1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/r4kcache.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 #include <asm/war.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/dma-coherence.h>
39 #include <asm/mips-cps.h>
40
41 /*
42 * Bits describing what cache ops an SMP callback function may perform.
43 *
44 * R4K_HIT - Virtual user or kernel address based cache operations. The
45 * active_mm must be checked before using user addresses, falling
46 * back to kmap.
47 * R4K_INDEX - Index based cache operations.
48 */
49
50 #define R4K_HIT BIT(0)
51 #define R4K_INDEX BIT(1)
52
53 /**
54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
56 *
57 * Decides whether a cache op needs to be performed on every core in the system.
58 * This may change depending on the @type of cache operation, as well as the set
59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60 * hotplug from changing the result.
61 *
62 * Returns: 1 if the cache operation @type should be done on every core in
63 * the system.
64 * 0 if the cache operation @type is globalized and only needs to
65 * be performed on a simple CPU.
66 */
r4k_op_needs_ipi(unsigned int type)67 static inline bool r4k_op_needs_ipi(unsigned int type)
68 {
69 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70 if (type == R4K_HIT && mips_cm_present())
71 return false;
72
73 /*
74 * Hardware doesn't globalize the required cache ops, so SMP calls may
75 * be needed, but only if there are foreign CPUs (non-siblings with
76 * separate caches).
77 */
78 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79 #ifdef CONFIG_SMP
80 return !cpumask_empty(&cpu_foreign_map[0]);
81 #else
82 return false;
83 #endif
84 }
85
86 /*
87 * Special Variant of smp_call_function for use by cache functions:
88 *
89 * o No return value
90 * o collapses to normal function call on UP kernels
91 * o collapses to normal function call on systems with a single shared
92 * primary cache.
93 * o doesn't disable interrupts on the local CPU
94 */
r4k_on_each_cpu(unsigned int type,void (* func)(void * info),void * info)95 static inline void r4k_on_each_cpu(unsigned int type,
96 void (*func)(void *info), void *info)
97 {
98 preempt_disable();
99 if (r4k_op_needs_ipi(type))
100 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101 func, info, 1);
102 func(info);
103 preempt_enable();
104 }
105
106 /*
107 * Must die.
108 */
109 static unsigned long icache_size __read_mostly;
110 static unsigned long dcache_size __read_mostly;
111 static unsigned long vcache_size __read_mostly;
112 static unsigned long scache_size __read_mostly;
113
114 /*
115 * Dummy cache handling routines for machines without boardcaches
116 */
cache_noop(void)117 static void cache_noop(void) {}
118
119 static struct bcache_ops no_sc_ops = {
120 .bc_enable = (void *)cache_noop,
121 .bc_disable = (void *)cache_noop,
122 .bc_wback_inv = (void *)cache_noop,
123 .bc_inv = (void *)cache_noop
124 };
125
126 struct bcache_ops *bcops = &no_sc_ops;
127
128 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
129 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
130
131 #define R4600_HIT_CACHEOP_WAR_IMPL \
132 do { \
133 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \
134 cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138 } while (0)
139
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141
r4k_blast_dcache_page_dc32(unsigned long addr)142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146 }
147
r4k_blast_dcache_page_dc64(unsigned long addr)148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 blast_dcache64_page(addr);
151 }
152
r4k_blast_dcache_page_dc128(unsigned long addr)153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 blast_dcache128_page(addr);
156 }
157
r4k_blast_dcache_page_setup(void)158 static void r4k_blast_dcache_page_setup(void)
159 {
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181 }
182
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
185 #else
186
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
r4k_blast_dcache_user_page_setup(void)189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202
203 #endif
204
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
r4k_blast_dcache_page_indexed_setup(void)207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225
r4k_blast_dcache_setup(void)226 static void r4k_blast_dcache_setup(void)
227 {
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240 }
241
242 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
blast_r4600_v1_icache32(void)252 static inline void blast_r4600_v1_icache32(void)
253 {
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259 }
260
tx49_blast_icache32(void)261 static inline void tx49_blast_icache32(void)
262 {
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache_unroll(32, kernel_cache, Index_Invalidate_I,
275 addr | ws, 32);
276 CACHE32_UNROLL32_ALIGN;
277 /* I'm in odd chunk. blast even chunks */
278 for (ws = 0; ws < ws_end; ws += ws_inc)
279 for (addr = start; addr < end; addr += 0x400 * 2)
280 cache_unroll(32, kernel_cache, Index_Invalidate_I,
281 addr | ws, 32);
282 }
283
blast_icache32_r4600_v1_page_indexed(unsigned long page)284 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285 {
286 unsigned long flags;
287
288 local_irq_save(flags);
289 blast_icache32_page_indexed(page);
290 local_irq_restore(flags);
291 }
292
tx49_blast_icache32_page_indexed(unsigned long page)293 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294 {
295 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296 unsigned long start = INDEX_BASE + (page & indexmask);
297 unsigned long end = start + PAGE_SIZE;
298 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299 unsigned long ws_end = current_cpu_data.icache.ways <<
300 current_cpu_data.icache.waybit;
301 unsigned long ws, addr;
302
303 CACHE32_UNROLL32_ALIGN2;
304 /* I'm in even chunk. blast odd chunks */
305 for (ws = 0; ws < ws_end; ws += ws_inc)
306 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307 cache_unroll(32, kernel_cache, Index_Invalidate_I,
308 addr | ws, 32);
309 CACHE32_UNROLL32_ALIGN;
310 /* I'm in odd chunk. blast even chunks */
311 for (ws = 0; ws < ws_end; ws += ws_inc)
312 for (addr = start; addr < end; addr += 0x400 * 2)
313 cache_unroll(32, kernel_cache, Index_Invalidate_I,
314 addr | ws, 32);
