unmap(mapping->domain, iova, size);
1361 	__free_iova(mapping, iova, size);
1362 	return 0;
1363 }
1364 
__atomic_get_pages(void * addr)1365 static struct page **__atomic_get_pages(void *addr)
1366 {
1367 	struct page *page;
1368 	phys_addr_t phys;
1369 
1370 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1371 	page = phys_to_page(phys);
1372 
1373 	return (struct page **)page;
1374 }
1375 
__iommu_get_pages(void * cpu_addr,unsigned long attrs)1376 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1377 {
1378 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1379 		return __atomic_get_pages(cpu_addr);
1380 
1381 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1382 		return cpu_addr;
1383 
1384 	return dma_common_find_pages(cpu_addr);
1385 }
1386 
__iommu_alloc_simple(struct device * dev,size_t size,gfp_t gfp,dma_addr_t * handle,int coherent_flag,unsigned long attrs)1387 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1388 				  dma_addr_t *handle, int coherent_flag,
1389 				  unsigned long attrs)
1390 {
1391 	struct page *page;
1392 	void *addr;
1393 
1394 	if (coherent_flag  == COHERENT)
1395 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1396 	else
1397 		addr = __alloc_from_pool(size, &page);
1398 	if (!addr)
1399 		return NULL;
1400 
1401 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1402 	if (*handle == DMA_MAPPING_ERROR)
1403 		goto err_mapping;
1404 
1405 	return addr;
1406 
1407 err_mapping:
1408 	__free_from_pool(addr, size);
1409 	return NULL;
1410 }
1411 
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size,int coherent_flag)1412 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1413 			dma_addr_t handle, size_t size, int coherent_flag)
1414 {
1415 	__iommu_remove_mapping(dev, handle, size);
1416 	if (coherent_flag == COHERENT)
1417 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1418 	else
1419 		__free_from_pool(cpu_addr, size);
1420 }
1421 
__arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs,int coherent_flag)1422 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1423 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1424 	    int coherent_flag)
1425 {
1426 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1427 	struct page **pages;
1428 	void *addr = NULL;
1429 
1430 	*handle = DMA_MAPPING_ERROR;
1431 	size = PAGE_ALIGN(size);
1432 
1433 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1434 		return __iommu_alloc_simple(dev, size, gfp, handle,
1435 					    coherent_flag, attrs);
1436 
1437 	/*
1438 	 * Following is a work-around (a.k.a. hack) to prevent pages
1439 	 * with __GFP_COMP being passed to split_page() which cannot
1440 	 * handle them.  The real problem is that this flag probably
1441 	 * should be 0 on ARM as it is not supported on this
1442 	 * platform; see CONFIG_HUGETLBFS.
1443 	 */
1444 	gfp &= ~(__GFP_COMP);
1445 
1446 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1447 	if (!pages)
1448 		return NULL;
1449 
1450 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1451 	if (*handle == DMA_MAPPING_ERROR)
1452 		goto err_buffer;
1453 
1454 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1455 		return pages;
1456 
1457 	addr = dma_common_pages_remap(pages, size, prot,
1458 				   __builtin_return_address(0));
1459 	if (!addr)
1460 		goto err_mapping;
1461 
1462 	return addr;
1463 
1464 err_mapping:
1465 	__iommu_remove_mapping(dev, *handle, size);
1466 err_buffer:
1467 	__iommu_free_buffer(dev, pages, size, attrs);
1468 	return NULL;
1469 }
1470 
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1471 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1472 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1473 {
1474 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1475 }
1476 
arm_coherent_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1477 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1478 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1479 {
1480 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1481 }
1482 
__arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1483 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1484 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1485 		    unsigned long attrs)
1486 {
1487 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1488 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1489 	int err;
1490 
1491 	if (!pages)
1492 		return -ENXIO;
1493 
1494 	if (vma->vm_pgoff >= nr_pages)
1495 		return -ENXIO;
1496 
1497 	err = vm_map_pages(vma, pages, nr_pages);
1498 	if (err)
1499 		pr_err("Remapping memory failed: %d\n", err);
1500 
1501 	return err;
1502 }
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1503 static int arm_iommu_mmap_attrs(struct device *dev,
1504 		struct vm_area_struct *vma, void *cpu_addr,
1505 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1506 {
1507 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1508 
1509 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1510 }
1511 
arm_coherent_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1512 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1513 		struct vm_area_struct *vma, void *cpu_addr,
1514 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1515 {
1516 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1517 }
1518 
1519 /*
1520  * free a page as defined by the above mapping.
