• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 /*
46  * monitor mode reception
47  *
48  * This function cleans up the SKB, i.e. it removes all the stuff
49  * only useful for monitoring.
50  */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
52 					   unsigned int present_fcs_len,
53 					   unsigned int rtap_space)
54 {
55 	struct ieee80211_hdr *hdr;
56 	unsigned int hdrlen;
57 	__le16 fc;
58 
59 	if (present_fcs_len)
60 		__pskb_trim(skb, skb->len - present_fcs_len);
61 	__pskb_pull(skb, rtap_space);
62 
63 	hdr = (void *)skb->data;
64 	fc = hdr->frame_control;
65 
66 	/*
67 	 * Remove the HT-Control field (if present) on management
68 	 * frames after we've sent the frame to monitoring. We
69 	 * (currently) don't need it, and don't properly parse
70 	 * frames with it present, due to the assumption of a
71 	 * fixed management header length.
72 	 */
73 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 		return skb;
75 
76 	hdrlen = ieee80211_hdrlen(fc);
77 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78 
79 	if (!pskb_may_pull(skb, hdrlen)) {
80 		dev_kfree_skb(skb);
81 		return NULL;
82 	}
83 
84 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 		hdrlen - IEEE80211_HT_CTL_LEN);
86 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87 
88 	return skb;
89 }
90 
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 				     unsigned int rtap_space)
93 {
94 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 	struct ieee80211_hdr *hdr;
96 
97 	hdr = (void *)(skb->data + rtap_space);
98 
99 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 			    RX_FLAG_FAILED_PLCP_CRC |
101 			    RX_FLAG_ONLY_MONITOR |
102 			    RX_FLAG_NO_PSDU))
103 		return true;
104 
105 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 		return true;
107 
108 	if (ieee80211_is_ctl(hdr->frame_control) &&
109 	    !ieee80211_is_pspoll(hdr->frame_control) &&
110 	    !ieee80211_is_back_req(hdr->frame_control))
111 		return true;
112 
113 	return false;
114 }
115 
116 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 			     struct ieee80211_rx_status *status,
119 			     struct sk_buff *skb)
120 {
121 	int len;
122 
123 	/* always present fields */
124 	len = sizeof(struct ieee80211_radiotap_header) + 8;
125 
126 	/* allocate extra bitmaps */
127 	if (status->chains)
128 		len += 4 * hweight8(status->chains);
129 	/* vendor presence bitmap */
130 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
131 		len += 4;
132 
133 	if (ieee80211_have_rx_timestamp(status)) {
134 		len = ALIGN(len, 8);
135 		len += 8;
136 	}
137 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
138 		len += 1;
139 
140 	/* antenna field, if we don't have per-chain info */
141 	if (!status->chains)
142 		len += 1;
143 
144 	/* padding for RX_FLAGS if necessary */
145 	len = ALIGN(len, 2);
146 
147 	if (status->encoding == RX_ENC_HT) /* HT info */
148 		len += 3;
149 
150 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
151 		len = ALIGN(len, 4);
152 		len += 8;
153 	}
154 
155 	if (status->encoding == RX_ENC_VHT) {
156 		len = ALIGN(len, 2);
157 		len += 12;
158 	}
159 
160 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
161 		len = ALIGN(len, 8);
162 		len += 12;
163 	}
164 
165 	if (status->encoding == RX_ENC_HE &&
166 	    status->flag & RX_FLAG_RADIOTAP_HE) {
167 		len = ALIGN(len, 2);
168 		len += 12;
169 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
170 	}
171 
172 	if (status->encoding == RX_ENC_HE &&
173 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
174 		len = ALIGN(len, 2);
175 		len += 12;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
177 	}
178 
179 	if (status->flag & RX_FLAG_NO_PSDU)
180 		len += 1;
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
183 		len = ALIGN(len, 2);
184 		len += 4;
185 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap;
195 		int vendor_data_offset = 0;
196 
197 		/*
198 		 * The position to look at depends on the existence (or non-
199 		 * existence) of other elements, so take that into account...
200 		 */
201 		if (status->flag & RX_FLAG_RADIOTAP_HE)
202 			vendor_data_offset +=
203 				sizeof(struct ieee80211_radiotap_he);
204 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
205 			vendor_data_offset +=
206 				sizeof(struct ieee80211_radiotap_he_mu);
207 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
208 			vendor_data_offset +=
209 				sizeof(struct ieee80211_radiotap_lsig);
210 
211 		rtap = (void *)&skb->data[vendor_data_offset];
212 
213 		/* alignment for fixed 6-byte vendor data header */
214 		len = ALIGN(len, 2);
215 		/* vendor data header */
216 		len += 6;
217 		if (WARN_ON(rtap->align == 0))
218 			rtap->align = 1;
219 		len = ALIGN(len, rtap->align);
220 		len += rtap->len + rtap->pad;
221 	}
222 
223 	return len;
224 }
225 
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 					 struct sk_buff *skb,
228 					 int rtap_space)
229 {
230 	struct {
231 		struct ieee80211_hdr_3addr hdr;
232 		u8 category;
233 		u8 action_code;
234 	} __packed __aligned(2) action;
235 
236 	if (!sdata)
237 		return;
238 
239 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240 
241 	if (skb->len < rtap_space + sizeof(action) +
242 		       VHT_MUMIMO_GROUPS_DATA_LEN)
243 		return;
244 
245 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 		return;
247 
248 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249 
250 	if (!ieee80211_is_action(action.hdr.frame_control))
251 		return;
252 
253 	if (action.category != WLAN_CATEGORY_VHT)
254 		return;
255 
256 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 		return;
258 
259 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 		return;
261 
262 	skb = skb_copy(skb, GFP_ATOMIC);
263 	if (!skb)
264 		return;
265 
266 	skb_queue_tail(&sdata->skb_queue, skb);
267 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269 
270 /*
271  * ieee80211_add_rx_radiotap_header - add radiotap header
272  *
273  * add a radiotap header containing all the fields which the hardware provided.
274  */
275 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 				 struct sk_buff *skb,
278 				 struct ieee80211_rate *rate,
279 				 int rtap_len, bool has_fcs)
280 {
281 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 	struct ieee80211_radiotap_header *rthdr;
283 	unsigned char *pos;
284 	__le32 *it_present;
285 	u32 it_present_val;
286 	u16 rx_flags = 0;
287 	u16 channel_flags = 0;
288 	int mpdulen, chain;
289 	unsigned long chains = status->chains;
290 	struct ieee80211_vendor_radiotap rtap = {};
291 	struct ieee80211_radiotap_he he = {};
292 	struct ieee80211_radiotap_he_mu he_mu = {};
293 	struct ieee80211_radiotap_lsig lsig = {};
294 
295 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 		he = *(struct ieee80211_radiotap_he *)skb->data;
297 		skb_pull(skb, sizeof(he));
298 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 	}
300 
301 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 		skb_pull(skb, sizeof(he_mu));
304 	}
305 
306 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 		skb_pull(skb, sizeof(lsig));
309 	}
310 
311 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 		/* rtap.len and rtap.pad are undone immediately */
314 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 	}
316 
317 	mpdulen = skb->len;
318 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 		mpdulen += FCS_LEN;
320 
321 	rthdr = skb_push(skb, rtap_len);
322 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 	it_present = &rthdr->it_present;
324 
325 	/* radiotap header, set always present flags */
326 	rthdr->it_len = cpu_to_le16(rtap_len);
327 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330 
331 	if (!status->chains)
332 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333 
334 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 		it_present_val |=
336 			BIT(IEEE80211_RADIOTAP_EXT) |
337 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 		put_unaligned_le32(it_present_val, it_present);
339 		it_present++;
340 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 	}
343 
344 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 				  BIT(IEEE80211_RADIOTAP_EXT);
347 		put_unaligned_le32(it_present_val, it_present);
348 		it_present++;
349 		it_present_val = rtap.present;
350 	}
351 
352 	put_unaligned_le32(it_present_val, it_present);
353 
354 	pos = (void *)(it_present + 1);
355 
356 	/* the order of the following fields is important */
357 
358 	/* IEEE80211_RADIOTAP_TSFT */
359 	if (ieee80211_have_rx_timestamp(status)) {
360 		/* padding */
361 		while ((pos - (u8 *)rthdr) & 7)
362 			*pos++ = 0;
363 		put_unaligned_le64(
364 			ieee80211_calculate_rx_timestamp(local, status,
365 							 mpdulen, 0),
366 			pos);
367 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 		pos += 8;
369 	}
370 
371 	/* IEEE80211_RADIOTAP_FLAGS */
372 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 		*pos |= IEEE80211_RADIOTAP_F_FCS;
374 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 	pos++;
379 
380 	/* IEEE80211_RADIOTAP_RATE */
381 	if (!rate || status->encoding != RX_ENC_LEGACY) {
382 		/*
383 		 * Without rate information don't add it. If we have,
384 		 * MCS information is a separate field in radiotap,
385 		 * added below. The byte here is needed as padding
386 		 * for the channel though, so initialise it to 0.
387 		 */
388 		*pos = 0;
389 	} else {
390 		int shift = 0;
391 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 		if (status->bw == RATE_INFO_BW_10)
393 			shift = 1;
394 		else if (status->bw == RATE_INFO_BW_5)
395 			shift = 2;
396 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 	}
398 	pos++;
399 
400 	/* IEEE80211_RADIOTAP_CHANNEL */
401 	/* TODO: frequency offset in KHz */
402 	put_unaligned_le16(status->freq, pos);
403 	pos += 2;
404 	if (status->bw == RATE_INFO_BW_10)
405 		channel_flags |= IEEE80211_CHAN_HALF;
406 	else if (status->bw == RATE_INFO_BW_5)
407 		channel_flags |= IEEE80211_CHAN_QUARTER;
408 
409 	if (status->band == NL80211_BAND_5GHZ ||
410 	    status->band == NL80211_BAND_6GHZ)
411 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
412 	else if (status->encoding != RX_ENC_LEGACY)
413 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
414 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
415 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
416 	else if (rate)
417 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
418 	else
419 		channel_flags |= IEEE80211_CHAN_2GHZ;
420 	put_unaligned_le16(channel_flags, pos);
421 	pos += 2;
422 
423 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
424 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
425 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
426 		*pos = status->signal;
427 		rthdr->it_present |=
428 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
429 		pos++;
430 	}
431 
432 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
433 
434 	if (!status->chains) {
435 		/* IEEE80211_RADIOTAP_ANTENNA */
436 		*pos = status->antenna;
437 		pos++;
438 	}
439 
440 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
441 
442 	/* IEEE80211_RADIOTAP_RX_FLAGS */
443 	/* ensure 2 byte alignment for the 2 byte field as required */
444 	if ((pos - (u8 *)rthdr) & 1)
445 		*pos++ = 0;
446 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
447 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
448 	put_unaligned_le16(rx_flags, pos);
449 	pos += 2;
450 
451 	if (status->encoding == RX_ENC_HT) {
452 		unsigned int stbc;
453 
454 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
455 		*pos++ = local->hw.radiotap_mcs_details;
456 		*pos = 0;
457 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
458 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
459 		if (status->bw == RATE_INFO_BW_40)
460 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
461 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
462 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
463 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
464 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
465 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
466 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
467 		pos++;
468 		*pos++ = status->rate_idx;
469 	}
470 
471 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
472 		u16 flags = 0;
473 
474 		/* ensure 4 byte alignment */
475 		while ((pos - (u8 *)rthdr) & 3)
476 			pos++;
477 		rthdr->it_present |=
478 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
479 		put_unaligned_le32(status->ampdu_reference, pos);
480 		pos += 4;
481 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
482 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
483 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
484 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
485 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
486 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
487 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
488 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
489 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
490 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
491 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
492 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
493 		put_unaligned_le16(flags, pos);
494 		pos += 2;
495 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
496 			*pos++ = status->ampdu_delimiter_crc;
497 		else
498 			*pos++ = 0;
499 		*pos++ = 0;
500 	}
501 
502 	if (status->encoding == RX_ENC_VHT) {
503 		u16 known = local->hw.radiotap_vht_details;
504 
505 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
506 		put_unaligned_le16(known, pos);
507 		pos += 2;
508 		/* flags */
509 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
510 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
511 		/* in VHT, STBC is binary */
512 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
513 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
514 		if (status->enc_flags & RX_ENC_FLAG_BF)
515 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
516 		pos++;
517 		/* bandwidth */
518 		switch (status->bw) {
519 		case RATE_INFO_BW_80:
520 			*pos++ = 4;
521 			break;
522 		case RATE_INFO_BW_160:
523 			*pos++ = 11;
524 			break;
525 		case RATE_INFO_BW_40:
526 			*pos++ = 1;
527 			break;
528 		default:
529 			*pos++ = 0;
530 		}
531 		/* MCS/NSS */
532 		*pos = (status->rate_idx << 4) | status->nss;
533 		pos += 4;
534 		/* coding field */
535 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
536 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
537 		pos++;
538 		/* group ID */
539 		pos++;
540 		/* partial_aid */
541 		pos += 2;
542 	}
543 
544 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
545 		u16 accuracy = 0;
546 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
547 
548 		rthdr->it_present |=
549 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
550 
551 		/* ensure 8 byte alignment */
552 		while ((pos - (u8 *)rthdr) & 7)
553 			pos++;
554 
555 		put_unaligned_le64(status->device_timestamp, pos);
556 		pos += sizeof(u64);
557 
558 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
559 			accuracy = local->hw.radiotap_timestamp.accuracy;
560 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
561 		}
562 		put_unaligned_le16(accuracy, pos);
563 		pos += sizeof(u16);
564 
565 		*pos++ = local->hw.radiotap_timestamp.units_pos;
566 		*pos++ = flags;
567 	}
568 
569 	if (status->encoding == RX_ENC_HE &&
570 	    status->flag & RX_FLAG_RADIOTAP_HE) {
571 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
572 
573 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
574 			he.data6 |= HE_PREP(DATA6_NSTS,
575 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
576 						      status->enc_flags));
577 			he.data3 |= HE_PREP(DATA3_STBC, 1);
578 		} else {
579 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
580 		}
581 
582 #define CHECK_GI(s) \
583 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
584 		     (int)NL80211_RATE_INFO_HE_GI_##s)
585 
586 		CHECK_GI(0_8);
587 		CHECK_GI(1_6);
588 		CHECK_GI(3_2);
589 
590 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
591 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
592 		he.data3 |= HE_PREP(DATA3_CODING,
593 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
594 
595 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
596 
597 		switch (status->bw) {
598 		case RATE_INFO_BW_20:
599 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
600 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
601 			break;
602 		case RATE_INFO_BW_40:
603 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
604 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
605 			break;
606 		case RATE_INFO_BW_80:
607 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
608 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
609 			break;
610 		case RATE_INFO_BW_160:
611 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
613 			break;
614 		case RATE_INFO_BW_HE_RU:
615 #define CHECK_RU_ALLOC(s) \
616 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
617 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
618 
619 			CHECK_RU_ALLOC(26);
620 			CHECK_RU_ALLOC(52);
621 			CHECK_RU_ALLOC(106);
622 			CHECK_RU_ALLOC(242);
623 			CHECK_RU_ALLOC(484);
624 			CHECK_RU_ALLOC(996);
625 			CHECK_RU_ALLOC(2x996);
626 
627 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
628 					    status->he_ru + 4);
629 			break;
630 		default:
631 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
632 		}
633 
634 		/* ensure 2 byte alignment */
635 		while ((pos - (u8 *)rthdr) & 1)
636 			pos++;
637 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
638 		memcpy(pos, &he, sizeof(he));
639 		pos += sizeof(he);
640 	}
641 
642 	if (status->encoding == RX_ENC_HE &&
643 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
644 		/* ensure 2 byte alignment */
645 		while ((pos - (u8 *)rthdr) & 1)
646 			pos++;
647 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
648 		memcpy(pos, &he_mu, sizeof(he_mu));
649 		pos += sizeof(he_mu);
650 	}
651 
652 	if (status->flag & RX_FLAG_NO_PSDU) {
653 		rthdr->it_present |=
654 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
655 		*pos++ = status->zero_length_psdu_type;
656 	}
657 
658 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
659 		/* ensure 2 byte alignment */
660 		while ((pos - (u8 *)rthdr) & 1)
661 			pos++;
662 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
663 		memcpy(pos, &lsig, sizeof(lsig));
664 		pos += sizeof(lsig);
665 	}
666 
667 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
668 		*pos++ = status->chain_signal[chain];
669 		*pos++ = chain;
670 	}
671 
672 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
673 		/* ensure 2 byte alignment for the vendor field as required */
674 		if ((pos - (u8 *)rthdr) & 1)
675 			*pos++ = 0;
676 		*pos++ = rtap.oui[0];
677 		*pos++ = rtap.oui[1];
678 		*pos++ = rtap.oui[2];
679 		*pos++ = rtap.subns;
680 		put_unaligned_le16(rtap.len, pos);
681 		pos += 2;
682 		/* align the actual payload as requested */
683 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
684 			*pos++ = 0;
685 		/* data (and possible padding) already follows */
686 	}
687 }
688 
689 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)690 ieee80211_make_monitor_skb(struct ieee80211_local *local,
691 			   struct sk_buff **origskb,
692 			   struct ieee80211_rate *rate,
693 			   int rtap_space, bool use_origskb)
694 {
695 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
696 	int rt_hdrlen, needed_headroom;
697 	struct sk_buff *skb;
698 
699 	/* room for the radiotap header based on driver features */
700 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
701 	needed_headroom = rt_hdrlen - rtap_space;
702 
703 	if (use_origskb) {
704 		/* only need to expand headroom if necessary */
705 		skb = *origskb;
706 		*origskb = NULL;
707 
708 		/*
709 		 * This shouldn't trigger often because most devices have an
710 		 * RX header they pull before we get here, and that should
711 		 * be big enough for our radiotap information. We should
712 		 * probably export the length to drivers so that we can have
713 		 * them allocate enough headroom to start with.
