1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 /*
46 * monitor mode reception
47 *
48 * This function cleans up the SKB, i.e. it removes all the stuff
49 * only useful for monitoring.
50 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
52 unsigned int present_fcs_len,
53 unsigned int rtap_space)
54 {
55 struct ieee80211_hdr *hdr;
56 unsigned int hdrlen;
57 __le16 fc;
58
59 if (present_fcs_len)
60 __pskb_trim(skb, skb->len - present_fcs_len);
61 __pskb_pull(skb, rtap_space);
62
63 hdr = (void *)skb->data;
64 fc = hdr->frame_control;
65
66 /*
67 * Remove the HT-Control field (if present) on management
68 * frames after we've sent the frame to monitoring. We
69 * (currently) don't need it, and don't properly parse
70 * frames with it present, due to the assumption of a
71 * fixed management header length.
72 */
73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 return skb;
75
76 hdrlen = ieee80211_hdrlen(fc);
77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78
79 if (!pskb_may_pull(skb, hdrlen)) {
80 dev_kfree_skb(skb);
81 return NULL;
82 }
83
84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 hdrlen - IEEE80211_HT_CTL_LEN);
86 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87
88 return skb;
89 }
90
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 unsigned int rtap_space)
93 {
94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 struct ieee80211_hdr *hdr;
96
97 hdr = (void *)(skb->data + rtap_space);
98
99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 RX_FLAG_FAILED_PLCP_CRC |
101 RX_FLAG_ONLY_MONITOR |
102 RX_FLAG_NO_PSDU))
103 return true;
104
105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 return true;
107
108 if (ieee80211_is_ctl(hdr->frame_control) &&
109 !ieee80211_is_pspoll(hdr->frame_control) &&
110 !ieee80211_is_back_req(hdr->frame_control))
111 return true;
112
113 return false;
114 }
115
116 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 struct ieee80211_rx_status *status,
119 struct sk_buff *skb)
120 {
121 int len;
122
123 /* always present fields */
124 len = sizeof(struct ieee80211_radiotap_header) + 8;
125
126 /* allocate extra bitmaps */
127 if (status->chains)
128 len += 4 * hweight8(status->chains);
129 /* vendor presence bitmap */
130 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
131 len += 4;
132
133 if (ieee80211_have_rx_timestamp(status)) {
134 len = ALIGN(len, 8);
135 len += 8;
136 }
137 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
138 len += 1;
139
140 /* antenna field, if we don't have per-chain info */
141 if (!status->chains)
142 len += 1;
143
144 /* padding for RX_FLAGS if necessary */
145 len = ALIGN(len, 2);
146
147 if (status->encoding == RX_ENC_HT) /* HT info */
148 len += 3;
149
150 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
151 len = ALIGN(len, 4);
152 len += 8;
153 }
154
155 if (status->encoding == RX_ENC_VHT) {
156 len = ALIGN(len, 2);
157 len += 12;
158 }
159
160 if (local->hw.radiotap_timestamp.units_pos >= 0) {
161 len = ALIGN(len, 8);
162 len += 12;
163 }
164
165 if (status->encoding == RX_ENC_HE &&
166 status->flag & RX_FLAG_RADIOTAP_HE) {
167 len = ALIGN(len, 2);
168 len += 12;
169 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
170 }
171
172 if (status->encoding == RX_ENC_HE &&
173 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
174 len = ALIGN(len, 2);
175 len += 12;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
177 }
178
179 if (status->flag & RX_FLAG_NO_PSDU)
180 len += 1;
181
182 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
183 len = ALIGN(len, 2);
184 len += 4;
185 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
186 }
187
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
191 }
192
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap;
195 int vendor_data_offset = 0;
196
197 /*
198 * The position to look at depends on the existence (or non-
199 * existence) of other elements, so take that into account...
200 */
201 if (status->flag & RX_FLAG_RADIOTAP_HE)
202 vendor_data_offset +=
203 sizeof(struct ieee80211_radiotap_he);
204 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
205 vendor_data_offset +=
206 sizeof(struct ieee80211_radiotap_he_mu);
207 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
208 vendor_data_offset +=
209 sizeof(struct ieee80211_radiotap_lsig);
210
211 rtap = (void *)&skb->data[vendor_data_offset];
212
213 /* alignment for fixed 6-byte vendor data header */
214 len = ALIGN(len, 2);
215 /* vendor data header */
216 len += 6;
217 if (WARN_ON(rtap->align == 0))
218 rtap->align = 1;
219 len = ALIGN(len, rtap->align);
220 len += rtap->len + rtap->pad;
221 }
222
223 return len;
224 }
225
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 struct sk_buff *skb,
228 int rtap_space)
229 {
230 struct {
231 struct ieee80211_hdr_3addr hdr;
232 u8 category;
233 u8 action_code;
234 } __packed __aligned(2) action;
235
236 if (!sdata)
237 return;
238
239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240
241 if (skb->len < rtap_space + sizeof(action) +
242 VHT_MUMIMO_GROUPS_DATA_LEN)
243 return;
244
245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 return;
247
248 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249
250 if (!ieee80211_is_action(action.hdr.frame_control))
251 return;
252
253 if (action.category != WLAN_CATEGORY_VHT)
254 return;
255
256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 return;
258
259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 return;
261
262 skb = skb_copy(skb, GFP_ATOMIC);
263 if (!skb)
264 return;
265
266 skb_queue_tail(&sdata->skb_queue, skb);
267 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269
270 /*
271 * ieee80211_add_rx_radiotap_header - add radiotap header
272 *
273 * add a radiotap header containing all the fields which the hardware provided.
274 */
275 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 struct sk_buff *skb,
278 struct ieee80211_rate *rate,
279 int rtap_len, bool has_fcs)
280 {
281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 struct ieee80211_radiotap_header *rthdr;
283 unsigned char *pos;
284 __le32 *it_present;
285 u32 it_present_val;
286 u16 rx_flags = 0;
287 u16 channel_flags = 0;
288 int mpdulen, chain;
289 unsigned long chains = status->chains;
290 struct ieee80211_vendor_radiotap rtap = {};
291 struct ieee80211_radiotap_he he = {};
292 struct ieee80211_radiotap_he_mu he_mu = {};
293 struct ieee80211_radiotap_lsig lsig = {};
294
295 if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 he = *(struct ieee80211_radiotap_he *)skb->data;
297 skb_pull(skb, sizeof(he));
298 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 }
300
301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 skb_pull(skb, sizeof(he_mu));
304 }
305
306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 skb_pull(skb, sizeof(lsig));
309 }
310
311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 /* rtap.len and rtap.pad are undone immediately */
314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 }
316
317 mpdulen = skb->len;
318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 mpdulen += FCS_LEN;
320
321 rthdr = skb_push(skb, rtap_len);
322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 it_present = &rthdr->it_present;
324
325 /* radiotap header, set always present flags */
326 rthdr->it_len = cpu_to_le16(rtap_len);
327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330
331 if (!status->chains)
332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333
334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 it_present_val |=
336 BIT(IEEE80211_RADIOTAP_EXT) |
337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 put_unaligned_le32(it_present_val, it_present);
339 it_present++;
340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 }
343
344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 BIT(IEEE80211_RADIOTAP_EXT);
347 put_unaligned_le32(it_present_val, it_present);
348 it_present++;
349 it_present_val = rtap.present;
350 }
351
352 put_unaligned_le32(it_present_val, it_present);
353
354 pos = (void *)(it_present + 1);
355
356 /* the order of the following fields is important */
357
358 /* IEEE80211_RADIOTAP_TSFT */
359 if (ieee80211_have_rx_timestamp(status)) {
360 /* padding */
361 while ((pos - (u8 *)rthdr) & 7)
362 *pos++ = 0;
363 put_unaligned_le64(
364 ieee80211_calculate_rx_timestamp(local, status,
365 mpdulen, 0),
366 pos);
367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 pos += 8;
369 }
370
371 /* IEEE80211_RADIOTAP_FLAGS */
372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 *pos |= IEEE80211_RADIOTAP_F_FCS;
374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 pos++;
379
380 /* IEEE80211_RADIOTAP_RATE */
381 if (!rate || status->encoding != RX_ENC_LEGACY) {
382 /*
383 * Without rate information don't add it. If we have,
384 * MCS information is a separate field in radiotap,
385 * added below. The byte here is needed as padding
386 * for the channel though, so initialise it to 0.
387 */
388 *pos = 0;
389 } else {
390 int shift = 0;
391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 if (status->bw == RATE_INFO_BW_10)
393 shift = 1;
394 else if (status->bw == RATE_INFO_BW_5)
395 shift = 2;
396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 }
398 pos++;
399
400 /* IEEE80211_RADIOTAP_CHANNEL */
401 /* TODO: frequency offset in KHz */
402 put_unaligned_le16(status->freq, pos);
403 pos += 2;
404 if (status->bw == RATE_INFO_BW_10)
405 channel_flags |= IEEE80211_CHAN_HALF;
406 else if (status->bw == RATE_INFO_BW_5)
407 channel_flags |= IEEE80211_CHAN_QUARTER;
408
409 if (status->band == NL80211_BAND_5GHZ ||
410 status->band == NL80211_BAND_6GHZ)
411 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
412 else if (status->encoding != RX_ENC_LEGACY)
413 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
414 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
415 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
416 else if (rate)
417 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
418 else
419 channel_flags |= IEEE80211_CHAN_2GHZ;
420 put_unaligned_le16(channel_flags, pos);
421 pos += 2;
422
423 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
424 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
425 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
426 *pos = status->signal;
427 rthdr->it_present |=
428 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
429 pos++;
430 }
431
432 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
433
434 if (!status->chains) {
435 /* IEEE80211_RADIOTAP_ANTENNA */
436 *pos = status->antenna;
437 pos++;
438 }
439
440 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
441
442 /* IEEE80211_RADIOTAP_RX_FLAGS */
443 /* ensure 2 byte alignment for the 2 byte field as required */
444 if ((pos - (u8 *)rthdr) & 1)
445 *pos++ = 0;
446 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
447 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
448 put_unaligned_le16(rx_flags, pos);
449 pos += 2;
450
451 if (status->encoding == RX_ENC_HT) {
452 unsigned int stbc;
453
454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
455 *pos++ = local->hw.radiotap_mcs_details;
456 *pos = 0;
457 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
458 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
459 if (status->bw == RATE_INFO_BW_40)
460 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
461 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
462 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
463 if (status->enc_flags & RX_ENC_FLAG_LDPC)
464 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
465 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
466 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
467 pos++;
468 *pos++ = status->rate_idx;
469 }
470
471 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
472 u16 flags = 0;
473
474 /* ensure 4 byte alignment */
475 while ((pos - (u8 *)rthdr) & 3)
476 pos++;
477 rthdr->it_present |=
478 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
479 put_unaligned_le32(status->ampdu_reference, pos);
480 pos += 4;
481 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
482 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
483 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
484 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
487 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
488 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
491 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
492 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
493 put_unaligned_le16(flags, pos);
494 pos += 2;
495 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
496 *pos++ = status->ampdu_delimiter_crc;
497 else
498 *pos++ = 0;
499 *pos++ = 0;
500 }
501
502 if (status->encoding == RX_ENC_VHT) {
503 u16 known = local->hw.radiotap_vht_details;
504
505 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
506 put_unaligned_le16(known, pos);
507 pos += 2;
508 /* flags */
509 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
511 /* in VHT, STBC is binary */
512 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
514 if (status->enc_flags & RX_ENC_FLAG_BF)
515 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
516 pos++;
517 /* bandwidth */
518 switch (status->bw) {
519 case RATE_INFO_BW_80:
520 *pos++ = 4;
521 break;
522 case RATE_INFO_BW_160:
523 *pos++ = 11;
524 break;
525 case RATE_INFO_BW_40:
526 *pos++ = 1;
527 break;
528 default:
529 *pos++ = 0;
530 }
531 /* MCS/NSS */
532 *pos = (status->rate_idx << 4) | status->nss;
533 pos += 4;
534 /* coding field */
535 if (status->enc_flags & RX_ENC_FLAG_LDPC)
536 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
537 pos++;
538 /* group ID */
539 pos++;
540 /* partial_aid */
541 pos += 2;
542 }
543
544 if (local->hw.radiotap_timestamp.units_pos >= 0) {
545 u16 accuracy = 0;
546 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
547
548 rthdr->it_present |=
549 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
550
551 /* ensure 8 byte alignment */
552 while ((pos - (u8 *)rthdr) & 7)
553 pos++;
554
555 put_unaligned_le64(status->device_timestamp, pos);
556 pos += sizeof(u64);
557
558 if (local->hw.radiotap_timestamp.accuracy >= 0) {
559 accuracy = local->hw.radiotap_timestamp.accuracy;
560 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
561 }
562 put_unaligned_le16(accuracy, pos);
563 pos += sizeof(u16);
564
565 *pos++ = local->hw.radiotap_timestamp.units_pos;
566 *pos++ = flags;
567 }
568
569 if (status->encoding == RX_ENC_HE &&
570 status->flag & RX_FLAG_RADIOTAP_HE) {
571 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
572
573 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
574 he.data6 |= HE_PREP(DATA6_NSTS,
575 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
576 status->enc_flags));
577 he.data3 |= HE_PREP(DATA3_STBC, 1);
578 } else {
579 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
580 }
581
582 #define CHECK_GI(s) \
583 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
584 (int)NL80211_RATE_INFO_HE_GI_##s)
585
586 CHECK_GI(0_8);
587 CHECK_GI(1_6);
588 CHECK_GI(3_2);
589
590 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
591 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
592 he.data3 |= HE_PREP(DATA3_CODING,
593 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
594
595 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
596
597 switch (status->bw) {
598 case RATE_INFO_BW_20:
599 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
600 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
601 break;
602 case RATE_INFO_BW_40:
603 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
604 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
605 break;
606 case RATE_INFO_BW_80:
607 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
608 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
609 break;
610 case RATE_INFO_BW_160:
611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
613 break;
614 case RATE_INFO_BW_HE_RU:
615 #define CHECK_RU_ALLOC(s) \
616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
617 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
618
619 CHECK_RU_ALLOC(26);
620 CHECK_RU_ALLOC(52);
621 CHECK_RU_ALLOC(106);
622 CHECK_RU_ALLOC(242);
623 CHECK_RU_ALLOC(484);
624 CHECK_RU_ALLOC(996);
625 CHECK_RU_ALLOC(2x996);
626
627 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
628 status->he_ru + 4);
629 break;
630 default:
631 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
632 }
633
634 /* ensure 2 byte alignment */
635 while ((pos - (u8 *)rthdr) & 1)
636 pos++;
637 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
638 memcpy(pos, &he, sizeof(he));
639 pos += sizeof(he);
640 }
641
642 if (status->encoding == RX_ENC_HE &&
643 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
644 /* ensure 2 byte alignment */
645 while ((pos - (u8 *)rthdr) & 1)
646 pos++;
647 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
648 memcpy(pos, &he_mu, sizeof(he_mu));
649 pos += sizeof(he_mu);
650 }
651
652 if (status->flag & RX_FLAG_NO_PSDU) {
653 rthdr->it_present |=
654 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
655 *pos++ = status->zero_length_psdu_type;
656 }
657
658 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
659 /* ensure 2 byte alignment */
660 while ((pos - (u8 *)rthdr) & 1)
661 pos++;
662 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
663 memcpy(pos, &lsig, sizeof(lsig));
664 pos += sizeof(lsig);
665 }
666
667 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
668 *pos++ = status->chain_signal[chain];
669 *pos++ = chain;
670 }
671
672 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
673 /* ensure 2 byte alignment for the vendor field as required */
674 if ((pos - (u8 *)rthdr) & 1)
675 *pos++ = 0;
676 *pos++ = rtap.oui[0];
677 *pos++ = rtap.oui[1];
678 *pos++ = rtap.oui[2];
679 *pos++ = rtap.subns;
680 put_unaligned_le16(rtap.len, pos);
681 pos += 2;
682 /* align the actual payload as requested */
683 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
684 *pos++ = 0;
685 /* data (and possible padding) already follows */
686 }
687 }
688
689 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)690 ieee80211_make_monitor_skb(struct ieee80211_local *local,
691 struct sk_buff **origskb,
692 struct ieee80211_rate *rate,
693 int rtap_space, bool use_origskb)
694 {
695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
696 int rt_hdrlen, needed_headroom;
697 struct sk_buff *skb;
698
699 /* room for the radiotap header based on driver features */
700 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
701 needed_headroom = rt_hdrlen - rtap_space;
702
703 if (use_origskb) {
704 /* only need to expand headroom if necessary */
705 skb = *origskb;
706 *origskb = NULL;
707
708 /*
709 * This shouldn't trigger often because most devices have an
710 * RX header they pull before we get here, and that should
711 * be big enough for our radiotap information. We should
712 * probably export the length to drivers so that we can have
713 * them allocate enough headroom to start with.
714 */
715 if (skb_headroom(skb) < needed_headroom &&
716 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
717 dev_kfree_skb(skb);
718 return NULL;
719 }
720 } else {
721 /*
722 * Need to make a copy and possibly remove radiotap header
723 * and FCS from the original.