315 }
316
317 static void (* r4k_blast_icache_page)(unsigned long addr);
318
r4k_blast_icache_page_setup(void)319 static void r4k_blast_icache_page_setup(void)
320 {
321 unsigned long ic_lsize = cpu_icache_line_size();
322
323 if (ic_lsize == 0)
324 r4k_blast_icache_page = (void *)cache_noop;
325 else if (ic_lsize == 16)
326 r4k_blast_icache_page = blast_icache16_page;
327 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328 r4k_blast_icache_page = loongson2_blast_icache32_page;
329 else if (ic_lsize == 32)
330 r4k_blast_icache_page = blast_icache32_page;
331 else if (ic_lsize == 64)
332 r4k_blast_icache_page = blast_icache64_page;
333 else if (ic_lsize == 128)
334 r4k_blast_icache_page = blast_icache128_page;
335 }
336
337 #ifndef CONFIG_EVA
338 #define r4k_blast_icache_user_page r4k_blast_icache_page
339 #else
340
341 static void (*r4k_blast_icache_user_page)(unsigned long addr);
342
r4k_blast_icache_user_page_setup(void)343 static void r4k_blast_icache_user_page_setup(void)
344 {
345 unsigned long ic_lsize = cpu_icache_line_size();
346
347 if (ic_lsize == 0)
348 r4k_blast_icache_user_page = (void *)cache_noop;
349 else if (ic_lsize == 16)
350 r4k_blast_icache_user_page = blast_icache16_user_page;
351 else if (ic_lsize == 32)
352 r4k_blast_icache_user_page = blast_icache32_user_page;
353 else if (ic_lsize == 64)
354 r4k_blast_icache_user_page = blast_icache64_user_page;
355 }
356
357 #endif
358
359 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360
r4k_blast_icache_page_indexed_setup(void)361 static void r4k_blast_icache_page_indexed_setup(void)
362 {
363 unsigned long ic_lsize = cpu_icache_line_size();
364
365 if (ic_lsize == 0)
366 r4k_blast_icache_page_indexed = (void *)cache_noop;
367 else if (ic_lsize == 16)
368 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369 else if (ic_lsize == 32) {
370 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
371 cpu_is_r4600_v1_x())
372 r4k_blast_icache_page_indexed =
373 blast_icache32_r4600_v1_page_indexed;
374 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
375 r4k_blast_icache_page_indexed =
376 tx49_blast_icache32_page_indexed;
377 else if (current_cpu_type() == CPU_LOONGSON2EF)
378 r4k_blast_icache_page_indexed =
379 loongson2_blast_icache32_page_indexed;
380 else
381 r4k_blast_icache_page_indexed =
382 blast_icache32_page_indexed;
383 } else if (ic_lsize == 64)
384 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
385 }
386
387 void (* r4k_blast_icache)(void);
388 EXPORT_SYMBOL(r4k_blast_icache);
389
r4k_blast_icache_setup(void)390 static void r4k_blast_icache_setup(void)
391 {
392 unsigned long ic_lsize = cpu_icache_line_size();
393
394 if (ic_lsize == 0)
395 r4k_blast_icache = (void *)cache_noop;
396 else if (ic_lsize == 16)
397 r4k_blast_icache = blast_icache16;
398 else if (ic_lsize == 32) {
399 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
400 cpu_is_r4600_v1_x())
401 r4k_blast_icache = blast_r4600_v1_icache32;
402 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
403 r4k_blast_icache = tx49_blast_icache32;
404 else if (current_cpu_type() == CPU_LOONGSON2EF)
405 r4k_blast_icache = loongson2_blast_icache32;
406 else
407 r4k_blast_icache = blast_icache32;
408 } else if (ic_lsize == 64)
409 r4k_blast_icache = blast_icache64;
410 else if (ic_lsize == 128)
411 r4k_blast_icache = blast_icache128;
412 }
413
414 static void (* r4k_blast_scache_page)(unsigned long addr);
415
r4k_blast_scache_page_setup(void)416 static void r4k_blast_scache_page_setup(void)
417 {
418 unsigned long sc_lsize = cpu_scache_line_size();
419
420 if (scache_size == 0)
421 r4k_blast_scache_page = (void *)cache_noop;
422 else if (sc_lsize == 16)
423 r4k_blast_scache_page = blast_scache16_page;
424 else if (sc_lsize == 32)
425 r4k_blast_scache_page = blast_scache32_page;
426 else if (sc_lsize == 64)
427 r4k_blast_scache_page = blast_scache64_page;
428 else if (sc_lsize == 128)
429 r4k_blast_scache_page = blast_scache128_page;
430 }
431
432 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
433
r4k_blast_scache_page_indexed_setup(void)434 static void r4k_blast_scache_page_indexed_setup(void)
435 {
436 unsigned long sc_lsize = cpu_scache_line_size();
437
438 if (scache_size == 0)
439 r4k_blast_scache_page_indexed = (void *)cache_noop;
440 else if (sc_lsize == 16)
441 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
442 else if (sc_lsize == 32)
443 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
444 else if (sc_lsize == 64)
445 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
446 else if (sc_lsize == 128)
447 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
448 }
449
450 static void (* r4k_blast_scache)(void);
451
r4k_blast_scache_setup(void)452 static void r4k_blast_scache_setup(void)
453 {
454 unsigned long sc_lsize = cpu_scache_line_size();
455
456 if (scache_size == 0)
457 r4k_blast_scache = (void *)cache_noop;
458 else if (sc_lsize == 16)
459 r4k_blast_scache = blast_scache16;
460 else if (sc_lsize == 32)
461 r4k_blast_scache = blast_scache32;
462 else if (sc_lsize == 64)
463 r4k_blast_scache = blast_scache64;
464 else if (sc_lsize == 128)
465 r4k_blast_scache = blast_scache128;
466 }
467
468 static void (*r4k_blast_scache_node)(long node);
469
r4k_blast_scache_node_setup(void)470 static void r4k_blast_scache_node_setup(void)
471 {
472 unsigned long sc_lsize = cpu_scache_line_size();
473
474 if (current_cpu_type() != CPU_LOONGSON64)
475 r4k_blast_scache_node = (void *)cache_noop;
476 else if (sc_lsize == 16)
477 r4k_blast_scache_node = blast_scache16_node;
478 else if (sc_lsize == 32)
479 r4k_blast_scache_node = blast_scache32_node;
480 else if (sc_lsize == 64)
481 r4k_blast_scache_node = blast_scache64_node;
482 else if (sc_lsize == 128)
483 r4k_blast_scache_node = blast_scache128_node;
484 }
485
local_r4k___flush_cache_all(void * args)486 static inline void local_r4k___flush_cache_all(void * args)
487 {
488 switch (current_cpu_type()) {
489 case CPU_LOONGSON2EF:
490 case CPU_R4000SC:
491 case CPU_R4000MC:
492 case CPU_R4400SC:
493 case CPU_R4400MC:
494 case CPU_R10000:
495 case CPU_R12000:
496 case CPU_R14000:
497 case CPU_R16000:
498 /*
499 * These caches are inclusive caches, that is, if something
500 * is not cached in the S-cache, we know it also won't be
501 * in one of the primary caches.
