1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39
ath9k_hw_set_clockrate(struct ath_hw * ah)40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 struct ath_common *common = ath9k_hw_common(ah);
43 struct ath9k_channel *chan = ah->curchan;
44 unsigned int clockrate;
45
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 clockrate = 117;
49 else if (!chan) /* should really check for CCK instead */
50 clockrate = ATH9K_CLOCK_RATE_CCK;
51 else if (IS_CHAN_2GHZ(chan))
52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 else
56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57
58 if (chan) {
59 if (IS_CHAN_HT40(chan))
60 clockrate *= 2;
61 if (IS_CHAN_HALF_RATE(chan))
62 clockrate /= 2;
63 if (IS_CHAN_QUARTER_RATE(chan))
64 clockrate /= 4;
65 }
66
67 common->clockrate = clockrate;
68 }
69
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 struct ath_common *common = ath9k_hw_common(ah);
73
74 return usecs * common->clockrate;
75 }
76
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 int i;
80
81 BUG_ON(timeout < AH_TIME_QUANTUM);
82
83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 if ((REG_READ(ah, reg) & mask) == val)
85 return true;
86
87 udelay(AH_TIME_QUANTUM);
88 }
89
90 ath_dbg(ath9k_hw_common(ah), ANY,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout, reg, REG_READ(ah, reg), mask, val);
93
94 return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 int hw_delay)
100 {
101 hw_delay /= 10;
102
103 if (IS_CHAN_HALF_RATE(chan))
104 hw_delay *= 2;
105 else if (IS_CHAN_QUARTER_RATE(chan))
106 hw_delay *= 4;
107
108 udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 int column, unsigned int *writecnt)
113 {
114 int r;
115
116 ENABLE_REGWRITE_BUFFER(ah);
117 for (r = 0; r < array->ia_rows; r++) {
118 REG_WRITE(ah, INI_RA(array, r, 0),
119 INI_RA(array, r, column));
120 DO_DELAY(*writecnt);
121 }
122 REGWRITE_BUFFER_FLUSH(ah);
123 }
124
ath9k_hw_read_array(struct ath_hw * ah,u32 array[][2],int size)125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 u32 *tmp_reg_list, *tmp_data;
128 int i;
129
130 tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
131 if (!tmp_reg_list) {
132 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 return;
134 }
135
136 tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
137 if (!tmp_data) {
138 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 goto error_tmp_data;
140 }
141
142 for (i = 0; i < size; i++)
143 tmp_reg_list[i] = array[i][0];
144
145 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146
147 for (i = 0; i < size; i++)
148 array[i][1] = tmp_data[i];
149
150 kfree(tmp_data);
151 error_tmp_data:
152 kfree(tmp_reg_list);
153 }
154
ath9k_hw_reverse_bits(u32 val,u32 n)155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 u32 retval;
158 int i;
159
160 for (i = 0, retval = 0; i < n; i++) {
161 retval = (retval << 1) | (val & 1);
162 val >>= 1;
163 }
164 return retval;
165 }
166
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 u8 phy, int kbps,
169 u32 frameLen, u16 rateix,
170 bool shortPreamble)
171 {
172 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173
174 if (kbps == 0)
175 return 0;
176
177 switch (phy) {
178 case WLAN_RC_PHY_CCK:
179 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 if (shortPreamble)
181 phyTime >>= 1;
182 numBits = frameLen << 3;
183 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 break;
185 case WLAN_RC_PHY_OFDM:
186 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 bitsPerSymbol =
188 ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189 numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 txTime = OFDM_SIFS_TIME_QUARTER
192 + OFDM_PREAMBLE_TIME_QUARTER
193 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194 } else if (ah->curchan &&
195 IS_CHAN_HALF_RATE(ah->curchan)) {
196 bitsPerSymbol =
197 ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
198 numBits = OFDM_PLCP_BITS + (frameLen << 3);
199 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200 txTime = OFDM_SIFS_TIME_HALF +
201 OFDM_PREAMBLE_TIME_HALF
202 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
203 } else {
204 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205 numBits = OFDM_PLCP_BITS + (frameLen << 3);
206 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208 + (numSymbols * OFDM_SYMBOL_TIME);
209 }
210 break;
211 default:
212 ath_err(ath9k_hw_common(ah),
213 "Unknown phy %u (rate ix %u)\n", phy, rateix);
214 txTime = 0;
215 break;
216 }
217
218 return txTime;
219 }
220 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)222 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223 struct ath9k_channel *chan,
224 struct chan_centers *centers)
225 {
226 int8_t extoff;
227
228 if (!IS_CHAN_HT40(chan)) {
229 centers->ctl_center = centers->ext_center =
230 centers->synth_center = chan->channel;
231 return;
232 }
233
234 if (IS_CHAN_HT40PLUS(chan)) {
235 centers->synth_center =
236 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237 extoff = 1;
238 } else {
239 centers->synth_center =
240 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241 extoff = -1;
242 }
243
244 centers->ctl_center =
245 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246 /* 25 MHz spacing is supported by hw but not on upper layers */
247 centers->ext_center =
248 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 }
250
251 /******************/
252 /* Chip Revisions */
253 /******************/
254
ath9k_hw_read_revisions(struct ath_hw * ah)255 static bool ath9k_hw_read_revisions(struct ath_hw *ah)
256 {
257 u32 srev;
258 u32 val;
259
260 if (ah->get_mac_revision)
261 ah->hw_version.macRev = ah->get_mac_revision();
262
263 switch (ah->hw_version.devid) {
264 case AR5416_AR9100_DEVID:
265 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
266 break;
267 case AR9300_DEVID_AR9330:
268 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
269 if (!ah->get_mac_revision) {
270 val = REG_READ(ah, AR_SREV);
271 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 }
273 return true;
274 case AR9300_DEVID_AR9340:
275 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
276 return true;
277 case AR9300_DEVID_QCA955X:
278 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
279 return true;
280 case AR9300_DEVID_AR953X:
281 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
282 return true;
283 case AR9300_DEVID_QCA956X:
284 ah->hw_version.macVersion = AR_SREV_VERSION_9561;
285 return true;
286 }
287
288 srev = REG_READ(ah, AR_SREV);
289
290 if (srev == -1) {
291 ath_err(ath9k_hw_common(ah),
292 "Failed to read SREV register");
293 return false;
294 }
295
296 val = srev & AR_SREV_ID;
297
298 if (val == 0xFF) {
299 val = srev;
300 ah->hw_version.macVersion =
301 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
302 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
303
304 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
305 ah->is_pciexpress = true;
306 else
307 ah->is_pciexpress = (val &
308 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
309 } else {
310 if (!AR_SREV_9100(ah))
311 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
312
313 ah->hw_version.macRev = val & AR_SREV_REVISION;
314
315 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
316 ah->is_pciexpress = true;
317 }
318
319 return true;
320 }
321
322 /************************************/
323 /* HW Attach, Detach, Init Routines */
324 /************************************/
325
ath9k_hw_disablepcie(struct ath_hw * ah)326 static void ath9k_hw_disablepcie(struct ath_hw *ah)
327 {
328 if (!AR_SREV_5416(ah))
329 return;
330
331 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
332 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
333 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
334 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
335 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
336 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
337 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
338 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
339 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
340
341 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
342 }
343
344 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)345 static bool ath9k_hw_chip_test(struct ath_hw *ah)
346 {
347 struct ath_common *common = ath9k_hw_common(ah);
348 u32 regAddr[2] = { AR_STA_ID0 };
349 u32 regHold[2];
350 static const u32 patternData[4] = {
351 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
352 };
353 int i, j, loop_max;
354
355 if (!AR_SREV_9300_20_OR_LATER(ah)) {
356 loop_max = 2;
357 regAddr[1] = AR_PHY_BASE + (8 << 2);
358 } else
359 loop_max = 1;
360
361 for (i = 0; i < loop_max; i++) {
362 u32 addr = regAddr[i];
363 u32 wrData, rdData;
364
365 regHold[i] = REG_READ(ah, addr);
366 for (j = 0; j < 0x100; j++) {
367 wrData = (j << 16) | j;
368 REG_WRITE(ah, addr, wrData);
369 rdData = REG_READ(ah, addr);
370 if (rdData != wrData) {
371 ath_err(common,
372 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
373 addr, wrData, rdData);
374 return false;
375 }
376 }
377 for (j = 0; j < 4; j++) {
378 wrData = patternData[j];
379 REG_WRITE(ah, addr, wrData);
380 rdData = REG_READ(ah, addr);
381 if (wrData != rdData) {
382 ath_err(common,
383 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
384 addr, wrData, rdData);
385 return false;
386 }
387 }
388 REG_WRITE(ah, regAddr[i], regHold[i]);
389 }
390 udelay(100);
391
392 return true;
393 }
394
ath9k_hw_init_config(struct ath_hw * ah)395 static void ath9k_hw_init_config(struct ath_hw *ah)
396 {
397 struct ath_common *common = ath9k_hw_common(ah);
398
399 ah->config.dma_beacon_response_time = 1;
400 ah->config.sw_beacon_response_time = 6;
401 ah->config.cwm_ignore_extcca = false;
402 ah->config.analog_shiftreg = 1;
403
404 ah->config.rx_intr_mitigation = true;
405
406 if (AR_SREV_9300_20_OR_LATER(ah)) {
407 ah->config.rimt_last = 500;
408 ah->config.rimt_first = 2000;
409 } else {
410 ah->config.rimt_last = 250;
411 ah->config.rimt_first = 700;
412 }
413
414 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
415 ah->config.pll_pwrsave = 7;
416
417 /*
418 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 * This means we use it for all AR5416 devices, and the few
421 * minor PCI AR9280 devices out there.
422 *
423 * Serialization is required because these devices do not handle
424 * well the case of two concurrent reads/writes due to the latency
425 * involved. During one read/write another read/write can be issued
426 * on another CPU while the previous read/write may still be working
427 * on our hardware, if we hit this case the hardware poops in a loop.
428 * We prevent this by serializing reads and writes.
429 *
430 * This issue is not present on PCI-Express devices or pre-AR5416
431 * devices (legacy, 802.11abg).
432 */
433 if (num_possible_cpus() > 1)
434 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435
436 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
437 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
438 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
439 !ah->is_pciexpress)) {
440 ah->config.serialize_regmode = SER_REG_MODE_ON;
441 } else {
442 ah->config.serialize_regmode = SER_REG_MODE_OFF;
443 }
444 }
445
446 ath_dbg(common, RESET, "serialize_regmode is %d\n",
447 ah->config.serialize_regmode);
448
449 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
450 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
451 else
452 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
453 }
454
ath9k_hw_init_defaults(struct ath_hw * ah)455 static void ath9k_hw_init_defaults(struct ath_hw *ah)
456 {
457 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
458
459 regulatory->country_code = CTRY_DEFAULT;
460 regulatory->power_limit = MAX_COMBINED_POWER;
461
462 ah->hw_version.magic = AR5416_MAGIC;
463 ah->hw_version.subvendorid = 0;
464
465 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
466 AR_STA_ID1_MCAST_KSRCH;
467 if (AR_SREV_9100(ah))
468 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
469
470 ah->slottime = 9;
471 ah->globaltxtimeout = (u32) -1;
472 ah->power_mode = ATH9K_PM_UNDEFINED;
473 ah->htc_reset_init = true;
474
475 ah->tpc_enabled = false;
476
477 ah->ani_function = ATH9K_ANI_ALL;
478 if (!AR_SREV_9300_20_OR_LATER(ah))
479 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
480
481 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
482 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
483 else
484 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
485 }
486
ath9k_hw_init_macaddr(struct ath_hw * ah)487 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
488 {
489 struct ath_common *common = ath9k_hw_common(ah);
490 int i;
491 u16 eeval;
492 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
493
494 /* MAC address may already be loaded via ath9k_platform_data */
495 if (is_valid_ether_addr(common->macaddr))
496 return;
497
498 for (i = 0; i < 3; i++) {
499 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
500 common->macaddr[2 * i] = eeval >> 8;
501 common->macaddr[2 * i + 1] = eeval & 0xff;
502 }
503
504 if (is_valid_ether_addr(common->macaddr))
505 return;
506
507 ath_err(common, "eeprom contains invalid mac address: %pM\n",
508 common->macaddr);
509
510 eth_random_addr(common->macaddr);
511 ath_err(common, "random mac address will be used: %pM\n",
512 common->macaddr);
513
514 return;
515 }
516
ath9k_hw_post_init(struct ath_hw * ah)517 static int ath9k_hw_post_init(struct ath_hw *ah)
518 {
519 struct ath_common *common = ath9k_hw_common(ah);
520 int ecode;
521
522 if (common->bus_ops->ath_bus_type != ATH_USB) {
523 if (!ath9k_hw_chip_test(ah))
524 return -ENODEV;
525 }
526
527 if (!AR_SREV_9300_20_OR_LATER(ah)) {
528 ecode = ar9002_hw_rf_claim(ah);
529 if (ecode != 0)
530 return ecode;
531 }
532
533 ecode = ath9k_hw_eeprom_init(ah);
534 if (ecode != 0)
535 return ecode;
536
537 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
538 ah->eep_ops->get_eeprom_ver(ah),
539 ah->eep_ops->get_eeprom_rev(ah));
540
541 ath9k_hw_ani_init(ah);
542
543 /*
544 * EEPROM needs to be initialized before we do this.