714 		 */
715 		if (skb_headroom(skb) < needed_headroom &&
716 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
717 			dev_kfree_skb(skb);
718 			return NULL;
719 		}
720 	} else {
721 		/*
722 		 * Need to make a copy and possibly remove radiotap header
723 		 * and FCS from the original.
724 		 */
725 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
726 
727 		if (!skb)
728 			return NULL;
729 	}
730 
731 	/* prepend radiotap information */
732 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
733 
734 	skb_reset_mac_header(skb);
735 	skb->ip_summed = CHECKSUM_UNNECESSARY;
736 	skb->pkt_type = PACKET_OTHERHOST;
737 	skb->protocol = htons(ETH_P_802_2);
738 
739 	return skb;
740 }
741 
742 /*
743  * This function copies a received frame to all monitor interfaces and
744  * returns a cleaned-up SKB that no longer includes the FCS nor the
745  * radiotap header the driver might have added.
746  */
747 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
749 		     struct ieee80211_rate *rate)
750 {
751 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
752 	struct ieee80211_sub_if_data *sdata;
753 	struct sk_buff *monskb = NULL;
754 	int present_fcs_len = 0;
755 	unsigned int rtap_space = 0;
756 	struct ieee80211_sub_if_data *monitor_sdata =
757 		rcu_dereference(local->monitor_sdata);
758 	bool only_monitor = false;
759 	unsigned int min_head_len;
760 
761 	if (status->flag & RX_FLAG_RADIOTAP_HE)
762 		rtap_space += sizeof(struct ieee80211_radiotap_he);
763 
764 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
765 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
766 
767 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
768 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
769 
770 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
771 		struct ieee80211_vendor_radiotap *rtap =
772 			(void *)(origskb->data + rtap_space);
773 
774 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
775 	}
776 
777 	min_head_len = rtap_space;
778 
779 	/*
780 	 * First, we may need to make a copy of the skb because
781 	 *  (1) we need to modify it for radiotap (if not present), and
782 	 *  (2) the other RX handlers will modify the skb we got.
783 	 *
784 	 * We don't need to, of course, if we aren't going to return
785 	 * the SKB because it has a bad FCS/PLCP checksum.
786 	 */
787 
788 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
789 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
790 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
791 				/* driver bug */
792 				WARN_ON(1);
793 				dev_kfree_skb(origskb);
794 				return NULL;
795 			}
796 			present_fcs_len = FCS_LEN;
797 		}
798 
799 		/* also consider the hdr->frame_control */
800 		min_head_len += 2;
801 	}
802 
803 	/* ensure that the expected data elements are in skb head */
804 	if (!pskb_may_pull(origskb, min_head_len)) {
805 		dev_kfree_skb(origskb);
806 		return NULL;
807 	}
808 
809 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
810 
811 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
812 		if (only_monitor) {
813 			dev_kfree_skb(origskb);
814 			return NULL;
815 		}
816 
817 		return ieee80211_clean_skb(origskb, present_fcs_len,
818 					   rtap_space);
819 	}
820 
821 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
822 
823 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
824 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
825 						 &local->mon_list);
826 
827 		if (!monskb)
828 			monskb = ieee80211_make_monitor_skb(local, &origskb,
829 							    rate, rtap_space,
830 							    only_monitor &&
831 							    last_monitor);
832 
833 		if (monskb) {
834 			struct sk_buff *skb;
835 
836 			if (last_monitor) {
837 				skb = monskb;
838 				monskb = NULL;
839 			} else {
840 				skb = skb_clone(monskb, GFP_ATOMIC);
841 			}
842 
843 			if (skb) {
844 				skb->dev = sdata->dev;
845 				ieee80211_rx_stats(skb->dev, skb->len);
846 				netif_receive_skb(skb);
847 			}
848 		}
849 
850 		if (last_monitor)
851 			break;
852 	}
853 
854 	/* this happens if last_monitor was erroneously false */
855 	dev_kfree_skb(monskb);
856 
857 	/* ditto */
858 	if (!origskb)
859 		return NULL;
860 
861 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
862 }
863 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
865 {
866 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
867 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
868 	int tid, seqno_idx, security_idx;
869 
870 	/* does the frame have a qos control field? */
871 	if (ieee80211_is_data_qos(hdr->frame_control)) {
872 		u8 *qc = ieee80211_get_qos_ctl(hdr);
873 		/* frame has qos control */
874 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
875 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
876 			status->rx_flags |= IEEE80211_RX_AMSDU;
877 
878 		seqno_idx = tid;
879 		security_idx = tid;
880 	} else {
881 		/*
882 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
883 		 *
884 		 *	Sequence numbers for management frames, QoS data
885 		 *	frames with a broadcast/multicast address in the
886 		 *	Address 1 field, and all non-QoS data frames sent
887 		 *	by QoS STAs are assigned using an additional single
888 		 *	modulo-4096 counter, [...]
889 		 *
890 		 * We also use that counter for non-QoS STAs.
891 		 */
892 		seqno_idx = IEEE80211_NUM_TIDS;
893 		security_idx = 0;
894 		if (ieee80211_is_mgmt(hdr->frame_control))
895 			security_idx = IEEE80211_NUM_TIDS;
896 		tid = 0;
897 	}
898 
899 	rx->seqno_idx = seqno_idx;
900 	rx->security_idx = security_idx;
901 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
902 	 * For now, set skb->priority to 0 for other cases. */
903 	rx->skb->priority = (tid > 7) ? 0 : tid;
904 }
905 
906 /**
907  * DOC: Packet alignment
908  *
909  * Drivers always need to pass packets that are aligned to two-byte boundaries
910  * to the stack.
911  *
912  * Additionally, should, if possible, align the payload data in a way that
913  * guarantees that the contained IP header is aligned to a four-byte
914  * boundary. In the case of regular frames, this simply means aligning the
915  * payload to a four-byte boundary (because either the IP header is directly
916  * contained, or IV/RFC1042 headers that have a length divisible by four are
917  * in front of it).  If the payload data is not properly aligned and the
918  * architecture doesn't support efficient unaligned operations, mac80211
919  * will align the data.
920  *
921  * With A-MSDU frames, however, the payload data address must yield two modulo
922  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
923  * push the IP header further back to a multiple of four again. Thankfully, the
924  * specs were sane enough this time around to require padding each A-MSDU
925  * subframe to a length that is a multiple of four.
926  *
927  * Padding like Atheros hardware adds which is between the 802.11 header and
928  * the payload is not supported, the driver is required to move the 802.11
929  * header to be directly in front of the payload in that case.
930  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
932 {
933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
934 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
935 #endif
936 }
937 
938 
939 /* rx handlers */
940 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
942 {
943 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944 
945 	if (is_multicast_ether_addr(hdr->addr1))
946 		return 0;
947 
948 	return ieee80211_is_robust_mgmt_frame(skb);
949 }
950 
951 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955 
956 	if (!is_multicast_ether_addr(hdr->addr1))
957 		return 0;
958 
959 	return ieee80211_is_robust_mgmt_frame(skb);
960 }
961 
962 
963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
965 {
966 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
967 	struct ieee80211_mmie *mmie;
968 	struct ieee80211_mmie_16 *mmie16;
969 
970 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
971 		return -1;
972 
973 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
974 	    !ieee80211_is_beacon(hdr->frame_control))
975 		return -1; /* not a robust management frame */
976 
977 	mmie = (struct ieee80211_mmie *)
978 		(skb->data + skb->len - sizeof(*mmie));
979 	if (mmie->element_id == WLAN_EID_MMIE &&
980 	    mmie->length == sizeof(*mmie) - 2)
981 		return le16_to_cpu(mmie->key_id);
982 
983 	mmie16 = (struct ieee80211_mmie_16 *)
984 		(skb->data + skb->len - sizeof(*mmie16));
985 	if (skb->len >= 24 + sizeof(*mmie16) &&
986 	    mmie16->element_id == WLAN_EID_MMIE &&
987 	    mmie16->length == sizeof(*mmie16) - 2)
988 		return le16_to_cpu(mmie16->key_id);
989 
990 	return -1;
991 }
992 
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)993 static int ieee80211_get_keyid(struct sk_buff *skb,
994 			       const struct ieee80211_cipher_scheme *cs)
995 {
996 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
997 	__le16 fc;
998 	int hdrlen;
999 	int minlen;
1000 	u8 key_idx_off;
1001 	u8 key_idx_shift;
1002 	u8 keyid;
1003 
1004 	fc = hdr->frame_control;
1005 	hdrlen = ieee80211_hdrlen(fc);
1006 
1007 	if (cs) {
1008 		minlen = hdrlen + cs->hdr_len;
1009 		key_idx_off = hdrlen + cs->key_idx_off;
1010 		key_idx_shift = cs->key_idx_shift;
1011 	} else {
1012 		/* WEP, TKIP, CCMP and GCMP */
1013 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1014 		key_idx_off = hdrlen + 3;
1015 		key_idx_shift = 6;
1016 	}
1017 
1018 	if (unlikely(skb->len < minlen))
1019 		return -EINVAL;
1020 
1021 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1022 
1023 	if (cs)
1024 		keyid &= cs->key_idx_mask;
1025 	keyid >>= key_idx_shift;
1026 
1027 	/* cs could use more than the usual two bits for the keyid */
1028 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1029 		return -EINVAL;
1030 
1031 	return keyid;
1032 }
1033 
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1035 {
1036 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1037 	char *dev_addr = rx->sdata->vif.addr;
1038 
1039 	if (ieee80211_is_data(hdr->frame_control)) {
1040 		if (is_multicast_ether_addr(hdr->addr1)) {
1041 			if (ieee80211_has_tods(hdr->frame_control) ||
1042 			    !ieee80211_has_fromds(hdr->frame_control))
1043 				return RX_DROP_MONITOR;
1044 			if (ether_addr_equal(hdr->addr3, dev_addr))
1045 				return RX_DROP_MONITOR;
1046 		} else {
1047 			if (!ieee80211_has_a4(hdr->frame_control))
1048 				return RX_DROP_MONITOR;
1049 			if (ether_addr_equal(hdr->addr4, dev_addr))
1050 				return RX_DROP_MONITOR;
1051 		}
1052 	}
1053 
1054 	/* If there is not an established peer link and this is not a peer link
1055 	 * establisment frame, beacon or probe, drop the frame.
1056 	 */
1057 
1058 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1059 		struct ieee80211_mgmt *mgmt;
1060 
1061 		if (!ieee80211_is_mgmt(hdr->frame_control))
1062 			return RX_DROP_MONITOR;
1063 
1064 		if (ieee80211_is_action(hdr->frame_control)) {
1065 			u8 category;
1066 
1067 			/* make sure category field is present */
1068 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1069 				return RX_DROP_MONITOR;
1070 
1071 			mgmt = (struct ieee80211_mgmt *)hdr;
1072 			category = mgmt->u.action.category;
1073 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1074 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1075 				return RX_DROP_MONITOR;
1076 			return RX_CONTINUE;
1077 		}
1078 
1079 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1080 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1081 		    ieee80211_is_beacon(hdr->frame_control) ||
1082 		    ieee80211_is_auth(hdr->frame_control))
1083 			return RX_CONTINUE;
1084 
1085 		return RX_DROP_MONITOR;
1086 	}
1087 
1088 	return RX_CONTINUE;
1089 }
1090 
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1092 					      int index)
1093 {
1094 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1095 	struct sk_buff *tail = skb_peek_tail(frames);
1096 	struct ieee80211_rx_status *status;
1097 
1098 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1099 		return true;
1100 
1101 	if (!tail)
1102 		return false;
1103 
1104 	status = IEEE80211_SKB_RXCB(tail);
1105 	if (status->flag & RX_FLAG_AMSDU_MORE)
1106 		return false;
1107 
1108 	return true;
1109 }
1110 
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1112 					    struct tid_ampdu_rx *tid_agg_rx,
1113 					    int index,
1114 					    struct sk_buff_head *frames)
1115 {
1116 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1117 	struct sk_buff *skb;
1118 	struct ieee80211_rx_status *status;
1119 
1120 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1121 
1122 	if (skb_queue_empty(skb_list))
1123 		goto no_frame;
1124 
1125 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1126 		__skb_queue_purge(skb_list);
1127 		goto no_frame;
1128 	}
1129 
1130 	/* release frames from the reorder ring buffer */
1131 	tid_agg_rx->stored_mpdu_num--;
1132 	while ((skb = __skb_dequeue(skb_list))) {
1133 		status = IEEE80211_SKB_RXCB(skb);
1134 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1135 		__skb_queue_tail(frames, skb);
1136 	}
1137 
1138 no_frame:
1139 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1141 }
1142 
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 					     struct tid_ampdu_rx *tid_agg_rx,
1145 					     u16 head_seq_num,
1146 					     struct sk_buff_head *frames)
1147 {
1148 	int index;
1149 
1150 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151 
1152 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1153 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 						frames);
1156 	}
1157 }
1158 
1159 /*
1160  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161  * the skb was added to the buffer longer than this time ago, the earlier
1162  * frames that have not yet been received are assumed to be lost and the skb
1163  * can be released for processing. This may also release other skb's from the
1164  * reorder buffer if there are no additional gaps between the frames.
1165  *
1166  * Callers must hold tid_agg_rx->reorder_lock.
1167  */
1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169 
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 					  struct tid_ampdu_rx *tid_agg_rx,
1172 					  struct sk_buff_head *frames)
1173 {
1174 	int index, i, j;
1175 
1176 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177 
1178 	/* release the buffer until next missing frame */
1179 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 	    tid_agg_rx->stored_mpdu_num) {
1182 		/*
1183 		 * No buffers ready to be released, but check whether any
1184 		 * frames in the reorder buffer have timed out.
1185 		 */
1186 		int skipped = 1;
1187 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 		     j = (j + 1) % tid_agg_rx->buf_size) {
1189 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1190 				skipped++;
1191 				continue;
1192 			}
1193 			if (skipped &&
1194 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 					HT_RX_REORDER_BUF_TIMEOUT))
1196 				goto set_release_timer;
1197 
1198 			/* don't leave incomplete A-MSDUs around */
1199 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 			     i = (i + 1) % tid_agg_rx->buf_size)
1201 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1202 
1203 			ht_dbg_ratelimited(sdata,
1204 					   "release an RX reorder frame due to timeout on earlier frames\n");
1205 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1206 							frames);
1207 
1208 			/*
1209 			 * Increment the head seq# also for the skipped slots.
1210 			 */
1211 			tid_agg_rx->head_seq_num =
1212 				(tid_agg_rx->head_seq_num +
1213 				 skipped) & IEEE80211_SN_MASK;
1214 			skipped = 0;
1215 		}
1216 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 						frames);
1219 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 	}
1221 
1222 	if (tid_agg_rx->stored_mpdu_num) {
1223 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224 
1225 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 		     j = (j + 1) % tid_agg_rx->buf_size) {
1227 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1228 				break;
1229 		}
1230 
1231  set_release_timer:
1232 
1233 		if (!tid_agg_rx->removed)
1234 			mod_timer(&tid_agg_rx->reorder_timer,
1235 				  tid_agg_rx->reorder_time[j] + 1 +
1236 				  HT_RX_REORDER_BUF_TIMEOUT);
1237 	} else {
1238 		del_timer(&tid_agg_rx->reorder_timer);
1239 	}
1240 }
1241 
1242 /*
1243  * As this function belongs to the RX path it must be under
1244  * rcu_read_lock protection. It returns false if the frame
1245  * can be processed immediately, true if it was consumed.
1246  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 					     struct tid_ampdu_rx *tid_agg_rx,
1249 					     struct sk_buff *skb,
1250 					     struct sk_buff_head *frames)
1251 {
1252 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1255 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256 	u16 head_seq_num, buf_size;
1257 	int index;
1258 	bool ret = true;
1259 
1260 	spin_lock(&tid_agg_rx->reorder_lock);
1261 
1262 	/*
1263 	 * Offloaded BA sessions have no known starting sequence number so pick
1264 	 * one from first Rxed frame for this tid after BA was started.
1265 	 */
1266 	if (unlikely(tid_agg_rx->auto_seq)) {
1267 		tid_agg_rx->auto_seq = false;
1268 		tid_agg_rx->ssn = mpdu_seq_num;
1269 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1270 	}
1271 
1272 	buf_size = tid_agg_rx->buf_size;
1273 	head_seq_num = tid_agg_rx->head_seq_num;
1274 
1275 	/*
1276 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1277 	 * be reordered.
1278 	 */
1279 	if (unlikely(!tid_agg_rx->started)) {
1280 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1281 			ret = false;
1282 			goto out;
1283 		}
1284 		tid_agg_rx->started = true;
1285 	}
1286 
1287 	/* frame with out of date sequence number */
1288 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1289 		dev_kfree_skb(skb);
1290 		goto out;
1291 	}
1292 
1293 	/*
1294 	 * If frame the sequence number exceeds our buffering window
1295 	 * size release some previous frames to make room for this one.
