• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/r4kcache.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 #include <asm/war.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/dma-coherence.h>
39 #include <asm/mips-cps.h>
40 
41 /*
42  * Bits describing what cache ops an SMP callback function may perform.
43  *
44  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
45  *		active_mm must be checked before using user addresses, falling
46  *		back to kmap.
47  * R4K_INDEX -	Index based cache operations.
48  */
49 
50 #define R4K_HIT		BIT(0)
51 #define R4K_INDEX	BIT(1)
52 
53 /**
54  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
56  *
57  * Decides whether a cache op needs to be performed on every core in the system.
58  * This may change depending on the @type of cache operation, as well as the set
59  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60  * hotplug from changing the result.
61  *
62  * Returns:	1 if the cache operation @type should be done on every core in
63  *		the system.
64  *		0 if the cache operation @type is globalized and only needs to
65  *		be performed on a simple CPU.
66  */
r4k_op_needs_ipi(unsigned int type)67 static inline bool r4k_op_needs_ipi(unsigned int type)
68 {
69 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70 	if (type == R4K_HIT && mips_cm_present())
71 		return false;
72 
73 	/*
74 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
75 	 * be needed, but only if there are foreign CPUs (non-siblings with
76 	 * separate caches).
77 	 */
78 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79 #ifdef CONFIG_SMP
80 	return !cpumask_empty(&cpu_foreign_map[0]);
81 #else
82 	return false;
83 #endif
84 }
85 
86 /*
87  * Special Variant of smp_call_function for use by cache functions:
88  *
89  *  o No return value
90  *  o collapses to normal function call on UP kernels
91  *  o collapses to normal function call on systems with a single shared
92  *    primary cache.
93  *  o doesn't disable interrupts on the local CPU
94  */
r4k_on_each_cpu(unsigned int type,void (* func)(void * info),void * info)95 static inline void r4k_on_each_cpu(unsigned int type,
96 				   void (*func)(void *info), void *info)
97 {
98 	preempt_disable();
99 	if (r4k_op_needs_ipi(type))
100 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101 				       func, info, 1);
102 	func(info);
103 	preempt_enable();
104 }
105 
106 /*
107  * Must die.
108  */
109 static unsigned long icache_size __read_mostly;
110 static unsigned long dcache_size __read_mostly;
111 static unsigned long vcache_size __read_mostly;
112 static unsigned long scache_size __read_mostly;
113 
114 /*
115  * Dummy cache handling routines for machines without boardcaches
116  */
cache_noop(void)117 static void cache_noop(void) {}
118 
119 static struct bcache_ops no_sc_ops = {
120 	.bc_enable = (void *)cache_noop,
121 	.bc_disable = (void *)cache_noop,
122 	.bc_wback_inv = (void *)cache_noop,
123 	.bc_inv = (void *)cache_noop
124 };
125 
126 struct bcache_ops *bcops = &no_sc_ops;
127 
128 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
129 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
130 
131 #define R4600_HIT_CACHEOP_WAR_IMPL					\
132 do {									\
133 	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
134 	    cpu_is_r4600_v2_x())					\
135 		*(volatile unsigned long *)CKSEG1;			\
136 	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
137 		__asm__ __volatile__("nop;nop;nop;nop");		\
138 } while (0)
139 
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141 
r4k_blast_dcache_page_dc32(unsigned long addr)142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 	R4600_HIT_CACHEOP_WAR_IMPL;
145 	blast_dcache32_page(addr);
146 }
147 
r4k_blast_dcache_page_dc64(unsigned long addr)148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 	blast_dcache64_page(addr);
151 }
152 
r4k_blast_dcache_page_dc128(unsigned long addr)153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 	blast_dcache128_page(addr);
156 }
157 
r4k_blast_dcache_page_setup(void)158 static void r4k_blast_dcache_page_setup(void)
159 {
160 	unsigned long  dc_lsize = cpu_dcache_line_size();
161 
162 	switch (dc_lsize) {
163 	case 0:
164 		r4k_blast_dcache_page = (void *)cache_noop;
165 		break;
166 	case 16:
167 		r4k_blast_dcache_page = blast_dcache16_page;
168 		break;
169 	case 32:
170 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 		break;
172 	case 64:
173 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 		break;
175 	case 128:
176 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 		break;
178 	default:
179 		break;
180 	}
181 }
182 
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186 
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188 
r4k_blast_dcache_user_page_setup(void)189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 	unsigned long  dc_lsize = cpu_dcache_line_size();
192 
193 	if (dc_lsize == 0)
194 		r4k_blast_dcache_user_page = (void *)cache_noop;
195 	else if (dc_lsize == 16)
196 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 	else if (dc_lsize == 32)
198 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 	else if (dc_lsize == 64)
200 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202 
203 #endif
204 
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206 
r4k_blast_dcache_page_indexed_setup(void)207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 	unsigned long dc_lsize = cpu_dcache_line_size();
210 
211 	if (dc_lsize == 0)
212 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 	else if (dc_lsize == 16)
214 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 	else if (dc_lsize == 32)
216 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 	else if (dc_lsize == 64)
218 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 	else if (dc_lsize == 128)
220 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222 
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225 
r4k_blast_dcache_setup(void)226 static void r4k_blast_dcache_setup(void)
227 {
228 	unsigned long dc_lsize = cpu_dcache_line_size();
229 
230 	if (dc_lsize == 0)
231 		r4k_blast_dcache = (void *)cache_noop;
232 	else if (dc_lsize == 16)
233 		r4k_blast_dcache = blast_dcache16;
234 	else if (dc_lsize == 32)
235 		r4k_blast_dcache = blast_dcache32;
236 	else if (dc_lsize == 64)
237 		r4k_blast_dcache = blast_dcache64;
238 	else if (dc_lsize == 128)
239 		r4k_blast_dcache = blast_dcache128;
240 }
241 
242 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
243 #define JUMP_TO_ALIGN(order) \
244 	__asm__ __volatile__( \
245 		"b\t1f\n\t" \
246 		".align\t" #order "\n\t" \
247 		"1:\n\t" \
248 		)
249 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251 
blast_r4600_v1_icache32(void)252 static inline void blast_r4600_v1_icache32(void)
253 {
254 	unsigned long flags;
255 
256 	local_irq_save(flags);
257 	blast_icache32();
258 	local_irq_restore(flags);
259 }
260 
tx49_blast_icache32(void)261 static inline void tx49_blast_icache32(void)
262 {
263 	unsigned long start = INDEX_BASE;
264 	unsigned long end = start + current_cpu_data.icache.waysize;
265 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 	unsigned long ws_end = current_cpu_data.icache.ways <<
267 			       current_cpu_data.icache.waybit;
268 	unsigned long ws, addr;
269 
270 	CACHE32_UNROLL32_ALIGN2;
271 	/* I'm in even chunk.  blast odd chunks */
272 	for (ws = 0; ws < ws_end; ws += ws_inc)
273 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
275 				     addr | ws, 32);
276 	CACHE32_UNROLL32_ALIGN;
277 	/* I'm in odd chunk.  blast even chunks */
278 	for (ws = 0; ws < ws_end; ws += ws_inc)
279 		for (addr = start; addr < end; addr += 0x400 * 2)
280 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