545 * This is required for regulatory compliance.
546 */
547 if (AR_SREV_9300_20_OR_LATER(ah)) {
548 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
549 if ((regdmn & 0xF0) == CTL_FCC) {
550 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
551 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
552 }
553 }
554
555 return 0;
556 }
557
ath9k_hw_attach_ops(struct ath_hw * ah)558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
559 {
560 if (!AR_SREV_9300_20_OR_LATER(ah))
561 return ar9002_hw_attach_ops(ah);
562
563 ar9003_hw_attach_ops(ah);
564 return 0;
565 }
566
567 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)568 static int __ath9k_hw_init(struct ath_hw *ah)
569 {
570 struct ath_common *common = ath9k_hw_common(ah);
571 int r = 0;
572
573 if (!ath9k_hw_read_revisions(ah)) {
574 ath_err(common, "Could not read hardware revisions");
575 return -EOPNOTSUPP;
576 }
577
578 switch (ah->hw_version.macVersion) {
579 case AR_SREV_VERSION_5416_PCI:
580 case AR_SREV_VERSION_5416_PCIE:
581 case AR_SREV_VERSION_9160:
582 case AR_SREV_VERSION_9100:
583 case AR_SREV_VERSION_9280:
584 case AR_SREV_VERSION_9285:
585 case AR_SREV_VERSION_9287:
586 case AR_SREV_VERSION_9271:
587 case AR_SREV_VERSION_9300:
588 case AR_SREV_VERSION_9330:
589 case AR_SREV_VERSION_9485:
590 case AR_SREV_VERSION_9340:
591 case AR_SREV_VERSION_9462:
592 case AR_SREV_VERSION_9550:
593 case AR_SREV_VERSION_9565:
594 case AR_SREV_VERSION_9531:
595 case AR_SREV_VERSION_9561:
596 break;
597 default:
598 ath_err(common,
599 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
600 ah->hw_version.macVersion, ah->hw_version.macRev);
601 return -EOPNOTSUPP;
602 }
603
604 /*
605 * Read back AR_WA into a permanent copy and set bits 14 and 17.
606 * We need to do this to avoid RMW of this register. We cannot
607 * read the reg when chip is asleep.
608 */
609 if (AR_SREV_9300_20_OR_LATER(ah)) {
610 ah->WARegVal = REG_READ(ah, AR_WA);
611 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
612 AR_WA_ASPM_TIMER_BASED_DISABLE);
613 }
614
615 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
616 ath_err(common, "Couldn't reset chip\n");
617 return -EIO;
618 }
619
620 if (AR_SREV_9565(ah)) {
621 ah->WARegVal |= AR_WA_BIT22;
622 REG_WRITE(ah, AR_WA, ah->WARegVal);
623 }
624
625 ath9k_hw_init_defaults(ah);
626 ath9k_hw_init_config(ah);
627
628 r = ath9k_hw_attach_ops(ah);
629 if (r)
630 return r;
631
632 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
633 ath_err(common, "Couldn't wakeup chip\n");
634 return -EIO;
635 }
636
637 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
638 AR_SREV_9330(ah) || AR_SREV_9550(ah))
639 ah->is_pciexpress = false;
640
641 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
642 ath9k_hw_init_cal_settings(ah);
643
644 if (!ah->is_pciexpress)
645 ath9k_hw_disablepcie(ah);
646
647 r = ath9k_hw_post_init(ah);
648 if (r)
649 return r;
650
651 ath9k_hw_init_mode_gain_regs(ah);
652 r = ath9k_hw_fill_cap_info(ah);
653 if (r)
654 return r;
655
656 ath9k_hw_init_macaddr(ah);
657 ath9k_hw_init_hang_checks(ah);
658
659 common->state = ATH_HW_INITIALIZED;
660
661 return 0;
662 }
663
ath9k_hw_init(struct ath_hw * ah)664 int ath9k_hw_init(struct ath_hw *ah)
665 {
666 int ret;
667 struct ath_common *common = ath9k_hw_common(ah);
668
669 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
670 switch (ah->hw_version.devid) {
671 case AR5416_DEVID_PCI:
672 case AR5416_DEVID_PCIE:
673 case AR5416_AR9100_DEVID:
674 case AR9160_DEVID_PCI:
675 case AR9280_DEVID_PCI:
676 case AR9280_DEVID_PCIE:
677 case AR9285_DEVID_PCIE:
678 case AR9287_DEVID_PCI:
679 case AR9287_DEVID_PCIE:
680 case AR2427_DEVID_PCIE:
681 case AR9300_DEVID_PCIE:
682 case AR9300_DEVID_AR9485_PCIE:
683 case AR9300_DEVID_AR9330:
684 case AR9300_DEVID_AR9340:
685 case AR9300_DEVID_QCA955X:
686 case AR9300_DEVID_AR9580:
687 case AR9300_DEVID_AR9462:
688 case AR9485_DEVID_AR1111:
689 case AR9300_DEVID_AR9565:
690 case AR9300_DEVID_AR953X:
691 case AR9300_DEVID_QCA956X:
692 break;
693 default:
694 if (common->bus_ops->ath_bus_type == ATH_USB)
695 break;
696 ath_err(common, "Hardware device ID 0x%04x not supported\n",
697 ah->hw_version.devid);
698 return -EOPNOTSUPP;
699 }
700
701 ret = __ath9k_hw_init(ah);
702 if (ret) {
703 ath_err(common,
704 "Unable to initialize hardware; initialization status: %d\n",
705 ret);
706 return ret;
707 }
708
709 ath_dynack_init(ah);
710
711 return 0;
712 }
713 EXPORT_SYMBOL(ath9k_hw_init);
714
ath9k_hw_init_qos(struct ath_hw * ah)715 static void ath9k_hw_init_qos(struct ath_hw *ah)
716 {
717 ENABLE_REGWRITE_BUFFER(ah);
718
719 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
720 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
721
722 REG_WRITE(ah, AR_QOS_NO_ACK,
723 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
724 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
725 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
726
727 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
728 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
729 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
730 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
731 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
732
733 REGWRITE_BUFFER_FLUSH(ah);
734 }
735
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)736 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
737 {
738 struct ath_common *common = ath9k_hw_common(ah);
739 int i = 0;
740
741 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
742 udelay(100);
743 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
744
745 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
746
747 udelay(100);
748
749 if (WARN_ON_ONCE(i >= 100)) {
750 ath_err(common, "PLL4 measurement not done\n");
751 break;
752 }
753
754 i++;
755 }
756
757 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
758 }
759 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
760
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)761 static void ath9k_hw_init_pll(struct ath_hw *ah,
762 struct ath9k_channel *chan)
763 {
764 u32 pll;
765
766 pll = ath9k_hw_compute_pll_control(ah, chan);
767
768 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
769 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
770 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
772 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 AR_CH0_DPLL2_KD, 0x40);
774 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775 AR_CH0_DPLL2_KI, 0x4);
776
777 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
778 AR_CH0_BB_DPLL1_REFDIV, 0x5);
779 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
780 AR_CH0_BB_DPLL1_NINI, 0x58);
781 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
782 AR_CH0_BB_DPLL1_NFRAC, 0x0);
783
784 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
785 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
786 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
787 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
788 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
789 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
790
791 /* program BB PLL phase_shift to 0x6 */
792 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
793 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
794
795 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
796 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
797 udelay(1000);
798 } else if (AR_SREV_9330(ah)) {
799 u32 ddr_dpll2, pll_control2, kd;
800
801 if (ah->is_clk_25mhz) {
802 ddr_dpll2 = 0x18e82f01;
803 pll_control2 = 0xe04a3d;
804 kd = 0x1d;
805 } else {
806 ddr_dpll2 = 0x19e82f01;
807 pll_control2 = 0x886666;
808 kd = 0x3d;
809 }
810
811 /* program DDR PLL ki and kd value */
812 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
813
814 /* program DDR PLL phase_shift */
815 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
816 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
817
818 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
819 pll | AR_RTC_9300_PLL_BYPASS);
820 udelay(1000);
821
822 /* program refdiv, nint, frac to RTC register */
823 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
824
825 /* program BB PLL kd and ki value */
826 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
827 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
828
829 /* program BB PLL phase_shift */
830 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
831 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
832 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
833 AR_SREV_9561(ah)) {
834 u32 regval, pll2_divint, pll2_divfrac, refdiv;
835
836 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
837 pll | AR_RTC_9300_SOC_PLL_BYPASS);
838 udelay(1000);
839
840 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
841 udelay(100);
842
843 if (ah->is_clk_25mhz) {
844 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
845 pll2_divint = 0x1c;
846 pll2_divfrac = 0xa3d2;
847 refdiv = 1;
848 } else {
849 pll2_divint = 0x54;
850 pll2_divfrac = 0x1eb85;
851 refdiv = 3;
852 }
853 } else {
854 if (AR_SREV_9340(ah)) {
855 pll2_divint = 88;
856 pll2_divfrac = 0;
857 refdiv = 5;
858 } else {
859 pll2_divint = 0x11;