1521  * Must not be called with IRQs disabled.
1522  */
__arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,int coherent_flag)1523 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1524 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1525 {
1526 	struct page **pages;
1527 	size = PAGE_ALIGN(size);
1528 
1529 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1530 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1531 		return;
1532 	}
1533 
1534 	pages = __iommu_get_pages(cpu_addr, attrs);
1535 	if (!pages) {
1536 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1537 		return;
1538 	}
1539 
1540 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1541 		dma_common_free_remap(cpu_addr, size);
1542 
1543 	__iommu_remove_mapping(dev, handle, size);
1544 	__iommu_free_buffer(dev, pages, size, attrs);
1545 }
1546 
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1547 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1548 				 void *cpu_addr, dma_addr_t handle,
1549 				 unsigned long attrs)
1550 {
1551 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1552 }
1553 
arm_coherent_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1554 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1555 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1556 {
1557 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1558 }
1559 
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1560 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1561 				 void *cpu_addr, dma_addr_t dma_addr,
1562 				 size_t size, unsigned long attrs)
1563 {
1564 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1565 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1566 
1567 	if (!pages)
1568 		return -ENXIO;
1569 
1570 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1571 					 GFP_KERNEL);
1572 }
1573 
1574 /*
1575  * Map a part of the scatter-gather list into contiguous io address space
1576  */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1577 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1578 			  size_t size, dma_addr_t *handle,
1579 			  enum dma_data_direction dir, unsigned long attrs,
1580 			  bool is_coherent)
1581 {
1582 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1583 	dma_addr_t iova, iova_base;
1584 	int ret = 0;
1585 	unsigned int count;
1586 	struct scatterlist *s;
1587 	int prot;
1588 
1589 	size = PAGE_ALIGN(size);
1590 	*handle = DMA_MAPPING_ERROR;
1591 
1592 	iova_base = iova = __alloc_iova(mapping, size);
1593 	if (iova == DMA_MAPPING_ERROR)
1594 		return -ENOMEM;
1595 
1596 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1597 		phys_addr_t phys = page_to_phys(sg_page(s));
1598 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1599 
1600 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1601 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1602 
1603 		prot = __dma_info_to_prot(dir, attrs);
1604 
1605 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1606 		if (ret < 0)
1607 			goto fail;
1608 		count += len >> PAGE_SHIFT;
1609 		iova += len;
1610 	}
1611 	*handle = iova_base;
1612 
1613 	return 0;
1614 fail:
1615 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1616 	__free_iova(mapping, iova_base, size);
1617 	return ret;
1618 }
1619 
__iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1620 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1621 		     enum dma_data_direction dir, unsigned long attrs,
1622 		     bool is_coherent)
1623 {
1624 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1625 	int i, count = 0;
1626 	unsigned int offset = s->offset;
1627 	unsigned int size = s->offset + s->length;
1628 	unsigned int max = dma_get_max_seg_size(dev);
1629 
1630 	for (i = 1; i < nents; i++) {
1631 		s = sg_next(s);
1632 
1633 		s->dma_address = DMA_MAPPING_ERROR;
1634 		s->dma_length = 0;
1635 
1636 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1637 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1638 			    dir, attrs, is_coherent) < 0)
1639 				goto bad_mapping;
1640 
1641 			dma->dma_address += offset;
1642 			dma->dma_length = size - offset;
1643 
1644 			size = offset = s->offset;
1645 			start = s;
1646 			dma = sg_next(dma);
1647 			count += 1;
1648 		}
1649 		size += s->length;
1650 	}
1651 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1652 		is_coherent) < 0)
1653 		goto bad_mapping;
1654 
1655 	dma->dma_address += offset;
1656 	dma->dma_length = size - offset;
1657 
1658 	return count+1;
1659 
1660 bad_mapping:
1661 	for_each_sg(sg, s, count, i)
1662 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1663 	return 0;
1664 }
1665 
1666 /**
1667  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1668  * @dev: valid struct device pointer
1669  * @sg: list of buffers
1670  * @nents: number of buffers to map
1671  * @dir: DMA transfer direction
1672  *
1673  * Map a set of i/o coherent buffers described by scatterlist in streaming
1674  * mode for DMA. The scatter gather list elements are merged together (if
1675  * possible) and tagged with the appropriate dma address and length. They are
1676  * obtained via sg_dma_{address,length}.
