• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54 
55 
56 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS		128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61 
62 /* Superblock */
63 
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 
68 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 		if (bch_has_feature_large_bucket(sb)) {
70 			unsigned int max, order;
71 
72 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 			order = le16_to_cpu(s->bucket_size);
74 			/*
75 			 * bcache tool will make sure the overflow won't
76 			 * happen, an error message here is enough.
77 			 */
78 			if (order > max)
79 				pr_err("Bucket size (1 << %u) overflows\n",
80 					order);
81 			bucket_size = 1 << order;
82 		} else if (bch_has_feature_obso_large_bucket(sb)) {
83 			bucket_size +=
84 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 		}
86 	}
87 
88 	return bucket_size;
89 }
90 
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92 				     struct cache_sb_disk *s)
93 {
94 	const char *err;
95 	unsigned int i;
96 
97 	sb->first_bucket= le16_to_cpu(s->first_bucket);
98 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99 	sb->bucket_size	= get_bucket_size(sb, s);
100 
101 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Too many buckets";
109 	if (sb->nbuckets > LONG_MAX)
110 		goto err;
111 
112 	err = "Not enough buckets";
113 	if (sb->nbuckets < 1 << 7)
114 		goto err;
115 
116 	err = "Bad block size (not power of 2)";
117 	if (!is_power_of_2(sb->block_size))
118 		goto err;
119 
120 	err = "Bad block size (larger than page size)";
121 	if (sb->block_size > PAGE_SECTORS)
122 		goto err;
123 
124 	err = "Bad bucket size (not power of 2)";
125 	if (!is_power_of_2(sb->bucket_size))
126 		goto err;
127 
128 	err = "Bad bucket size (smaller than page size)";
129 	if (sb->bucket_size < PAGE_SECTORS)
130 		goto err;
131 
132 	err = "Invalid superblock: device too small";
133 	if (get_capacity(bdev->bd_disk) <
134 	    sb->bucket_size * sb->nbuckets)
135 		goto err;
136 
137 	err = "Bad UUID";
138 	if (bch_is_zero(sb->set_uuid, 16))
139 		goto err;
140 
141 	err = "Bad cache device number in set";
142 	if (!sb->nr_in_set ||
143 	    sb->nr_in_set <= sb->nr_this_dev ||
144 	    sb->nr_in_set > MAX_CACHES_PER_SET)
145 		goto err;
146 
147 	err = "Journal buckets not sequential";
148 	for (i = 0; i < sb->keys; i++)
149 		if (sb->d[i] != sb->first_bucket + i)
150 			goto err;
151 
152 	err = "Too many journal buckets";
153 	if (sb->first_bucket + sb->keys > sb->nbuckets)
154 		goto err;
155 
156 	err = "Invalid superblock: first bucket comes before end of super";
157 	if (sb->first_bucket * sb->bucket_size < 16)
158 		goto err;
159 
160 	err = NULL;
161 err:
162 	return err;
163 }
164 
165 
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 			      struct cache_sb_disk **res)
168 {
169 	const char *err;
170 	struct cache_sb_disk *s;
171 	struct page *page;
172 	unsigned int i;
173 
174 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 	if (IS_ERR(page))
177 		return "IO error";
178 	s = page_address(page) + offset_in_page(SB_OFFSET);
179 
180 	sb->offset		= le64_to_cpu(s->offset);
181 	sb->version		= le64_to_cpu(s->version);
182 
183 	memcpy(sb->magic,	s->magic, 16);
184 	memcpy(sb->uuid,	s->uuid, 16);
185 	memcpy(sb->set_uuid,	s->set_uuid, 16);
186 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187 
188 	sb->flags		= le64_to_cpu(s->flags);
189 	sb->seq			= le64_to_cpu(s->seq);
190 	sb->last_mount		= le32_to_cpu(s->last_mount);
191 	sb->keys		= le16_to_cpu(s->keys);
192 
193 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 		sb->d[i] = le64_to_cpu(s->d[i]);
195 
196 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 		 sb->version, sb->flags, sb->seq, sb->keys);
198 
199 	err = "Not a bcache superblock (bad offset)";
200 	if (sb->offset != SB_SECTOR)
201 		goto err;
202 
203 	err = "Not a bcache superblock (bad magic)";
204 	if (memcmp(sb->magic, bcache_magic, 16))
205 		goto err;
206 
207 	err = "Bad checksum";
208 	if (s->csum != csum_set(s))
209 		goto err;
210 
211 	err = "Bad UUID";
212 	if (bch_is_zero(sb->uuid, 16))
213 		goto err;
214 
215 	sb->block_size	= le16_to_cpu(s->block_size);
216 
217 	err = "Superblock block size smaller than device block size";
218 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 		goto err;
220 
221 	switch (sb->version) {
222 	case BCACHE_SB_VERSION_BDEV:
223 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224 		break;
225 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 		sb->data_offset	= le64_to_cpu(s->data_offset);
228 
229 		err = "Bad data offset";
230 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 			goto err;
232 
233 		break;
234 	case BCACHE_SB_VERSION_CDEV:
235 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 		err = read_super_common(sb, bdev, s);
237 		if (err)
238 			goto err;
239 		break;
240 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 		/*
242 		 * Feature bits are needed in read_super_common(),
243 		 * convert them firstly.
244 		 */
245 		sb->feature_compat = le64_to_cpu(s->feature_compat);
246 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 
249 		/* Check incompatible features */
250 		err = "Unsupported compatible feature found";
251 		if (bch_has_unknown_compat_features(sb))
252 			goto err;
253 
254 		err = "Unsupported read-only compatible feature found";
255 		if (bch_has_unknown_ro_compat_features(sb))
256 			goto err;
257 
258 		err = "Unsupported incompatible feature found";
259 		if (bch_has_unknown_incompat_features(sb))
260 			goto err;
261 
262 		err = read_super_common(sb, bdev, s);
263 		if (err)
264 			goto err;
265 		break;
266 	default:
267 		err = "Unsupported superblock version";
268 		goto err;
269 	}
270 
271 	sb->last_mount = (u32)ktime_get_real_seconds();
272 	*res = s;
273 	return NULL;
274 err:
275 	put_page(page);
276 	return err;
277 }
278 
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 	struct cached_dev *dc = bio->bi_private;
282 
283 	if (bio->bi_status)
284 		bch_count_backing_io_errors(dc, bio);
285 
286 	closure_put(&dc->sb_write);
287 }
288 
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 		struct bio *bio)
291 {
292 	unsigned int i;
293 
294 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 	bio->bi_iter.bi_sector	= SB_SECTOR;
296 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 			offset_in_page(out));
298 
299 	out->offset		= cpu_to_le64(sb->offset);
300 
301 	memcpy(out->uuid,	sb->uuid, 16);
302 	memcpy(out->set_uuid,	sb->set_uuid, 16);
303 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
304 
305 	out->flags		= cpu_to_le64(sb->flags);
306 	out->seq		= cpu_to_le64(sb->seq);
307 
308 	out->last_mount		= cpu_to_le32(sb->last_mount);
309 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
310 	out->keys		= cpu_to_le16(sb->keys);
311 
312 	for (i = 0; i < sb->keys; i++)
313 		out->d[i] = cpu_to_le64(sb->d[i]);
314 
315 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
317 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 	}
320 
321 	out->version		= cpu_to_le64(sb->version);
322 	out->csum = csum_set(out);
323 
324 	pr_debug("ver %llu, flags %llu, seq %llu\n",
325 		 sb->version, sb->flags, sb->seq);
326 
327 	submit_bio(bio);
328 }
329 
bch_write_bdev_super_unlock(struct closure * cl)330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333 
334 	up(&dc->sb_write_mutex);
335 }
336 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339 	struct closure *cl = &dc->sb_write;
340 	struct bio *bio = &dc->sb_bio;
341 
342 	down(&dc->sb_write_mutex);
343 	closure_init(cl, parent);
344 
345 	bio_init(bio, dc->sb_bv, 1);
346 	bio_set_dev(bio, dc->bdev);
347 	bio->bi_end_io	= write_bdev_super_endio;
348 	bio->bi_private = dc;
349 
350 	closure_get(cl);
351 	/* I/O request sent to backing device */
352 	__write_super(&dc->sb, dc->sb_disk, bio);
353 
354 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
355 }
356 
write_super_endio(struct bio * bio)357 static void write_super_endio(struct bio *bio)
358 {
359 	struct cache *ca = bio->bi_private;
360 
361 	/* is_read = 0 */
362 	bch_count_io_errors(ca, bio->bi_status, 0,
363 			    "writing superblock");
364 	closure_put(&ca->set->sb_write);
365 }
366 
bcache_write_super_unlock(struct closure * cl)367 static void bcache_write_super_unlock(struct closure *cl)
368 {
369 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
370 
371 	up(&c->sb_write_mutex);
372 }
373 
bcache_write_super(struct cache_set * c)374 void bcache_write_super(struct cache_set *c)
375 {
376 	struct closure *cl = &c->sb_write;
377 	struct cache *ca = c->cache;
378 	struct bio *bio = &ca->sb_bio;
379 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
380 
381 	down(&c->sb_write_mutex);
382 	closure_init(cl, &c->cl);
383 
384 	ca->sb.seq++;
385 
386 	if (ca->sb.version < version)
387 		ca->sb.version = version;
388 
389 	bio_init(bio, ca->sb_bv, 1);
390 	bio_set_dev(bio, ca->bdev);
391 	bio->bi_end_io	= write_super_endio;
392 	bio->bi_private = ca;
393 
394 	closure_get(cl);
395 	__write_super(&ca->sb, ca->sb_disk, bio);
396 
397 	closure_return_with_destructor(cl, bcache_write_super_unlock);
398 }
399 
400 /* UUID io */
401 
uuid_endio(struct bio * bio)402 static void uuid_endio(struct bio *bio)
403 {
404 	struct closure *cl = bio->bi_private;
405 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
406 
407 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
408 	bch_bbio_free(bio, c);
409 	closure_put(cl);
410 }
411 
uuid_io_unlock(struct closure * cl)412 static void uuid_io_unlock(struct closure *cl)
413 {
414 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
415 
416 	up(&c->uuid_write_mutex);
417 }
418 
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)419 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
420 		    struct bkey *k, struct closure *parent)
421 {
422 	struct closure *cl = &c->uuid_write;
423 	struct uuid_entry *u;
424 	unsigned int i;
425 	char buf[80];
426 
427 	BUG_ON(!parent);
428 	down(&c->uuid_write_mutex);
429 	closure_init(cl, parent);
430 
431 	for (i = 0; i < KEY_PTRS(k); i++) {
432 		struct bio *bio = bch_bbio_alloc(c);
433 
434 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
435 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
436 
437 		bio->bi_end_io	= uuid_endio;
438 		bio->bi_private = cl;
439 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