502 */
503 r4k_blast_scache();
504 break;
505
506 case CPU_LOONGSON64:
507 /* Use get_ebase_cpunum() for both NUMA=y/n */
508 r4k_blast_scache_node(get_ebase_cpunum() >> 2);
509 break;
510
511 case CPU_BMIPS5000:
512 r4k_blast_scache();
513 __sync();
514 break;
515
516 default:
517 r4k_blast_dcache();
518 r4k_blast_icache();
519 break;
520 }
521 }
522
r4k___flush_cache_all(void)523 static void r4k___flush_cache_all(void)
524 {
525 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
526 }
527
528 /**
529 * has_valid_asid() - Determine if an mm already has an ASID.
530 * @mm: Memory map.
531 * @type: R4K_HIT or R4K_INDEX, type of cache op.
532 *
533 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
534 * of type @type within an r4k_on_each_cpu() call will affect. If
535 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
536 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
537 * will need to be checked.
538 *
539 * Must be called in non-preemptive context.
540 *
541 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
542 * 0 otherwise.
543 */
has_valid_asid(const struct mm_struct * mm,unsigned int type)544 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
545 {
546 unsigned int i;
547 const cpumask_t *mask = cpu_present_mask;
548
549 if (cpu_has_mmid)
550 return cpu_context(0, mm) != 0;
551
552 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
553 #ifdef CONFIG_SMP
554 /*
555 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
556 * each foreign core, so we only need to worry about siblings.
557 * Otherwise we need to worry about all present CPUs.
558 */
559 if (r4k_op_needs_ipi(type))
560 mask = &cpu_sibling_map[smp_processor_id()];
561 #endif
562 for_each_cpu(i, mask)
563 if (cpu_context(i, mm))
564 return 1;
565 return 0;
566 }
567
r4k__flush_cache_vmap(void)568 static void r4k__flush_cache_vmap(void)
569 {
570 r4k_blast_dcache();
571 }
572
r4k__flush_cache_vunmap(void)573 static void r4k__flush_cache_vunmap(void)
574 {
575 r4k_blast_dcache();
576 }
577
578 /*
579 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
580 * whole caches when vma is executable.
581 */
local_r4k_flush_cache_range(void * args)582 static inline void local_r4k_flush_cache_range(void * args)
583 {
584 struct vm_area_struct *vma = args;
585 int exec = vma->vm_flags & VM_EXEC;
586
587 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
588 return;
589
590 /*
591 * If dcache can alias, we must blast it since mapping is changing.
592 * If executable, we must ensure any dirty lines are written back far
593 * enough to be visible to icache.
594 */
595 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
596 r4k_blast_dcache();
597 /* If executable, blast stale lines from icache */
598 if (exec)
599 r4k_blast_icache();
600 }
601
r4k_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)602 static void r4k_flush_cache_range(struct vm_area_struct *vma,
603 unsigned long start, unsigned long end)
604 {
605 int exec = vma->vm_flags & VM_EXEC;
606
607 if (cpu_has_dc_aliases || exec)
608 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
609 }
610
local_r4k_flush_cache_mm(void * args)611 static inline void local_r4k_flush_cache_mm(void * args)
612 {
613 struct mm_struct *mm = args;
614
615 if (!has_valid_asid(mm, R4K_INDEX))
616 return;
617
618 /*
619 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
620 * only flush the primary caches but R1x000 behave sane ...
621 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
622 * caches, so we can bail out early.
623 */
624 if (current_cpu_type() == CPU_R4000SC ||
625 current_cpu_type() == CPU_R4000MC ||
626 current_cpu_type() == CPU_R4400SC ||
627 current_cpu_type() == CPU_R4400MC) {
628 r4k_blast_scache();
629 return;
630 }
631
632 r4k_blast_dcache();
633 }
634
r4k_flush_cache_mm(struct mm_struct * mm)635 static void r4k_flush_cache_mm(struct mm_struct *mm)
636 {
637 if (!cpu_has_dc_aliases)
638 return;
639
640 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
641 }
642
643 struct flush_cache_page_args {
644 struct vm_area_struct *vma;
645 unsigned long addr;
646 unsigned long pfn;
647 };
648
local_r4k_flush_cache_page(void * args)649 static inline void local_r4k_flush_cache_page(void *args)
650 {
651 struct flush_cache_page_args *fcp_args = args;
652 struct vm_area_struct *vma = fcp_args->vma;
653 unsigned long addr = fcp_args->addr;
654 struct page *page = pfn_to_page(fcp_args->pfn);
655 int exec = vma->vm_flags & VM_EXEC;
656 struct mm_struct *mm = vma->vm_mm;
657 int map_coherent = 0;
658 pmd_t *pmdp;
659 pte_t *ptep;
660 void *vaddr;
661
662 /*
663 * If owns no valid ASID yet, cannot possibly have gotten
664 * this page into the cache.
665 */
666 if (!has_valid_asid(mm, R4K_HIT))
667 return;
668
669 addr &= PAGE_MASK;
670 pmdp = pmd_off(mm, addr);
671 ptep = pte_offset_kernel(pmdp, addr);
672
673 /*
674 * If the page isn't marked valid, the page cannot possibly be
675 * in the cache.