1296 	 */
1297 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1298 		head_seq_num = ieee80211_sn_inc(
1299 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1300 		/* release stored frames up to new head to stack */
1301 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1302 						 head_seq_num, frames);
1303 	}
1304 
1305 	/* Now the new frame is always in the range of the reordering buffer */
1306 
1307 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1308 
1309 	/* check if we already stored this frame */
1310 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1311 		dev_kfree_skb(skb);
1312 		goto out;
1313 	}
1314 
1315 	/*
1316 	 * If the current MPDU is in the right order and nothing else
1317 	 * is stored we can process it directly, no need to buffer it.
1318 	 * If it is first but there's something stored, we may be able
1319 	 * to release frames after this one.
1320 	 */
1321 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1322 	    tid_agg_rx->stored_mpdu_num == 0) {
1323 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1324 			tid_agg_rx->head_seq_num =
1325 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1326 		ret = false;
1327 		goto out;
1328 	}
1329 
1330 	/* put the frame in the reordering buffer */
1331 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1332 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1333 		tid_agg_rx->reorder_time[index] = jiffies;
1334 		tid_agg_rx->stored_mpdu_num++;
1335 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1336 	}
1337 
1338  out:
1339 	spin_unlock(&tid_agg_rx->reorder_lock);
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1345  * true if the MPDU was buffered, false if it should be processed.
1346  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1348 				       struct sk_buff_head *frames)
1349 {
1350 	struct sk_buff *skb = rx->skb;
1351 	struct ieee80211_local *local = rx->local;
1352 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1353 	struct sta_info *sta = rx->sta;
1354 	struct tid_ampdu_rx *tid_agg_rx;
1355 	u16 sc;
1356 	u8 tid, ack_policy;
1357 
1358 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1359 	    is_multicast_ether_addr(hdr->addr1))
1360 		goto dont_reorder;
1361 
1362 	/*
1363 	 * filter the QoS data rx stream according to
1364 	 * STA/TID and check if this STA/TID is on aggregation
1365 	 */
1366 
1367 	if (!sta)
1368 		goto dont_reorder;
1369 
1370 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1371 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1372 	tid = ieee80211_get_tid(hdr);
1373 
1374 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1375 	if (!tid_agg_rx) {
1376 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1377 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1378 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1379 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1380 					     WLAN_BACK_RECIPIENT,
1381 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1382 		goto dont_reorder;
1383 	}
1384 
1385 	/* qos null data frames are excluded */
1386 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1387 		goto dont_reorder;
1388 
1389 	/* not part of a BA session */
1390 	if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1391 		goto dont_reorder;
1392 
1393 	/* new, potentially un-ordered, ampdu frame - process it */
1394 
1395 	/* reset session timer */
1396 	if (tid_agg_rx->timeout)
1397 		tid_agg_rx->last_rx = jiffies;
1398 
1399 	/* if this mpdu is fragmented - terminate rx aggregation session */
1400 	sc = le16_to_cpu(hdr->seq_ctrl);
1401 	if (sc & IEEE80211_SCTL_FRAG) {
1402 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1403 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1404 		return;
1405 	}
1406 
1407 	/*
1408 	 * No locking needed -- we will only ever process one
1409 	 * RX packet at a time, and thus own tid_agg_rx. All
1410 	 * other code manipulating it needs to (and does) make
1411 	 * sure that we cannot get to it any more before doing
1412 	 * anything with it.
1413 	 */
1414 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1415 					     frames))
1416 		return;
1417 
1418  dont_reorder:
1419 	__skb_queue_tail(frames, skb);
1420 }
1421 
1422 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1423 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1424 {
1425 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1426 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1427 
1428 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1429 		return RX_CONTINUE;
1430 
1431 	/*
1432 	 * Drop duplicate 802.11 retransmissions
1433 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1434 	 */
1435 
1436 	if (rx->skb->len < 24)
1437 		return RX_CONTINUE;
1438 
1439 	if (ieee80211_is_ctl(hdr->frame_control) ||
1440 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1441 	    is_multicast_ether_addr(hdr->addr1))
1442 		return RX_CONTINUE;
1443 
1444 	if (!rx->sta)
1445 		return RX_CONTINUE;
1446 
1447 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1448 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1449 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1450 		rx->sta->rx_stats.num_duplicates++;
1451 		return RX_DROP_UNUSABLE;
1452 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1453 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1454 	}
1455 
1456 	return RX_CONTINUE;
1457 }
1458 
1459 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1460 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1461 {
1462 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1463 
1464 	/* Drop disallowed frame classes based on STA auth/assoc state;
1465 	 * IEEE 802.11, Chap 5.5.
1466 	 *
1467 	 * mac80211 filters only based on association state, i.e. it drops
1468 	 * Class 3 frames from not associated stations. hostapd sends
1469 	 * deauth/disassoc frames when needed. In addition, hostapd is
1470 	 * responsible for filtering on both auth and assoc states.
1471 	 */
1472 
1473 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1474 		return ieee80211_rx_mesh_check(rx);
1475 
1476 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1477 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1478 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1479 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1480 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1481 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1482 		/*
1483 		 * accept port control frames from the AP even when it's not
1484 		 * yet marked ASSOC to prevent a race where we don't set the
1485 		 * assoc bit quickly enough before it sends the first frame
1486 		 */
1487 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1488 		    ieee80211_is_data_present(hdr->frame_control)) {
1489 			unsigned int hdrlen;
1490 			__be16 ethertype;
1491 
1492 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1493 
1494 			if (rx->skb->len < hdrlen + 8)
1495 				return RX_DROP_MONITOR;
1496 
1497 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1498 			if (ethertype == rx->sdata->control_port_protocol)
1499 				return RX_CONTINUE;
1500 		}
1501 
1502 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1503 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1504 					       hdr->addr2,
1505 					       GFP_ATOMIC))
1506 			return RX_DROP_UNUSABLE;
1507 
1508 		return RX_DROP_MONITOR;
1509 	}
1510 
1511 	return RX_CONTINUE;
1512 }
1513 
1514 
1515 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1516 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1517 {
1518 	struct ieee80211_local *local;
1519 	struct ieee80211_hdr *hdr;
1520 	struct sk_buff *skb;
1521 
1522 	local = rx->local;
1523 	skb = rx->skb;
1524 	hdr = (struct ieee80211_hdr *) skb->data;
1525 
1526 	if (!local->pspolling)
1527 		return RX_CONTINUE;
1528 
1529 	if (!ieee80211_has_fromds(hdr->frame_control))
1530 		/* this is not from AP */
1531 		return RX_CONTINUE;
1532 
1533 	if (!ieee80211_is_data(hdr->frame_control))
1534 		return RX_CONTINUE;
1535 
1536 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1537 		/* AP has no more frames buffered for us */
1538 		local->pspolling = false;
1539 		return RX_CONTINUE;
1540 	}
1541 
1542 	/* more data bit is set, let's request a new frame from the AP */
1543 	ieee80211_send_pspoll(local, rx->sdata);
1544 
1545 	return RX_CONTINUE;
1546 }
1547 
sta_ps_start(struct sta_info * sta)1548 static void sta_ps_start(struct sta_info *sta)
1549 {
1550 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1551 	struct ieee80211_local *local = sdata->local;
1552 	struct ps_data *ps;
1553 	int tid;
1554 
1555 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1556 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1557 		ps = &sdata->bss->ps;
1558 	else
1559 		return;
1560 
1561 	atomic_inc(&ps->num_sta_ps);
1562 	set_sta_flag(sta, WLAN_STA_PS_STA);
1563 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1564 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1565 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1566 	       sta->sta.addr, sta->sta.aid);
1567 
1568 	ieee80211_clear_fast_xmit(sta);
1569 
1570 	if (!sta->sta.txq[0])
1571 		return;
1572 
1573 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1574 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1575 		struct txq_info *txqi = to_txq_info(txq);
1576 
1577 		spin_lock(&local->active_txq_lock[txq->ac]);
1578 		if (!list_empty(&txqi->schedule_order))
1579 			list_del_init(&txqi->schedule_order);
1580 		spin_unlock(&local->active_txq_lock[txq->ac]);
1581 
1582 		if (txq_has_queue(txq))
1583 			set_bit(tid, &sta->txq_buffered_tids);
1584 		else
1585 			clear_bit(tid, &sta->txq_buffered_tids);
1586 	}
1587 }
1588 
sta_ps_end(struct sta_info * sta)1589 static void sta_ps_end(struct sta_info *sta)
1590 {
1591 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1592 	       sta->sta.addr, sta->sta.aid);
1593 
1594 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1595 		/*
1596 		 * Clear the flag only if the other one is still set
1597 		 * so that the TX path won't start TX'ing new frames
1598 		 * directly ... In the case that the driver flag isn't
1599 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1600 		 */
1601 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1602 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1603 		       sta->sta.addr, sta->sta.aid);
1604 		return;
1605 	}
1606 
1607 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1608 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1609 	ieee80211_sta_ps_deliver_wakeup(sta);
1610 }
1611 
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1612 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1613 {
1614 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1615 	bool in_ps;
1616 
1617 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1618 
1619 	/* Don't let the same PS state be set twice */
1620 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1621 	if ((start && in_ps) || (!start && !in_ps))
1622 		return -EINVAL;
1623 
1624 	if (start)
1625 		sta_ps_start(sta);
1626 	else
1627 		sta_ps_end(sta);
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1632 
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1633 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1634 {
1635 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1636 
1637 	if (test_sta_flag(sta, WLAN_STA_SP))
1638 		return;
1639 
1640 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1641 		ieee80211_sta_ps_deliver_poll_response(sta);
1642 	else
1643 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1644 }
1645 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1646 
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1647 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1648 {
1649 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1650 	int ac = ieee80211_ac_from_tid(tid);
1651 
1652 	/*
1653 	 * If this AC is not trigger-enabled do nothing unless the
1654 	 * driver is calling us after it already checked.
1655 	 *
1656 	 * NB: This could/should check a separate bitmap of trigger-
1657 	 * enabled queues, but for now we only implement uAPSD w/o
1658 	 * TSPEC changes to the ACs, so they're always the same.
1659 	 */
1660 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1661 	    tid != IEEE80211_NUM_TIDS)
1662 		return;
1663 
1664 	/* if we are in a service period, do nothing */
1665 	if (test_sta_flag(sta, WLAN_STA_SP))
1666 		return;
1667 
1668 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1669 		ieee80211_sta_ps_deliver_uapsd(sta);
1670 	else
1671 		set_sta_flag(sta, WLAN_STA_UAPSD);
1672 }
1673 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1674 
1675 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1676 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1677 {
1678 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1679 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1680 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1681 
1682 	if (!rx->sta)
1683 		return RX_CONTINUE;
1684 
1685 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1686 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1687 		return RX_CONTINUE;
1688 
1689 	/*
1690 	 * The device handles station powersave, so don't do anything about
1691 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1692 	 * it to mac80211 since they're handled.)
1693 	 */
1694 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1695 		return RX_CONTINUE;
1696 
1697 	/*
1698 	 * Don't do anything if the station isn't already asleep. In
1699 	 * the uAPSD case, the station will probably be marked asleep,
1700 	 * in the PS-Poll case the station must be confused ...
1701 	 */
1702 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1703 		return RX_CONTINUE;
1704 
1705 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1706 		ieee80211_sta_pspoll(&rx->sta->sta);
1707 
1708 		/* Free PS Poll skb here instead of returning RX_DROP that would
1709 		 * count as an dropped frame. */
1710 		dev_kfree_skb(rx->skb);
1711 
1712 		return RX_QUEUED;
1713 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1714 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1715 		   ieee80211_has_pm(hdr->frame_control) &&
1716 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1717 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1718 		u8 tid = ieee80211_get_tid(hdr);
1719 
1720 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1721 	}
1722 
1723 	return RX_CONTINUE;
1724 }
1725 
1726 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1727 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1728 {
1729 	struct sta_info *sta = rx->sta;
1730 	struct sk_buff *skb = rx->skb;
1731 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1732 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1733 	int i;
1734 
1735 	if (!sta)
1736 		return RX_CONTINUE;
1737 
1738 	/*
1739 	 * Update last_rx only for IBSS packets which are for the current
1740 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1741 	 * current IBSS network alive in cases where other STAs start
1742 	 * using different BSSID. This will also give the station another
1743 	 * chance to restart the authentication/authorization in case
1744 	 * something went wrong the first time.
1745 	 */
1746 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1747 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1748 						NL80211_IFTYPE_ADHOC);
1749 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1750 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1751 			sta->rx_stats.last_rx = jiffies;
1752 			if (ieee80211_is_data(hdr->frame_control) &&
1753 			    !is_multicast_ether_addr(hdr->addr1))
1754 				sta->rx_stats.last_rate =
1755 					sta_stats_encode_rate(status);
1756 		}
1757 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1758 		sta->rx_stats.last_rx = jiffies;
1759 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1760 		   !is_multicast_ether_addr(hdr->addr1)) {
1761 		/*
1762 		 * Mesh beacons will update last_rx when if they are found to
1763 		 * match the current local configuration when processed.
1764 		 */
1765 		sta->rx_stats.last_rx = jiffies;
1766 		if (ieee80211_is_data(hdr->frame_control))
1767 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1768 	}
1769 
1770 	sta->rx_stats.fragments++;
1771 
1772 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1773 	sta->rx_stats.bytes += rx->skb->len;
1774 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1775 
1776 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1777 		sta->rx_stats.last_signal = status->signal;
1778 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1779 	}
1780 
1781 	if (status->chains) {
1782 		sta->rx_stats.chains = status->chains;
1783 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1784 			int signal = status->chain_signal[i];
1785 
1786 			if (!(status->chains & BIT(i)))
1787 				continue;
1788 
1789 			sta->rx_stats.chain_signal_last[i] = signal;
1790 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1791 					-signal);
1792 		}
1793 	}
1794 
1795 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1796 		return RX_CONTINUE;
1797 
1798 	/*
1799 	 * Change STA power saving mode only at the end of a frame
1800 	 * exchange sequence, and only for a data or management
1801 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1802 	 */
1803 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1804 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1805 	    !is_multicast_ether_addr(hdr->addr1) &&
1806 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1807 	     ieee80211_is_data(hdr->frame_control)) &&
1808 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1809 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1810 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1811 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1812 			if (!ieee80211_has_pm(hdr->frame_control))
1813 				sta_ps_end(sta);
1814 		} else {
1815 			if (ieee80211_has_pm(hdr->frame_control))
1816 				sta_ps_start(sta);
1817 		}
1818 	}
1819 
1820 	/* mesh power save support */
1821 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1822 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1823 
1824 	/*
1825 	 * Drop (qos-)data::nullfunc frames silently, since they
1826 	 * are used only to control station power saving mode.
1827 	 */
1828 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1829 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1830 
1831 		/*
1832 		 * If we receive a 4-addr nullfunc frame from a STA
1833 		 * that was not moved to a 4-addr STA vlan yet send
1834 		 * the event to userspace and for older hostapd drop
1835 		 * the frame to the monitor interface.
1836 		 */
1837 		if (ieee80211_has_a4(hdr->frame_control) &&
1838 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1839 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1840 		      !rx->sdata->u.vlan.sta))) {
1841 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1842 				cfg80211_rx_unexpected_4addr_frame(
1843 					rx->sdata->dev, sta->sta.addr,
1844 					GFP_ATOMIC);
1845 			return RX_DROP_MONITOR;
1846 		}
1847 		/*
1848 		 * Update counter and free packet here to avoid
1849 		 * counting this as a dropped packed.
1850 		 */
1851 		sta->rx_stats.packets++;
1852 		dev_kfree_skb(rx->skb);
1853 		return RX_QUEUED;
1854 	}
1855 
1856 	return RX_CONTINUE;
1857 } /* ieee80211_rx_h_sta_process */
1858 
1859 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1860 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1861 {
1862 	struct ieee80211_key *key = NULL;
1863 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1864 	int idx2;
1865 
1866 	/* Make sure key gets set if either BIGTK key index is set so that
1867 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1868 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1869 	 * index (i.e., a key that we do not have).
1870 	 */
1871 
1872 	if (idx < 0) {
1873 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1874 		idx2 = idx + 1;
1875 	} else {
1876 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1877 			idx2 = idx + 1;
1878 		else
1879 			idx2 = idx - 1;
1880 	}
1881 
1882 	if (rx->sta)
1883 		key = rcu_dereference(rx->sta->gtk[idx]);
1884 	if (!key)
1885 		key = rcu_dereference(sdata->keys[idx]);
1886 	if (!key && rx->sta)
1887 		key = rcu_dereference(rx->sta->gtk[idx2]);
1888 	if (!key)
1889 		key = rcu_dereference(sdata->keys[idx2]);
1890 
1891 	return key;
1892 }
1893 
1894 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1895 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1896 {
1897 	struct sk_buff *skb = rx->skb;
1898 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1899 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1900 	int keyidx;
1901 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1902 	struct ieee80211_key *sta_ptk = NULL;
1903 	struct ieee80211_key *ptk_idx = NULL;
1904 	int mmie_keyidx = -1;
1905 	__le16 fc;
1906 	const struct ieee80211_cipher_scheme *cs = NULL;
1907 
1908 	if (ieee80211_is_ext(hdr->frame_control))
1909 		return RX_CONTINUE;
1910 
1911 	/*
1912 	 * Key selection 101
1913 	 *
1914 	 * There are five types of keys:
1915 	 *  - GTK (group keys)
1916 	 *  - IGTK (group keys for management frames)
1917 	 *  - BIGTK (group keys for Beacon frames)
1918 	 *  - PTK (pairwise keys)
1919 	 *  - STK (station-to-station pairwise keys)
1920 	 *
1921 	 * When selecting a key, we have to distinguish between multicast
1922 	 * (including broadcast) and unicast frames, the latter can only
1923 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1924 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1925 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1926 	 * don't have a PTK/STK we check the key index for a WEP key.