440 		bch_bio_map(bio, c->uuids);
441 
442 		bch_submit_bbio(bio, c, k, i);
443 
444 		if (op != REQ_OP_WRITE)
445 			break;
446 	}
447 
448 	bch_extent_to_text(buf, sizeof(buf), k);
449 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
450 
451 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
452 		if (!bch_is_zero(u->uuid, 16))
453 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
454 				 u - c->uuids, u->uuid, u->label,
455 				 u->first_reg, u->last_reg, u->invalidated);
456 
457 	closure_return_with_destructor(cl, uuid_io_unlock);
458 }
459 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)460 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
461 {
462 	struct bkey *k = &j->uuid_bucket;
463 
464 	if (__bch_btree_ptr_invalid(c, k))
465 		return "bad uuid pointer";
466 
467 	bkey_copy(&c->uuid_bucket, k);
468 	uuid_io(c, REQ_OP_READ, 0, k, cl);
469 
470 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
471 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
472 		struct uuid_entry	*u1 = (void *) c->uuids;
473 		int i;
474 
475 		closure_sync(cl);
476 
477 		/*
478 		 * Since the new uuid entry is bigger than the old, we have to
479 		 * convert starting at the highest memory address and work down
480 		 * in order to do it in place
481 		 */
482 
483 		for (i = c->nr_uuids - 1;
484 		     i >= 0;
485 		     --i) {
486 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
487 			memcpy(u1[i].label,	u0[i].label, 32);
488 
489 			u1[i].first_reg		= u0[i].first_reg;
490 			u1[i].last_reg		= u0[i].last_reg;
491 			u1[i].invalidated	= u0[i].invalidated;
492 
493 			u1[i].flags	= 0;
494 			u1[i].sectors	= 0;
495 		}
496 	}
497 
498 	return NULL;
499 }
500 
__uuid_write(struct cache_set * c)501 static int __uuid_write(struct cache_set *c)
502 {
503 	BKEY_PADDED(key) k;
504 	struct closure cl;
505 	struct cache *ca = c->cache;
506 	unsigned int size;
507 
508 	closure_init_stack(&cl);
509 	lockdep_assert_held(&bch_register_lock);
510 
511 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
512 		return 1;
513 
514 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
515 	SET_KEY_SIZE(&k.key, size);
516 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
517 	closure_sync(&cl);
518 
519 	/* Only one bucket used for uuid write */
520 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
521 
522 	bkey_copy(&c->uuid_bucket, &k.key);
523 	bkey_put(c, &k.key);
524 	return 0;
525 }
526 
bch_uuid_write(struct cache_set * c)527 int bch_uuid_write(struct cache_set *c)
528 {
529 	int ret = __uuid_write(c);
530 
531 	if (!ret)
532 		bch_journal_meta(c, NULL);
533 
534 	return ret;
535 }
536 
uuid_find(struct cache_set * c,const char * uuid)537 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
538 {
539 	struct uuid_entry *u;
540 
541 	for (u = c->uuids;
542 	     u < c->uuids + c->nr_uuids; u++)
543 		if (!memcmp(u->uuid, uuid, 16))
544 			return u;
545 
546 	return NULL;
547 }
548 
uuid_find_empty(struct cache_set * c)549 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
550 {
551 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552 
553 	return uuid_find(c, zero_uuid);
554 }
555 
556 /*
557  * Bucket priorities/gens:
558  *
559  * For each bucket, we store on disk its
560  *   8 bit gen
561  *  16 bit priority
562  *
563  * See alloc.c for an explanation of the gen. The priority is used to implement
564  * lru (and in the future other) cache replacement policies; for most purposes
565  * it's just an opaque integer.
566  *
567  * The gens and the priorities don't have a whole lot to do with each other, and
568  * it's actually the gens that must be written out at specific times - it's no
569  * big deal if the priorities don't get written, if we lose them we just reuse
570  * buckets in suboptimal order.
571  *
572  * On disk they're stored in a packed array, and in as many buckets are required
573  * to fit them all. The buckets we use to store them form a list; the journal
574  * header points to the first bucket, the first bucket points to the second
575  * bucket, et cetera.
576  *
577  * This code is used by the allocation code; periodically (whenever it runs out
578  * of buckets to allocate from) the allocation code will invalidate some
579  * buckets, but it can't use those buckets until their new gens are safely on
580  * disk.
581  */
582 
prio_endio(struct bio * bio)583 static void prio_endio(struct bio *bio)
584 {
585 	struct cache *ca = bio->bi_private;
586 
587 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
588 	bch_bbio_free(bio, ca->set);
589 	closure_put(&ca->prio);
590 }
591 
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)592 static void prio_io(struct cache *ca, uint64_t bucket, int op,
593 		    unsigned long op_flags)
594 {
595 	struct closure *cl = &ca->prio;
596 	struct bio *bio = bch_bbio_alloc(ca->set);
597 
598 	closure_init_stack(cl);
599 
600 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
601 	bio_set_dev(bio, ca->bdev);
602 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
603 
604 	bio->bi_end_io	= prio_endio;
605 	bio->bi_private = ca;
606 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
607 	bch_bio_map(bio, ca->disk_buckets);
608 
609 	closure_bio_submit(ca->set, bio, &ca->prio);
610 	closure_sync(cl);
611 }
612 
bch_prio_write(struct cache * ca,bool wait)613 int bch_prio_write(struct cache *ca, bool wait)
614 {
615 	int i;
616 	struct bucket *b;
617 	struct closure cl;
618 
619 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
620 		 fifo_used(&ca->free[RESERVE_PRIO]),
621 		 fifo_used(&ca->free[RESERVE_NONE]),
622 		 fifo_used(&ca->free_inc));
623 
624 	/*
625 	 * Pre-check if there are enough free buckets. In the non-blocking
626 	 * scenario it's better to fail early rather than starting to allocate
627 	 * buckets and do a cleanup later in case of failure.
628 	 */
629 	if (!wait) {
630 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
631 			       fifo_used(&ca->free[RESERVE_NONE]);
632 		if (prio_buckets(ca) > avail)
633 			return -ENOMEM;
634 	}
635 
636 	closure_init_stack(&cl);
637 
638 	lockdep_assert_held(&ca->set->bucket_lock);
639 
640 	ca->disk_buckets->seq++;
641 
642 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
643 			&ca->meta_sectors_written);
644 
645 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
646 		long bucket;
647 		struct prio_set *p = ca->disk_buckets;
648 		struct bucket_disk *d = p->data;
649 		struct bucket_disk *end = d + prios_per_bucket(ca);
650 
651 		for (b = ca->buckets + i * prios_per_bucket(ca);
652 		     b < ca->buckets + ca->sb.nbuckets && d < end;
653 		     b++, d++) {
654 			d->prio = cpu_to_le16(b->prio);
655 			d->gen = b->gen;
656 		}
657 
658 		p->next_bucket	= ca->prio_buckets[i + 1];
659 		p->magic	= pset_magic(&ca->sb);
660 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
661 
662 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
663 		BUG_ON(bucket == -1);
664 
665 		mutex_unlock(&ca->set->bucket_lock);
666 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
667 		mutex_lock(&ca->set->bucket_lock);
668 
669 		ca->prio_buckets[i] = bucket;
670 		atomic_dec_bug(&ca->buckets[bucket].pin);
671 	}
672 
673 	mutex_unlock(&ca->set->bucket_lock);
674 
675 	bch_journal_meta(ca->set, &cl);
676 	closure_sync(&cl);
677 
678 	mutex_lock(&ca->set->bucket_lock);
679 
680 	/*
681 	 * Don't want the old priorities to get garbage collected until after we
682 	 * finish writing the new ones, and they're journalled
683 	 */
684 	for (i = 0; i < prio_buckets(ca); i++) {
685 		if (ca->prio_last_buckets[i])
686 			__bch_bucket_free(ca,
687 				&ca->buckets[ca->prio_last_buckets[i]]);
688 
689 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
690 	}
691 	return 0;
692 }
693 
prio_read(struct cache * ca,uint64_t bucket)694 static int prio_read(struct cache *ca, uint64_t bucket)
695 {
696 	struct prio_set *p = ca->disk_buckets;
697 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
698 	struct bucket *b;
699 	unsigned int bucket_nr = 0;
700 	int ret = -EIO;
701 
702 	for (b = ca->buckets;
703 	     b < ca->buckets + ca->sb.nbuckets;
704 	     b++, d++) {
705 		if (d == end) {
706 			ca->prio_buckets[bucket_nr] = bucket;
707 			ca->prio_last_buckets[bucket_nr] = bucket;
708 			bucket_nr++;
709 
710 			prio_io(ca, bucket, REQ_OP_READ, 0);
711 
712 			if (p->csum !=
713 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
714 				pr_warn("bad csum reading priorities\n");
715 				goto out;
716 			}
717 
718 			if (p->magic != pset_magic(&ca->sb)) {
719 				pr_warn("bad magic reading priorities\n");
720 				goto out;
721 			}
722 
723 			bucket = p->next_bucket;
724 			d = p->data;
725 		}
726 
727 		b->prio = le16_to_cpu(d->prio);
728 		b->gen = b->last_gc = d->gen;
729 	}
730 
731 	ret = 0;
732 out:
733 	return ret;
734 }
735 
736 /* Bcache device */
737 
open_dev(struct block_device * b,fmode_t mode)738 static int open_dev(struct block_device *b, fmode_t mode)
739 {
740 	struct bcache_device *d = b->bd_disk->private_data;
741 
742 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
743 		return -ENXIO;
744 
745 	closure_get(&d->cl);
746 	return 0;
747 }
748 
release_dev(struct gendisk * b,fmode_t mode)749 static void release_dev(struct gendisk *b, fmode_t mode)
750 {
751 	struct bcache_device *d = b->private_data;
752 
753 	closure_put(&d->cl);
754 }
755 
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)756 static int ioctl_dev(struct block_device *b, fmode_t mode,
757 		     unsigned int cmd, unsigned long arg)
758 {
759 	struct bcache_device *d = b->bd_disk->private_data;
760 
761 	return d->ioctl(d, mode, cmd, arg);
762 }
763 
764 static const struct block_device_operations bcache_cached_ops = {
765 	.submit_bio	= cached_dev_submit_bio,
766 	.open		= open_dev,
767 	.release	= release_dev,
768 	.ioctl		= ioctl_dev,
769 	.owner		= THIS_MODULE,
770 };
771 
772 static const struct block_device_operations bcache_flash_ops = {
773 	.submit_bio	= flash_dev_submit_bio,
774 	.open		= open_dev,
775 	.release	= release_dev,
776 	.ioctl		= ioctl_dev,
777 	.owner		= THIS_MODULE,
778 };
779 
bcache_device_stop(struct bcache_device * d)780 void bcache_device_stop(struct bcache_device *d)
781 {
782 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
783 		/*
784 		 * closure_fn set to
785 		 * - cached device: cached_dev_flush()
786 		 * - flash dev: flash_dev_flush()