676 */
677 if (!(pte_present(*ptep)))
678 return;
679
680 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
681 vaddr = NULL;
682 else {
683 /*
684 * Use kmap_coherent or kmap_atomic to do flushes for
685 * another ASID than the current one.
686 */
687 map_coherent = (cpu_has_dc_aliases &&
688 page_mapcount(page) &&
689 !Page_dcache_dirty(page));
690 if (map_coherent)
691 vaddr = kmap_coherent(page, addr);
692 else
693 vaddr = kmap_atomic(page);
694 addr = (unsigned long)vaddr;
695 }
696
697 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
698 vaddr ? r4k_blast_dcache_page(addr) :
699 r4k_blast_dcache_user_page(addr);
700 if (exec && !cpu_icache_snoops_remote_store)
701 r4k_blast_scache_page(addr);
702 }
703 if (exec) {
704 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
705 drop_mmu_context(mm);
706 } else
707 vaddr ? r4k_blast_icache_page(addr) :
708 r4k_blast_icache_user_page(addr);
709 }
710
711 if (vaddr) {
712 if (map_coherent)
713 kunmap_coherent();
714 else
715 kunmap_atomic(vaddr);
716 }
717 }
718
r4k_flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)719 static void r4k_flush_cache_page(struct vm_area_struct *vma,
720 unsigned long addr, unsigned long pfn)
721 {
722 struct flush_cache_page_args args;
723
724 args.vma = vma;
725 args.addr = addr;
726 args.pfn = pfn;
727
728 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729 }
730
local_r4k_flush_data_cache_page(void * addr)731 static inline void local_r4k_flush_data_cache_page(void * addr)
732 {
733 r4k_blast_dcache_page((unsigned long) addr);
734 }
735
r4k_flush_data_cache_page(unsigned long addr)736 static void r4k_flush_data_cache_page(unsigned long addr)
737 {
738 if (in_atomic())
739 local_r4k_flush_data_cache_page((void *)addr);
740 else
741 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
742 (void *) addr);
743 }
744
745 struct flush_icache_range_args {
746 unsigned long start;
747 unsigned long end;
748 unsigned int type;
749 bool user;
750 };
751
__local_r4k_flush_icache_range(unsigned long start,unsigned long end,unsigned int type,bool user)752 static inline void __local_r4k_flush_icache_range(unsigned long start,
753 unsigned long end,
754 unsigned int type,
755 bool user)
756 {
757 if (!cpu_has_ic_fills_f_dc) {
758 if (type == R4K_INDEX ||
759 (type & R4K_INDEX && end - start >= dcache_size)) {
760 r4k_blast_dcache();
761 } else {
762 R4600_HIT_CACHEOP_WAR_IMPL;
763 if (user)
764 protected_blast_dcache_range(start, end);
765 else
766 blast_dcache_range(start, end);
767 }
768 }
769
770 if (type == R4K_INDEX ||
771 (type & R4K_INDEX && end - start > icache_size))
772 r4k_blast_icache();
773 else {
774 switch (boot_cpu_type()) {
775 case CPU_LOONGSON2EF:
776 protected_loongson2_blast_icache_range(start, end);
777 break;
778
779 default:
780 if (user)
781 protected_blast_icache_range(start, end);
782 else
783 blast_icache_range(start, end);
784 break;
785 }
786 }
787 }
788
local_r4k_flush_icache_range(unsigned long start,unsigned long end)789 static inline void local_r4k_flush_icache_range(unsigned long start,
790 unsigned long end)
791 {
792 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793 }
794
local_r4k_flush_icache_user_range(unsigned long start,unsigned long end)795 static inline void local_r4k_flush_icache_user_range(unsigned long start,
796 unsigned long end)
797 {
798 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799 }
800
local_r4k_flush_icache_range_ipi(void * args)801 static inline void local_r4k_flush_icache_range_ipi(void *args)
802 {
803 struct flush_icache_range_args *fir_args = args;
804 unsigned long start = fir_args->start;
805 unsigned long end = fir_args->end;
806 unsigned int type = fir_args->type;
807 bool user = fir_args->user;
808
809 __local_r4k_flush_icache_range(start, end, type, user);
810 }
811
__r4k_flush_icache_range(unsigned long start,unsigned long end,bool user)812 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
813 bool user)
814 {
815 struct flush_icache_range_args args;
816 unsigned long size, cache_size;
817
818 args.start = start;
819 args.end = end;
820 args.type = R4K_HIT | R4K_INDEX;
821 args.user = user;
822
823 /*
824 * Indexed cache ops require an SMP call.
825 * Consider if that can or should be avoided.
826 */
827 preempt_disable();
828 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
829 /*
830 * If address-based cache ops don't require an SMP call, then
831 * use them exclusively for small flushes.
832 */
833 size = end - start;
834 cache_size = icache_size;
835 if (!cpu_has_ic_fills_f_dc) {
836 size *= 2;
837 cache_size += dcache_size;
838 }
839 if (size <= cache_size)
840 args.type &= ~R4K_INDEX;
841 }
842 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
843 preempt_enable();
844 instruction_hazard();
845 }
846
r4k_flush_icache_range(unsigned long start,unsigned long end)847 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
848 {
849 return __r4k_flush_icache_range(start, end, false);
850 }
851
r4k_flush_icache_user_range(unsigned long start,unsigned long end)852 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
853 {
854 return __r4k_flush_icache_range(start, end, true);
855 }
856
857 #ifdef CONFIG_DMA_NONCOHERENT
858
r4k_dma_cache_wback_inv(unsigned long addr,unsigned long size)859 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
860 {
861 /* Catch bad driver code */
862 if (WARN_ON(size == 0))
863 return;
864
865 preempt_disable();
866 if (cpu_has_inclusive_pcaches) {
867 if (size >= scache_size) {
868 if (current_cpu_type() != CPU_LOONGSON64)
869 r4k_blast_scache();
870 else
871 r4k_blast_scache_node(pa_to_nid(addr));
872 } else {
873 blast_scache_range(addr, addr + size);
874 }
875 preempt_enable();
876 __sync();
877 return;
878 }
879
880 /*
881 * Either no secondary cache or the available caches don't have the
882 * subset property so we have to flush the primary caches
883 * explicitly.