1927 	 *
1928 	 * Note that in a regular BSS, multicast frames are sent by the
1929 	 * AP only, associated stations unicast the frame to the AP first
1930 	 * which then multicasts it on their behalf.
1931 	 *
1932 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1933 	 * with each station, that is something we don't currently handle.
1934 	 * The spec seems to expect that one negotiates the same key with
1935 	 * every station but there's no such requirement; VLANs could be
1936 	 * possible.
1937 	 */
1938 
1939 	/* start without a key */
1940 	rx->key = NULL;
1941 	fc = hdr->frame_control;
1942 
1943 	if (rx->sta) {
1944 		int keyid = rx->sta->ptk_idx;
1945 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1946 
1947 		if (ieee80211_has_protected(fc) &&
1948 		    !(status->flag & RX_FLAG_IV_STRIPPED)) {
1949 			cs = rx->sta->cipher_scheme;
1950 			keyid = ieee80211_get_keyid(rx->skb, cs);
1951 
1952 			if (unlikely(keyid < 0))
1953 				return RX_DROP_UNUSABLE;
1954 
1955 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1956 		}
1957 	}
1958 
1959 	if (!ieee80211_has_protected(fc))
1960 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1961 
1962 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1963 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1964 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 		    (status->flag & RX_FLAG_IV_STRIPPED))
1966 			return RX_CONTINUE;
1967 		/* Skip decryption if the frame is not protected. */
1968 		if (!ieee80211_has_protected(fc))
1969 			return RX_CONTINUE;
1970 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1971 		/* Broadcast/multicast robust management frame / BIP */
1972 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 		    (status->flag & RX_FLAG_IV_STRIPPED))
1974 			return RX_CONTINUE;
1975 
1976 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1977 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1978 				   NUM_DEFAULT_BEACON_KEYS) {
1979 			if (rx->sdata->dev)
1980 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1981 							     skb->data,
1982 							     skb->len);
1983 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1984 		}
1985 
1986 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1987 		if (!rx->key)
1988 			return RX_CONTINUE; /* Beacon protection not in use */
1989 	} else if (mmie_keyidx >= 0) {
1990 		/* Broadcast/multicast robust management frame / BIP */
1991 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1992 		    (status->flag & RX_FLAG_IV_STRIPPED))
1993 			return RX_CONTINUE;
1994 
1995 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1996 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1997 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1998 		if (rx->sta) {
1999 			if (ieee80211_is_group_privacy_action(skb) &&
2000 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
2001 				return RX_DROP_MONITOR;
2002 
2003 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2004 		}
2005 		if (!rx->key)
2006 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2007 	} else if (!ieee80211_has_protected(fc)) {
2008 		/*
2009 		 * The frame was not protected, so skip decryption. However, we
2010 		 * need to set rx->key if there is a key that could have been
2011 		 * used so that the frame may be dropped if encryption would
2012 		 * have been expected.
2013 		 */
2014 		struct ieee80211_key *key = NULL;
2015 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2016 		int i;
2017 
2018 		if (ieee80211_is_beacon(fc)) {
2019 			key = ieee80211_rx_get_bigtk(rx, -1);
2020 		} else if (ieee80211_is_mgmt(fc) &&
2021 			   is_multicast_ether_addr(hdr->addr1)) {
2022 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2023 		} else {
2024 			if (rx->sta) {
2025 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2026 					key = rcu_dereference(rx->sta->gtk[i]);
2027 					if (key)
2028 						break;
2029 				}
2030 			}
2031 			if (!key) {
2032 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2033 					key = rcu_dereference(sdata->keys[i]);
2034 					if (key)
2035 						break;
2036 				}
2037 			}
2038 		}
2039 		if (key)
2040 			rx->key = key;
2041 		return RX_CONTINUE;
2042 	} else {
2043 		/*
2044 		 * The device doesn't give us the IV so we won't be
2045 		 * able to look up the key. That's ok though, we
2046 		 * don't need to decrypt the frame, we just won't
2047 		 * be able to keep statistics accurate.
2048 		 * Except for key threshold notifications, should
2049 		 * we somehow allow the driver to tell us which key
2050 		 * the hardware used if this flag is set?
2051 		 */
2052 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2053 		    (status->flag & RX_FLAG_IV_STRIPPED))
2054 			return RX_CONTINUE;
2055 
2056 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2057 
2058 		if (unlikely(keyidx < 0))
2059 			return RX_DROP_UNUSABLE;
2060 
2061 		/* check per-station GTK first, if multicast packet */
2062 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2063 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2064 
2065 		/* if not found, try default key */
2066 		if (!rx->key) {
2067 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2068 
2069 			/*
2070 			 * RSNA-protected unicast frames should always be
2071 			 * sent with pairwise or station-to-station keys,
2072 			 * but for WEP we allow using a key index as well.
2073 			 */
2074 			if (rx->key &&
2075 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2076 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2077 			    !is_multicast_ether_addr(hdr->addr1))
2078 				rx->key = NULL;
2079 		}
2080 	}
2081 
2082 	if (rx->key) {
2083 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2084 			return RX_DROP_MONITOR;
2085 
2086 		/* TODO: add threshold stuff again */
2087 	} else {
2088 		return RX_DROP_MONITOR;
2089 	}
2090 
2091 	switch (rx->key->conf.cipher) {
2092 	case WLAN_CIPHER_SUITE_WEP40:
2093 	case WLAN_CIPHER_SUITE_WEP104:
2094 		result = ieee80211_crypto_wep_decrypt(rx);
2095 		break;
2096 	case WLAN_CIPHER_SUITE_TKIP:
2097 		result = ieee80211_crypto_tkip_decrypt(rx);
2098 		break;
2099 	case WLAN_CIPHER_SUITE_CCMP:
2100 		result = ieee80211_crypto_ccmp_decrypt(
2101 			rx, IEEE80211_CCMP_MIC_LEN);
2102 		break;
2103 	case WLAN_CIPHER_SUITE_CCMP_256:
2104 		result = ieee80211_crypto_ccmp_decrypt(
2105 			rx, IEEE80211_CCMP_256_MIC_LEN);
2106 		break;
2107 	case WLAN_CIPHER_SUITE_AES_CMAC:
2108 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2109 		break;
2110 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2111 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2112 		break;
2113 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2114 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2115 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2116 		break;
2117 	case WLAN_CIPHER_SUITE_GCMP:
2118 	case WLAN_CIPHER_SUITE_GCMP_256:
2119 		result = ieee80211_crypto_gcmp_decrypt(rx);
2120 		break;
2121 	default:
2122 		result = ieee80211_crypto_hw_decrypt(rx);
2123 	}
2124 
2125 	/* the hdr variable is invalid after the decrypt handlers */
2126 
2127 	/* either the frame has been decrypted or will be dropped */
2128 	status->flag |= RX_FLAG_DECRYPTED;
2129 
2130 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2131 		     rx->sdata->dev))
2132 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2133 					     skb->data, skb->len);
2134 
2135 	return result;
2136 }
2137 
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2138 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2139 {
2140 	int i;
2141 
2142 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2143 		skb_queue_head_init(&cache->entries[i].skb_list);
2144 }
2145 
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2146 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2147 {
2148 	int i;
2149 
2150 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2151 		__skb_queue_purge(&cache->entries[i].skb_list);
2152 }
2153 
2154 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2155 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2156 			 unsigned int frag, unsigned int seq, int rx_queue,
2157 			 struct sk_buff **skb)
2158 {
2159 	struct ieee80211_fragment_entry *entry;
2160 
2161 	entry = &cache->entries[cache->next++];
2162 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2163 		cache->next = 0;
2164 
2165 	__skb_queue_purge(&entry->skb_list);
2166 
2167 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2168 	*skb = NULL;
2169 	entry->first_frag_time = jiffies;
2170 	entry->seq = seq;
2171 	entry->rx_queue = rx_queue;
2172 	entry->last_frag = frag;
2173 	entry->check_sequential_pn = false;
2174 	entry->extra_len = 0;
2175 
2176 	return entry;
2177 }
2178 
2179 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2180 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2181 			  unsigned int frag, unsigned int seq,
2182 			  int rx_queue, struct ieee80211_hdr *hdr)
2183 {
2184 	struct ieee80211_fragment_entry *entry;
2185 	int i, idx;
2186 
2187 	idx = cache->next;
2188 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2189 		struct ieee80211_hdr *f_hdr;
2190 		struct sk_buff *f_skb;
2191 
2192 		idx--;
2193 		if (idx < 0)
2194 			idx = IEEE80211_FRAGMENT_MAX - 1;
2195 
2196 		entry = &cache->entries[idx];
2197 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2198 		    entry->rx_queue != rx_queue ||
2199 		    entry->last_frag + 1 != frag)
2200 			continue;
2201 
2202 		f_skb = __skb_peek(&entry->skb_list);
2203 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2204 
2205 		/*
2206 		 * Check ftype and addresses are equal, else check next fragment
2207 		 */
2208 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2209 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2210 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2211 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2212 			continue;
2213 
2214 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2215 			__skb_queue_purge(&entry->skb_list);
2216 			continue;
2217 		}
2218 		return entry;
2219 	}
2220 
2221 	return NULL;
2222 }
2223 
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2224 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2225 {
2226 	return rx->key &&
2227 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2228 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2229 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2230 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2231 		ieee80211_has_protected(fc);
2232 }
2233 
2234 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2235 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2236 {
2237 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2238 	struct ieee80211_hdr *hdr;
2239 	u16 sc;
2240 	__le16 fc;
2241 	unsigned int frag, seq;
2242 	struct ieee80211_fragment_entry *entry;
2243 	struct sk_buff *skb;
2244 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2245 
2246 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2247 	fc = hdr->frame_control;
2248 
2249 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2250 		return RX_CONTINUE;
2251 
2252 	sc = le16_to_cpu(hdr->seq_ctrl);
2253 	frag = sc & IEEE80211_SCTL_FRAG;
2254 
2255 	if (rx->sta)
2256 		cache = &rx->sta->frags;
2257 
2258 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2259 		goto out;
2260 
2261 	if (is_multicast_ether_addr(hdr->addr1))
2262 		return RX_DROP_MONITOR;
2263 
2264 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2265 
2266 	if (skb_linearize(rx->skb))
2267 		return RX_DROP_UNUSABLE;
2268 
2269 	/*
2270 	 *  skb_linearize() might change the skb->data and
2271 	 *  previously cached variables (in this case, hdr) need to
2272 	 *  be refreshed with the new data.
2273 	 */
2274 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2275 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2276 
2277 	if (frag == 0) {
2278 		/* This is the first fragment of a new frame. */
2279 		entry = ieee80211_reassemble_add(cache, frag, seq,
2280 						 rx->seqno_idx, &(rx->skb));
2281 		if (requires_sequential_pn(rx, fc)) {
2282 			int queue = rx->security_idx;
2283 
2284 			/* Store CCMP/GCMP PN so that we can verify that the
2285 			 * next fragment has a sequential PN value.
2286 			 */
2287 			entry->check_sequential_pn = true;
2288 			entry->is_protected = true;
2289 			entry->key_color = rx->key->color;
2290 			memcpy(entry->last_pn,
2291 			       rx->key->u.ccmp.rx_pn[queue],
2292 			       IEEE80211_CCMP_PN_LEN);
2293 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2294 					      u.ccmp.rx_pn) !=
2295 				     offsetof(struct ieee80211_key,
2296 					      u.gcmp.rx_pn));
2297 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2298 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2299 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2300 				     IEEE80211_GCMP_PN_LEN);
2301 		} else if (rx->key &&
2302 			   (ieee80211_has_protected(fc) ||
2303 			    (status->flag & RX_FLAG_DECRYPTED))) {
2304 			entry->is_protected = true;
2305 			entry->key_color = rx->key->color;
2306 		}
2307 		return RX_QUEUED;
2308 	}
2309 
2310 	/* This is a fragment for a frame that should already be pending in
2311 	 * fragment cache. Add this fragment to the end of the pending entry.
2312 	 */
2313 	entry = ieee80211_reassemble_find(cache, frag, seq,
2314 					  rx->seqno_idx, hdr);
2315 	if (!entry) {
2316 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2317 		return RX_DROP_MONITOR;
2318 	}
2319 
2320 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2321 	 *  MPDU PN values are not incrementing in steps of 1."
2322 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2323 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2324 	 */
2325 	if (entry->check_sequential_pn) {
2326 		int i;
2327 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2328 
2329 		if (!requires_sequential_pn(rx, fc))
2330 			return RX_DROP_UNUSABLE;
2331 
2332 		/* Prevent mixed key and fragment cache attacks */
2333 		if (entry->key_color != rx->key->color)
2334 			return RX_DROP_UNUSABLE;
2335 
2336 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2337 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2338 			pn[i]++;
2339 			if (pn[i])
2340 				break;
2341 		}
2342 
2343 		rpn = rx->ccm_gcm.pn;
2344 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2345 			return RX_DROP_UNUSABLE;
2346 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2347 	} else if (entry->is_protected &&
2348 		   (!rx->key ||
2349 		    (!ieee80211_has_protected(fc) &&
2350 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2351 		    rx->key->color != entry->key_color)) {
2352 		/* Drop this as a mixed key or fragment cache attack, even
2353 		 * if for TKIP Michael MIC should protect us, and WEP is a
2354 		 * lost cause anyway.
2355 		 */
2356 		return RX_DROP_UNUSABLE;
2357 	} else if (entry->is_protected && rx->key &&
2358 		   entry->key_color != rx->key->color &&
2359 		   (status->flag & RX_FLAG_DECRYPTED)) {
2360 		return RX_DROP_UNUSABLE;
2361 	}
2362 
2363 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2364 	__skb_queue_tail(&entry->skb_list, rx->skb);
2365 	entry->last_frag = frag;
2366 	entry->extra_len += rx->skb->len;
2367 	if (ieee80211_has_morefrags(fc)) {
2368 		rx->skb = NULL;
2369 		return RX_QUEUED;
2370 	}
2371 
2372 	rx->skb = __skb_dequeue(&entry->skb_list);
2373 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2374 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2375 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2376 					      GFP_ATOMIC))) {
2377 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2378 			__skb_queue_purge(&entry->skb_list);
2379 			return RX_DROP_UNUSABLE;
2380 		}
2381 	}
2382 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2383 		skb_put_data(rx->skb, skb->data, skb->len);
2384 		dev_kfree_skb(skb);
2385 	}
2386 
2387  out:
2388 	ieee80211_led_rx(rx->local);
2389 	if (rx->sta)
2390 		rx->sta->rx_stats.packets++;
2391 	return RX_CONTINUE;
2392 }
2393 
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2394 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2395 {
2396 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2397 		return -EACCES;
2398 
2399 	return 0;
2400 }
2401 
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2402 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2403 {
2404 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2405 	struct sk_buff *skb = rx->skb;
2406 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2407 
2408 	/*
2409 	 * Pass through unencrypted frames if the hardware has
2410 	 * decrypted them already.
2411 	 */
2412 	if (status->flag & RX_FLAG_DECRYPTED)
2413 		return 0;
2414 
2415 	/* check mesh EAPOL frames first */
2416 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2417 		     ieee80211_is_data(fc))) {
2418 		struct ieee80211s_hdr *mesh_hdr;
2419 		u16 hdr_len = ieee80211_hdrlen(fc);
2420 		u16 ethertype_offset;
2421 		__be16 ethertype;
2422 
2423 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2424 			goto drop_check;
2425 
2426 		/* make sure fixed part of mesh header is there, also checks skb len */
2427 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2428 			goto drop_check;
2429 
2430 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2431 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2432 				   sizeof(rfc1042_header);
2433 
2434 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2435 		    ethertype == rx->sdata->control_port_protocol)
2436 			return 0;
2437 	}
2438 
2439 drop_check:
2440 	/* Drop unencrypted frames if key is set. */
2441 	if (unlikely(!ieee80211_has_protected(fc) &&
2442 		     !ieee80211_is_any_nullfunc(fc) &&
2443 		     ieee80211_is_data(fc) && rx->key))
2444 		return -EACCES;
2445 
2446 	return 0;
2447 }
2448 
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2449 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2450 {
2451 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2452 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2453 	__le16 fc = hdr->frame_control;
2454 
2455 	/*
2456 	 * Pass through unencrypted frames if the hardware has
2457 	 * decrypted them already.
2458 	 */
2459 	if (status->flag & RX_FLAG_DECRYPTED)
2460 		return 0;
2461 
2462 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2463 		if (unlikely(!ieee80211_has_protected(fc) &&
2464 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2465 			     rx->key)) {
2466 			if (ieee80211_is_deauth(fc) ||
2467 			    ieee80211_is_disassoc(fc))
2468 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2469 							     rx->skb->data,
2470 							     rx->skb->len);
2471 			return -EACCES;
2472 		}
2473 		/* BIP does not use Protected field, so need to check MMIE */
2474 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2475 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2476 			if (ieee80211_is_deauth(fc) ||
2477 			    ieee80211_is_disassoc(fc))
2478 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2479 							     rx->skb->data,
2480 							     rx->skb->len);
2481 			return -EACCES;
2482 		}
2483 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2484 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2485 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2486 						     rx->skb->data,
2487 						     rx->skb->len);
2488 			return -EACCES;
2489 		}
2490 		/*
2491 		 * When using MFP, Action frames are not allowed prior to
2492 		 * having configured keys.
