1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
4 * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 */
9
10 #include <linux/atomic.h>
11 #include <linux/crc32.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/hardirq.h>
16 #include <linux/if_vlan.h>
17 #include <linux/in.h>
18 #include <linux/interrupt.h>
19 #include <linux/ip.h>
20 #include <linux/irqflags.h>
21 #include <linux/irqreturn.h>
22 #include <linux/mii.h>
23 #include <linux/net.h>
24 #include <linux/netdevice.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/pm.h>
28 #include <linux/skbuff.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/tcp.h>
33 #include <linux/timer.h>
34 #include <linux/types.h>
35 #include <linux/workqueue.h>
36
37 #include "atl2.h"
38
39 static const char atl2_driver_name[] = "atl2";
40 static const struct ethtool_ops atl2_ethtool_ops;
41
42 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
43 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
44 MODULE_LICENSE("GPL");
45
46 /*
47 * atl2_pci_tbl - PCI Device ID Table
48 */
49 static const struct pci_device_id atl2_pci_tbl[] = {
50 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
51 /* required last entry */
52 {0,}
53 };
54 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
55
56 static void atl2_check_options(struct atl2_adapter *adapter);
57
58 /**
59 * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
60 * @adapter: board private structure to initialize
61 *
62 * atl2_sw_init initializes the Adapter private data structure.
63 * Fields are initialized based on PCI device information and
64 * OS network device settings (MTU size).
65 */
atl2_sw_init(struct atl2_adapter * adapter)66 static int atl2_sw_init(struct atl2_adapter *adapter)
67 {
68 struct atl2_hw *hw = &adapter->hw;
69 struct pci_dev *pdev = adapter->pdev;
70
71 /* PCI config space info */
72 hw->vendor_id = pdev->vendor;
73 hw->device_id = pdev->device;
74 hw->subsystem_vendor_id = pdev->subsystem_vendor;
75 hw->subsystem_id = pdev->subsystem_device;
76 hw->revision_id = pdev->revision;
77
78 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
79
80 adapter->wol = 0;
81 adapter->ict = 50000; /* ~100ms */
82 adapter->link_speed = SPEED_0; /* hardware init */
83 adapter->link_duplex = FULL_DUPLEX;
84
85 hw->phy_configured = false;
86 hw->preamble_len = 7;
87 hw->ipgt = 0x60;
88 hw->min_ifg = 0x50;
89 hw->ipgr1 = 0x40;
90 hw->ipgr2 = 0x60;
91 hw->retry_buf = 2;
92 hw->max_retry = 0xf;
93 hw->lcol = 0x37;
94 hw->jam_ipg = 7;
95 hw->fc_rxd_hi = 0;
96 hw->fc_rxd_lo = 0;
97 hw->max_frame_size = adapter->netdev->mtu;
98
99 spin_lock_init(&adapter->stats_lock);
100
101 set_bit(__ATL2_DOWN, &adapter->flags);
102
103 return 0;
104 }
105
106 /**
107 * atl2_set_multi - Multicast and Promiscuous mode set
108 * @netdev: network interface device structure
109 *
110 * The set_multi entry point is called whenever the multicast address
111 * list or the network interface flags are updated. This routine is
112 * responsible for configuring the hardware for proper multicast,
113 * promiscuous mode, and all-multi behavior.
114 */
atl2_set_multi(struct net_device * netdev)115 static void atl2_set_multi(struct net_device *netdev)
116 {
117 struct atl2_adapter *adapter = netdev_priv(netdev);
118 struct atl2_hw *hw = &adapter->hw;
119 struct netdev_hw_addr *ha;
120 u32 rctl;
121 u32 hash_value;
122
123 /* Check for Promiscuous and All Multicast modes */
124 rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
125
126 if (netdev->flags & IFF_PROMISC) {
127 rctl |= MAC_CTRL_PROMIS_EN;
128 } else if (netdev->flags & IFF_ALLMULTI) {
129 rctl |= MAC_CTRL_MC_ALL_EN;
130 rctl &= ~MAC_CTRL_PROMIS_EN;
131 } else
132 rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
133
134 ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
135
136 /* clear the old settings from the multicast hash table */
137 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
138 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
139
140 /* comoute mc addresses' hash value ,and put it into hash table */
141 netdev_for_each_mc_addr(ha, netdev) {
142 hash_value = atl2_hash_mc_addr(hw, ha->addr);
143 atl2_hash_set(hw, hash_value);
144 }
145 }
146
init_ring_ptrs(struct atl2_adapter * adapter)147 static void init_ring_ptrs(struct atl2_adapter *adapter)
148 {
149 /* Read / Write Ptr Initialize: */
150 adapter->txd_write_ptr = 0;
151 atomic_set(&adapter->txd_read_ptr, 0);
152
153 adapter->rxd_read_ptr = 0;
154 adapter->rxd_write_ptr = 0;
155
156 atomic_set(&adapter->txs_write_ptr, 0);
157 adapter->txs_next_clear = 0;
158 }
159
160 /**
161 * atl2_configure - Configure Transmit&Receive Unit after Reset
162 * @adapter: board private structure
163 *
164 * Configure the Tx /Rx unit of the MAC after a reset.
165 */
atl2_configure(struct atl2_adapter * adapter)166 static int atl2_configure(struct atl2_adapter *adapter)
167 {
168 struct atl2_hw *hw = &adapter->hw;
169 u32 value;
170
171 /* clear interrupt status */
172 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
173
174 /* set MAC Address */
175 value = (((u32)hw->mac_addr[2]) << 24) |
176 (((u32)hw->mac_addr[3]) << 16) |
177 (((u32)hw->mac_addr[4]) << 8) |
178 (((u32)hw->mac_addr[5]));
179 ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
180 value = (((u32)hw->mac_addr[0]) << 8) |
181 (((u32)hw->mac_addr[1]));
182 ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
183
184 /* HI base address */
185 ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
186 (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
187
188 /* LO base address */
189 ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
190 (u32)(adapter->txd_dma & 0x00000000ffffffffULL));
191 ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
192 (u32)(adapter->txs_dma & 0x00000000ffffffffULL));
193 ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
194 (u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
195
196 /* element count */
197 ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
198 ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
199 ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
200
201 /* config Internal SRAM */
202 /*
203 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
204 ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
205 */
206
207 /* config IPG/IFG */
208 value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
209 MAC_IPG_IFG_IPGT_SHIFT) |
210 (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
211 MAC_IPG_IFG_MIFG_SHIFT) |
212 (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
213 MAC_IPG_IFG_IPGR1_SHIFT)|
214 (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
215 MAC_IPG_IFG_IPGR2_SHIFT);
216 ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
217
218 /* config Half-Duplex Control */
219 value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
220 (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
221 MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
222 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
223 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
224 (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
225 MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
226 ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
227
228 /* set Interrupt Moderator Timer */
229 ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
230 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
231
232 /* set Interrupt Clear Timer */
233 ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
234
235 /* set MTU */
236 ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
237 ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
238
239 /* 1590 */
240 ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
241
242 /* flow control */
243 ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
244 ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
245
246 /* Init mailbox */
247 ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
248 ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
249
250 /* enable DMA read/write */
251 ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
252 ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
253
254 value = ATL2_READ_REG(&adapter->hw, REG_ISR);
255 if ((value & ISR_PHY_LINKDOWN) != 0)
256 value = 1; /* config failed */
257 else
258 value = 0;
259
260 /* clear all interrupt status */
261 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
262 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
263 return value;
264 }
265
266 /**
267 * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
268 * @adapter: board private structure
269 *
270 * Return 0 on success, negative on failure
271 */
atl2_setup_ring_resources(struct atl2_adapter * adapter)272 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
273 {
274 struct pci_dev *pdev = adapter->pdev;
275 int size;
276 u8 offset = 0;
277
278 /* real ring DMA buffer */
279 adapter->ring_size = size =
280 adapter->txd_ring_size * 1 + 7 + /* dword align */
281 adapter->txs_ring_size * 4 + 7 + /* dword align */
282 adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
283
284 adapter->ring_vir_addr = dma_alloc_coherent(&pdev->dev, size,
285 &adapter->ring_dma, GFP_KERNEL);
286 if (!adapter->ring_vir_addr)
287 return -ENOMEM;
288
289 /* Init TXD Ring */
290 adapter->txd_dma = adapter->ring_dma ;
291 offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
292 adapter->txd_dma += offset;
293 adapter->txd_ring = adapter->ring_vir_addr + offset;
294
295 /* Init TXS Ring */
296 adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
297 offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
298 adapter->txs_dma += offset;
299 adapter->txs_ring = (struct tx_pkt_status *)
300 (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
301
302 /* Init RXD Ring */
303 adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
304 offset = (adapter->rxd_dma & 127) ?
305 (128 - (adapter->rxd_dma & 127)) : 0;
306 if (offset > 7)
307 offset -= 8;
308 else
309 offset += (128 - 8);
310
311 adapter->rxd_dma += offset;
312 adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
313 (adapter->txs_ring_size * 4 + offset));
314
315 /*
316 * Read / Write Ptr Initialize:
317 * init_ring_ptrs(adapter);
318 */
319 return 0;
320 }
321
322 /**
323 * atl2_irq_enable - Enable default interrupt generation settings
324 * @adapter: board private structure
325 */
atl2_irq_enable(struct atl2_adapter * adapter)326 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
327 {
328 ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
329 ATL2_WRITE_FLUSH(&adapter->hw);
330 }
331
332 /**
333 * atl2_irq_disable - Mask off interrupt generation on the NIC
334 * @adapter: board private structure
335 */
atl2_irq_disable(struct atl2_adapter * adapter)336 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
337 {
338 ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
339 ATL2_WRITE_FLUSH(&adapter->hw);
340 synchronize_irq(adapter->pdev->irq);
341 }
342
__atl2_vlan_mode(netdev_features_t features,u32 * ctrl)343 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
344 {
345 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
346 /* enable VLAN tag insert/strip */
347 *ctrl |= MAC_CTRL_RMV_VLAN;
348 } else {
349 /* disable VLAN tag insert/strip */
350 *ctrl &= ~MAC_CTRL_RMV_VLAN;
351 }
352 }
353
atl2_vlan_mode(struct net_device * netdev,netdev_features_t features)354 static void atl2_vlan_mode(struct net_device *netdev,
355 netdev_features_t features)
356 {
357 struct atl2_adapter *adapter = netdev_priv(netdev);
358 u32 ctrl;
359
360 atl2_irq_disable(adapter);
361
362 ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
363 __atl2_vlan_mode(features, &ctrl);
364 ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
365
366 atl2_irq_enable(adapter);
367 }
368
atl2_restore_vlan(struct atl2_adapter * adapter)369 static void atl2_restore_vlan(struct atl2_adapter *adapter)
370 {
371 atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
372 }
373
atl2_fix_features(struct net_device * netdev,netdev_features_t features)374 static netdev_features_t atl2_fix_features(struct net_device *netdev,
375 netdev_features_t features)
376 {
377 /*
378 * Since there is no support for separate rx/tx vlan accel
379 * enable/disable make sure tx flag is always in same state as rx.
380 */
381 if (features & NETIF_F_HW_VLAN_CTAG_RX)
382 features |= NETIF_F_HW_VLAN_CTAG_TX;
383 else
384 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
385
386 return features;
387 }
388
atl2_set_features(struct net_device * netdev,netdev_features_t features)389 static int atl2_set_features(struct net_device *netdev,
390 netdev_features_t features)
391 {
392 netdev_features_t changed = netdev->features ^ features;
393
394 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
395 atl2_vlan_mode(netdev, features);
396
397 return 0;
398 }
399
atl2_intr_rx(struct atl2_adapter * adapter)400 static void atl2_intr_rx(struct atl2_adapter *adapter)
401 {
402 struct net_device *netdev = adapter->netdev;
403 struct rx_desc *rxd;
404 struct sk_buff *skb;
405
406 do {
407 rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
408 if (!rxd->status.update)
409 break; /* end of tx */
410
411 /* clear this flag at once */
412 rxd->status.update = 0;
413
414 if (rxd->status.ok && rxd->status.pkt_size >= 60) {
415 int rx_size = (int)(rxd->status.pkt_size - 4);
416 /* alloc new buffer */
417 skb = netdev_alloc_skb_ip_align(netdev, rx_size);
418 if (NULL == skb) {
419 /*
420 * Check that some rx space is free. If not,
421 * free one and mark stats->rx_dropped++.