884 * If we would need IPI to perform an INDEX-type operation, then
885 * we have to use the HIT-type alternative as IPI cannot be used
886 * here due to interrupts possibly being disabled.
887 */
888 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
889 r4k_blast_dcache();
890 } else {
891 R4600_HIT_CACHEOP_WAR_IMPL;
892 blast_dcache_range(addr, addr + size);
893 }
894 preempt_enable();
895
896 bc_wback_inv(addr, size);
897 __sync();
898 }
899
prefetch_cache_inv(unsigned long addr,unsigned long size)900 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
901 {
902 unsigned int linesz = cpu_scache_line_size();
903 unsigned long addr0 = addr, addr1;
904
905 addr0 &= ~(linesz - 1);
906 addr1 = (addr0 + size - 1) & ~(linesz - 1);
907
908 protected_writeback_scache_line(addr0);
909 if (likely(addr1 != addr0))
910 protected_writeback_scache_line(addr1);
911 else
912 return;
913
914 addr0 += linesz;
915 if (likely(addr1 != addr0))
916 protected_writeback_scache_line(addr0);
917 else
918 return;
919
920 addr1 -= linesz;
921 if (likely(addr1 > addr0))
922 protected_writeback_scache_line(addr0);
923 }
924
r4k_dma_cache_inv(unsigned long addr,unsigned long size)925 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
926 {
927 /* Catch bad driver code */
928 if (WARN_ON(size == 0))
929 return;
930
931 preempt_disable();
932
933 if (current_cpu_type() == CPU_BMIPS5000)
934 prefetch_cache_inv(addr, size);
935
936 if (cpu_has_inclusive_pcaches) {
937 if (size >= scache_size) {
938 if (current_cpu_type() != CPU_LOONGSON64)
939 r4k_blast_scache();
940 else
941 r4k_blast_scache_node(pa_to_nid(addr));
942 } else {
943 /*
944 * There is no clearly documented alignment requirement
945 * for the cache instruction on MIPS processors and
946 * some processors, among them the RM5200 and RM7000
947 * QED processors will throw an address error for cache
948 * hit ops with insufficient alignment. Solved by
949 * aligning the address to cache line size.
950 */
951 blast_inv_scache_range(addr, addr + size);
952 }
953 preempt_enable();
954 __sync();
955 return;
956 }
957
958 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
959 r4k_blast_dcache();
960 } else {
961 R4600_HIT_CACHEOP_WAR_IMPL;
962 blast_inv_dcache_range(addr, addr + size);
963 }
964 preempt_enable();
965
966 bc_inv(addr, size);
967 __sync();
968 }
969 #endif /* CONFIG_DMA_NONCOHERENT */
970
r4k_flush_icache_all(void)971 static void r4k_flush_icache_all(void)
972 {
973 if (cpu_has_vtag_icache)
974 r4k_blast_icache();
975 }
976
977 struct flush_kernel_vmap_range_args {
978 unsigned long vaddr;
979 int size;
980 };
981
local_r4k_flush_kernel_vmap_range_index(void * args)982 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
983 {
984 /*
985 * Aliases only affect the primary caches so don't bother with
986 * S-caches or T-caches.
987 */
988 r4k_blast_dcache();
989 }
990
local_r4k_flush_kernel_vmap_range(void * args)991 static inline void local_r4k_flush_kernel_vmap_range(void *args)
992 {
993 struct flush_kernel_vmap_range_args *vmra = args;
994 unsigned long vaddr = vmra->vaddr;
995 int size = vmra->size;
996
997 /*
998 * Aliases only affect the primary caches so don't bother with
999 * S-caches or T-caches.
1000 */
1001 R4600_HIT_CACHEOP_WAR_IMPL;
1002 blast_dcache_range(vaddr, vaddr + size);
1003 }
1004
r4k_flush_kernel_vmap_range(unsigned long vaddr,int size)1005 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1006 {
1007 struct flush_kernel_vmap_range_args args;
1008
1009 args.vaddr = (unsigned long) vaddr;
1010 args.size = size;
1011
1012 if (size >= dcache_size)
1013 r4k_on_each_cpu(R4K_INDEX,
1014 local_r4k_flush_kernel_vmap_range_index, NULL);
1015 else
1016 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1017 &args);
1018 }
1019
rm7k_erratum31(void)1020 static inline void rm7k_erratum31(void)
1021 {
1022 const unsigned long ic_lsize = 32;
1023 unsigned long addr;
1024
1025 /* RM7000 erratum #31. The icache is screwed at startup. */
1026 write_c0_taglo(0);
1027 write_c0_taghi(0);
1028
1029 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1030 __asm__ __volatile__ (
1031 ".set push\n\t"
1032 ".set noreorder\n\t"
1033 ".set mips3\n\t"
1034 "cache\t%1, 0(%0)\n\t"
1035 "cache\t%1, 0x1000(%0)\n\t"
1036 "cache\t%1, 0x2000(%0)\n\t"
1037 "cache\t%1, 0x3000(%0)\n\t"
1038 "cache\t%2, 0(%0)\n\t"
1039 "cache\t%2, 0x1000(%0)\n\t"
1040 "cache\t%2, 0x2000(%0)\n\t"
1041 "cache\t%2, 0x3000(%0)\n\t"
1042 "cache\t%1, 0(%0)\n\t"
1043 "cache\t%1, 0x1000(%0)\n\t"
1044 "cache\t%1, 0x2000(%0)\n\t"
1045 "cache\t%1, 0x3000(%0)\n\t"
1046 ".set pop\n"
1047 :
1048 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1049 }
1050 }
1051
alias_74k_erratum(struct cpuinfo_mips * c)1052 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1053 {
1054 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1055 unsigned int rev = c->processor_id & PRID_REV_MASK;
1056 int present = 0;
1057
1058 /*
1059 * Early versions of the 74K do not update the cache tags on a
1060 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1061 * aliases. In this case it is better to treat the cache as always
1062 * having aliases. Also disable the synonym tag update feature
1063 * where available. In this case no opportunistic tag update will
1064 * happen where a load causes a virtual address miss but a physical
1065 * address hit during a D-cache look-up.