724 */
725 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
726
727 if (!skb)
728 return NULL;
729 }
730
731 /* prepend radiotap information */
732 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
733
734 skb_reset_mac_header(skb);
735 skb->ip_summed = CHECKSUM_UNNECESSARY;
736 skb->pkt_type = PACKET_OTHERHOST;
737 skb->protocol = htons(ETH_P_802_2);
738
739 return skb;
740 }
741
742 /*
743 * This function copies a received frame to all monitor interfaces and
744 * returns a cleaned-up SKB that no longer includes the FCS nor the
745 * radiotap header the driver might have added.
746 */
747 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
749 struct ieee80211_rate *rate)
750 {
751 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
752 struct ieee80211_sub_if_data *sdata;
753 struct sk_buff *monskb = NULL;
754 int present_fcs_len = 0;
755 unsigned int rtap_space = 0;
756 struct ieee80211_sub_if_data *monitor_sdata =
757 rcu_dereference(local->monitor_sdata);
758 bool only_monitor = false;
759 unsigned int min_head_len;
760
761 if (status->flag & RX_FLAG_RADIOTAP_HE)
762 rtap_space += sizeof(struct ieee80211_radiotap_he);
763
764 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
765 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
766
767 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
768 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
769
770 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
771 struct ieee80211_vendor_radiotap *rtap =
772 (void *)(origskb->data + rtap_space);
773
774 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
775 }
776
777 min_head_len = rtap_space;
778
779 /*
780 * First, we may need to make a copy of the skb because
781 * (1) we need to modify it for radiotap (if not present), and
782 * (2) the other RX handlers will modify the skb we got.
783 *
784 * We don't need to, of course, if we aren't going to return
785 * the SKB because it has a bad FCS/PLCP checksum.
786 */
787
788 if (!(status->flag & RX_FLAG_NO_PSDU)) {
789 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
790 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
791 /* driver bug */
792 WARN_ON(1);
793 dev_kfree_skb(origskb);
794 return NULL;
795 }
796 present_fcs_len = FCS_LEN;
797 }
798
799 /* also consider the hdr->frame_control */
800 min_head_len += 2;
801 }
802
803 /* ensure that the expected data elements are in skb head */
804 if (!pskb_may_pull(origskb, min_head_len)) {
805 dev_kfree_skb(origskb);
806 return NULL;
807 }
808
809 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
810
811 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
812 if (only_monitor) {
813 dev_kfree_skb(origskb);
814 return NULL;
815 }
816
817 return ieee80211_clean_skb(origskb, present_fcs_len,
818 rtap_space);
819 }
820
821 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
822
823 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
824 bool last_monitor = list_is_last(&sdata->u.mntr.list,
825 &local->mon_list);
826
827 if (!monskb)
828 monskb = ieee80211_make_monitor_skb(local, &origskb,
829 rate, rtap_space,
830 only_monitor &&
831 last_monitor);
832
833 if (monskb) {
834 struct sk_buff *skb;
835
836 if (last_monitor) {
837 skb = monskb;
838 monskb = NULL;
839 } else {
840 skb = skb_clone(monskb, GFP_ATOMIC);
841 }
842
843 if (skb) {
844 skb->dev = sdata->dev;
845 ieee80211_rx_stats(skb->dev, skb->len);
846 netif_receive_skb(skb);
847 }
848 }
849
850 if (last_monitor)
851 break;
852 }
853
854 /* this happens if last_monitor was erroneously false */
855 dev_kfree_skb(monskb);
856
857 /* ditto */
858 if (!origskb)
859 return NULL;
860
861 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
862 }
863
ieee80211_parse_qos(struct ieee80211_rx_data * rx)864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
865 {
866 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
868 int tid, seqno_idx, security_idx;
869
870 /* does the frame have a qos control field? */
871 if (ieee80211_is_data_qos(hdr->frame_control)) {
872 u8 *qc = ieee80211_get_qos_ctl(hdr);
873 /* frame has qos control */
874 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
875 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
876 status->rx_flags |= IEEE80211_RX_AMSDU;
877
878 seqno_idx = tid;
879 security_idx = tid;
880 } else {
881 /*
882 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
883 *
884 * Sequence numbers for management frames, QoS data
885 * frames with a broadcast/multicast address in the
886 * Address 1 field, and all non-QoS data frames sent
887 * by QoS STAs are assigned using an additional single
888 * modulo-4096 counter, [...]
889 *
890 * We also use that counter for non-QoS STAs.
891 */
892 seqno_idx = IEEE80211_NUM_TIDS;
893 security_idx = 0;
894 if (ieee80211_is_mgmt(hdr->frame_control))
895 security_idx = IEEE80211_NUM_TIDS;
896 tid = 0;
897 }
898
899 rx->seqno_idx = seqno_idx;
900 rx->security_idx = security_idx;
901 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
902 * For now, set skb->priority to 0 for other cases. */
903 rx->skb->priority = (tid > 7) ? 0 : tid;
904 }
905
906 /**
907 * DOC: Packet alignment
908 *
909 * Drivers always need to pass packets that are aligned to two-byte boundaries
910 * to the stack.
911 *
912 * Additionally, should, if possible, align the payload data in a way that
913 * guarantees that the contained IP header is aligned to a four-byte
914 * boundary. In the case of regular frames, this simply means aligning the
915 * payload to a four-byte boundary (because either the IP header is directly
916 * contained, or IV/RFC1042 headers that have a length divisible by four are
917 * in front of it). If the payload data is not properly aligned and the
918 * architecture doesn't support efficient unaligned operations, mac80211
919 * will align the data.
920 *
921 * With A-MSDU frames, however, the payload data address must yield two modulo
922 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
923 * push the IP header further back to a multiple of four again. Thankfully, the
924 * specs were sane enough this time around to require padding each A-MSDU
925 * subframe to a length that is a multiple of four.
926 *
927 * Padding like Atheros hardware adds which is between the 802.11 header and
928 * the payload is not supported, the driver is required to move the 802.11
929 * header to be directly in front of the payload in that case.
930 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
932 {
933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
934 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
935 #endif
936 }
937
938
939 /* rx handlers */
940
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944
945 if (is_multicast_ether_addr(hdr->addr1))
946 return 0;
947
948 return ieee80211_is_robust_mgmt_frame(skb);
949 }
950
951
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955
956 if (!is_multicast_ether_addr(hdr->addr1))
957 return 0;
958
959 return ieee80211_is_robust_mgmt_frame(skb);
960 }
961
962
963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
965 {
966 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
967 struct ieee80211_mmie *mmie;
968 struct ieee80211_mmie_16 *mmie16;
969
970 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
971 return -1;
972
973 if (!ieee80211_is_robust_mgmt_frame(skb) &&
974 !ieee80211_is_beacon(hdr->frame_control))
975 return -1; /* not a robust management frame */
976
977 mmie = (struct ieee80211_mmie *)
978 (skb->data + skb->len - sizeof(*mmie));
979 if (mmie->element_id == WLAN_EID_MMIE &&
980 mmie->length == sizeof(*mmie) - 2)
981 return le16_to_cpu(mmie->key_id);
982
983 mmie16 = (struct ieee80211_mmie_16 *)
984 (skb->data + skb->len - sizeof(*mmie16));
985 if (skb->len >= 24 + sizeof(*mmie16) &&
986 mmie16->element_id == WLAN_EID_MMIE &&
987 mmie16->length == sizeof(*mmie16) - 2)
988 return le16_to_cpu(mmie16->key_id);
989
990 return -1;
991 }
992
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)993 static int ieee80211_get_keyid(struct sk_buff *skb,
994 const struct ieee80211_cipher_scheme *cs)
995 {
996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
997 __le16 fc;
998 int hdrlen;
999 int minlen;
1000 u8 key_idx_off;
1001 u8 key_idx_shift;
1002 u8 keyid;
1003
1004 fc = hdr->frame_control;
1005 hdrlen = ieee80211_hdrlen(fc);
1006
1007 if (cs) {
1008 minlen = hdrlen + cs->hdr_len;
1009 key_idx_off = hdrlen + cs->key_idx_off;
1010 key_idx_shift = cs->key_idx_shift;
1011 } else {
1012 /* WEP, TKIP, CCMP and GCMP */
1013 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1014 key_idx_off = hdrlen + 3;
1015 key_idx_shift = 6;
1016 }
1017
1018 if (unlikely(skb->len < minlen))
1019 return -EINVAL;
1020
1021 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1022
1023 if (cs)
1024 keyid &= cs->key_idx_mask;
1025 keyid >>= key_idx_shift;
1026
1027 /* cs could use more than the usual two bits for the keyid */
1028 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1029 return -EINVAL;
1030
1031 return keyid;
1032 }
1033
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1035 {
1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1037 char *dev_addr = rx->sdata->vif.addr;
1038
1039 if (ieee80211_is_data(hdr->frame_control)) {
1040 if (is_multicast_ether_addr(hdr->addr1)) {
1041 if (ieee80211_has_tods(hdr->frame_control) ||
1042 !ieee80211_has_fromds(hdr->frame_control))
1043 return RX_DROP_MONITOR;
1044 if (ether_addr_equal(hdr->addr3, dev_addr))
1045 return RX_DROP_MONITOR;
1046 } else {
1047 if (!ieee80211_has_a4(hdr->frame_control))
1048 return RX_DROP_MONITOR;
1049 if (ether_addr_equal(hdr->addr4, dev_addr))
1050 return RX_DROP_MONITOR;
1051 }
1052 }
1053
1054 /* If there is not an established peer link and this is not a peer link
1055 * establisment frame, beacon or probe, drop the frame.
1056 */
1057
1058 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1059 struct ieee80211_mgmt *mgmt;
1060
1061 if (!ieee80211_is_mgmt(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063
1064 if (ieee80211_is_action(hdr->frame_control)) {
1065 u8 category;
1066
1067 /* make sure category field is present */
1068 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1069 return RX_DROP_MONITOR;
1070
1071 mgmt = (struct ieee80211_mgmt *)hdr;
1072 category = mgmt->u.action.category;
1073 if (category != WLAN_CATEGORY_MESH_ACTION &&
1074 category != WLAN_CATEGORY_SELF_PROTECTED)
1075 return RX_DROP_MONITOR;
1076 return RX_CONTINUE;
1077 }
1078
1079 if (ieee80211_is_probe_req(hdr->frame_control) ||
1080 ieee80211_is_probe_resp(hdr->frame_control) ||
1081 ieee80211_is_beacon(hdr->frame_control) ||
1082 ieee80211_is_auth(hdr->frame_control))
1083 return RX_CONTINUE;
1084
1085 return RX_DROP_MONITOR;
1086 }
1087
1088 return RX_CONTINUE;
1089 }
1090
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1092 int index)
1093 {
1094 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1095 struct sk_buff *tail = skb_peek_tail(frames);
1096 struct ieee80211_rx_status *status;
1097
1098 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1099 return true;
1100
1101 if (!tail)
1102 return false;
1103
1104 status = IEEE80211_SKB_RXCB(tail);
1105 if (status->flag & RX_FLAG_AMSDU_MORE)
1106 return false;
1107
1108 return true;
1109 }
1110
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1112 struct tid_ampdu_rx *tid_agg_rx,
1113 int index,
1114 struct sk_buff_head *frames)
1115 {
1116 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1117 struct sk_buff *skb;
1118 struct ieee80211_rx_status *status;
1119
1120 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1121
1122 if (skb_queue_empty(skb_list))
1123 goto no_frame;
1124
1125 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1126 __skb_queue_purge(skb_list);
1127 goto no_frame;
1128 }
1129
1130 /* release frames from the reorder ring buffer */
1131 tid_agg_rx->stored_mpdu_num--;
1132 while ((skb = __skb_dequeue(skb_list))) {
1133 status = IEEE80211_SKB_RXCB(skb);
1134 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1135 __skb_queue_tail(frames, skb);
1136 }
1137
1138 no_frame:
1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1141 }
1142
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 struct tid_ampdu_rx *tid_agg_rx,
1145 u16 head_seq_num,
1146 struct sk_buff_head *frames)
1147 {
1148 int index;
1149
1150 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151
1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 frames);
1156 }
1157 }
1158
1159 /*
1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161 * the skb was added to the buffer longer than this time ago, the earlier
1162 * frames that have not yet been received are assumed to be lost and the skb
1163 * can be released for processing. This may also release other skb's from the
1164 * reorder buffer if there are no additional gaps between the frames.
1165 *
1166 * Callers must hold tid_agg_rx->reorder_lock.
1167 */
1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 struct tid_ampdu_rx *tid_agg_rx,
1172 struct sk_buff_head *frames)
1173 {
1174 int index, i, j;
1175
1176 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177
1178 /* release the buffer until next missing frame */
1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 tid_agg_rx->stored_mpdu_num) {
1182 /*
1183 * No buffers ready to be released, but check whether any
1184 * frames in the reorder buffer have timed out.
1185 */
1186 int skipped = 1;
1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 j = (j + 1) % tid_agg_rx->buf_size) {
1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1190 skipped++;
1191 continue;
1192 }
1193 if (skipped &&
1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 HT_RX_REORDER_BUF_TIMEOUT))
1196 goto set_release_timer;
1197
1198 /* don't leave incomplete A-MSDUs around */
1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 i = (i + 1) % tid_agg_rx->buf_size)
1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1202
1203 ht_dbg_ratelimited(sdata,
1204 "release an RX reorder frame due to timeout on earlier frames\n");
1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1206 frames);
1207
1208 /*
1209 * Increment the head seq# also for the skipped slots.
1210 */
1211 tid_agg_rx->head_seq_num =
1212 (tid_agg_rx->head_seq_num +
1213 skipped) & IEEE80211_SN_MASK;
1214 skipped = 0;
1215 }
1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 frames);
1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 }
1221
1222 if (tid_agg_rx->stored_mpdu_num) {
1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224
1225 for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 j = (j + 1) % tid_agg_rx->buf_size) {
1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1228 break;
1229 }
1230
1231 set_release_timer:
1232
1233 if (!tid_agg_rx->removed)
1234 mod_timer(&tid_agg_rx->reorder_timer,
1235 tid_agg_rx->reorder_time[j] + 1 +
1236 HT_RX_REORDER_BUF_TIMEOUT);
1237 } else {
1238 del_timer(&tid_agg_rx->reorder_timer);
1239 }
1240 }
1241
1242 /*
1243 * As this function belongs to the RX path it must be under
1244 * rcu_read_lock protection. It returns false if the frame
1245 * can be processed immediately, true if it was consumed.
1246 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 struct tid_ampdu_rx *tid_agg_rx,
1249 struct sk_buff *skb,
1250 struct sk_buff_head *frames)
1251 {
1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1255 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256 u16 head_seq_num, buf_size;
1257 int index;
1258 bool ret = true;
1259
1260 spin_lock(&tid_agg_rx->reorder_lock);
1261
1262 /*
1263 * Offloaded BA sessions have no known starting sequence number so pick
1264 * one from first Rxed frame for this tid after BA was started.
1265 */
1266 if (unlikely(tid_agg_rx->auto_seq)) {
1267 tid_agg_rx->auto_seq = false;
1268 tid_agg_rx->ssn = mpdu_seq_num;
1269 tid_agg_rx->head_seq_num = mpdu_seq_num;
1270 }
1271
1272 buf_size = tid_agg_rx->buf_size;
1273 head_seq_num = tid_agg_rx->head_seq_num;
1274
1275 /*
1276 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1277 * be reordered.
1278 */
1279 if (unlikely(!tid_agg_rx->started)) {
1280 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1281 ret = false;
1282 goto out;
1283 }
1284 tid_agg_rx->started = true;
1285 }
1286
1287 /* frame with out of date sequence number */
1288 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1289 dev_kfree_skb(skb);
1290 goto out;
1291 }
1292
1293 /*
1294 * If frame the sequence number exceeds our buffering window
1295 * size release some previous frames to make room for this one.
1296 */
1297 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1298 head_seq_num = ieee80211_sn_inc(
1299 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1300 /* release stored frames up to new head to stack */
1301 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1302 head_seq_num, frames);
1303 }
1304
1305 /* Now the new frame is always in the range of the reordering buffer */
1306
1307 index = mpdu_seq_num % tid_agg_rx->buf_size;
1308
1309 /* check if we already stored this frame */
1310 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1311 dev_kfree_skb(skb);
1312 goto out;
1313 }
1314
1315 /*
1316 * If the current MPDU is in the right order and nothing else
1317 * is stored we can process it directly, no need to buffer it.
1318 * If it is first but there's something stored, we may be able
1319 * to release frames after this one.
1320 */
1321 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1322 tid_agg_rx->stored_mpdu_num == 0) {
1323 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1324 tid_agg_rx->head_seq_num =
1325 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1326 ret = false;
1327 goto out;
1328 }
1329
1330 /* put the frame in the reordering buffer */
1331 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1333 tid_agg_rx->reorder_time[index] = jiffies;
1334 tid_agg_rx->stored_mpdu_num++;
1335 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1336 }
1337
1338 out:
1339 spin_unlock(&tid_agg_rx->reorder_lock);
1340 return ret;
1341 }
1342
1343 /*
1344 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1345 * true if the MPDU was buffered, false if it should be processed.