860 pll2_divfrac = (AR_SREV_9531(ah) ||
861 AR_SREV_9561(ah)) ?
862 0x26665 : 0x26666;
863 refdiv = 1;
864 }
865 }
866
867 regval = REG_READ(ah, AR_PHY_PLL_MODE);
868 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
869 regval |= (0x1 << 22);
870 else
871 regval |= (0x1 << 16);
872 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
873 udelay(100);
874
875 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
876 (pll2_divint << 18) | pll2_divfrac);
877 udelay(100);
878
879 regval = REG_READ(ah, AR_PHY_PLL_MODE);
880 if (AR_SREV_9340(ah))
881 regval = (regval & 0x80071fff) |
882 (0x1 << 30) |
883 (0x1 << 13) |
884 (0x4 << 26) |
885 (0x18 << 19);
886 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
887 regval = (regval & 0x01c00fff) |
888 (0x1 << 31) |
889 (0x2 << 29) |
890 (0xa << 25) |
891 (0x1 << 19);
892
893 if (AR_SREV_9531(ah))
894 regval |= (0x6 << 12);
895 } else
896 regval = (regval & 0x80071fff) |
897 (0x3 << 30) |
898 (0x1 << 13) |
899 (0x4 << 26) |
900 (0x60 << 19);
901 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902
903 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
904 REG_WRITE(ah, AR_PHY_PLL_MODE,
905 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
906 else
907 REG_WRITE(ah, AR_PHY_PLL_MODE,
908 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
909
910 udelay(1000);
911 }
912
913 if (AR_SREV_9565(ah))
914 pll |= 0x40000;
915 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
916
917 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
918 AR_SREV_9550(ah))
919 udelay(1000);
920
921 /* Switch the core clock for ar9271 to 117Mhz */
922 if (AR_SREV_9271(ah)) {
923 udelay(500);
924 REG_WRITE(ah, 0x50040, 0x304);
925 }
926
927 udelay(RTC_PLL_SETTLE_DELAY);
928
929 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
930 }
931
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)932 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
933 enum nl80211_iftype opmode)
934 {
935 u32 sync_default = AR_INTR_SYNC_DEFAULT;
936 u32 imr_reg = AR_IMR_TXERR |
937 AR_IMR_TXURN |
938 AR_IMR_RXERR |
939 AR_IMR_RXORN |
940 AR_IMR_BCNMISC;
941 u32 msi_cfg = 0;
942
943 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
944 AR_SREV_9561(ah))
945 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
946
947 if (AR_SREV_9300_20_OR_LATER(ah)) {
948 imr_reg |= AR_IMR_RXOK_HP;
949 if (ah->config.rx_intr_mitigation) {
950 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
951 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
952 } else {
953 imr_reg |= AR_IMR_RXOK_LP;
954 msi_cfg |= AR_INTCFG_MSI_RXOK;
955 }
956 } else {
957 if (ah->config.rx_intr_mitigation) {
958 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
959 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
960 } else {
961 imr_reg |= AR_IMR_RXOK;
962 msi_cfg |= AR_INTCFG_MSI_RXOK;
963 }
964 }
965
966 if (ah->config.tx_intr_mitigation) {
967 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
968 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
969 } else {
970 imr_reg |= AR_IMR_TXOK;
971 msi_cfg |= AR_INTCFG_MSI_TXOK;
972 }
973
974 ENABLE_REGWRITE_BUFFER(ah);
975
976 REG_WRITE(ah, AR_IMR, imr_reg);
977 ah->imrs2_reg |= AR_IMR_S2_GTT;
978 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
979
980 if (ah->msi_enabled) {
981 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
982 ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
983 ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
984 REG_WRITE(ah, AR_INTCFG, msi_cfg);
985 ath_dbg(ath9k_hw_common(ah), ANY,
986 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
987 REG_READ(ah, AR_INTCFG), msi_cfg);
988 }
989
990 if (!AR_SREV_9100(ah)) {
991 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
992 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
993 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
994 }
995
996 REGWRITE_BUFFER_FLUSH(ah);
997
998 if (AR_SREV_9300_20_OR_LATER(ah)) {
999 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003 }
1004 }
1005
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)1006 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007 {
1008 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009 val = min(val, (u32) 0xFFFF);
1010 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011 }
1012
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)1013 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014 {
1015 u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 val = min(val, (u32) 0xFFFF);
1017 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018 }
1019
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1020 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021 {
1022 u32 val = ath9k_hw_mac_to_clks(ah, us);
1023 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025 }
1026
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1027 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028 {
1029 u32 val = ath9k_hw_mac_to_clks(ah, us);
1030 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032 }
1033
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1034 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035 {
1036 if (tu > 0xFFFF) {
1037 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038 tu);
1039 ah->globaltxtimeout = (u32) -1;
1040 return false;
1041 } else {
1042 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043 ah->globaltxtimeout = tu;
1044 return true;
1045 }
1046 }
1047
ath9k_hw_init_global_settings(struct ath_hw * ah)1048 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049 {
1050 struct ath_common *common = ath9k_hw_common(ah);
1051 const struct ath9k_channel *chan = ah->curchan;
1052 int acktimeout, ctstimeout, ack_offset = 0;
1053 int slottime;
1054 int sifstime;
1055 int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1056 u32 reg;
1057
1058 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1059 ah->misc_mode);
1060
1061 if (!chan)
1062 return;
1063
1064 if (ah->misc_mode != 0)
1065 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1066
1067 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1068 rx_lat = 41;
1069 else
1070 rx_lat = 37;
1071 tx_lat = 54;
1072
1073 if (IS_CHAN_5GHZ(chan))
1074 sifstime = 16;
1075 else
1076 sifstime = 10;
1077
1078 if (IS_CHAN_HALF_RATE(chan)) {
1079 eifs = 175;
1080 rx_lat *= 2;
1081 tx_lat *= 2;
1082 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083 tx_lat += 11;
1084
1085 sifstime = 32;
1086 ack_offset = 16;
1087 ack_shift = 3;
1088 slottime = 13;
1089 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1090 eifs = 340;
1091 rx_lat = (rx_lat * 4) - 1;
1092 tx_lat *= 4;
1093 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094 tx_lat += 22;
1095
1096 sifstime = 64;
1097 ack_offset = 32;
1098 ack_shift = 1;
1099 slottime = 21;
1100 } else {
1101 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1102 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1103 reg = AR_USEC_ASYNC_FIFO;
1104 } else {
1105 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1106 common->clockrate;
1107 reg = REG_READ(ah, AR_USEC);
1108 }
1109 rx_lat = MS(reg, AR_USEC_RX_LAT);
1110 tx_lat = MS(reg, AR_USEC_TX_LAT);
1111
1112 slottime = ah->slottime;
1113 }
1114
1115 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1116 slottime += 3 * ah->coverage_class;
1117 acktimeout = slottime + sifstime + ack_offset;
1118 ctstimeout = acktimeout;
1119
1120 /*
1121 * Workaround for early ACK timeouts, add an offset to match the
1122 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123 * This was initially only meant to work around an issue with delayed
1124 * BA frames in some implementations, but it has been found to fix ACK
1125 * timeout issues in other cases as well.
1126 */
1127 if (IS_CHAN_2GHZ(chan) &&
1128 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129 acktimeout += 64 - sifstime - ah->slottime;
1130 ctstimeout += 48 - sifstime - ah->slottime;
1131 }
1132
1133 if (ah->dynack.enabled) {
1134 acktimeout = ah->dynack.ackto;
1135 ctstimeout = acktimeout;
1136 slottime = (acktimeout - 3) / 2;
1137 } else {
1138 ah->dynack.ackto = acktimeout;
1139 }
1140
1141 ath9k_hw_set_sifs_time(ah, sifstime);
1142 ath9k_hw_setslottime(ah, slottime);
1143 ath9k_hw_set_ack_timeout(ah, acktimeout);
1144 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1145 if (ah->globaltxtimeout != (u32) -1)
1146 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1147
1148 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1149 REG_RMW(ah, AR_USEC,
1150 (common->clockrate - 1) |
1151 SM(rx_lat, AR_USEC_RX_LAT) |
1152 SM(tx_lat, AR_USEC_TX_LAT),
1153 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1154
1155 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1156 REG_RMW(ah, AR_TXSIFS,
1157 sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1158 (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1159 }
1160 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1161
ath9k_hw_deinit(struct ath_hw * ah)1162 void ath9k_hw_deinit(struct ath_hw *ah)
1163 {
1164 struct ath_common *common = ath9k_hw_common(ah);
1165
1166 if (common->state < ATH_HW_INITIALIZED)
1167 return;
1168
1169 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1170 }
1171 EXPORT_SYMBOL(ath9k_hw_deinit);
1172
1173 /*******/
1174 /* INI */
1175 /*******/
1176
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1177 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1178 {
1179 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1180
1181 if (IS_CHAN_2GHZ(chan))
1182 ctl |= CTL_11G;
1183 else
1184 ctl |= CTL_11A;
1185
1186 return ctl;
1187 }
1188
1189 /****************************************/
1190 /* Reset and Channel Switching Routines */
1191 /****************************************/
1192
ath9k_hw_set_dma(struct ath_hw * ah)1193 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1194 {
1195 struct ath_common *common = ath9k_hw_common(ah);
1196 int txbuf_size;
1197
1198 ENABLE_REGWRITE_BUFFER(ah);
1199
1200 /*
1201 * set AHB_MODE not to do cacheline prefetches
1202 */
1203 if (!AR_SREV_9300_20_OR_LATER(ah))
1204 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1205
1206 /*
1207 * let mac dma reads be in 128 byte chunks
1208 */
1209 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1210
1211 REGWRITE_BUFFER_FLUSH(ah);
1212
1213 /*
1214 * Restore TX Trigger Level to its pre-reset value.
1215 * The initial value depends on whether aggregation is enabled, and is
1216 * adjusted whenever underruns are detected.
1217 */
1218 if (!AR_SREV_9300_20_OR_LATER(ah))
1219 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1220
1221 ENABLE_REGWRITE_BUFFER(ah);
1222
1223 /*
1224 * let mac dma writes be in 128 byte chunks
1225 */
1226 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1227
1228 /*
1229 * Setup receive FIFO threshold to hold off TX activities
1230 */
1231 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1232
1233 if (AR_SREV_9300_20_OR_LATER(ah)) {
1234 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1235 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1236
1237 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1238 ah->caps.rx_status_len);
1239 }
1240
1241 /*
1242 * reduce the number of usable entries in PCU TXBUF to avoid
1243 * wrap around issues.
1244 */
1245 if (AR_SREV_9285(ah)) {
1246 /* For AR9285 the number of Fifos are reduced to half.
1247 * So set the usable tx buf size also to half to
1248 * avoid data/delimiter underruns
1249 */
1250 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1251 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1252 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1254 } else {
1255 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1256 }
1257
1258 if (!AR_SREV_9271(ah))
1259 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1260
1261 REGWRITE_BUFFER_FLUSH(ah);
1262
1263 if (AR_SREV_9300_20_OR_LATER(ah))
1264 ath9k_hw_reset_txstatus_ring(ah);
1265 }
1266
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1267 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1268 {
1269 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1270 u32 set = AR_STA_ID1_KSRCH_MODE;
1271
1272 ENABLE_REG_RMW_BUFFER(ah);
1273 switch (opmode) {
1274 case NL80211_IFTYPE_ADHOC:
1275 if (!AR_SREV_9340_13(ah)) {
1276 set |= AR_STA_ID1_ADHOC;
1277 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1278 break;
1279 }
1280 fallthrough;
1281 case NL80211_IFTYPE_OCB:
1282 case NL80211_IFTYPE_MESH_POINT:
1283 case NL80211_IFTYPE_AP:
1284 set |= AR_STA_ID1_STA_AP;
1285 fallthrough;
1286 case NL80211_IFTYPE_STATION:
1287 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288 break;
1289 default:
1290 if (!ah->is_monitoring)
1291 set = 0;
1292 break;
1293 }
1294 REG_RMW(ah, AR_STA_ID1, set, mask);
1295 REG_RMW_BUFFER_FLUSH(ah);
1296 }
1297
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1298 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1299 u32 *coef_mantissa, u32 *coef_exponent)
1300 {
1301 u32 coef_exp, coef_man;
1302
1303 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1304 if ((coef_scaled >> coef_exp) & 0x1)
1305 break;
1306
1307 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1308
1309 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1310
1311 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1312 *coef_exponent = coef_exp - 16;
1313 }
1314
1315 /* AR9330 WAR:
1316 * call external reset function to reset WMAC if:
1317 * - doing a cold reset
1318 * - we have pending frames in the TX queues.