422 */
423 netdev->stats.rx_dropped++;
424 break;
425 }
426 memcpy(skb->data, rxd->packet, rx_size);
427 skb_put(skb, rx_size);
428 skb->protocol = eth_type_trans(skb, netdev);
429 if (rxd->status.vlan) {
430 u16 vlan_tag = (rxd->status.vtag>>4) |
431 ((rxd->status.vtag&7) << 13) |
432 ((rxd->status.vtag&8) << 9);
433
434 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
435 }
436 netif_rx(skb);
437 netdev->stats.rx_bytes += rx_size;
438 netdev->stats.rx_packets++;
439 } else {
440 netdev->stats.rx_errors++;
441
442 if (rxd->status.ok && rxd->status.pkt_size <= 60)
443 netdev->stats.rx_length_errors++;
444 if (rxd->status.mcast)
445 netdev->stats.multicast++;
446 if (rxd->status.crc)
447 netdev->stats.rx_crc_errors++;
448 if (rxd->status.align)
449 netdev->stats.rx_frame_errors++;
450 }
451
452 /* advance write ptr */
453 if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
454 adapter->rxd_write_ptr = 0;
455 } while (1);
456
457 /* update mailbox? */
458 adapter->rxd_read_ptr = adapter->rxd_write_ptr;
459 ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
460 }
461
atl2_intr_tx(struct atl2_adapter * adapter)462 static void atl2_intr_tx(struct atl2_adapter *adapter)
463 {
464 struct net_device *netdev = adapter->netdev;
465 u32 txd_read_ptr;
466 u32 txs_write_ptr;
467 struct tx_pkt_status *txs;
468 struct tx_pkt_header *txph;
469 int free_hole = 0;
470
471 do {
472 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
473 txs = adapter->txs_ring + txs_write_ptr;
474 if (!txs->update)
475 break; /* tx stop here */
476
477 free_hole = 1;
478 txs->update = 0;
479
480 if (++txs_write_ptr == adapter->txs_ring_size)
481 txs_write_ptr = 0;
482 atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
483
484 txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
485 txph = (struct tx_pkt_header *)
486 (((u8 *)adapter->txd_ring) + txd_read_ptr);
487
488 if (txph->pkt_size != txs->pkt_size) {
489 struct tx_pkt_status *old_txs = txs;
490 printk(KERN_WARNING
491 "%s: txs packet size not consistent with txd"
492 " txd_:0x%08x, txs_:0x%08x!\n",
493 adapter->netdev->name,
494 *(u32 *)txph, *(u32 *)txs);
495 printk(KERN_WARNING
496 "txd read ptr: 0x%x\n",
497 txd_read_ptr);
498 txs = adapter->txs_ring + txs_write_ptr;
499 printk(KERN_WARNING
500 "txs-behind:0x%08x\n",
501 *(u32 *)txs);
502 if (txs_write_ptr < 2) {
503 txs = adapter->txs_ring +
504 (adapter->txs_ring_size +
505 txs_write_ptr - 2);
506 } else {
507 txs = adapter->txs_ring + (txs_write_ptr - 2);
508 }
509 printk(KERN_WARNING
510 "txs-before:0x%08x\n",
511 *(u32 *)txs);
512 txs = old_txs;
513 }
514
515 /* 4for TPH */
516 txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
517 if (txd_read_ptr >= adapter->txd_ring_size)
518 txd_read_ptr -= adapter->txd_ring_size;
519
520 atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
521
522 /* tx statistics: */
523 if (txs->ok) {
524 netdev->stats.tx_bytes += txs->pkt_size;
525 netdev->stats.tx_packets++;
526 }
527 else
528 netdev->stats.tx_errors++;
529
530 if (txs->defer)
531 netdev->stats.collisions++;
532 if (txs->abort_col)
533 netdev->stats.tx_aborted_errors++;
534 if (txs->late_col)
535 netdev->stats.tx_window_errors++;
536 if (txs->underrun)
537 netdev->stats.tx_fifo_errors++;
538 } while (1);
539
540 if (free_hole) {
541 if (netif_queue_stopped(adapter->netdev) &&
542 netif_carrier_ok(adapter->netdev))
543 netif_wake_queue(adapter->netdev);
544 }
545 }
546
atl2_check_for_link(struct atl2_adapter * adapter)547 static void atl2_check_for_link(struct atl2_adapter *adapter)
548 {
549 struct net_device *netdev = adapter->netdev;
550 u16 phy_data = 0;
551
552 spin_lock(&adapter->stats_lock);
553 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
554 atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
555 spin_unlock(&adapter->stats_lock);
556
557 /* notify upper layer link down ASAP */
558 if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
559 if (netif_carrier_ok(netdev)) { /* old link state: Up */
560 printk(KERN_INFO "%s: %s NIC Link is Down\n",
561 atl2_driver_name, netdev->name);
562 adapter->link_speed = SPEED_0;
563 netif_carrier_off(netdev);
564 netif_stop_queue(netdev);
565 }
566 }
567 schedule_work(&adapter->link_chg_task);
568 }
569
atl2_clear_phy_int(struct atl2_adapter * adapter)570 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
571 {
572 u16 phy_data;
573 spin_lock(&adapter->stats_lock);
574 atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
575 spin_unlock(&adapter->stats_lock);
576 }
577
578 /**
579 * atl2_intr - Interrupt Handler
580 * @irq: interrupt number
581 * @data: pointer to a network interface device structure
582 */
atl2_intr(int irq,void * data)583 static irqreturn_t atl2_intr(int irq, void *data)
584 {
585 struct atl2_adapter *adapter = netdev_priv(data);
586 struct atl2_hw *hw = &adapter->hw;
587 u32 status;
588
589 status = ATL2_READ_REG(hw, REG_ISR);
590 if (0 == status)
591 return IRQ_NONE;
592
593 /* link event */
594 if (status & ISR_PHY)
595 atl2_clear_phy_int(adapter);
596
597 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
598 ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
599
600 /* check if PCIE PHY Link down */
601 if (status & ISR_PHY_LINKDOWN) {
602 if (netif_running(adapter->netdev)) { /* reset MAC */
603 ATL2_WRITE_REG(hw, REG_ISR, 0);
604 ATL2_WRITE_REG(hw, REG_IMR, 0);
605 ATL2_WRITE_FLUSH(hw);
606 schedule_work(&adapter->reset_task);
607 return IRQ_HANDLED;
608 }
609 }
610
611 /* check if DMA read/write error? */
612 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
613 ATL2_WRITE_REG(hw, REG_ISR, 0);
614 ATL2_WRITE_REG(hw, REG_IMR, 0);
615 ATL2_WRITE_FLUSH(hw);
616 schedule_work(&adapter->reset_task);
617 return IRQ_HANDLED;
618 }
619
620 /* link event */
621 if (status & (ISR_PHY | ISR_MANUAL)) {
622 adapter->netdev->stats.tx_carrier_errors++;
623 atl2_check_for_link(adapter);
624 }
625
626 /* transmit event */
627 if (status & ISR_TX_EVENT)
628 atl2_intr_tx(adapter);
629
630 /* rx exception */
631 if (status & ISR_RX_EVENT)
632 atl2_intr_rx(adapter);
633
634 /* re-enable Interrupt */
635 ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
636 return IRQ_HANDLED;
637 }
638
atl2_request_irq(struct atl2_adapter * adapter)639 static int atl2_request_irq(struct atl2_adapter *adapter)
640 {
641 struct net_device *netdev = adapter->netdev;
642 int flags, err = 0;
643
644 flags = IRQF_SHARED;
645 adapter->have_msi = true;
646 err = pci_enable_msi(adapter->pdev);
647 if (err)
648 adapter->have_msi = false;
649
650 if (adapter->have_msi)
651 flags &= ~IRQF_SHARED;
652
653 return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
654 netdev);
655 }
656
657 /**
658 * atl2_free_ring_resources - Free Tx / RX descriptor Resources
659 * @adapter: board private structure
660 *
661 * Free all transmit software resources
662 */
atl2_free_ring_resources(struct atl2_adapter * adapter)663 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
664 {
665 struct pci_dev *pdev = adapter->pdev;
666 dma_free_coherent(&pdev->dev, adapter->ring_size,
667 adapter->ring_vir_addr, adapter->ring_dma);
668 }
669
670 /**
671 * atl2_open - Called when a network interface is made active
672 * @netdev: network interface device structure
673 *
674 * Returns 0 on success, negative value on failure
675 *
676 * The open entry point is called when a network interface is made
677 * active by the system (IFF_UP). At this point all resources needed
678 * for transmit and receive operations are allocated, the interrupt
679 * handler is registered with the OS, the watchdog timer is started,
680 * and the stack is notified that the interface is ready.
681 */
atl2_open(struct net_device * netdev)682 static int atl2_open(struct net_device *netdev)
683 {
684 struct atl2_adapter *adapter = netdev_priv(netdev);
685 int err;
686 u32 val;
687
688 /* disallow open during test */
689 if (test_bit(__ATL2_TESTING, &adapter->flags))
690 return -EBUSY;
691
692 /* allocate transmit descriptors */
693 err = atl2_setup_ring_resources(adapter);
694 if (err)
695 return err;
696
697 err = atl2_init_hw(&adapter->hw);
698 if (err) {
699 err = -EIO;
700 goto err_init_hw;
701 }
702
703 /* hardware has been reset, we need to reload some things */
704 atl2_set_multi(netdev);
705 init_ring_ptrs(adapter);
706
707 atl2_restore_vlan(adapter);
708
709 if (atl2_configure(adapter)) {
710 err = -EIO;
711 goto err_config;
712 }
713
714 err = atl2_request_irq(adapter);
715 if (err)
716 goto err_req_irq;
717
718 clear_bit(__ATL2_DOWN, &adapter->flags);
719
720 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
721
722 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
723 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
724 val | MASTER_CTRL_MANUAL_INT);
725
726 atl2_irq_enable(adapter);
727
728 return 0;
729
730 err_init_hw:
731 err_req_irq:
732 err_config:
733 atl2_free_ring_resources(adapter);
734 atl2_reset_hw(&adapter->hw);
735
736 return err;
737 }
738
atl2_down(struct atl2_adapter * adapter)739 static void atl2_down(struct atl2_adapter *adapter)
740 {
741 struct net_device *netdev = adapter->netdev;
742
743 /* signal that we're down so the interrupt handler does not
744 * reschedule our watchdog timer */
745 set_bit(__ATL2_DOWN, &adapter->flags);
746
747 netif_tx_disable(netdev);
748
749 /* reset MAC to disable all RX/TX */
750 atl2_reset_hw(&adapter->hw);
751 msleep(1);
752
753 atl2_irq_disable(adapter);
754
755 del_timer_sync(&adapter->watchdog_timer);
756 del_timer_sync(&adapter->phy_config_timer);
757 clear_bit(0, &adapter->cfg_phy);
758
759 netif_carrier_off(netdev);
760 adapter->link_speed = SPEED_0;
761 adapter->link_duplex = -1;
762 }
763
atl2_free_irq(struct atl2_adapter * adapter)764 static void atl2_free_irq(struct atl2_adapter *adapter)
765 {
766 struct net_device *netdev = adapter->netdev;
767
768 free_irq(adapter->pdev->irq, netdev);
769
770 #ifdef CONFIG_PCI_MSI
771 if (adapter->have_msi)
772 pci_disable_msi(adapter->pdev);
773 #endif
774 }
775
776 /**
777 * atl2_close - Disables a network interface
778 * @netdev: network interface device structure
779 *
780 * Returns 0, this is not allowed to fail
781 *
782 * The close entry point is called when an interface is de-activated
783 * by the OS. The hardware is still under the drivers control, but
784 * needs to be disabled. A global MAC reset is issued to stop the
785 * hardware, and all transmit and receive resources are freed.