1346 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1348 struct sk_buff_head *frames)
1349 {
1350 struct sk_buff *skb = rx->skb;
1351 struct ieee80211_local *local = rx->local;
1352 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1353 struct sta_info *sta = rx->sta;
1354 struct tid_ampdu_rx *tid_agg_rx;
1355 u16 sc;
1356 u8 tid, ack_policy;
1357
1358 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1359 is_multicast_ether_addr(hdr->addr1))
1360 goto dont_reorder;
1361
1362 /*
1363 * filter the QoS data rx stream according to
1364 * STA/TID and check if this STA/TID is on aggregation
1365 */
1366
1367 if (!sta)
1368 goto dont_reorder;
1369
1370 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1371 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1372 tid = ieee80211_get_tid(hdr);
1373
1374 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1375 if (!tid_agg_rx) {
1376 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1377 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1378 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1379 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1380 WLAN_BACK_RECIPIENT,
1381 WLAN_REASON_QSTA_REQUIRE_SETUP);
1382 goto dont_reorder;
1383 }
1384
1385 /* qos null data frames are excluded */
1386 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1387 goto dont_reorder;
1388
1389 /* not part of a BA session */
1390 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1391 goto dont_reorder;
1392
1393 /* new, potentially un-ordered, ampdu frame - process it */
1394
1395 /* reset session timer */
1396 if (tid_agg_rx->timeout)
1397 tid_agg_rx->last_rx = jiffies;
1398
1399 /* if this mpdu is fragmented - terminate rx aggregation session */
1400 sc = le16_to_cpu(hdr->seq_ctrl);
1401 if (sc & IEEE80211_SCTL_FRAG) {
1402 skb_queue_tail(&rx->sdata->skb_queue, skb);
1403 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1404 return;
1405 }
1406
1407 /*
1408 * No locking needed -- we will only ever process one
1409 * RX packet at a time, and thus own tid_agg_rx. All
1410 * other code manipulating it needs to (and does) make
1411 * sure that we cannot get to it any more before doing
1412 * anything with it.
1413 */
1414 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1415 frames))
1416 return;
1417
1418 dont_reorder:
1419 __skb_queue_tail(frames, skb);
1420 }
1421
1422 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1423 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1424 {
1425 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1426 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1427
1428 if (status->flag & RX_FLAG_DUP_VALIDATED)
1429 return RX_CONTINUE;
1430
1431 /*
1432 * Drop duplicate 802.11 retransmissions
1433 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1434 */
1435
1436 if (rx->skb->len < 24)
1437 return RX_CONTINUE;
1438
1439 if (ieee80211_is_ctl(hdr->frame_control) ||
1440 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1441 is_multicast_ether_addr(hdr->addr1))
1442 return RX_CONTINUE;
1443
1444 if (!rx->sta)
1445 return RX_CONTINUE;
1446
1447 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1448 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1449 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1450 rx->sta->rx_stats.num_duplicates++;
1451 return RX_DROP_UNUSABLE;
1452 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1453 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1454 }
1455
1456 return RX_CONTINUE;
1457 }
1458
1459 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1460 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1461 {
1462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1463
1464 /* Drop disallowed frame classes based on STA auth/assoc state;
1465 * IEEE 802.11, Chap 5.5.
1466 *
1467 * mac80211 filters only based on association state, i.e. it drops
1468 * Class 3 frames from not associated stations. hostapd sends
1469 * deauth/disassoc frames when needed. In addition, hostapd is
1470 * responsible for filtering on both auth and assoc states.
1471 */
1472
1473 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1474 return ieee80211_rx_mesh_check(rx);
1475
1476 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1477 ieee80211_is_pspoll(hdr->frame_control)) &&
1478 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1479 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1480 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1481 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1482 /*
1483 * accept port control frames from the AP even when it's not
1484 * yet marked ASSOC to prevent a race where we don't set the
1485 * assoc bit quickly enough before it sends the first frame
1486 */
1487 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1488 ieee80211_is_data_present(hdr->frame_control)) {
1489 unsigned int hdrlen;
1490 __be16 ethertype;
1491
1492 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1493
1494 if (rx->skb->len < hdrlen + 8)
1495 return RX_DROP_MONITOR;
1496
1497 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1498 if (ethertype == rx->sdata->control_port_protocol)
1499 return RX_CONTINUE;
1500 }
1501
1502 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1503 cfg80211_rx_spurious_frame(rx->sdata->dev,
1504 hdr->addr2,
1505 GFP_ATOMIC))
1506 return RX_DROP_UNUSABLE;
1507
1508 return RX_DROP_MONITOR;
1509 }
1510
1511 return RX_CONTINUE;
1512 }
1513
1514
1515 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1516 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1517 {
1518 struct ieee80211_local *local;
1519 struct ieee80211_hdr *hdr;
1520 struct sk_buff *skb;
1521
1522 local = rx->local;
1523 skb = rx->skb;
1524 hdr = (struct ieee80211_hdr *) skb->data;
1525
1526 if (!local->pspolling)
1527 return RX_CONTINUE;
1528
1529 if (!ieee80211_has_fromds(hdr->frame_control))
1530 /* this is not from AP */
1531 return RX_CONTINUE;
1532
1533 if (!ieee80211_is_data(hdr->frame_control))
1534 return RX_CONTINUE;
1535
1536 if (!ieee80211_has_moredata(hdr->frame_control)) {
1537 /* AP has no more frames buffered for us */
1538 local->pspolling = false;
1539 return RX_CONTINUE;
1540 }
1541
1542 /* more data bit is set, let's request a new frame from the AP */
1543 ieee80211_send_pspoll(local, rx->sdata);
1544
1545 return RX_CONTINUE;
1546 }
1547
sta_ps_start(struct sta_info * sta)1548 static void sta_ps_start(struct sta_info *sta)
1549 {
1550 struct ieee80211_sub_if_data *sdata = sta->sdata;
1551 struct ieee80211_local *local = sdata->local;
1552 struct ps_data *ps;
1553 int tid;
1554
1555 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1556 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1557 ps = &sdata->bss->ps;
1558 else
1559 return;
1560
1561 atomic_inc(&ps->num_sta_ps);
1562 set_sta_flag(sta, WLAN_STA_PS_STA);
1563 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1564 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1565 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1566 sta->sta.addr, sta->sta.aid);
1567
1568 ieee80211_clear_fast_xmit(sta);
1569
1570 if (!sta->sta.txq[0])
1571 return;
1572
1573 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1574 struct ieee80211_txq *txq = sta->sta.txq[tid];
1575 struct txq_info *txqi = to_txq_info(txq);
1576
1577 spin_lock(&local->active_txq_lock[txq->ac]);
1578 if (!list_empty(&txqi->schedule_order))
1579 list_del_init(&txqi->schedule_order);
1580 spin_unlock(&local->active_txq_lock[txq->ac]);
1581
1582 if (txq_has_queue(txq))
1583 set_bit(tid, &sta->txq_buffered_tids);
1584 else
1585 clear_bit(tid, &sta->txq_buffered_tids);
1586 }
1587 }
1588
sta_ps_end(struct sta_info * sta)1589 static void sta_ps_end(struct sta_info *sta)
1590 {
1591 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1592 sta->sta.addr, sta->sta.aid);
1593
1594 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1595 /*
1596 * Clear the flag only if the other one is still set
1597 * so that the TX path won't start TX'ing new frames
1598 * directly ... In the case that the driver flag isn't
1599 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1600 */
1601 clear_sta_flag(sta, WLAN_STA_PS_STA);
1602 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1603 sta->sta.addr, sta->sta.aid);
1604 return;
1605 }
1606
1607 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1608 clear_sta_flag(sta, WLAN_STA_PS_STA);
1609 ieee80211_sta_ps_deliver_wakeup(sta);
1610 }
1611
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1612 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1613 {
1614 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1615 bool in_ps;
1616
1617 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1618
1619 /* Don't let the same PS state be set twice */
1620 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1621 if ((start && in_ps) || (!start && !in_ps))
1622 return -EINVAL;
1623
1624 if (start)
1625 sta_ps_start(sta);
1626 else
1627 sta_ps_end(sta);
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1632
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1633 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1634 {
1635 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1636
1637 if (test_sta_flag(sta, WLAN_STA_SP))
1638 return;
1639
1640 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1641 ieee80211_sta_ps_deliver_poll_response(sta);
1642 else
1643 set_sta_flag(sta, WLAN_STA_PSPOLL);
1644 }
1645 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1646
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1647 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1648 {
1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1650 int ac = ieee80211_ac_from_tid(tid);
1651
1652 /*
1653 * If this AC is not trigger-enabled do nothing unless the
1654 * driver is calling us after it already checked.
1655 *
1656 * NB: This could/should check a separate bitmap of trigger-
1657 * enabled queues, but for now we only implement uAPSD w/o
1658 * TSPEC changes to the ACs, so they're always the same.
1659 */
1660 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1661 tid != IEEE80211_NUM_TIDS)
1662 return;
1663
1664 /* if we are in a service period, do nothing */
1665 if (test_sta_flag(sta, WLAN_STA_SP))
1666 return;
1667
1668 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1669 ieee80211_sta_ps_deliver_uapsd(sta);
1670 else
1671 set_sta_flag(sta, WLAN_STA_UAPSD);
1672 }
1673 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1674
1675 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1676 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1677 {
1678 struct ieee80211_sub_if_data *sdata = rx->sdata;
1679 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1680 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1681
1682 if (!rx->sta)
1683 return RX_CONTINUE;
1684
1685 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1686 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1687 return RX_CONTINUE;
1688
1689 /*
1690 * The device handles station powersave, so don't do anything about
1691 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1692 * it to mac80211 since they're handled.)
1693 */
1694 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1695 return RX_CONTINUE;
1696
1697 /*
1698 * Don't do anything if the station isn't already asleep. In
1699 * the uAPSD case, the station will probably be marked asleep,
1700 * in the PS-Poll case the station must be confused ...
1701 */
1702 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1703 return RX_CONTINUE;
1704
1705 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1706 ieee80211_sta_pspoll(&rx->sta->sta);
1707
1708 /* Free PS Poll skb here instead of returning RX_DROP that would
1709 * count as an dropped frame. */
1710 dev_kfree_skb(rx->skb);
1711
1712 return RX_QUEUED;
1713 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1714 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1715 ieee80211_has_pm(hdr->frame_control) &&
1716 (ieee80211_is_data_qos(hdr->frame_control) ||
1717 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1718 u8 tid = ieee80211_get_tid(hdr);
1719
1720 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1721 }
1722
1723 return RX_CONTINUE;
1724 }
1725
1726 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1727 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1728 {
1729 struct sta_info *sta = rx->sta;
1730 struct sk_buff *skb = rx->skb;
1731 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1732 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1733 int i;
1734
1735 if (!sta)
1736 return RX_CONTINUE;
1737
1738 /*
1739 * Update last_rx only for IBSS packets which are for the current
1740 * BSSID and for station already AUTHORIZED to avoid keeping the
1741 * current IBSS network alive in cases where other STAs start
1742 * using different BSSID. This will also give the station another
1743 * chance to restart the authentication/authorization in case
1744 * something went wrong the first time.
1745 */
1746 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1747 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1748 NL80211_IFTYPE_ADHOC);
1749 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1750 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1751 sta->rx_stats.last_rx = jiffies;
1752 if (ieee80211_is_data(hdr->frame_control) &&
1753 !is_multicast_ether_addr(hdr->addr1))
1754 sta->rx_stats.last_rate =
1755 sta_stats_encode_rate(status);
1756 }
1757 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1758 sta->rx_stats.last_rx = jiffies;
1759 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1760 !is_multicast_ether_addr(hdr->addr1)) {
1761 /*
1762 * Mesh beacons will update last_rx when if they are found to
1763 * match the current local configuration when processed.
1764 */
1765 sta->rx_stats.last_rx = jiffies;
1766 if (ieee80211_is_data(hdr->frame_control))
1767 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1768 }
1769
1770 sta->rx_stats.fragments++;
1771
1772 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1773 sta->rx_stats.bytes += rx->skb->len;
1774 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1775
1776 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1777 sta->rx_stats.last_signal = status->signal;
1778 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1779 }
1780
1781 if (status->chains) {
1782 sta->rx_stats.chains = status->chains;
1783 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1784 int signal = status->chain_signal[i];
1785
1786 if (!(status->chains & BIT(i)))
1787 continue;
1788
1789 sta->rx_stats.chain_signal_last[i] = signal;
1790 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1791 -signal);
1792 }
1793 }
1794
1795 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1796 return RX_CONTINUE;
1797
1798 /*
1799 * Change STA power saving mode only at the end of a frame
1800 * exchange sequence, and only for a data or management
1801 * frame as specified in IEEE 802.11-2016 11.2.3.2
1802 */
1803 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1804 !ieee80211_has_morefrags(hdr->frame_control) &&
1805 !is_multicast_ether_addr(hdr->addr1) &&
1806 (ieee80211_is_mgmt(hdr->frame_control) ||
1807 ieee80211_is_data(hdr->frame_control)) &&
1808 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1809 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1810 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1811 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1812 if (!ieee80211_has_pm(hdr->frame_control))
1813 sta_ps_end(sta);
1814 } else {
1815 if (ieee80211_has_pm(hdr->frame_control))
1816 sta_ps_start(sta);
1817 }
1818 }
1819
1820 /* mesh power save support */
1821 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1822 ieee80211_mps_rx_h_sta_process(sta, hdr);
1823
1824 /*
1825 * Drop (qos-)data::nullfunc frames silently, since they
1826 * are used only to control station power saving mode.
1827 */
1828 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1829 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1830
1831 /*
1832 * If we receive a 4-addr nullfunc frame from a STA
1833 * that was not moved to a 4-addr STA vlan yet send
1834 * the event to userspace and for older hostapd drop
1835 * the frame to the monitor interface.
1836 */
1837 if (ieee80211_has_a4(hdr->frame_control) &&
1838 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1839 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1840 !rx->sdata->u.vlan.sta))) {
1841 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1842 cfg80211_rx_unexpected_4addr_frame(
1843 rx->sdata->dev, sta->sta.addr,
1844 GFP_ATOMIC);
1845 return RX_DROP_MONITOR;
1846 }
1847 /*
1848 * Update counter and free packet here to avoid
1849 * counting this as a dropped packed.
1850 */
1851 sta->rx_stats.packets++;
1852 dev_kfree_skb(rx->skb);
1853 return RX_QUEUED;
1854 }
1855
1856 return RX_CONTINUE;
1857 } /* ieee80211_rx_h_sta_process */
1858
1859 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1860 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1861 {
1862 struct ieee80211_key *key = NULL;
1863 struct ieee80211_sub_if_data *sdata = rx->sdata;
1864 int idx2;
1865
1866 /* Make sure key gets set if either BIGTK key index is set so that
1867 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1868 * Beacon frames and Beacon frames that claim to use another BIGTK key
1869 * index (i.e., a key that we do not have).
1870 */
1871
1872 if (idx < 0) {
1873 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1874 idx2 = idx + 1;
1875 } else {
1876 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1877 idx2 = idx + 1;
1878 else
1879 idx2 = idx - 1;
1880 }
1881
1882 if (rx->sta)
1883 key = rcu_dereference(rx->sta->gtk[idx]);
1884 if (!key)
1885 key = rcu_dereference(sdata->keys[idx]);
1886 if (!key && rx->sta)
1887 key = rcu_dereference(rx->sta->gtk[idx2]);
1888 if (!key)
1889 key = rcu_dereference(sdata->keys[idx2]);
1890
1891 return key;
1892 }
1893
1894 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1895 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1896 {
1897 struct sk_buff *skb = rx->skb;
1898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1900 int keyidx;
1901 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1902 struct ieee80211_key *sta_ptk = NULL;
1903 struct ieee80211_key *ptk_idx = NULL;
1904 int mmie_keyidx = -1;
1905 __le16 fc;
1906 const struct ieee80211_cipher_scheme *cs = NULL;
1907
1908 if (ieee80211_is_ext(hdr->frame_control))
1909 return RX_CONTINUE;
1910
1911 /*
1912 * Key selection 101
1913 *
1914 * There are five types of keys:
1915 * - GTK (group keys)
1916 * - IGTK (group keys for management frames)
1917 * - BIGTK (group keys for Beacon frames)
1918 * - PTK (pairwise keys)
1919 * - STK (station-to-station pairwise keys)
1920 *
1921 * When selecting a key, we have to distinguish between multicast
1922 * (including broadcast) and unicast frames, the latter can only
1923 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1924 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1925 * then unicast frames can also use key indices like GTKs. Hence, if we
1926 * don't have a PTK/STK we check the key index for a WEP key.
1927 *
1928 * Note that in a regular BSS, multicast frames are sent by the
1929 * AP only, associated stations unicast the frame to the AP first
1930 * which then multicasts it on their behalf.
1931 *
1932 * There is also a slight problem in IBSS mode: GTKs are negotiated
1933 * with each station, that is something we don't currently handle.
1934 * The spec seems to expect that one negotiates the same key with
1935 * every station but there's no such requirement; VLANs could be
1936 * possible.