1677  */
arm_coherent_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1678 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1679 		int nents, enum dma_data_direction dir, unsigned long attrs)
1680 {
1681 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1682 }
1683 
1684 /**
1685  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1686  * @dev: valid struct device pointer
1687  * @sg: list of buffers
1688  * @nents: number of buffers to map
1689  * @dir: DMA transfer direction
1690  *
1691  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1692  * The scatter gather list elements are merged together (if possible) and
1693  * tagged with the appropriate dma address and length. They are obtained via
1694  * sg_dma_{address,length}.
1695  */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1696 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1697 		int nents, enum dma_data_direction dir, unsigned long attrs)
1698 {
1699 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1700 }
1701 
__iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs,bool is_coherent)1702 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1703 		int nents, enum dma_data_direction dir,
1704 		unsigned long attrs, bool is_coherent)
1705 {
1706 	struct scatterlist *s;
1707 	int i;
1708 
1709 	for_each_sg(sg, s, nents, i) {
1710 		if (sg_dma_len(s))
1711 			__iommu_remove_mapping(dev, sg_dma_address(s),
1712 					       sg_dma_len(s));
1713 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1715 					      s->length, dir);
1716 	}
1717 }
1718 
1719 /**
1720  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1721  * @dev: valid struct device pointer
1722  * @sg: list of buffers
1723  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1724  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1725  *
1726  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1727  * rules concerning calls here are the same as for dma_unmap_single().
1728  */
arm_coherent_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1729 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1730 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1731 		unsigned long attrs)
1732 {
1733 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1734 }
1735 
1736 /**
1737  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1738  * @dev: valid struct device pointer
1739  * @sg: list of buffers
1740  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1741  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1742  *
1743  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1744  * rules concerning calls here are the same as for dma_unmap_single().
1745  */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1746 static void arm_iommu_unmap_sg(struct device *dev,
1747 			       struct scatterlist *sg, int nents,
1748 			       enum dma_data_direction dir,
1749 			       unsigned long attrs)
1750 {
1751 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1752 }
1753 
1754 /**
1755  * arm_iommu_sync_sg_for_cpu
1756  * @dev: valid struct device pointer
1757  * @sg: list of buffers
1758  * @nents: number of buffers to map (returned from dma_map_sg)
1759  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1760  */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1761 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1762 			struct scatterlist *sg,
1763 			int nents, enum dma_data_direction dir)
1764 {
1765 	struct scatterlist *s;
1766 	int i;
1767 
1768 	for_each_sg(sg, s, nents, i)
1769 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1770 
1771 }
1772 
1773 /**
1774  * arm_iommu_sync_sg_for_device
1775  * @dev: valid struct device pointer
1776  * @sg: list of buffers
1777  * @nents: number of buffers to map (returned from dma_map_sg)
1778  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1779  */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1780 static void arm_iommu_sync_sg_for_device(struct device *dev,
1781 			struct scatterlist *sg,
1782 			int nents, enum dma_data_direction dir)
1783 {
1784 	struct scatterlist *s;
1785 	int i;
1786 
1787 	for_each_sg(sg, s, nents, i)
1788 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1789 }
1790 
1791 
1792 /**
1793  * arm_coherent_iommu_map_page