1319 */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1320 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1321 {
1322 int i, npend = 0;
1323
1324 for (i = 0; i < AR_NUM_QCU; i++) {
1325 npend = ath9k_hw_numtxpending(ah, i);
1326 if (npend)
1327 break;
1328 }
1329
1330 if (ah->external_reset &&
1331 (npend || type == ATH9K_RESET_COLD)) {
1332 int reset_err = 0;
1333
1334 ath_dbg(ath9k_hw_common(ah), RESET,
1335 "reset MAC via external reset\n");
1336
1337 reset_err = ah->external_reset();
1338 if (reset_err) {
1339 ath_err(ath9k_hw_common(ah),
1340 "External reset failed, err=%d\n",
1341 reset_err);
1342 return false;
1343 }
1344
1345 REG_WRITE(ah, AR_RTC_RESET, 1);
1346 }
1347
1348 return true;
1349 }
1350
ath9k_hw_set_reset(struct ath_hw * ah,int type)1351 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1352 {
1353 u32 rst_flags;
1354 u32 tmpReg;
1355
1356 if (AR_SREV_9100(ah)) {
1357 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1358 AR_RTC_DERIVED_CLK_PERIOD, 1);
1359 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1360 }
1361
1362 ENABLE_REGWRITE_BUFFER(ah);
1363
1364 if (AR_SREV_9300_20_OR_LATER(ah)) {
1365 REG_WRITE(ah, AR_WA, ah->WARegVal);
1366 udelay(10);
1367 }
1368
1369 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1370 AR_RTC_FORCE_WAKE_ON_INT);
1371
1372 if (AR_SREV_9100(ah)) {
1373 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1374 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1375 } else {
1376 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1377 if (AR_SREV_9340(ah))
1378 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1379 else
1380 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1381 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1382
1383 if (tmpReg) {
1384 u32 val;
1385 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1386
1387 val = AR_RC_HOSTIF;
1388 if (!AR_SREV_9300_20_OR_LATER(ah))
1389 val |= AR_RC_AHB;
1390 REG_WRITE(ah, AR_RC, val);
1391
1392 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1393 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394
1395 rst_flags = AR_RTC_RC_MAC_WARM;
1396 if (type == ATH9K_RESET_COLD)
1397 rst_flags |= AR_RTC_RC_MAC_COLD;
1398 }
1399
1400 if (AR_SREV_9330(ah)) {
1401 if (!ath9k_hw_ar9330_reset_war(ah, type))
1402 return false;
1403 }
1404
1405 if (ath9k_hw_mci_is_enabled(ah))
1406 ar9003_mci_check_gpm_offset(ah);
1407
1408 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1409 * RTC_RC reg read
1410 */
1411 if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1412 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1413 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1414 20 * AH_WAIT_TIMEOUT);
1415 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1416 }
1417
1418 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1419
1420 REGWRITE_BUFFER_FLUSH(ah);
1421
1422 if (AR_SREV_9300_20_OR_LATER(ah))
1423 udelay(50);
1424 else if (AR_SREV_9100(ah))
1425 mdelay(10);
1426 else
1427 udelay(100);
1428
1429 REG_WRITE(ah, AR_RTC_RC, 0);
1430 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1431 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1432 return false;
1433 }
1434
1435 if (!AR_SREV_9100(ah))
1436 REG_WRITE(ah, AR_RC, 0);
1437
1438 if (AR_SREV_9100(ah))
1439 udelay(50);
1440
1441 return true;
1442 }
1443
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1444 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1445 {
1446 ENABLE_REGWRITE_BUFFER(ah);
1447
1448 if (AR_SREV_9300_20_OR_LATER(ah)) {
1449 REG_WRITE(ah, AR_WA, ah->WARegVal);
1450 udelay(10);
1451 }
1452
1453 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1454 AR_RTC_FORCE_WAKE_ON_INT);
1455
1456 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1457 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1458
1459 REG_WRITE(ah, AR_RTC_RESET, 0);
1460
1461 REGWRITE_BUFFER_FLUSH(ah);
1462
1463 udelay(2);
1464
1465 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1466 REG_WRITE(ah, AR_RC, 0);
1467
1468 REG_WRITE(ah, AR_RTC_RESET, 1);
1469
1470 if (!ath9k_hw_wait(ah,
1471 AR_RTC_STATUS,
1472 AR_RTC_STATUS_M,
1473 AR_RTC_STATUS_ON,
1474 AH_WAIT_TIMEOUT)) {
1475 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1476 return false;
1477 }
1478
1479 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1480 }
1481
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1482 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1483 {
1484 bool ret = false;
1485
1486 if (AR_SREV_9300_20_OR_LATER(ah)) {
1487 REG_WRITE(ah, AR_WA, ah->WARegVal);
1488 udelay(10);
1489 }
1490
1491 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1492 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1493
1494 if (!ah->reset_power_on)
1495 type = ATH9K_RESET_POWER_ON;
1496
1497 switch (type) {
1498 case ATH9K_RESET_POWER_ON:
1499 ret = ath9k_hw_set_reset_power_on(ah);
1500 if (ret)
1501 ah->reset_power_on = true;
1502 break;
1503 case ATH9K_RESET_WARM:
1504 case ATH9K_RESET_COLD:
1505 ret = ath9k_hw_set_reset(ah, type);
1506 break;
1507 default:
1508 break;
1509 }
1510
1511 return ret;
1512 }
1513
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1514 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1515 struct ath9k_channel *chan)
1516 {
1517 int reset_type = ATH9K_RESET_WARM;
1518
1519 if (AR_SREV_9280(ah)) {
1520 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1521 reset_type = ATH9K_RESET_POWER_ON;
1522 else
1523 reset_type = ATH9K_RESET_COLD;
1524 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1525 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1526 reset_type = ATH9K_RESET_COLD;
1527
1528 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1529 return false;
1530
1531 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1532 return false;
1533
1534 ah->chip_fullsleep = false;
1535
1536 if (AR_SREV_9330(ah))
1537 ar9003_hw_internal_regulator_apply(ah);
1538 ath9k_hw_init_pll(ah, chan);
1539
1540 return true;
1541 }
1542
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1543 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1544 struct ath9k_channel *chan)
1545 {
1546 struct ath_common *common = ath9k_hw_common(ah);
1547 struct ath9k_hw_capabilities *pCap = &ah->caps;
1548 bool band_switch = false, mode_diff = false;
1549 u8 ini_reloaded = 0;
1550 u32 qnum;
1551 int r;
1552
1553 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1554 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1555 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1556 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1557 }
1558
1559 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1560 if (ath9k_hw_numtxpending(ah, qnum)) {
1561 ath_dbg(common, QUEUE,
1562 "Transmit frames pending on queue %d\n", qnum);
1563 return false;
1564 }
1565 }
1566
1567 if (!ath9k_hw_rfbus_req(ah)) {
1568 ath_err(common, "Could not kill baseband RX\n");
1569 return false;
1570 }
1571
1572 if (band_switch || mode_diff) {
1573 ath9k_hw_mark_phy_inactive(ah);
1574 udelay(5);
1575
1576 if (band_switch)
1577 ath9k_hw_init_pll(ah, chan);
1578
1579 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1580 ath_err(common, "Failed to do fast channel change\n");
1581 return false;
1582 }
1583 }
1584
1585 ath9k_hw_set_channel_regs(ah, chan);
1586
1587 r = ath9k_hw_rf_set_freq(ah, chan);
1588 if (r) {
1589 ath_err(common, "Failed to set channel\n");
1590 return false;
1591 }
1592 ath9k_hw_set_clockrate(ah);
1593 ath9k_hw_apply_txpower(ah, chan, false);
1594
1595 ath9k_hw_set_delta_slope(ah, chan);
1596 ath9k_hw_spur_mitigate_freq(ah, chan);
1597
1598 if (band_switch || ini_reloaded)
1599 ah->eep_ops->set_board_values(ah, chan);
1600
1601 ath9k_hw_init_bb(ah, chan);
1602 ath9k_hw_rfbus_done(ah);
1603
1604 if (band_switch || ini_reloaded) {
1605 ah->ah_flags |= AH_FASTCC;
1606 ath9k_hw_init_cal(ah, chan);
1607 ah->ah_flags &= ~AH_FASTCC;
1608 }
1609
1610 return true;
1611 }
1612
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1613 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1614 {
1615 u32 gpio_mask = ah->gpio_mask;
1616 int i;
1617
1618 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1619 if (!(gpio_mask & 1))
1620 continue;
1621
1622 ath9k_hw_gpio_request_out(ah, i, NULL,
1623 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1624 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1625 }
1626 }
1627
ath9k_hw_check_nav(struct ath_hw * ah)1628 void ath9k_hw_check_nav(struct ath_hw *ah)
1629 {
1630 struct ath_common *common = ath9k_hw_common(ah);
1631 u32 val;
1632
1633 val = REG_READ(ah, AR_NAV);
1634 if (val != 0xdeadbeef && val > 0x7fff) {
1635 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1636 REG_WRITE(ah, AR_NAV, 0);
1637 }
1638 }
1639 EXPORT_SYMBOL(ath9k_hw_check_nav);
1640
ath9k_hw_check_alive(struct ath_hw * ah)1641 bool ath9k_hw_check_alive(struct ath_hw *ah)
1642 {
1643 int count = 50;
1644 u32 reg, last_val;
1645
1646 /* Check if chip failed to wake up */
1647 if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1648 return false;
1649
1650 if (AR_SREV_9300(ah))
1651 return !ath9k_hw_detect_mac_hang(ah);
1652
1653 if (AR_SREV_9285_12_OR_LATER(ah))
1654 return true;
1655
1656 last_val = REG_READ(ah, AR_OBS_BUS_1);
1657 do {
1658 reg = REG_READ(ah, AR_OBS_BUS_1);
1659 if (reg != last_val)
1660 return true;
1661
1662 udelay(1);
1663 last_val = reg;
1664 if ((reg & 0x7E7FFFEF) == 0x00702400)
1665 continue;
1666
1667 switch (reg & 0x7E000B00) {
1668 case 0x1E000000:
1669 case 0x52000B00:
1670 case 0x18000B00:
1671 continue;
1672 default:
1673 return true;
1674 }
1675 } while (count-- > 0);
1676
1677 return false;
1678 }
1679 EXPORT_SYMBOL(ath9k_hw_check_alive);
1680
ath9k_hw_init_mfp(struct ath_hw * ah)1681 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1682 {
1683 /* Setup MFP options for CCMP */
1684 if (AR_SREV_9280_20_OR_LATER(ah)) {
1685 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1686 * frames when constructing CCMP AAD. */
1687 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1688 0xc7ff);
1689 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1690 ah->sw_mgmt_crypto_tx = true;
1691 else
1692 ah->sw_mgmt_crypto_tx = false;
1693 ah->sw_mgmt_crypto_rx = false;
1694 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1695 /* Disable hardware crypto for management frames */
1696 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1697 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1698 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1699 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1700 ah->sw_mgmt_crypto_tx = true;
1701 ah->sw_mgmt_crypto_rx = true;
1702 } else {
1703 ah->sw_mgmt_crypto_tx = true;
1704 ah->sw_mgmt_crypto_rx = true;
1705 }
1706 }
1707
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1708 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1709 u32 macStaId1, u32 saveDefAntenna)
1710 {
1711 struct ath_common *common = ath9k_hw_common(ah);
1712
1713 ENABLE_REGWRITE_BUFFER(ah);
1714
1715 REG_RMW(ah, AR_STA_ID1, macStaId1
1716 | AR_STA_ID1_RTS_USE_DEF
1717 | ah->sta_id1_defaults,
1718 ~AR_STA_ID1_SADH_MASK);
1719 ath_hw_setbssidmask(common);
1720 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1721 ath9k_hw_write_associd(ah);
1722 REG_WRITE(ah, AR_ISR, ~0);
1723 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1724
1725 REGWRITE_BUFFER_FLUSH(ah);
1726
1727 ath9k_hw_set_operating_mode(ah, ah->opmode);
1728 }
1729
ath9k_hw_init_queues(struct ath_hw * ah)1730 static void ath9k_hw_init_queues(struct ath_hw *ah)
1731 {
1732 int i;
1733
1734 ENABLE_REGWRITE_BUFFER(ah);
1735
1736 for (i = 0; i < AR_NUM_DCU; i++)
1737 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1738
1739 REGWRITE_BUFFER_FLUSH(ah);
1740
1741 ah->intr_txqs = 0;
1742 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1743 ath9k_hw_resettxqueue(ah, i);
1744 }
1745
1746 /*
1747 * For big endian systems turn on swapping for descriptors
1748 */
ath9k_hw_init_desc(struct ath_hw * ah)1749 static void ath9k_hw_init_desc(struct ath_hw *ah)
1750 {
1751 struct ath_common *common = ath9k_hw_common(ah);
1752
1753 if (AR_SREV_9100(ah)) {
1754 u32 mask;
1755 mask = REG_READ(ah, AR_CFG);
1756 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1757 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1758 mask);
1759 } else {
1760 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1761 REG_WRITE(ah, AR_CFG, mask);
1762 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1763 REG_READ(ah, AR_CFG));
1764 }
1765 } else {
1766 if (common->bus_ops->ath_bus_type == ATH_USB) {
1767 /* Configure AR9271 target WLAN */
1768 if (AR_SREV_9271(ah))
1769 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1770 else
1771 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1772 }
1773 #ifdef __BIG_ENDIAN
1774 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1775 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1776 AR_SREV_9561(ah))
1777 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1778 else
1779 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1780 #endif
1781 }
1782 }
1783
1784 /*
1785 * Fast channel change:
1786 * (Change synthesizer based on channel freq without resetting chip)
1787 */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1788 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1789 {
1790 struct ath_common *common = ath9k_hw_common(ah);
1791 struct ath9k_hw_capabilities *pCap = &ah->caps;
1792 int ret;
1793
1794 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1795 goto fail;
1796
1797 if (ah->chip_fullsleep)
1798 goto fail;
1799
1800 if (!ah->curchan)
1801 goto fail;
1802
1803 if (chan->channel == ah->curchan->channel)
1804 goto fail;
1805
1806 if ((ah->curchan->channelFlags | chan->channelFlags) &
1807 (CHANNEL_HALF | CHANNEL_QUARTER))
1808 goto fail;
1809
1810 /*
1811 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1812 */
1813 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1814 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1815 goto fail;
1816
1817 if (!ath9k_hw_check_alive(ah))
1818 goto fail;
1819
1820 /*
1821 * For AR9462, make sure that calibration data for
1822 * re-using are present.