1937 */
1938
1939 /* start without a key */
1940 rx->key = NULL;
1941 fc = hdr->frame_control;
1942
1943 if (rx->sta) {
1944 int keyid = rx->sta->ptk_idx;
1945 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1946
1947 if (ieee80211_has_protected(fc) &&
1948 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1949 cs = rx->sta->cipher_scheme;
1950 keyid = ieee80211_get_keyid(rx->skb, cs);
1951
1952 if (unlikely(keyid < 0))
1953 return RX_DROP_UNUSABLE;
1954
1955 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1956 }
1957 }
1958
1959 if (!ieee80211_has_protected(fc))
1960 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1961
1962 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1963 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1964 if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 (status->flag & RX_FLAG_IV_STRIPPED))
1966 return RX_CONTINUE;
1967 /* Skip decryption if the frame is not protected. */
1968 if (!ieee80211_has_protected(fc))
1969 return RX_CONTINUE;
1970 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1971 /* Broadcast/multicast robust management frame / BIP */
1972 if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 (status->flag & RX_FLAG_IV_STRIPPED))
1974 return RX_CONTINUE;
1975
1976 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1977 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1978 NUM_DEFAULT_BEACON_KEYS) {
1979 if (rx->sdata->dev)
1980 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1981 skb->data,
1982 skb->len);
1983 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1984 }
1985
1986 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1987 if (!rx->key)
1988 return RX_CONTINUE; /* Beacon protection not in use */
1989 } else if (mmie_keyidx >= 0) {
1990 /* Broadcast/multicast robust management frame / BIP */
1991 if ((status->flag & RX_FLAG_DECRYPTED) &&
1992 (status->flag & RX_FLAG_IV_STRIPPED))
1993 return RX_CONTINUE;
1994
1995 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1996 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1997 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1998 if (rx->sta) {
1999 if (ieee80211_is_group_privacy_action(skb) &&
2000 test_sta_flag(rx->sta, WLAN_STA_MFP))
2001 return RX_DROP_MONITOR;
2002
2003 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2004 }
2005 if (!rx->key)
2006 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2007 } else if (!ieee80211_has_protected(fc)) {
2008 /*
2009 * The frame was not protected, so skip decryption. However, we
2010 * need to set rx->key if there is a key that could have been
2011 * used so that the frame may be dropped if encryption would
2012 * have been expected.
2013 */
2014 struct ieee80211_key *key = NULL;
2015 struct ieee80211_sub_if_data *sdata = rx->sdata;
2016 int i;
2017
2018 if (ieee80211_is_beacon(fc)) {
2019 key = ieee80211_rx_get_bigtk(rx, -1);
2020 } else if (ieee80211_is_mgmt(fc) &&
2021 is_multicast_ether_addr(hdr->addr1)) {
2022 key = rcu_dereference(rx->sdata->default_mgmt_key);
2023 } else {
2024 if (rx->sta) {
2025 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2026 key = rcu_dereference(rx->sta->gtk[i]);
2027 if (key)
2028 break;
2029 }
2030 }
2031 if (!key) {
2032 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2033 key = rcu_dereference(sdata->keys[i]);
2034 if (key)
2035 break;
2036 }
2037 }
2038 }
2039 if (key)
2040 rx->key = key;
2041 return RX_CONTINUE;
2042 } else {
2043 /*
2044 * The device doesn't give us the IV so we won't be
2045 * able to look up the key. That's ok though, we
2046 * don't need to decrypt the frame, we just won't
2047 * be able to keep statistics accurate.
2048 * Except for key threshold notifications, should
2049 * we somehow allow the driver to tell us which key
2050 * the hardware used if this flag is set?
2051 */
2052 if ((status->flag & RX_FLAG_DECRYPTED) &&
2053 (status->flag & RX_FLAG_IV_STRIPPED))
2054 return RX_CONTINUE;
2055
2056 keyidx = ieee80211_get_keyid(rx->skb, cs);
2057
2058 if (unlikely(keyidx < 0))
2059 return RX_DROP_UNUSABLE;
2060
2061 /* check per-station GTK first, if multicast packet */
2062 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2063 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2064
2065 /* if not found, try default key */
2066 if (!rx->key) {
2067 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2068
2069 /*
2070 * RSNA-protected unicast frames should always be
2071 * sent with pairwise or station-to-station keys,
2072 * but for WEP we allow using a key index as well.
2073 */
2074 if (rx->key &&
2075 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2076 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2077 !is_multicast_ether_addr(hdr->addr1))
2078 rx->key = NULL;
2079 }
2080 }
2081
2082 if (rx->key) {
2083 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2084 return RX_DROP_MONITOR;
2085
2086 /* TODO: add threshold stuff again */
2087 } else {
2088 return RX_DROP_MONITOR;
2089 }
2090
2091 switch (rx->key->conf.cipher) {
2092 case WLAN_CIPHER_SUITE_WEP40:
2093 case WLAN_CIPHER_SUITE_WEP104:
2094 result = ieee80211_crypto_wep_decrypt(rx);
2095 break;
2096 case WLAN_CIPHER_SUITE_TKIP:
2097 result = ieee80211_crypto_tkip_decrypt(rx);
2098 break;
2099 case WLAN_CIPHER_SUITE_CCMP:
2100 result = ieee80211_crypto_ccmp_decrypt(
2101 rx, IEEE80211_CCMP_MIC_LEN);
2102 break;
2103 case WLAN_CIPHER_SUITE_CCMP_256:
2104 result = ieee80211_crypto_ccmp_decrypt(
2105 rx, IEEE80211_CCMP_256_MIC_LEN);
2106 break;
2107 case WLAN_CIPHER_SUITE_AES_CMAC:
2108 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2109 break;
2110 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2111 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2112 break;
2113 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2114 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2115 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2116 break;
2117 case WLAN_CIPHER_SUITE_GCMP:
2118 case WLAN_CIPHER_SUITE_GCMP_256:
2119 result = ieee80211_crypto_gcmp_decrypt(rx);
2120 break;
2121 default:
2122 result = ieee80211_crypto_hw_decrypt(rx);
2123 }
2124
2125 /* the hdr variable is invalid after the decrypt handlers */
2126
2127 /* either the frame has been decrypted or will be dropped */
2128 status->flag |= RX_FLAG_DECRYPTED;
2129
2130 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2131 rx->sdata->dev))
2132 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2133 skb->data, skb->len);
2134
2135 return result;
2136 }
2137
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2138 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2139 {
2140 int i;
2141
2142 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2143 skb_queue_head_init(&cache->entries[i].skb_list);
2144 }
2145
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2146 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2147 {
2148 int i;
2149
2150 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2151 __skb_queue_purge(&cache->entries[i].skb_list);
2152 }
2153
2154 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2155 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2156 unsigned int frag, unsigned int seq, int rx_queue,
2157 struct sk_buff **skb)
2158 {
2159 struct ieee80211_fragment_entry *entry;
2160
2161 entry = &cache->entries[cache->next++];
2162 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2163 cache->next = 0;
2164
2165 __skb_queue_purge(&entry->skb_list);
2166
2167 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2168 *skb = NULL;
2169 entry->first_frag_time = jiffies;
2170 entry->seq = seq;
2171 entry->rx_queue = rx_queue;
2172 entry->last_frag = frag;
2173 entry->check_sequential_pn = false;
2174 entry->extra_len = 0;
2175
2176 return entry;
2177 }
2178
2179 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2180 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2181 unsigned int frag, unsigned int seq,
2182 int rx_queue, struct ieee80211_hdr *hdr)
2183 {
2184 struct ieee80211_fragment_entry *entry;
2185 int i, idx;
2186
2187 idx = cache->next;
2188 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2189 struct ieee80211_hdr *f_hdr;
2190 struct sk_buff *f_skb;
2191
2192 idx--;
2193 if (idx < 0)
2194 idx = IEEE80211_FRAGMENT_MAX - 1;
2195
2196 entry = &cache->entries[idx];
2197 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2198 entry->rx_queue != rx_queue ||
2199 entry->last_frag + 1 != frag)
2200 continue;
2201
2202 f_skb = __skb_peek(&entry->skb_list);
2203 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2204
2205 /*
2206 * Check ftype and addresses are equal, else check next fragment
2207 */
2208 if (((hdr->frame_control ^ f_hdr->frame_control) &
2209 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2210 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2211 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2212 continue;
2213
2214 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2215 __skb_queue_purge(&entry->skb_list);
2216 continue;
2217 }
2218 return entry;
2219 }
2220
2221 return NULL;
2222 }
2223
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2224 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2225 {
2226 return rx->key &&
2227 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2228 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2229 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2230 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2231 ieee80211_has_protected(fc);
2232 }
2233
2234 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2235 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2236 {
2237 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2238 struct ieee80211_hdr *hdr;
2239 u16 sc;
2240 __le16 fc;
2241 unsigned int frag, seq;
2242 struct ieee80211_fragment_entry *entry;
2243 struct sk_buff *skb;
2244 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2245
2246 hdr = (struct ieee80211_hdr *)rx->skb->data;
2247 fc = hdr->frame_control;
2248
2249 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2250 return RX_CONTINUE;
2251
2252 sc = le16_to_cpu(hdr->seq_ctrl);
2253 frag = sc & IEEE80211_SCTL_FRAG;
2254
2255 if (rx->sta)
2256 cache = &rx->sta->frags;
2257
2258 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2259 goto out;
2260
2261 if (is_multicast_ether_addr(hdr->addr1))
2262 return RX_DROP_MONITOR;
2263
2264 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2265
2266 if (skb_linearize(rx->skb))
2267 return RX_DROP_UNUSABLE;
2268
2269 /*
2270 * skb_linearize() might change the skb->data and
2271 * previously cached variables (in this case, hdr) need to
2272 * be refreshed with the new data.
2273 */
2274 hdr = (struct ieee80211_hdr *)rx->skb->data;
2275 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2276
2277 if (frag == 0) {
2278 /* This is the first fragment of a new frame. */
2279 entry = ieee80211_reassemble_add(cache, frag, seq,
2280 rx->seqno_idx, &(rx->skb));
2281 if (requires_sequential_pn(rx, fc)) {
2282 int queue = rx->security_idx;
2283
2284 /* Store CCMP/GCMP PN so that we can verify that the
2285 * next fragment has a sequential PN value.
2286 */
2287 entry->check_sequential_pn = true;
2288 entry->is_protected = true;
2289 entry->key_color = rx->key->color;
2290 memcpy(entry->last_pn,
2291 rx->key->u.ccmp.rx_pn[queue],
2292 IEEE80211_CCMP_PN_LEN);
2293 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2294 u.ccmp.rx_pn) !=
2295 offsetof(struct ieee80211_key,
2296 u.gcmp.rx_pn));
2297 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2298 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2299 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2300 IEEE80211_GCMP_PN_LEN);
2301 } else if (rx->key &&
2302 (ieee80211_has_protected(fc) ||
2303 (status->flag & RX_FLAG_DECRYPTED))) {
2304 entry->is_protected = true;
2305 entry->key_color = rx->key->color;
2306 }
2307 return RX_QUEUED;
2308 }
2309
2310 /* This is a fragment for a frame that should already be pending in
2311 * fragment cache. Add this fragment to the end of the pending entry.
2312 */
2313 entry = ieee80211_reassemble_find(cache, frag, seq,
2314 rx->seqno_idx, hdr);
2315 if (!entry) {
2316 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2317 return RX_DROP_MONITOR;
2318 }
2319
2320 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2321 * MPDU PN values are not incrementing in steps of 1."
2322 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2323 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2324 */
2325 if (entry->check_sequential_pn) {
2326 int i;
2327 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2328
2329 if (!requires_sequential_pn(rx, fc))
2330 return RX_DROP_UNUSABLE;
2331
2332 /* Prevent mixed key and fragment cache attacks */
2333 if (entry->key_color != rx->key->color)
2334 return RX_DROP_UNUSABLE;
2335
2336 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2337 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2338 pn[i]++;
2339 if (pn[i])
2340 break;
2341 }
2342
2343 rpn = rx->ccm_gcm.pn;
2344 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2345 return RX_DROP_UNUSABLE;
2346 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2347 } else if (entry->is_protected &&
2348 (!rx->key ||
2349 (!ieee80211_has_protected(fc) &&
2350 !(status->flag & RX_FLAG_DECRYPTED)) ||
2351 rx->key->color != entry->key_color)) {
2352 /* Drop this as a mixed key or fragment cache attack, even
2353 * if for TKIP Michael MIC should protect us, and WEP is a
2354 * lost cause anyway.
2355 */
2356 return RX_DROP_UNUSABLE;
2357 } else if (entry->is_protected && rx->key &&
2358 entry->key_color != rx->key->color &&
2359 (status->flag & RX_FLAG_DECRYPTED)) {
2360 return RX_DROP_UNUSABLE;
2361 }
2362
2363 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2364 __skb_queue_tail(&entry->skb_list, rx->skb);
2365 entry->last_frag = frag;
2366 entry->extra_len += rx->skb->len;
2367 if (ieee80211_has_morefrags(fc)) {
2368 rx->skb = NULL;
2369 return RX_QUEUED;
2370 }
2371
2372 rx->skb = __skb_dequeue(&entry->skb_list);
2373 if (skb_tailroom(rx->skb) < entry->extra_len) {
2374 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2375 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2376 GFP_ATOMIC))) {
2377 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2378 __skb_queue_purge(&entry->skb_list);
2379 return RX_DROP_UNUSABLE;
2380 }
2381 }
2382 while ((skb = __skb_dequeue(&entry->skb_list))) {
2383 skb_put_data(rx->skb, skb->data, skb->len);
2384 dev_kfree_skb(skb);
2385 }
2386
2387 out:
2388 ieee80211_led_rx(rx->local);
2389 if (rx->sta)
2390 rx->sta->rx_stats.packets++;
2391 return RX_CONTINUE;
2392 }
2393
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2394 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2395 {
2396 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2397 return -EACCES;
2398
2399 return 0;
2400 }
2401
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2402 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2403 {
2404 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2405 struct sk_buff *skb = rx->skb;
2406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2407
2408 /*
2409 * Pass through unencrypted frames if the hardware has
2410 * decrypted them already.
2411 */
2412 if (status->flag & RX_FLAG_DECRYPTED)
2413 return 0;
2414
2415 /* check mesh EAPOL frames first */
2416 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2417 ieee80211_is_data(fc))) {
2418 struct ieee80211s_hdr *mesh_hdr;
2419 u16 hdr_len = ieee80211_hdrlen(fc);
2420 u16 ethertype_offset;
2421 __be16 ethertype;
2422
2423 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2424 goto drop_check;
2425
2426 /* make sure fixed part of mesh header is there, also checks skb len */
2427 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2428 goto drop_check;
2429
2430 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2431 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2432 sizeof(rfc1042_header);
2433
2434 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2435 ethertype == rx->sdata->control_port_protocol)
2436 return 0;
2437 }
2438
2439 drop_check:
2440 /* Drop unencrypted frames if key is set. */
2441 if (unlikely(!ieee80211_has_protected(fc) &&
2442 !ieee80211_is_any_nullfunc(fc) &&
2443 ieee80211_is_data(fc) && rx->key))
2444 return -EACCES;
2445
2446 return 0;
2447 }
2448
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2449 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2450 {
2451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2452 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2453 __le16 fc = hdr->frame_control;
2454
2455 /*
2456 * Pass through unencrypted frames if the hardware has
2457 * decrypted them already.
2458 */
2459 if (status->flag & RX_FLAG_DECRYPTED)
2460 return 0;
2461
2462 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2463 if (unlikely(!ieee80211_has_protected(fc) &&
2464 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2465 rx->key)) {
2466 if (ieee80211_is_deauth(fc) ||
2467 ieee80211_is_disassoc(fc))
2468 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2469 rx->skb->data,
2470 rx->skb->len);
2471 return -EACCES;
2472 }
2473 /* BIP does not use Protected field, so need to check MMIE */
2474 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2475 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2476 if (ieee80211_is_deauth(fc) ||
2477 ieee80211_is_disassoc(fc))
2478 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2479 rx->skb->data,
2480 rx->skb->len);
2481 return -EACCES;
2482 }
2483 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2484 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2485 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2486 rx->skb->data,
2487 rx->skb->len);
2488 return -EACCES;
2489 }
2490 /*
2491 * When using MFP, Action frames are not allowed prior to
2492 * having configured keys.
2493 */
2494 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2495 ieee80211_is_robust_mgmt_frame(rx->skb)))
2496 return -EACCES;
2497 }
2498
2499 return 0;
2500 }
2501
2502 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2503 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2504 {
2505 struct ieee80211_sub_if_data *sdata = rx->sdata;
2506 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2507 bool check_port_control = false;
2508 struct ethhdr *ehdr;
2509 int ret;
2510
2511 *port_control = false;
2512 if (ieee80211_has_a4(hdr->frame_control) &&
2513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2514 return -1;
2515
2516 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2517 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2518
2519 if (!sdata->u.mgd.use_4addr)
2520 return -1;
2521 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2522 check_port_control = true;
2523 }
2524
2525 if (is_multicast_ether_addr(hdr->addr1) &&
2526 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2527 return -1;
2528
2529 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2530 if (ret < 0)
2531 return ret;
2532
2533 ehdr = (struct ethhdr *) rx->skb->data;
2534 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2535 *port_control = true;
2536 else if (check_port_control)
2537 return -1;
2538
2539 return 0;
2540 }
2541
2542 /*
2543 * requires that rx->skb is a frame with ethernet header
2544 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2545 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2546 {
2547 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2548 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2549 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2550
2551 /*
2552 * Allow EAPOL frames to us/the PAE group address regardless of
2553 * whether the frame was encrypted or not, and always disallow
2554 * all other destination addresses for them.