786 */
atl2_close(struct net_device * netdev)787 static int atl2_close(struct net_device *netdev)
788 {
789 struct atl2_adapter *adapter = netdev_priv(netdev);
790
791 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
792
793 atl2_down(adapter);
794 atl2_free_irq(adapter);
795 atl2_free_ring_resources(adapter);
796
797 return 0;
798 }
799
TxsFreeUnit(struct atl2_adapter * adapter)800 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
801 {
802 u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
803
804 return (adapter->txs_next_clear >= txs_write_ptr) ?
805 (int) (adapter->txs_ring_size - adapter->txs_next_clear +
806 txs_write_ptr - 1) :
807 (int) (txs_write_ptr - adapter->txs_next_clear - 1);
808 }
809
TxdFreeBytes(struct atl2_adapter * adapter)810 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
811 {
812 u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
813
814 return (adapter->txd_write_ptr >= txd_read_ptr) ?
815 (int) (adapter->txd_ring_size - adapter->txd_write_ptr +
816 txd_read_ptr - 1) :
817 (int) (txd_read_ptr - adapter->txd_write_ptr - 1);
818 }
819
atl2_xmit_frame(struct sk_buff * skb,struct net_device * netdev)820 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
821 struct net_device *netdev)
822 {
823 struct atl2_adapter *adapter = netdev_priv(netdev);
824 struct tx_pkt_header *txph;
825 u32 offset, copy_len;
826 int txs_unused;
827 int txbuf_unused;
828
829 if (test_bit(__ATL2_DOWN, &adapter->flags)) {
830 dev_kfree_skb_any(skb);
831 return NETDEV_TX_OK;
832 }
833
834 if (unlikely(skb->len <= 0)) {
835 dev_kfree_skb_any(skb);
836 return NETDEV_TX_OK;
837 }
838
839 txs_unused = TxsFreeUnit(adapter);
840 txbuf_unused = TxdFreeBytes(adapter);
841
842 if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
843 txs_unused < 1) {
844 /* not enough resources */
845 netif_stop_queue(netdev);
846 return NETDEV_TX_BUSY;
847 }
848
849 offset = adapter->txd_write_ptr;
850
851 txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
852
853 *(u32 *)txph = 0;
854 txph->pkt_size = skb->len;
855
856 offset += 4;
857 if (offset >= adapter->txd_ring_size)
858 offset -= adapter->txd_ring_size;
859 copy_len = adapter->txd_ring_size - offset;
860 if (copy_len >= skb->len) {
861 memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
862 offset += ((u32)(skb->len + 3) & ~3);
863 } else {
864 memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
865 memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
866 skb->len-copy_len);
867 offset = ((u32)(skb->len-copy_len + 3) & ~3);
868 }
869 #ifdef NETIF_F_HW_VLAN_CTAG_TX
870 if (skb_vlan_tag_present(skb)) {
871 u16 vlan_tag = skb_vlan_tag_get(skb);
872 vlan_tag = (vlan_tag << 4) |
873 (vlan_tag >> 13) |
874 ((vlan_tag >> 9) & 0x8);
875 txph->ins_vlan = 1;
876 txph->vlan = vlan_tag;
877 }
878 #endif
879 if (offset >= adapter->txd_ring_size)
880 offset -= adapter->txd_ring_size;
881 adapter->txd_write_ptr = offset;
882
883 /* clear txs before send */
884 adapter->txs_ring[adapter->txs_next_clear].update = 0;
885 if (++adapter->txs_next_clear == adapter->txs_ring_size)
886 adapter->txs_next_clear = 0;
887
888 ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
889 (adapter->txd_write_ptr >> 2));
890
891 dev_consume_skb_any(skb);
892 return NETDEV_TX_OK;
893 }
894
895 /**
896 * atl2_change_mtu - Change the Maximum Transfer Unit
897 * @netdev: network interface device structure
898 * @new_mtu: new value for maximum frame size
899 *
900 * Returns 0 on success, negative on failure
901 */
atl2_change_mtu(struct net_device * netdev,int new_mtu)902 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
903 {
904 struct atl2_adapter *adapter = netdev_priv(netdev);
905 struct atl2_hw *hw = &adapter->hw;
906
907 /* set MTU */
908 netdev->mtu = new_mtu;
909 hw->max_frame_size = new_mtu;
910 ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN +
911 VLAN_HLEN + ETH_FCS_LEN);
912
913 return 0;
914 }
915
916 /**
917 * atl2_set_mac - Change the Ethernet Address of the NIC
918 * @netdev: network interface device structure
919 * @p: pointer to an address structure
920 *
921 * Returns 0 on success, negative on failure
922 */
atl2_set_mac(struct net_device * netdev,void * p)923 static int atl2_set_mac(struct net_device *netdev, void *p)
924 {
925 struct atl2_adapter *adapter = netdev_priv(netdev);
926 struct sockaddr *addr = p;
927
928 if (!is_valid_ether_addr(addr->sa_data))
929 return -EADDRNOTAVAIL;
930
931 if (netif_running(netdev))
932 return -EBUSY;
933
934 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
935 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
936
937 atl2_set_mac_addr(&adapter->hw);
938
939 return 0;
940 }
941
atl2_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)942 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
943 {
944 struct atl2_adapter *adapter = netdev_priv(netdev);
945 struct mii_ioctl_data *data = if_mii(ifr);
946 unsigned long flags;
947
948 switch (cmd) {
949 case SIOCGMIIPHY:
950 data->phy_id = 0;
951 break;
952 case SIOCGMIIREG:
953 spin_lock_irqsave(&adapter->stats_lock, flags);
954 if (atl2_read_phy_reg(&adapter->hw,
955 data->reg_num & 0x1F, &data->val_out)) {
956 spin_unlock_irqrestore(&adapter->stats_lock, flags);
957 return -EIO;
958 }
959 spin_unlock_irqrestore(&adapter->stats_lock, flags);
960 break;
961 case SIOCSMIIREG:
962 if (data->reg_num & ~(0x1F))
963 return -EFAULT;
964 spin_lock_irqsave(&adapter->stats_lock, flags);
965 if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
966 data->val_in)) {
967 spin_unlock_irqrestore(&adapter->stats_lock, flags);
968 return -EIO;
969 }
970 spin_unlock_irqrestore(&adapter->stats_lock, flags);
971 break;
972 default:
973 return -EOPNOTSUPP;
974 }
975 return 0;
976 }
977
atl2_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)978 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
979 {
980 switch (cmd) {
981 case SIOCGMIIPHY:
982 case SIOCGMIIREG:
983 case SIOCSMIIREG:
984 return atl2_mii_ioctl(netdev, ifr, cmd);
985 #ifdef ETHTOOL_OPS_COMPAT
986 case SIOCETHTOOL:
987 return ethtool_ioctl(ifr);
988 #endif
989 default:
990 return -EOPNOTSUPP;
991 }
992 }
993
994 /**
995 * atl2_tx_timeout - Respond to a Tx Hang
996 * @netdev: network interface device structure
997 * @txqueue: index of the hanging transmit queue
998 */
atl2_tx_timeout(struct net_device * netdev,unsigned int txqueue)999 static void atl2_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1000 {
1001 struct atl2_adapter *adapter = netdev_priv(netdev);
1002
1003 /* Do the reset outside of interrupt context */
1004 schedule_work(&adapter->reset_task);
1005 }
1006
1007 /**
1008 * atl2_watchdog - Timer Call-back
1009 * @t: timer list containing a pointer to netdev cast into an unsigned long
1010 */
atl2_watchdog(struct timer_list * t)1011 static void atl2_watchdog(struct timer_list *t)
1012 {
1013 struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1014
1015 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1016 u32 drop_rxd, drop_rxs;
1017 unsigned long flags;
1018
1019 spin_lock_irqsave(&adapter->stats_lock, flags);
1020 drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1021 drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1022 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1023
1024 adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1025
1026 /* Reset the timer */
1027 mod_timer(&adapter->watchdog_timer,
1028 round_jiffies(jiffies + 4 * HZ));
1029 }
1030 }
1031
1032 /**
1033 * atl2_phy_config - Timer Call-back
1034 * @t: timer list containing a pointer to netdev cast into an unsigned long
1035 */
atl2_phy_config(struct timer_list * t)1036 static void atl2_phy_config(struct timer_list *t)
1037 {
1038 struct atl2_adapter *adapter = from_timer(adapter, t,
1039 phy_config_timer);
1040 struct atl2_hw *hw = &adapter->hw;
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&adapter->stats_lock, flags);
1044 atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1045 atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1046 MII_CR_RESTART_AUTO_NEG);
1047 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1048 clear_bit(0, &adapter->cfg_phy);
1049 }
1050
atl2_up(struct atl2_adapter * adapter)1051 static int atl2_up(struct atl2_adapter *adapter)
1052 {
1053 struct net_device *netdev = adapter->netdev;
1054 int err = 0;
1055 u32 val;
1056
1057 /* hardware has been reset, we need to reload some things */
1058
1059 err = atl2_init_hw(&adapter->hw);
1060 if (err) {
1061 err = -EIO;
1062 return err;
1063 }
1064
1065 atl2_set_multi(netdev);
1066 init_ring_ptrs(adapter);
1067
1068 atl2_restore_vlan(adapter);
1069
1070 if (atl2_configure(adapter)) {
1071 err = -EIO;
1072 goto err_up;
1073 }
1074
1075 clear_bit(__ATL2_DOWN, &adapter->flags);
1076
1077 val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1078 ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1079 MASTER_CTRL_MANUAL_INT);
1080
1081 atl2_irq_enable(adapter);
1082
1083 err_up:
1084 return err;
1085 }
1086
atl2_reinit_locked(struct atl2_adapter * adapter)1087 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1088 {
1089 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1090 msleep(1);
1091 atl2_down(adapter);
1092 atl2_up(adapter);
1093 clear_bit(__ATL2_RESETTING, &adapter->flags);
1094 }
1095
atl2_reset_task(struct work_struct * work)1096 static void atl2_reset_task(struct work_struct *work)
1097 {
1098 struct atl2_adapter *adapter;
1099 adapter = container_of(work, struct atl2_adapter, reset_task);
1100
1101 atl2_reinit_locked(adapter);
1102 }
1103
atl2_setup_mac_ctrl(struct atl2_adapter * adapter)1104 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1105 {
1106 u32 value;
1107 struct atl2_hw *hw = &adapter->hw;
1108 struct net_device *netdev = adapter->netdev;
1109
1110 /* Config MAC CTRL Register */
1111 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1112
1113 /* duplex */
1114 if (FULL_DUPLEX == adapter->link_duplex)
1115 value |= MAC_CTRL_DUPLX;
1116
1117 /* flow control */
1118 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1119
1120 /* PAD & CRC */
1121 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1122
1123 /* preamble length */
1124 value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1125 MAC_CTRL_PRMLEN_SHIFT);
1126
1127 /* vlan */
1128 __atl2_vlan_mode(netdev->features, &value);
1129
1130 /* filter mode */
1131 value |= MAC_CTRL_BC_EN;
1132 if (netdev->flags & IFF_PROMISC)
1133 value |= MAC_CTRL_PROMIS_EN;
1134 else if (netdev->flags & IFF_ALLMULTI)
1135 value |= MAC_CTRL_MC_ALL_EN;
1136
1137 /* half retry buffer */
1138 value |= (((u32)(adapter->hw.retry_buf &
1139 MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1140
1141 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1142 }
1143
atl2_check_link(struct atl2_adapter * adapter)1144 static int atl2_check_link(struct atl2_adapter *adapter)
1145 {
1146 struct atl2_hw *hw = &adapter->hw;
1147 struct net_device *netdev = adapter->netdev;
1148 int ret_val;
1149 u16 speed, duplex, phy_data;
1150 int reconfig = 0;
1151
1152 /* MII_BMSR must read twise */
1153 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1154 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1155 if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1156 if (netif_carrier_ok(netdev)) { /* old link state: Up */
1157 u32 value;
1158 /* disable rx */
1159 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1160 value &= ~MAC_CTRL_RX_EN;
1161 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1162 adapter->link_speed = SPEED_0;
1163 netif_carrier_off(netdev);
1164 netif_stop_queue(netdev);
1165 }
1166 return 0;
1167 }
1168
1169 /* Link Up */
1170 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1171 if (ret_val)
1172 return ret_val;
1173 switch (hw->MediaType) {
1174 case MEDIA_TYPE_100M_FULL:
1175 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1176 reconfig = 1;
1177 break;
1178 case MEDIA_TYPE_100M_HALF:
1179 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1180 reconfig = 1;
1181 break;
1182 case MEDIA_TYPE_10M_FULL:
1183 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1184 reconfig = 1;
1185 break;
1186 case MEDIA_TYPE_10M_HALF:
1187 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1188 reconfig = 1;
1189 break;
1190 }
1191 /* link result is our setting */
1192 if (reconfig == 0) {
1193 if (adapter->link_speed != speed ||
1194 adapter->link_duplex != duplex) {
1195 adapter->link_speed = speed;
1196 adapter->link_duplex = duplex;
1197 atl2_setup_mac_ctrl(adapter);
1198 printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1199 atl2_driver_name, netdev->name,
1200 adapter->link_speed,
1201 adapter->link_duplex == FULL_DUPLEX ?