1794  * @dev: valid struct device pointer
1795  * @page: page that buffer resides in
1796  * @offset: offset into page for start of buffer
1797  * @size: size of buffer to map
1798  * @dir: DMA transfer direction
1799  *
1800  * Coherent IOMMU aware version of arm_dma_map_page()
1801  */
arm_coherent_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1802 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1803 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1804 	     unsigned long attrs)
1805 {
1806 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1807 	dma_addr_t dma_addr;
1808 	int ret, prot, len = PAGE_ALIGN(size + offset);
1809 
1810 	dma_addr = __alloc_iova(mapping, len);
1811 	if (dma_addr == DMA_MAPPING_ERROR)
1812 		return dma_addr;
1813 
1814 	prot = __dma_info_to_prot(dir, attrs);
1815 
1816 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1817 	if (ret < 0)
1818 		goto fail;
1819 
1820 	return dma_addr + offset;
1821 fail:
1822 	__free_iova(mapping, dma_addr, len);
1823 	return DMA_MAPPING_ERROR;
1824 }
1825 
1826 /**
1827  * arm_iommu_map_page
1828  * @dev: valid struct device pointer
1829  * @page: page that buffer resides in
1830  * @offset: offset into page for start of buffer
1831  * @size: size of buffer to map
1832  * @dir: DMA transfer direction
1833  *
1834  * IOMMU aware version of arm_dma_map_page()
1835  */
arm_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1836 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1837 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1838 	     unsigned long attrs)
1839 {
1840 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1841 		__dma_page_cpu_to_dev(page, offset, size, dir);
1842 
1843 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1844 }
1845 
1846 /**
1847  * arm_coherent_iommu_unmap_page
1848  * @dev: valid struct device pointer
1849  * @handle: DMA address of buffer
1850  * @size: size of buffer (same as passed to dma_map_page)
1851  * @dir: DMA transfer direction (same as passed to dma_map_page)
1852  *
1853  * Coherent IOMMU aware version of arm_dma_unmap_page()
1854  */
arm_coherent_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1855 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1856 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1857 {
1858 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1859 	dma_addr_t iova = handle & PAGE_MASK;
1860 	int offset = handle & ~PAGE_MASK;
1861 	int len = PAGE_ALIGN(size + offset);
1862 
1863 	if (!iova)
1864 		return;
1865 
1866 	iommu_unmap(mapping->domain, iova, len);
1867 	__free_iova(mapping, iova, len);
1868 }
1869 
1870 /**
1871  * arm_iommu_unmap_page
1872  * @dev: valid struct device pointer
1873  * @handle: DMA address of buffer
1874  * @size: size of buffer (same as passed to dma_map_page)
1875  * @dir: DMA transfer direction (same as passed to dma_map_page)
1876  *
1877  * IOMMU aware version of arm_dma_unmap_page()
1878  */
arm_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1879 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1880 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1881 {
1882 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1883 	dma_addr_t iova = handle & PAGE_MASK;
1884 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1885 	int offset = handle & ~PAGE_MASK;
1886 	int len = PAGE_ALIGN(size + offset);
1887 
1888 	if (!iova)
1889 		return;
1890 
1891 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1892 		__dma_page_dev_to_cpu(page, offset, size, dir);
1893 
1894 	iommu_unmap(mapping->domain, iova, len);
1895 	__free_iova(mapping, iova, len);
1896 }
1897 
1898 /**
1899  * arm_iommu_map_resource - map a device resource for DMA
1900  * @dev: valid struct device pointer
1901  * @phys_addr: physical address of resource
1902  * @size: size of resource to map
1903  * @dir: DMA transfer direction
1904  */
arm_iommu_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)1905 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1906 		phys_addr_t phys_addr, size_t size,
1907 		enum dma_data_direction dir, unsigned long attrs)
1908 {
1909 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1910 	dma_addr_t dma_addr;
1911 	int ret, prot;
1912 	phys_addr_t addr = phys_addr & PAGE_MASK;