2555 */
2556 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2557 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2558 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2559
2560 if (ieee80211_802_1x_port_control(rx) ||
2561 ieee80211_drop_unencrypted(rx, fc))
2562 return false;
2563
2564 return true;
2565 }
2566
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2567 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2568 struct ieee80211_rx_data *rx)
2569 {
2570 struct ieee80211_sub_if_data *sdata = rx->sdata;
2571 struct net_device *dev = sdata->dev;
2572
2573 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2574 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2575 !sdata->control_port_no_preauth)) &&
2576 sdata->control_port_over_nl80211)) {
2577 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2578 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2579
2580 cfg80211_rx_control_port(dev, skb, noencrypt);
2581 dev_kfree_skb(skb);
2582 } else {
2583 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2584
2585 memset(skb->cb, 0, sizeof(skb->cb));
2586
2587 /*
2588 * 802.1X over 802.11 requires that the authenticator address
2589 * be used for EAPOL frames. However, 802.1X allows the use of
2590 * the PAE group address instead. If the interface is part of
2591 * a bridge and we pass the frame with the PAE group address,
2592 * then the bridge will forward it to the network (even if the
2593 * client was not associated yet), which isn't supposed to
2594 * happen.
2595 * To avoid that, rewrite the destination address to our own
2596 * address, so that the authenticator (e.g. hostapd) will see
2597 * the frame, but bridge won't forward it anywhere else. Note
2598 * that due to earlier filtering, the only other address can
2599 * be the PAE group address.
2600 */
2601 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2602 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2603 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2604
2605 /* deliver to local stack */
2606 if (rx->list)
2607 list_add_tail(&skb->list, rx->list);
2608 else
2609 netif_receive_skb(skb);
2610 }
2611 }
2612
2613 /*
2614 * requires that rx->skb is a frame with ethernet header
2615 */
2616 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2617 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2618 {
2619 struct ieee80211_sub_if_data *sdata = rx->sdata;
2620 struct net_device *dev = sdata->dev;
2621 struct sk_buff *skb, *xmit_skb;
2622 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2623 struct sta_info *dsta;
2624
2625 skb = rx->skb;
2626 xmit_skb = NULL;
2627
2628 ieee80211_rx_stats(dev, skb->len);
2629
2630 if (rx->sta) {
2631 /* The seqno index has the same property as needed
2632 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2633 * for non-QoS-data frames. Here we know it's a data
2634 * frame, so count MSDUs.
2635 */
2636 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2637 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2638 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2639 }
2640
2641 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2642 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2643 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2644 ehdr->h_proto != rx->sdata->control_port_protocol &&
2645 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2646 if (is_multicast_ether_addr(ehdr->h_dest) &&
2647 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2648 /*
2649 * send multicast frames both to higher layers in
2650 * local net stack and back to the wireless medium
2651 */
2652 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2653 if (!xmit_skb)
2654 net_info_ratelimited("%s: failed to clone multicast frame\n",
2655 dev->name);
2656 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2657 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2658 dsta = sta_info_get(sdata, ehdr->h_dest);
2659 if (dsta) {
2660 /*
2661 * The destination station is associated to
2662 * this AP (in this VLAN), so send the frame
2663 * directly to it and do not pass it to local
2664 * net stack.
2665 */
2666 xmit_skb = skb;
2667 skb = NULL;
2668 }
2669 }
2670 }
2671
2672 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2673 if (skb) {
2674 /* 'align' will only take the values 0 or 2 here since all
2675 * frames are required to be aligned to 2-byte boundaries
2676 * when being passed to mac80211; the code here works just
2677 * as well if that isn't true, but mac80211 assumes it can
2678 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2679 */
2680 int align;
2681
2682 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2683 if (align) {
2684 if (WARN_ON(skb_headroom(skb) < 3)) {
2685 dev_kfree_skb(skb);
2686 skb = NULL;
2687 } else {
2688 u8 *data = skb->data;
2689 size_t len = skb_headlen(skb);
2690 skb->data -= align;
2691 memmove(skb->data, data, len);
2692 skb_set_tail_pointer(skb, len);
2693 }
2694 }
2695 }
2696 #endif
2697
2698 if (skb) {
2699 skb->protocol = eth_type_trans(skb, dev);
2700 ieee80211_deliver_skb_to_local_stack(skb, rx);
2701 }
2702
2703 if (xmit_skb) {
2704 /*
2705 * Send to wireless media and increase priority by 256 to
2706 * keep the received priority instead of reclassifying
2707 * the frame (see cfg80211_classify8021d).
2708 */
2709 xmit_skb->priority += 256;
2710 xmit_skb->protocol = htons(ETH_P_802_3);
2711 skb_reset_network_header(xmit_skb);
2712 skb_reset_mac_header(xmit_skb);
2713 dev_queue_xmit(xmit_skb);
2714 }
2715 }
2716
2717 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2718 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2719 {
2720 struct net_device *dev = rx->sdata->dev;
2721 struct sk_buff *skb = rx->skb;
2722 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2723 __le16 fc = hdr->frame_control;
2724 struct sk_buff_head frame_list;
2725 struct ethhdr ethhdr;
2726 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2727
2728 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2729 check_da = NULL;
2730 check_sa = NULL;
2731 } else switch (rx->sdata->vif.type) {
2732 case NL80211_IFTYPE_AP:
2733 case NL80211_IFTYPE_AP_VLAN:
2734 check_da = NULL;
2735 break;
2736 case NL80211_IFTYPE_STATION:
2737 if (!rx->sta ||
2738 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2739 check_sa = NULL;
2740 break;
2741 case NL80211_IFTYPE_MESH_POINT:
2742 check_sa = NULL;
2743 break;
2744 default:
2745 break;
2746 }
2747
2748 skb->dev = dev;
2749 __skb_queue_head_init(&frame_list);
2750
2751 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2752 rx->sdata->vif.addr,
2753 rx->sdata->vif.type,
2754 data_offset, true))
2755 return RX_DROP_UNUSABLE;
2756
2757 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2758 rx->sdata->vif.type,
2759 rx->local->hw.extra_tx_headroom,
2760 check_da, check_sa);
2761
2762 while (!skb_queue_empty(&frame_list)) {
2763 rx->skb = __skb_dequeue(&frame_list);
2764
2765 if (!ieee80211_frame_allowed(rx, fc)) {
2766 dev_kfree_skb(rx->skb);
2767 continue;
2768 }
2769
2770 ieee80211_deliver_skb(rx);
2771 }
2772
2773 return RX_QUEUED;
2774 }
2775
2776 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2777 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2778 {
2779 struct sk_buff *skb = rx->skb;
2780 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2781 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2782 __le16 fc = hdr->frame_control;
2783
2784 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2785 return RX_CONTINUE;
2786
2787 if (unlikely(!ieee80211_is_data(fc)))
2788 return RX_CONTINUE;
2789
2790 if (unlikely(!ieee80211_is_data_present(fc)))
2791 return RX_DROP_MONITOR;
2792
2793 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2794 switch (rx->sdata->vif.type) {
2795 case NL80211_IFTYPE_AP_VLAN:
2796 if (!rx->sdata->u.vlan.sta)
2797 return RX_DROP_UNUSABLE;
2798 break;
2799 case NL80211_IFTYPE_STATION:
2800 if (!rx->sdata->u.mgd.use_4addr)
2801 return RX_DROP_UNUSABLE;
2802 break;
2803 default:
2804 return RX_DROP_UNUSABLE;
2805 }
2806 }
2807
2808 if (is_multicast_ether_addr(hdr->addr1))
2809 return RX_DROP_UNUSABLE;
2810
2811 if (rx->key) {
2812 /*
2813 * We should not receive A-MSDUs on pre-HT connections,
2814 * and HT connections cannot use old ciphers. Thus drop
2815 * them, as in those cases we couldn't even have SPP
2816 * A-MSDUs or such.
2817 */
2818 switch (rx->key->conf.cipher) {
2819 case WLAN_CIPHER_SUITE_WEP40:
2820 case WLAN_CIPHER_SUITE_WEP104:
2821 case WLAN_CIPHER_SUITE_TKIP:
2822 return RX_DROP_UNUSABLE;
2823 default:
2824 break;
2825 }
2826 }
2827
2828 return __ieee80211_rx_h_amsdu(rx, 0);
2829 }
2830
2831 #ifdef CONFIG_MAC80211_MESH
2832 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2833 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2834 {
2835 struct ieee80211_hdr *fwd_hdr, *hdr;
2836 struct ieee80211_tx_info *info;
2837 struct ieee80211s_hdr *mesh_hdr;
2838 struct sk_buff *skb = rx->skb, *fwd_skb;
2839 struct ieee80211_local *local = rx->local;
2840 struct ieee80211_sub_if_data *sdata = rx->sdata;
2841 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2842 u16 ac, q, hdrlen;
2843 int tailroom = 0;
2844
2845 hdr = (struct ieee80211_hdr *) skb->data;
2846 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2847
2848 /* make sure fixed part of mesh header is there, also checks skb len */
2849 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2850 return RX_DROP_MONITOR;
2851
2852 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2853
2854 /* make sure full mesh header is there, also checks skb len */
2855 if (!pskb_may_pull(rx->skb,
2856 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2857 return RX_DROP_MONITOR;
2858
2859 /* reload pointers */
2860 hdr = (struct ieee80211_hdr *) skb->data;
2861 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2862
2863 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2864 return RX_DROP_MONITOR;
2865
2866 /* frame is in RMC, don't forward */
2867 if (ieee80211_is_data(hdr->frame_control) &&
2868 is_multicast_ether_addr(hdr->addr1) &&
2869 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2870 return RX_DROP_MONITOR;
2871
2872 if (!ieee80211_is_data(hdr->frame_control))
2873 return RX_CONTINUE;
2874
2875 if (!mesh_hdr->ttl)
2876 return RX_DROP_MONITOR;
2877
2878 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2879 struct mesh_path *mppath;
2880 char *proxied_addr;
2881 char *mpp_addr;
2882
2883 if (is_multicast_ether_addr(hdr->addr1)) {
2884 mpp_addr = hdr->addr3;
2885 proxied_addr = mesh_hdr->eaddr1;
2886 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2887 MESH_FLAGS_AE_A5_A6) {
2888 /* has_a4 already checked in ieee80211_rx_mesh_check */
2889 mpp_addr = hdr->addr4;
2890 proxied_addr = mesh_hdr->eaddr2;
2891 } else {
2892 return RX_DROP_MONITOR;
2893 }
2894
2895 rcu_read_lock();
2896 mppath = mpp_path_lookup(sdata, proxied_addr);
2897 if (!mppath) {
2898 mpp_path_add(sdata, proxied_addr, mpp_addr);
2899 } else {
2900 spin_lock_bh(&mppath->state_lock);
2901 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2902 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2903 mppath->exp_time = jiffies;
2904 spin_unlock_bh(&mppath->state_lock);
2905 }
2906 rcu_read_unlock();
2907 }
2908
2909 /* Frame has reached destination. Don't forward */
2910 if (!is_multicast_ether_addr(hdr->addr1) &&
2911 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2912 return RX_CONTINUE;
2913
2914 ac = ieee802_1d_to_ac[skb->priority];
2915 q = sdata->vif.hw_queue[ac];
2916 if (ieee80211_queue_stopped(&local->hw, q)) {
2917 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2918 return RX_DROP_MONITOR;
2919 }
2920 skb_set_queue_mapping(skb, ac);
2921
2922 if (!--mesh_hdr->ttl) {
2923 if (!is_multicast_ether_addr(hdr->addr1))
2924 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2925 dropped_frames_ttl);
2926 goto out;
2927 }
2928
2929 if (!ifmsh->mshcfg.dot11MeshForwarding)
2930 goto out;
2931
2932 if (sdata->crypto_tx_tailroom_needed_cnt)
2933 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2934
2935 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2936 sdata->encrypt_headroom,
2937 tailroom, GFP_ATOMIC);
2938 if (!fwd_skb)
2939 goto out;
2940
2941 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2942 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2943 info = IEEE80211_SKB_CB(fwd_skb);
2944 memset(info, 0, sizeof(*info));
2945 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2946 info->control.vif = &rx->sdata->vif;
2947 info->control.jiffies = jiffies;
2948 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2949 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2950 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2951 /* update power mode indication when forwarding */
2952 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2953 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2954 /* mesh power mode flags updated in mesh_nexthop_lookup */
2955 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2956 } else {
2957 /* unable to resolve next hop */
2958 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2959 fwd_hdr->addr3, 0,
2960 WLAN_REASON_MESH_PATH_NOFORWARD,
2961 fwd_hdr->addr2);
2962 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2963 kfree_skb(fwd_skb);
2964 return RX_DROP_MONITOR;
2965 }
2966
2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2968 ieee80211_add_pending_skb(local, fwd_skb);
2969 out:
2970 if (is_multicast_ether_addr(hdr->addr1))
2971 return RX_CONTINUE;
2972 return RX_DROP_MONITOR;
2973 }
2974 #endif
2975
2976 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2977 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2978 {
2979 struct ieee80211_sub_if_data *sdata = rx->sdata;
2980 struct ieee80211_local *local = rx->local;
2981 struct net_device *dev = sdata->dev;
2982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2983 __le16 fc = hdr->frame_control;
2984 bool port_control;
2985 int err;
2986
2987 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2988 return RX_CONTINUE;
2989
2990 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2991 return RX_DROP_MONITOR;
2992
2993 /*
2994 * Send unexpected-4addr-frame event to hostapd. For older versions,
2995 * also drop the frame to cooked monitor interfaces.
2996 */
2997 if (ieee80211_has_a4(hdr->frame_control) &&
2998 sdata->vif.type == NL80211_IFTYPE_AP) {
2999 if (rx->sta &&
3000 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3001 cfg80211_rx_unexpected_4addr_frame(
3002 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3003 return RX_DROP_MONITOR;
3004 }
3005
3006 err = __ieee80211_data_to_8023(rx, &port_control);
3007 if (unlikely(err))
3008 return RX_DROP_UNUSABLE;
3009
3010 if (!ieee80211_frame_allowed(rx, fc))
3011 return RX_DROP_MONITOR;
3012
3013 /* directly handle TDLS channel switch requests/responses */
3014 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3015 cpu_to_be16(ETH_P_TDLS))) {
3016 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3017
3018 if (pskb_may_pull(rx->skb,
3019 offsetof(struct ieee80211_tdls_data, u)) &&
3020 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3021 tf->category == WLAN_CATEGORY_TDLS &&
3022 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3023 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3024 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
3025 schedule_work(&local->tdls_chsw_work);
3026 if (rx->sta)
3027 rx->sta->rx_stats.packets++;
3028
3029 return RX_QUEUED;
3030 }
3031 }
3032
3033 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3034 unlikely(port_control) && sdata->bss) {
3035 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3036 u.ap);
3037 dev = sdata->dev;
3038 rx->sdata = sdata;
3039 }
3040
3041 rx->skb->dev = dev;
3042
3043 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3044 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3045 !is_multicast_ether_addr(
3046 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3047 (!local->scanning &&
3048 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3049 mod_timer(&local->dynamic_ps_timer, jiffies +
3050 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3051
3052 ieee80211_deliver_skb(rx);
3053
3054 return RX_QUEUED;
3055 }
3056
3057 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3058 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3059 {
3060 struct sk_buff *skb = rx->skb;
3061 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3062 struct tid_ampdu_rx *tid_agg_rx;
3063 u16 start_seq_num;
3064 u16 tid;
3065
3066 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3067 return RX_CONTINUE;
3068
3069 if (ieee80211_is_back_req(bar->frame_control)) {
3070 struct {
3071 __le16 control, start_seq_num;
3072 } __packed bar_data;
3073 struct ieee80211_event event = {
3074 .type = BAR_RX_EVENT,
3075 };
3076
3077 if (!rx->sta)
3078 return RX_DROP_MONITOR;
3079
3080 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3081 &bar_data, sizeof(bar_data)))
3082 return RX_DROP_MONITOR;
3083
3084 tid = le16_to_cpu(bar_data.control) >> 12;
3085
3086 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3087 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3088 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3089 WLAN_BACK_RECIPIENT,
3090 WLAN_REASON_QSTA_REQUIRE_SETUP);
3091
3092 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3093 if (!tid_agg_rx)
3094 return RX_DROP_MONITOR;
3095
3096 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3097 event.u.ba.tid = tid;
3098 event.u.ba.ssn = start_seq_num;
3099 event.u.ba.sta = &rx->sta->sta;
3100
3101 /* reset session timer */
3102 if (tid_agg_rx->timeout)
3103 mod_timer(&tid_agg_rx->session_timer,
3104 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3105
3106 spin_lock(&tid_agg_rx->reorder_lock);
3107 /* release stored frames up to start of BAR */
3108 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3109 start_seq_num, frames);
3110 spin_unlock(&tid_agg_rx->reorder_lock);
3111
3112 drv_event_callback(rx->local, rx->sdata, &event);
3113
3114 kfree_skb(skb);
3115 return RX_QUEUED;
3116 }
3117
3118 /*
3119 * After this point, we only want management frames,
3120 * so we can drop all remaining control frames to
3121 * cooked monitor interfaces.