787 		 */
788 		closure_queue(&d->cl);
789 }
790 
bcache_device_unlink(struct bcache_device * d)791 static void bcache_device_unlink(struct bcache_device *d)
792 {
793 	lockdep_assert_held(&bch_register_lock);
794 
795 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
796 		struct cache *ca = d->c->cache;
797 
798 		sysfs_remove_link(&d->c->kobj, d->name);
799 		sysfs_remove_link(&d->kobj, "cache");
800 
801 		bd_unlink_disk_holder(ca->bdev, d->disk);
802 	}
803 }
804 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)805 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
806 			       const char *name)
807 {
808 	struct cache *ca = c->cache;
809 	int ret;
810 
811 	bd_link_disk_holder(ca->bdev, d->disk);
812 
813 	snprintf(d->name, BCACHEDEVNAME_SIZE,
814 		 "%s%u", name, d->id);
815 
816 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
817 	if (ret < 0)
818 		pr_err("Couldn't create device -> cache set symlink\n");
819 
820 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
821 	if (ret < 0)
822 		pr_err("Couldn't create cache set -> device symlink\n");
823 
824 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
825 }
826 
bcache_device_detach(struct bcache_device * d)827 static void bcache_device_detach(struct bcache_device *d)
828 {
829 	lockdep_assert_held(&bch_register_lock);
830 
831 	atomic_dec(&d->c->attached_dev_nr);
832 
833 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
834 		struct uuid_entry *u = d->c->uuids + d->id;
835 
836 		SET_UUID_FLASH_ONLY(u, 0);
837 		memcpy(u->uuid, invalid_uuid, 16);
838 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
839 		bch_uuid_write(d->c);
840 	}
841 
842 	bcache_device_unlink(d);
843 
844 	d->c->devices[d->id] = NULL;
845 	closure_put(&d->c->caching);
846 	d->c = NULL;
847 }
848 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)849 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
850 				 unsigned int id)
851 {
852 	d->id = id;
853 	d->c = c;
854 	c->devices[id] = d;
855 
856 	if (id >= c->devices_max_used)
857 		c->devices_max_used = id + 1;
858 
859 	closure_get(&c->caching);
860 }
861 
first_minor_to_idx(int first_minor)862 static inline int first_minor_to_idx(int first_minor)
863 {
864 	return (first_minor/BCACHE_MINORS);
865 }
866 
idx_to_first_minor(int idx)867 static inline int idx_to_first_minor(int idx)
868 {
869 	return (idx * BCACHE_MINORS);
870 }
871 
bcache_device_free(struct bcache_device * d)872 static void bcache_device_free(struct bcache_device *d)
873 {
874 	struct gendisk *disk = d->disk;
875 
876 	lockdep_assert_held(&bch_register_lock);
877 
878 	if (disk)
879 		pr_info("%s stopped\n", disk->disk_name);
880 	else
881 		pr_err("bcache device (NULL gendisk) stopped\n");
882 
883 	if (d->c)
884 		bcache_device_detach(d);
885 
886 	if (disk) {
887 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
888 
889 		if (disk_added)
890 			del_gendisk(disk);
891 
892 		if (disk->queue)
893 			blk_cleanup_queue(disk->queue);
894 
895 		ida_simple_remove(&bcache_device_idx,
896 				  first_minor_to_idx(disk->first_minor));
897 		if (disk_added)
898 			put_disk(disk);
899 	}
900 
901 	bioset_exit(&d->bio_split);
902 	kvfree(d->full_dirty_stripes);
903 	kvfree(d->stripe_sectors_dirty);
904 
905 	closure_debug_destroy(&d->cl);
906 }
907 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)908 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
909 		sector_t sectors, struct block_device *cached_bdev,
910 		const struct block_device_operations *ops)
911 {
912 	struct request_queue *q;
913 	const size_t max_stripes = min_t(size_t, INT_MAX,
914 					 SIZE_MAX / sizeof(atomic_t));
915 	uint64_t n;
916 	int idx;
917 
918 	if (!d->stripe_size)
919 		d->stripe_size = 1 << 31;
920 	else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
921 		d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
922 
923 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
924 	if (!n || n > max_stripes) {
925 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
926 			n);
927 		return -ENOMEM;
928 	}
929 	d->nr_stripes = n;
930 
931 	n = d->nr_stripes * sizeof(atomic_t);
932 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
933 	if (!d->stripe_sectors_dirty)
934 		return -ENOMEM;
935 
936 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
937 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
938 	if (!d->full_dirty_stripes)
939 		goto out_free_stripe_sectors_dirty;
940 
941 	idx = ida_simple_get(&bcache_device_idx, 0,
942 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
943 	if (idx < 0)
944 		goto out_free_full_dirty_stripes;
945 
946 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
947 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
948 		goto out_ida_remove;
949 
950 	d->disk = alloc_disk(BCACHE_MINORS);
951 	if (!d->disk)
952 		goto out_bioset_exit;
953 
954 	set_capacity(d->disk, sectors);
955 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
956 
957 	d->disk->major		= bcache_major;
958 	d->disk->first_minor	= idx_to_first_minor(idx);
959 	d->disk->fops		= ops;
960 	d->disk->private_data	= d;
961 
962 	q = blk_alloc_queue(NUMA_NO_NODE);
963 	if (!q)
964 		return -ENOMEM;
965 
966 	d->disk->queue			= q;
967 	q->limits.max_hw_sectors	= UINT_MAX;
968 	q->limits.max_sectors		= UINT_MAX;
969 	q->limits.max_segment_size	= UINT_MAX;
970 	q->limits.max_segments		= BIO_MAX_PAGES;
971 	blk_queue_max_discard_sectors(q, UINT_MAX);
972 	q->limits.discard_granularity	= 512;
973 	q->limits.io_min		= block_size;
974 	q->limits.logical_block_size	= block_size;
975 	q->limits.physical_block_size	= block_size;
976 
977 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
978 		/*
979 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
980 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
981 		 */
982 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
983 			d->disk->disk_name, q->limits.logical_block_size,
984 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
985 
986 		/* This also adjusts physical block size/min io size if needed */
987 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
988 	}
989 
990 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
991 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
992 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
993 
994 	blk_queue_write_cache(q, true, true);
995 
996 	return 0;
997 
998 out_bioset_exit:
999 	bioset_exit(&d->bio_split);
1000 out_ida_remove:
1001 	ida_simple_remove(&bcache_device_idx, idx);
1002 out_free_full_dirty_stripes:
1003 	kvfree(d->full_dirty_stripes);
1004 out_free_stripe_sectors_dirty:
1005 	kvfree(d->stripe_sectors_dirty);
1006 	return -ENOMEM;
1007 
1008 }
1009 
1010 /* Cached device */
1011 
calc_cached_dev_sectors(struct cache_set * c)1012 static void calc_cached_dev_sectors(struct cache_set *c)
1013 {
1014 	uint64_t sectors = 0;
1015 	struct cached_dev *dc;
1016 
1017 	list_for_each_entry(dc, &c->cached_devs, list)
1018 		sectors += bdev_sectors(dc->bdev);
1019 
1020 	c->cached_dev_sectors = sectors;
1021 }
1022 
1023 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1024 static int cached_dev_status_update(void *arg)
1025 {
1026 	struct cached_dev *dc = arg;
1027 	struct request_queue *q;
1028 
1029 	/*
1030 	 * If this delayed worker is stopping outside, directly quit here.
1031 	 * dc->io_disable might be set via sysfs interface, so check it
1032 	 * here too.
1033 	 */
1034 	while (!kthread_should_stop() && !dc->io_disable) {
1035 		q = bdev_get_queue(dc->bdev);
1036 		if (blk_queue_dying(q))
1037 			dc->offline_seconds++;
1038 		else
1039 			dc->offline_seconds = 0;
1040 
1041 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1042 			pr_err("%s: device offline for %d seconds\n",
1043 			       dc->backing_dev_name,
1044 			       BACKING_DEV_OFFLINE_TIMEOUT);
1045 			pr_err("%s: disable I/O request due to backing device offline\n",
1046 			       dc->disk.name);
1047 			dc->io_disable = true;
1048 			/* let others know earlier that io_disable is true */
1049 			smp_mb();
1050 			bcache_device_stop(&dc->disk);
1051 			break;
1052 		}
1053 		schedule_timeout_interruptible(HZ);
1054 	}
1055 
1056 	wait_for_kthread_stop();
1057 	return 0;
1058 }
1059 
1060 
bch_cached_dev_run(struct cached_dev * dc)1061 int bch_cached_dev_run(struct cached_dev *dc)
1062 {
1063 	struct bcache_device *d = &dc->disk;
1064 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1065 	char *env[] = {
1066 		"DRIVER=bcache",
1067 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1068 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1069 		NULL,
1070 	};
1071 
1072 	if (dc->io_disable) {
1073 		pr_err("I/O disabled on cached dev %s\n",
1074 		       dc->backing_dev_name);
1075 		kfree(env[1]);
1076 		kfree(env[2]);
1077 		kfree(buf);
1078 		return -EIO;
1079 	}
1080 
1081 	if (atomic_xchg(&dc->running, 1)) {
1082 		kfree(env[1]);
1083 		kfree(env[2]);
1084 		kfree(buf);
1085 		pr_info("cached dev %s is running already\n",
1086 		       dc->backing_dev_name);
1087 		return -EBUSY;
1088 	}
1089 
1090 	if (!d->c &&
1091 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1092 		struct closure cl;
1093 
1094 		closure_init_stack(&cl);
1095 
1096 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1097 		bch_write_bdev_super(dc, &cl);
1098 		closure_sync(&cl);
1099 	}
1100 
1101 	add_disk(d->disk);
1102 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1103 	/*
1104 	 * won't show up in the uevent file, use udevadm monitor -e instead
1105 	 * only class / kset properties are persistent
1106 	 */
1107 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1108 	kfree(env[1]);
1109 	kfree(env[2]);
1110 	kfree(buf);
1111 
1112 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1113 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1114 			      &d->kobj, "bcache")) {
1115 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1116 		return -ENOMEM;
1117 	}
1118 
1119 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1120 					       dc, "bcache_status_update");
1121 	if (IS_ERR(dc->status_update_thread)) {
1122 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1130  * work dc->writeback_rate_update is running. Wait until the routine
1131  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1132  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1133  * seconds, give up waiting here and continue to cancel it too.