1913 	unsigned int offset = phys_addr & ~PAGE_MASK;
1914 	size_t len = PAGE_ALIGN(size + offset);
1915 
1916 	dma_addr = __alloc_iova(mapping, len);
1917 	if (dma_addr == DMA_MAPPING_ERROR)
1918 		return dma_addr;
1919 
1920 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1921 
1922 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1923 	if (ret < 0)
1924 		goto fail;
1925 
1926 	return dma_addr + offset;
1927 fail:
1928 	__free_iova(mapping, dma_addr, len);
1929 	return DMA_MAPPING_ERROR;
1930 }
1931 
1932 /**
1933  * arm_iommu_unmap_resource - unmap a device DMA resource
1934  * @dev: valid struct device pointer
1935  * @dma_handle: DMA address to resource
1936  * @size: size of resource to map
1937  * @dir: DMA transfer direction
1938  */
arm_iommu_unmap_resource(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1939 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1940 		size_t size, enum dma_data_direction dir,
1941 		unsigned long attrs)
1942 {
1943 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1944 	dma_addr_t iova = dma_handle & PAGE_MASK;
1945 	unsigned int offset = dma_handle & ~PAGE_MASK;
1946 	size_t len = PAGE_ALIGN(size + offset);
1947 
1948 	if (!iova)
1949 		return;
1950 
1951 	iommu_unmap(mapping->domain, iova, len);
1952 	__free_iova(mapping, iova, len);
1953 }
1954 
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1955 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1956 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1957 {
1958 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1959 	dma_addr_t iova = handle & PAGE_MASK;
1960 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1961 	unsigned int offset = handle & ~PAGE_MASK;
1962 
1963 	if (!iova)
1964 		return;
1965 
1966 	__dma_page_dev_to_cpu(page, offset, size, dir);
1967 }
1968 
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1969 static void arm_iommu_sync_single_for_device(struct device *dev,
1970 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1971 {
1972 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1973 	dma_addr_t iova = handle & PAGE_MASK;
1974 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1975 	unsigned int offset = handle & ~PAGE_MASK;
1976 
1977 	if (!iova)
1978 		return;
1979 
1980 	__dma_page_cpu_to_dev(page, offset, size, dir);
1981 }
1982 
1983 static const struct dma_map_ops iommu_ops = {
1984 	.alloc		= arm_iommu_alloc_attrs,
1985 	.free		= arm_iommu_free_attrs,
1986 	.mmap		= arm_iommu_mmap_attrs,
1987 	.get_sgtable	= arm_iommu_get_sgtable,
1988 
1989 	.map_page		= arm_iommu_map_page,
1990 	.unmap_page		= arm_iommu_unmap_page,
1991 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1992 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1993 
1994 	.map_sg			= arm_iommu_map_sg,
1995 	.unmap_sg		= arm_iommu_unmap_sg,
1996 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1997 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1998 
1999 	.map_resource		= arm_iommu_map_resource,
2000 	.unmap_resource		= arm_iommu_unmap_resource,
2001 
2002 	.dma_supported		= arm_dma_supported,
2003 };
2004 
2005 static const struct dma_map_ops iommu_coherent_ops = {
2006 	.alloc		= arm_coherent_iommu_alloc_attrs,
2007 	.free		= arm_coherent_iommu_free_attrs,
2008 	.mmap		= arm_coherent_iommu_mmap_attrs,
2009 	.get_sgtable	= arm_iommu_get_sgtable,
2010 
2011 	.map_page	= arm_coherent_iommu_map_page,
2012 	.unmap_page	= arm_coherent_iommu_unmap_page,
2013 
2014 	.map_sg		= arm_coherent_iommu_map_sg,
2015 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2016 
2017 	.map_resource	= arm_iommu_map_resource,
2018 	.unmap_resource	= arm_iommu_unmap_resource,
2019 
2020 	.dma_supported		= arm_dma_supported,
2021 };
2022 
2023 /**
2024  * arm_iommu_create_mapping
2025  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2026  * @base: start address of the valid IO address space
2027  * @size: maximum size of the valid IO address space
2028  *
2029  * Creates a mapping structure which holds information about used/unused
2030  * IO address ranges, which is required to perform memory allocation and
2031  * mapping with IOMMU aware functions.
2032  *
2033  * The client device need to be attached to the mapping with
2034  * arm_iommu_attach_device function.