281 				     addr | ws, 32);
282 }
283 
blast_icache32_r4600_v1_page_indexed(unsigned long page)284 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285 {
286 	unsigned long flags;
287 
288 	local_irq_save(flags);
289 	blast_icache32_page_indexed(page);
290 	local_irq_restore(flags);
291 }
292 
tx49_blast_icache32_page_indexed(unsigned long page)293 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294 {
295 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296 	unsigned long start = INDEX_BASE + (page & indexmask);
297 	unsigned long end = start + PAGE_SIZE;
298 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299 	unsigned long ws_end = current_cpu_data.icache.ways <<
300 			       current_cpu_data.icache.waybit;
301 	unsigned long ws, addr;
302 
303 	CACHE32_UNROLL32_ALIGN2;
304 	/* I'm in even chunk.  blast odd chunks */
305 	for (ws = 0; ws < ws_end; ws += ws_inc)
306 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
308 				     addr | ws, 32);
309 	CACHE32_UNROLL32_ALIGN;
310 	/* I'm in odd chunk.  blast even chunks */
311 	for (ws = 0; ws < ws_end; ws += ws_inc)
312 		for (addr = start; addr < end; addr += 0x400 * 2)
313 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
314 				     addr | ws, 32);
315 }
316 
317 static void (* r4k_blast_icache_page)(unsigned long addr);
318 
r4k_blast_icache_page_setup(void)319 static void r4k_blast_icache_page_setup(void)
320 {
321 	unsigned long ic_lsize = cpu_icache_line_size();
322 
323 	if (ic_lsize == 0)
324 		r4k_blast_icache_page = (void *)cache_noop;
325 	else if (ic_lsize == 16)
326 		r4k_blast_icache_page = blast_icache16_page;
327 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328 		r4k_blast_icache_page = loongson2_blast_icache32_page;
329 	else if (ic_lsize == 32)
330 		r4k_blast_icache_page = blast_icache32_page;
331 	else if (ic_lsize == 64)
332 		r4k_blast_icache_page = blast_icache64_page;
333 	else if (ic_lsize == 128)
334 		r4k_blast_icache_page = blast_icache128_page;
335 }
336 
337 #ifndef CONFIG_EVA
338 #define r4k_blast_icache_user_page  r4k_blast_icache_page
339 #else
340 
341 static void (*r4k_blast_icache_user_page)(unsigned long addr);
342 
r4k_blast_icache_user_page_setup(void)343 static void r4k_blast_icache_user_page_setup(void)
344 {
345 	unsigned long ic_lsize = cpu_icache_line_size();
346 
347 	if (ic_lsize == 0)
348 		r4k_blast_icache_user_page = (void *)cache_noop;
349 	else if (ic_lsize == 16)
350 		r4k_blast_icache_user_page = blast_icache16_user_page;
351 	else if (ic_lsize == 32)
352 		r4k_blast_icache_user_page = blast_icache32_user_page;
353 	else if (ic_lsize == 64)
354 		r4k_blast_icache_user_page = blast_icache64_user_page;
355 }
356 
357 #endif
358 
359 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360 
r4k_blast_icache_page_indexed_setup(void)361 static void r4k_blast_icache_page_indexed_setup(void)
362 {
363 	unsigned long ic_lsize = cpu_icache_line_size();
364 
365 	if (ic_lsize == 0)
366 		r4k_blast_icache_page_indexed = (void *)cache_noop;
367 	else if (ic_lsize == 16)
368 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369 	else if (ic_lsize == 32) {
370 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
371 		    cpu_is_r4600_v1_x())
372 			r4k_blast_icache_page_indexed =
373 				blast_icache32_r4600_v1_page_indexed;
374 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
375 			r4k_blast_icache_page_indexed =
376 				tx49_blast_icache32_page_indexed;
377 		else if (current_cpu_type() == CPU_LOONGSON2EF)
378 			r4k_blast_icache_page_indexed =
379 				loongson2_blast_icache32_page_indexed;
380 		else
381 			r4k_blast_icache_page_indexed =
382 				blast_icache32_page_indexed;
383 	} else if (ic_lsize == 64)
384 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
385 }
386 
387 void (* r4k_blast_icache)(void);
388 EXPORT_SYMBOL(r4k_blast_icache);
389 
r4k_blast_icache_setup(void)390 static void r4k_blast_icache_setup(void)
391 {
392 	unsigned long ic_lsize = cpu_icache_line_size();
393 
394 	if (ic_lsize == 0)
395 		r4k_blast_icache = (void *)cache_noop;
396 	else if (ic_lsize == 16)
397 		r4k_blast_icache = blast_icache16;
398 	else if (ic_lsize == 32) {
399 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
400 		    cpu_is_r4600_v1_x())
401 			r4k_blast_icache = blast_r4600_v1_icache32;
402 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
403 			r4k_blast_icache = tx49_blast_icache32;
404 		else if (current_cpu_type() == CPU_LOONGSON2EF)
405 			r4k_blast_icache = loongson2_blast_icache32;
406 		else
407 			r4k_blast_icache = blast_icache32;
408 	} else if (ic_lsize == 64)
409 		r4k_blast_icache = blast_icache64;
410 	else if (ic_lsize == 128)
411 		r4k_blast_icache = blast_icache128;
412 }
413 
414 static void (* r4k_blast_scache_page)(unsigned long addr);
415 
r4k_blast_scache_page_setup(void)416 static void r4k_blast_scache_page_setup(void)
417 {
418 	unsigned long sc_lsize = cpu_scache_line_size();
419 
420 	if (scache_size == 0)
421 		r4k_blast_scache_page = (void *)cache_noop;
422 	else if (sc_lsize == 16)
423 		r4k_blast_scache_page = blast_scache16_page;
424 	else if (sc_lsize == 32)
425 		r4k_blast_scache_page = blast_scache32_page;
426 	else if (sc_lsize == 64)
427 		r4k_blast_scache_page = blast_scache64_page;
428 	else if (sc_lsize == 128)
429 		r4k_blast_scache_page = blast_scache128_page;
430 }
431 
432 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
433 
r4k_blast_scache_page_indexed_setup(void)434 static void r4k_blast_scache_page_indexed_setup(void)
435 {
436 	unsigned long sc_lsize = cpu_scache_line_size();
437 
438 	if (scache_size == 0)
439 		r4k_blast_scache_page_indexed = (void *)cache_noop;
440 	else if (sc_lsize == 16)
441 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
442 	else if (sc_lsize == 32)
443 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
444 	else if (sc_lsize == 64)
445 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
446 	else if (sc_lsize == 128)
447 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
448 }
449 
450 static void (* r4k_blast_scache)(void);
451 
r4k_blast_scache_setup(void)452 static void r4k_blast_scache_setup(void)
453 {
454 	unsigned long sc_lsize = cpu_scache_line_size();
455 
456 	if (scache_size == 0)
457 		r4k_blast_scache = (void *)cache_noop;
458 	else if (sc_lsize == 16)
459 		r4k_blast_scache = blast_scache16;
460 	else if (sc_lsize == 32)
461 		r4k_blast_scache = blast_scache32;
462 	else if (sc_lsize == 64)
463 		r4k_blast_scache = blast_scache64;
464 	else if (sc_lsize == 128)
465 		r4k_blast_scache = blast_scache128;
466 }
467 
468 static void (*r4k_blast_scache_node)(long node);
469 
r4k_blast_scache_node_setup(void)470 static void r4k_blast_scache_node_setup(void)
471 {
472 	unsigned long sc_lsize = cpu_scache_line_size();
473 
474 	if (current_cpu_type() != CPU_LOONGSON64)
475 		r4k_blast_scache_node = (void *)cache_noop;
476 	else if (sc_lsize == 16)
477 		r4k_blast_scache_node = blast_scache16_node;
478 	else if (sc_lsize == 32)
479 		r4k_blast_scache_node = blast_scache32_node;
480 	else if (sc_lsize == 64)
481 		r4k_blast_scache_node = blast_scache64_node;
482 	else if (sc_lsize == 128)
483 		r4k_blast_scache_node = blast_scache128_node;
484 }
485 
local_r4k___flush_cache_all(void * args)486 static inline void local_r4k___flush_cache_all(void * args)
487 {
488 	switch (current_cpu_type()) {
489 	case CPU_LOONGSON2EF:
490 	case CPU_R4000SC:
491 	case CPU_R4000MC:
492 	case CPU_R4400SC:
493 	case CPU_R4400MC:
494 	case CPU_R10000:
495 	case CPU_R12000:
496 	case CPU_R14000:
497 	case CPU_R16000:
498 		/*
499 		 * These caches are inclusive caches, that is, if something
500 		 * is not cached in the S-cache, we know it also won't be
501 		 * in one of the primary caches.