3122 */
3123 return RX_DROP_MONITOR;
3124 }
3125
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3126 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3127 struct ieee80211_mgmt *mgmt,
3128 size_t len)
3129 {
3130 struct ieee80211_local *local = sdata->local;
3131 struct sk_buff *skb;
3132 struct ieee80211_mgmt *resp;
3133
3134 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3135 /* Not to own unicast address */
3136 return;
3137 }
3138
3139 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3140 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3141 /* Not from the current AP or not associated yet. */
3142 return;
3143 }
3144
3145 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3146 /* Too short SA Query request frame */
3147 return;
3148 }
3149
3150 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3151 if (skb == NULL)
3152 return;
3153
3154 skb_reserve(skb, local->hw.extra_tx_headroom);
3155 resp = skb_put_zero(skb, 24);
3156 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3157 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3158 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3159 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3160 IEEE80211_STYPE_ACTION);
3161 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3162 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3163 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3164 memcpy(resp->u.action.u.sa_query.trans_id,
3165 mgmt->u.action.u.sa_query.trans_id,
3166 WLAN_SA_QUERY_TR_ID_LEN);
3167
3168 ieee80211_tx_skb(sdata, skb);
3169 }
3170
3171 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3172 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3173 {
3174 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3175 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3176
3177 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3178 return RX_CONTINUE;
3179
3180 /*
3181 * From here on, look only at management frames.
3182 * Data and control frames are already handled,
3183 * and unknown (reserved) frames are useless.
3184 */
3185 if (rx->skb->len < 24)
3186 return RX_DROP_MONITOR;
3187
3188 if (!ieee80211_is_mgmt(mgmt->frame_control))
3189 return RX_DROP_MONITOR;
3190
3191 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3192 ieee80211_is_beacon(mgmt->frame_control) &&
3193 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3194 int sig = 0;
3195
3196 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3197 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3198 sig = status->signal;
3199
3200 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3201 rx->skb->data, rx->skb->len,
3202 ieee80211_rx_status_to_khz(status),
3203 sig);
3204 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3205 }
3206
3207 if (ieee80211_drop_unencrypted_mgmt(rx))
3208 return RX_DROP_UNUSABLE;
3209
3210 return RX_CONTINUE;
3211 }
3212
3213 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3214 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3215 {
3216 struct ieee80211_local *local = rx->local;
3217 struct ieee80211_sub_if_data *sdata = rx->sdata;
3218 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3219 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3220 int len = rx->skb->len;
3221
3222 if (!ieee80211_is_action(mgmt->frame_control))
3223 return RX_CONTINUE;
3224
3225 /* drop too small frames */
3226 if (len < IEEE80211_MIN_ACTION_SIZE)
3227 return RX_DROP_UNUSABLE;
3228
3229 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3230 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3231 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3232 return RX_DROP_UNUSABLE;
3233
3234 switch (mgmt->u.action.category) {
3235 case WLAN_CATEGORY_HT:
3236 /* reject HT action frames from stations not supporting HT */
3237 if (!rx->sta->sta.ht_cap.ht_supported)
3238 goto invalid;
3239
3240 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3241 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3242 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3243 sdata->vif.type != NL80211_IFTYPE_AP &&
3244 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3245 break;
3246
3247 /* verify action & smps_control/chanwidth are present */
3248 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3249 goto invalid;
3250
3251 switch (mgmt->u.action.u.ht_smps.action) {
3252 case WLAN_HT_ACTION_SMPS: {
3253 struct ieee80211_supported_band *sband;
3254 enum ieee80211_smps_mode smps_mode;
3255 struct sta_opmode_info sta_opmode = {};
3256
3257 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3258 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3259 goto handled;
3260
3261 /* convert to HT capability */
3262 switch (mgmt->u.action.u.ht_smps.smps_control) {
3263 case WLAN_HT_SMPS_CONTROL_DISABLED:
3264 smps_mode = IEEE80211_SMPS_OFF;
3265 break;
3266 case WLAN_HT_SMPS_CONTROL_STATIC:
3267 smps_mode = IEEE80211_SMPS_STATIC;
3268 break;
3269 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3270 smps_mode = IEEE80211_SMPS_DYNAMIC;
3271 break;
3272 default:
3273 goto invalid;
3274 }
3275
3276 /* if no change do nothing */
3277 if (rx->sta->sta.smps_mode == smps_mode)
3278 goto handled;
3279 rx->sta->sta.smps_mode = smps_mode;
3280 sta_opmode.smps_mode =
3281 ieee80211_smps_mode_to_smps_mode(smps_mode);
3282 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3283
3284 sband = rx->local->hw.wiphy->bands[status->band];
3285
3286 rate_control_rate_update(local, sband, rx->sta,
3287 IEEE80211_RC_SMPS_CHANGED);
3288 cfg80211_sta_opmode_change_notify(sdata->dev,
3289 rx->sta->addr,
3290 &sta_opmode,
3291 GFP_ATOMIC);
3292 goto handled;
3293 }
3294 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3295 struct ieee80211_supported_band *sband;
3296 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3297 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3298 struct sta_opmode_info sta_opmode = {};
3299
3300 /* If it doesn't support 40 MHz it can't change ... */
3301 if (!(rx->sta->sta.ht_cap.cap &
3302 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3303 goto handled;
3304
3305 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3306 max_bw = IEEE80211_STA_RX_BW_20;
3307 else
3308 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3309
3310 /* set cur_max_bandwidth and recalc sta bw */
3311 rx->sta->cur_max_bandwidth = max_bw;
3312 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3313
3314 if (rx->sta->sta.bandwidth == new_bw)
3315 goto handled;
3316
3317 rx->sta->sta.bandwidth = new_bw;
3318 sband = rx->local->hw.wiphy->bands[status->band];
3319 sta_opmode.bw =
3320 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3321 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3322
3323 rate_control_rate_update(local, sband, rx->sta,
3324 IEEE80211_RC_BW_CHANGED);
3325 cfg80211_sta_opmode_change_notify(sdata->dev,
3326 rx->sta->addr,
3327 &sta_opmode,
3328 GFP_ATOMIC);
3329 goto handled;
3330 }
3331 default:
3332 goto invalid;
3333 }
3334
3335 break;
3336 case WLAN_CATEGORY_PUBLIC:
3337 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3338 goto invalid;
3339 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3340 break;
3341 if (!rx->sta)
3342 break;
3343 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3344 break;
3345 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3346 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3347 break;
3348 if (len < offsetof(struct ieee80211_mgmt,
3349 u.action.u.ext_chan_switch.variable))
3350 goto invalid;
3351 goto queue;
3352 case WLAN_CATEGORY_VHT:
3353 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3354 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3355 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3356 sdata->vif.type != NL80211_IFTYPE_AP &&
3357 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3358 break;
3359
3360 /* verify action code is present */
3361 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3362 goto invalid;
3363
3364 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3365 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3366 /* verify opmode is present */
3367 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3368 goto invalid;
3369 goto queue;
3370 }
3371 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3372 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3373 goto invalid;
3374 goto queue;
3375 }
3376 default:
3377 break;
3378 }
3379 break;
3380 case WLAN_CATEGORY_BACK:
3381 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3382 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3383 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3384 sdata->vif.type != NL80211_IFTYPE_AP &&
3385 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3386 break;
3387
3388 /* verify action_code is present */
3389 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3390 break;
3391
3392 switch (mgmt->u.action.u.addba_req.action_code) {
3393 case WLAN_ACTION_ADDBA_REQ:
3394 if (len < (IEEE80211_MIN_ACTION_SIZE +
3395 sizeof(mgmt->u.action.u.addba_req)))
3396 goto invalid;
3397 break;
3398 case WLAN_ACTION_ADDBA_RESP:
3399 if (len < (IEEE80211_MIN_ACTION_SIZE +
3400 sizeof(mgmt->u.action.u.addba_resp)))
3401 goto invalid;
3402 break;
3403 case WLAN_ACTION_DELBA:
3404 if (len < (IEEE80211_MIN_ACTION_SIZE +
3405 sizeof(mgmt->u.action.u.delba)))
3406 goto invalid;
3407 break;
3408 default:
3409 goto invalid;
3410 }
3411
3412 goto queue;
3413 case WLAN_CATEGORY_SPECTRUM_MGMT:
3414 /* verify action_code is present */
3415 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3416 break;
3417
3418 switch (mgmt->u.action.u.measurement.action_code) {
3419 case WLAN_ACTION_SPCT_MSR_REQ:
3420 if (status->band != NL80211_BAND_5GHZ)
3421 break;
3422
3423 if (len < (IEEE80211_MIN_ACTION_SIZE +
3424 sizeof(mgmt->u.action.u.measurement)))
3425 break;
3426
3427 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3428 break;
3429
3430 ieee80211_process_measurement_req(sdata, mgmt, len);
3431 goto handled;
3432 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3433 u8 *bssid;
3434 if (len < (IEEE80211_MIN_ACTION_SIZE +
3435 sizeof(mgmt->u.action.u.chan_switch)))
3436 break;
3437
3438 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3439 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3440 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3441 break;
3442
3443 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3444 bssid = sdata->u.mgd.bssid;
3445 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3446 bssid = sdata->u.ibss.bssid;
3447 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3448 bssid = mgmt->sa;
3449 else
3450 break;
3451
3452 if (!ether_addr_equal(mgmt->bssid, bssid))
3453 break;
3454
3455 goto queue;
3456 }
3457 }
3458 break;
3459 case WLAN_CATEGORY_SELF_PROTECTED:
3460 if (len < (IEEE80211_MIN_ACTION_SIZE +
3461 sizeof(mgmt->u.action.u.self_prot.action_code)))
3462 break;
3463
3464 switch (mgmt->u.action.u.self_prot.action_code) {
3465 case WLAN_SP_MESH_PEERING_OPEN:
3466 case WLAN_SP_MESH_PEERING_CLOSE:
3467 case WLAN_SP_MESH_PEERING_CONFIRM:
3468 if (!ieee80211_vif_is_mesh(&sdata->vif))
3469 goto invalid;
3470 if (sdata->u.mesh.user_mpm)
3471 /* userspace handles this frame */
3472 break;
3473 goto queue;
3474 case WLAN_SP_MGK_INFORM:
3475 case WLAN_SP_MGK_ACK:
3476 if (!ieee80211_vif_is_mesh(&sdata->vif))
3477 goto invalid;
3478 break;
3479 }
3480 break;
3481 case WLAN_CATEGORY_MESH_ACTION:
3482 if (len < (IEEE80211_MIN_ACTION_SIZE +
3483 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3484 break;
3485
3486 if (!ieee80211_vif_is_mesh(&sdata->vif))
3487 break;
3488 if (mesh_action_is_path_sel(mgmt) &&
3489 !mesh_path_sel_is_hwmp(sdata))
3490 break;
3491 goto queue;
3492 }
3493
3494 return RX_CONTINUE;
3495
3496 invalid:
3497 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3498 /* will return in the next handlers */
3499 return RX_CONTINUE;
3500
3501 handled:
3502 if (rx->sta)
3503 rx->sta->rx_stats.packets++;
3504 dev_kfree_skb(rx->skb);
3505 return RX_QUEUED;
3506
3507 queue:
3508 skb_queue_tail(&sdata->skb_queue, rx->skb);
3509 ieee80211_queue_work(&local->hw, &sdata->work);
3510 if (rx->sta)
3511 rx->sta->rx_stats.packets++;
3512 return RX_QUEUED;
3513 }
3514
3515 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3516 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3517 {
3518 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3519 int sig = 0;
3520
3521 /* skip known-bad action frames and return them in the next handler */
3522 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3523 return RX_CONTINUE;
3524
3525 /*
3526 * Getting here means the kernel doesn't know how to handle
3527 * it, but maybe userspace does ... include returned frames
3528 * so userspace can register for those to know whether ones
3529 * it transmitted were processed or returned.
3530 */
3531
3532 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3533 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3534 sig = status->signal;
3535
3536 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3537 ieee80211_rx_status_to_khz(status), sig,
3538 rx->skb->data, rx->skb->len, 0)) {
3539 if (rx->sta)
3540 rx->sta->rx_stats.packets++;
3541 dev_kfree_skb(rx->skb);
3542 return RX_QUEUED;
3543 }
3544
3545 return RX_CONTINUE;
3546 }
3547
3548 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3549 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3550 {
3551 struct ieee80211_sub_if_data *sdata = rx->sdata;
3552 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3553 int len = rx->skb->len;
3554
3555 if (!ieee80211_is_action(mgmt->frame_control))
3556 return RX_CONTINUE;
3557
3558 switch (mgmt->u.action.category) {
3559 case WLAN_CATEGORY_SA_QUERY:
3560 if (len < (IEEE80211_MIN_ACTION_SIZE +
3561 sizeof(mgmt->u.action.u.sa_query)))
3562 break;
3563
3564 switch (mgmt->u.action.u.sa_query.action) {
3565 case WLAN_ACTION_SA_QUERY_REQUEST:
3566 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3567 break;
3568 ieee80211_process_sa_query_req(sdata, mgmt, len);
3569 goto handled;
3570 }
3571 break;
3572 }
3573
3574 return RX_CONTINUE;
3575
3576 handled:
3577 if (rx->sta)
3578 rx->sta->rx_stats.packets++;
3579 dev_kfree_skb(rx->skb);
3580 return RX_QUEUED;
3581 }
3582
3583 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3584 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3585 {
3586 struct ieee80211_local *local = rx->local;
3587 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3588 struct sk_buff *nskb;
3589 struct ieee80211_sub_if_data *sdata = rx->sdata;
3590 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3591
3592 if (!ieee80211_is_action(mgmt->frame_control))
3593 return RX_CONTINUE;
3594
3595 /*
3596 * For AP mode, hostapd is responsible for handling any action
3597 * frames that we didn't handle, including returning unknown
3598 * ones. For all other modes we will return them to the sender,
3599 * setting the 0x80 bit in the action category, as required by
3600 * 802.11-2012 9.24.4.
3601 * Newer versions of hostapd shall also use the management frame
3602 * registration mechanisms, but older ones still use cooked
3603 * monitor interfaces so push all frames there.
3604 */
3605 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3606 (sdata->vif.type == NL80211_IFTYPE_AP ||
3607 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3608 return RX_DROP_MONITOR;
3609
3610 if (is_multicast_ether_addr(mgmt->da))
3611 return RX_DROP_MONITOR;
3612
3613 /* do not return rejected action frames */
3614 if (mgmt->u.action.category & 0x80)
3615 return RX_DROP_UNUSABLE;
3616
3617 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3618 GFP_ATOMIC);
3619 if (nskb) {
3620 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3621
3622 nmgmt->u.action.category |= 0x80;
3623 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3624 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3625
3626 memset(nskb->cb, 0, sizeof(nskb->cb));
3627
3628 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3629 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3630
3631 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3632 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3633 IEEE80211_TX_CTL_NO_CCK_RATE;
3634 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3635 info->hw_queue =
3636 local->hw.offchannel_tx_hw_queue;
3637 }
3638
3639 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3640 status->band);
3641 }
3642 dev_kfree_skb(rx->skb);
3643 return RX_QUEUED;
3644 }
3645
3646 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3647 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3648 {
3649 struct ieee80211_sub_if_data *sdata = rx->sdata;
3650 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3651
3652 if (!ieee80211_is_ext(hdr->frame_control))
3653 return RX_CONTINUE;
3654
3655 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3656 return RX_DROP_MONITOR;
3657
3658 /* for now only beacons are ext, so queue them */
3659 skb_queue_tail(&sdata->skb_queue, rx->skb);
3660 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3661 if (rx->sta)
3662 rx->sta->rx_stats.packets++;
3663
3664 return RX_QUEUED;
3665 }
3666
3667 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3668 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3669 {
3670 struct ieee80211_sub_if_data *sdata = rx->sdata;
3671 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3672 __le16 stype;
3673
3674 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3675
3676 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3677 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3678 sdata->vif.type != NL80211_IFTYPE_OCB &&
3679 sdata->vif.type != NL80211_IFTYPE_STATION)
3680 return RX_DROP_MONITOR;
3681
3682 switch (stype) {
3683 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3684 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3685 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3686 /* process for all: mesh, mlme, ibss */
3687 break;
3688 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3689 if (is_multicast_ether_addr(mgmt->da) &&
3690 !is_broadcast_ether_addr(mgmt->da))
3691 return RX_DROP_MONITOR;
3692
3693 /* process only for station/IBSS */
3694 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3695 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3696 return RX_DROP_MONITOR;
3697 break;
3698 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3699 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3700 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3701 if (is_multicast_ether_addr(mgmt->da) &&
3702 !is_broadcast_ether_addr(mgmt->da))
3703 return RX_DROP_MONITOR;
3704
3705 /* process only for station */
3706 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3707 return RX_DROP_MONITOR;
3708 break;
3709 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3710 /* process only for ibss and mesh */
3711 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3712 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3713 return RX_DROP_MONITOR;
3714 break;
3715 default:
3716 return RX_DROP_MONITOR;
3717 }
3718
3719 /* queue up frame and kick off work to process it */
3720 skb_queue_tail(&sdata->skb_queue, rx->skb);
3721 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3722 if (rx->sta)
3723 rx->sta->rx_stats.packets++;
3724
3725 return RX_QUEUED;
3726 }
3727
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3728 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3729 struct ieee80211_rate *rate)
3730 {
3731 struct ieee80211_sub_if_data *sdata;
3732 struct ieee80211_local *local = rx->local;
3733 struct sk_buff *skb = rx->skb, *skb2;
3734 struct net_device *prev_dev = NULL;
3735 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3736 int needed_headroom;
3737
3738 /*
3739 * If cooked monitor has been processed already, then
3740 * don't do it again. If not, set the flag.