1134  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1135 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1136 {
1137 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1138 
1139 	do {
1140 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1141 			      &dc->disk.flags))
1142 			break;
1143 		time_out--;
1144 		schedule_timeout_interruptible(1);
1145 	} while (time_out > 0);
1146 
1147 	if (time_out == 0)
1148 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1149 
1150 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1151 }
1152 
cached_dev_detach_finish(struct work_struct * w)1153 static void cached_dev_detach_finish(struct work_struct *w)
1154 {
1155 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1156 	struct closure cl;
1157 
1158 	closure_init_stack(&cl);
1159 
1160 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1161 	BUG_ON(refcount_read(&dc->count));
1162 
1163 
1164 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1165 		cancel_writeback_rate_update_dwork(dc);
1166 
1167 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1168 		kthread_stop(dc->writeback_thread);
1169 		dc->writeback_thread = NULL;
1170 	}
1171 
1172 	memset(&dc->sb.set_uuid, 0, 16);
1173 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1174 
1175 	bch_write_bdev_super(dc, &cl);
1176 	closure_sync(&cl);
1177 
1178 	mutex_lock(&bch_register_lock);
1179 
1180 	calc_cached_dev_sectors(dc->disk.c);
1181 	bcache_device_detach(&dc->disk);
1182 	list_move(&dc->list, &uncached_devices);
1183 
1184 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1185 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1186 
1187 	mutex_unlock(&bch_register_lock);
1188 
1189 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1190 
1191 	/* Drop ref we took in cached_dev_detach() */
1192 	closure_put(&dc->disk.cl);
1193 }
1194 
bch_cached_dev_detach(struct cached_dev * dc)1195 void bch_cached_dev_detach(struct cached_dev *dc)
1196 {
1197 	lockdep_assert_held(&bch_register_lock);
1198 
1199 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1200 		return;
1201 
1202 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1203 		return;
1204 
1205 	/*
1206 	 * Block the device from being closed and freed until we're finished
1207 	 * detaching
1208 	 */
1209 	closure_get(&dc->disk.cl);
1210 
1211 	bch_writeback_queue(dc);
1212 
1213 	cached_dev_put(dc);
1214 }
1215 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1216 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1217 			  uint8_t *set_uuid)
1218 {
1219 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1220 	struct uuid_entry *u;
1221 	struct cached_dev *exist_dc, *t;
1222 	int ret = 0;
1223 
1224 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1225 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1226 		return -ENOENT;
1227 
1228 	if (dc->disk.c) {
1229 		pr_err("Can't attach %s: already attached\n",
1230 		       dc->backing_dev_name);
1231 		return -EINVAL;
1232 	}
1233 
1234 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1235 		pr_err("Can't attach %s: shutting down\n",
1236 		       dc->backing_dev_name);
1237 		return -EINVAL;
1238 	}
1239 
1240 	if (dc->sb.block_size < c->cache->sb.block_size) {
1241 		/* Will die */
1242 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1243 		       dc->backing_dev_name);
1244 		return -EINVAL;
1245 	}
1246 
1247 	/* Check whether already attached */
1248 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1249 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1250 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1251 				dc->backing_dev_name);
1252 
1253 			return -EINVAL;
1254 		}
1255 	}
1256 
1257 	u = uuid_find(c, dc->sb.uuid);
1258 
1259 	if (u &&
1260 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1261 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1262 		memcpy(u->uuid, invalid_uuid, 16);
1263 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1264 		u = NULL;
1265 	}
1266 
1267 	if (!u) {
1268 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1269 			pr_err("Couldn't find uuid for %s in set\n",
1270 			       dc->backing_dev_name);
1271 			return -ENOENT;
1272 		}
1273 
1274 		u = uuid_find_empty(c);
1275 		if (!u) {
1276 			pr_err("Not caching %s, no room for UUID\n",
1277 			       dc->backing_dev_name);
1278 			return -EINVAL;
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Deadlocks since we're called via sysfs...
1284 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1285 	 */
1286 
1287 	if (bch_is_zero(u->uuid, 16)) {
1288 		struct closure cl;
1289 
1290 		closure_init_stack(&cl);
1291 
1292 		memcpy(u->uuid, dc->sb.uuid, 16);
1293 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1294 		u->first_reg = u->last_reg = rtime;
1295 		bch_uuid_write(c);
1296 
1297 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1298 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1299 
1300 		bch_write_bdev_super(dc, &cl);
1301 		closure_sync(&cl);
1302 	} else {
1303 		u->last_reg = rtime;
1304 		bch_uuid_write(c);
1305 	}
1306 
1307 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1308 	list_move(&dc->list, &c->cached_devs);
1309 	calc_cached_dev_sectors(c);
1310 
1311 	/*
1312 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1313 	 * cached_dev_get()
1314 	 */
1315 	smp_wmb();
1316 	refcount_set(&dc->count, 1);
1317 
1318 	/* Block writeback thread, but spawn it */
1319 	down_write(&dc->writeback_lock);
1320 	if (bch_cached_dev_writeback_start(dc)) {
1321 		up_write(&dc->writeback_lock);
1322 		pr_err("Couldn't start writeback facilities for %s\n",
1323 		       dc->disk.disk->disk_name);
1324 		return -ENOMEM;
1325 	}
1326 
1327 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1328 		atomic_set(&dc->has_dirty, 1);
1329 		bch_writeback_queue(dc);
1330 	}
1331 
1332 	bch_sectors_dirty_init(&dc->disk);
1333 
1334 	ret = bch_cached_dev_run(dc);
1335 	if (ret && (ret != -EBUSY)) {
1336 		up_write(&dc->writeback_lock);
1337 		/*
1338 		 * bch_register_lock is held, bcache_device_stop() is not
1339 		 * able to be directly called. The kthread and kworker
1340 		 * created previously in bch_cached_dev_writeback_start()
1341 		 * have to be stopped manually here.
1342 		 */
1343 		kthread_stop(dc->writeback_thread);
1344 		cancel_writeback_rate_update_dwork(dc);
1345 		pr_err("Couldn't run cached device %s\n",
1346 		       dc->backing_dev_name);
1347 		return ret;
1348 	}
1349 
1350 	bcache_device_link(&dc->disk, c, "bdev");
1351 	atomic_inc(&c->attached_dev_nr);
1352 
1353 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1354 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1355 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1356 		set_disk_ro(dc->disk.disk, 1);
1357 	}
1358 
1359 	/* Allow the writeback thread to proceed */
1360 	up_write(&dc->writeback_lock);
1361 
1362 	pr_info("Caching %s as %s on set %pU\n",
1363 		dc->backing_dev_name,
1364 		dc->disk.disk->disk_name,
1365 		dc->disk.c->set_uuid);
1366 	return 0;
1367 }
1368 
1369 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1370 void bch_cached_dev_release(struct kobject *kobj)
1371 {
1372 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1373 					     disk.kobj);
1374 	kfree(dc);
1375 	module_put(THIS_MODULE);
1376 }
1377 
cached_dev_free(struct closure * cl)1378 static void cached_dev_free(struct closure *cl)
1379 {
1380 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1381 
1382 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1383 		cancel_writeback_rate_update_dwork(dc);
1384 
1385 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1386 		kthread_stop(dc->writeback_thread);
1387 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1388 		kthread_stop(dc->status_update_thread);
1389 
1390 	mutex_lock(&bch_register_lock);
1391 
1392 	if (atomic_read(&dc->running))
1393 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1394 	bcache_device_free(&dc->disk);
1395 	list_del(&dc->list);
1396 
1397 	mutex_unlock(&bch_register_lock);
1398 
1399 	if (dc->sb_disk)
1400 		put_page(virt_to_page(dc->sb_disk));
1401 
1402 	if (!IS_ERR_OR_NULL(dc->bdev))
1403 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1404 
1405 	wake_up(&unregister_wait);
1406 
1407 	kobject_put(&dc->disk.kobj);
1408 }
1409 
cached_dev_flush(struct closure * cl)1410 static void cached_dev_flush(struct closure *cl)
1411 {
1412 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1413 	struct bcache_device *d = &dc->disk;
1414 
1415 	mutex_lock(&bch_register_lock);
1416 	bcache_device_unlink(d);
1417 	mutex_unlock(&bch_register_lock);
1418 
1419 	bch_cache_accounting_destroy(&dc->accounting);
1420 	kobject_del(&d->kobj);
1421 
1422 	continue_at(cl, cached_dev_free, system_wq);
1423 }
1424 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1425 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1426 {
1427 	int ret;
1428 	struct io *io;
1429 	struct request_queue *q = bdev_get_queue(dc->bdev);
1430 
1431 	__module_get(THIS_MODULE);
1432 	INIT_LIST_HEAD(&dc->list);
1433 	closure_init(&dc->disk.cl, NULL);
1434 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1435 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1436 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1437 	sema_init(&dc->sb_write_mutex, 1);
1438 	INIT_LIST_HEAD(&dc->io_lru);
1439 	spin_lock_init(&dc->io_lock);
1440 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1441 
1442 	dc->sequential_cutoff		= 4 << 20;
1443 
1444 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1445 		list_add(&io->lru, &dc->io_lru);
1446 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1447 	}
1448 
1449 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1450 
1451 	if (dc->disk.stripe_size)
1452 		dc->partial_stripes_expensive =
1453 			q->limits.raid_partial_stripes_expensive;
1454 
1455 	ret = bcache_device_init(&dc->disk, block_size,
1456 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1457 			 dc->bdev, &bcache_cached_ops);
1458 	if (ret)
1459 		return ret;
1460 
1461 	blk_queue_io_opt(dc->disk.disk->queue,
1462 		max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1463 
1464 	atomic_set(&dc->io_errors, 0);
1465 	dc->io_disable = false;
1466 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1467 	/* default to auto */
1468 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1469 
1470 	bch_cached_dev_request_init(dc);
1471 	bch_cached_dev_writeback_init(dc);
1472 	return 0;
1473 }
1474 
1475 /* Cached device - bcache superblock */
1476 