2493 		 */
2494 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2495 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2496 			return -EACCES;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2503 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2504 {
2505 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2506 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2507 	bool check_port_control = false;
2508 	struct ethhdr *ehdr;
2509 	int ret;
2510 
2511 	*port_control = false;
2512 	if (ieee80211_has_a4(hdr->frame_control) &&
2513 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2514 		return -1;
2515 
2516 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2517 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2518 
2519 		if (!sdata->u.mgd.use_4addr)
2520 			return -1;
2521 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2522 			check_port_control = true;
2523 	}
2524 
2525 	if (is_multicast_ether_addr(hdr->addr1) &&
2526 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2527 		return -1;
2528 
2529 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2530 	if (ret < 0)
2531 		return ret;
2532 
2533 	ehdr = (struct ethhdr *) rx->skb->data;
2534 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2535 		*port_control = true;
2536 	else if (check_port_control)
2537 		return -1;
2538 
2539 	return 0;
2540 }
2541 
2542 /*
2543  * requires that rx->skb is a frame with ethernet header
2544  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2545 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2546 {
2547 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2548 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2549 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2550 
2551 	/*
2552 	 * Allow EAPOL frames to us/the PAE group address regardless of
2553 	 * whether the frame was encrypted or not, and always disallow
2554 	 * all other destination addresses for them.
2555 	 */
2556 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2557 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2558 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2559 
2560 	if (ieee80211_802_1x_port_control(rx) ||
2561 	    ieee80211_drop_unencrypted(rx, fc))
2562 		return false;
2563 
2564 	return true;
2565 }
2566 
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2567 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2568 						 struct ieee80211_rx_data *rx)
2569 {
2570 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2571 	struct net_device *dev = sdata->dev;
2572 
2573 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2574 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2575 		      !sdata->control_port_no_preauth)) &&
2576 		     sdata->control_port_over_nl80211)) {
2577 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2578 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2579 
2580 		cfg80211_rx_control_port(dev, skb, noencrypt);
2581 		dev_kfree_skb(skb);
2582 	} else {
2583 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2584 
2585 		memset(skb->cb, 0, sizeof(skb->cb));
2586 
2587 		/*
2588 		 * 802.1X over 802.11 requires that the authenticator address
2589 		 * be used for EAPOL frames. However, 802.1X allows the use of
2590 		 * the PAE group address instead. If the interface is part of
2591 		 * a bridge and we pass the frame with the PAE group address,
2592 		 * then the bridge will forward it to the network (even if the
2593 		 * client was not associated yet), which isn't supposed to
2594 		 * happen.
2595 		 * To avoid that, rewrite the destination address to our own
2596 		 * address, so that the authenticator (e.g. hostapd) will see
2597 		 * the frame, but bridge won't forward it anywhere else. Note
2598 		 * that due to earlier filtering, the only other address can
2599 		 * be the PAE group address.
2600 		 */
2601 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2602 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2603 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2604 
2605 		/* deliver to local stack */
2606 		if (rx->list)
2607 			list_add_tail(&skb->list, rx->list);
2608 		else
2609 			netif_receive_skb(skb);
2610 	}
2611 }
2612 
2613 /*
2614  * requires that rx->skb is a frame with ethernet header
2615  */
2616 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2617 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2618 {
2619 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2620 	struct net_device *dev = sdata->dev;
2621 	struct sk_buff *skb, *xmit_skb;
2622 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2623 	struct sta_info *dsta;
2624 
2625 	skb = rx->skb;
2626 	xmit_skb = NULL;
2627 
2628 	ieee80211_rx_stats(dev, skb->len);
2629 
2630 	if (rx->sta) {
2631 		/* The seqno index has the same property as needed
2632 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2633 		 * for non-QoS-data frames. Here we know it's a data
2634 		 * frame, so count MSDUs.
2635 		 */
2636 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2637 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2638 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2639 	}
2640 
2641 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2642 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2643 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2644 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2645 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2646 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2647 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2648 			/*
2649 			 * send multicast frames both to higher layers in
2650 			 * local net stack and back to the wireless medium
2651 			 */
2652 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2653 			if (!xmit_skb)
2654 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2655 						    dev->name);
2656 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2657 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2658 			dsta = sta_info_get(sdata, ehdr->h_dest);
2659 			if (dsta) {
2660 				/*
2661 				 * The destination station is associated to
2662 				 * this AP (in this VLAN), so send the frame
2663 				 * directly to it and do not pass it to local
2664 				 * net stack.
2665 				 */
2666 				xmit_skb = skb;
2667 				skb = NULL;
2668 			}
2669 		}
2670 	}
2671 
2672 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2673 	if (skb) {
2674 		/* 'align' will only take the values 0 or 2 here since all
2675 		 * frames are required to be aligned to 2-byte boundaries
2676 		 * when being passed to mac80211; the code here works just
2677 		 * as well if that isn't true, but mac80211 assumes it can
2678 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2679 		 */
2680 		int align;
2681 
2682 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2683 		if (align) {
2684 			if (WARN_ON(skb_headroom(skb) < 3)) {
2685 				dev_kfree_skb(skb);
2686 				skb = NULL;
2687 			} else {
2688 				u8 *data = skb->data;
2689 				size_t len = skb_headlen(skb);
2690 				skb->data -= align;
2691 				memmove(skb->data, data, len);
2692 				skb_set_tail_pointer(skb, len);
2693 			}
2694 		}
2695 	}
2696 #endif
2697 
2698 	if (skb) {
2699 		skb->protocol = eth_type_trans(skb, dev);
2700 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2701 	}
2702 
2703 	if (xmit_skb) {
2704 		/*
2705 		 * Send to wireless media and increase priority by 256 to
2706 		 * keep the received priority instead of reclassifying
2707 		 * the frame (see cfg80211_classify8021d).
2708 		 */
2709 		xmit_skb->priority += 256;
2710 		xmit_skb->protocol = htons(ETH_P_802_3);
2711 		skb_reset_network_header(xmit_skb);
2712 		skb_reset_mac_header(xmit_skb);
2713 		dev_queue_xmit(xmit_skb);
2714 	}
2715 }
2716 
2717 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2718 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2719 {
2720 	struct net_device *dev = rx->sdata->dev;
2721 	struct sk_buff *skb = rx->skb;
2722 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2723 	__le16 fc = hdr->frame_control;
2724 	struct sk_buff_head frame_list;
2725 	struct ethhdr ethhdr;
2726 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2727 
2728 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2729 		check_da = NULL;
2730 		check_sa = NULL;
2731 	} else switch (rx->sdata->vif.type) {
2732 		case NL80211_IFTYPE_AP:
2733 		case NL80211_IFTYPE_AP_VLAN:
2734 			check_da = NULL;
2735 			break;
2736 		case NL80211_IFTYPE_STATION:
2737 			if (!rx->sta ||
2738 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2739 				check_sa = NULL;
2740 			break;
2741 		case NL80211_IFTYPE_MESH_POINT:
2742 			check_sa = NULL;
2743 			break;
2744 		default:
2745 			break;
2746 	}
2747 
2748 	skb->dev = dev;
2749 	__skb_queue_head_init(&frame_list);
2750 
2751 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2752 					  rx->sdata->vif.addr,
2753 					  rx->sdata->vif.type,
2754 					  data_offset, true))
2755 		return RX_DROP_UNUSABLE;
2756 
2757 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2758 				 rx->sdata->vif.type,
2759 				 rx->local->hw.extra_tx_headroom,
2760 				 check_da, check_sa);
2761 
2762 	while (!skb_queue_empty(&frame_list)) {
2763 		rx->skb = __skb_dequeue(&frame_list);
2764 
2765 		if (!ieee80211_frame_allowed(rx, fc)) {
2766 			dev_kfree_skb(rx->skb);
2767 			continue;
2768 		}
2769 
2770 		ieee80211_deliver_skb(rx);
2771 	}
2772 
2773 	return RX_QUEUED;
2774 }
2775 
2776 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2777 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2778 {
2779 	struct sk_buff *skb = rx->skb;
2780 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2781 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2782 	__le16 fc = hdr->frame_control;
2783 
2784 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2785 		return RX_CONTINUE;
2786 
2787 	if (unlikely(!ieee80211_is_data(fc)))
2788 		return RX_CONTINUE;
2789 
2790 	if (unlikely(!ieee80211_is_data_present(fc)))
2791 		return RX_DROP_MONITOR;
2792 
2793 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2794 		switch (rx->sdata->vif.type) {
2795 		case NL80211_IFTYPE_AP_VLAN:
2796 			if (!rx->sdata->u.vlan.sta)
2797 				return RX_DROP_UNUSABLE;
2798 			break;
2799 		case NL80211_IFTYPE_STATION:
2800 			if (!rx->sdata->u.mgd.use_4addr)
2801 				return RX_DROP_UNUSABLE;
2802 			break;
2803 		default:
2804 			return RX_DROP_UNUSABLE;
2805 		}
2806 	}
2807 
2808 	if (is_multicast_ether_addr(hdr->addr1))
2809 		return RX_DROP_UNUSABLE;
2810 
2811 	if (rx->key) {
2812 		/*
2813 		 * We should not receive A-MSDUs on pre-HT connections,
2814 		 * and HT connections cannot use old ciphers. Thus drop
2815 		 * them, as in those cases we couldn't even have SPP
2816 		 * A-MSDUs or such.
2817 		 */
2818 		switch (rx->key->conf.cipher) {
2819 		case WLAN_CIPHER_SUITE_WEP40:
2820 		case WLAN_CIPHER_SUITE_WEP104:
2821 		case WLAN_CIPHER_SUITE_TKIP:
2822 			return RX_DROP_UNUSABLE;
2823 		default:
2824 			break;
2825 		}
2826 	}
2827 
2828 	return __ieee80211_rx_h_amsdu(rx, 0);
2829 }
2830 
2831 #ifdef CONFIG_MAC80211_MESH
2832 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2833 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2834 {
2835 	struct ieee80211_hdr *fwd_hdr, *hdr;
2836 	struct ieee80211_tx_info *info;
2837 	struct ieee80211s_hdr *mesh_hdr;
2838 	struct sk_buff *skb = rx->skb, *fwd_skb;
2839 	struct ieee80211_local *local = rx->local;
2840 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2841 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2842 	u16 ac, q, hdrlen;
2843 	int tailroom = 0;
2844 
2845 	hdr = (struct ieee80211_hdr *) skb->data;
2846 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2847 
2848 	/* make sure fixed part of mesh header is there, also checks skb len */
2849 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2850 		return RX_DROP_MONITOR;
2851 
2852 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2853 
2854 	/* make sure full mesh header is there, also checks skb len */
2855 	if (!pskb_may_pull(rx->skb,
2856 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2857 		return RX_DROP_MONITOR;
2858 
2859 	/* reload pointers */
2860 	hdr = (struct ieee80211_hdr *) skb->data;
2861 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2862 
2863 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2864 		return RX_DROP_MONITOR;
2865 
2866 	/* frame is in RMC, don't forward */
2867 	if (ieee80211_is_data(hdr->frame_control) &&
2868 	    is_multicast_ether_addr(hdr->addr1) &&
2869 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2870 		return RX_DROP_MONITOR;
2871 
2872 	if (!ieee80211_is_data(hdr->frame_control))
2873 		return RX_CONTINUE;
2874 
2875 	if (!mesh_hdr->ttl)
2876 		return RX_DROP_MONITOR;
2877 
2878 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2879 		struct mesh_path *mppath;
2880 		char *proxied_addr;
2881 		char *mpp_addr;
2882 
2883 		if (is_multicast_ether_addr(hdr->addr1)) {
2884 			mpp_addr = hdr->addr3;
2885 			proxied_addr = mesh_hdr->eaddr1;
2886 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2887 			    MESH_FLAGS_AE_A5_A6) {
2888 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2889 			mpp_addr = hdr->addr4;
2890 			proxied_addr = mesh_hdr->eaddr2;
2891 		} else {
2892 			return RX_DROP_MONITOR;
2893 		}
2894 
2895 		rcu_read_lock();
2896 		mppath = mpp_path_lookup(sdata, proxied_addr);
2897 		if (!mppath) {
2898 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2899 		} else {
2900 			spin_lock_bh(&mppath->state_lock);
2901 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2902 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2903 			mppath->exp_time = jiffies;
2904 			spin_unlock_bh(&mppath->state_lock);
2905 		}
2906 		rcu_read_unlock();
2907 	}
2908 
2909 	/* Frame has reached destination.  Don't forward */
2910 	if (!is_multicast_ether_addr(hdr->addr1) &&
2911 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2912 		return RX_CONTINUE;
2913 
2914 	ac = ieee802_1d_to_ac[skb->priority];
2915 	q = sdata->vif.hw_queue[ac];
2916 	if (ieee80211_queue_stopped(&local->hw, q)) {
2917 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2918 		return RX_DROP_MONITOR;
2919 	}
2920 	skb_set_queue_mapping(skb, ac);
2921 
2922 	if (!--mesh_hdr->ttl) {
2923 		if (!is_multicast_ether_addr(hdr->addr1))
2924 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2925 						     dropped_frames_ttl);
2926 		goto out;
2927 	}
2928 
2929 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2930 		goto out;
2931 
2932 	if (sdata->crypto_tx_tailroom_needed_cnt)
2933 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2934 
2935 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2936 				       sdata->encrypt_headroom,
2937 				  tailroom, GFP_ATOMIC);
2938 	if (!fwd_skb)
2939 		goto out;
2940 
2941 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2942 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2943 	info = IEEE80211_SKB_CB(fwd_skb);
2944 	memset(info, 0, sizeof(*info));
2945 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2946 	info->control.vif = &rx->sdata->vif;
2947 	info->control.jiffies = jiffies;
2948 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2949 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2950 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2951 		/* update power mode indication when forwarding */
2952 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2953 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2954 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2955 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2956 	} else {
2957 		/* unable to resolve next hop */
2958 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2959 				   fwd_hdr->addr3, 0,
2960 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2961 				   fwd_hdr->addr2);
2962 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2963 		kfree_skb(fwd_skb);
2964 		return RX_DROP_MONITOR;
2965 	}
2966 
2967 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2968 	ieee80211_add_pending_skb(local, fwd_skb);
2969  out:
2970 	if (is_multicast_ether_addr(hdr->addr1))
2971 		return RX_CONTINUE;
2972 	return RX_DROP_MONITOR;
2973 }
2974 #endif
2975 
2976 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2977 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2978 {
2979 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2980 	struct ieee80211_local *local = rx->local;
2981 	struct net_device *dev = sdata->dev;
2982 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2983 	__le16 fc = hdr->frame_control;
2984 	bool port_control;
2985 	int err;
2986 
2987 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2988 		return RX_CONTINUE;
2989 
2990 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2991 		return RX_DROP_MONITOR;
2992 
2993 	/*
2994 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2995 	 * also drop the frame to cooked monitor interfaces.
2996 	 */
2997 	if (ieee80211_has_a4(hdr->frame_control) &&
2998 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2999 		if (rx->sta &&
3000 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3001 			cfg80211_rx_unexpected_4addr_frame(
3002 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3003 		return RX_DROP_MONITOR;
3004 	}
3005 
3006 	err = __ieee80211_data_to_8023(rx, &port_control);
3007 	if (unlikely(err))
3008 		return RX_DROP_UNUSABLE;
3009 
3010 	if (!ieee80211_frame_allowed(rx, fc))
3011 		return RX_DROP_MONITOR;
3012 
3013 	/* directly handle TDLS channel switch requests/responses */
3014 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3015 						cpu_to_be16(ETH_P_TDLS))) {
3016 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3017 
3018 		if (pskb_may_pull(rx->skb,
3019 				  offsetof(struct ieee80211_tdls_data, u)) &&
3020 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3021 		    tf->category == WLAN_CATEGORY_TDLS &&
3022 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3023 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3024 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
3025 			schedule_work(&local->tdls_chsw_work);
3026 			if (rx->sta)
3027 				rx->sta->rx_stats.packets++;
3028 
3029 			return RX_QUEUED;
3030 		}
3031 	}
3032 
3033 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3034 	    unlikely(port_control) && sdata->bss) {
3035 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3036 				     u.ap);
3037 		dev = sdata->dev;
3038 		rx->sdata = sdata;
3039 	}
3040 
3041 	rx->skb->dev = dev;
3042 
3043 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3044 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3045 	    !is_multicast_ether_addr(
3046 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3047 	    (!local->scanning &&
3048 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3049 		mod_timer(&local->dynamic_ps_timer, jiffies +
3050 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3051 
3052 	ieee80211_deliver_skb(rx);
3053 
3054 	return RX_QUEUED;
3055 }
3056 
3057 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3058 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3059 {
3060 	struct sk_buff *skb = rx->skb;
3061 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3062 	struct tid_ampdu_rx *tid_agg_rx;
3063 	u16 start_seq_num;
3064 	u16 tid;
3065 
3066 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3067 		return RX_CONTINUE;
3068 
3069 	if (ieee80211_is_back_req(bar->frame_control)) {
3070 		struct {
3071 			__le16 control, start_seq_num;
3072 		} __packed bar_data;
3073 		struct ieee80211_event event = {
3074 			.type = BAR_RX_EVENT,
3075 		};
3076 
3077 		if (!rx->sta)
3078 			return RX_DROP_MONITOR;
3079 
3080 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3081 				  &bar_data, sizeof(bar_data)))
3082 			return RX_DROP_MONITOR;
3083 
3084 		tid = le16_to_cpu(bar_data.control) >> 12;
3085 
3086 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3087 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3088 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3089 					     WLAN_BACK_RECIPIENT,
3090 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3091 
3092 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3093 		if (!tid_agg_rx)
3094 			return RX_DROP_MONITOR;
3095 
3096 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3097 		event.u.ba.tid = tid;
3098 		event.u.ba.ssn = start_seq_num;
3099 		event.u.ba.sta = &rx->sta->sta;
3100 
3101 		/* reset session timer */
3102 		if (tid_agg_rx->timeout)
3103 			mod_timer(&tid_agg_rx->session_timer,
3104 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3105 
3106 		spin_lock(&tid_agg_rx->reorder_lock);
3107 		/* release stored frames up to start of BAR */
3108 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3109 						 start_seq_num, frames);
3110 		spin_unlock(&tid_agg_rx->reorder_lock);
3111 
3112 		drv_event_callback(rx->local, rx->sdata, &event);
3113 
3114 		kfree_skb(skb);
3115 		return RX_QUEUED;
3116 	}
3117 
3118 	/*
3119 	 * After this point, we only want management frames,
3120 	 * so we can drop all remaining control frames to
3121 	 * cooked monitor interfaces.