3741 */
3742 if (rx->flags & IEEE80211_RX_CMNTR)
3743 goto out_free_skb;
3744 rx->flags |= IEEE80211_RX_CMNTR;
3745
3746 /* If there are no cooked monitor interfaces, just free the SKB */
3747 if (!local->cooked_mntrs)
3748 goto out_free_skb;
3749
3750 /* vendor data is long removed here */
3751 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3752 /* room for the radiotap header based on driver features */
3753 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3754
3755 if (skb_headroom(skb) < needed_headroom &&
3756 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3757 goto out_free_skb;
3758
3759 /* prepend radiotap information */
3760 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3761 false);
3762
3763 skb_reset_mac_header(skb);
3764 skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 skb->pkt_type = PACKET_OTHERHOST;
3766 skb->protocol = htons(ETH_P_802_2);
3767
3768 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3769 if (!ieee80211_sdata_running(sdata))
3770 continue;
3771
3772 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3773 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3774 continue;
3775
3776 if (prev_dev) {
3777 skb2 = skb_clone(skb, GFP_ATOMIC);
3778 if (skb2) {
3779 skb2->dev = prev_dev;
3780 netif_receive_skb(skb2);
3781 }
3782 }
3783
3784 prev_dev = sdata->dev;
3785 ieee80211_rx_stats(sdata->dev, skb->len);
3786 }
3787
3788 if (prev_dev) {
3789 skb->dev = prev_dev;
3790 netif_receive_skb(skb);
3791 return;
3792 }
3793
3794 out_free_skb:
3795 dev_kfree_skb(skb);
3796 }
3797
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3798 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3799 ieee80211_rx_result res)
3800 {
3801 switch (res) {
3802 case RX_DROP_MONITOR:
3803 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3804 if (rx->sta)
3805 rx->sta->rx_stats.dropped++;
3806 fallthrough;
3807 case RX_CONTINUE: {
3808 struct ieee80211_rate *rate = NULL;
3809 struct ieee80211_supported_band *sband;
3810 struct ieee80211_rx_status *status;
3811
3812 status = IEEE80211_SKB_RXCB((rx->skb));
3813
3814 sband = rx->local->hw.wiphy->bands[status->band];
3815 if (status->encoding == RX_ENC_LEGACY)
3816 rate = &sband->bitrates[status->rate_idx];
3817
3818 ieee80211_rx_cooked_monitor(rx, rate);
3819 break;
3820 }
3821 case RX_DROP_UNUSABLE:
3822 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3823 if (rx->sta)
3824 rx->sta->rx_stats.dropped++;
3825 dev_kfree_skb(rx->skb);
3826 break;
3827 case RX_QUEUED:
3828 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3829 break;
3830 }
3831 }
3832
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3833 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3834 struct sk_buff_head *frames)
3835 {
3836 ieee80211_rx_result res = RX_DROP_MONITOR;
3837 struct sk_buff *skb;
3838
3839 #define CALL_RXH(rxh) \
3840 do { \
3841 res = rxh(rx); \
3842 if (res != RX_CONTINUE) \
3843 goto rxh_next; \
3844 } while (0)
3845
3846 /* Lock here to avoid hitting all of the data used in the RX
3847 * path (e.g. key data, station data, ...) concurrently when
3848 * a frame is released from the reorder buffer due to timeout
3849 * from the timer, potentially concurrently with RX from the
3850 * driver.
3851 */
3852 spin_lock_bh(&rx->local->rx_path_lock);
3853
3854 while ((skb = __skb_dequeue(frames))) {
3855 /*
3856 * all the other fields are valid across frames
3857 * that belong to an aMPDU since they are on the
3858 * same TID from the same station
3859 */
3860 rx->skb = skb;
3861
3862 CALL_RXH(ieee80211_rx_h_check_more_data);
3863 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3864 CALL_RXH(ieee80211_rx_h_sta_process);
3865 CALL_RXH(ieee80211_rx_h_decrypt);
3866 CALL_RXH(ieee80211_rx_h_defragment);
3867 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3868 /* must be after MMIC verify so header is counted in MPDU mic */
3869 #ifdef CONFIG_MAC80211_MESH
3870 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3871 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3872 #endif
3873 CALL_RXH(ieee80211_rx_h_amsdu);
3874 CALL_RXH(ieee80211_rx_h_data);
3875
3876 /* special treatment -- needs the queue */
3877 res = ieee80211_rx_h_ctrl(rx, frames);
3878 if (res != RX_CONTINUE)
3879 goto rxh_next;
3880
3881 CALL_RXH(ieee80211_rx_h_mgmt_check);
3882 CALL_RXH(ieee80211_rx_h_action);
3883 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3884 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3885 CALL_RXH(ieee80211_rx_h_action_return);
3886 CALL_RXH(ieee80211_rx_h_ext);
3887 CALL_RXH(ieee80211_rx_h_mgmt);
3888
3889 rxh_next:
3890 ieee80211_rx_handlers_result(rx, res);
3891
3892 #undef CALL_RXH
3893 }
3894
3895 spin_unlock_bh(&rx->local->rx_path_lock);
3896 }
3897
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3898 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3899 {
3900 struct sk_buff_head reorder_release;
3901 ieee80211_rx_result res = RX_DROP_MONITOR;
3902
3903 __skb_queue_head_init(&reorder_release);
3904
3905 #define CALL_RXH(rxh) \
3906 do { \
3907 res = rxh(rx); \
3908 if (res != RX_CONTINUE) \
3909 goto rxh_next; \
3910 } while (0)
3911
3912 CALL_RXH(ieee80211_rx_h_check_dup);
3913 CALL_RXH(ieee80211_rx_h_check);
3914
3915 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3916
3917 ieee80211_rx_handlers(rx, &reorder_release);
3918 return;
3919
3920 rxh_next:
3921 ieee80211_rx_handlers_result(rx, res);
3922
3923 #undef CALL_RXH
3924 }
3925
3926 /*
3927 * This function makes calls into the RX path, therefore
3928 * it has to be invoked under RCU read lock.
3929 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3930 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3931 {
3932 struct sk_buff_head frames;
3933 struct ieee80211_rx_data rx = {
3934 .sta = sta,
3935 .sdata = sta->sdata,
3936 .local = sta->local,
3937 /* This is OK -- must be QoS data frame */
3938 .security_idx = tid,
3939 .seqno_idx = tid,
3940 };
3941 struct tid_ampdu_rx *tid_agg_rx;
3942
3943 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3944 if (!tid_agg_rx)
3945 return;
3946
3947 __skb_queue_head_init(&frames);
3948
3949 spin_lock(&tid_agg_rx->reorder_lock);
3950 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3951 spin_unlock(&tid_agg_rx->reorder_lock);
3952
3953 if (!skb_queue_empty(&frames)) {
3954 struct ieee80211_event event = {
3955 .type = BA_FRAME_TIMEOUT,
3956 .u.ba.tid = tid,
3957 .u.ba.sta = &sta->sta,
3958 };
3959 drv_event_callback(rx.local, rx.sdata, &event);
3960 }
3961
3962 ieee80211_rx_handlers(&rx, &frames);
3963 }
3964
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)3965 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3966 u16 ssn, u64 filtered,
3967 u16 received_mpdus)
3968 {
3969 struct sta_info *sta;
3970 struct tid_ampdu_rx *tid_agg_rx;
3971 struct sk_buff_head frames;
3972 struct ieee80211_rx_data rx = {
3973 /* This is OK -- must be QoS data frame */
3974 .security_idx = tid,
3975 .seqno_idx = tid,
3976 };
3977 int i, diff;
3978
3979 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3980 return;
3981
3982 __skb_queue_head_init(&frames);
3983
3984 sta = container_of(pubsta, struct sta_info, sta);
3985
3986 rx.sta = sta;
3987 rx.sdata = sta->sdata;
3988 rx.local = sta->local;
3989
3990 rcu_read_lock();
3991 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3992 if (!tid_agg_rx)
3993 goto out;
3994
3995 spin_lock_bh(&tid_agg_rx->reorder_lock);
3996
3997 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3998 int release;
3999
4000 /* release all frames in the reorder buffer */
4001 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4002 IEEE80211_SN_MODULO;
4003 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4004 release, &frames);
4005 /* update ssn to match received ssn */
4006 tid_agg_rx->head_seq_num = ssn;
4007 } else {
4008 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4009 &frames);
4010 }
4011
4012 /* handle the case that received ssn is behind the mac ssn.
4013 * it can be tid_agg_rx->buf_size behind and still be valid */
4014 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4015 if (diff >= tid_agg_rx->buf_size) {
4016 tid_agg_rx->reorder_buf_filtered = 0;
4017 goto release;
4018 }
4019 filtered = filtered >> diff;
4020 ssn += diff;
4021
4022 /* update bitmap */
4023 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4024 int index = (ssn + i) % tid_agg_rx->buf_size;
4025
4026 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4027 if (filtered & BIT_ULL(i))
4028 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4029 }
4030
4031 /* now process also frames that the filter marking released */
4032 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4033
4034 release:
4035 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4036
4037 ieee80211_rx_handlers(&rx, &frames);
4038
4039 out:
4040 rcu_read_unlock();
4041 }
4042 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4043
4044 /* main receive path */
4045
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4046 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4047 {
4048 struct ieee80211_sub_if_data *sdata = rx->sdata;
4049 struct sk_buff *skb = rx->skb;
4050 struct ieee80211_hdr *hdr = (void *)skb->data;
4051 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4052 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4053 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4054 ieee80211_is_s1g_beacon(hdr->frame_control);
4055
4056 switch (sdata->vif.type) {
4057 case NL80211_IFTYPE_STATION:
4058 if (!bssid && !sdata->u.mgd.use_4addr)
4059 return false;
4060 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4061 return false;
4062 if (multicast)
4063 return true;
4064 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4065 case NL80211_IFTYPE_ADHOC:
4066 if (!bssid)
4067 return false;
4068 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4069 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4070 !is_valid_ether_addr(hdr->addr2))
4071 return false;
4072 if (ieee80211_is_beacon(hdr->frame_control))
4073 return true;
4074 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4075 return false;
4076 if (!multicast &&
4077 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4078 return false;
4079 if (!rx->sta) {
4080 int rate_idx;
4081 if (status->encoding != RX_ENC_LEGACY)
4082 rate_idx = 0; /* TODO: HT/VHT rates */
4083 else
4084 rate_idx = status->rate_idx;
4085 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4086 BIT(rate_idx));
4087 }
4088 return true;
4089 case NL80211_IFTYPE_OCB:
4090 if (!bssid)
4091 return false;
4092 if (!ieee80211_is_data_present(hdr->frame_control))
4093 return false;
4094 if (!is_broadcast_ether_addr(bssid))
4095 return false;
4096 if (!multicast &&
4097 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4098 return false;
4099 if (!rx->sta) {
4100 int rate_idx;
4101 if (status->encoding != RX_ENC_LEGACY)
4102 rate_idx = 0; /* TODO: HT rates */
4103 else
4104 rate_idx = status->rate_idx;
4105 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4106 BIT(rate_idx));
4107 }
4108 return true;
4109 case NL80211_IFTYPE_MESH_POINT:
4110 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4111 return false;
4112 if (multicast)
4113 return true;
4114 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4115 case NL80211_IFTYPE_AP_VLAN:
4116 case NL80211_IFTYPE_AP:
4117 if (!bssid)
4118 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4119
4120 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4121 /*
4122 * Accept public action frames even when the
4123 * BSSID doesn't match, this is used for P2P
4124 * and location updates. Note that mac80211
4125 * itself never looks at these frames.
4126 */
4127 if (!multicast &&
4128 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4129 return false;
4130 if (ieee80211_is_public_action(hdr, skb->len))
4131 return true;
4132 return ieee80211_is_beacon(hdr->frame_control);
4133 }
4134
4135 if (!ieee80211_has_tods(hdr->frame_control)) {
4136 /* ignore data frames to TDLS-peers */
4137 if (ieee80211_is_data(hdr->frame_control))
4138 return false;
4139 /* ignore action frames to TDLS-peers */
4140 if (ieee80211_is_action(hdr->frame_control) &&
4141 !is_broadcast_ether_addr(bssid) &&
4142 !ether_addr_equal(bssid, hdr->addr1))
4143 return false;
4144 }
4145
4146 /*
4147 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4148 * the BSSID - we've checked that already but may have accepted
4149 * the wildcard (ff:ff:ff:ff:ff:ff).
4150 *
4151 * It also says:
4152 * The BSSID of the Data frame is determined as follows:
4153 * a) If the STA is contained within an AP or is associated
4154 * with an AP, the BSSID is the address currently in use
4155 * by the STA contained in the AP.
4156 *
4157 * So we should not accept data frames with an address that's
4158 * multicast.
4159 *
4160 * Accepting it also opens a security problem because stations
4161 * could encrypt it with the GTK and inject traffic that way.
4162 */
4163 if (ieee80211_is_data(hdr->frame_control) && multicast)
4164 return false;
4165
4166 return true;
4167 case NL80211_IFTYPE_WDS:
4168 if (bssid || !ieee80211_is_data(hdr->frame_control))
4169 return false;
4170 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4171 case NL80211_IFTYPE_P2P_DEVICE:
4172 return ieee80211_is_public_action(hdr, skb->len) ||
4173 ieee80211_is_probe_req(hdr->frame_control) ||
4174 ieee80211_is_probe_resp(hdr->frame_control) ||
4175 ieee80211_is_beacon(hdr->frame_control);
4176 case NL80211_IFTYPE_NAN:
4177 /* Currently no frames on NAN interface are allowed */
4178 return false;
4179 default:
4180 break;
4181 }
4182
4183 WARN_ON_ONCE(1);
4184 return false;
4185 }
4186
ieee80211_check_fast_rx(struct sta_info * sta)4187 void ieee80211_check_fast_rx(struct sta_info *sta)
4188 {
4189 struct ieee80211_sub_if_data *sdata = sta->sdata;
4190 struct ieee80211_local *local = sdata->local;
4191 struct ieee80211_key *key;
4192 struct ieee80211_fast_rx fastrx = {
4193 .dev = sdata->dev,
4194 .vif_type = sdata->vif.type,
4195 .control_port_protocol = sdata->control_port_protocol,
4196 }, *old, *new = NULL;
4197 bool assign = false;
4198
4199 /* use sparse to check that we don't return without updating */
4200 __acquire(check_fast_rx);
4201
4202 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4203 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4204 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4205 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4206
4207 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4208
4209 /* fast-rx doesn't do reordering */
4210 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4211 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4212 goto clear;
4213
4214 switch (sdata->vif.type) {
4215 case NL80211_IFTYPE_STATION:
4216 if (sta->sta.tdls) {
4217 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4218 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4219 fastrx.expected_ds_bits = 0;
4220 } else {
4221 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4222 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4223 fastrx.expected_ds_bits =
4224 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4225 }
4226
4227 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4228 fastrx.expected_ds_bits |=
4229 cpu_to_le16(IEEE80211_FCTL_TODS);
4230 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4231 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4232 }
4233
4234 if (!sdata->u.mgd.powersave)
4235 break;
4236
4237 /* software powersave is a huge mess, avoid all of it */
4238 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4239 goto clear;
4240 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4241 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4242 goto clear;
4243 break;
4244 case NL80211_IFTYPE_AP_VLAN:
4245 case NL80211_IFTYPE_AP:
4246 /* parallel-rx requires this, at least with calls to
4247 * ieee80211_sta_ps_transition()
4248 */
4249 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4250 goto clear;
4251 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4252 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4253 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4254
4255 fastrx.internal_forward =
4256 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4257 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4258 !sdata->u.vlan.sta);
4259
4260 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4261 sdata->u.vlan.sta) {
4262 fastrx.expected_ds_bits |=
4263 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4264 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4265 fastrx.internal_forward = 0;
4266 }
4267
4268 break;
4269 default:
4270 goto clear;
4271 }
4272
4273 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4274 goto clear;
4275
4276 rcu_read_lock();
4277 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4278 if (!key)
4279 key = rcu_dereference(sdata->default_unicast_key);
4280 if (key) {
4281 switch (key->conf.cipher) {
4282 case WLAN_CIPHER_SUITE_TKIP:
4283 /* we don't want to deal with MMIC in fast-rx */
4284 goto clear_rcu;
4285 case WLAN_CIPHER_SUITE_CCMP:
4286 case WLAN_CIPHER_SUITE_CCMP_256:
4287 case WLAN_CIPHER_SUITE_GCMP:
4288 case WLAN_CIPHER_SUITE_GCMP_256:
4289 break;
4290 default:
4291 /* We also don't want to deal with
4292 * WEP or cipher scheme.