502 		 */
503 		r4k_blast_scache();
504 		break;
505 
506 	case CPU_LOONGSON64:
507 		/* Use get_ebase_cpunum() for both NUMA=y/n */
508 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
509 		break;
510 
511 	case CPU_BMIPS5000:
512 		r4k_blast_scache();
513 		__sync();
514 		break;
515 
516 	default:
517 		r4k_blast_dcache();
518 		r4k_blast_icache();
519 		break;
520 	}
521 }
522 
r4k___flush_cache_all(void)523 static void r4k___flush_cache_all(void)
524 {
525 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
526 }
527 
528 /**
529  * has_valid_asid() - Determine if an mm already has an ASID.
530  * @mm:		Memory map.
531  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
532  *
533  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
534  * of type @type within an r4k_on_each_cpu() call will affect. If
535  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
536  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
537  * will need to be checked.
538  *
539  * Must be called in non-preemptive context.
540  *
541  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
542  *		0 otherwise.
543  */
has_valid_asid(const struct mm_struct * mm,unsigned int type)544 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
545 {
546 	unsigned int i;
547 	const cpumask_t *mask = cpu_present_mask;
548 
549 	if (cpu_has_mmid)
550 		return cpu_context(0, mm) != 0;
551 
552 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
553 #ifdef CONFIG_SMP
554 	/*
555 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
556 	 * each foreign core, so we only need to worry about siblings.
557 	 * Otherwise we need to worry about all present CPUs.
558 	 */
559 	if (r4k_op_needs_ipi(type))
560 		mask = &cpu_sibling_map[smp_processor_id()];
561 #endif
562 	for_each_cpu(i, mask)
563 		if (cpu_context(i, mm))
564 			return 1;
565 	return 0;
566 }
567 
r4k__flush_cache_vmap(void)568 static void r4k__flush_cache_vmap(void)
569 {
570 	r4k_blast_dcache();
571 }
572 
r4k__flush_cache_vunmap(void)573 static void r4k__flush_cache_vunmap(void)
574 {
575 	r4k_blast_dcache();
576 }
577 
578 /*
579  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
580  * whole caches when vma is executable.
581  */
local_r4k_flush_cache_range(void * args)582 static inline void local_r4k_flush_cache_range(void * args)
583 {
584 	struct vm_area_struct *vma = args;
585 	int exec = vma->vm_flags & VM_EXEC;
586 
587 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
588 		return;
589 
590 	/*
591 	 * If dcache can alias, we must blast it since mapping is changing.
592 	 * If executable, we must ensure any dirty lines are written back far
593 	 * enough to be visible to icache.
594 	 */
595 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
596 		r4k_blast_dcache();
597 	/* If executable, blast stale lines from icache */
598 	if (exec)
599 		r4k_blast_icache();
600 }
601 
r4k_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)602 static void r4k_flush_cache_range(struct vm_area_struct *vma,
603 	unsigned long start, unsigned long end)
604 {
605 	int exec = vma->vm_flags & VM_EXEC;
606 
607 	if (cpu_has_dc_aliases || exec)
608 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
609 }
610 
local_r4k_flush_cache_mm(void * args)611 static inline void local_r4k_flush_cache_mm(void * args)
612 {
613 	struct mm_struct *mm = args;
614 
615 	if (!has_valid_asid(mm, R4K_INDEX))
616 		return;
617 
618 	/*
619 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
620 	 * only flush the primary caches but R1x000 behave sane ...
621 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
622 	 * caches, so we can bail out early.
623 	 */
624 	if (current_cpu_type() == CPU_R4000SC ||
625 	    current_cpu_type() == CPU_R4000MC ||
626 	    current_cpu_type() == CPU_R4400SC ||
627 	    current_cpu_type() == CPU_R4400MC) {
628 		r4k_blast_scache();
629 		return;
630 	}
631 
632 	r4k_blast_dcache();
633 }
634 
r4k_flush_cache_mm(struct mm_struct * mm)635 static void r4k_flush_cache_mm(struct mm_struct *mm)
636 {
637 	if (!cpu_has_dc_aliases)
638 		return;
639 
640 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
641 }
642 
643 struct flush_cache_page_args {
644 	struct vm_area_struct *vma;
645 	unsigned long addr;
646 	unsigned long pfn;
647 };
648 
local_r4k_flush_cache_page(void * args)649 static inline void local_r4k_flush_cache_page(void *args)
650 {
651 	struct flush_cache_page_args *fcp_args = args;
652 	struct vm_area_struct *vma = fcp_args->vma;
653 	unsigned long addr = fcp_args->addr;
654 	struct page *page = pfn_to_page(fcp_args->pfn);
655 	int exec = vma->vm_flags & VM_EXEC;
656 	struct mm_struct *mm = vma->vm_mm;
657 	int map_coherent = 0;
658 	pmd_t *pmdp;
659 	pte_t *ptep;
660 	void *vaddr;
661 
662 	/*
663 	 * If owns no valid ASID yet, cannot possibly have gotten
664 	 * this page into the cache.
665 	 */
666 	if (!has_valid_asid(mm, R4K_HIT))
667 		return;
668 
669 	addr &= PAGE_MASK;
670 	pmdp = pmd_off(mm, addr);
671 	ptep = pte_offset_kernel(pmdp, addr);
672 
673 	/*
674 	 * If the page isn't marked valid, the page cannot possibly be
675 	 * in the cache.
676 	 */
677 	if (!(pte_present(*ptep)))
678 		return;
679 
680 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
681 		vaddr = NULL;
682 	else {
683 		/*
684 		 * Use kmap_coherent or kmap_atomic to do flushes for
685 		 * another ASID than the current one.
686 		 */
687 		map_coherent = (cpu_has_dc_aliases &&
688 				page_mapcount(page) &&
689 				!Page_dcache_dirty(page));
690 		if (map_coherent)
691 			vaddr = kmap_coherent(page, addr);
692 		else
693 			vaddr = kmap_atomic(page);
694 		addr = (unsigned long)vaddr;
695 	}
696 
697 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
698 		vaddr ? r4k_blast_dcache_page(addr) :
699 			r4k_blast_dcache_user_page(addr);
700 		if (exec && !cpu_icache_snoops_remote_store)
701 			r4k_blast_scache_page(addr);
702 	}
703 	if (exec) {
704 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
705 			drop_mmu_context(mm);
706 		} else
707 			vaddr ? r4k_blast_icache_page(addr) :
708 				r4k_blast_icache_user_page(addr);
709 	}
710 
711 	if (vaddr) {
712 		if (map_coherent)
713 			kunmap_coherent();
714 		else
715 			kunmap_atomic(vaddr);
716 	}
717 }
718 
r4k_flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)719 static void r4k_flush_cache_page(struct vm_area_struct *vma,
720 	unsigned long addr, unsigned long pfn)
721 {
722 	struct flush_cache_page_args args;
723 
724 	args.vma = vma;
725 	args.addr = addr;
726 	args.pfn = pfn;
727 
728 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729 }
730 
local_r4k_flush_data_cache_page(void * addr)731 static inline void local_r4k_flush_data_cache_page(void * addr)
732 {
733 	r4k_blast_dcache_page((unsigned long) addr);
734 }
735 
r4k_flush_data_cache_page(unsigned long addr)736 static void r4k_flush_data_cache_page(unsigned long addr)
737 {
738 	if (in_atomic())
739 		local_r4k_flush_data_cache_page((void *)addr);
740 	else
741 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
742 				(void *) addr);
743 }
744 
745 struct flush_icache_range_args {
746 	unsigned long start;
747 	unsigned long end;
748 	unsigned int type;
749 	bool user;
750 };
751 
__local_r4k_flush_icache_range(unsigned long start,unsigned long end,unsigned int type,bool user)752 static inline void __local_r4k_flush_icache_range(unsigned long start,
753 						  unsigned long end,
754 						  unsigned int type,
755 						  bool user)
756 {
757 	if (!cpu_has_ic_fills_f_dc) {
758 		if (type == R4K_INDEX ||
759 		    (type & R4K_INDEX && end - start >= dcache_size)) {
760 			r4k_blast_dcache();
761 		} else {
762 			R4600_HIT_CACHEOP_WAR_IMPL;
763 			if (user)
764 				protected_blast_dcache_range(start, end);
765 			else
766 				blast_dcache_range(start, end);
767 		}
768 	}
769 
770 	if (type == R4K_INDEX ||
771 	    (type & R4K_INDEX && end - start > icache_size))
772 		r4k_blast_icache();
773 	else {
774 		switch (boot_cpu_type()) {
775 		case CPU_LOONGSON2EF:
776 			protected_loongson2_blast_icache_range(start, end);
777 			break;
778 
779 		default:
780 			if (user)
781 				protected_blast_icache_range(start, end);
782 			else
783 				blast_icache_range(start, end);
784 			break;
785 		}
786 	}
787 }
788 
local_r4k_flush_icache_range(unsigned long start,unsigned long end)789 static inline void local_r4k_flush_icache_range(unsigned long start,
790 						unsigned long end)
791 {
792 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793 }
794 
local_r4k_flush_icache_user_range(unsigned long start,unsigned long end)795 static inline void local_r4k_flush_icache_user_range(unsigned long start,
796 						     unsigned long end)
797 {
798 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799 }
800 
local_r4k_flush_icache_range_ipi(void * args)801 static inline void local_r4k_flush_icache_range_ipi(void *args)
802 {
803 	struct flush_icache_range_args *fir_args = args;
804 	unsigned long start = fir_args->start;
805 	unsigned long end = fir_args->end;
806 	unsigned int type = fir_args->type;
807 	bool user = fir_args->user;
808 
809 	__local_r4k_flush_icache_range(start, end, type, user);
810 }
811 
__r4k_flush_icache_range(unsigned long start,unsigned long end,bool user)812 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
813 				     bool user)
814 {
815 	struct flush_icache_range_args args;
816 	unsigned long size, cache_size;
817 
818 	args.start = start;
819 	args.end = end;
820 	args.type = R4K_HIT | R4K_INDEX;
821 	args.user = user;
822 
823 	/*
824 	 * Indexed cache ops require an SMP call.