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cached_dev * dc)1477 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1478 				 struct block_device *bdev,
1479 				 struct cached_dev *dc)
1480 {
1481 	const char *err = "cannot allocate memory";
1482 	struct cache_set *c;
1483 	int ret = -ENOMEM;
1484 
1485 	bdevname(bdev, dc->backing_dev_name);
1486 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1487 	dc->bdev = bdev;
1488 	dc->bdev->bd_holder = dc;
1489 	dc->sb_disk = sb_disk;
1490 
1491 	if (cached_dev_init(dc, sb->block_size << 9))
1492 		goto err;
1493 
1494 	err = "error creating kobject";
1495 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1496 			"bcache"))
1497 		goto err;
1498 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1499 		goto err;
1500 
1501 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1502 
1503 	list_add(&dc->list, &uncached_devices);
1504 	/* attach to a matched cache set if it exists */
1505 	list_for_each_entry(c, &bch_cache_sets, list)
1506 		bch_cached_dev_attach(dc, c, NULL);
1507 
1508 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1509 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1510 		err = "failed to run cached device";
1511 		ret = bch_cached_dev_run(dc);
1512 		if (ret)
1513 			goto err;
1514 	}
1515 
1516 	return 0;
1517 err:
1518 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1519 	bcache_device_stop(&dc->disk);
1520 	return ret;
1521 }
1522 
1523 /* Flash only volumes */
1524 
1525 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1526 void bch_flash_dev_release(struct kobject *kobj)
1527 {
1528 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1529 					       kobj);
1530 	kfree(d);
1531 }
1532 
flash_dev_free(struct closure * cl)1533 static void flash_dev_free(struct closure *cl)
1534 {
1535 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1536 
1537 	mutex_lock(&bch_register_lock);
1538 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1539 			&d->c->flash_dev_dirty_sectors);
1540 	bcache_device_free(d);
1541 	mutex_unlock(&bch_register_lock);
1542 	kobject_put(&d->kobj);
1543 }
1544 
flash_dev_flush(struct closure * cl)1545 static void flash_dev_flush(struct closure *cl)
1546 {
1547 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1548 
1549 	mutex_lock(&bch_register_lock);
1550 	bcache_device_unlink(d);
1551 	mutex_unlock(&bch_register_lock);
1552 	kobject_del(&d->kobj);
1553 	continue_at(cl, flash_dev_free, system_wq);
1554 }
1555 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1556 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1557 {
1558 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1559 					  GFP_KERNEL);
1560 	if (!d)
1561 		return -ENOMEM;
1562 
1563 	closure_init(&d->cl, NULL);
1564 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1565 
1566 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1567 
1568 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1569 			NULL, &bcache_flash_ops))
1570 		goto err;
1571 
1572 	bcache_device_attach(d, c, u - c->uuids);
1573 	bch_sectors_dirty_init(d);
1574 	bch_flash_dev_request_init(d);
1575 	add_disk(d->disk);
1576 
1577 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1578 		goto err;
1579 
1580 	bcache_device_link(d, c, "volume");
1581 
1582 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1583 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1584 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1585 		set_disk_ro(d->disk, 1);
1586 	}
1587 
1588 	return 0;
1589 err:
1590 	kobject_put(&d->kobj);
1591 	return -ENOMEM;
1592 }
1593 
flash_devs_run(struct cache_set * c)1594 static int flash_devs_run(struct cache_set *c)
1595 {
1596 	int ret = 0;
1597 	struct uuid_entry *u;
1598 
1599 	for (u = c->uuids;
1600 	     u < c->uuids + c->nr_uuids && !ret;
1601 	     u++)
1602 		if (UUID_FLASH_ONLY(u))
1603 			ret = flash_dev_run(c, u);
1604 
1605 	return ret;
1606 }
1607 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1608 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1609 {
1610 	struct uuid_entry *u;
1611 
1612 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1613 		return -EINTR;
1614 
1615 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1616 		return -EPERM;
1617 
1618 	u = uuid_find_empty(c);
1619 	if (!u) {
1620 		pr_err("Can't create volume, no room for UUID\n");
1621 		return -EINVAL;
1622 	}
1623 
1624 	get_random_bytes(u->uuid, 16);
1625 	memset(u->label, 0, 32);
1626 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1627 
1628 	SET_UUID_FLASH_ONLY(u, 1);
1629 	u->sectors = size >> 9;
1630 
1631 	bch_uuid_write(c);
1632 
1633 	return flash_dev_run(c, u);
1634 }
1635 
bch_cached_dev_error(struct cached_dev * dc)1636 bool bch_cached_dev_error(struct cached_dev *dc)
1637 {
1638 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1639 		return false;
1640 
1641 	dc->io_disable = true;
1642 	/* make others know io_disable is true earlier */
1643 	smp_mb();
1644 
1645 	pr_err("stop %s: too many IO errors on backing device %s\n",
1646 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1647 
1648 	bcache_device_stop(&dc->disk);
1649 	return true;
1650 }
1651 
1652 /* Cache set */
1653 
1654 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1655 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1656 {
1657 	struct va_format vaf;
1658 	va_list args;
1659 
1660 	if (c->on_error != ON_ERROR_PANIC &&
1661 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1662 		return false;
1663 
1664 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1665 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1666 
1667 	/*
1668 	 * XXX: we can be called from atomic context
1669 	 * acquire_console_sem();
1670 	 */
1671 
1672 	va_start(args, fmt);
1673 
1674 	vaf.fmt = fmt;
1675 	vaf.va = &args;
1676 
1677 	pr_err("error on %pU: %pV, disabling caching\n",
1678 	       c->set_uuid, &vaf);
1679 
1680 	va_end(args);
1681 
1682 	if (c->on_error == ON_ERROR_PANIC)
1683 		panic("panic forced after error\n");
1684 
1685 	bch_cache_set_unregister(c);
1686 	return true;
1687 }
1688 
1689 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1690 void bch_cache_set_release(struct kobject *kobj)
1691 {
1692 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1693 
1694 	kfree(c);
1695 	module_put(THIS_MODULE);
1696 }
1697 
cache_set_free(struct closure * cl)1698 static void cache_set_free(struct closure *cl)
1699 {
1700 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1701 	struct cache *ca;
1702 
1703 	debugfs_remove(c->debug);
1704 
1705 	bch_open_buckets_free(c);
1706 	bch_btree_cache_free(c);
1707 	bch_journal_free(c);
1708 
1709 	mutex_lock(&bch_register_lock);
1710 	bch_bset_sort_state_free(&c->sort);
1711 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1712 
1713 	ca = c->cache;
1714 	if (ca) {
1715 		ca->set = NULL;
1716 		c->cache = NULL;
1717 		kobject_put(&ca->kobj);
1718 	}
1719 
1720 
1721 	if (c->moving_gc_wq)
1722 		destroy_workqueue(c->moving_gc_wq);
1723 	bioset_exit(&c->bio_split);
1724 	mempool_exit(&c->fill_iter);
1725 	mempool_exit(&c->bio_meta);
1726 	mempool_exit(&c->search);
1727 	kfree(c->devices);
1728 
1729 	list_del(&c->list);
1730 	mutex_unlock(&bch_register_lock);
1731 
1732 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1733 	wake_up(&unregister_wait);
1734 
1735 	closure_debug_destroy(&c->cl);
1736 	kobject_put(&c->kobj);
1737 }
1738 
cache_set_flush(struct closure * cl)1739 static void cache_set_flush(struct closure *cl)
1740 {
1741 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1742 	struct cache *ca = c->cache;
1743 	struct btree *b;
1744 
1745 	bch_cache_accounting_destroy(&c->accounting);
1746 
1747 	kobject_put(&c->internal);
1748 	kobject_del(&c->kobj);
1749 
1750 	if (!IS_ERR_OR_NULL(c->gc_thread))
1751 		kthread_stop(c->gc_thread);
1752 
1753 	if (!IS_ERR(c->root))
1754 		list_add(&c->root->list, &c->btree_cache);
1755 
1756 	/*
1757 	 * Avoid flushing cached nodes if cache set is retiring
1758 	 * due to too many I/O errors detected.
1759 	 */
1760 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1761 		list_for_each_entry(b, &c->btree_cache, list) {
1762 			mutex_lock(&b->write_lock);
1763 			if (btree_node_dirty(b))
1764 				__bch_btree_node_write(b, NULL);
1765 			mutex_unlock(&b->write_lock);
1766 		}
1767 
1768 	if (ca->alloc_thread)
1769 		kthread_stop(ca->alloc_thread);
1770 
1771 	if (c->journal.cur) {
1772 		cancel_delayed_work_sync(&c->journal.work);
1773 		/* flush last journal entry if needed */
1774 		c->journal.work.work.func(&c->journal.work.work);
1775 	}
1776 
1777 	closure_return(cl);
1778 }
1779 
1780 /*
1781  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1782  * cache set is unregistering due to too many I/O errors. In this condition,
1783  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1784  * value and whether the broken cache has dirty data:
1785  *
1786  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1787  *  BCH_CACHED_STOP_AUTO               0               NO
1788  *  BCH_CACHED_STOP_AUTO               1               YES
1789  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1790  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1791  *
1792  * The expected behavior is, if stop_when_cache_set_failed is configured to
1793  * "auto" via sysfs interface, the bcache device will not be stopped if the
1794  * backing device is clean on the broken cache device.
1795  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1796 static void conditional_stop_bcache_device(struct cache_set *c,
1797 					   struct bcache_device *d,
1798 					   struct cached_dev *dc)
1799 {
1800 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1801 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1802 			d->disk->disk_name, c->set_uuid);
1803 		bcache_device_stop(d);
1804 	} else if (atomic_read(&dc->has_dirty)) {
1805 		/*
1806 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1807 		 * and dc->has_dirty == 1
1808 		 */
1809 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1810 			d->disk->disk_name);
1811 		/*
1812 		 * There might be a small time gap that cache set is
1813 		 * released but bcache device is not. Inside this time
1814 		 * gap, regular I/O requests will directly go into
1815 		 * backing device as no cache set attached to. This
1816 		 * behavior may also introduce potential inconsistence
1817 		 * data in writeback mode while cache is dirty.
1818 		 * Therefore before calling bcache_device_stop() due
1819 		 * to a broken cache device, dc->io_disable should be
1820 		 * explicitly set to true.