1823 */
1824 if (AR_SREV_9462(ah) && (ah->caldata &&
1825 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1826 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1827 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1828 goto fail;
1829
1830 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1831 ah->curchan->channel, chan->channel);
1832
1833 ret = ath9k_hw_channel_change(ah, chan);
1834 if (!ret)
1835 goto fail;
1836
1837 if (ath9k_hw_mci_is_enabled(ah))
1838 ar9003_mci_2g5g_switch(ah, false);
1839
1840 ath9k_hw_loadnf(ah, ah->curchan);
1841 ath9k_hw_start_nfcal(ah, true);
1842
1843 if (AR_SREV_9271(ah))
1844 ar9002_hw_load_ani_reg(ah, chan);
1845
1846 return 0;
1847 fail:
1848 return -EINVAL;
1849 }
1850
ath9k_hw_get_tsf_offset(struct timespec64 * last,struct timespec64 * cur)1851 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1852 {
1853 struct timespec64 ts;
1854 s64 usec;
1855
1856 if (!cur) {
1857 ktime_get_raw_ts64(&ts);
1858 cur = &ts;
1859 }
1860
1861 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1862 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1863
1864 return (u32) usec;
1865 }
1866 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1867
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1868 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1869 struct ath9k_hw_cal_data *caldata, bool fastcc)
1870 {
1871 struct ath_common *common = ath9k_hw_common(ah);
1872 u32 saveLedState;
1873 u32 saveDefAntenna;
1874 u32 macStaId1;
1875 struct timespec64 tsf_ts;
1876 u32 tsf_offset;
1877 u64 tsf = 0;
1878 int r;
1879 bool start_mci_reset = false;
1880 bool save_fullsleep = ah->chip_fullsleep;
1881
1882 if (ath9k_hw_mci_is_enabled(ah)) {
1883 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1884 if (start_mci_reset)
1885 return 0;
1886 }
1887
1888 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1889 return -EIO;
1890
1891 if (ah->curchan && !ah->chip_fullsleep)
1892 ath9k_hw_getnf(ah, ah->curchan);
1893
1894 ah->caldata = caldata;
1895 if (caldata && (chan->channel != caldata->channel ||
1896 chan->channelFlags != caldata->channelFlags)) {
1897 /* Operating channel changed, reset channel calibration data */
1898 memset(caldata, 0, sizeof(*caldata));
1899 ath9k_init_nfcal_hist_buffer(ah, chan);
1900 } else if (caldata) {
1901 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1902 }
1903 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1904
1905 if (fastcc) {
1906 r = ath9k_hw_do_fastcc(ah, chan);
1907 if (!r)
1908 return r;
1909 }
1910
1911 if (ath9k_hw_mci_is_enabled(ah))
1912 ar9003_mci_stop_bt(ah, save_fullsleep);
1913
1914 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1915 if (saveDefAntenna == 0)
1916 saveDefAntenna = 1;
1917
1918 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1919
1920 /* Save TSF before chip reset, a cold reset clears it */
1921 ktime_get_raw_ts64(&tsf_ts);
1922 tsf = ath9k_hw_gettsf64(ah);
1923
1924 saveLedState = REG_READ(ah, AR_CFG_LED) &
1925 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1926 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1927
1928 ath9k_hw_mark_phy_inactive(ah);
1929
1930 ah->paprd_table_write_done = false;
1931
1932 /* Only required on the first reset */
1933 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1934 REG_WRITE(ah,
1935 AR9271_RESET_POWER_DOWN_CONTROL,
1936 AR9271_RADIO_RF_RST);
1937 udelay(50);
1938 }
1939
1940 if (!ath9k_hw_chip_reset(ah, chan)) {
1941 ath_err(common, "Chip reset failed\n");
1942 return -EINVAL;
1943 }
1944
1945 /* Only required on the first reset */
1946 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1947 ah->htc_reset_init = false;
1948 REG_WRITE(ah,
1949 AR9271_RESET_POWER_DOWN_CONTROL,
1950 AR9271_GATE_MAC_CTL);
1951 udelay(50);
1952 }
1953
1954 /* Restore TSF */
1955 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1956 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1957
1958 if (AR_SREV_9280_20_OR_LATER(ah))
1959 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1960
1961 if (!AR_SREV_9300_20_OR_LATER(ah))
1962 ar9002_hw_enable_async_fifo(ah);
1963
1964 r = ath9k_hw_process_ini(ah, chan);
1965 if (r)
1966 return r;
1967
1968 ath9k_hw_set_rfmode(ah, chan);
1969
1970 if (ath9k_hw_mci_is_enabled(ah))
1971 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1972
1973 /*
1974 * Some AR91xx SoC devices frequently fail to accept TSF writes
1975 * right after the chip reset. When that happens, write a new
1976 * value after the initvals have been applied.
1977 */
1978 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1979 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1980 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1981 }
1982
1983 ath9k_hw_init_mfp(ah);
1984
1985 ath9k_hw_set_delta_slope(ah, chan);
1986 ath9k_hw_spur_mitigate_freq(ah, chan);
1987 ah->eep_ops->set_board_values(ah, chan);
1988
1989 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1990
1991 r = ath9k_hw_rf_set_freq(ah, chan);
1992 if (r)
1993 return r;
1994
1995 ath9k_hw_set_clockrate(ah);
1996
1997 ath9k_hw_init_queues(ah);
1998 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1999 ath9k_hw_ani_cache_ini_regs(ah);
2000 ath9k_hw_init_qos(ah);
2001
2002 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2003 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2004
2005 ath9k_hw_init_global_settings(ah);
2006
2007 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2008 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2009 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2010 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2011 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2012 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2013 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2014 }
2015
2016 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2017
2018 ath9k_hw_set_dma(ah);
2019
2020 if (!ath9k_hw_mci_is_enabled(ah))
2021 REG_WRITE(ah, AR_OBS, 8);
2022
2023 ENABLE_REG_RMW_BUFFER(ah);
2024 if (ah->config.rx_intr_mitigation) {
2025 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2026 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2027 }
2028
2029 if (ah->config.tx_intr_mitigation) {
2030 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2031 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2032 }
2033 REG_RMW_BUFFER_FLUSH(ah);
2034
2035 ath9k_hw_init_bb(ah, chan);
2036
2037 if (caldata) {
2038 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2039 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2040 }
2041 if (!ath9k_hw_init_cal(ah, chan))
2042 return -EIO;
2043
2044 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2045 return -EIO;
2046
2047 ENABLE_REGWRITE_BUFFER(ah);
2048
2049 ath9k_hw_restore_chainmask(ah);
2050 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2051
2052 REGWRITE_BUFFER_FLUSH(ah);
2053
2054 ath9k_hw_gen_timer_start_tsf2(ah);
2055
2056 ath9k_hw_init_desc(ah);
2057
2058 if (ath9k_hw_btcoex_is_enabled(ah))
2059 ath9k_hw_btcoex_enable(ah);
2060
2061 if (ath9k_hw_mci_is_enabled(ah))
2062 ar9003_mci_check_bt(ah);
2063
2064 if (AR_SREV_9300_20_OR_LATER(ah)) {
2065 ath9k_hw_loadnf(ah, chan);
2066 ath9k_hw_start_nfcal(ah, true);
2067 }
2068
2069 if (AR_SREV_9300_20_OR_LATER(ah))
2070 ar9003_hw_bb_watchdog_config(ah);
2071
2072 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2073 ar9003_hw_disable_phy_restart(ah);
2074
2075 ath9k_hw_apply_gpio_override(ah);
2076
2077 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2078 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2079
2080 if (ah->hw->conf.radar_enabled) {
2081 /* set HW specific DFS configuration */
2082 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2083 ath9k_hw_set_radar_params(ah);
2084 }
2085
2086 return 0;
2087 }
2088 EXPORT_SYMBOL(ath9k_hw_reset);
2089
2090 /******************************/
2091 /* Power Management (Chipset) */
2092 /******************************/
2093
2094 /*
2095 * Notify Power Mgt is disabled in self-generated frames.
2096 * If requested, force chip to sleep.
2097 */
ath9k_set_power_sleep(struct ath_hw * ah)2098 static void ath9k_set_power_sleep(struct ath_hw *ah)
2099 {
2100 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2101
2102 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2103 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2104 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2105 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2106 /* xxx Required for WLAN only case ? */
2107 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2108 udelay(100);
2109 }
2110
2111 /*
2112 * Clear the RTC force wake bit to allow the
2113 * mac to go to sleep.
2114 */
2115 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2116
2117 if (ath9k_hw_mci_is_enabled(ah))
2118 udelay(100);
2119
2120 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2121 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2122
2123 /* Shutdown chip. Active low */
2124 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2125 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2126 udelay(2);
2127 }
2128
2129 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2130 if (AR_SREV_9300_20_OR_LATER(ah))
2131 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2132 }
2133
2134 /*
2135 * Notify Power Management is enabled in self-generating
2136 * frames. If request, set power mode of chip to
2137 * auto/normal. Duration in units of 128us (1/8 TU).
2138 */
ath9k_set_power_network_sleep(struct ath_hw * ah)2139 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2140 {
2141 struct ath9k_hw_capabilities *pCap = &ah->caps;
2142
2143 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2144
2145 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2146 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2147 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2148 AR_RTC_FORCE_WAKE_ON_INT);
2149 } else {
2150
2151 /* When chip goes into network sleep, it could be waken
2152 * up by MCI_INT interrupt caused by BT's HW messages
2153 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2154 * rate (~100us). This will cause chip to leave and
2155 * re-enter network sleep mode frequently, which in
2156 * consequence will have WLAN MCI HW to generate lots of
2157 * SYS_WAKING and SYS_SLEEPING messages which will make
2158 * BT CPU to busy to process.
2159 */
2160 if (ath9k_hw_mci_is_enabled(ah))
2161 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2162 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2163 /*
2164 * Clear the RTC force wake bit to allow the
2165 * mac to go to sleep.