825 	 * Consider if that can or should be avoided.
826 	 */
827 	preempt_disable();
828 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
829 		/*
830 		 * If address-based cache ops don't require an SMP call, then
831 		 * use them exclusively for small flushes.
832 		 */
833 		size = end - start;
834 		cache_size = icache_size;
835 		if (!cpu_has_ic_fills_f_dc) {
836 			size *= 2;
837 			cache_size += dcache_size;
838 		}
839 		if (size <= cache_size)
840 			args.type &= ~R4K_INDEX;
841 	}
842 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
843 	preempt_enable();
844 	instruction_hazard();
845 }
846 
r4k_flush_icache_range(unsigned long start,unsigned long end)847 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
848 {
849 	return __r4k_flush_icache_range(start, end, false);
850 }
851 
r4k_flush_icache_user_range(unsigned long start,unsigned long end)852 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
853 {
854 	return __r4k_flush_icache_range(start, end, true);
855 }
856 
857 #ifdef CONFIG_DMA_NONCOHERENT
858 
r4k_dma_cache_wback_inv(unsigned long addr,unsigned long size)859 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
860 {
861 	/* Catch bad driver code */
862 	if (WARN_ON(size == 0))
863 		return;
864 
865 	preempt_disable();
866 	if (cpu_has_inclusive_pcaches) {
867 		if (size >= scache_size) {
868 			if (current_cpu_type() != CPU_LOONGSON64)
869 				r4k_blast_scache();
870 			else
871 				r4k_blast_scache_node(pa_to_nid(addr));
872 		} else {
873 			blast_scache_range(addr, addr + size);
874 		}
875 		preempt_enable();
876 		__sync();
877 		return;
878 	}
879 
880 	/*
881 	 * Either no secondary cache or the available caches don't have the
882 	 * subset property so we have to flush the primary caches
883 	 * explicitly.
884 	 * If we would need IPI to perform an INDEX-type operation, then
885 	 * we have to use the HIT-type alternative as IPI cannot be used
886 	 * here due to interrupts possibly being disabled.
887 	 */
888 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
889 		r4k_blast_dcache();
890 	} else {
891 		R4600_HIT_CACHEOP_WAR_IMPL;
892 		blast_dcache_range(addr, addr + size);
893 	}
894 	preempt_enable();
895 
896 	bc_wback_inv(addr, size);
897 	__sync();
898 }
899 
prefetch_cache_inv(unsigned long addr,unsigned long size)900 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
901 {
902 	unsigned int linesz = cpu_scache_line_size();
903 	unsigned long addr0 = addr, addr1;
904 
905 	addr0 &= ~(linesz - 1);
906 	addr1 = (addr0 + size - 1) & ~(linesz - 1);
907 
908 	protected_writeback_scache_line(addr0);
909 	if (likely(addr1 != addr0))
910 		protected_writeback_scache_line(addr1);
911 	else
912 		return;
913 
914 	addr0 += linesz;
915 	if (likely(addr1 != addr0))
916 		protected_writeback_scache_line(addr0);
917 	else
918 		return;
919 
920 	addr1 -= linesz;
921 	if (likely(addr1 > addr0))
922 		protected_writeback_scache_line(addr0);
923 }
924 
r4k_dma_cache_inv(unsigned long addr,unsigned long size)925 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
926 {
927 	/* Catch bad driver code */
928 	if (WARN_ON(size == 0))
929 		return;
930 
931 	preempt_disable();
932 
933 	if (current_cpu_type() == CPU_BMIPS5000)
934 		prefetch_cache_inv(addr, size);
935 
936 	if (cpu_has_inclusive_pcaches) {
937 		if (size >= scache_size) {
938 			if (current_cpu_type() != CPU_LOONGSON64)
939 				r4k_blast_scache();
940 			else
941 				r4k_blast_scache_node(pa_to_nid(addr));
942 		} else {
943 			/*
944 			 * There is no clearly documented alignment requirement
945 			 * for the cache instruction on MIPS processors and
946 			 * some processors, among them the RM5200 and RM7000
947 			 * QED processors will throw an address error for cache
948 			 * hit ops with insufficient alignment.	 Solved by
949 			 * aligning the address to cache line size.
950 			 */
951 			blast_inv_scache_range(addr, addr + size);
952 		}
953 		preempt_enable();
954 		__sync();
955 		return;
956 	}
957 
958 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
959 		r4k_blast_dcache();
960 	} else {
961 		R4600_HIT_CACHEOP_WAR_IMPL;
962 		blast_inv_dcache_range(addr, addr + size);
963 	}
964 	preempt_enable();
965 
966 	bc_inv(addr, size);
967 	__sync();
968 }
969 #endif /* CONFIG_DMA_NONCOHERENT */
970 
r4k_flush_icache_all(void)971 static void r4k_flush_icache_all(void)
972 {
973 	if (cpu_has_vtag_icache)
974 		r4k_blast_icache();
975 }
976 
977 struct flush_kernel_vmap_range_args {
978 	unsigned long	vaddr;
979 	int		size;
980 };
981 
local_r4k_flush_kernel_vmap_range_index(void * args)982 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
983 {
984 	/*
985 	 * Aliases only affect the primary caches so don't bother with
986 	 * S-caches or T-caches.
987 	 */
988 	r4k_blast_dcache();
989 }
990 
local_r4k_flush_kernel_vmap_range(void * args)991 static inline void local_r4k_flush_kernel_vmap_range(void *args)
992 {
993 	struct flush_kernel_vmap_range_args *vmra = args;
994 	unsigned long vaddr = vmra->vaddr;
995 	int size = vmra->size;
996 
997 	/*
998 	 * Aliases only affect the primary caches so don't bother with
999 	 * S-caches or T-caches.