3122 	 */
3123 	return RX_DROP_MONITOR;
3124 }
3125 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3126 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3127 					   struct ieee80211_mgmt *mgmt,
3128 					   size_t len)
3129 {
3130 	struct ieee80211_local *local = sdata->local;
3131 	struct sk_buff *skb;
3132 	struct ieee80211_mgmt *resp;
3133 
3134 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3135 		/* Not to own unicast address */
3136 		return;
3137 	}
3138 
3139 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3140 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3141 		/* Not from the current AP or not associated yet. */
3142 		return;
3143 	}
3144 
3145 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3146 		/* Too short SA Query request frame */
3147 		return;
3148 	}
3149 
3150 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3151 	if (skb == NULL)
3152 		return;
3153 
3154 	skb_reserve(skb, local->hw.extra_tx_headroom);
3155 	resp = skb_put_zero(skb, 24);
3156 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3157 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3158 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3159 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3160 					  IEEE80211_STYPE_ACTION);
3161 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3162 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3163 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3164 	memcpy(resp->u.action.u.sa_query.trans_id,
3165 	       mgmt->u.action.u.sa_query.trans_id,
3166 	       WLAN_SA_QUERY_TR_ID_LEN);
3167 
3168 	ieee80211_tx_skb(sdata, skb);
3169 }
3170 
3171 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3172 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3173 {
3174 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3175 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3176 
3177 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3178 		return RX_CONTINUE;
3179 
3180 	/*
3181 	 * From here on, look only at management frames.
3182 	 * Data and control frames are already handled,
3183 	 * and unknown (reserved) frames are useless.
3184 	 */
3185 	if (rx->skb->len < 24)
3186 		return RX_DROP_MONITOR;
3187 
3188 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3189 		return RX_DROP_MONITOR;
3190 
3191 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3192 	    ieee80211_is_beacon(mgmt->frame_control) &&
3193 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3194 		int sig = 0;
3195 
3196 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3197 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3198 			sig = status->signal;
3199 
3200 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3201 						rx->skb->data, rx->skb->len,
3202 						ieee80211_rx_status_to_khz(status),
3203 						sig);
3204 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3205 	}
3206 
3207 	if (ieee80211_drop_unencrypted_mgmt(rx))
3208 		return RX_DROP_UNUSABLE;
3209 
3210 	return RX_CONTINUE;
3211 }
3212 
3213 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3214 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3215 {
3216 	struct ieee80211_local *local = rx->local;
3217 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3218 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3219 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3220 	int len = rx->skb->len;
3221 
3222 	if (!ieee80211_is_action(mgmt->frame_control))
3223 		return RX_CONTINUE;
3224 
3225 	/* drop too small frames */
3226 	if (len < IEEE80211_MIN_ACTION_SIZE)
3227 		return RX_DROP_UNUSABLE;
3228 
3229 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3230 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3231 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3232 		return RX_DROP_UNUSABLE;
3233 
3234 	switch (mgmt->u.action.category) {
3235 	case WLAN_CATEGORY_HT:
3236 		/* reject HT action frames from stations not supporting HT */
3237 		if (!rx->sta->sta.ht_cap.ht_supported)
3238 			goto invalid;
3239 
3240 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3241 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3242 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3243 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3244 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3245 			break;
3246 
3247 		/* verify action & smps_control/chanwidth are present */
3248 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3249 			goto invalid;
3250 
3251 		switch (mgmt->u.action.u.ht_smps.action) {
3252 		case WLAN_HT_ACTION_SMPS: {
3253 			struct ieee80211_supported_band *sband;
3254 			enum ieee80211_smps_mode smps_mode;
3255 			struct sta_opmode_info sta_opmode = {};
3256 
3257 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3258 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3259 				goto handled;
3260 
3261 			/* convert to HT capability */
3262 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3263 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3264 				smps_mode = IEEE80211_SMPS_OFF;
3265 				break;
3266 			case WLAN_HT_SMPS_CONTROL_STATIC:
3267 				smps_mode = IEEE80211_SMPS_STATIC;
3268 				break;
3269 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3270 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3271 				break;
3272 			default:
3273 				goto invalid;
3274 			}
3275 
3276 			/* if no change do nothing */
3277 			if (rx->sta->sta.smps_mode == smps_mode)
3278 				goto handled;
3279 			rx->sta->sta.smps_mode = smps_mode;
3280 			sta_opmode.smps_mode =
3281 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3282 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3283 
3284 			sband = rx->local->hw.wiphy->bands[status->band];
3285 
3286 			rate_control_rate_update(local, sband, rx->sta,
3287 						 IEEE80211_RC_SMPS_CHANGED);
3288 			cfg80211_sta_opmode_change_notify(sdata->dev,
3289 							  rx->sta->addr,
3290 							  &sta_opmode,
3291 							  GFP_ATOMIC);
3292 			goto handled;
3293 		}
3294 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3295 			struct ieee80211_supported_band *sband;
3296 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3297 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3298 			struct sta_opmode_info sta_opmode = {};
3299 
3300 			/* If it doesn't support 40 MHz it can't change ... */
3301 			if (!(rx->sta->sta.ht_cap.cap &
3302 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3303 				goto handled;
3304 
3305 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3306 				max_bw = IEEE80211_STA_RX_BW_20;
3307 			else
3308 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3309 
3310 			/* set cur_max_bandwidth and recalc sta bw */
3311 			rx->sta->cur_max_bandwidth = max_bw;
3312 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3313 
3314 			if (rx->sta->sta.bandwidth == new_bw)
3315 				goto handled;
3316 
3317 			rx->sta->sta.bandwidth = new_bw;
3318 			sband = rx->local->hw.wiphy->bands[status->band];
3319 			sta_opmode.bw =
3320 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3321 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3322 
3323 			rate_control_rate_update(local, sband, rx->sta,
3324 						 IEEE80211_RC_BW_CHANGED);
3325 			cfg80211_sta_opmode_change_notify(sdata->dev,
3326 							  rx->sta->addr,
3327 							  &sta_opmode,
3328 							  GFP_ATOMIC);
3329 			goto handled;
3330 		}
3331 		default:
3332 			goto invalid;
3333 		}
3334 
3335 		break;
3336 	case WLAN_CATEGORY_PUBLIC:
3337 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3338 			goto invalid;
3339 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3340 			break;
3341 		if (!rx->sta)
3342 			break;
3343 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3344 			break;
3345 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3346 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3347 			break;
3348 		if (len < offsetof(struct ieee80211_mgmt,
3349 				   u.action.u.ext_chan_switch.variable))
3350 			goto invalid;
3351 		goto queue;
3352 	case WLAN_CATEGORY_VHT:
3353 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3354 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3355 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3356 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3357 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3358 			break;
3359 
3360 		/* verify action code is present */
3361 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3362 			goto invalid;
3363 
3364 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3365 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3366 			/* verify opmode is present */
3367 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3368 				goto invalid;
3369 			goto queue;
3370 		}
3371 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3372 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3373 				goto invalid;
3374 			goto queue;
3375 		}
3376 		default:
3377 			break;
3378 		}
3379 		break;
3380 	case WLAN_CATEGORY_BACK:
3381 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3382 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3383 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3384 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3385 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3386 			break;
3387 
3388 		/* verify action_code is present */
3389 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3390 			break;
3391 
3392 		switch (mgmt->u.action.u.addba_req.action_code) {
3393 		case WLAN_ACTION_ADDBA_REQ:
3394 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3395 				   sizeof(mgmt->u.action.u.addba_req)))
3396 				goto invalid;
3397 			break;
3398 		case WLAN_ACTION_ADDBA_RESP:
3399 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3400 				   sizeof(mgmt->u.action.u.addba_resp)))
3401 				goto invalid;
3402 			break;
3403 		case WLAN_ACTION_DELBA:
3404 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3405 				   sizeof(mgmt->u.action.u.delba)))
3406 				goto invalid;
3407 			break;
3408 		default:
3409 			goto invalid;
3410 		}
3411 
3412 		goto queue;
3413 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3414 		/* verify action_code is present */
3415 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3416 			break;
3417 
3418 		switch (mgmt->u.action.u.measurement.action_code) {
3419 		case WLAN_ACTION_SPCT_MSR_REQ:
3420 			if (status->band != NL80211_BAND_5GHZ)
3421 				break;
3422 
3423 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3424 				   sizeof(mgmt->u.action.u.measurement)))
3425 				break;
3426 
3427 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3428 				break;
3429 
3430 			ieee80211_process_measurement_req(sdata, mgmt, len);
3431 			goto handled;
3432 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3433 			u8 *bssid;
3434 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3435 				   sizeof(mgmt->u.action.u.chan_switch)))
3436 				break;
3437 
3438 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3439 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3440 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3441 				break;
3442 
3443 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3444 				bssid = sdata->u.mgd.bssid;
3445 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3446 				bssid = sdata->u.ibss.bssid;
3447 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3448 				bssid = mgmt->sa;
3449 			else
3450 				break;
3451 
3452 			if (!ether_addr_equal(mgmt->bssid, bssid))
3453 				break;
3454 
3455 			goto queue;
3456 			}
3457 		}
3458 		break;
3459 	case WLAN_CATEGORY_SELF_PROTECTED:
3460 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3461 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3462 			break;
3463 
3464 		switch (mgmt->u.action.u.self_prot.action_code) {
3465 		case WLAN_SP_MESH_PEERING_OPEN:
3466 		case WLAN_SP_MESH_PEERING_CLOSE:
3467 		case WLAN_SP_MESH_PEERING_CONFIRM:
3468 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3469 				goto invalid;
3470 			if (sdata->u.mesh.user_mpm)
3471 				/* userspace handles this frame */
3472 				break;
3473 			goto queue;
3474 		case WLAN_SP_MGK_INFORM:
3475 		case WLAN_SP_MGK_ACK:
3476 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3477 				goto invalid;
3478 			break;
3479 		}
3480 		break;
3481 	case WLAN_CATEGORY_MESH_ACTION:
3482 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3483 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3484 			break;
3485 
3486 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3487 			break;
3488 		if (mesh_action_is_path_sel(mgmt) &&
3489 		    !mesh_path_sel_is_hwmp(sdata))
3490 			break;
3491 		goto queue;
3492 	}
3493 
3494 	return RX_CONTINUE;
3495 
3496  invalid:
3497 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3498 	/* will return in the next handlers */
3499 	return RX_CONTINUE;
3500 
3501  handled:
3502 	if (rx->sta)
3503 		rx->sta->rx_stats.packets++;
3504 	dev_kfree_skb(rx->skb);
3505 	return RX_QUEUED;
3506 
3507  queue:
3508 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3509 	ieee80211_queue_work(&local->hw, &sdata->work);
3510 	if (rx->sta)
3511 		rx->sta->rx_stats.packets++;
3512 	return RX_QUEUED;
3513 }
3514 
3515 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3516 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3517 {
3518 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3519 	int sig = 0;
3520 
3521 	/* skip known-bad action frames and return them in the next handler */
3522 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3523 		return RX_CONTINUE;
3524 
3525 	/*
3526 	 * Getting here means the kernel doesn't know how to handle
3527 	 * it, but maybe userspace does ... include returned frames
3528 	 * so userspace can register for those to know whether ones
3529 	 * it transmitted were processed or returned.
3530 	 */
3531 
3532 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3533 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3534 		sig = status->signal;
3535 
3536 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3537 				 ieee80211_rx_status_to_khz(status), sig,
3538 				 rx->skb->data, rx->skb->len, 0)) {
3539 		if (rx->sta)
3540 			rx->sta->rx_stats.packets++;
3541 		dev_kfree_skb(rx->skb);
3542 		return RX_QUEUED;
3543 	}
3544 
3545 	return RX_CONTINUE;
3546 }
3547 
3548 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3549 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3550 {
3551 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3552 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3553 	int len = rx->skb->len;
3554 
3555 	if (!ieee80211_is_action(mgmt->frame_control))
3556 		return RX_CONTINUE;
3557 
3558 	switch (mgmt->u.action.category) {
3559 	case WLAN_CATEGORY_SA_QUERY:
3560 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3561 			   sizeof(mgmt->u.action.u.sa_query)))
3562 			break;
3563 
3564 		switch (mgmt->u.action.u.sa_query.action) {
3565 		case WLAN_ACTION_SA_QUERY_REQUEST:
3566 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3567 				break;
3568 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3569 			goto handled;
3570 		}
3571 		break;
3572 	}
3573 
3574 	return RX_CONTINUE;
3575 
3576  handled:
3577 	if (rx->sta)
3578 		rx->sta->rx_stats.packets++;
3579 	dev_kfree_skb(rx->skb);
3580 	return RX_QUEUED;
3581 }
3582 
3583 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3584 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3585 {
3586 	struct ieee80211_local *local = rx->local;
3587 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3588 	struct sk_buff *nskb;
3589 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3590 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3591 
3592 	if (!ieee80211_is_action(mgmt->frame_control))
3593 		return RX_CONTINUE;
3594 
3595 	/*
3596 	 * For AP mode, hostapd is responsible for handling any action
3597 	 * frames that we didn't handle, including returning unknown
3598 	 * ones. For all other modes we will return them to the sender,
3599 	 * setting the 0x80 bit in the action category, as required by
3600 	 * 802.11-2012 9.24.4.
3601 	 * Newer versions of hostapd shall also use the management frame
3602 	 * registration mechanisms, but older ones still use cooked
3603 	 * monitor interfaces so push all frames there.
3604 	 */
3605 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3606 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3607 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3608 		return RX_DROP_MONITOR;
3609 
3610 	if (is_multicast_ether_addr(mgmt->da))
3611 		return RX_DROP_MONITOR;
3612 
3613 	/* do not return rejected action frames */
3614 	if (mgmt->u.action.category & 0x80)
3615 		return RX_DROP_UNUSABLE;
3616 
3617 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3618 			       GFP_ATOMIC);
3619 	if (nskb) {
3620 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3621 
3622 		nmgmt->u.action.category |= 0x80;
3623 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3624 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3625 
3626 		memset(nskb->cb, 0, sizeof(nskb->cb));
3627 
3628 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3629 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3630 
3631 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3632 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3633 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3634 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3635 				info->hw_queue =
3636 					local->hw.offchannel_tx_hw_queue;
3637 		}
3638 
3639 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3640 					    status->band);
3641 	}
3642 	dev_kfree_skb(rx->skb);
3643 	return RX_QUEUED;
3644 }
3645 
3646 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3647 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3648 {
3649 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3650 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3651 
3652 	if (!ieee80211_is_ext(hdr->frame_control))
3653 		return RX_CONTINUE;
3654 
3655 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3656 		return RX_DROP_MONITOR;
3657 
3658 	/* for now only beacons are ext, so queue them */
3659 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3660 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3661 	if (rx->sta)
3662 		rx->sta->rx_stats.packets++;
3663 
3664 	return RX_QUEUED;
3665 }
3666 
3667 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3668 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3669 {
3670 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3671 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3672 	__le16 stype;
3673 
3674 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3675 
3676 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3677 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3678 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3679 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3680 		return RX_DROP_MONITOR;
3681 
3682 	switch (stype) {
3683 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3684 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3685 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3686 		/* process for all: mesh, mlme, ibss */
3687 		break;
3688 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3689 		if (is_multicast_ether_addr(mgmt->da) &&
3690 		    !is_broadcast_ether_addr(mgmt->da))
3691 			return RX_DROP_MONITOR;
3692 
3693 		/* process only for station/IBSS */
3694 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3695 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3696 			return RX_DROP_MONITOR;
3697 		break;
3698 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3699 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3700 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3701 		if (is_multicast_ether_addr(mgmt->da) &&
3702 		    !is_broadcast_ether_addr(mgmt->da))
3703 			return RX_DROP_MONITOR;
3704 
3705 		/* process only for station */
3706 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3707 			return RX_DROP_MONITOR;
3708 		break;
3709 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3710 		/* process only for ibss and mesh */
3711 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3712 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3713 			return RX_DROP_MONITOR;
3714 		break;
3715 	default:
3716 		return RX_DROP_MONITOR;
3717 	}
3718 
3719 	/* queue up frame and kick off work to process it */
3720 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3721 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3722 	if (rx->sta)
3723 		rx->sta->rx_stats.packets++;
3724 
3725 	return RX_QUEUED;
3726 }
3727 
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3728 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3729 					struct ieee80211_rate *rate)
3730 {
3731 	struct ieee80211_sub_if_data *sdata;
3732 	struct ieee80211_local *local = rx->local;
3733 	struct sk_buff *skb = rx->skb, *skb2;
3734 	struct net_device *prev_dev = NULL;
3735 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3736 	int needed_headroom;
3737 
3738 	/*
3739 	 * If cooked monitor has been processed already, then
3740 	 * don't do it again. If not, set the flag.