2166 */
2167 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2168
2169 if (ath9k_hw_mci_is_enabled(ah))
2170 udelay(30);
2171 }
2172
2173 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2174 if (AR_SREV_9300_20_OR_LATER(ah))
2175 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2176 }
2177
ath9k_hw_set_power_awake(struct ath_hw * ah)2178 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2179 {
2180 u32 val;
2181 int i;
2182
2183 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2184 if (AR_SREV_9300_20_OR_LATER(ah)) {
2185 REG_WRITE(ah, AR_WA, ah->WARegVal);
2186 udelay(10);
2187 }
2188
2189 if ((REG_READ(ah, AR_RTC_STATUS) &
2190 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2191 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2192 return false;
2193 }
2194 if (!AR_SREV_9300_20_OR_LATER(ah))
2195 ath9k_hw_init_pll(ah, NULL);
2196 }
2197 if (AR_SREV_9100(ah))
2198 REG_SET_BIT(ah, AR_RTC_RESET,
2199 AR_RTC_RESET_EN);
2200
2201 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2202 AR_RTC_FORCE_WAKE_EN);
2203 if (AR_SREV_9100(ah))
2204 mdelay(10);
2205 else
2206 udelay(50);
2207
2208 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2209 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2210 if (val == AR_RTC_STATUS_ON)
2211 break;
2212 udelay(50);
2213 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2214 AR_RTC_FORCE_WAKE_EN);
2215 }
2216 if (i == 0) {
2217 ath_err(ath9k_hw_common(ah),
2218 "Failed to wakeup in %uus\n",
2219 POWER_UP_TIME / 20);
2220 return false;
2221 }
2222
2223 if (ath9k_hw_mci_is_enabled(ah))
2224 ar9003_mci_set_power_awake(ah);
2225
2226 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2227
2228 return true;
2229 }
2230
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2231 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2232 {
2233 struct ath_common *common = ath9k_hw_common(ah);
2234 int status = true;
2235 static const char *modes[] = {
2236 "AWAKE",
2237 "FULL-SLEEP",
2238 "NETWORK SLEEP",
2239 "UNDEFINED"
2240 };
2241
2242 if (ah->power_mode == mode)
2243 return status;
2244
2245 ath_dbg(common, RESET, "%s -> %s\n",
2246 modes[ah->power_mode], modes[mode]);
2247
2248 switch (mode) {
2249 case ATH9K_PM_AWAKE:
2250 status = ath9k_hw_set_power_awake(ah);
2251 break;
2252 case ATH9K_PM_FULL_SLEEP:
2253 if (ath9k_hw_mci_is_enabled(ah))
2254 ar9003_mci_set_full_sleep(ah);
2255
2256 ath9k_set_power_sleep(ah);
2257 ah->chip_fullsleep = true;
2258 break;
2259 case ATH9K_PM_NETWORK_SLEEP:
2260 ath9k_set_power_network_sleep(ah);
2261 break;
2262 default:
2263 ath_err(common, "Unknown power mode %u\n", mode);
2264 return false;
2265 }
2266 ah->power_mode = mode;
2267
2268 /*
2269 * XXX: If this warning never comes up after a while then
2270 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2271 * ath9k_hw_setpower() return type void.
2272 */
2273
2274 if (!(ah->ah_flags & AH_UNPLUGGED))
2275 ATH_DBG_WARN_ON_ONCE(!status);
2276
2277 return status;
2278 }
2279 EXPORT_SYMBOL(ath9k_hw_setpower);
2280
2281 /*******************/
2282 /* Beacon Handling */
2283 /*******************/
2284
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2285 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2286 {
2287 int flags = 0;
2288
2289 ENABLE_REGWRITE_BUFFER(ah);
2290
2291 switch (ah->opmode) {
2292 case NL80211_IFTYPE_ADHOC:
2293 REG_SET_BIT(ah, AR_TXCFG,
2294 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2295 fallthrough;
2296 case NL80211_IFTYPE_MESH_POINT:
2297 case NL80211_IFTYPE_AP:
2298 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2299 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2300 TU_TO_USEC(ah->config.dma_beacon_response_time));
2301 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2302 TU_TO_USEC(ah->config.sw_beacon_response_time));
2303 flags |=
2304 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2305 break;
2306 default:
2307 ath_dbg(ath9k_hw_common(ah), BEACON,
2308 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2309 return;
2310 break;
2311 }
2312
2313 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2314 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2315 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2316
2317 REGWRITE_BUFFER_FLUSH(ah);
2318
2319 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2320 }
2321 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2322
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2323 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2324 const struct ath9k_beacon_state *bs)
2325 {
2326 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2327 struct ath9k_hw_capabilities *pCap = &ah->caps;
2328 struct ath_common *common = ath9k_hw_common(ah);
2329
2330 ENABLE_REGWRITE_BUFFER(ah);
2331
2332 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2333 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2334 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2335
2336 REGWRITE_BUFFER_FLUSH(ah);
2337
2338 REG_RMW_FIELD(ah, AR_RSSI_THR,
2339 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2340
2341 beaconintval = bs->bs_intval;
2342
2343 if (bs->bs_sleepduration > beaconintval)
2344 beaconintval = bs->bs_sleepduration;
2345
2346 dtimperiod = bs->bs_dtimperiod;
2347 if (bs->bs_sleepduration > dtimperiod)
2348 dtimperiod = bs->bs_sleepduration;
2349
2350 if (beaconintval == dtimperiod)
2351 nextTbtt = bs->bs_nextdtim;
2352 else
2353 nextTbtt = bs->bs_nexttbtt;
2354
2355 ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2356 ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2357 ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2358 ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2359
2360 ENABLE_REGWRITE_BUFFER(ah);
2361
2362 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2363 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2364
2365 REG_WRITE(ah, AR_SLEEP1,
2366 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2367 | AR_SLEEP1_ASSUME_DTIM);
2368
2369 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2370 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2371 else
2372 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2373
2374 REG_WRITE(ah, AR_SLEEP2,
2375 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2376
2377 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2378 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2379
2380 REGWRITE_BUFFER_FLUSH(ah);
2381
2382 REG_SET_BIT(ah, AR_TIMER_MODE,
2383 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2384 AR_DTIM_TIMER_EN);
2385
2386 /* TSF Out of Range Threshold */
2387 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2388 }
2389 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2390
2391 /*******************/
2392 /* HW Capabilities */
2393 /*******************/
2394
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2395 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2396 {
2397 eeprom_chainmask &= chip_chainmask;
2398 if (eeprom_chainmask)
2399 return eeprom_chainmask;
2400 else
2401 return chip_chainmask;
2402 }
2403
2404 /**
2405 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2406 * @ah: the atheros hardware data structure
2407 *
2408 * We enable DFS support upstream on chipsets which have passed a series
2409 * of tests. The testing requirements are going to be documented. Desired
2410 * test requirements are documented at:
2411 *
2412 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2413 *
2414 * Once a new chipset gets properly tested an individual commit can be used
2415 * to document the testing for DFS for that chipset.
2416 */
ath9k_hw_dfs_tested(struct ath_hw * ah)2417 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2418 {
2419
2420 switch (ah->hw_version.macVersion) {
2421 /* for temporary testing DFS with 9280 */
2422 case AR_SREV_VERSION_9280:
2423 /* AR9580 will likely be our first target to get testing on */
2424 case AR_SREV_VERSION_9580:
2425 return true;
2426 default:
2427 return false;
2428 }
2429 }
2430
ath9k_gpio_cap_init(struct ath_hw * ah)2431 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2432 {
2433 struct ath9k_hw_capabilities *pCap = &ah->caps;
2434
2435 if (AR_SREV_9271(ah)) {
2436 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2437 pCap->gpio_mask = AR9271_GPIO_MASK;
2438 } else if (AR_DEVID_7010(ah)) {
2439 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2440 pCap->gpio_mask = AR7010_GPIO_MASK;
2441 } else if (AR_SREV_9287(ah)) {
2442 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2443 pCap->gpio_mask = AR9287_GPIO_MASK;
2444 } else if (AR_SREV_9285(ah)) {
2445 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2446 pCap->gpio_mask = AR9285_GPIO_MASK;
2447 } else if (AR_SREV_9280(ah)) {
2448 pCap->num_gpio_pins = AR9280_NUM_GPIO;
2449 pCap->gpio_mask = AR9280_GPIO_MASK;
2450 } else if (AR_SREV_9300(ah)) {
2451 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2452 pCap->gpio_mask = AR9300_GPIO_MASK;
2453 } else if (AR_SREV_9330(ah)) {
2454 pCap->num_gpio_pins = AR9330_NUM_GPIO;
2455 pCap->gpio_mask = AR9330_GPIO_MASK;
2456 } else if (AR_SREV_9340(ah)) {
2457 pCap->num_gpio_pins = AR9340_NUM_GPIO;
2458 pCap->gpio_mask = AR9340_GPIO_MASK;
2459 } else if (AR_SREV_9462(ah)) {
2460 pCap->num_gpio_pins = AR9462_NUM_GPIO;
2461 pCap->gpio_mask = AR9462_GPIO_MASK;
2462 } else if (AR_SREV_9485(ah)) {
2463 pCap->num_gpio_pins = AR9485_NUM_GPIO;
2464 pCap->gpio_mask = AR9485_GPIO_MASK;
2465 } else if (AR_SREV_9531(ah)) {
2466 pCap->num_gpio_pins = AR9531_NUM_GPIO;
2467 pCap->gpio_mask = AR9531_GPIO_MASK;
2468 } else if (AR_SREV_9550(ah)) {
2469 pCap->num_gpio_pins = AR9550_NUM_GPIO;
2470 pCap->gpio_mask = AR9550_GPIO_MASK;
2471 } else if (AR_SREV_9561(ah)) {
2472 pCap->num_gpio_pins = AR9561_NUM_GPIO;
2473 pCap->gpio_mask = AR9561_GPIO_MASK;
2474 } else if (AR_SREV_9565(ah)) {
2475 pCap->num_gpio_pins = AR9565_NUM_GPIO;
2476 pCap->gpio_mask = AR9565_GPIO_MASK;
2477 } else if (AR_SREV_9580(ah)) {
2478 pCap->num_gpio_pins = AR9580_NUM_GPIO;
2479 pCap->gpio_mask = AR9580_GPIO_MASK;
2480 } else {
2481 pCap->num_gpio_pins = AR_NUM_GPIO;
2482 pCap->gpio_mask = AR_GPIO_MASK;
2483 }
2484 }
2485
ath9k_hw_fill_cap_info(struct ath_hw * ah)2486 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2487 {
2488 struct ath9k_hw_capabilities *pCap = &ah->caps;
2489 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2490 struct ath_common *common = ath9k_hw_common(ah);
2491
2492 u16 eeval;
2493 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2494
2495 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2496 regulatory->current_rd = eeval;
2497
2498 if (ah->opmode != NL80211_IFTYPE_AP &&
2499 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2500 if (regulatory->current_rd == 0x64 ||
2501 regulatory->current_rd == 0x65)
2502 regulatory->current_rd += 5;
2503 else if (regulatory->current_rd == 0x41)
2504 regulatory->current_rd = 0x43;
2505 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2506 regulatory->current_rd);
2507 }
2508
2509 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2510
2511 if (eeval & AR5416_OPFLAGS_11A) {
2512 if (ah->disable_5ghz)
2513 ath_warn(common, "disabling 5GHz band\n");
2514 else
2515 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2516 }
2517
2518 if (eeval & AR5416_OPFLAGS_11G) {
2519 if (ah->disable_2ghz)
2520 ath_warn(common, "disabling 2GHz band\n");
2521 else
2522 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2523 }
2524
2525 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2526 ath_err(common, "both bands are disabled\n");
2527 return -EINVAL;
2528 }
2529
2530 ath9k_gpio_cap_init(ah);
2531
2532 if (AR_SREV_9485(ah) ||
2533 AR_SREV_9285(ah) ||
2534 AR_SREV_9330(ah) ||
2535 AR_SREV_9565(ah))
2536 pCap->chip_chainmask = 1;
2537 else if (!AR_SREV_9280_20_OR_LATER(ah))
2538 pCap->chip_chainmask = 7;
2539 else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2540 AR_SREV_9340(ah) ||
2541 AR_SREV_9462(ah) ||
2542 AR_SREV_9531(ah))
2543 pCap->chip_chainmask = 3;
2544 else
2545 pCap->chip_chainmask = 7;
2546
2547 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2548 /*
2549 * For AR9271 we will temporarilly uses the rx chainmax as read from
2550 * the EEPROM.