1000 	 */
1001 	R4600_HIT_CACHEOP_WAR_IMPL;
1002 	blast_dcache_range(vaddr, vaddr + size);
1003 }
1004 
r4k_flush_kernel_vmap_range(unsigned long vaddr,int size)1005 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1006 {
1007 	struct flush_kernel_vmap_range_args args;
1008 
1009 	args.vaddr = (unsigned long) vaddr;
1010 	args.size = size;
1011 
1012 	if (size >= dcache_size)
1013 		r4k_on_each_cpu(R4K_INDEX,
1014 				local_r4k_flush_kernel_vmap_range_index, NULL);
1015 	else
1016 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1017 				&args);
1018 }
1019 
rm7k_erratum31(void)1020 static inline void rm7k_erratum31(void)
1021 {
1022 	const unsigned long ic_lsize = 32;
1023 	unsigned long addr;
1024 
1025 	/* RM7000 erratum #31. The icache is screwed at startup. */
1026 	write_c0_taglo(0);
1027 	write_c0_taghi(0);
1028 
1029 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1030 		__asm__ __volatile__ (
1031 			".set push\n\t"
1032 			".set noreorder\n\t"
1033 			".set mips3\n\t"
1034 			"cache\t%1, 0(%0)\n\t"
1035 			"cache\t%1, 0x1000(%0)\n\t"
1036 			"cache\t%1, 0x2000(%0)\n\t"
1037 			"cache\t%1, 0x3000(%0)\n\t"
1038 			"cache\t%2, 0(%0)\n\t"
1039 			"cache\t%2, 0x1000(%0)\n\t"
1040 			"cache\t%2, 0x2000(%0)\n\t"
1041 			"cache\t%2, 0x3000(%0)\n\t"
1042 			"cache\t%1, 0(%0)\n\t"
1043 			"cache\t%1, 0x1000(%0)\n\t"
1044 			"cache\t%1, 0x2000(%0)\n\t"
1045 			"cache\t%1, 0x3000(%0)\n\t"
1046 			".set pop\n"
1047 			:
1048 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1049 	}
1050 }
1051 
alias_74k_erratum(struct cpuinfo_mips * c)1052 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1053 {
1054 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1055 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1056 	int present = 0;
1057 
1058 	/*
1059 	 * Early versions of the 74K do not update the cache tags on a
1060 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1061 	 * aliases.  In this case it is better to treat the cache as always
1062 	 * having aliases.  Also disable the synonym tag update feature
1063 	 * where available.  In this case no opportunistic tag update will
1064 	 * happen where a load causes a virtual address miss but a physical
1065 	 * address hit during a D-cache look-up.
1066 	 */
1067 	switch (imp) {
1068 	case PRID_IMP_74K:
1069 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1070 			present = 1;
1071 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1072 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1073 		break;
1074 	case PRID_IMP_1074K:
1075 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1076 			present = 1;
1077 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1078 		}
1079 		break;
1080 	default:
1081 		BUG();
1082 	}
1083 
1084 	return present;
1085 }
1086 
b5k_instruction_hazard(void)1087 static void b5k_instruction_hazard(void)
1088 {
1089 	__sync();
1090 	__sync();
1091 	__asm__ __volatile__(
1092 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1096 	: : : "memory");
1097 }
1098 
1099 static char *way_string[] = { NULL, "direct mapped", "2-way",
1100 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1101 	"9-way", "10-way", "11-way", "12-way",
1102 	"13-way", "14-way", "15-way", "16-way",
1103 };
1104 
probe_pcache(void)1105 static void probe_pcache(void)
1106 {
1107 	struct cpuinfo_mips *c = &current_cpu_data;
1108 	unsigned int config = read_c0_config();
1109 	unsigned int prid = read_c0_prid();
1110 	int has_74k_erratum = 0;
1111 	unsigned long config1;
1112 	unsigned int lsize;
1113 
1114 	switch (current_cpu_type()) {
1115 	case CPU_R4600:			/* QED style two way caches? */
1116 	case CPU_R4700:
1117 	case CPU_R5000:
1118 	case CPU_NEVADA:
1119 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1120 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1121 		c->icache.ways = 2;
1122 		c->icache.waybit = __ffs(icache_size/2);
1123 
1124 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1125 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1126 		c->dcache.ways = 2;
1127 		c->dcache.waybit= __ffs(dcache_size/2);
1128 
1129 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1130 		break;
1131 
1132 	case CPU_R5500:
1133 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135 		c->icache.ways = 2;
1136 		c->icache.waybit= 0;
1137 
1138 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140 		c->dcache.ways = 2;
1141 		c->dcache.waybit = 0;
1142 
1143 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144 		break;
1145 
1146 	case CPU_TX49XX:
1147 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149 		c->icache.ways = 4;
1150 		c->icache.waybit= 0;
1151 
1152 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154 		c->dcache.ways = 4;
1155 		c->dcache.waybit = 0;
1156 
1157 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1158 		c->options |= MIPS_CPU_PREFETCH;
1159 		break;
1160 
1161 	case CPU_R4000PC:
1162 	case CPU_R4000SC:
1163 	case CPU_R4000MC:
1164 	case CPU_R4400PC:
1165 	case CPU_R4400SC:
1166 	case CPU_R4400MC:
1167 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169 		c->icache.ways = 1;
1170 		c->icache.waybit = 0;	/* doesn't matter */
1171 
1172 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174 		c->dcache.ways = 1;
1175 		c->dcache.waybit = 0;	/* does not matter */
1176 
1177 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1178 		break;
1179 
1180 	case CPU_R10000:
1181 	case CPU_R12000:
1182 	case CPU_R14000:
1183 	case CPU_R16000:
1184 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185 		c->icache.linesz = 64;
1186 		c->icache.ways = 2;
1187 		c->icache.waybit = 0;
1188 
1189 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190 		c->dcache.linesz = 32;
1191 		c->dcache.ways = 2;
1192 		c->dcache.waybit = 0;
1193 
1194 		c->options |= MIPS_CPU_PREFETCH;
1195 		break;
1196 
1197 	case CPU_VR4133:
1198 		write_c0_config(config & ~VR41_CONF_P4K);
1199 		fallthrough;
1200 	case CPU_VR4131:
1201 		/* Workaround for cache instruction bug of VR4131 */
1202 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1203 		    c->processor_id == 0x0c82U) {
1204 			config |= 0x00400000U;
1205 			if (c->processor_id == 0x0c80U)
1206 				config |= VR41_CONF_BP;
1207 			write_c0_config(config);
1208 		} else
1209 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1210 
1211 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1212 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1213 		c->icache.ways = 2;
1214 		c->icache.waybit = __ffs(icache_size/2);
1215 
1216 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1217 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1218 		c->dcache.ways = 2;
1219 		c->dcache.waybit = __ffs(dcache_size/2);
1220 		break;
1221 
1222 	case CPU_VR41XX:
1223 	case CPU_VR4111:
1224 	case CPU_VR4121:
1225 	case CPU_VR4122:
1226 	case CPU_VR4181:
1227 	case CPU_VR4181A:
1228 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1229 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1230 		c->icache.ways = 1;
1231 		c->icache.waybit = 0;	/* doesn't matter */
1232 
1233 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1234 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1235 		c->dcache.ways = 1;
1236 		c->dcache.waybit = 0;	/* does not matter */
1237 
1238 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1239 		break;
1240 
1241 	case CPU_RM7000:
1242 		rm7k_erratum31();
1243 
1244 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1245 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246 		c->icache.ways = 4;
1247 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1248 
1249 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1250 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251 		c->dcache.ways = 4;
1252 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1253 
1254 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1255 		c->options |= MIPS_CPU_PREFETCH;
1256 		break;
1257 
1258 	case CPU_LOONGSON2EF:
1259 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1260 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1261 		if (prid & 0x3)
1262 			c->icache.ways = 4;
1263 		else
1264 			c->icache.ways = 2;
1265 		c->icache.waybit = 0;
1266 
1267 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1268 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1269 		if (prid & 0x3)
1270 			c->dcache.ways = 4;
1271 		else
1272 			c->dcache.ways = 2;
1273 		c->dcache.waybit = 0;
1274 		break;
1275 
1276 	case CPU_LOONGSON64:
1277 		config1 = read_c0_config1();
1278 		lsize = (config1 >> 19) & 7;
1279 		if (lsize)
1280 			c->icache.linesz = 2 << lsize;
1281 		else
1282 			c->icache.linesz = 0;
1283 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1284 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1285 		icache_size = c->icache.sets *
1286 					  c->icache.ways *
1287 					  c->icache.linesz;
1288 		c->icache.waybit = 0;
1289 
1290 		lsize = (config1 >> 10) & 7;
1291 		if (lsize)
1292 			c->dcache.linesz = 2 << lsize;
1293 		else
1294 			c->dcache.linesz = 0;
1295 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1296 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1297 		dcache_size = c->dcache.sets *
1298 					  c->dcache.ways *
1299 					  c->dcache.linesz;
1300 		c->dcache.waybit = 0;
1301 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1302 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1303 				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1304 			c->options |= MIPS_CPU_PREFETCH;
1305 		break;
1306 
1307 	case CPU_CAVIUM_OCTEON3:
1308 		/* For now lie about the number of ways. */
1309 		c->icache.linesz = 128;
1310 		c->icache.sets = 16;
1311 		c->icache.ways = 8;
1312 		c->icache.flags |= MIPS_CACHE_VTAG;
1313 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1314 
1315 		c->dcache.linesz = 128;
1316 		c->dcache.ways = 8;
1317 		c->dcache.sets = 8;
1318 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1319 		c->options |= MIPS_CPU_PREFETCH;
1320 		break;
1321 
1322 	default:
1323 		if (!(config & MIPS_CONF_M))
1324 			panic("Don't know how to probe P-caches on this cpu.");
1325 
1326 		/*
1327 		 * So we seem to be a MIPS32 or MIPS64 CPU
1328 		 * So let's probe the I-cache ...