1202 "Full Duplex" : "Half Duplex");
1203 }
1204
1205 if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1206 netif_carrier_on(netdev);
1207 netif_wake_queue(netdev);
1208 }
1209 return 0;
1210 }
1211
1212 /* change original link status */
1213 if (netif_carrier_ok(netdev)) {
1214 u32 value;
1215 /* disable rx */
1216 value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1217 value &= ~MAC_CTRL_RX_EN;
1218 ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1219
1220 adapter->link_speed = SPEED_0;
1221 netif_carrier_off(netdev);
1222 netif_stop_queue(netdev);
1223 }
1224
1225 /* auto-neg, insert timer to re-config phy
1226 * (if interval smaller than 5 seconds, something strange) */
1227 if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1228 if (!test_and_set_bit(0, &adapter->cfg_phy))
1229 mod_timer(&adapter->phy_config_timer,
1230 round_jiffies(jiffies + 5 * HZ));
1231 }
1232
1233 return 0;
1234 }
1235
1236 /**
1237 * atl2_link_chg_task - deal with link change event Out of interrupt context
1238 * @work: pointer to work struct with private info
1239 */
atl2_link_chg_task(struct work_struct * work)1240 static void atl2_link_chg_task(struct work_struct *work)
1241 {
1242 struct atl2_adapter *adapter;
1243 unsigned long flags;
1244
1245 adapter = container_of(work, struct atl2_adapter, link_chg_task);
1246
1247 spin_lock_irqsave(&adapter->stats_lock, flags);
1248 atl2_check_link(adapter);
1249 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1250 }
1251
atl2_setup_pcicmd(struct pci_dev * pdev)1252 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1253 {
1254 u16 cmd;
1255
1256 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1257
1258 if (cmd & PCI_COMMAND_INTX_DISABLE)
1259 cmd &= ~PCI_COMMAND_INTX_DISABLE;
1260 if (cmd & PCI_COMMAND_IO)
1261 cmd &= ~PCI_COMMAND_IO;
1262 if (0 == (cmd & PCI_COMMAND_MEMORY))
1263 cmd |= PCI_COMMAND_MEMORY;
1264 if (0 == (cmd & PCI_COMMAND_MASTER))
1265 cmd |= PCI_COMMAND_MASTER;
1266 pci_write_config_word(pdev, PCI_COMMAND, cmd);
1267
1268 /*
1269 * some motherboards BIOS(PXE/EFI) driver may set PME
1270 * while they transfer control to OS (Windows/Linux)
1271 * so we should clear this bit before NIC work normally
1272 */
1273 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1274 }
1275
1276 #ifdef CONFIG_NET_POLL_CONTROLLER
atl2_poll_controller(struct net_device * netdev)1277 static void atl2_poll_controller(struct net_device *netdev)
1278 {
1279 disable_irq(netdev->irq);
1280 atl2_intr(netdev->irq, netdev);
1281 enable_irq(netdev->irq);
1282 }
1283 #endif
1284
1285
1286 static const struct net_device_ops atl2_netdev_ops = {
1287 .ndo_open = atl2_open,
1288 .ndo_stop = atl2_close,
1289 .ndo_start_xmit = atl2_xmit_frame,
1290 .ndo_set_rx_mode = atl2_set_multi,
1291 .ndo_validate_addr = eth_validate_addr,
1292 .ndo_set_mac_address = atl2_set_mac,
1293 .ndo_change_mtu = atl2_change_mtu,
1294 .ndo_fix_features = atl2_fix_features,
1295 .ndo_set_features = atl2_set_features,
1296 .ndo_do_ioctl = atl2_ioctl,
1297 .ndo_tx_timeout = atl2_tx_timeout,
1298 #ifdef CONFIG_NET_POLL_CONTROLLER
1299 .ndo_poll_controller = atl2_poll_controller,
1300 #endif
1301 };
1302
1303 /**
1304 * atl2_probe - Device Initialization Routine
1305 * @pdev: PCI device information struct
1306 * @ent: entry in atl2_pci_tbl
1307 *
1308 * Returns 0 on success, negative on failure
1309 *
1310 * atl2_probe initializes an adapter identified by a pci_dev structure.
1311 * The OS initialization, configuring of the adapter private structure,
1312 * and a hardware reset occur.
1313 */
atl2_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1314 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1315 {
1316 struct net_device *netdev;
1317 struct atl2_adapter *adapter;
1318 static int cards_found = 0;
1319 unsigned long mmio_start;
1320 int mmio_len;
1321 int err;
1322
1323 err = pci_enable_device(pdev);
1324 if (err)
1325 return err;
1326
1327 /*
1328 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1329 * until the kernel has the proper infrastructure to support 64-bit DMA
1330 * on these devices.
1331 */
1332 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) &&
1333 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) {
1334 printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1335 err = -EIO;
1336 goto err_dma;
1337 }
1338
1339 /* Mark all PCI regions associated with PCI device
1340 * pdev as being reserved by owner atl2_driver_name */
1341 err = pci_request_regions(pdev, atl2_driver_name);
1342 if (err)
1343 goto err_pci_reg;
1344
1345 /* Enables bus-mastering on the device and calls
1346 * pcibios_set_master to do the needed arch specific settings */
1347 pci_set_master(pdev);
1348
1349 netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1350 if (!netdev) {
1351 err = -ENOMEM;
1352 goto err_alloc_etherdev;
1353 }
1354
1355 SET_NETDEV_DEV(netdev, &pdev->dev);
1356
1357 pci_set_drvdata(pdev, netdev);
1358 adapter = netdev_priv(netdev);
1359 adapter->netdev = netdev;
1360 adapter->pdev = pdev;
1361 adapter->hw.back = adapter;
1362
1363 mmio_start = pci_resource_start(pdev, 0x0);
1364 mmio_len = pci_resource_len(pdev, 0x0);
1365
1366 adapter->hw.mem_rang = (u32)mmio_len;
1367 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1368 if (!adapter->hw.hw_addr) {
1369 err = -EIO;
1370 goto err_ioremap;
1371 }
1372
1373 atl2_setup_pcicmd(pdev);
1374
1375 netdev->netdev_ops = &atl2_netdev_ops;
1376 netdev->ethtool_ops = &atl2_ethtool_ops;
1377 netdev->watchdog_timeo = 5 * HZ;
1378 netdev->min_mtu = 40;
1379 netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN;
1380 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1381
1382 netdev->mem_start = mmio_start;
1383 netdev->mem_end = mmio_start + mmio_len;
1384 adapter->bd_number = cards_found;
1385 adapter->pci_using_64 = false;
1386
1387 /* setup the private structure */
1388 err = atl2_sw_init(adapter);
1389 if (err)
1390 goto err_sw_init;
1391
1392 netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1393 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1394
1395 /* Init PHY as early as possible due to power saving issue */
1396 atl2_phy_init(&adapter->hw);
1397
1398 /* reset the controller to
1399 * put the device in a known good starting state */
1400
1401 if (atl2_reset_hw(&adapter->hw)) {
1402 err = -EIO;
1403 goto err_reset;
1404 }
1405
1406 /* copy the MAC address out of the EEPROM */
1407 atl2_read_mac_addr(&adapter->hw);
1408 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1409 if (!is_valid_ether_addr(netdev->dev_addr)) {
1410 err = -EIO;
1411 goto err_eeprom;
1412 }
1413
1414 atl2_check_options(adapter);
1415
1416 timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0);
1417
1418 timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0);
1419
1420 INIT_WORK(&adapter->reset_task, atl2_reset_task);
1421 INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1422
1423 strcpy(netdev->name, "eth%d"); /* ?? */
1424 err = register_netdev(netdev);
1425 if (err)
1426 goto err_register;
1427
1428 /* assume we have no link for now */
1429 netif_carrier_off(netdev);
1430 netif_stop_queue(netdev);
1431
1432 cards_found++;
1433
1434 return 0;
1435
1436 err_reset:
1437 err_register:
1438 err_sw_init:
1439 err_eeprom:
1440 iounmap(adapter->hw.hw_addr);
1441 err_ioremap:
1442 free_netdev(netdev);
1443 err_alloc_etherdev:
1444 pci_release_regions(pdev);
1445 err_pci_reg:
1446 err_dma:
1447 pci_disable_device(pdev);
1448 return err;
1449 }
1450
1451 /**
1452 * atl2_remove - Device Removal Routine
1453 * @pdev: PCI device information struct
1454 *
1455 * atl2_remove is called by the PCI subsystem to alert the driver
1456 * that it should release a PCI device. The could be caused by a
1457 * Hot-Plug event, or because the driver is going to be removed from
1458 * memory.