2035  */
2036 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type * bus,dma_addr_t base,u64 size)2037 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2038 {
2039 	unsigned int bits = size >> PAGE_SHIFT;
2040 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2041 	struct dma_iommu_mapping *mapping;
2042 	int extensions = 1;
2043 	int err = -ENOMEM;
2044 
2045 	/* currently only 32-bit DMA address space is supported */
2046 	if (size > DMA_BIT_MASK(32) + 1)
2047 		return ERR_PTR(-ERANGE);
2048 
2049 	if (!bitmap_size)
2050 		return ERR_PTR(-EINVAL);
2051 
2052 	if (bitmap_size > PAGE_SIZE) {
2053 		extensions = bitmap_size / PAGE_SIZE;
2054 		bitmap_size = PAGE_SIZE;
2055 	}
2056 
2057 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2058 	if (!mapping)
2059 		goto err;
2060 
2061 	mapping->bitmap_size = bitmap_size;
2062 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2063 				   GFP_KERNEL);
2064 	if (!mapping->bitmaps)
2065 		goto err2;
2066 
2067 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2068 	if (!mapping->bitmaps[0])
2069 		goto err3;
2070 
2071 	mapping->nr_bitmaps = 1;
2072 	mapping->extensions = extensions;
2073 	mapping->base = base;
2074 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2075 
2076 	spin_lock_init(&mapping->lock);
2077 
2078 	mapping->domain = iommu_domain_alloc(bus);
2079 	if (!mapping->domain)
2080 		goto err4;
2081 
2082 	kref_init(&mapping->kref);
2083 	return mapping;
2084 err4:
2085 	kfree(mapping->bitmaps[0]);
2086 err3:
2087 	kfree(mapping->bitmaps);
2088 err2:
2089 	kfree(mapping);
2090 err:
2091 	return ERR_PTR(err);
2092 }
2093 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2094 
release_iommu_mapping(struct kref * kref)2095 static void release_iommu_mapping(struct kref *kref)
2096 {
2097 	int i;
2098 	struct dma_iommu_mapping *mapping =
2099 		container_of(kref, struct dma_iommu_mapping, kref);
2100 
2101 	iommu_domain_free(mapping->domain);
2102 	for (i = 0; i < mapping->nr_bitmaps; i++)
2103 		kfree(mapping->bitmaps[i]);
2104 	kfree(mapping->bitmaps);
2105 	kfree(mapping);
2106 }
2107 
extend_iommu_mapping(struct dma_iommu_mapping * mapping)2108 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2109 {
2110 	int next_bitmap;
2111 
2112 	if (mapping->nr_bitmaps >= mapping->extensions)
2113 		return -EINVAL;
2114 
2115 	next_bitmap = mapping->nr_bitmaps;
2116 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2117 						GFP_ATOMIC);
2118 	if (!mapping->bitmaps[next_bitmap])
2119 		return -ENOMEM;
2120 
2121 	mapping->nr_bitmaps++;
2122 
2123 	return 0;
2124 }
2125 
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)2126 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2127 {
2128 	if (mapping)
2129 		kref_put(&mapping->kref, release_iommu_mapping);
2130 }
2131 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2132 
__arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)2133 static int __arm_iommu_attach_device(struct device *dev,
2134 				     struct dma_iommu_mapping *mapping)
2135 {
2136 	int err;
2137 
2138 	err = iommu_attach_device(mapping->domain, dev);
2139 	if (err)
2140 		return err;
2141 
2142 	kref_get(&mapping->kref);
2143 	to_dma_iommu_mapping(dev) = mapping;
2144 
2145 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2146 	return 0;
2147 }
2148 
2149 /**
2150  * arm_iommu_attach_device
2151  * @dev: valid struct device pointer
2152  * @mapping: io address space mapping structure (returned from
2153  *	arm_iommu_create_mapping)
2154  *
2155  * Attaches specified io address space mapping to the provided device.
2156  * This replaces the dma operations (dma_map_ops pointer) with the
2157  * IOMMU aware version.
2158  *
2159  * More than one client might be attached to the same io address space
2160  * mapping.
2161  */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)2162 int arm_iommu_attach_device(struct device *dev,
2163 			    struct dma_iommu_mapping *mapping)
2164 {
2165 	int err;
2166 
2167 	err = __arm_iommu_attach_device(dev, mapping);
2168 	if (err)
2169 		return err;
2170 
2171 	set_dma_ops(dev, &iommu_ops);
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2175 
2176 /**
2177  * arm_iommu_detach_device
2178  * @dev: valid struct device pointer
2179  *
2180  * Detaches the provided device from a previously attached map.