1821 		 */
1822 		dc->io_disable = true;
1823 		/* make others know io_disable is true earlier */
1824 		smp_mb();
1825 		bcache_device_stop(d);
1826 	} else {
1827 		/*
1828 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1829 		 * and dc->has_dirty == 0
1830 		 */
1831 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1832 			d->disk->disk_name);
1833 	}
1834 }
1835 
__cache_set_unregister(struct closure * cl)1836 static void __cache_set_unregister(struct closure *cl)
1837 {
1838 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1839 	struct cached_dev *dc;
1840 	struct bcache_device *d;
1841 	size_t i;
1842 
1843 	mutex_lock(&bch_register_lock);
1844 
1845 	for (i = 0; i < c->devices_max_used; i++) {
1846 		d = c->devices[i];
1847 		if (!d)
1848 			continue;
1849 
1850 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1851 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1852 			dc = container_of(d, struct cached_dev, disk);
1853 			bch_cached_dev_detach(dc);
1854 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855 				conditional_stop_bcache_device(c, d, dc);
1856 		} else {
1857 			bcache_device_stop(d);
1858 		}
1859 	}
1860 
1861 	mutex_unlock(&bch_register_lock);
1862 
1863 	continue_at(cl, cache_set_flush, system_wq);
1864 }
1865 
bch_cache_set_stop(struct cache_set * c)1866 void bch_cache_set_stop(struct cache_set *c)
1867 {
1868 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1869 		/* closure_fn set to __cache_set_unregister() */
1870 		closure_queue(&c->caching);
1871 }
1872 
bch_cache_set_unregister(struct cache_set * c)1873 void bch_cache_set_unregister(struct cache_set *c)
1874 {
1875 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1876 	bch_cache_set_stop(c);
1877 }
1878 
1879 #define alloc_meta_bucket_pages(gfp, sb)		\
1880 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1881 
bch_cache_set_alloc(struct cache_sb * sb)1882 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1883 {
1884 	int iter_size;
1885 	struct cache *ca = container_of(sb, struct cache, sb);
1886 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1887 
1888 	if (!c)
1889 		return NULL;
1890 
1891 	__module_get(THIS_MODULE);
1892 	closure_init(&c->cl, NULL);
1893 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1894 
1895 	closure_init(&c->caching, &c->cl);
1896 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1897 
1898 	/* Maybe create continue_at_noreturn() and use it here? */
1899 	closure_set_stopped(&c->cl);
1900 	closure_put(&c->cl);
1901 
1902 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1903 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1904 
1905 	bch_cache_accounting_init(&c->accounting, &c->cl);
1906 
1907 	memcpy(c->set_uuid, sb->set_uuid, 16);
1908 
1909 	c->cache		= ca;
1910 	c->cache->set		= c;
1911 	c->bucket_bits		= ilog2(sb->bucket_size);
1912 	c->block_bits		= ilog2(sb->block_size);
1913 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1914 	c->devices_max_used	= 0;
1915 	atomic_set(&c->attached_dev_nr, 0);
1916 	c->btree_pages		= meta_bucket_pages(sb);
1917 	if (c->btree_pages > BTREE_MAX_PAGES)
1918 		c->btree_pages = max_t(int, c->btree_pages / 4,
1919 				       BTREE_MAX_PAGES);
1920 
1921 	sema_init(&c->sb_write_mutex, 1);
1922 	mutex_init(&c->bucket_lock);
1923 	init_waitqueue_head(&c->btree_cache_wait);
1924 	spin_lock_init(&c->btree_cannibalize_lock);
1925 	init_waitqueue_head(&c->bucket_wait);
1926 	init_waitqueue_head(&c->gc_wait);
1927 	sema_init(&c->uuid_write_mutex, 1);
1928 
1929 	spin_lock_init(&c->btree_gc_time.lock);
1930 	spin_lock_init(&c->btree_split_time.lock);
1931 	spin_lock_init(&c->btree_read_time.lock);
1932 
1933 	bch_moving_init_cache_set(c);
1934 
1935 	INIT_LIST_HEAD(&c->list);
1936 	INIT_LIST_HEAD(&c->cached_devs);
1937 	INIT_LIST_HEAD(&c->btree_cache);
1938 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1939 	INIT_LIST_HEAD(&c->btree_cache_freed);
1940 	INIT_LIST_HEAD(&c->data_buckets);
1941 
1942 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1943 		sizeof(struct btree_iter_set);
1944 
1945 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1946 	if (!c->devices)
1947 		goto err;
1948 
1949 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1950 		goto err;
1951 
1952 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1953 			sizeof(struct bbio) +
1954 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1955 		goto err;
1956 
1957 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1958 		goto err;
1959 
1960 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1961 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1962 		goto err;
1963 
1964 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1965 	if (!c->uuids)
1966 		goto err;
1967 
1968 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1969 	if (!c->moving_gc_wq)
1970 		goto err;
1971 
1972 	if (bch_journal_alloc(c))
1973 		goto err;
1974 
1975 	if (bch_btree_cache_alloc(c))
1976 		goto err;
1977 
1978 	if (bch_open_buckets_alloc(c))
1979 		goto err;
1980 
1981 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1982 		goto err;
1983 
1984 	c->congested_read_threshold_us	= 2000;
1985 	c->congested_write_threshold_us	= 20000;
1986 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1987 	c->idle_max_writeback_rate_enabled = 1;
1988 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1989 
1990 	return c;
1991 err:
1992 	bch_cache_set_unregister(c);
1993 	return NULL;
1994 }
1995 
run_cache_set(struct cache_set * c)1996 static int run_cache_set(struct cache_set *c)
1997 {
1998 	const char *err = "cannot allocate memory";
1999 	struct cached_dev *dc, *t;
2000 	struct cache *ca = c->cache;
2001 	struct closure cl;
2002 	LIST_HEAD(journal);
2003 	struct journal_replay *l;
2004 
2005 	closure_init_stack(&cl);
2006 
2007 	c->nbuckets = ca->sb.nbuckets;
2008 	set_gc_sectors(c);
2009 
2010 	if (CACHE_SYNC(&c->cache->sb)) {
2011 		struct bkey *k;
2012 		struct jset *j;
2013 
2014 		err = "cannot allocate memory for journal";
2015 		if (bch_journal_read(c, &journal))
2016 			goto err;
2017 
2018 		pr_debug("btree_journal_read() done\n");
2019 
2020 		err = "no journal entries found";
2021 		if (list_empty(&journal))
2022 			goto err;
2023 
2024 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2025 
2026 		err = "IO error reading priorities";
2027 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2028 			goto err;
2029 
2030 		/*
2031 		 * If prio_read() fails it'll call cache_set_error and we'll
2032 		 * tear everything down right away, but if we perhaps checked
2033 		 * sooner we could avoid journal replay.
2034 		 */
2035 
2036 		k = &j->btree_root;
2037 
2038 		err = "bad btree root";
2039 		if (__bch_btree_ptr_invalid(c, k))
2040 			goto err;
2041 
2042 		err = "error reading btree root";
2043 		c->root = bch_btree_node_get(c, NULL, k,
2044 					     j->btree_level,
2045 					     true, NULL);
2046 		if (IS_ERR(c->root))
2047 			goto err;
2048 
2049 		list_del_init(&c->root->list);
2050 		rw_unlock(true, c->root);
2051 
2052 		err = uuid_read(c, j, &cl);
2053 		if (err)
2054 			goto err;
2055 
2056 		err = "error in recovery";
2057 		if (bch_btree_check(c))
2058 			goto err;
2059 
2060 		bch_journal_mark(c, &journal);
2061 		bch_initial_gc_finish(c);
2062 		pr_debug("btree_check() done\n");
2063 
2064 		/*
2065 		 * bcache_journal_next() can't happen sooner, or
2066 		 * btree_gc_finish() will give spurious errors about last_gc >
2067 		 * gc_gen - this is a hack but oh well.
2068 		 */
2069 		bch_journal_next(&c->journal);
2070 
2071 		err = "error starting allocator thread";
2072 		if (bch_cache_allocator_start(ca))
2073 			goto err;
2074 
2075 		/*
2076 		 * First place it's safe to allocate: btree_check() and
2077 		 * btree_gc_finish() have to run before we have buckets to
2078 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2079 		 * entry to be written so bcache_journal_next() has to be called
2080 		 * first.
2081 		 *
2082 		 * If the uuids were in the old format we have to rewrite them
2083 		 * before the next journal entry is written:
2084 		 */
2085 		if (j->version < BCACHE_JSET_VERSION_UUID)
2086 			__uuid_write(c);
2087 
2088 		err = "bcache: replay journal failed";
2089 		if (bch_journal_replay(c, &journal))
2090 			goto err;
2091 	} else {
2092 		unsigned int j;
2093 
2094 		pr_notice("invalidating existing data\n");
2095 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2096 					2, SB_JOURNAL_BUCKETS);
2097 
2098 		for (j = 0; j < ca->sb.keys; j++)
2099 			ca->sb.d[j] = ca->sb.first_bucket + j;
2100 
2101 		bch_initial_gc_finish(c);
2102 
2103 		err = "error starting allocator thread";
2104 		if (bch_cache_allocator_start(ca))
2105 			goto err;
2106 
2107 		mutex_lock(&c->bucket_lock);
2108 		bch_prio_write(ca, true);
2109 		mutex_unlock(&c->bucket_lock);
2110 
2111 		err = "cannot allocate new UUID bucket";
2112 		if (__uuid_write(c))
2113 			goto err;
2114 
2115 		err = "cannot allocate new btree root";
2116 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2117 		if (IS_ERR(c->root))
2118 			goto err;
2119 
2120 		mutex_lock(&c->root->write_lock);
2121 		bkey_copy_key(&c->root->key, &MAX_KEY);
2122 		bch_btree_node_write(c->root, &cl);
2123 		mutex_unlock(&c->root->write_lock);
2124 
2125 		bch_btree_set_root(c->root);
2126 		rw_unlock(true, c->root);
2127 
2128 		/*
2129 		 * We don't want to write the first journal entry until
2130 		 * everything is set up - fortunately journal entries won't be
2131 		 * written until the SET_CACHE_SYNC() here:
2132 		 */
2133 		SET_CACHE_SYNC(&c->cache->sb, true);
2134 
2135 		bch_journal_next(&c->journal);
2136 		bch_journal_meta(c, &cl);
2137 	}
2138 
2139 	err = "error starting gc thread";
2140 	if (bch_gc_thread_start(c))
2141 		goto err;
2142 
2143 	closure_sync(&cl);
2144 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2145 	bcache_write_super(c);
2146 
2147 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2148 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2149 
2150 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2151 		bch_cached_dev_attach(dc, c, NULL);
2152 
2153 	flash_devs_run(c);
2154 
2155 	bch_journal_space_reserve(&c->journal);
2156 	set_bit(CACHE_SET_RUNNING, &c->flags);
2157 	return 0;
2158 err:
2159 	while (!list_empty(&journal)) {
2160 		l = list_first_entry(&journal, struct journal_replay, list);
2161 		list_del(&l->list);
2162 		kfree(l);
2163 	}
2164 
2165 	closure_sync(&cl);
2166 
2167 	bch_cache_set_error(c, "%s", err);
2168 
2169 	return -EIO;
2170 }
2171 
register_cache_set(struct cache * ca)2172 static const char *register_cache_set(struct cache *ca)
2173 {
2174 	char buf[12];
2175 	const char *err = "cannot allocate memory";
2176 	struct cache_set *c;
2177 
2178 	list_for_each_entry(c, &bch_cache_sets, list)
2179 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2180 			if (c->cache)
2181 				return "duplicate cache set member";
2182 
2183 			goto found;
2184 		}
2185 
2186 	c = bch_cache_set_alloc(&ca->sb);
2187 	if (!c)
2188 		return err;
2189 
2190 	err = "error creating kobject";
2191 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2192 	    kobject_add(&c->internal, &c->kobj, "internal"))