3741 	 */
3742 	if (rx->flags & IEEE80211_RX_CMNTR)
3743 		goto out_free_skb;
3744 	rx->flags |= IEEE80211_RX_CMNTR;
3745 
3746 	/* If there are no cooked monitor interfaces, just free the SKB */
3747 	if (!local->cooked_mntrs)
3748 		goto out_free_skb;
3749 
3750 	/* vendor data is long removed here */
3751 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3752 	/* room for the radiotap header based on driver features */
3753 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3754 
3755 	if (skb_headroom(skb) < needed_headroom &&
3756 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3757 		goto out_free_skb;
3758 
3759 	/* prepend radiotap information */
3760 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3761 					 false);
3762 
3763 	skb_reset_mac_header(skb);
3764 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 	skb->pkt_type = PACKET_OTHERHOST;
3766 	skb->protocol = htons(ETH_P_802_2);
3767 
3768 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3769 		if (!ieee80211_sdata_running(sdata))
3770 			continue;
3771 
3772 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3773 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3774 			continue;
3775 
3776 		if (prev_dev) {
3777 			skb2 = skb_clone(skb, GFP_ATOMIC);
3778 			if (skb2) {
3779 				skb2->dev = prev_dev;
3780 				netif_receive_skb(skb2);
3781 			}
3782 		}
3783 
3784 		prev_dev = sdata->dev;
3785 		ieee80211_rx_stats(sdata->dev, skb->len);
3786 	}
3787 
3788 	if (prev_dev) {
3789 		skb->dev = prev_dev;
3790 		netif_receive_skb(skb);
3791 		return;
3792 	}
3793 
3794  out_free_skb:
3795 	dev_kfree_skb(skb);
3796 }
3797 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3798 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3799 					 ieee80211_rx_result res)
3800 {
3801 	switch (res) {
3802 	case RX_DROP_MONITOR:
3803 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3804 		if (rx->sta)
3805 			rx->sta->rx_stats.dropped++;
3806 		fallthrough;
3807 	case RX_CONTINUE: {
3808 		struct ieee80211_rate *rate = NULL;
3809 		struct ieee80211_supported_band *sband;
3810 		struct ieee80211_rx_status *status;
3811 
3812 		status = IEEE80211_SKB_RXCB((rx->skb));
3813 
3814 		sband = rx->local->hw.wiphy->bands[status->band];
3815 		if (status->encoding == RX_ENC_LEGACY)
3816 			rate = &sband->bitrates[status->rate_idx];
3817 
3818 		ieee80211_rx_cooked_monitor(rx, rate);
3819 		break;
3820 		}
3821 	case RX_DROP_UNUSABLE:
3822 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3823 		if (rx->sta)
3824 			rx->sta->rx_stats.dropped++;
3825 		dev_kfree_skb(rx->skb);
3826 		break;
3827 	case RX_QUEUED:
3828 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3829 		break;
3830 	}
3831 }
3832 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3833 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3834 				  struct sk_buff_head *frames)
3835 {
3836 	ieee80211_rx_result res = RX_DROP_MONITOR;
3837 	struct sk_buff *skb;
3838 
3839 #define CALL_RXH(rxh)			\
3840 	do {				\
3841 		res = rxh(rx);		\
3842 		if (res != RX_CONTINUE)	\
3843 			goto rxh_next;  \
3844 	} while (0)
3845 
3846 	/* Lock here to avoid hitting all of the data used in the RX
3847 	 * path (e.g. key data, station data, ...) concurrently when
3848 	 * a frame is released from the reorder buffer due to timeout
3849 	 * from the timer, potentially concurrently with RX from the
3850 	 * driver.
3851 	 */
3852 	spin_lock_bh(&rx->local->rx_path_lock);
3853 
3854 	while ((skb = __skb_dequeue(frames))) {
3855 		/*
3856 		 * all the other fields are valid across frames
3857 		 * that belong to an aMPDU since they are on the
3858 		 * same TID from the same station
3859 		 */
3860 		rx->skb = skb;
3861 
3862 		CALL_RXH(ieee80211_rx_h_check_more_data);
3863 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3864 		CALL_RXH(ieee80211_rx_h_sta_process);
3865 		CALL_RXH(ieee80211_rx_h_decrypt);
3866 		CALL_RXH(ieee80211_rx_h_defragment);
3867 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3868 		/* must be after MMIC verify so header is counted in MPDU mic */
3869 #ifdef CONFIG_MAC80211_MESH
3870 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3871 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3872 #endif
3873 		CALL_RXH(ieee80211_rx_h_amsdu);
3874 		CALL_RXH(ieee80211_rx_h_data);
3875 
3876 		/* special treatment -- needs the queue */
3877 		res = ieee80211_rx_h_ctrl(rx, frames);
3878 		if (res != RX_CONTINUE)
3879 			goto rxh_next;
3880 
3881 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3882 		CALL_RXH(ieee80211_rx_h_action);
3883 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3884 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3885 		CALL_RXH(ieee80211_rx_h_action_return);
3886 		CALL_RXH(ieee80211_rx_h_ext);
3887 		CALL_RXH(ieee80211_rx_h_mgmt);
3888 
3889  rxh_next:
3890 		ieee80211_rx_handlers_result(rx, res);
3891 
3892 #undef CALL_RXH
3893 	}
3894 
3895 	spin_unlock_bh(&rx->local->rx_path_lock);
3896 }
3897 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3898 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3899 {
3900 	struct sk_buff_head reorder_release;
3901 	ieee80211_rx_result res = RX_DROP_MONITOR;
3902 
3903 	__skb_queue_head_init(&reorder_release);
3904 
3905 #define CALL_RXH(rxh)			\
3906 	do {				\
3907 		res = rxh(rx);		\
3908 		if (res != RX_CONTINUE)	\
3909 			goto rxh_next;  \
3910 	} while (0)
3911 
3912 	CALL_RXH(ieee80211_rx_h_check_dup);
3913 	CALL_RXH(ieee80211_rx_h_check);
3914 
3915 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3916 
3917 	ieee80211_rx_handlers(rx, &reorder_release);
3918 	return;
3919 
3920  rxh_next:
3921 	ieee80211_rx_handlers_result(rx, res);
3922 
3923 #undef CALL_RXH
3924 }
3925 
3926 /*
3927  * This function makes calls into the RX path, therefore
3928  * it has to be invoked under RCU read lock.
3929  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3930 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3931 {
3932 	struct sk_buff_head frames;
3933 	struct ieee80211_rx_data rx = {
3934 		.sta = sta,
3935 		.sdata = sta->sdata,
3936 		.local = sta->local,
3937 		/* This is OK -- must be QoS data frame */
3938 		.security_idx = tid,
3939 		.seqno_idx = tid,
3940 	};
3941 	struct tid_ampdu_rx *tid_agg_rx;
3942 
3943 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3944 	if (!tid_agg_rx)
3945 		return;
3946 
3947 	__skb_queue_head_init(&frames);
3948 
3949 	spin_lock(&tid_agg_rx->reorder_lock);
3950 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3951 	spin_unlock(&tid_agg_rx->reorder_lock);
3952 
3953 	if (!skb_queue_empty(&frames)) {
3954 		struct ieee80211_event event = {
3955 			.type = BA_FRAME_TIMEOUT,
3956 			.u.ba.tid = tid,
3957 			.u.ba.sta = &sta->sta,
3958 		};
3959 		drv_event_callback(rx.local, rx.sdata, &event);
3960 	}
3961 
3962 	ieee80211_rx_handlers(&rx, &frames);
3963 }
3964 
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)3965 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3966 					  u16 ssn, u64 filtered,
3967 					  u16 received_mpdus)
3968 {
3969 	struct sta_info *sta;
3970 	struct tid_ampdu_rx *tid_agg_rx;
3971 	struct sk_buff_head frames;
3972 	struct ieee80211_rx_data rx = {
3973 		/* This is OK -- must be QoS data frame */
3974 		.security_idx = tid,
3975 		.seqno_idx = tid,
3976 	};
3977 	int i, diff;
3978 
3979 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3980 		return;
3981 
3982 	__skb_queue_head_init(&frames);
3983 
3984 	sta = container_of(pubsta, struct sta_info, sta);
3985 
3986 	rx.sta = sta;
3987 	rx.sdata = sta->sdata;
3988 	rx.local = sta->local;
3989 
3990 	rcu_read_lock();
3991 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3992 	if (!tid_agg_rx)
3993 		goto out;
3994 
3995 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3996 
3997 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3998 		int release;
3999 
4000 		/* release all frames in the reorder buffer */
4001 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4002 			   IEEE80211_SN_MODULO;
4003 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4004 						 release, &frames);
4005 		/* update ssn to match received ssn */
4006 		tid_agg_rx->head_seq_num = ssn;
4007 	} else {
4008 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4009 						 &frames);
4010 	}
4011 
4012 	/* handle the case that received ssn is behind the mac ssn.
4013 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4014 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4015 	if (diff >= tid_agg_rx->buf_size) {
4016 		tid_agg_rx->reorder_buf_filtered = 0;
4017 		goto release;
4018 	}
4019 	filtered = filtered >> diff;
4020 	ssn += diff;
4021 
4022 	/* update bitmap */
4023 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4024 		int index = (ssn + i) % tid_agg_rx->buf_size;
4025 
4026 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4027 		if (filtered & BIT_ULL(i))
4028 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4029 	}
4030 
4031 	/* now process also frames that the filter marking released */
4032 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4033 
4034 release:
4035 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4036 
4037 	ieee80211_rx_handlers(&rx, &frames);
4038 
4039  out:
4040 	rcu_read_unlock();
4041 }
4042 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4043 
4044 /* main receive path */
4045 
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4046 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4047 {
4048 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4049 	struct sk_buff *skb = rx->skb;
4050 	struct ieee80211_hdr *hdr = (void *)skb->data;
4051 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4052 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4053 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4054 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4055 
4056 	switch (sdata->vif.type) {
4057 	case NL80211_IFTYPE_STATION:
4058 		if (!bssid && !sdata->u.mgd.use_4addr)
4059 			return false;
4060 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4061 			return false;
4062 		if (multicast)
4063 			return true;
4064 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4065 	case NL80211_IFTYPE_ADHOC:
4066 		if (!bssid)
4067 			return false;
4068 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4069 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4070 		    !is_valid_ether_addr(hdr->addr2))
4071 			return false;
4072 		if (ieee80211_is_beacon(hdr->frame_control))
4073 			return true;
4074 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4075 			return false;
4076 		if (!multicast &&
4077 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4078 			return false;
4079 		if (!rx->sta) {
4080 			int rate_idx;
4081 			if (status->encoding != RX_ENC_LEGACY)
4082 				rate_idx = 0; /* TODO: HT/VHT rates */
4083 			else
4084 				rate_idx = status->rate_idx;
4085 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4086 						 BIT(rate_idx));
4087 		}
4088 		return true;
4089 	case NL80211_IFTYPE_OCB:
4090 		if (!bssid)
4091 			return false;
4092 		if (!ieee80211_is_data_present(hdr->frame_control))
4093 			return false;
4094 		if (!is_broadcast_ether_addr(bssid))
4095 			return false;
4096 		if (!multicast &&
4097 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4098 			return false;
4099 		if (!rx->sta) {
4100 			int rate_idx;
4101 			if (status->encoding != RX_ENC_LEGACY)
4102 				rate_idx = 0; /* TODO: HT rates */
4103 			else
4104 				rate_idx = status->rate_idx;
4105 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4106 						BIT(rate_idx));
4107 		}
4108 		return true;
4109 	case NL80211_IFTYPE_MESH_POINT:
4110 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4111 			return false;
4112 		if (multicast)
4113 			return true;
4114 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4115 	case NL80211_IFTYPE_AP_VLAN:
4116 	case NL80211_IFTYPE_AP:
4117 		if (!bssid)
4118 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4119 
4120 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4121 			/*
4122 			 * Accept public action frames even when the
4123 			 * BSSID doesn't match, this is used for P2P
4124 			 * and location updates. Note that mac80211
4125 			 * itself never looks at these frames.
4126 			 */
4127 			if (!multicast &&
4128 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4129 				return false;
4130 			if (ieee80211_is_public_action(hdr, skb->len))
4131 				return true;
4132 			return ieee80211_is_beacon(hdr->frame_control);
4133 		}
4134 
4135 		if (!ieee80211_has_tods(hdr->frame_control)) {
4136 			/* ignore data frames to TDLS-peers */
4137 			if (ieee80211_is_data(hdr->frame_control))
4138 				return false;
4139 			/* ignore action frames to TDLS-peers */
4140 			if (ieee80211_is_action(hdr->frame_control) &&
4141 			    !is_broadcast_ether_addr(bssid) &&
4142 			    !ether_addr_equal(bssid, hdr->addr1))
4143 				return false;
4144 		}
4145 
4146 		/*
4147 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4148 		 * the BSSID - we've checked that already but may have accepted
4149 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4150 		 *
4151 		 * It also says:
4152 		 *	The BSSID of the Data frame is determined as follows:
4153 		 *	a) If the STA is contained within an AP or is associated
4154 		 *	   with an AP, the BSSID is the address currently in use
4155 		 *	   by the STA contained in the AP.
4156 		 *
4157 		 * So we should not accept data frames with an address that's
4158 		 * multicast.
4159 		 *
4160 		 * Accepting it also opens a security problem because stations
4161 		 * could encrypt it with the GTK and inject traffic that way.
4162 		 */
4163 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4164 			return false;
4165 
4166 		return true;
4167 	case NL80211_IFTYPE_WDS:
4168 		if (bssid || !ieee80211_is_data(hdr->frame_control))
4169 			return false;
4170 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4171 	case NL80211_IFTYPE_P2P_DEVICE:
4172 		return ieee80211_is_public_action(hdr, skb->len) ||
4173 		       ieee80211_is_probe_req(hdr->frame_control) ||
4174 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4175 		       ieee80211_is_beacon(hdr->frame_control);
4176 	case NL80211_IFTYPE_NAN:
4177 		/* Currently no frames on NAN interface are allowed */
4178 		return false;
4179 	default:
4180 		break;
4181 	}
4182 
4183 	WARN_ON_ONCE(1);
4184 	return false;
4185 }
4186 
ieee80211_check_fast_rx(struct sta_info * sta)4187 void ieee80211_check_fast_rx(struct sta_info *sta)
4188 {
4189 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4190 	struct ieee80211_local *local = sdata->local;
4191 	struct ieee80211_key *key;
4192 	struct ieee80211_fast_rx fastrx = {
4193 		.dev = sdata->dev,
4194 		.vif_type = sdata->vif.type,
4195 		.control_port_protocol = sdata->control_port_protocol,
4196 	}, *old, *new = NULL;
4197 	bool assign = false;
4198 
4199 	/* use sparse to check that we don't return without updating */
4200 	__acquire(check_fast_rx);
4201 
4202 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4203 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4204 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4205 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4206 
4207 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4208 
4209 	/* fast-rx doesn't do reordering */
4210 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4211 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4212 		goto clear;
4213 
4214 	switch (sdata->vif.type) {
4215 	case NL80211_IFTYPE_STATION:
4216 		if (sta->sta.tdls) {
4217 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4218 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4219 			fastrx.expected_ds_bits = 0;
4220 		} else {
4221 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4222 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4223 			fastrx.expected_ds_bits =
4224 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4225 		}
4226 
4227 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4228 			fastrx.expected_ds_bits |=
4229 				cpu_to_le16(IEEE80211_FCTL_TODS);
4230 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4231 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4232 		}
4233 
4234 		if (!sdata->u.mgd.powersave)
4235 			break;
4236 
4237 		/* software powersave is a huge mess, avoid all of it */
4238 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4239 			goto clear;
4240 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4241 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4242 			goto clear;
4243 		break;
4244 	case NL80211_IFTYPE_AP_VLAN:
4245 	case NL80211_IFTYPE_AP:
4246 		/* parallel-rx requires this, at least with calls to
4247 		 * ieee80211_sta_ps_transition()
4248 		 */
4249 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4250 			goto clear;
4251 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4252 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4253 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4254 
4255 		fastrx.internal_forward =
4256 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4257 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4258 			 !sdata->u.vlan.sta);
4259 
4260 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4261 		    sdata->u.vlan.sta) {
4262 			fastrx.expected_ds_bits |=
4263 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4264 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4265 			fastrx.internal_forward = 0;
4266 		}
4267 
4268 		break;
4269 	default:
4270 		goto clear;
4271 	}
4272 
4273 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4274 		goto clear;
4275 
4276 	rcu_read_lock();
4277 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4278 	if (!key)
4279 		key = rcu_dereference(sdata->default_unicast_key);
4280 	if (key) {
4281 		switch (key->conf.cipher) {
4282 		case WLAN_CIPHER_SUITE_TKIP:
4283 			/* we don't want to deal with MMIC in fast-rx */
4284 			goto clear_rcu;
4285 		case WLAN_CIPHER_SUITE_CCMP:
4286 		case WLAN_CIPHER_SUITE_CCMP_256:
4287 		case WLAN_CIPHER_SUITE_GCMP:
4288 		case WLAN_CIPHER_SUITE_GCMP_256:
4289 			break;
4290 		default:
4291 			/* We also don't want to deal with
4292 			 * WEP or cipher scheme.