1066 */
1067 switch (imp) {
1068 case PRID_IMP_74K:
1069 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1070 present = 1;
1071 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1072 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1073 break;
1074 case PRID_IMP_1074K:
1075 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1076 present = 1;
1077 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1078 }
1079 break;
1080 default:
1081 BUG();
1082 }
1083
1084 return present;
1085 }
1086
b5k_instruction_hazard(void)1087 static void b5k_instruction_hazard(void)
1088 {
1089 __sync();
1090 __sync();
1091 __asm__ __volatile__(
1092 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1096 : : : "memory");
1097 }
1098
1099 static char *way_string[] = { NULL, "direct mapped", "2-way",
1100 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1101 "9-way", "10-way", "11-way", "12-way",
1102 "13-way", "14-way", "15-way", "16-way",
1103 };
1104
probe_pcache(void)1105 static void probe_pcache(void)
1106 {
1107 struct cpuinfo_mips *c = ¤t_cpu_data;
1108 unsigned int config = read_c0_config();
1109 unsigned int prid = read_c0_prid();
1110 int has_74k_erratum = 0;
1111 unsigned long config1;
1112 unsigned int lsize;
1113
1114 switch (current_cpu_type()) {
1115 case CPU_R4600: /* QED style two way caches? */
1116 case CPU_R4700:
1117 case CPU_R5000:
1118 case CPU_NEVADA:
1119 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1120 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1121 c->icache.ways = 2;
1122 c->icache.waybit = __ffs(icache_size/2);
1123
1124 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1125 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1126 c->dcache.ways = 2;
1127 c->dcache.waybit= __ffs(dcache_size/2);
1128
1129 c->options |= MIPS_CPU_CACHE_CDEX_P;
1130 break;
1131
1132 case CPU_R5500:
1133 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135 c->icache.ways = 2;
1136 c->icache.waybit= 0;
1137
1138 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140 c->dcache.ways = 2;
1141 c->dcache.waybit = 0;
1142
1143 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144 break;
1145
1146 case CPU_TX49XX:
1147 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149 c->icache.ways = 4;
1150 c->icache.waybit= 0;
1151
1152 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154 c->dcache.ways = 4;
1155 c->dcache.waybit = 0;
1156
1157 c->options |= MIPS_CPU_CACHE_CDEX_P;
1158 c->options |= MIPS_CPU_PREFETCH;
1159 break;
1160
1161 case CPU_R4000PC:
1162 case CPU_R4000SC:
1163 case CPU_R4000MC:
1164 case CPU_R4400PC:
1165 case CPU_R4400SC:
1166 case CPU_R4400MC:
1167 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169 c->icache.ways = 1;
1170 c->icache.waybit = 0; /* doesn't matter */
1171
1172 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174 c->dcache.ways = 1;
1175 c->dcache.waybit = 0; /* does not matter */
1176
1177 c->options |= MIPS_CPU_CACHE_CDEX_P;
1178 break;
1179
1180 case CPU_R10000:
1181 case CPU_R12000:
1182 case CPU_R14000:
1183 case CPU_R16000:
1184 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185 c->icache.linesz = 64;
1186 c->icache.ways = 2;
1187 c->icache.waybit = 0;
1188
1189 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190 c->dcache.linesz = 32;
1191 c->dcache.ways = 2;
1192 c->dcache.waybit = 0;
1193
1194 c->options |= MIPS_CPU_PREFETCH;
1195 break;
1196
1197 case CPU_VR4133:
1198 write_c0_config(config & ~VR41_CONF_P4K);
1199 fallthrough;
1200 case CPU_VR4131:
1201 /* Workaround for cache instruction bug of VR4131 */
1202 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1203 c->processor_id == 0x0c82U) {
1204 config |= 0x00400000U;
1205 if (c->processor_id == 0x0c80U)
1206 config |= VR41_CONF_BP;
1207 write_c0_config(config);
1208 } else
1209 c->options |= MIPS_CPU_CACHE_CDEX_P;
1210
1211 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1212 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1213 c->icache.ways = 2;
1214 c->icache.waybit = __ffs(icache_size/2);
1215
1216 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1217 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1218 c->dcache.ways = 2;
1219 c->dcache.waybit = __ffs(dcache_size/2);
1220 break;
1221
1222 case CPU_VR41XX:
1223 case CPU_VR4111:
1224 case CPU_VR4121:
1225 case CPU_VR4122:
1226 case CPU_VR4181:
1227 case CPU_VR4181A:
1228 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1229 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1230 c->icache.ways = 1;
1231 c->icache.waybit = 0; /* doesn't matter */
1232
1233 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1234 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1235 c->dcache.ways = 1;
1236 c->dcache.waybit = 0; /* does not matter */
1237
1238 c->options |= MIPS_CPU_CACHE_CDEX_P;
1239 break;
1240
1241 case CPU_RM7000:
1242 rm7k_erratum31();
1243
1244 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1245 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246 c->icache.ways = 4;
1247 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1248
1249 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1250 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251 c->dcache.ways = 4;
1252 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1253
1254 c->options |= MIPS_CPU_CACHE_CDEX_P;
1255 c->options |= MIPS_CPU_PREFETCH;
1256 break;
1257
1258 case CPU_LOONGSON2EF:
1259 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1260 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1261 if (prid & 0x3)