4293 */
4294 goto clear_rcu;
4295 }
4296
4297 fastrx.key = true;
4298 fastrx.icv_len = key->conf.icv_len;
4299 }
4300
4301 assign = true;
4302 clear_rcu:
4303 rcu_read_unlock();
4304 clear:
4305 __release(check_fast_rx);
4306
4307 if (assign)
4308 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4309
4310 spin_lock_bh(&sta->lock);
4311 old = rcu_dereference_protected(sta->fast_rx, true);
4312 rcu_assign_pointer(sta->fast_rx, new);
4313 spin_unlock_bh(&sta->lock);
4314
4315 if (old)
4316 kfree_rcu(old, rcu_head);
4317 }
4318
ieee80211_clear_fast_rx(struct sta_info * sta)4319 void ieee80211_clear_fast_rx(struct sta_info *sta)
4320 {
4321 struct ieee80211_fast_rx *old;
4322
4323 spin_lock_bh(&sta->lock);
4324 old = rcu_dereference_protected(sta->fast_rx, true);
4325 RCU_INIT_POINTER(sta->fast_rx, NULL);
4326 spin_unlock_bh(&sta->lock);
4327
4328 if (old)
4329 kfree_rcu(old, rcu_head);
4330 }
4331
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4332 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4333 {
4334 struct ieee80211_local *local = sdata->local;
4335 struct sta_info *sta;
4336
4337 lockdep_assert_held(&local->sta_mtx);
4338
4339 list_for_each_entry(sta, &local->sta_list, list) {
4340 if (sdata != sta->sdata &&
4341 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4342 continue;
4343 ieee80211_check_fast_rx(sta);
4344 }
4345 }
4346
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4347 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4348 {
4349 struct ieee80211_local *local = sdata->local;
4350
4351 mutex_lock(&local->sta_mtx);
4352 __ieee80211_check_fast_rx_iface(sdata);
4353 mutex_unlock(&local->sta_mtx);
4354 }
4355
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4356 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4357 struct ieee80211_fast_rx *fast_rx)
4358 {
4359 struct sk_buff *skb = rx->skb;
4360 struct ieee80211_hdr *hdr = (void *)skb->data;
4361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4362 struct sta_info *sta = rx->sta;
4363 int orig_len = skb->len;
4364 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4365 int snap_offs = hdrlen;
4366 struct {
4367 u8 snap[sizeof(rfc1042_header)];
4368 __be16 proto;
4369 } *payload __aligned(2);
4370 struct {
4371 u8 da[ETH_ALEN];
4372 u8 sa[ETH_ALEN];
4373 } addrs __aligned(2);
4374 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4375
4376 if (fast_rx->uses_rss)
4377 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4378
4379 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4380 * to a common data structure; drivers can implement that per queue
4381 * but we don't have that information in mac80211
4382 */
4383 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4384 return false;
4385
4386 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4387
4388 /* If using encryption, we also need to have:
4389 * - PN_VALIDATED: similar, but the implementation is tricky
4390 * - DECRYPTED: necessary for PN_VALIDATED
4391 */
4392 if (fast_rx->key &&
4393 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4394 return false;
4395
4396 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4397 return false;
4398
4399 if (unlikely(ieee80211_is_frag(hdr)))
4400 return false;
4401
4402 /* Since our interface address cannot be multicast, this
4403 * implicitly also rejects multicast frames without the
4404 * explicit check.
4405 *
4406 * We shouldn't get any *data* frames not addressed to us
4407 * (AP mode will accept multicast *management* frames), but
4408 * punting here will make it go through the full checks in
4409 * ieee80211_accept_frame().
4410 */
4411 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4412 return false;
4413
4414 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4415 IEEE80211_FCTL_TODS)) !=
4416 fast_rx->expected_ds_bits)
4417 return false;
4418
4419 /* assign the key to drop unencrypted frames (later)
4420 * and strip the IV/MIC if necessary
4421 */
4422 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4423 /* GCMP header length is the same */
4424 snap_offs += IEEE80211_CCMP_HDR_LEN;
4425 }
4426
4427 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4428 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4429 goto drop;
4430
4431 payload = (void *)(skb->data + snap_offs);
4432
4433 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4434 return false;
4435
4436 /* Don't handle these here since they require special code.
4437 * Accept AARP and IPX even though they should come with a
4438 * bridge-tunnel header - but if we get them this way then
4439 * there's little point in discarding them.
4440 */
4441 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4442 payload->proto == fast_rx->control_port_protocol))
4443 return false;
4444 }
4445
4446 /* after this point, don't punt to the slowpath! */
4447
4448 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4449 pskb_trim(skb, skb->len - fast_rx->icv_len))
4450 goto drop;
4451
4452 /* statistics part of ieee80211_rx_h_sta_process() */
4453 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4454 stats->last_signal = status->signal;
4455 if (!fast_rx->uses_rss)
4456 ewma_signal_add(&sta->rx_stats_avg.signal,
4457 -status->signal);
4458 }
4459
4460 if (status->chains) {
4461 int i;
4462
4463 stats->chains = status->chains;
4464 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4465 int signal = status->chain_signal[i];
4466
4467 if (!(status->chains & BIT(i)))
4468 continue;
4469
4470 stats->chain_signal_last[i] = signal;
4471 if (!fast_rx->uses_rss)
4472 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4473 -signal);
4474 }
4475 }
4476 /* end of statistics */
4477
4478 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4479 goto drop;
4480
4481 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4482 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4483 RX_QUEUED)
4484 goto drop;
4485
4486 return true;
4487 }
4488
4489 stats->last_rx = jiffies;
4490 stats->last_rate = sta_stats_encode_rate(status);
4491
4492 stats->fragments++;
4493 stats->packets++;
4494
4495 /* do the header conversion - first grab the addresses */
4496 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4497 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4498 /* remove the SNAP but leave the ethertype */
4499 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4500 /* push the addresses in front */
4501 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4502
4503 skb->dev = fast_rx->dev;
4504
4505 ieee80211_rx_stats(fast_rx->dev, skb->len);
4506
4507 /* The seqno index has the same property as needed
4508 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4509 * for non-QoS-data frames. Here we know it's a data
4510 * frame, so count MSDUs.
4511 */
4512 u64_stats_update_begin(&stats->syncp);
4513 stats->msdu[rx->seqno_idx]++;
4514 stats->bytes += orig_len;
4515 u64_stats_update_end(&stats->syncp);
4516
4517 if (fast_rx->internal_forward) {
4518 struct sk_buff *xmit_skb = NULL;
4519 if (is_multicast_ether_addr(addrs.da)) {
4520 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4521 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4522 sta_info_get(rx->sdata, addrs.da)) {
4523 xmit_skb = skb;
4524 skb = NULL;
4525 }
4526
4527 if (xmit_skb) {
4528 /*
4529 * Send to wireless media and increase priority by 256
4530 * to keep the received priority instead of
4531 * reclassifying the frame (see cfg80211_classify8021d).
4532 */
4533 xmit_skb->priority += 256;
4534 xmit_skb->protocol = htons(ETH_P_802_3);
4535 skb_reset_network_header(xmit_skb);
4536 skb_reset_mac_header(xmit_skb);
4537 dev_queue_xmit(xmit_skb);
4538 }
4539
4540 if (!skb)
4541 return true;
4542 }
4543
4544 /* deliver to local stack */
4545 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4546 memset(skb->cb, 0, sizeof(skb->cb));
4547 if (rx->list)
4548 list_add_tail(&skb->list, rx->list);
4549 else
4550 netif_receive_skb(skb);
4551
4552 return true;
4553 drop:
4554 dev_kfree_skb(skb);
4555 stats->dropped++;
4556 return true;
4557 }
4558
4559 /*
4560 * This function returns whether or not the SKB
4561 * was destined for RX processing or not, which,
4562 * if consume is true, is equivalent to whether
4563 * or not the skb was consumed.
4564 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4565 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4566 struct sk_buff *skb, bool consume)
4567 {
4568 struct ieee80211_local *local = rx->local;
4569 struct ieee80211_sub_if_data *sdata = rx->sdata;
4570
4571 rx->skb = skb;
4572
4573 /* See if we can do fast-rx; if we have to copy we already lost,
4574 * so punt in that case. We should never have to deliver a data
4575 * frame to multiple interfaces anyway.
4576 *
4577 * We skip the ieee80211_accept_frame() call and do the necessary
4578 * checking inside ieee80211_invoke_fast_rx().
4579 */
4580 if (consume && rx->sta) {
4581 struct ieee80211_fast_rx *fast_rx;
4582
4583 fast_rx = rcu_dereference(rx->sta->fast_rx);
4584 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4585 return true;
4586 }
4587
4588 if (!ieee80211_accept_frame(rx))
4589 return false;
4590
4591 if (!consume) {
4592 skb = skb_copy(skb, GFP_ATOMIC);
4593 if (!skb) {
4594 if (net_ratelimit())
4595 wiphy_debug(local->hw.wiphy,
4596 "failed to copy skb for %s\n",
4597 sdata->name);
4598 return true;
4599 }
4600
4601 rx->skb = skb;
4602 }
4603
4604 ieee80211_invoke_rx_handlers(rx);
4605 return true;
4606 }
4607
4608 /*
4609 * This is the actual Rx frames handler. as it belongs to Rx path it must
4610 * be called with rcu_read_lock protection.
4611 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4612 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4613 struct ieee80211_sta *pubsta,
4614 struct sk_buff *skb,
4615 struct list_head *list)
4616 {
4617 struct ieee80211_local *local = hw_to_local(hw);
4618 struct ieee80211_sub_if_data *sdata;
4619 struct ieee80211_hdr *hdr;
4620 __le16 fc;
4621 struct ieee80211_rx_data rx;
4622 struct ieee80211_sub_if_data *prev;
4623 struct rhlist_head *tmp;
4624 int err = 0;
4625
4626 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4627 memset(&rx, 0, sizeof(rx));
4628 rx.skb = skb;
4629 rx.local = local;
4630 rx.list = list;
4631
4632 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4633 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4634
4635 if (ieee80211_is_mgmt(fc)) {
4636 /* drop frame if too short for header */
4637 if (skb->len < ieee80211_hdrlen(fc))
4638 err = -ENOBUFS;
4639 else
4640 err = skb_linearize(skb);
4641 } else {
4642 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4643 }
4644
4645 if (err) {
4646 dev_kfree_skb(skb);
4647 return;
4648 }
4649
4650 hdr = (struct ieee80211_hdr *)skb->data;
4651 ieee80211_parse_qos(&rx);
4652 ieee80211_verify_alignment(&rx);
4653
4654 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4655 ieee80211_is_beacon(hdr->frame_control) ||
4656 ieee80211_is_s1g_beacon(hdr->frame_control)))
4657 ieee80211_scan_rx(local, skb);
4658
4659 if (ieee80211_is_data(fc)) {
4660 struct sta_info *sta, *prev_sta;
4661
4662 if (pubsta) {
4663 rx.sta = container_of(pubsta, struct sta_info, sta);
4664 rx.sdata = rx.sta->sdata;
4665 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4666 return;
4667 goto out;
4668 }
4669
4670 prev_sta = NULL;
4671
4672 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4673 if (!prev_sta) {
4674 prev_sta = sta;
4675 continue;
4676 }
4677
4678 rx.sta = prev_sta;
4679 rx.sdata = prev_sta->sdata;
4680 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4681
4682 prev_sta = sta;
4683 }
4684
4685 if (prev_sta) {
4686 rx.sta = prev_sta;
4687 rx.sdata = prev_sta->sdata;
4688
4689 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4690 return;
4691 goto out;
4692 }
4693 }
4694
4695 prev = NULL;
4696
4697 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4698 if (!ieee80211_sdata_running(sdata))
4699 continue;
4700
4701 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4702 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4703 continue;
4704
4705 /*
4706 * frame is destined for this interface, but if it's
4707 * not also for the previous one we handle that after
4708 * the loop to avoid copying the SKB once too much
4709 */
4710
4711 if (!prev) {
4712 prev = sdata;
4713 continue;
4714 }
4715
4716 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4717 rx.sdata = prev;
4718 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4719
4720 prev = sdata;
4721 }
4722
4723 if (prev) {
4724 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4725 rx.sdata = prev;
4726
4727 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4728 return;
4729 }
4730
4731 out:
4732 dev_kfree_skb(skb);
4733 }
4734
4735 /*
4736 * This is the receive path handler. It is called by a low level driver when an
4737 * 802.11 MPDU is received from the hardware.
4738 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4739 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4740 struct sk_buff *skb, struct list_head *list)
4741 {
4742 struct ieee80211_local *local = hw_to_local(hw);
4743 struct ieee80211_rate *rate = NULL;
4744 struct ieee80211_supported_band *sband;
4745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4746
4747 WARN_ON_ONCE(softirq_count() == 0);
4748
4749 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4750 goto drop;
4751
4752 sband = local->hw.wiphy->bands[status->band];
4753 if (WARN_ON(!sband))
4754 goto drop;
4755
4756 /*
4757 * If we're suspending, it is possible although not too likely
4758 * that we'd be receiving frames after having already partially
4759 * quiesced the stack. We can't process such frames then since
4760 * that might, for example, cause stations to be added or other
4761 * driver callbacks be invoked.
4762 */
4763 if (unlikely(local->quiescing || local->suspended))
4764 goto drop;
4765
4766 /* We might be during a HW reconfig, prevent Rx for the same reason */
4767 if (unlikely(local->in_reconfig))
4768 goto drop;
4769
4770 /*
4771 * The same happens when we're not even started,
4772 * but that's worth a warning.
4773 */
4774 if (WARN_ON(!local->started))
4775 goto drop;
4776
4777 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4778 /*
4779 * Validate the rate, unless a PLCP error means that
4780 * we probably can't have a valid rate here anyway.
4781 */
4782
4783 switch (status->encoding) {
4784 case RX_ENC_HT:
4785 /*
4786 * rate_idx is MCS index, which can be [0-76]
4787 * as documented on:
4788 *
4789 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4790 *
4791 * Anything else would be some sort of driver or
4792 * hardware error. The driver should catch hardware
4793 * errors.
4794 */
4795 if (WARN(status->rate_idx > 76,
4796 "Rate marked as an HT rate but passed "
4797 "status->rate_idx is not "
4798 "an MCS index [0-76]: %d (0x%02x)\n",
4799 status->rate_idx,
4800 status->rate_idx))
4801 goto drop;
4802 break;
4803 case RX_ENC_VHT:
4804 if (WARN_ONCE(status->rate_idx > 11 ||
4805 !status->nss ||
4806 status->nss > 8,
4807 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4808 status->rate_idx, status->nss))
4809 goto drop;
4810 break;
4811 case RX_ENC_HE:
4812 if (WARN_ONCE(status->rate_idx > 11 ||
4813 !status->nss ||
4814 status->nss > 8,
4815 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4816 status->rate_idx, status->nss))
4817 goto drop;
4818 break;
4819 default:
4820 WARN_ON_ONCE(1);
4821 fallthrough;
4822 case RX_ENC_LEGACY:
4823 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4824 goto drop;
4825 rate = &sband->bitrates[status->rate_idx];
4826 }
4827 }
4828
4829 status->rx_flags = 0;
4830
4831 /*
4832 * Frames with failed FCS/PLCP checksum are not returned,
4833 * all other frames are returned without radiotap header
4834 * if it was previously present.
4835 * Also, frames with less than 16 bytes are dropped.
4836 */
4837 skb = ieee80211_rx_monitor(local, skb, rate);
4838 if (!skb)
4839 return;
4840
4841 ieee80211_tpt_led_trig_rx(local,
4842 ((struct ieee80211_hdr *)skb->data)->frame_control,
4843 skb->len);
4844
4845 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4846
4847 return;
4848 drop:
4849 kfree_skb(skb);
4850 }
4851 EXPORT_SYMBOL(ieee80211_rx_list);
4852
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4853 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4854 struct sk_buff *skb, struct napi_struct *napi)
4855 {
4856 struct sk_buff *tmp;
4857 LIST_HEAD(list);
4858
4859
4860 /*
4861 * key references and virtual interfaces are protected using RCU
4862 * and this requires that we are in a read-side RCU section during
4863 * receive processing
4864 */
4865 rcu_read_lock();
4866 ieee80211_rx_list(hw, pubsta, skb, &list);
4867 rcu_read_unlock();
4868
4869 if (!napi) {
4870 netif_receive_skb_list(&list);
4871 return;
4872 }
4873
4874 list_for_each_entry_safe(skb, tmp, &list, list) {
4875 skb_list_del_init(skb);
4876 napi_gro_receive(napi, skb);
4877 }
4878 }
4879 EXPORT_SYMBOL(ieee80211_rx_napi);
4880
4881 /* This is a version of the rx handler that can be called from hard irq
4882 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)4883 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4884 {
4885 struct ieee80211_local *local = hw_to_local(hw);
4886
4887 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4888
4889 skb->pkt_type = IEEE80211_RX_MSG;
4890 skb_queue_tail(&local->skb_queue, skb);
4891 tasklet_schedule(&local->tasklet);
4892 }
4893 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4894