1329 		 */
1330 		config1 = read_c0_config1();
1331 
1332 		lsize = (config1 >> 19) & 7;
1333 
1334 		/* IL == 7 is reserved */
1335 		if (lsize == 7)
1336 			panic("Invalid icache line size");
1337 
1338 		c->icache.linesz = lsize ? 2 << lsize : 0;
1339 
1340 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1341 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1342 
1343 		icache_size = c->icache.sets *
1344 			      c->icache.ways *
1345 			      c->icache.linesz;
1346 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1347 
1348 		if (config & MIPS_CONF_VI)
1349 			c->icache.flags |= MIPS_CACHE_VTAG;
1350 
1351 		/*
1352 		 * Now probe the MIPS32 / MIPS64 data cache.
1353 		 */
1354 		c->dcache.flags = 0;
1355 
1356 		lsize = (config1 >> 10) & 7;
1357 
1358 		/* DL == 7 is reserved */
1359 		if (lsize == 7)
1360 			panic("Invalid dcache line size");
1361 
1362 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1363 
1364 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1365 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1366 
1367 		dcache_size = c->dcache.sets *
1368 			      c->dcache.ways *
1369 			      c->dcache.linesz;
1370 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1371 
1372 		c->options |= MIPS_CPU_PREFETCH;
1373 		break;
1374 	}
1375 
1376 	/*
1377 	 * Processor configuration sanity check for the R4000SC erratum
1378 	 * #5.	With page sizes larger than 32kB there is no possibility
1379 	 * to get a VCE exception anymore so we don't care about this
1380 	 * misconfiguration.  The case is rather theoretical anyway;
1381 	 * presumably no vendor is shipping his hardware in the "bad"
1382 	 * configuration.
1383 	 */
1384 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1385 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1386 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1387 	    PAGE_SIZE <= 0x8000)
1388 		panic("Improper R4000SC processor configuration detected");
1389 
1390 	/* compute a couple of other cache variables */
1391 	c->icache.waysize = icache_size / c->icache.ways;
1392 	c->dcache.waysize = dcache_size / c->dcache.ways;
1393 
1394 	c->icache.sets = c->icache.linesz ?
1395 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1396 	c->dcache.sets = c->dcache.linesz ?
1397 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1398 
1399 	/*
1400 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1401 	 * virtually indexed so normally would suffer from aliases.  So
1402 	 * normally they'd suffer from aliases but magic in the hardware deals
1403 	 * with that for us so we don't need to take care ourselves.
1404 	 */
1405 	switch (current_cpu_type()) {
1406 	case CPU_20KC:
1407 	case CPU_25KF:
1408 	case CPU_I6400:
1409 	case CPU_I6500:
1410 	case CPU_SB1:
1411 	case CPU_SB1A:
1412 	case CPU_XLR:
1413 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1414 		break;
1415 
1416 	case CPU_R10000:
1417 	case CPU_R12000:
1418 	case CPU_R14000:
1419 	case CPU_R16000:
1420 		break;
1421 
1422 	case CPU_74K:
1423 	case CPU_1074K:
1424 		has_74k_erratum = alias_74k_erratum(c);
1425 		fallthrough;
1426 	case CPU_M14KC:
1427 	case CPU_M14KEC:
1428 	case CPU_24K:
1429 	case CPU_34K:
1430 	case CPU_1004K:
1431 	case CPU_INTERAPTIV:
1432 	case CPU_P5600:
1433 	case CPU_PROAPTIV:
1434 	case CPU_M5150:
1435 	case CPU_QEMU_GENERIC:
1436 	case CPU_P6600:
1437 	case CPU_M6250:
1438 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1439 		    (c->icache.waysize > PAGE_SIZE))
1440 			c->icache.flags |= MIPS_CACHE_ALIASES;
1441 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1442 			/*
1443 			 * Effectively physically indexed dcache,
1444 			 * thus no virtual aliases.
1445 			*/
1446 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1447 			break;
1448 		}
1449 		fallthrough;
1450 	default:
1451 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1452 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1453 	}
1454 
1455 	/* Physically indexed caches don't suffer from virtual aliasing */
1456 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1457 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1458 
1459 	/*
1460 	 * In systems with CM the icache fills from L2 or closer caches, and
1461 	 * thus sees remote stores without needing to write them back any
1462 	 * further than that.
1463 	 */
1464 	if (mips_cm_present())
1465 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1466 
1467 	switch (current_cpu_type()) {
1468 	case CPU_20KC:
1469 		/*
1470 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1471 		 * the config register.
1472 		 */
1473 		c->icache.flags |= MIPS_CACHE_VTAG;
1474 		break;
1475 
1476 	case CPU_ALCHEMY:
1477 	case CPU_I6400:
1478 	case CPU_I6500:
1479 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1480 		break;
1481 
1482 	case CPU_BMIPS5000:
1483 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1484 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1485 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1486 		break;
1487 
1488 	case CPU_LOONGSON2EF:
1489 		/*
1490 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1491 		 * one op will act on all 4 ways
1492 		 */
1493 		c->icache.ways = 1;
1494 	}
1495 
1496 	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1497 		icache_size >> 10,
1498 		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1499 		way_string[c->icache.ways], c->icache.linesz);
1500 
1501 	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1502 		dcache_size >> 10, way_string[c->dcache.ways],
1503 		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1504 		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1505 			"cache aliases" : "no aliases",
1506 		c->dcache.linesz);
1507 }
1508 
probe_vcache(void)1509 static void probe_vcache(void)
1510 {
1511 	struct cpuinfo_mips *c = &current_cpu_data;
1512 	unsigned int config2, lsize;
1513 
1514 	if (current_cpu_type() != CPU_LOONGSON64)
1515 		return;
1516 
1517 	config2 = read_c0_config2();
1518 	if ((lsize = ((config2 >> 20) & 15)))
1519 		c->vcache.linesz = 2 << lsize;
1520 	else
1521 		c->vcache.linesz = lsize;
1522 
1523 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1524 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1525 
1526 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1527 
1528 	c->vcache.waybit = 0;
1529 	c->vcache.waysize = vcache_size / c->vcache.ways;
1530 
1531 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1532 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1533 }
1534 
1535 /*
1536  * If you even _breathe_ on this function, look at the gcc output and make sure
1537  * it does not pop things on and off the stack for the cache sizing loop that
1538  * executes in KSEG1 space or else you will crash and burn badly.  You have
1539  * been warned.