1459 */
1460 /* FIXME: write the original MAC address back in case it was changed from a
1461 * BIOS-set value, as in atl1 -- CHS */
atl2_remove(struct pci_dev * pdev)1462 static void atl2_remove(struct pci_dev *pdev)
1463 {
1464 struct net_device *netdev = pci_get_drvdata(pdev);
1465 struct atl2_adapter *adapter = netdev_priv(netdev);
1466
1467 /* flush_scheduled work may reschedule our watchdog task, so
1468 * explicitly disable watchdog tasks from being rescheduled */
1469 set_bit(__ATL2_DOWN, &adapter->flags);
1470
1471 del_timer_sync(&adapter->watchdog_timer);
1472 del_timer_sync(&adapter->phy_config_timer);
1473 cancel_work_sync(&adapter->reset_task);
1474 cancel_work_sync(&adapter->link_chg_task);
1475
1476 unregister_netdev(netdev);
1477
1478 atl2_force_ps(&adapter->hw);
1479
1480 iounmap(adapter->hw.hw_addr);
1481 pci_release_regions(pdev);
1482
1483 free_netdev(netdev);
1484
1485 pci_disable_device(pdev);
1486 }
1487
atl2_suspend(struct pci_dev * pdev,pm_message_t state)1488 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1489 {
1490 struct net_device *netdev = pci_get_drvdata(pdev);
1491 struct atl2_adapter *adapter = netdev_priv(netdev);
1492 struct atl2_hw *hw = &adapter->hw;
1493 u16 speed, duplex;
1494 u32 ctrl = 0;
1495 u32 wufc = adapter->wol;
1496
1497 #ifdef CONFIG_PM
1498 int retval = 0;
1499 #endif
1500
1501 netif_device_detach(netdev);
1502
1503 if (netif_running(netdev)) {
1504 WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1505 atl2_down(adapter);
1506 }
1507
1508 #ifdef CONFIG_PM
1509 retval = pci_save_state(pdev);
1510 if (retval)
1511 return retval;
1512 #endif
1513
1514 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1515 atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1516 if (ctrl & BMSR_LSTATUS)
1517 wufc &= ~ATLX_WUFC_LNKC;
1518
1519 if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1520 u32 ret_val;
1521 /* get current link speed & duplex */
1522 ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1523 if (ret_val) {
1524 printk(KERN_DEBUG
1525 "%s: get speed&duplex error while suspend\n",
1526 atl2_driver_name);
1527 goto wol_dis;
1528 }
1529
1530 ctrl = 0;
1531
1532 /* turn on magic packet wol */
1533 if (wufc & ATLX_WUFC_MAG)
1534 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1535
1536 /* ignore Link Chg event when Link is up */
1537 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1538
1539 /* Config MAC CTRL Register */
1540 ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1541 if (FULL_DUPLEX == adapter->link_duplex)
1542 ctrl |= MAC_CTRL_DUPLX;
1543 ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1544 ctrl |= (((u32)adapter->hw.preamble_len &
1545 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1546 ctrl |= (((u32)(adapter->hw.retry_buf &
1547 MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1548 MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1549 if (wufc & ATLX_WUFC_MAG) {
1550 /* magic packet maybe Broadcast&multicast&Unicast */
1551 ctrl |= MAC_CTRL_BC_EN;
1552 }
1553
1554 ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1555
1556 /* pcie patch */
1557 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1558 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1559 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1560 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1561 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1562 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1563
1564 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1565 goto suspend_exit;
1566 }
1567
1568 if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1569 /* link is down, so only LINK CHG WOL event enable */
1570 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1571 ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1572 ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1573
1574 /* pcie patch */
1575 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1576 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1577 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1578 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1579 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1580 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1581
1582 hw->phy_configured = false; /* re-init PHY when resume */
1583
1584 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1585
1586 goto suspend_exit;
1587 }
1588
1589 wol_dis:
1590 /* WOL disabled */
1591 ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1592
1593 /* pcie patch */
1594 ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1595 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1596 ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1597 ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1598 ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1599 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1600
1601 atl2_force_ps(hw);
1602 hw->phy_configured = false; /* re-init PHY when resume */
1603
1604 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1605
1606 suspend_exit:
1607 if (netif_running(netdev))
1608 atl2_free_irq(adapter);
1609
1610 pci_disable_device(pdev);
1611
1612 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1613
1614 return 0;
1615 }
1616
1617 #ifdef CONFIG_PM
atl2_resume(struct pci_dev * pdev)1618 static int atl2_resume(struct pci_dev *pdev)
1619 {
1620 struct net_device *netdev = pci_get_drvdata(pdev);
1621 struct atl2_adapter *adapter = netdev_priv(netdev);
1622 u32 err;
1623
1624 pci_set_power_state(pdev, PCI_D0);
1625 pci_restore_state(pdev);
1626
1627 err = pci_enable_device(pdev);
1628 if (err) {
1629 printk(KERN_ERR
1630 "atl2: Cannot enable PCI device from suspend\n");
1631 return err;
1632 }
1633
1634 pci_set_master(pdev);
1635
1636 ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1637
1638 pci_enable_wake(pdev, PCI_D3hot, 0);
1639 pci_enable_wake(pdev, PCI_D3cold, 0);
1640
1641 ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1642
1643 if (netif_running(netdev)) {
1644 err = atl2_request_irq(adapter);
1645 if (err)
1646 return err;
1647 }
1648
1649 atl2_reset_hw(&adapter->hw);
1650
1651 if (netif_running(netdev))
1652 atl2_up(adapter);
1653
1654 netif_device_attach(netdev);
1655
1656 return 0;
1657 }
1658 #endif
1659
atl2_shutdown(struct pci_dev * pdev)1660 static void atl2_shutdown(struct pci_dev *pdev)
1661 {
1662 atl2_suspend(pdev, PMSG_SUSPEND);
1663 }
1664
1665 static struct pci_driver atl2_driver = {
1666 .name = atl2_driver_name,
1667 .id_table = atl2_pci_tbl,
1668 .probe = atl2_probe,
1669 .remove = atl2_remove,
1670 /* Power Management Hooks */
1671 .suspend = atl2_suspend,
1672 #ifdef CONFIG_PM
1673 .resume = atl2_resume,
1674 #endif
1675 .shutdown = atl2_shutdown,
1676 };
1677
1678 /**
1679 * atl2_init_module - Driver Registration Routine
1680 *
1681 * atl2_init_module is the first routine called when the driver is
1682 * loaded. All it does is register with the PCI subsystem.
1683 */
atl2_init_module(void)1684 static int __init atl2_init_module(void)
1685 {
1686 return pci_register_driver(&atl2_driver);
1687 }
1688 module_init(atl2_init_module);
1689
1690 /**
1691 * atl2_exit_module - Driver Exit Cleanup Routine
1692 *
1693 * atl2_exit_module is called just before the driver is removed
1694 * from memory.
1695 */
atl2_exit_module(void)1696 static void __exit atl2_exit_module(void)
1697 {
1698 pci_unregister_driver(&atl2_driver);
1699 }
1700 module_exit(atl2_exit_module);
1701
atl2_read_pci_cfg(struct atl2_hw * hw,u32 reg,u16 * value)1702 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1703 {
1704 struct atl2_adapter *adapter = hw->back;
1705 pci_read_config_word(adapter->pdev, reg, value);
1706 }
1707
atl2_write_pci_cfg(struct atl2_hw * hw,u32 reg,u16 * value)1708 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1709 {
1710 struct atl2_adapter *adapter = hw->back;
1711 pci_write_config_word(adapter->pdev, reg, *value);
1712 }
1713
atl2_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)1714 static int atl2_get_link_ksettings(struct net_device *netdev,
1715 struct ethtool_link_ksettings *cmd)
1716 {
1717 struct atl2_adapter *adapter = netdev_priv(netdev);
1718 struct atl2_hw *hw = &adapter->hw;
1719 u32 supported, advertising;
1720
1721 supported = (SUPPORTED_10baseT_Half |
1722 SUPPORTED_10baseT_Full |
1723 SUPPORTED_100baseT_Half |
1724 SUPPORTED_100baseT_Full |
1725 SUPPORTED_Autoneg |
1726 SUPPORTED_TP);
1727 advertising = ADVERTISED_TP;
1728
1729 advertising |= ADVERTISED_Autoneg;
1730 advertising |= hw->autoneg_advertised;
1731
1732 cmd->base.port = PORT_TP;
1733 cmd->base.phy_address = 0;
1734
1735 if (adapter->link_speed != SPEED_0) {
1736 cmd->base.speed = adapter->link_speed;
1737 if (adapter->link_duplex == FULL_DUPLEX)
1738 cmd->base.duplex = DUPLEX_FULL;
1739 else
1740 cmd->base.duplex = DUPLEX_HALF;
1741 } else {
1742 cmd->base.speed = SPEED_UNKNOWN;
1743 cmd->base.duplex = DUPLEX_UNKNOWN;
1744 }
1745
1746 cmd->base.autoneg = AUTONEG_ENABLE;
1747
1748 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1749 supported);
1750 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1751 advertising);
1752
1753 return 0;
1754 }
1755
atl2_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)1756 static int atl2_set_link_ksettings(struct net_device *netdev,
1757 const struct ethtool_link_ksettings *cmd)
1758 {
1759 struct atl2_adapter *adapter = netdev_priv(netdev);
1760 struct atl2_hw *hw = &adapter->hw;
1761 u32 advertising;
1762
1763 ethtool_convert_link_mode_to_legacy_u32(&advertising,
1764 cmd->link_modes.advertising);
1765
1766 while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1767 msleep(1);
1768
1769 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1770 #define MY_ADV_MASK (ADVERTISE_10_HALF | \
1771 ADVERTISE_10_FULL | \
1772 ADVERTISE_100_HALF| \
1773 ADVERTISE_100_FULL)
1774
1775 if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1776 hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1777 hw->autoneg_advertised = MY_ADV_MASK;
1778 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) {
1779 hw->MediaType = MEDIA_TYPE_100M_FULL;
1780 hw->autoneg_advertised = ADVERTISE_100_FULL;
1781 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) {
1782 hw->MediaType = MEDIA_TYPE_100M_HALF;
1783 hw->autoneg_advertised = ADVERTISE_100_HALF;
1784 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) {
1785 hw->MediaType = MEDIA_TYPE_10M_FULL;
1786 hw->autoneg_advertised = ADVERTISE_10_FULL;
1787 } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) {
1788 hw->MediaType = MEDIA_TYPE_10M_HALF;
1789 hw->autoneg_advertised = ADVERTISE_10_HALF;
1790 } else {
1791 clear_bit(__ATL2_RESETTING, &adapter->flags);
1792 return -EINVAL;
1793 }
1794 advertising = hw->autoneg_advertised |
1795 ADVERTISED_TP | ADVERTISED_Autoneg;
1796 } else {
1797 clear_bit(__ATL2_RESETTING, &adapter->flags);
1798 return -EINVAL;
1799 }
1800
1801 /* reset the link */
1802 if (netif_running(adapter->netdev)) {
1803 atl2_down(adapter);
1804 atl2_up(adapter);
1805 } else
1806 atl2_reset_hw(&adapter->hw);
1807
1808 clear_bit(__ATL2_RESETTING, &adapter->flags);
1809 return 0;
1810 }
1811
atl2_get_msglevel(struct net_device * netdev)1812 static u32 atl2_get_msglevel(struct net_device *netdev)
1813 {
1814 return 0;
1815 }
1816
1817 /*
1818 * It's sane for this to be empty, but we might want to take advantage of this.