4293 			 */
4294 			goto clear_rcu;
4295 		}
4296 
4297 		fastrx.key = true;
4298 		fastrx.icv_len = key->conf.icv_len;
4299 	}
4300 
4301 	assign = true;
4302  clear_rcu:
4303 	rcu_read_unlock();
4304  clear:
4305 	__release(check_fast_rx);
4306 
4307 	if (assign)
4308 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4309 
4310 	spin_lock_bh(&sta->lock);
4311 	old = rcu_dereference_protected(sta->fast_rx, true);
4312 	rcu_assign_pointer(sta->fast_rx, new);
4313 	spin_unlock_bh(&sta->lock);
4314 
4315 	if (old)
4316 		kfree_rcu(old, rcu_head);
4317 }
4318 
ieee80211_clear_fast_rx(struct sta_info * sta)4319 void ieee80211_clear_fast_rx(struct sta_info *sta)
4320 {
4321 	struct ieee80211_fast_rx *old;
4322 
4323 	spin_lock_bh(&sta->lock);
4324 	old = rcu_dereference_protected(sta->fast_rx, true);
4325 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4326 	spin_unlock_bh(&sta->lock);
4327 
4328 	if (old)
4329 		kfree_rcu(old, rcu_head);
4330 }
4331 
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4332 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4333 {
4334 	struct ieee80211_local *local = sdata->local;
4335 	struct sta_info *sta;
4336 
4337 	lockdep_assert_held(&local->sta_mtx);
4338 
4339 	list_for_each_entry(sta, &local->sta_list, list) {
4340 		if (sdata != sta->sdata &&
4341 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4342 			continue;
4343 		ieee80211_check_fast_rx(sta);
4344 	}
4345 }
4346 
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4347 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4348 {
4349 	struct ieee80211_local *local = sdata->local;
4350 
4351 	mutex_lock(&local->sta_mtx);
4352 	__ieee80211_check_fast_rx_iface(sdata);
4353 	mutex_unlock(&local->sta_mtx);
4354 }
4355 
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4356 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4357 				     struct ieee80211_fast_rx *fast_rx)
4358 {
4359 	struct sk_buff *skb = rx->skb;
4360 	struct ieee80211_hdr *hdr = (void *)skb->data;
4361 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4362 	struct sta_info *sta = rx->sta;
4363 	int orig_len = skb->len;
4364 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4365 	int snap_offs = hdrlen;
4366 	struct {
4367 		u8 snap[sizeof(rfc1042_header)];
4368 		__be16 proto;
4369 	} *payload __aligned(2);
4370 	struct {
4371 		u8 da[ETH_ALEN];
4372 		u8 sa[ETH_ALEN];
4373 	} addrs __aligned(2);
4374 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4375 
4376 	if (fast_rx->uses_rss)
4377 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4378 
4379 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4380 	 * to a common data structure; drivers can implement that per queue
4381 	 * but we don't have that information in mac80211
4382 	 */
4383 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4384 		return false;
4385 
4386 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4387 
4388 	/* If using encryption, we also need to have:
4389 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4390 	 *  - DECRYPTED: necessary for PN_VALIDATED
4391 	 */
4392 	if (fast_rx->key &&
4393 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4394 		return false;
4395 
4396 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4397 		return false;
4398 
4399 	if (unlikely(ieee80211_is_frag(hdr)))
4400 		return false;
4401 
4402 	/* Since our interface address cannot be multicast, this
4403 	 * implicitly also rejects multicast frames without the
4404 	 * explicit check.
4405 	 *
4406 	 * We shouldn't get any *data* frames not addressed to us
4407 	 * (AP mode will accept multicast *management* frames), but
4408 	 * punting here will make it go through the full checks in
4409 	 * ieee80211_accept_frame().
4410 	 */
4411 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4412 		return false;
4413 
4414 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4415 					      IEEE80211_FCTL_TODS)) !=
4416 	    fast_rx->expected_ds_bits)
4417 		return false;
4418 
4419 	/* assign the key to drop unencrypted frames (later)
4420 	 * and strip the IV/MIC if necessary
4421 	 */
4422 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4423 		/* GCMP header length is the same */
4424 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4425 	}
4426 
4427 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4428 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4429 			goto drop;
4430 
4431 		payload = (void *)(skb->data + snap_offs);
4432 
4433 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4434 			return false;
4435 
4436 		/* Don't handle these here since they require special code.
4437 		 * Accept AARP and IPX even though they should come with a
4438 		 * bridge-tunnel header - but if we get them this way then
4439 		 * there's little point in discarding them.
4440 		 */
4441 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4442 			     payload->proto == fast_rx->control_port_protocol))
4443 			return false;
4444 	}
4445 
4446 	/* after this point, don't punt to the slowpath! */
4447 
4448 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4449 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4450 		goto drop;
4451 
4452 	/* statistics part of ieee80211_rx_h_sta_process() */
4453 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4454 		stats->last_signal = status->signal;
4455 		if (!fast_rx->uses_rss)
4456 			ewma_signal_add(&sta->rx_stats_avg.signal,
4457 					-status->signal);
4458 	}
4459 
4460 	if (status->chains) {
4461 		int i;
4462 
4463 		stats->chains = status->chains;
4464 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4465 			int signal = status->chain_signal[i];
4466 
4467 			if (!(status->chains & BIT(i)))
4468 				continue;
4469 
4470 			stats->chain_signal_last[i] = signal;
4471 			if (!fast_rx->uses_rss)
4472 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4473 						-signal);
4474 		}
4475 	}
4476 	/* end of statistics */
4477 
4478 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4479 		goto drop;
4480 
4481 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4482 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4483 		    RX_QUEUED)
4484 			goto drop;
4485 
4486 		return true;
4487 	}
4488 
4489 	stats->last_rx = jiffies;
4490 	stats->last_rate = sta_stats_encode_rate(status);
4491 
4492 	stats->fragments++;
4493 	stats->packets++;
4494 
4495 	/* do the header conversion - first grab the addresses */
4496 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4497 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4498 	/* remove the SNAP but leave the ethertype */
4499 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4500 	/* push the addresses in front */
4501 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4502 
4503 	skb->dev = fast_rx->dev;
4504 
4505 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4506 
4507 	/* The seqno index has the same property as needed
4508 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4509 	 * for non-QoS-data frames. Here we know it's a data
4510 	 * frame, so count MSDUs.
4511 	 */
4512 	u64_stats_update_begin(&stats->syncp);
4513 	stats->msdu[rx->seqno_idx]++;
4514 	stats->bytes += orig_len;
4515 	u64_stats_update_end(&stats->syncp);
4516 
4517 	if (fast_rx->internal_forward) {
4518 		struct sk_buff *xmit_skb = NULL;
4519 		if (is_multicast_ether_addr(addrs.da)) {
4520 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4521 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4522 			   sta_info_get(rx->sdata, addrs.da)) {
4523 			xmit_skb = skb;
4524 			skb = NULL;
4525 		}
4526 
4527 		if (xmit_skb) {
4528 			/*
4529 			 * Send to wireless media and increase priority by 256
4530 			 * to keep the received priority instead of
4531 			 * reclassifying the frame (see cfg80211_classify8021d).
4532 			 */
4533 			xmit_skb->priority += 256;
4534 			xmit_skb->protocol = htons(ETH_P_802_3);
4535 			skb_reset_network_header(xmit_skb);
4536 			skb_reset_mac_header(xmit_skb);
4537 			dev_queue_xmit(xmit_skb);
4538 		}
4539 
4540 		if (!skb)
4541 			return true;
4542 	}
4543 
4544 	/* deliver to local stack */
4545 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4546 	memset(skb->cb, 0, sizeof(skb->cb));
4547 	if (rx->list)
4548 		list_add_tail(&skb->list, rx->list);
4549 	else
4550 		netif_receive_skb(skb);
4551 
4552 	return true;
4553  drop:
4554 	dev_kfree_skb(skb);
4555 	stats->dropped++;
4556 	return true;
4557 }
4558 
4559 /*
4560  * This function returns whether or not the SKB
4561  * was destined for RX processing or not, which,
4562  * if consume is true, is equivalent to whether
4563  * or not the skb was consumed.
4564  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4565 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4566 					    struct sk_buff *skb, bool consume)
4567 {
4568 	struct ieee80211_local *local = rx->local;
4569 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4570 
4571 	rx->skb = skb;
4572 
4573 	/* See if we can do fast-rx; if we have to copy we already lost,
4574 	 * so punt in that case. We should never have to deliver a data
4575 	 * frame to multiple interfaces anyway.
4576 	 *
4577 	 * We skip the ieee80211_accept_frame() call and do the necessary
4578 	 * checking inside ieee80211_invoke_fast_rx().
4579 	 */
4580 	if (consume && rx->sta) {
4581 		struct ieee80211_fast_rx *fast_rx;
4582 
4583 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4584 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4585 			return true;
4586 	}
4587 
4588 	if (!ieee80211_accept_frame(rx))
4589 		return false;
4590 
4591 	if (!consume) {
4592 		skb = skb_copy(skb, GFP_ATOMIC);
4593 		if (!skb) {
4594 			if (net_ratelimit())
4595 				wiphy_debug(local->hw.wiphy,
4596 					"failed to copy skb for %s\n",
4597 					sdata->name);
4598 			return true;
4599 		}
4600 
4601 		rx->skb = skb;
4602 	}
4603 
4604 	ieee80211_invoke_rx_handlers(rx);
4605 	return true;
4606 }
4607 
4608 /*
4609  * This is the actual Rx frames handler. as it belongs to Rx path it must
4610  * be called with rcu_read_lock protection.
4611  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4612 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4613 					 struct ieee80211_sta *pubsta,
4614 					 struct sk_buff *skb,
4615 					 struct list_head *list)
4616 {
4617 	struct ieee80211_local *local = hw_to_local(hw);
4618 	struct ieee80211_sub_if_data *sdata;
4619 	struct ieee80211_hdr *hdr;
4620 	__le16 fc;
4621 	struct ieee80211_rx_data rx;
4622 	struct ieee80211_sub_if_data *prev;
4623 	struct rhlist_head *tmp;
4624 	int err = 0;
4625 
4626 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4627 	memset(&rx, 0, sizeof(rx));
4628 	rx.skb = skb;
4629 	rx.local = local;
4630 	rx.list = list;
4631 
4632 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4633 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4634 
4635 	if (ieee80211_is_mgmt(fc)) {
4636 		/* drop frame if too short for header */
4637 		if (skb->len < ieee80211_hdrlen(fc))
4638 			err = -ENOBUFS;
4639 		else
4640 			err = skb_linearize(skb);
4641 	} else {
4642 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4643 	}
4644 
4645 	if (err) {
4646 		dev_kfree_skb(skb);
4647 		return;
4648 	}
4649 
4650 	hdr = (struct ieee80211_hdr *)skb->data;
4651 	ieee80211_parse_qos(&rx);
4652 	ieee80211_verify_alignment(&rx);
4653 
4654 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4655 		     ieee80211_is_beacon(hdr->frame_control) ||
4656 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4657 		ieee80211_scan_rx(local, skb);
4658 
4659 	if (ieee80211_is_data(fc)) {
4660 		struct sta_info *sta, *prev_sta;
4661 
4662 		if (pubsta) {
4663 			rx.sta = container_of(pubsta, struct sta_info, sta);
4664 			rx.sdata = rx.sta->sdata;
4665 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4666 				return;
4667 			goto out;
4668 		}
4669 
4670 		prev_sta = NULL;
4671 
4672 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4673 			if (!prev_sta) {
4674 				prev_sta = sta;
4675 				continue;
4676 			}
4677 
4678 			rx.sta = prev_sta;
4679 			rx.sdata = prev_sta->sdata;
4680 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4681 
4682 			prev_sta = sta;
4683 		}
4684 
4685 		if (prev_sta) {
4686 			rx.sta = prev_sta;
4687 			rx.sdata = prev_sta->sdata;
4688 
4689 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4690 				return;
4691 			goto out;
4692 		}
4693 	}
4694 
4695 	prev = NULL;
4696 
4697 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4698 		if (!ieee80211_sdata_running(sdata))
4699 			continue;
4700 
4701 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4702 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4703 			continue;
4704 
4705 		/*
4706 		 * frame is destined for this interface, but if it's
4707 		 * not also for the previous one we handle that after
4708 		 * the loop to avoid copying the SKB once too much
4709 		 */
4710 
4711 		if (!prev) {
4712 			prev = sdata;
4713 			continue;
4714 		}
4715 
4716 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4717 		rx.sdata = prev;
4718 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4719 
4720 		prev = sdata;
4721 	}
4722 
4723 	if (prev) {
4724 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4725 		rx.sdata = prev;
4726 
4727 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4728 			return;
4729 	}
4730 
4731  out:
4732 	dev_kfree_skb(skb);
4733 }
4734 
4735 /*
4736  * This is the receive path handler. It is called by a low level driver when an
4737  * 802.11 MPDU is received from the hardware.
4738  */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4739 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4740 		       struct sk_buff *skb, struct list_head *list)
4741 {
4742 	struct ieee80211_local *local = hw_to_local(hw);
4743 	struct ieee80211_rate *rate = NULL;
4744 	struct ieee80211_supported_band *sband;
4745 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4746 
4747 	WARN_ON_ONCE(softirq_count() == 0);
4748 
4749 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4750 		goto drop;
4751 
4752 	sband = local->hw.wiphy->bands[status->band];
4753 	if (WARN_ON(!sband))
4754 		goto drop;
4755 
4756 	/*
4757 	 * If we're suspending, it is possible although not too likely
4758 	 * that we'd be receiving frames after having already partially
4759 	 * quiesced the stack. We can't process such frames then since
4760 	 * that might, for example, cause stations to be added or other
4761 	 * driver callbacks be invoked.
4762 	 */
4763 	if (unlikely(local->quiescing || local->suspended))
4764 		goto drop;
4765 
4766 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4767 	if (unlikely(local->in_reconfig))
4768 		goto drop;
4769 
4770 	/*
4771 	 * The same happens when we're not even started,
4772 	 * but that's worth a warning.
4773 	 */
4774 	if (WARN_ON(!local->started))
4775 		goto drop;
4776 
4777 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4778 		/*
4779 		 * Validate the rate, unless a PLCP error means that
4780 		 * we probably can't have a valid rate here anyway.
4781 		 */
4782 
4783 		switch (status->encoding) {
4784 		case RX_ENC_HT:
4785 			/*
4786 			 * rate_idx is MCS index, which can be [0-76]
4787 			 * as documented on:
4788 			 *
4789 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4790 			 *
4791 			 * Anything else would be some sort of driver or
4792 			 * hardware error. The driver should catch hardware
4793 			 * errors.
4794 			 */
4795 			if (WARN(status->rate_idx > 76,
4796 				 "Rate marked as an HT rate but passed "
4797 				 "status->rate_idx is not "
4798 				 "an MCS index [0-76]: %d (0x%02x)\n",
4799 				 status->rate_idx,
4800 				 status->rate_idx))
4801 				goto drop;
4802 			break;
4803 		case RX_ENC_VHT:
4804 			if (WARN_ONCE(status->rate_idx > 11 ||
4805 				      !status->nss ||
4806 				      status->nss > 8,
4807 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4808 				      status->rate_idx, status->nss))
4809 				goto drop;
4810 			break;
4811 		case RX_ENC_HE:
4812 			if (WARN_ONCE(status->rate_idx > 11 ||
4813 				      !status->nss ||
4814 				      status->nss > 8,
4815 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4816 				      status->rate_idx, status->nss))
4817 				goto drop;
4818 			break;
4819 		default:
4820 			WARN_ON_ONCE(1);
4821 			fallthrough;
4822 		case RX_ENC_LEGACY:
4823 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4824 				goto drop;
4825 			rate = &sband->bitrates[status->rate_idx];
4826 		}
4827 	}
4828 
4829 	status->rx_flags = 0;
4830 
4831 	/*
4832 	 * Frames with failed FCS/PLCP checksum are not returned,
4833 	 * all other frames are returned without radiotap header
4834 	 * if it was previously present.
4835 	 * Also, frames with less than 16 bytes are dropped.
4836 	 */
4837 	skb = ieee80211_rx_monitor(local, skb, rate);
4838 	if (!skb)
4839 		return;
4840 
4841 	ieee80211_tpt_led_trig_rx(local,
4842 			((struct ieee80211_hdr *)skb->data)->frame_control,
4843 			skb->len);
4844 
4845 	__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4846 
4847 	return;
4848  drop:
4849 	kfree_skb(skb);
4850 }
4851 EXPORT_SYMBOL(ieee80211_rx_list);
4852 
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4853 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4854 		       struct sk_buff *skb, struct napi_struct *napi)
4855 {
4856 	struct sk_buff *tmp;
4857 	LIST_HEAD(list);
4858 
4859 
4860 	/*
4861 	 * key references and virtual interfaces are protected using RCU
4862 	 * and this requires that we are in a read-side RCU section during
4863 	 * receive processing
4864 	 */
4865 	rcu_read_lock();
4866 	ieee80211_rx_list(hw, pubsta, skb, &list);
4867 	rcu_read_unlock();
4868 
4869 	if (!napi) {
4870 		netif_receive_skb_list(&list);
4871 		return;
4872 	}
4873 
4874 	list_for_each_entry_safe(skb, tmp, &list, list) {
4875 		skb_list_del_init(skb);
4876 		napi_gro_receive(napi, skb);
4877 	}
4878 }
4879 EXPORT_SYMBOL(ieee80211_rx_napi);
4880 
4881 /* This is a version of the rx handler that can be called from hard irq
4882  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)4883 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4884 {
4885 	struct ieee80211_local *local = hw_to_local(hw);
4886 
4887 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4888 
4889 	skb->pkt_type = IEEE80211_RX_MSG;
4890 	skb_queue_tail(&local->skb_queue, skb);
4891 	tasklet_schedule(&local->tasklet);
4892 }
4893 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4894