1540  */
probe_scache(void)1541 static int probe_scache(void)
1542 {
1543 	unsigned long flags, addr, begin, end, pow2;
1544 	unsigned int config = read_c0_config();
1545 	struct cpuinfo_mips *c = &current_cpu_data;
1546 
1547 	if (config & CONF_SC)
1548 		return 0;
1549 
1550 	begin = (unsigned long) &_stext;
1551 	begin &= ~((4 * 1024 * 1024) - 1);
1552 	end = begin + (4 * 1024 * 1024);
1553 
1554 	/*
1555 	 * This is such a bitch, you'd think they would make it easy to do
1556 	 * this.  Away you daemons of stupidity!
1557 	 */
1558 	local_irq_save(flags);
1559 
1560 	/* Fill each size-multiple cache line with a valid tag. */
1561 	pow2 = (64 * 1024);
1562 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1563 		unsigned long *p = (unsigned long *) addr;
1564 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1565 		pow2 <<= 1;
1566 	}
1567 
1568 	/* Load first line with zero (therefore invalid) tag. */
1569 	write_c0_taglo(0);
1570 	write_c0_taghi(0);
1571 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1572 	cache_op(Index_Store_Tag_I, begin);
1573 	cache_op(Index_Store_Tag_D, begin);
1574 	cache_op(Index_Store_Tag_SD, begin);
1575 
1576 	/* Now search for the wrap around point. */
1577 	pow2 = (128 * 1024);
1578 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1579 		cache_op(Index_Load_Tag_SD, addr);
1580 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1581 		if (!read_c0_taglo())
1582 			break;
1583 		pow2 <<= 1;
1584 	}
1585 	local_irq_restore(flags);
1586 	addr -= begin;
1587 
1588 	scache_size = addr;
1589 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1590 	c->scache.ways = 1;
1591 	c->scache.waybit = 0;		/* does not matter */
1592 
1593 	return 1;
1594 }
1595 
loongson2_sc_init(void)1596 static void loongson2_sc_init(void)
1597 {
1598 	struct cpuinfo_mips *c = &current_cpu_data;
1599 
1600 	scache_size = 512*1024;
1601 	c->scache.linesz = 32;
1602 	c->scache.ways = 4;
1603 	c->scache.waybit = 0;
1604 	c->scache.waysize = scache_size / (c->scache.ways);
1605 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1606 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1607 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1608 
1609 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1610 }
1611 
loongson3_sc_init(void)1612 static void loongson3_sc_init(void)
1613 {
1614 	struct cpuinfo_mips *c = &current_cpu_data;
1615 	unsigned int config2, lsize;
1616 
1617 	config2 = read_c0_config2();
1618 	lsize = (config2 >> 4) & 15;
1619 	if (lsize)
1620 		c->scache.linesz = 2 << lsize;
1621 	else
1622 		c->scache.linesz = 0;
1623 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1624 	c->scache.ways = 1 + (config2 & 15);
1625 
1626 	scache_size = c->scache.sets *
1627 				  c->scache.ways *
1628 				  c->scache.linesz;
1629 
1630 	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1631 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1632 		scache_size *= 2;
1633 	else
1634 		scache_size *= 4;
1635 
1636 	c->scache.waybit = 0;
1637 	c->scache.waysize = scache_size / c->scache.ways;
1638 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1639 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1640 	if (scache_size)
1641 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1642 	return;
1643 }
1644 
1645 extern int r5k_sc_init(void);
1646 extern int rm7k_sc_init(void);
1647 extern int mips_sc_init(void);
1648 
setup_scache(void)1649 static void setup_scache(void)
1650 {
1651 	struct cpuinfo_mips *c = &current_cpu_data;
1652 	unsigned int config = read_c0_config();
1653 	int sc_present = 0;
1654 
1655 	/*
1656 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1657 	 * processors don't have a S-cache that would be relevant to the
1658 	 * Linux memory management.
1659 	 */
1660 	switch (current_cpu_type()) {
1661 	case CPU_R4000SC:
1662 	case CPU_R4000MC:
1663 	case CPU_R4400SC:
1664 	case CPU_R4400MC:
1665 		sc_present = run_uncached(probe_scache);
1666 		if (sc_present)
1667 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1668 		break;
1669 
1670 	case CPU_R10000:
1671 	case CPU_R12000:
1672 	case CPU_R14000:
1673 	case CPU_R16000:
1674 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1675 		c->scache.linesz = 64 << ((config >> 13) & 1);
1676 		c->scache.ways = 2;
1677 		c->scache.waybit= 0;
1678 		sc_present = 1;
1679 		break;
1680 
1681 	case CPU_R5000:
1682 	case CPU_NEVADA:
1683 #ifdef CONFIG_R5000_CPU_SCACHE
1684 		r5k_sc_init();
1685 #endif
1686 		return;
1687 
1688 	case CPU_RM7000:
1689 #ifdef CONFIG_RM7000_CPU_SCACHE
1690 		rm7k_sc_init();
1691 #endif
1692 		return;
1693 
1694 	case CPU_LOONGSON2EF:
1695 		loongson2_sc_init();
1696 		return;
1697 
1698 	case CPU_LOONGSON64:
1699 		loongson3_sc_init();
1700 		return;
1701 
1702 	case CPU_CAVIUM_OCTEON3:
1703 	case CPU_XLP:
1704 		/* don't need to worry about L2, fully coherent */
1705 		return;
1706 
1707 	default:
1708 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1709 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1710 				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1711 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1712 #ifdef CONFIG_MIPS_CPU_SCACHE
1713 			if (mips_sc_init ()) {
1714 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1715 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1716 				       scache_size >> 10,
1717 				       way_string[c->scache.ways], c->scache.linesz);
1718 
1719 				if (current_cpu_type() == CPU_BMIPS5000)
1720 					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1721 			}
1722 
1723 #else
1724 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1725 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1726 #endif
1727 			return;
1728 		}
1729 		sc_present = 0;
1730 	}
1731 
1732 	if (!sc_present)
1733 		return;
1734 
1735 	/* compute a couple of other cache variables */
1736 	c->scache.waysize = scache_size / c->scache.ways;
1737 
1738 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1739 
1740 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1741 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1742 
1743 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1744 }
1745 
au1x00_fixup_config_od(void)1746 void au1x00_fixup_config_od(void)
1747 {
1748 	/*
1749 	 * c0_config.od (bit 19) was write only (and read as 0)
1750 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1751 	 * transaction overlapping and needs to be set to fix various errata.
1752 	 */
1753 	switch (read_c0_prid()) {
1754 	case 0x00030100: /* Au1000 DA */
1755 	case 0x00030201: /* Au1000 HA */
1756 	case 0x00030202: /* Au1000 HB */
1757 	case 0x01030200: /* Au1500 AB */
1758 	/*
1759 	 * Au1100 errata actually keeps silence about this bit, so we set it
1760 	 * just in case for those revisions that require it to be set according
1761 	 * to the (now gone) cpu table.