1819 */
atl2_set_msglevel(struct net_device * netdev,u32 data)1820 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1821 {
1822 }
1823
atl2_get_regs_len(struct net_device * netdev)1824 static int atl2_get_regs_len(struct net_device *netdev)
1825 {
1826 #define ATL2_REGS_LEN 42
1827 return sizeof(u32) * ATL2_REGS_LEN;
1828 }
1829
atl2_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1830 static void atl2_get_regs(struct net_device *netdev,
1831 struct ethtool_regs *regs, void *p)
1832 {
1833 struct atl2_adapter *adapter = netdev_priv(netdev);
1834 struct atl2_hw *hw = &adapter->hw;
1835 u32 *regs_buff = p;
1836 u16 phy_data;
1837
1838 memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1839
1840 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1841
1842 regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
1843 regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1844 regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1845 regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1846 regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1847 regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1848 regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1849 regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1850 regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1851 regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1852 regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1853 regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1854 regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1855 regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1856 regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1857 regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1858 regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1859 regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1860 regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1861 regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1862 regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1863 regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1864 regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1865 regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1866 regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1867 regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1868 regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1869 regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1870 regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1871 regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1872 regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1873 regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1874 regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1875 regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1876 regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1877 regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1878 regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1879 regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1880 regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1881
1882 atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1883 regs_buff[40] = (u32)phy_data;
1884 atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1885 regs_buff[41] = (u32)phy_data;
1886 }
1887
atl2_get_eeprom_len(struct net_device * netdev)1888 static int atl2_get_eeprom_len(struct net_device *netdev)
1889 {
1890 struct atl2_adapter *adapter = netdev_priv(netdev);
1891
1892 if (!atl2_check_eeprom_exist(&adapter->hw))
1893 return 512;
1894 else
1895 return 0;
1896 }
1897
atl2_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)1898 static int atl2_get_eeprom(struct net_device *netdev,
1899 struct ethtool_eeprom *eeprom, u8 *bytes)
1900 {
1901 struct atl2_adapter *adapter = netdev_priv(netdev);
1902 struct atl2_hw *hw = &adapter->hw;
1903 u32 *eeprom_buff;
1904 int first_dword, last_dword;
1905 int ret_val = 0;
1906 int i;
1907
1908 if (eeprom->len == 0)
1909 return -EINVAL;
1910
1911 if (atl2_check_eeprom_exist(hw))
1912 return -EINVAL;
1913
1914 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1915
1916 first_dword = eeprom->offset >> 2;
1917 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1918
1919 eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32),
1920 GFP_KERNEL);
1921 if (!eeprom_buff)
1922 return -ENOMEM;
1923
1924 for (i = first_dword; i < last_dword; i++) {
1925 if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1926 ret_val = -EIO;
1927 goto free;
1928 }
1929 }
1930
1931 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1932 eeprom->len);
1933 free:
1934 kfree(eeprom_buff);
1935
1936 return ret_val;
1937 }
1938
atl2_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)1939 static int atl2_set_eeprom(struct net_device *netdev,
1940 struct ethtool_eeprom *eeprom, u8 *bytes)
1941 {
1942 struct atl2_adapter *adapter = netdev_priv(netdev);
1943 struct atl2_hw *hw = &adapter->hw;
1944 u32 *eeprom_buff;
1945 u32 *ptr;
1946 int max_len, first_dword, last_dword, ret_val = 0;
1947 int i;
1948
1949 if (eeprom->len == 0)
1950 return -EOPNOTSUPP;
1951
1952 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1953 return -EFAULT;
1954
1955 max_len = 512;
1956
1957 first_dword = eeprom->offset >> 2;
1958 last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1959 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1960 if (!eeprom_buff)
1961 return -ENOMEM;
1962
1963 ptr = eeprom_buff;
1964
1965 if (eeprom->offset & 3) {
1966 /* need read/modify/write of first changed EEPROM word */
1967 /* only the second byte of the word is being modified */
1968 if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1969 ret_val = -EIO;
1970 goto out;
1971 }
1972 ptr++;
1973 }
1974 if (((eeprom->offset + eeprom->len) & 3)) {
1975 /*
1976 * need read/modify/write of last changed EEPROM word
1977 * only the first byte of the word is being modified
1978 */
1979 if (!atl2_read_eeprom(hw, last_dword * 4,
1980 &(eeprom_buff[last_dword - first_dword]))) {
1981 ret_val = -EIO;
1982 goto out;
1983 }
1984 }
1985
1986 /* Device's eeprom is always little-endian, word addressable */
1987 memcpy(ptr, bytes, eeprom->len);
1988
1989 for (i = 0; i < last_dword - first_dword + 1; i++) {
1990 if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
1991 ret_val = -EIO;
1992 goto out;
1993 }
1994 }
1995 out:
1996 kfree(eeprom_buff);
1997 return ret_val;
1998 }
1999
atl2_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)2000 static void atl2_get_drvinfo(struct net_device *netdev,
2001 struct ethtool_drvinfo *drvinfo)
2002 {
2003 struct atl2_adapter *adapter = netdev_priv(netdev);
2004
2005 strlcpy(drvinfo->driver, atl2_driver_name, sizeof(drvinfo->driver));
2006 strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2007 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2008 sizeof(drvinfo->bus_info));
2009 }
2010
atl2_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2011 static void atl2_get_wol(struct net_device *netdev,
2012 struct ethtool_wolinfo *wol)
2013 {
2014 struct atl2_adapter *adapter = netdev_priv(netdev);
2015
2016 wol->supported = WAKE_MAGIC;
2017 wol->wolopts = 0;
2018
2019 if (adapter->wol & ATLX_WUFC_EX)
2020 wol->wolopts |= WAKE_UCAST;
2021 if (adapter->wol & ATLX_WUFC_MC)
2022 wol->wolopts |= WAKE_MCAST;
2023 if (adapter->wol & ATLX_WUFC_BC)
2024 wol->wolopts |= WAKE_BCAST;
2025 if (adapter->wol & ATLX_WUFC_MAG)
2026 wol->wolopts |= WAKE_MAGIC;
2027 if (adapter->wol & ATLX_WUFC_LNKC)
2028 wol->wolopts |= WAKE_PHY;
2029 }
2030
atl2_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2031 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2032 {
2033 struct atl2_adapter *adapter = netdev_priv(netdev);
2034
2035 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2036 return -EOPNOTSUPP;
2037
2038 if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2039 return -EOPNOTSUPP;
2040
2041 /* these settings will always override what we currently have */
2042 adapter->wol = 0;
2043
2044 if (wol->wolopts & WAKE_MAGIC)
2045 adapter->wol |= ATLX_WUFC_MAG;
2046 if (wol->wolopts & WAKE_PHY)
2047 adapter->wol |= ATLX_WUFC_LNKC;
2048
2049 return 0;
2050 }
2051
atl2_nway_reset(struct net_device * netdev)2052 static int atl2_nway_reset(struct net_device *netdev)
2053 {
2054 struct atl2_adapter *adapter = netdev_priv(netdev);
2055 if (netif_running(netdev))
2056 atl2_reinit_locked(adapter);
2057 return 0;
2058 }
2059
2060 static const struct ethtool_ops atl2_ethtool_ops = {
2061 .get_drvinfo = atl2_get_drvinfo,
2062 .get_regs_len = atl2_get_regs_len,
2063 .get_regs = atl2_get_regs,
2064 .get_wol = atl2_get_wol,
2065 .set_wol = atl2_set_wol,
2066 .get_msglevel = atl2_get_msglevel,
2067 .set_msglevel = atl2_set_msglevel,
2068 .nway_reset = atl2_nway_reset,
2069 .get_link = ethtool_op_get_link,
2070 .get_eeprom_len = atl2_get_eeprom_len,
2071 .get_eeprom = atl2_get_eeprom,
2072 .set_eeprom = atl2_set_eeprom,
2073 .get_link_ksettings = atl2_get_link_ksettings,
2074 .set_link_ksettings = atl2_set_link_ksettings,
2075 };
2076
2077 #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
2078 (((a) & 0xff00ff00) >> 8))
2079 #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2080 #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
2081
2082 /*
2083 * Reset the transmit and receive units; mask and clear all interrupts.
2084 *
2085 * hw - Struct containing variables accessed by shared code
2086 * return : 0 or idle status (if error)
2087 */
atl2_reset_hw(struct atl2_hw * hw)2088 static s32 atl2_reset_hw(struct atl2_hw *hw)
2089 {
2090 u32 icr;
2091 u16 pci_cfg_cmd_word;
2092 int i;
2093
2094 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2095 atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2096 if ((pci_cfg_cmd_word &
2097 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2098 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2099 pci_cfg_cmd_word |=
2100 (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2101 atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2102 }
2103
2104 /* Clear Interrupt mask to stop board from generating
2105 * interrupts & Clear any pending interrupt events
2106 */
2107 /* FIXME */
2108 /* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2109 /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2110
2111 /* Issue Soft Reset to the MAC. This will reset the chip's
2112 * transmit, receive, DMA. It will not effect
2113 * the current PCI configuration. The global reset bit is self-
2114 * clearing, and should clear within a microsecond.
2115 */
2116 ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2117 wmb();
2118 msleep(1); /* delay about 1ms */
2119
2120 /* Wait at least 10ms for All module to be Idle */
2121 for (i = 0; i < 10; i++) {
2122 icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2123 if (!icr)
2124 break;
2125 msleep(1); /* delay 1 ms */
2126 cpu_relax();
2127 }
2128
2129 if (icr)
2130 return icr;
2131
2132 return 0;
2133 }
2134
2135 #define CUSTOM_SPI_CS_SETUP 2
2136 #define CUSTOM_SPI_CLK_HI 2
2137 #define CUSTOM_SPI_CLK_LO 2
2138 #define CUSTOM_SPI_CS_HOLD 2
2139 #define CUSTOM_SPI_CS_HI 3
2140
2141 static struct atl2_spi_flash_dev flash_table[] =
2142 {
2143 /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
2144 {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
2145 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
2146 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
2147 };
2148
atl2_spi_read(struct atl2_hw * hw,u32 addr,u32 * buf)2149 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2150 {
2151 int i;
2152 u32 value;
2153
2154 ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2155 ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2156
2157 value = SPI_FLASH_CTRL_WAIT_READY |
2158 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2159 SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2160 (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2161 SPI_FLASH_CTRL_CLK_HI_SHIFT |
2162 (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2163 SPI_FLASH_CTRL_CLK_LO_SHIFT |
2164 (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2165 SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2166 (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2167 SPI_FLASH_CTRL_CS_HI_SHIFT |
2168 (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2169
2170 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2171
2172 value |= SPI_FLASH_CTRL_START;
2173
2174 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2175
2176 for (i = 0; i < 10; i++) {
2177 msleep(1);
2178 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2179 if (!(value & SPI_FLASH_CTRL_START))
2180 break;
2181 }
2182
2183 if (value & SPI_FLASH_CTRL_START)
2184 return false;
2185
2186 *buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2187
2188 return true;
2189 }
2190
2191 /*
2192 * get_permanent_address
2193 * return 0 if get valid mac address,
2194 */
get_permanent_address(struct atl2_hw * hw)2195 static int get_permanent_address(struct atl2_hw *hw)
2196 {
2197 u32 Addr[2];
2198 u32 i, Control;
2199 u16 Register;
2200 u8 EthAddr[ETH_ALEN];
2201 bool KeyValid;
2202
2203 if (is_valid_ether_addr(hw->perm_mac_addr))
2204 return 0;
2205
2206 Addr[0] = 0;
2207 Addr[1] = 0;
2208
2209 if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2210 Register = 0;
2211 KeyValid = false;
2212
2213 /* Read out all EEPROM content */
2214 i = 0;
2215 while (1) {
2216 if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2217 if (KeyValid) {
2218 if (Register == REG_MAC_STA_ADDR)
2219 Addr[0] = Control;
2220 else if (Register ==
2221 (REG_MAC_STA_ADDR + 4))
2222 Addr[1] = Control;
2223 KeyValid = false;
2224 } else if ((Control & 0xff) == 0x5A) {
2225 KeyValid = true;
2226 Register = (u16) (Control >> 16);
2227 } else {
2228 /* assume data end while encount an invalid KEYWORD */
2229 break;
2230 }
2231 } else {
2232 break; /* read error */
2233 }
2234 i += 4;
2235 }
2236
2237 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2238 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2239
2240 if (is_valid_ether_addr(EthAddr)) {
2241 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2242 return 0;
2243 }
2244 return 1;
2245 }
2246
2247 /* see if SPI flash exists? */
2248 Addr[0] = 0;
2249 Addr[1] = 0;
2250 Register = 0;
2251 KeyValid = false;
2252 i = 0;
2253 while (1) {
2254 if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2255 if (KeyValid) {
2256 if (Register == REG_MAC_STA_ADDR)
2257 Addr[0] = Control;
2258 else if (Register == (REG_MAC_STA_ADDR + 4))
2259 Addr[1] = Control;
2260 KeyValid = false;
2261 } else if ((Control & 0xff) == 0x5A) {
2262 KeyValid = true;
2263 Register = (u16) (Control >> 16);
2264 } else {
2265 break; /* data end */
2266 }
2267 } else {
2268 break; /* read error */
2269 }
2270 i += 4;
2271 }
2272
2273 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2274 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2275 if (is_valid_ether_addr(EthAddr)) {
2276 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2277 return 0;
2278 }
2279 /* maybe MAC-address is from BIOS */
2280 Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2281 Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2282 *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2283 *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2284
2285 if (is_valid_ether_addr(EthAddr)) {
2286 memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2287 return 0;
2288 }
2289
2290 return 1;
2291 }
2292
2293 /*
2294 * Reads the adapter's MAC address from the EEPROM
2295 *
2296 * hw - Struct containing variables accessed by shared code
2297 */
atl2_read_mac_addr(struct atl2_hw * hw)2298 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2299 {
2300 if (get_permanent_address(hw)) {
2301 /* for test */
2302 /* FIXME: shouldn't we use eth_random_addr() here? */
2303 hw->perm_mac_addr[0] = 0x00;
2304 hw->perm_mac_addr[1] = 0x13;
2305 hw->perm_mac_addr[2] = 0x74;
2306 hw->perm_mac_addr[3] = 0x00;
2307 hw->perm_mac_addr[4] = 0x5c;
2308 hw->perm_mac_addr[5] = 0x38;
2309 }
2310
2311 memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2312
2313 return 0;
2314 }
2315
2316 /*
2317 * Hashes an address to determine its location in the multicast table
2318 *
2319 * hw - Struct containing variables accessed by shared code
2320 * mc_addr - the multicast address to hash
2321 *
2322 * atl2_hash_mc_addr
2323 * purpose
2324 * set hash value for a multicast address
2325 * hash calcu processing :
2326 * 1. calcu 32bit CRC for multicast address
2327 * 2. reverse crc with MSB to LSB
2328 */
atl2_hash_mc_addr(struct atl2_hw * hw,u8 * mc_addr)2329 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2330 {
2331 u32 crc32, value;
2332 int i;
2333
2334 value = 0;
2335 crc32 = ether_crc_le(6, mc_addr);
2336
2337 for (i = 0; i < 32; i++)
2338 value |= (((crc32 >> i) & 1) << (31 - i));
2339
2340 return value;
2341 }
2342
2343 /*
2344 * Sets the bit in the multicast table corresponding to the hash value.