2193 		goto err;
2194 
2195 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2196 		goto err;
2197 
2198 	bch_debug_init_cache_set(c);
2199 
2200 	list_add(&c->list, &bch_cache_sets);
2201 found:
2202 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2203 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2204 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2205 		goto err;
2206 
2207 	kobject_get(&ca->kobj);
2208 	ca->set = c;
2209 	ca->set->cache = ca;
2210 
2211 	err = "failed to run cache set";
2212 	if (run_cache_set(c) < 0)
2213 		goto err;
2214 
2215 	return NULL;
2216 err:
2217 	bch_cache_set_unregister(c);
2218 	return err;
2219 }
2220 
2221 /* Cache device */
2222 
2223 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2224 void bch_cache_release(struct kobject *kobj)
2225 {
2226 	struct cache *ca = container_of(kobj, struct cache, kobj);
2227 	unsigned int i;
2228 
2229 	if (ca->set) {
2230 		BUG_ON(ca->set->cache != ca);
2231 		ca->set->cache = NULL;
2232 	}
2233 
2234 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2235 	kfree(ca->prio_buckets);
2236 	vfree(ca->buckets);
2237 
2238 	free_heap(&ca->heap);
2239 	free_fifo(&ca->free_inc);
2240 
2241 	for (i = 0; i < RESERVE_NR; i++)
2242 		free_fifo(&ca->free[i]);
2243 
2244 	if (ca->sb_disk)
2245 		put_page(virt_to_page(ca->sb_disk));
2246 
2247 	if (!IS_ERR_OR_NULL(ca->bdev))
2248 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2249 
2250 	kfree(ca);
2251 	module_put(THIS_MODULE);
2252 }
2253 
cache_alloc(struct cache * ca)2254 static int cache_alloc(struct cache *ca)
2255 {
2256 	size_t free;
2257 	size_t btree_buckets;
2258 	struct bucket *b;
2259 	int ret = -ENOMEM;
2260 	const char *err = NULL;
2261 
2262 	__module_get(THIS_MODULE);
2263 	kobject_init(&ca->kobj, &bch_cache_ktype);
2264 
2265 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2266 
2267 	/*
2268 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2269 	 * and in bch_journal_replay(), tree node may split,
2270 	 * so bucket of RESERVE_BTREE type is needed,
2271 	 * the worst situation is all journal buckets are valid journal,
2272 	 * and all the keys need to replay,
2273 	 * so the number of  RESERVE_BTREE type buckets should be as much
2274 	 * as journal buckets
2275 	 */
2276 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2277 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2278 	if (!free) {
2279 		ret = -EPERM;
2280 		err = "ca->sb.nbuckets is too small";
2281 		goto err_free;
2282 	}
2283 
2284 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2285 						GFP_KERNEL)) {
2286 		err = "ca->free[RESERVE_BTREE] alloc failed";
2287 		goto err_btree_alloc;
2288 	}
2289 
2290 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2291 							GFP_KERNEL)) {
2292 		err = "ca->free[RESERVE_PRIO] alloc failed";
2293 		goto err_prio_alloc;
2294 	}
2295 
2296 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2297 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2298 		goto err_movinggc_alloc;
2299 	}
2300 
2301 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2302 		err = "ca->free[RESERVE_NONE] alloc failed";
2303 		goto err_none_alloc;
2304 	}
2305 
2306 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2307 		err = "ca->free_inc alloc failed";
2308 		goto err_free_inc_alloc;
2309 	}
2310 
2311 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2312 		err = "ca->heap alloc failed";
2313 		goto err_heap_alloc;
2314 	}
2315 
2316 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2317 			      ca->sb.nbuckets));
2318 	if (!ca->buckets) {
2319 		err = "ca->buckets alloc failed";
2320 		goto err_buckets_alloc;
2321 	}
2322 
2323 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2324 				   prio_buckets(ca), 2),
2325 				   GFP_KERNEL);
2326 	if (!ca->prio_buckets) {
2327 		err = "ca->prio_buckets alloc failed";
2328 		goto err_prio_buckets_alloc;
2329 	}
2330 
2331 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2332 	if (!ca->disk_buckets) {
2333 		err = "ca->disk_buckets alloc failed";
2334 		goto err_disk_buckets_alloc;
2335 	}
2336 
2337 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2338 
2339 	for_each_bucket(b, ca)
2340 		atomic_set(&b->pin, 0);
2341 	return 0;
2342 
2343 err_disk_buckets_alloc:
2344 	kfree(ca->prio_buckets);
2345 err_prio_buckets_alloc:
2346 	vfree(ca->buckets);
2347 err_buckets_alloc:
2348 	free_heap(&ca->heap);
2349 err_heap_alloc:
2350 	free_fifo(&ca->free_inc);
2351 err_free_inc_alloc:
2352 	free_fifo(&ca->free[RESERVE_NONE]);
2353 err_none_alloc:
2354 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2355 err_movinggc_alloc:
2356 	free_fifo(&ca->free[RESERVE_PRIO]);
2357 err_prio_alloc:
2358 	free_fifo(&ca->free[RESERVE_BTREE]);
2359 err_btree_alloc:
2360 err_free:
2361 	module_put(THIS_MODULE);
2362 	if (err)
2363 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2364 	return ret;
2365 }
2366 
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cache * ca)2367 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2368 				struct block_device *bdev, struct cache *ca)
2369 {
2370 	const char *err = NULL; /* must be set for any error case */
2371 	int ret = 0;
2372 
2373 	bdevname(bdev, ca->cache_dev_name);
2374 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2375 	ca->bdev = bdev;
2376 	ca->bdev->bd_holder = ca;
2377 	ca->sb_disk = sb_disk;
2378 
2379 	if (blk_queue_discard(bdev_get_queue(bdev)))
2380 		ca->discard = CACHE_DISCARD(&ca->sb);
2381 
2382 	ret = cache_alloc(ca);
2383 	if (ret != 0) {
2384 		/*
2385 		 * If we failed here, it means ca->kobj is not initialized yet,
2386 		 * kobject_put() won't be called and there is no chance to
2387 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2388 		 * explicitly call blkdev_put() here.
2389 		 */
2390 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2391 		if (ret == -ENOMEM)
2392 			err = "cache_alloc(): -ENOMEM";
2393 		else if (ret == -EPERM)
2394 			err = "cache_alloc(): cache device is too small";
2395 		else
2396 			err = "cache_alloc(): unknown error";
2397 		goto err;
2398 	}
2399 
2400 	if (kobject_add(&ca->kobj,
2401 			&part_to_dev(bdev->bd_part)->kobj,
2402 			"bcache")) {
2403 		err = "error calling kobject_add";
2404 		ret = -ENOMEM;
2405 		goto out;
2406 	}
2407 
2408 	mutex_lock(&bch_register_lock);
2409 	err = register_cache_set(ca);
2410 	mutex_unlock(&bch_register_lock);
2411 
2412 	if (err) {
2413 		ret = -ENODEV;
2414 		goto out;
2415 	}
2416 
2417 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2418 
2419 out:
2420 	kobject_put(&ca->kobj);
2421 
2422 err:
2423 	if (err)
2424 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2425 
2426 	return ret;
2427 }
2428 
2429 /* Global interfaces/init */
2430 
2431 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2432 			       const char *buffer, size_t size);
2433 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2434 					 struct kobj_attribute *attr,
2435 					 const char *buffer, size_t size);
2436 
2437 kobj_attribute_write(register,		register_bcache);
2438 kobj_attribute_write(register_quiet,	register_bcache);
2439 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2440 
bch_is_open_backing(struct block_device * bdev)2441 static bool bch_is_open_backing(struct block_device *bdev)
2442 {
2443 	struct cache_set *c, *tc;
2444 	struct cached_dev *dc, *t;
2445 
2446 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2447 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2448 			if (dc->bdev == bdev)
2449 				return true;
2450 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2451 		if (dc->bdev == bdev)
2452 			return true;
2453 	return false;
2454 }
2455 
bch_is_open_cache(struct block_device * bdev)2456 static bool bch_is_open_cache(struct block_device *bdev)
2457 {
2458 	struct cache_set *c, *tc;
2459 
2460 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2461 		struct cache *ca = c->cache;
2462 
2463 		if (ca->bdev == bdev)
2464 			return true;
2465 	}
2466 
2467 	return false;
2468 }
2469 
bch_is_open(struct block_device * bdev)2470 static bool bch_is_open(struct block_device *bdev)
2471 {
2472 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2473 }
2474 
2475 struct async_reg_args {
2476 	struct delayed_work reg_work;
2477 	char *path;
2478 	struct cache_sb *sb;
2479 	struct cache_sb_disk *sb_disk;
2480 	struct block_device *bdev;
2481 };
2482 
register_bdev_worker(struct work_struct * work)2483 static void register_bdev_worker(struct work_struct *work)
2484 {
2485 	int fail = false;
2486 	struct async_reg_args *args =
2487 		container_of(work, struct async_reg_args, reg_work.work);
2488 	struct cached_dev *dc;
2489 
2490 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2491 	if (!dc) {
2492 		fail = true;
2493 		put_page(virt_to_page(args->sb_disk));
2494 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2495 		goto out;
2496 	}
2497 
2498 	mutex_lock(&bch_register_lock);
2499 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2500 		fail = true;
2501 	mutex_unlock(&bch_register_lock);
2502 
2503 out:
2504 	if (fail)
2505 		pr_info("error %s: fail to register backing device\n",
2506 			args->path);
2507 	kfree(args->sb);
2508 	kfree(args->path);
2509 	kfree(args);
2510 	module_put(THIS_MODULE);
2511 }
2512 
register_cache_worker(struct work_struct * work)2513 static void register_cache_worker(struct work_struct *work)
2514 {
2515 	int fail = false;
2516 	struct async_reg_args *args =
2517 		container_of(work, struct async_reg_args, reg_work.work);
2518 	struct cache *ca;
2519 
2520 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2521 	if (!ca) {
2522 		fail = true;
2523 		put_page(virt_to_page(args->sb_disk));
2524 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2525 		goto out;
2526 	}
2527 
2528 	/* blkdev_put() will be called in bch_cache_release() */
2529 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2530 		fail = true;
2531 
2532 out:
2533 	if (fail)
2534 		pr_info("error %s: fail to register cache device\n",
2535 			args->path);
2536 	kfree(args->sb);
2537 	kfree(args->path);
2538 	kfree(args);
2539 	module_put(THIS_MODULE);
2540 }
2541 
register_device_aync(struct async_reg_args * args)2542 static void register_device_aync(struct async_reg_args *args)
2543 {
2544 	if (SB_IS_BDEV(args->sb))
2545 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2546 	else
2547 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2548 
2549 	/* 10 jiffies is enough for a delay */
2550 	queue_delayed_work(system_wq, &args->reg_work, 10);
2551 }
2552 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2553 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2554 			       const char *buffer, size_t size)
2555 {
2556 	const char *err;
2557 	char *path = NULL;
2558 	struct cache_sb *sb;
2559 	struct cache_sb_disk *sb_disk;
2560 	struct block_device *bdev;
2561 	ssize_t ret;
2562 	bool async_registration = false;
2563 
2564 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2565 	async_registration = true;
2566 #endif
2567 
2568 	ret = -EBUSY;
2569 	err = "failed to reference bcache module";
2570 	if (!try_module_get(THIS_MODULE))
2571 		goto out;
2572 