2181  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2182  */
arm_iommu_detach_device(struct device * dev)2183 void arm_iommu_detach_device(struct device *dev)
2184 {
2185 	struct dma_iommu_mapping *mapping;
2186 
2187 	mapping = to_dma_iommu_mapping(dev);
2188 	if (!mapping) {
2189 		dev_warn(dev, "Not attached\n");
2190 		return;
2191 	}
2192 
2193 	iommu_detach_device(mapping->domain, dev);
2194 	kref_put(&mapping->kref, release_iommu_mapping);
2195 	to_dma_iommu_mapping(dev) = NULL;
2196 	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2197 
2198 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2199 }
2200 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2201 
arm_get_iommu_dma_map_ops(bool coherent)2202 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2203 {
2204 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2205 }
2206 
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu)2207 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2208 				    const struct iommu_ops *iommu)
2209 {
2210 	struct dma_iommu_mapping *mapping;
2211 
2212 	if (!iommu)
2213 		return false;
2214 
2215 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2216 	if (IS_ERR(mapping)) {
2217 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2218 				size, dev_name(dev));
2219 		return false;
2220 	}
2221 
2222 	if (__arm_iommu_attach_device(dev, mapping)) {
2223 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2224 				dev_name(dev));
2225 		arm_iommu_release_mapping(mapping);
2226 		return false;
2227 	}
2228 
2229 	return true;
2230 }
2231 
arm_teardown_iommu_dma_ops(struct device * dev)2232 static void arm_teardown_iommu_dma_ops(struct device *dev)
2233 {
2234 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2235 
2236 	if (!mapping)
2237 		return;
2238 
2239 	arm_iommu_detach_device(dev);
2240 	arm_iommu_release_mapping(mapping);
2241 }
2242 
2243 #else
2244 
arm_setup_iommu_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu)2245 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2246 				    const struct iommu_ops *iommu)
2247 {
2248 	return false;
2249 }
2250 
arm_teardown_iommu_dma_ops(struct device * dev)2251 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2252 
2253 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2254 
2255 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2256 
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)2257 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2258 			const struct iommu_ops *iommu, bool coherent)
2259 {
2260 	const struct dma_map_ops *dma_ops;
2261 
2262 	dev->archdata.dma_coherent = coherent;
2263 #ifdef CONFIG_SWIOTLB
2264 	dev->dma_coherent = coherent;
2265 #endif
2266 
2267 	/*
2268 	 * Don't override the dma_ops if they have already been set. Ideally
2269 	 * this should be the only location where dma_ops are set, remove this
2270 	 * check when all other callers of set_dma_ops will have disappeared.
2271 	 */
2272 	if (dev->dma_ops)
2273 		return;
2274 
2275 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2276 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2277 	else
2278 		dma_ops = arm_get_dma_map_ops(coherent);
2279 
2280 	set_dma_ops(dev, dma_ops);
2281 
2282 #ifdef CONFIG_XEN
2283 	if (xen_initial_domain())
2284 		dev->dma_ops = &xen_swiotlb_dma_ops;
2285 #endif
2286 	dev->archdata.dma_ops_setup = true;
2287 }
2288 
arch_teardown_dma_ops(struct device * dev)2289 void arch_teardown_dma_ops(struct device *dev)
2290 {
2291 	if (!dev->archdata.dma_ops_setup)
2292 		return;
2293 
2294 	arm_teardown_iommu_dma_ops(dev);
2295 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2296 	set_dma_ops(dev, NULL);
2297 }
2298 
2299 #ifdef CONFIG_SWIOTLB
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)2300 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2301 		enum dma_data_direction dir)
2302 {
2303 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2304 			      size, dir);
2305 }
2306 
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)2307 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2308 		enum dma_data_direction dir)
2309 {
2310 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2311 			      size, dir);
2312 }
2313 
arch_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)2314 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2315 		gfp_t gfp, unsigned long attrs)
2316 {
2317 	return __dma_alloc(dev, size, dma_handle, gfp,
2318 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2319 			   attrs, __builtin_return_address(0));
2320 }
2321 
arch_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)2322 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2323 		dma_addr_t dma_handle, unsigned long attrs)
2324 {
2325 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2326 }
2327 #endif /* CONFIG_SWIOTLB */
2328