1762 	 */
1763 	case 0x02030200: /* Au1100 AB */
1764 	case 0x02030201: /* Au1100 BA */
1765 	case 0x02030202: /* Au1100 BC */
1766 		set_c0_config(1 << 19);
1767 		break;
1768 	}
1769 }
1770 
1771 /* CP0 hazard avoidance. */
1772 #define NXP_BARRIER()							\
1773 	 __asm__ __volatile__(						\
1774 	".set noreorder\n\t"						\
1775 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1776 	".set reorder\n\t")
1777 
nxp_pr4450_fixup_config(void)1778 static void nxp_pr4450_fixup_config(void)
1779 {
1780 	unsigned long config0;
1781 
1782 	config0 = read_c0_config();
1783 
1784 	/* clear all three cache coherency fields */
1785 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1786 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1787 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1788 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1789 	write_c0_config(config0);
1790 	NXP_BARRIER();
1791 }
1792 
1793 static int cca = -1;
1794 
cca_setup(char * str)1795 static int __init cca_setup(char *str)
1796 {
1797 	get_option(&str, &cca);
1798 
1799 	return 0;
1800 }
1801 
1802 early_param("cca", cca_setup);
1803 
coherency_setup(void)1804 static void coherency_setup(void)
1805 {
1806 	if (cca < 0 || cca > 7)
1807 		cca = read_c0_config() & CONF_CM_CMASK;
1808 	_page_cachable_default = cca << _CACHE_SHIFT;
1809 
1810 	pr_debug("Using cache attribute %d\n", cca);
1811 	change_c0_config(CONF_CM_CMASK, cca);
1812 
1813 	/*
1814 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1815 	 * the coherency mode specified by the TLB; 1 means cachable
1816 	 * coherent update on write will be used.  Not all processors have
1817 	 * this bit and; some wire it to zero, others like Toshiba had the
1818 	 * silly idea of putting something else there ...
1819 	 */
1820 	switch (current_cpu_type()) {
1821 	case CPU_R4000PC:
1822 	case CPU_R4000SC:
1823 	case CPU_R4000MC:
1824 	case CPU_R4400PC:
1825 	case CPU_R4400SC:
1826 	case CPU_R4400MC:
1827 		clear_c0_config(CONF_CU);
1828 		break;
1829 	/*
1830 	 * We need to catch the early Alchemy SOCs with
1831 	 * the write-only co_config.od bit and set it back to one on:
1832 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1833 	 */
1834 	case CPU_ALCHEMY:
1835 		au1x00_fixup_config_od();
1836 		break;
1837 
1838 	case PRID_IMP_PR4450:
1839 		nxp_pr4450_fixup_config();
1840 		break;
1841 	}
1842 }
1843 
r4k_cache_error_setup(void)1844 static void r4k_cache_error_setup(void)
1845 {
1846 	extern char __weak except_vec2_generic;
1847 	extern char __weak except_vec2_sb1;
1848 
1849 	switch (current_cpu_type()) {
1850 	case CPU_SB1:
1851 	case CPU_SB1A:
1852 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1853 		break;
1854 
1855 	default:
1856 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1857 		break;
1858 	}
1859 }
1860 
r4k_cache_init(void)1861 void r4k_cache_init(void)
1862 {
1863 	extern void build_clear_page(void);
1864 	extern void build_copy_page(void);
1865 	struct cpuinfo_mips *c = &current_cpu_data;
1866 
1867 	probe_pcache();
1868 	probe_vcache();
1869 	setup_scache();
1870 
1871 	r4k_blast_dcache_page_setup();
1872 	r4k_blast_dcache_page_indexed_setup();
1873 	r4k_blast_dcache_setup();
1874 	r4k_blast_icache_page_setup();
1875 	r4k_blast_icache_page_indexed_setup();
1876 	r4k_blast_icache_setup();
1877 	r4k_blast_scache_page_setup();
1878 	r4k_blast_scache_page_indexed_setup();
1879 	r4k_blast_scache_setup();
1880 	r4k_blast_scache_node_setup();
1881 #ifdef CONFIG_EVA
1882 	r4k_blast_dcache_user_page_setup();
1883 	r4k_blast_icache_user_page_setup();
1884 #endif
1885 
1886 	/*
1887 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1888 	 * This code supports virtually indexed processors and will be
1889 	 * unnecessarily inefficient on physically indexed processors.
1890 	 */
1891 	if (c->dcache.linesz && cpu_has_dc_aliases)
1892 		shm_align_mask = max_t( unsigned long,
1893 					c->dcache.sets * c->dcache.linesz - 1,
1894 					PAGE_SIZE - 1);
1895 	else
1896 		shm_align_mask = PAGE_SIZE-1;
1897 
1898 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1899 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1900 
1901 	flush_cache_all		= cache_noop;
1902 	__flush_cache_all	= r4k___flush_cache_all;
1903 	flush_cache_mm		= r4k_flush_cache_mm;
1904 	flush_cache_page	= r4k_flush_cache_page;
1905 	flush_cache_range	= r4k_flush_cache_range;
1906 
1907 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1908 
1909 	flush_icache_all	= r4k_flush_icache_all;
1910 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1911 	flush_data_cache_page	= r4k_flush_data_cache_page;
1912 	flush_icache_range	= r4k_flush_icache_range;
1913 	local_flush_icache_range	= local_r4k_flush_icache_range;
1914 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1915 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1916 
1917 #ifdef CONFIG_DMA_NONCOHERENT
1918 #ifdef CONFIG_DMA_MAYBE_COHERENT
1919 	if (coherentio == IO_COHERENCE_ENABLED ||
1920 	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1921 		_dma_cache_wback_inv	= (void *)cache_noop;
1922 		_dma_cache_wback	= (void *)cache_noop;
1923 		_dma_cache_inv		= (void *)cache_noop;
1924 	} else
1925 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1926 	{
1927 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1928 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1929 		_dma_cache_inv		= r4k_dma_cache_inv;
1930 	}
1931 #endif /* CONFIG_DMA_NONCOHERENT */
1932 
1933 	build_clear_page();
1934 	build_copy_page();
1935 
1936 	/*
1937 	 * We want to run CMP kernels on core with and without coherent
1938 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1939 	 * or not to flush caches.
1940 	 */
1941 	local_r4k___flush_cache_all(NULL);
1942 
1943 	coherency_setup();
1944 	board_cache_error_setup = r4k_cache_error_setup;
1945 
1946 	/*
1947 	 * Per-CPU overrides
1948 	 */
1949 	switch (current_cpu_type()) {
1950 	case CPU_BMIPS4350:
1951 	case CPU_BMIPS4380:
1952 		/* No IPI is needed because all CPUs share the same D$ */
1953 		flush_data_cache_page = r4k_blast_dcache_page;
1954 		break;
1955 	case CPU_BMIPS5000:
1956 		/* We lose our superpowers if L2 is disabled */
1957 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1958 			break;
1959 
1960 		/* I$ fills from D$ just by emptying the write buffers */
1961 		flush_cache_page = (void *)b5k_instruction_hazard;
1962 		flush_cache_range = (void *)b5k_instruction_hazard;
1963 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1964 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1965 		flush_icache_range = (void *)b5k_instruction_hazard;
1966 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1967 
1968 
1969 		/* Optimization: an L2 flush implicitly flushes the L1 */
1970 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1971 		break;
1972 	case CPU_LOONGSON64:
1973 		/* Loongson-3 maintains cache coherency by hardware */
1974 		__flush_cache_all	= cache_noop;
1975 		__flush_cache_vmap	= cache_noop;
1976 		__flush_cache_vunmap	= cache_noop;
1977 		__flush_kernel_vmap_range = (void *)cache_noop;
1978 		flush_cache_mm		= (void *)cache_noop;
1979 		flush_cache_page	= (void *)cache_noop;
1980 		flush_cache_range	= (void *)cache_noop;
1981 		flush_icache_all	= (void *)cache_noop;
1982 		flush_data_cache_page	= (void *)cache_noop;
1983 		local_flush_data_cache_page	= (void *)cache_noop;
1984 		break;
1985 	}
1986 }
1987 
r4k_cache_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1988 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1989 			       void *v)
1990 {
1991 	switch (cmd) {
1992 	case CPU_PM_ENTER_FAILED:
1993 	case CPU_PM_EXIT:
1994 		coherency_setup();
1995 		break;
1996 	}
1997 
1998 	return NOTIFY_OK;
1999 }
2000 
2001 static struct notifier_block r4k_cache_pm_notifier_block = {
2002 	.notifier_call = r4k_cache_pm_notifier,
2003 };
2004 
r4k_cache_init_pm(void)2005 int __init r4k_cache_init_pm(void)
2006 {
2007 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2008 }
2009 arch_initcall(r4k_cache_init_pm);
2010