2573 	/* For latest state of bcache_is_reboot */
2574 	smp_mb();
2575 	err = "bcache is in reboot";
2576 	if (bcache_is_reboot)
2577 		goto out_module_put;
2578 
2579 	ret = -ENOMEM;
2580 	err = "cannot allocate memory";
2581 	path = kstrndup(buffer, size, GFP_KERNEL);
2582 	if (!path)
2583 		goto out_module_put;
2584 
2585 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2586 	if (!sb)
2587 		goto out_free_path;
2588 
2589 	ret = -EINVAL;
2590 	err = "failed to open device";
2591 	bdev = blkdev_get_by_path(strim(path),
2592 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2593 				  sb);
2594 	if (IS_ERR(bdev)) {
2595 		if (bdev == ERR_PTR(-EBUSY)) {
2596 			bdev = lookup_bdev(strim(path));
2597 			mutex_lock(&bch_register_lock);
2598 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2599 				err = "device already registered";
2600 			else
2601 				err = "device busy";
2602 			mutex_unlock(&bch_register_lock);
2603 			if (!IS_ERR(bdev))
2604 				bdput(bdev);
2605 			if (attr == &ksysfs_register_quiet)
2606 				goto done;
2607 		}
2608 		goto out_free_sb;
2609 	}
2610 
2611 	err = "failed to set blocksize";
2612 	if (set_blocksize(bdev, 4096))
2613 		goto out_blkdev_put;
2614 
2615 	err = read_super(sb, bdev, &sb_disk);
2616 	if (err)
2617 		goto out_blkdev_put;
2618 
2619 	err = "failed to register device";
2620 
2621 	if (async_registration) {
2622 		/* register in asynchronous way */
2623 		struct async_reg_args *args =
2624 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2625 
2626 		if (!args) {
2627 			ret = -ENOMEM;
2628 			err = "cannot allocate memory";
2629 			goto out_put_sb_page;
2630 		}
2631 
2632 		args->path	= path;
2633 		args->sb	= sb;
2634 		args->sb_disk	= sb_disk;
2635 		args->bdev	= bdev;
2636 		register_device_aync(args);
2637 		/* No wait and returns to user space */
2638 		goto async_done;
2639 	}
2640 
2641 	if (SB_IS_BDEV(sb)) {
2642 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2643 
2644 		if (!dc)
2645 			goto out_put_sb_page;
2646 
2647 		mutex_lock(&bch_register_lock);
2648 		ret = register_bdev(sb, sb_disk, bdev, dc);
2649 		mutex_unlock(&bch_register_lock);
2650 		/* blkdev_put() will be called in cached_dev_free() */
2651 		if (ret < 0)
2652 			goto out_free_sb;
2653 	} else {
2654 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2655 
2656 		if (!ca)
2657 			goto out_put_sb_page;
2658 
2659 		/* blkdev_put() will be called in bch_cache_release() */
2660 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2661 			goto out_free_sb;
2662 	}
2663 
2664 done:
2665 	kfree(sb);
2666 	kfree(path);
2667 	module_put(THIS_MODULE);
2668 async_done:
2669 	return size;
2670 
2671 out_put_sb_page:
2672 	put_page(virt_to_page(sb_disk));
2673 out_blkdev_put:
2674 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2675 out_free_sb:
2676 	kfree(sb);
2677 out_free_path:
2678 	kfree(path);
2679 	path = NULL;
2680 out_module_put:
2681 	module_put(THIS_MODULE);
2682 out:
2683 	pr_info("error %s: %s\n", path?path:"", err);
2684 	return ret;
2685 }
2686 
2687 
2688 struct pdev {
2689 	struct list_head list;
2690 	struct cached_dev *dc;
2691 };
2692 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2693 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2694 					 struct kobj_attribute *attr,
2695 					 const char *buffer,
2696 					 size_t size)
2697 {
2698 	LIST_HEAD(pending_devs);
2699 	ssize_t ret = size;
2700 	struct cached_dev *dc, *tdc;
2701 	struct pdev *pdev, *tpdev;
2702 	struct cache_set *c, *tc;
2703 
2704 	mutex_lock(&bch_register_lock);
2705 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2706 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2707 		if (!pdev)
2708 			break;
2709 		pdev->dc = dc;
2710 		list_add(&pdev->list, &pending_devs);
2711 	}
2712 
2713 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2714 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2715 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2716 			char *set_uuid = c->set_uuid;
2717 
2718 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2719 				list_del(&pdev->list);
2720 				kfree(pdev);
2721 				break;
2722 			}
2723 		}
2724 	}
2725 	mutex_unlock(&bch_register_lock);
2726 
2727 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2728 		pr_info("delete pdev %p\n", pdev);
2729 		list_del(&pdev->list);
2730 		bcache_device_stop(&pdev->dc->disk);
2731 		kfree(pdev);
2732 	}
2733 
2734 	return ret;
2735 }
2736 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2737 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2738 {
2739 	if (bcache_is_reboot)
2740 		return NOTIFY_DONE;
2741 
2742 	if (code == SYS_DOWN ||
2743 	    code == SYS_HALT ||
2744 	    code == SYS_POWER_OFF) {
2745 		DEFINE_WAIT(wait);
2746 		unsigned long start = jiffies;
2747 		bool stopped = false;
2748 
2749 		struct cache_set *c, *tc;
2750 		struct cached_dev *dc, *tdc;
2751 
2752 		mutex_lock(&bch_register_lock);
2753 
2754 		if (bcache_is_reboot)
2755 			goto out;
2756 
2757 		/* New registration is rejected since now */
2758 		bcache_is_reboot = true;
2759 		/*
2760 		 * Make registering caller (if there is) on other CPU
2761 		 * core know bcache_is_reboot set to true earlier
2762 		 */
2763 		smp_mb();
2764 
2765 		if (list_empty(&bch_cache_sets) &&
2766 		    list_empty(&uncached_devices))
2767 			goto out;
2768 
2769 		mutex_unlock(&bch_register_lock);
2770 
2771 		pr_info("Stopping all devices:\n");
2772 
2773 		/*
2774 		 * The reason bch_register_lock is not held to call
2775 		 * bch_cache_set_stop() and bcache_device_stop() is to
2776 		 * avoid potential deadlock during reboot, because cache
2777 		 * set or bcache device stopping process will acqurie
2778 		 * bch_register_lock too.
2779 		 *
2780 		 * We are safe here because bcache_is_reboot sets to
2781 		 * true already, register_bcache() will reject new
2782 		 * registration now. bcache_is_reboot also makes sure
2783 		 * bcache_reboot() won't be re-entered on by other thread,
2784 		 * so there is no race in following list iteration by
2785 		 * list_for_each_entry_safe().
2786 		 */
2787 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2788 			bch_cache_set_stop(c);
2789 
2790 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2791 			bcache_device_stop(&dc->disk);
2792 
2793 
2794 		/*
2795 		 * Give an early chance for other kthreads and
2796 		 * kworkers to stop themselves
2797 		 */
2798 		schedule();
2799 
2800 		/* What's a condition variable? */
2801 		while (1) {
2802 			long timeout = start + 10 * HZ - jiffies;
2803 
2804 			mutex_lock(&bch_register_lock);
2805 			stopped = list_empty(&bch_cache_sets) &&
2806 				list_empty(&uncached_devices);
2807 
2808 			if (timeout < 0 || stopped)
2809 				break;
2810 
2811 			prepare_to_wait(&unregister_wait, &wait,
2812 					TASK_UNINTERRUPTIBLE);
2813 
2814 			mutex_unlock(&bch_register_lock);
2815 			schedule_timeout(timeout);
2816 		}
2817 
2818 		finish_wait(&unregister_wait, &wait);
2819 
2820 		if (stopped)
2821 			pr_info("All devices stopped\n");
2822 		else
2823 			pr_notice("Timeout waiting for devices to be closed\n");
2824 out:
2825 		mutex_unlock(&bch_register_lock);
2826 	}
2827 
2828 	return NOTIFY_DONE;
2829 }
2830 
2831 static struct notifier_block reboot = {
2832 	.notifier_call	= bcache_reboot,
2833 	.priority	= INT_MAX, /* before any real devices */
2834 };
2835 
bcache_exit(void)2836 static void bcache_exit(void)
2837 {
2838 	bch_debug_exit();
2839 	bch_request_exit();
2840 	if (bcache_kobj)
2841 		kobject_put(bcache_kobj);
2842 	if (bcache_wq)
2843 		destroy_workqueue(bcache_wq);
2844 	if (bch_journal_wq)
2845 		destroy_workqueue(bch_journal_wq);
2846 	if (bch_flush_wq)
2847 		destroy_workqueue(bch_flush_wq);
2848 	bch_btree_exit();
2849 
2850 	if (bcache_major)
2851 		unregister_blkdev(bcache_major, "bcache");
2852 	unregister_reboot_notifier(&reboot);
2853 	mutex_destroy(&bch_register_lock);
2854 }
2855 
2856 /* Check and fixup module parameters */
check_module_parameters(void)2857 static void check_module_parameters(void)
2858 {
2859 	if (bch_cutoff_writeback_sync == 0)
2860 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2861 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2862 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2863 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2864 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2865 	}
2866 
2867 	if (bch_cutoff_writeback == 0)
2868 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2869 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2870 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2871 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2872 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2873 	}
2874 
2875 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2876 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2877 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2878 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2879 	}
2880 }
2881 
bcache_init(void)2882 static int __init bcache_init(void)
2883 {
2884 	static const struct attribute *files[] = {
2885 		&ksysfs_register.attr,
2886 		&ksysfs_register_quiet.attr,
2887 		&ksysfs_pendings_cleanup.attr,
2888 		NULL
2889 	};
2890 
2891 	check_module_parameters();
2892 
2893 	mutex_init(&bch_register_lock);
2894 	init_waitqueue_head(&unregister_wait);
2895 	register_reboot_notifier(&reboot);
2896 
2897 	bcache_major = register_blkdev(0, "bcache");
2898 	if (bcache_major < 0) {
2899 		unregister_reboot_notifier(&reboot);
2900 		mutex_destroy(&bch_register_lock);
2901 		return bcache_major;
2902 	}
2903 
2904 	if (bch_btree_init())
2905 		goto err;
2906 
2907 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2908 	if (!bcache_wq)
2909 		goto err;
2910 
2911 	/*
2912 	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2913 	 *
2914 	 * 1. It used `system_wq` before which also does no memory reclaim.
2915 	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2916 	 *    reduced throughput can be observed.
2917 	 *
2918 	 * We still want to user our own queue to not congest the `system_wq`.
2919 	 */
2920 	bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2921 	if (!bch_flush_wq)
2922 		goto err;
2923 
2924 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2925 	if (!bch_journal_wq)
2926 		goto err;
2927 
2928 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2929 	if (!bcache_kobj)
2930 		goto err;
2931 
2932 	if (bch_request_init() ||
2933 	    sysfs_create_files(bcache_kobj, files))
2934 		goto err;
2935 
2936 	bch_debug_init();
2937 	closure_debug_init();
2938 
2939 	bcache_is_reboot = false;
2940 
2941 	return 0;
2942 err:
2943 	bcache_exit();
2944 	return -ENOMEM;
2945 }
2946 
2947 /*
2948  * Module hooks
2949  */
2950 module_exit(bcache_exit);
2951 module_init(bcache_init);
2952 
2953 module_param(bch_cutoff_writeback, uint, 0);
2954 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2955 
2956 module_param(bch_cutoff_writeback_sync, uint, 0);
2957 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2958 
2959 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2960 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2961 MODULE_LICENSE("GPL");
2962