1262 c->icache.ways = 4;
1263 else
1264 c->icache.ways = 2;
1265 c->icache.waybit = 0;
1266
1267 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1268 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1269 if (prid & 0x3)
1270 c->dcache.ways = 4;
1271 else
1272 c->dcache.ways = 2;
1273 c->dcache.waybit = 0;
1274 break;
1275
1276 case CPU_LOONGSON64:
1277 config1 = read_c0_config1();
1278 lsize = (config1 >> 19) & 7;
1279 if (lsize)
1280 c->icache.linesz = 2 << lsize;
1281 else
1282 c->icache.linesz = 0;
1283 c->icache.sets = 64 << ((config1 >> 22) & 7);
1284 c->icache.ways = 1 + ((config1 >> 16) & 7);
1285 icache_size = c->icache.sets *
1286 c->icache.ways *
1287 c->icache.linesz;
1288 c->icache.waybit = 0;
1289
1290 lsize = (config1 >> 10) & 7;
1291 if (lsize)
1292 c->dcache.linesz = 2 << lsize;
1293 else
1294 c->dcache.linesz = 0;
1295 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1296 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1297 dcache_size = c->dcache.sets *
1298 c->dcache.ways *
1299 c->dcache.linesz;
1300 c->dcache.waybit = 0;
1301 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1302 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1303 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1304 c->options |= MIPS_CPU_PREFETCH;
1305 break;
1306
1307 case CPU_CAVIUM_OCTEON3:
1308 /* For now lie about the number of ways. */
1309 c->icache.linesz = 128;
1310 c->icache.sets = 16;
1311 c->icache.ways = 8;
1312 c->icache.flags |= MIPS_CACHE_VTAG;
1313 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1314
1315 c->dcache.linesz = 128;
1316 c->dcache.ways = 8;
1317 c->dcache.sets = 8;
1318 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1319 c->options |= MIPS_CPU_PREFETCH;
1320 break;
1321
1322 default:
1323 if (!(config & MIPS_CONF_M))
1324 panic("Don't know how to probe P-caches on this cpu.");
1325
1326 /*
1327 * So we seem to be a MIPS32 or MIPS64 CPU
1328 * So let's probe the I-cache ...
1329 */
1330 config1 = read_c0_config1();
1331
1332 lsize = (config1 >> 19) & 7;
1333
1334 /* IL == 7 is reserved */
1335 if (lsize == 7)
1336 panic("Invalid icache line size");
1337
1338 c->icache.linesz = lsize ? 2 << lsize : 0;
1339
1340 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1341 c->icache.ways = 1 + ((config1 >> 16) & 7);
1342
1343 icache_size = c->icache.sets *
1344 c->icache.ways *
1345 c->icache.linesz;
1346 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1347
1348 if (config & MIPS_CONF_VI)
1349 c->icache.flags |= MIPS_CACHE_VTAG;
1350
1351 /*
1352 * Now probe the MIPS32 / MIPS64 data cache.
1353 */
1354 c->dcache.flags = 0;
1355
1356 lsize = (config1 >> 10) & 7;
1357
1358 /* DL == 7 is reserved */
1359 if (lsize == 7)
1360 panic("Invalid dcache line size");
1361
1362 c->dcache.linesz = lsize ? 2 << lsize : 0;
1363
1364 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1365 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1366
1367 dcache_size = c->dcache.sets *
1368 c->dcache.ways *
1369 c->dcache.linesz;
1370 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1371
1372 c->options |= MIPS_CPU_PREFETCH;
1373 break;
1374 }
1375
1376 /*
1377 * Processor configuration sanity check for the R4000SC erratum
1378 * #5. With page sizes larger than 32kB there is no possibility
1379 * to get a VCE exception anymore so we don't care about this
1380 * misconfiguration. The case is rather theoretical anyway;
1381 * presumably no vendor is shipping his hardware in the "bad"
1382 * configuration.
1383 */
1384 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1385 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1386 !(config & CONF_SC) && c->icache.linesz != 16 &&
1387 PAGE_SIZE <= 0x8000)
1388 panic("Improper R4000SC processor configuration detected");
1389
1390 /* compute a couple of other cache variables */
1391 c->icache.waysize = icache_size / c->icache.ways;
1392 c->dcache.waysize = dcache_size / c->dcache.ways;
1393
1394 c->icache.sets = c->icache.linesz ?
1395 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1396 c->dcache.sets = c->dcache.linesz ?
1397 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1398
1399 /*
1400 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1401 * virtually indexed so normally would suffer from aliases. So
1402 * normally they'd suffer from aliases but magic in the hardware deals
1403 * with that for us so we don't need to take care ourselves.
1404 */
1405 switch (current_cpu_type()) {
1406 case CPU_20KC:
1407 case CPU_25KF:
1408 case CPU_I6400:
1409 case CPU_I6500:
1410 case CPU_SB1:
1411 case CPU_SB1A:
1412 case CPU_XLR:
1413 c->dcache.flags |= MIPS_CACHE_PINDEX;
1414 break;
1415
1416 case CPU_R10000:
1417 case CPU_R12000:
1418 case CPU_R14000:
1419 case CPU_R16000:
1420 break;
1421
1422 case CPU_74K:
1423 case CPU_1074K:
1424 has_74k_erratum = alias_74k_erratum(c);
1425 fallthrough;
1426 case CPU_M14KC:
1427 case CPU_M14KEC:
1428 case CPU_24K:
1429 case CPU_34K:
1430 case CPU_1004K:
1431 case CPU_INTERAPTIV:
1432 case CPU_P5600:
1433 case CPU_PROAPTIV:
1434 case CPU_M5150:
1435 case CPU_QEMU_GENERIC:
1436 case CPU_P6600:
1437 case CPU_M6250:
1438 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1439 (c->icache.waysize > PAGE_SIZE))
1440 c->icache.flags |= MIPS_CACHE_ALIASES;
1441 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1442 /*
1443 * Effectively physically indexed dcache,
1444 * thus no virtual aliases.