2551 */
2552 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2553 !(eeval & AR5416_OPFLAGS_11A) &&
2554 !(AR_SREV_9271(ah)))
2555 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2556 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2557 else if (AR_SREV_9100(ah))
2558 pCap->rx_chainmask = 0x7;
2559 else
2560 /* Use rx_chainmask from EEPROM. */
2561 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2562
2563 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2564 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2565 ah->txchainmask = pCap->tx_chainmask;
2566 ah->rxchainmask = pCap->rx_chainmask;
2567
2568 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2569
2570 /* enable key search for every frame in an aggregate */
2571 if (AR_SREV_9300_20_OR_LATER(ah))
2572 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2573
2574 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2575
2576 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2577 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2578 else
2579 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2580
2581 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2582 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2583 else
2584 pCap->rts_aggr_limit = (8 * 1024);
2585
2586 #ifdef CONFIG_ATH9K_RFKILL
2587 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2588 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2589 ah->rfkill_gpio =
2590 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2591 ah->rfkill_polarity =
2592 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2593
2594 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2595 }
2596 #endif
2597 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2598 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2599 else
2600 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2601
2602 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2603 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2604 else
2605 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2606
2607 if (AR_SREV_9300_20_OR_LATER(ah)) {
2608 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2609 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2610 !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2611 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2612
2613 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2614 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2615 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2616 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2617 pCap->txs_len = sizeof(struct ar9003_txs);
2618 } else {
2619 pCap->tx_desc_len = sizeof(struct ath_desc);
2620 if (AR_SREV_9280_20(ah))
2621 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2622 }
2623
2624 if (AR_SREV_9300_20_OR_LATER(ah))
2625 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2626
2627 if (AR_SREV_9561(ah))
2628 ah->ent_mode = 0x3BDA000;
2629 else if (AR_SREV_9300_20_OR_LATER(ah))
2630 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2631
2632 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2633 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2634
2635 if (AR_SREV_9285(ah)) {
2636 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2637 ant_div_ctl1 =
2638 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2639 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2640 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2641 ath_info(common, "Enable LNA combining\n");
2642 }
2643 }
2644 }
2645
2646 if (AR_SREV_9300_20_OR_LATER(ah)) {
2647 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2648 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2649 }
2650
2651 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2652 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2653 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2654 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2655 ath_info(common, "Enable LNA combining\n");
2656 }
2657 }
2658
2659 if (ath9k_hw_dfs_tested(ah))
2660 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2661
2662 tx_chainmask = pCap->tx_chainmask;
2663 rx_chainmask = pCap->rx_chainmask;
2664 while (tx_chainmask || rx_chainmask) {
2665 if (tx_chainmask & BIT(0))
2666 pCap->max_txchains++;
2667 if (rx_chainmask & BIT(0))
2668 pCap->max_rxchains++;
2669
2670 tx_chainmask >>= 1;
2671 rx_chainmask >>= 1;
2672 }
2673
2674 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2675 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2676 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2677
2678 if (AR_SREV_9462_20_OR_LATER(ah))
2679 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2680 }
2681
2682 if (AR_SREV_9300_20_OR_LATER(ah) &&
2683 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2684 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2685
2686 #ifdef CONFIG_ATH9K_WOW
2687 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2688 ah->wow.max_patterns = MAX_NUM_PATTERN;
2689 else
2690 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2691 #endif
2692
2693 return 0;
2694 }
2695
2696 /****************************/
2697 /* GPIO / RFKILL / Antennae */
2698 /****************************/
2699
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2700 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2701 {
2702 int addr;
2703 u32 gpio_shift, tmp;
2704
2705 if (gpio > 11)
2706 addr = AR_GPIO_OUTPUT_MUX3;
2707 else if (gpio > 5)
2708 addr = AR_GPIO_OUTPUT_MUX2;
2709 else
2710 addr = AR_GPIO_OUTPUT_MUX1;
2711
2712 gpio_shift = (gpio % 6) * 5;
2713
2714 if (AR_SREV_9280_20_OR_LATER(ah) ||
2715 (addr != AR_GPIO_OUTPUT_MUX1)) {
2716 REG_RMW(ah, addr, (type << gpio_shift),
2717 (0x1f << gpio_shift));
2718 } else {
2719 tmp = REG_READ(ah, addr);
2720 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2721 tmp &= ~(0x1f << gpio_shift);
2722 tmp |= (type << gpio_shift);
2723 REG_WRITE(ah, addr, tmp);
2724 }
2725 }
2726
2727 /* BSP should set the corresponding MUX register correctly.
2728 */
ath9k_hw_gpio_cfg_soc(struct ath_hw * ah,u32 gpio,bool out,const char * label)2729 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2730 const char *label)
2731 {
2732 int err;
2733
2734 if (ah->caps.gpio_requested & BIT(gpio))
2735 return;
2736
2737 err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2738 if (err) {
2739 ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2740 gpio, err);
2741 return;
2742 }
2743
2744 ah->caps.gpio_requested |= BIT(gpio);
2745 }
2746
ath9k_hw_gpio_cfg_wmac(struct ath_hw * ah,u32 gpio,bool out,u32 ah_signal_type)2747 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2748 u32 ah_signal_type)
2749 {
2750 u32 gpio_set, gpio_shift = gpio;
2751
2752 if (AR_DEVID_7010(ah)) {
2753 gpio_set = out ?
2754 AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2755 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2756 AR7010_GPIO_OE_MASK << gpio_shift);
2757 } else if (AR_SREV_SOC(ah)) {
2758 gpio_set = out ? 1 : 0;
2759 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2760 gpio_set << gpio_shift);
2761 } else {
2762 gpio_shift = gpio << 1;
2763 gpio_set = out ?
2764 AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2765 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2766 AR_GPIO_OE_OUT_DRV << gpio_shift);
2767
2768 if (out)
2769 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2770 }
2771 }
2772
ath9k_hw_gpio_request(struct ath_hw * ah,u32 gpio,bool out,const char * label,u32 ah_signal_type)2773 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2774 const char *label, u32 ah_signal_type)
2775 {
2776 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2777
2778 if (BIT(gpio) & ah->caps.gpio_mask)
2779 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2780 else if (AR_SREV_SOC(ah))
2781 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2782 else
2783 WARN_ON(1);
2784 }
2785
ath9k_hw_gpio_request_in(struct ath_hw * ah,u32 gpio,const char * label)2786 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2787 {
2788 ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2789 }
2790 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2791
ath9k_hw_gpio_request_out(struct ath_hw * ah,u32 gpio,const char * label,u32 ah_signal_type)2792 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2793 u32 ah_signal_type)
2794 {
2795 ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2798
ath9k_hw_gpio_free(struct ath_hw * ah,u32 gpio)2799 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2800 {
2801 if (!AR_SREV_SOC(ah))
2802 return;
2803
2804 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2805
2806 if (ah->caps.gpio_requested & BIT(gpio)) {
2807 gpio_free(gpio);
2808 ah->caps.gpio_requested &= ~BIT(gpio);
2809 }
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2812
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2813 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2814 {
2815 u32 val = 0xffffffff;
2816
2817 #define MS_REG_READ(x, y) \
2818 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2819
2820 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2821
2822 if (BIT(gpio) & ah->caps.gpio_mask) {
2823 if (AR_SREV_9271(ah))
2824 val = MS_REG_READ(AR9271, gpio);
2825 else if (AR_SREV_9287(ah))
2826 val = MS_REG_READ(AR9287, gpio);
2827 else if (AR_SREV_9285(ah))
2828 val = MS_REG_READ(AR9285, gpio);
2829 else if (AR_SREV_9280(ah))
2830 val = MS_REG_READ(AR928X, gpio);
2831 else if (AR_DEVID_7010(ah))
2832 val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2833 else if (AR_SREV_9300_20_OR_LATER(ah))
2834 val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2835 else
2836 val = MS_REG_READ(AR, gpio);
2837 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2838 val = gpio_get_value(gpio) & BIT(gpio);
2839 } else {
2840 WARN_ON(1);
2841 }
2842
2843 return !!val;
2844 }
2845 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2846
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2847 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2848 {
2849 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2850
2851 if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2852 val = !val;
2853 else
2854 val = !!val;
2855
2856 if (BIT(gpio) & ah->caps.gpio_mask) {
2857 u32 out_addr = AR_DEVID_7010(ah) ?