2345 *
2346 * hw - Struct containing variables accessed by shared code
2347 * hash_value - Multicast address hash value
2348 */
atl2_hash_set(struct atl2_hw * hw,u32 hash_value)2349 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2350 {
2351 u32 hash_bit, hash_reg;
2352 u32 mta;
2353
2354 /* The HASH Table is a register array of 2 32-bit registers.
2355 * It is treated like an array of 64 bits. We want to set
2356 * bit BitArray[hash_value]. So we figure out what register
2357 * the bit is in, read it, OR in the new bit, then write
2358 * back the new value. The register is determined by the
2359 * upper 7 bits of the hash value and the bit within that
2360 * register are determined by the lower 5 bits of the value.
2361 */
2362 hash_reg = (hash_value >> 31) & 0x1;
2363 hash_bit = (hash_value >> 26) & 0x1F;
2364
2365 mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2366
2367 mta |= (1 << hash_bit);
2368
2369 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2370 }
2371
2372 /*
2373 * atl2_init_pcie - init PCIE module
2374 */
atl2_init_pcie(struct atl2_hw * hw)2375 static void atl2_init_pcie(struct atl2_hw *hw)
2376 {
2377 u32 value;
2378 value = LTSSM_TEST_MODE_DEF;
2379 ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2380
2381 value = PCIE_DLL_TX_CTRL1_DEF;
2382 ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2383 }
2384
atl2_init_flash_opcode(struct atl2_hw * hw)2385 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2386 {
2387 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2388 hw->flash_vendor = 0; /* ATMEL */
2389
2390 /* Init OP table */
2391 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2392 flash_table[hw->flash_vendor].cmdPROGRAM);
2393 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2394 flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2395 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2396 flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2397 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2398 flash_table[hw->flash_vendor].cmdRDID);
2399 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2400 flash_table[hw->flash_vendor].cmdWREN);
2401 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2402 flash_table[hw->flash_vendor].cmdRDSR);
2403 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2404 flash_table[hw->flash_vendor].cmdWRSR);
2405 ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2406 flash_table[hw->flash_vendor].cmdREAD);
2407 }
2408
2409 /********************************************************************
2410 * Performs basic configuration of the adapter.
2411 *
2412 * hw - Struct containing variables accessed by shared code
2413 * Assumes that the controller has previously been reset and is in a
2414 * post-reset uninitialized state. Initializes multicast table,
2415 * and Calls routines to setup link
2416 * Leaves the transmit and receive units disabled and uninitialized.
2417 ********************************************************************/
atl2_init_hw(struct atl2_hw * hw)2418 static s32 atl2_init_hw(struct atl2_hw *hw)
2419 {
2420 u32 ret_val = 0;
2421
2422 atl2_init_pcie(hw);
2423
2424 /* Zero out the Multicast HASH table */
2425 /* clear the old settings from the multicast hash table */
2426 ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2427 ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2428
2429 atl2_init_flash_opcode(hw);
2430
2431 ret_val = atl2_phy_init(hw);
2432
2433 return ret_val;
2434 }
2435
2436 /*
2437 * Detects the current speed and duplex settings of the hardware.
2438 *
2439 * hw - Struct containing variables accessed by shared code
2440 * speed - Speed of the connection
2441 * duplex - Duplex setting of the connection
2442 */
atl2_get_speed_and_duplex(struct atl2_hw * hw,u16 * speed,u16 * duplex)2443 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2444 u16 *duplex)
2445 {
2446 s32 ret_val;
2447 u16 phy_data;
2448
2449 /* Read PHY Specific Status Register (17) */
2450 ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2451 if (ret_val)
2452 return ret_val;
2453
2454 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2455 return ATLX_ERR_PHY_RES;
2456
2457 switch (phy_data & MII_ATLX_PSSR_SPEED) {
2458 case MII_ATLX_PSSR_100MBS:
2459 *speed = SPEED_100;
2460 break;
2461 case MII_ATLX_PSSR_10MBS:
2462 *speed = SPEED_10;
2463 break;
2464 default:
2465 return ATLX_ERR_PHY_SPEED;
2466 }
2467
2468 if (phy_data & MII_ATLX_PSSR_DPLX)
2469 *duplex = FULL_DUPLEX;
2470 else
2471 *duplex = HALF_DUPLEX;
2472
2473 return 0;
2474 }
2475
2476 /*
2477 * Reads the value from a PHY register
2478 * hw - Struct containing variables accessed by shared code
2479 * reg_addr - address of the PHY register to read
2480 */
atl2_read_phy_reg(struct atl2_hw * hw,u16 reg_addr,u16 * phy_data)2481 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2482 {
2483 u32 val;
2484 int i;
2485
2486 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2487 MDIO_START |
2488 MDIO_SUP_PREAMBLE |
2489 MDIO_RW |
2490 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2491 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2492
2493 wmb();
2494
2495 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2496 udelay(2);
2497 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2498 if (!(val & (MDIO_START | MDIO_BUSY)))
2499 break;
2500 wmb();
2501 }
2502 if (!(val & (MDIO_START | MDIO_BUSY))) {
2503 *phy_data = (u16)val;
2504 return 0;
2505 }
2506
2507 return ATLX_ERR_PHY;
2508 }
2509
2510 /*
2511 * Writes a value to a PHY register
2512 * hw - Struct containing variables accessed by shared code
2513 * reg_addr - address of the PHY register to write
2514 * data - data to write to the PHY
2515 */
atl2_write_phy_reg(struct atl2_hw * hw,u32 reg_addr,u16 phy_data)2516 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2517 {
2518 int i;
2519 u32 val;
2520
2521 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2522 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2523 MDIO_SUP_PREAMBLE |
2524 MDIO_START |
2525 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2526 ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2527
2528 wmb();
2529
2530 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2531 udelay(2);
2532 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2533 if (!(val & (MDIO_START | MDIO_BUSY)))
2534 break;
2535
2536 wmb();
2537 }
2538
2539 if (!(val & (MDIO_START | MDIO_BUSY)))
2540 return 0;
2541
2542 return ATLX_ERR_PHY;
2543 }
2544
2545 /*
2546 * Configures PHY autoneg and flow control advertisement settings
2547 *
2548 * hw - Struct containing variables accessed by shared code
2549 */
atl2_phy_setup_autoneg_adv(struct atl2_hw * hw)2550 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2551 {
2552 s32 ret_val;
2553 s16 mii_autoneg_adv_reg;
2554
2555 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2556 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2557
2558 /* Need to parse autoneg_advertised and set up
2559 * the appropriate PHY registers. First we will parse for
2560 * autoneg_advertised software override. Since we can advertise
2561 * a plethora of combinations, we need to check each bit
2562 * individually.
2563 */
2564
2565 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2566 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2567 * the 1000Base-T Control Register (Address 9). */
2568 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2569
2570 /* Need to parse MediaType and setup the
2571 * appropriate PHY registers. */
2572 switch (hw->MediaType) {
2573 case MEDIA_TYPE_AUTO_SENSOR:
2574 mii_autoneg_adv_reg |=
2575 (MII_AR_10T_HD_CAPS |
2576 MII_AR_10T_FD_CAPS |
2577 MII_AR_100TX_HD_CAPS|
2578 MII_AR_100TX_FD_CAPS);
2579 hw->autoneg_advertised =
2580 ADVERTISE_10_HALF |
2581 ADVERTISE_10_FULL |
2582 ADVERTISE_100_HALF|
2583 ADVERTISE_100_FULL;
2584 break;
2585 case MEDIA_TYPE_100M_FULL:
2586 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2587 hw->autoneg_advertised = ADVERTISE_100_FULL;
2588 break;
2589 case MEDIA_TYPE_100M_HALF:
2590 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2591 hw->autoneg_advertised = ADVERTISE_100_HALF;
2592 break;
2593 case MEDIA_TYPE_10M_FULL:
2594 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2595 hw->autoneg_advertised = ADVERTISE_10_FULL;
2596 break;
2597 default:
2598 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2599 hw->autoneg_advertised = ADVERTISE_10_HALF;
2600 break;
2601 }
2602
2603 /* flow control fixed to enable all */
2604 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2605
2606 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2607
2608 ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2609
2610 if (ret_val)
2611 return ret_val;
2612
2613 return 0;
2614 }
2615
2616 /*
2617 * Resets the PHY and make all config validate
2618 *
2619 * hw - Struct containing variables accessed by shared code
2620 *
2621 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2622 */
atl2_phy_commit(struct atl2_hw * hw)2623 static s32 atl2_phy_commit(struct atl2_hw *hw)
2624 {
2625 s32 ret_val;
2626 u16 phy_data;
2627
2628 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2629 ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2630 if (ret_val) {
2631 u32 val;
2632 int i;
2633 /* pcie serdes link may be down ! */
2634 for (i = 0; i < 25; i++) {
2635 msleep(1);
2636 val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2637 if (!(val & (MDIO_START | MDIO_BUSY)))
2638 break;
2639 }
2640
2641 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2642 printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2643 return ret_val;
2644 }
2645 }
2646 return 0;
2647 }
2648
atl2_phy_init(struct atl2_hw * hw)2649 static s32 atl2_phy_init(struct atl2_hw *hw)
2650 {
2651 s32 ret_val;
2652 u16 phy_val;
2653
2654 if (hw->phy_configured)
2655 return 0;
2656
2657 /* Enable PHY */
2658 ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2659 ATL2_WRITE_FLUSH(hw);
2660 msleep(1);
2661
2662 /* check if the PHY is in powersaving mode */
2663 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2664 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2665
2666 /* 024E / 124E 0r 0274 / 1274 ? */
2667 if (phy_val & 0x1000) {
2668 phy_val &= ~0x1000;
2669 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2670 }
2671
2672 msleep(1);
2673
2674 /*Enable PHY LinkChange Interrupt */
2675 ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2676 if (ret_val)
2677 return ret_val;
2678
2679 /* setup AutoNeg parameters */
2680 ret_val = atl2_phy_setup_autoneg_adv(hw);
2681 if (ret_val)
2682 return ret_val;
2683
2684 /* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2685 ret_val = atl2_phy_commit(hw);
2686 if (ret_val)
2687 return ret_val;
2688
2689 hw->phy_configured = true;
2690
2691 return ret_val;
2692 }
2693
atl2_set_mac_addr(struct atl2_hw * hw)2694 static void atl2_set_mac_addr(struct atl2_hw *hw)
2695 {
2696 u32 value;
2697 /* 00-0B-6A-F6-00-DC
2698 * 0: 6AF600DC 1: 000B
2699 * low dword */
2700 value = (((u32)hw->mac_addr[2]) << 24) |
2701 (((u32)hw->mac_addr[3]) << 16) |
2702 (((u32)hw->mac_addr[4]) << 8) |
2703 (((u32)hw->mac_addr[5]));
2704 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2705 /* hight dword */
2706 value = (((u32)hw->mac_addr[0]) << 8) |
2707 (((u32)hw->mac_addr[1]));
2708 ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2709 }
2710
2711 /*
2712 * check_eeprom_exist
2713 * return 0 if eeprom exist
2714 */
atl2_check_eeprom_exist(struct atl2_hw * hw)2715 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2716 {
2717 u32 value;
2718
2719 value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2720 if (value & SPI_FLASH_CTRL_EN_VPD) {
2721 value &= ~SPI_FLASH_CTRL_EN_VPD;
2722 ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2723 }
2724 value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2725 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2726 }
2727
2728 /* FIXME: This doesn't look right. -- CHS */
atl2_write_eeprom(struct atl2_hw * hw,u32 offset,u32 value)2729 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2730 {
2731 return true;
2732 }
2733
atl2_read_eeprom(struct atl2_hw * hw,u32 Offset,u32 * pValue)2734 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2735 {
2736 int i;
2737 u32 Control;
2738
2739 if (Offset & 0x3)
2740 return false; /* address do not align */
2741
2742 ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2743 Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2744 ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2745
2746 for (i = 0; i < 10; i++) {
2747 msleep(2);
2748 Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2749 if (Control & VPD_CAP_VPD_FLAG)
2750 break;
2751 }
2752
2753 if (Control & VPD_CAP_VPD_FLAG) {
2754 *pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2755 return true;
2756 }
2757 return false; /* timeout */
2758 }
2759
atl2_force_ps(struct atl2_hw * hw)2760 static void atl2_force_ps(struct atl2_hw *hw)
2761 {
2762 u16 phy_val;
2763
2764 atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2765 atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2766 atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2767
2768 atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2769 atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2770 atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2771 atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2772 }
2773
2774 /* This is the only thing that needs to be changed to adjust the
2775 * maximum number of ports that the driver can manage.