2858 AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2859
2860 REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2861 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2862 gpio_set_value(gpio, val);
2863 } else {
2864 WARN_ON(1);
2865 }
2866 }
2867 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2868
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2869 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2870 {
2871 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_setantenna);
2874
2875 /*********************/
2876 /* General Operation */
2877 /*********************/
2878
ath9k_hw_getrxfilter(struct ath_hw * ah)2879 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2880 {
2881 u32 bits = REG_READ(ah, AR_RX_FILTER);
2882 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2883
2884 if (phybits & AR_PHY_ERR_RADAR)
2885 bits |= ATH9K_RX_FILTER_PHYRADAR;
2886 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2887 bits |= ATH9K_RX_FILTER_PHYERR;
2888
2889 return bits;
2890 }
2891 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2892
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2893 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2894 {
2895 u32 phybits;
2896
2897 ENABLE_REGWRITE_BUFFER(ah);
2898
2899 REG_WRITE(ah, AR_RX_FILTER, bits);
2900
2901 phybits = 0;
2902 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2903 phybits |= AR_PHY_ERR_RADAR;
2904 if (bits & ATH9K_RX_FILTER_PHYERR)
2905 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2906 REG_WRITE(ah, AR_PHY_ERR, phybits);
2907
2908 if (phybits)
2909 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910 else
2911 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2912
2913 REGWRITE_BUFFER_FLUSH(ah);
2914 }
2915 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2916
ath9k_hw_phy_disable(struct ath_hw * ah)2917 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2918 {
2919 if (ath9k_hw_mci_is_enabled(ah))
2920 ar9003_mci_bt_gain_ctrl(ah);
2921
2922 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2923 return false;
2924
2925 ath9k_hw_init_pll(ah, NULL);
2926 ah->htc_reset_init = true;
2927 return true;
2928 }
2929 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2930
ath9k_hw_disable(struct ath_hw * ah)2931 bool ath9k_hw_disable(struct ath_hw *ah)
2932 {
2933 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2934 return false;
2935
2936 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2937 return false;
2938
2939 ath9k_hw_init_pll(ah, NULL);
2940 return true;
2941 }
2942 EXPORT_SYMBOL(ath9k_hw_disable);
2943
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2944 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2945 {
2946 enum eeprom_param gain_param;
2947
2948 if (IS_CHAN_2GHZ(chan))
2949 gain_param = EEP_ANTENNA_GAIN_2G;
2950 else
2951 gain_param = EEP_ANTENNA_GAIN_5G;
2952
2953 return ah->eep_ops->get_eeprom(ah, gain_param);
2954 }
2955
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2956 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2957 bool test)
2958 {
2959 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2960 struct ieee80211_channel *channel;
2961 int chan_pwr, new_pwr;
2962 u16 ctl = NO_CTL;
2963
2964 if (!chan)
2965 return;
2966
2967 if (!test)
2968 ctl = ath9k_regd_get_ctl(reg, chan);
2969
2970 channel = chan->chan;
2971 chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2972 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2973
2974 ah->eep_ops->set_txpower(ah, chan, ctl,
2975 get_antenna_gain(ah, chan), new_pwr, test);
2976 }
2977
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2978 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2979 {
2980 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2981 struct ath9k_channel *chan = ah->curchan;
2982 struct ieee80211_channel *channel = chan->chan;
2983
2984 reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2985 if (test)
2986 channel->max_power = MAX_COMBINED_POWER / 2;
2987
2988 ath9k_hw_apply_txpower(ah, chan, test);
2989
2990 if (test)
2991 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2992 }
2993 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2994
ath9k_hw_setopmode(struct ath_hw * ah)2995 void ath9k_hw_setopmode(struct ath_hw *ah)
2996 {
2997 ath9k_hw_set_operating_mode(ah, ah->opmode);
2998 }
2999 EXPORT_SYMBOL(ath9k_hw_setopmode);
3000
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)3001 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3002 {
3003 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3004 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3005 }
3006 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3007
ath9k_hw_write_associd(struct ath_hw * ah)3008 void ath9k_hw_write_associd(struct ath_hw *ah)
3009 {
3010 struct ath_common *common = ath9k_hw_common(ah);
3011
3012 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3013 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3014 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3015 }
3016 EXPORT_SYMBOL(ath9k_hw_write_associd);
3017
3018 #define ATH9K_MAX_TSF_READ 10
3019
ath9k_hw_gettsf64(struct ath_hw * ah)3020 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3021 {
3022 u32 tsf_lower, tsf_upper1, tsf_upper2;
3023 int i;
3024
3025 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3026 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3027 tsf_lower = REG_READ(ah, AR_TSF_L32);
3028 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3029 if (tsf_upper2 == tsf_upper1)
3030 break;
3031 tsf_upper1 = tsf_upper2;
3032 }
3033
3034 WARN_ON( i == ATH9K_MAX_TSF_READ );
3035
3036 return (((u64)tsf_upper1 << 32) | tsf_lower);
3037 }
3038 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3039
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)3040 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3041 {
3042 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3043 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3044 }
3045 EXPORT_SYMBOL(ath9k_hw_settsf64);
3046
ath9k_hw_reset_tsf(struct ath_hw * ah)3047 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3048 {
3049 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3050 AH_TSF_WRITE_TIMEOUT))
3051 ath_dbg(ath9k_hw_common(ah), RESET,
3052 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3053
3054 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3055 }
3056 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3057
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)3058 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3059 {
3060 if (set)
3061 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3062 else
3063 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3064 }
3065 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3066
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)3067 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3068 {
3069 u32 macmode;
3070
3071 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3072 macmode = AR_2040_JOINED_RX_CLEAR;
3073 else
3074 macmode = 0;
3075
3076 REG_WRITE(ah, AR_2040_MODE, macmode);
3077 }
3078
3079 /* HW Generic timers configuration */
3080
3081 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3082 {
3083 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3090 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3091 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3092 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3093 AR_NDP2_TIMER_MODE, 0x0002},
3094 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3095 AR_NDP2_TIMER_MODE, 0x0004},
3096 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3097 AR_NDP2_TIMER_MODE, 0x0008},
3098 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3099 AR_NDP2_TIMER_MODE, 0x0010},
3100 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3101 AR_NDP2_TIMER_MODE, 0x0020},
3102 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3103 AR_NDP2_TIMER_MODE, 0x0040},
3104 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3105 AR_NDP2_TIMER_MODE, 0x0080}
3106 };
3107
3108 /* HW generic timer primitives */
3109
ath9k_hw_gettsf32(struct ath_hw * ah)3110 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3111 {
3112 return REG_READ(ah, AR_TSF_L32);
3113 }
3114 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3115
ath9k_hw_gen_timer_start_tsf2(struct ath_hw * ah)3116 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3117 {
3118 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3119
3120 if (timer_table->tsf2_enabled) {
3121 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3122 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3123 }
3124 }
3125
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3126 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3127 void (*trigger)(void *),
3128 void (*overflow)(void *),
3129 void *arg,
3130 u8 timer_index)
3131 {
3132 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3133 struct ath_gen_timer *timer;
3134
3135 if ((timer_index < AR_FIRST_NDP_TIMER) ||
3136 (timer_index >= ATH_MAX_GEN_TIMER))
3137 return NULL;
3138
3139 if ((timer_index > AR_FIRST_NDP_TIMER) &&
3140 !AR_SREV_9300_20_OR_LATER(ah))
3141 return NULL;
3142
3143 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3144 if (timer == NULL)
3145 return NULL;
3146
3147 /* allocate a hardware generic timer slot */
3148 timer_table->timers[timer_index] = timer;
3149 timer->index = timer_index;
3150 timer->trigger = trigger;
3151 timer->overflow = overflow;
3152 timer->arg = arg;
3153
3154 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3155 timer_table->tsf2_enabled = true;
3156 ath9k_hw_gen_timer_start_tsf2(ah);
3157 }
3158
3159 return timer;
3160 }
3161 EXPORT_SYMBOL(ath_gen_timer_alloc);
3162
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)3163 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3164 struct ath_gen_timer *timer,
3165 u32 timer_next,
3166 u32 timer_period)
3167 {
3168 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3169 u32 mask = 0;
3170
3171 timer_table->timer_mask |= BIT(timer->index);
3172
3173 /*
3174 * Program generic timer registers
3175 */
3176 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3177 timer_next);
3178 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3179 timer_period);
3180 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3181 gen_tmr_configuration[timer->index].mode_mask);
3182
3183 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3184 /*
3185 * Starting from AR9462, each generic timer can select which tsf
3186 * to use. But we still follow the old rule, 0 - 7 use tsf and
3187 * 8 - 15 use tsf2.
3188 */
3189 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3190 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3191 (1 << timer->index));
3192 else
3193 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3194 (1 << timer->index));
3195 }
3196
3197 if (timer->trigger)
3198 mask |= SM(AR_GENTMR_BIT(timer->index),
3199 AR_IMR_S5_GENTIMER_TRIG);
3200 if (timer->overflow)
3201 mask |= SM(AR_GENTMR_BIT(timer->index),
3202 AR_IMR_S5_GENTIMER_THRESH);
3203
3204 REG_SET_BIT(ah, AR_IMR_S5, mask);
3205
3206 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3207 ah->imask |= ATH9K_INT_GENTIMER;
3208 ath9k_hw_set_interrupts(ah);
3209 }
3210 }
3211 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3212
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3213 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3214 {
3215 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3216
3217 /* Clear generic timer enable bits. */
3218 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3219 gen_tmr_configuration[timer->index].mode_mask);
3220
3221 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3222 /*
3223 * Need to switch back to TSF if it was using TSF2.
3224 */
3225 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3226 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3227 (1 << timer->index));
3228 }
3229 }
3230
3231 /* Disable both trigger and thresh interrupt masks */
3232 REG_CLR_BIT(ah, AR_IMR_S5,
3233 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3234 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3235
3236 timer_table->timer_mask &= ~BIT(timer->index);
3237
3238 if (timer_table->timer_mask == 0) {
3239 ah->imask &= ~ATH9K_INT_GENTIMER;
3240 ath9k_hw_set_interrupts(ah);
3241 }
3242 }
3243 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3244
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3245 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3246 {
3247 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3248
3249 /* free the hardware generic timer slot */
3250 timer_table->timers[timer->index] = NULL;
3251 kfree(timer);
3252 }
3253 EXPORT_SYMBOL(ath_gen_timer_free);
3254
3255 /*
3256 * Generic Timer Interrupts handling
3257 */
ath_gen_timer_isr(struct ath_hw * ah)3258 void ath_gen_timer_isr(struct ath_hw *ah)
3259 {
3260 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3261 struct ath_gen_timer *timer;
3262 unsigned long trigger_mask, thresh_mask;
3263 unsigned int index;
3264
3265 /* get hardware generic timer interrupt status */
3266 trigger_mask = ah->intr_gen_timer_trigger;
3267 thresh_mask = ah->intr_gen_timer_thresh;
3268 trigger_mask &= timer_table->timer_mask;
3269 thresh_mask &= timer_table->timer_mask;
3270
3271 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3272 timer = timer_table->timers[index];
3273 if (!timer)
3274 continue;
3275 if (!timer->overflow)
3276 continue;
3277
3278 trigger_mask &= ~BIT(index);
3279 timer->overflow(timer->arg);
3280 }
3281
3282 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3283 timer = timer_table->timers[index];
3284 if (!timer)
3285 continue;
3286 if (!timer->trigger)
3287 continue;
3288 timer->trigger(timer->arg);
3289 }
3290 }
3291 EXPORT_SYMBOL(ath_gen_timer_isr);
3292
3293 /********/
3294 /* HTC */
3295 /********/
3296
3297 static struct {
3298 u32 version;
3299 const char * name;
3300 } ath_mac_bb_names[] = {
3301 /* Devices with external radios */
3302 { AR_SREV_VERSION_5416_PCI, "5416" },
3303 { AR_SREV_VERSION_5416_PCIE, "5418" },
3304 { AR_SREV_VERSION_9100, "9100" },
3305 { AR_SREV_VERSION_9160, "9160" },
3306 /* Single-chip solutions */
3307 { AR_SREV_VERSION_9280, "9280" },
3308 { AR_SREV_VERSION_9285, "9285" },
3309 { AR_SREV_VERSION_9287, "9287" },
3310 { AR_SREV_VERSION_9271, "9271" },
3311 { AR_SREV_VERSION_9300, "9300" },
3312 { AR_SREV_VERSION_9330, "9330" },
3313 { AR_SREV_VERSION_9340, "9340" },
3314 { AR_SREV_VERSION_9485, "9485" },
3315 { AR_SREV_VERSION_9462, "9462" },
3316 { AR_SREV_VERSION_9550, "9550" },
3317 { AR_SREV_VERSION_9565, "9565" },
3318 { AR_SREV_VERSION_9531, "9531" },
3319 { AR_SREV_VERSION_9561, "9561" },
3320 };
3321
3322 /* For devices with external radios */
3323 static struct {
3324 u16 version;
3325 const char * name;
3326 } ath_rf_names[] = {
3327 { 0, "5133" },
3328 { AR_RAD5133_SREV_MAJOR, "5133" },
3329 { AR_RAD5122_SREV_MAJOR, "5122" },
3330 { AR_RAD2133_SREV_MAJOR, "2133" },
3331 { AR_RAD2122_SREV_MAJOR, "2122" }
3332 };
3333
3334 /*
3335 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3336 */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3337 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3338 {
3339 int i;
3340
3341 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3342 if (ath_mac_bb_names[i].version == mac_bb_version) {
3343 return ath_mac_bb_names[i].name;
3344 }
3345 }
3346
3347 return "????";
3348 }
3349
3350 /*
3351 * Return the RF name. "????" is returned if the RF is unknown.
3352 * Used for devices with external radios.
3353 */
ath9k_hw_rf_name(u16 rf_version)3354 static const char *ath9k_hw_rf_name(u16 rf_version)
3355 {
3356 int i;
3357
3358 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3359 if (ath_rf_names[i].version == rf_version) {
3360 return ath_rf_names[i].name;
3361 }
3362 }
3363
3364 return "????";
3365 }
3366
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3367 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3368 {
3369 int used;
3370
3371 /* chipsets >= AR9280 are single-chip */
3372 if (AR_SREV_9280_20_OR_LATER(ah)) {
3373 used = scnprintf(hw_name, len,
3374 "Atheros AR%s Rev:%x",
3375 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3376 ah->hw_version.macRev);
3377 }
3378 else {
3379 used = scnprintf(hw_name, len,
3380 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3381 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3382 ah->hw_version.macRev,
3383 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3384 & AR_RADIO_SREV_MAJOR)),
3385 ah->hw_version.phyRev);
3386 }
3387
3388 hw_name[used] = '\0';
3389 }
3390 EXPORT_SYMBOL(ath9k_hw_name);
3391