2776 */
2777 #define ATL2_MAX_NIC 4
2778
2779 #define OPTION_UNSET -1
2780 #define OPTION_DISABLED 0
2781 #define OPTION_ENABLED 1
2782
2783 /* All parameters are treated the same, as an integer array of values.
2784 * This macro just reduces the need to repeat the same declaration code
2785 * over and over (plus this helps to avoid typo bugs).
2786 */
2787 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2788 #ifndef module_param_array
2789 /* Module Parameters are always initialized to -1, so that the driver
2790 * can tell the difference between no user specified value or the
2791 * user asking for the default value.
2792 * The true default values are loaded in when atl2_check_options is called.
2793 *
2794 * This is a GCC extension to ANSI C.
2795 * See the item "Labeled Elements in Initializers" in the section
2796 * "Extensions to the C Language Family" of the GCC documentation.
2797 */
2798
2799 #define ATL2_PARAM(X, desc) \
2800 static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2801 MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2802 MODULE_PARM_DESC(X, desc);
2803 #else
2804 #define ATL2_PARAM(X, desc) \
2805 static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2806 static unsigned int num_##X; \
2807 module_param_array_named(X, X, int, &num_##X, 0); \
2808 MODULE_PARM_DESC(X, desc);
2809 #endif
2810
2811 /*
2812 * Transmit Memory Size
2813 * Valid Range: 64-2048
2814 * Default Value: 128
2815 */
2816 #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
2817 #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
2818 #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
2819 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2820
2821 /*
2822 * Receive Memory Block Count
2823 * Valid Range: 16-512
2824 * Default Value: 128
2825 */
2826 #define ATL2_MIN_RXD_COUNT 16
2827 #define ATL2_MAX_RXD_COUNT 512
2828 #define ATL2_DEFAULT_RXD_COUNT 64
2829 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2830
2831 /*
2832 * User Specified MediaType Override
2833 *
2834 * Valid Range: 0-5
2835 * - 0 - auto-negotiate at all supported speeds
2836 * - 1 - only link at 1000Mbps Full Duplex
2837 * - 2 - only link at 100Mbps Full Duplex
2838 * - 3 - only link at 100Mbps Half Duplex
2839 * - 4 - only link at 10Mbps Full Duplex
2840 * - 5 - only link at 10Mbps Half Duplex
2841 * Default Value: 0
2842 */
2843 ATL2_PARAM(MediaType, "MediaType Select");
2844
2845 /*
2846 * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2847 * Valid Range: 10-65535
2848 * Default Value: 45000(90ms)
2849 */
2850 #define INT_MOD_DEFAULT_CNT 100 /* 200us */
2851 #define INT_MOD_MAX_CNT 65000
2852 #define INT_MOD_MIN_CNT 50
2853 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2854
2855 /*
2856 * FlashVendor
2857 * Valid Range: 0-2
2858 * 0 - Atmel
2859 * 1 - SST
2860 * 2 - ST
2861 */
2862 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2863
2864 #define AUTONEG_ADV_DEFAULT 0x2F
2865 #define AUTONEG_ADV_MASK 0x2F
2866 #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
2867
2868 #define FLASH_VENDOR_DEFAULT 0
2869 #define FLASH_VENDOR_MIN 0
2870 #define FLASH_VENDOR_MAX 2
2871
2872 struct atl2_option {
2873 enum { enable_option, range_option, list_option } type;
2874 char *name;
2875 char *err;
2876 int def;
2877 union {
2878 struct { /* range_option info */
2879 int min;
2880 int max;
2881 } r;
2882 struct { /* list_option info */
2883 int nr;
2884 struct atl2_opt_list { int i; char *str; } *p;
2885 } l;
2886 } arg;
2887 };
2888
atl2_validate_option(int * value,struct atl2_option * opt)2889 static int atl2_validate_option(int *value, struct atl2_option *opt)
2890 {
2891 int i;
2892 struct atl2_opt_list *ent;
2893
2894 if (*value == OPTION_UNSET) {
2895 *value = opt->def;
2896 return 0;
2897 }
2898
2899 switch (opt->type) {
2900 case enable_option:
2901 switch (*value) {
2902 case OPTION_ENABLED:
2903 printk(KERN_INFO "%s Enabled\n", opt->name);
2904 return 0;
2905 case OPTION_DISABLED:
2906 printk(KERN_INFO "%s Disabled\n", opt->name);
2907 return 0;
2908 }
2909 break;
2910 case range_option:
2911 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2912 printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2913 return 0;
2914 }
2915 break;
2916 case list_option:
2917 for (i = 0; i < opt->arg.l.nr; i++) {
2918 ent = &opt->arg.l.p[i];
2919 if (*value == ent->i) {
2920 if (ent->str[0] != '\0')
2921 printk(KERN_INFO "%s\n", ent->str);
2922 return 0;
2923 }
2924 }
2925 break;
2926 default:
2927 BUG();
2928 }
2929
2930 printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2931 opt->name, *value, opt->err);
2932 *value = opt->def;
2933 return -1;
2934 }
2935
2936 /**
2937 * atl2_check_options - Range Checking for Command Line Parameters
2938 * @adapter: board private structure
2939 *
2940 * This routine checks all command line parameters for valid user
2941 * input. If an invalid value is given, or if no user specified
2942 * value exists, a default value is used. The final value is stored
2943 * in a variable in the adapter structure.
2944 */
atl2_check_options(struct atl2_adapter * adapter)2945 static void atl2_check_options(struct atl2_adapter *adapter)
2946 {
2947 int val;
2948 struct atl2_option opt;
2949 int bd = adapter->bd_number;
2950 if (bd >= ATL2_MAX_NIC) {
2951 printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2952 bd);
2953 printk(KERN_NOTICE "Using defaults for all values\n");
2954 #ifndef module_param_array
2955 bd = ATL2_MAX_NIC;
2956 #endif
2957 }
2958
2959 /* Bytes of Transmit Memory */
2960 opt.type = range_option;
2961 opt.name = "Bytes of Transmit Memory";
2962 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2963 opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2964 opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2965 opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2966 #ifdef module_param_array
2967 if (num_TxMemSize > bd) {
2968 #endif
2969 val = TxMemSize[bd];
2970 atl2_validate_option(&val, &opt);
2971 adapter->txd_ring_size = ((u32) val) * 1024;
2972 #ifdef module_param_array
2973 } else
2974 adapter->txd_ring_size = ((u32)opt.def) * 1024;
2975 #endif
2976 /* txs ring size: */
2977 adapter->txs_ring_size = adapter->txd_ring_size / 128;
2978 if (adapter->txs_ring_size > 160)
2979 adapter->txs_ring_size = 160;
2980
2981 /* Receive Memory Block Count */
2982 opt.type = range_option;
2983 opt.name = "Number of receive memory block";
2984 opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
2985 opt.def = ATL2_DEFAULT_RXD_COUNT;
2986 opt.arg.r.min = ATL2_MIN_RXD_COUNT;
2987 opt.arg.r.max = ATL2_MAX_RXD_COUNT;
2988 #ifdef module_param_array
2989 if (num_RxMemBlock > bd) {
2990 #endif
2991 val = RxMemBlock[bd];
2992 atl2_validate_option(&val, &opt);
2993 adapter->rxd_ring_size = (u32)val;
2994 /* FIXME */
2995 /* ((u16)val)&~1; */ /* even number */
2996 #ifdef module_param_array
2997 } else
2998 adapter->rxd_ring_size = (u32)opt.def;
2999 #endif
3000 /* init RXD Flow control value */
3001 adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3002 adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3003 (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3004 (adapter->rxd_ring_size / 12);
3005
3006 /* Interrupt Moderate Timer */
3007 opt.type = range_option;
3008 opt.name = "Interrupt Moderate Timer";
3009 opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3010 opt.def = INT_MOD_DEFAULT_CNT;
3011 opt.arg.r.min = INT_MOD_MIN_CNT;
3012 opt.arg.r.max = INT_MOD_MAX_CNT;
3013 #ifdef module_param_array
3014 if (num_IntModTimer > bd) {
3015 #endif
3016 val = IntModTimer[bd];
3017 atl2_validate_option(&val, &opt);
3018 adapter->imt = (u16) val;
3019 #ifdef module_param_array
3020 } else
3021 adapter->imt = (u16)(opt.def);
3022 #endif
3023 /* Flash Vendor */
3024 opt.type = range_option;
3025 opt.name = "SPI Flash Vendor";
3026 opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3027 opt.def = FLASH_VENDOR_DEFAULT;
3028 opt.arg.r.min = FLASH_VENDOR_MIN;
3029 opt.arg.r.max = FLASH_VENDOR_MAX;
3030 #ifdef module_param_array
3031 if (num_FlashVendor > bd) {
3032 #endif
3033 val = FlashVendor[bd];
3034 atl2_validate_option(&val, &opt);
3035 adapter->hw.flash_vendor = (u8) val;
3036 #ifdef module_param_array
3037 } else
3038 adapter->hw.flash_vendor = (u8)(opt.def);
3039 #endif
3040 /* MediaType */
3041 opt.type = range_option;
3042 opt.name = "Speed/Duplex Selection";
3043 opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3044 opt.def = MEDIA_TYPE_AUTO_SENSOR;
3045 opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3046 opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3047 #ifdef module_param_array
3048 if (num_MediaType > bd) {
3049 #endif
3050 val = MediaType[bd];
3051 atl2_validate_option(&val, &opt);
3052 adapter->hw.MediaType = (u16) val;
3053 #ifdef module_param_array
3054 } else
3055 adapter->hw.MediaType = (u16)(opt.def);
3056 #endif
3057 }
3058