1445 */
1446 c->dcache.flags |= MIPS_CACHE_PINDEX;
1447 break;
1448 }
1449 fallthrough;
1450 default:
1451 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1452 c->dcache.flags |= MIPS_CACHE_ALIASES;
1453 }
1454
1455 /* Physically indexed caches don't suffer from virtual aliasing */
1456 if (c->dcache.flags & MIPS_CACHE_PINDEX)
1457 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1458
1459 /*
1460 * In systems with CM the icache fills from L2 or closer caches, and
1461 * thus sees remote stores without needing to write them back any
1462 * further than that.
1463 */
1464 if (mips_cm_present())
1465 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1466
1467 switch (current_cpu_type()) {
1468 case CPU_20KC:
1469 /*
1470 * Some older 20Kc chips doesn't have the 'VI' bit in
1471 * the config register.
1472 */
1473 c->icache.flags |= MIPS_CACHE_VTAG;
1474 break;
1475
1476 case CPU_ALCHEMY:
1477 case CPU_I6400:
1478 case CPU_I6500:
1479 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1480 break;
1481
1482 case CPU_BMIPS5000:
1483 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1484 /* Cache aliases are handled in hardware; allow HIGHMEM */
1485 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1486 break;
1487
1488 case CPU_LOONGSON2EF:
1489 /*
1490 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1491 * one op will act on all 4 ways
1492 */
1493 c->icache.ways = 1;
1494 }
1495
1496 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1497 icache_size >> 10,
1498 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1499 way_string[c->icache.ways], c->icache.linesz);
1500
1501 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1502 dcache_size >> 10, way_string[c->dcache.ways],
1503 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1504 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1505 "cache aliases" : "no aliases",
1506 c->dcache.linesz);
1507 }
1508
probe_vcache(void)1509 static void probe_vcache(void)
1510 {
1511 struct cpuinfo_mips *c = ¤t_cpu_data;
1512 unsigned int config2, lsize;
1513
1514 if (current_cpu_type() != CPU_LOONGSON64)
1515 return;
1516
1517 config2 = read_c0_config2();
1518 if ((lsize = ((config2 >> 20) & 15)))
1519 c->vcache.linesz = 2 << lsize;
1520 else
1521 c->vcache.linesz = lsize;
1522
1523 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1524 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1525
1526 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1527
1528 c->vcache.waybit = 0;
1529 c->vcache.waysize = vcache_size / c->vcache.ways;
1530
1531 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1532 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1533 }
1534
1535 /*
1536 * If you even _breathe_ on this function, look at the gcc output and make sure
1537 * it does not pop things on and off the stack for the cache sizing loop that
1538 * executes in KSEG1 space or else you will crash and burn badly. You have
1539 * been warned.
1540 */
probe_scache(void)1541 static int probe_scache(void)
1542 {
1543 unsigned long flags, addr, begin, end, pow2;
1544 unsigned int config = read_c0_config();
1545 struct cpuinfo_mips *c = ¤t_cpu_data;
1546
1547 if (config & CONF_SC)
1548 return 0;
1549
1550 begin = (unsigned long) &_stext;
1551 begin &= ~((4 * 1024 * 1024) - 1);
1552 end = begin + (4 * 1024 * 1024);
1553
1554 /*
1555 * This is such a bitch, you'd think they would make it easy to do
1556 * this. Away you daemons of stupidity!
1557 */
1558 local_irq_save(flags);
1559
1560 /* Fill each size-multiple cache line with a valid tag. */
1561 pow2 = (64 * 1024);
1562 for (addr = begin; addr < end; addr = (begin + pow2)) {
1563 unsigned long *p = (unsigned long *) addr;
1564 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1565 pow2 <<= 1;
1566 }
1567
1568 /* Load first line with zero (therefore invalid) tag. */
1569 write_c0_taglo(0);
1570 write_c0_taghi(0);
1571 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1572 cache_op(Index_Store_Tag_I, begin);
1573 cache_op(Index_Store_Tag_D, begin);
1574 cache_op(Index_Store_Tag_SD, begin);
1575
1576 /* Now search for the wrap around point. */
1577 pow2 = (128 * 1024);
1578 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1579 cache_op(Index_Load_Tag_SD, addr);
1580 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1581 if (!read_c0_taglo())
1582 break;
1583 pow2 <<= 1;
1584 }
1585 local_irq_restore(flags);
1586 addr -= begin;
1587
1588 scache_size = addr;
1589 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1590 c->scache.ways = 1;
1591 c->scache.waybit = 0; /* does not matter */
1592
1593 return 1;
1594 }
1595
loongson2_sc_init(void)1596 static void loongson2_sc_init(void)
1597 {
1598 struct cpuinfo_mips *c = ¤t_cpu_data;
1599
1600 scache_size = 512*1024;
1601 c->scache.linesz = 32;
1602 c->scache.ways = 4;
1603 c->scache.waybit = 0;
1604 c->scache.waysize = scache_size / (c->scache.ways);
1605 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1606 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1607 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1608
1609 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1610 }
1611
loongson3_sc_init(void)1612 static void loongson3_sc_init(void)
1613 {
1614 struct cpuinfo_mips *c = ¤t_cpu_data;
1615 unsigned int config2, lsize;
1616
1617 config2 = read_c0_config2();
1618 lsize = (config2 >> 4) & 15;
1619 if (lsize)
1620 c->scache.linesz = 2 << lsize;
1621 else
1622 c->scache.linesz = 0;
1623 c->scache.sets = 64 << ((config2 >> 8) & 15);
1624 c->scache.ways = 1 + (config2 & 15);
1625
1626 scache_size = c->scache.sets *
1627 c->scache.ways *
1628 c->scache.linesz;
1629
1630 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1631 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1632 scache_size *= 2;
1633 else
1634 scache_size *= 4;
1635
1636 c->scache.waybit = 0;
1637 c->scache.waysize = scache_size / c->scache.ways;
1638 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1639 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1640 if (scache_size)
1641 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1642 return;
1643 }
1644
1645 extern int r5k_sc_init(void);
1646 extern int rm7k_sc_init(void);
1647 extern int mips_sc_init(void);
1648
setup_scache(void)1649 static void setup_scache(void)
1650 {
1651 struct cpuinfo_mips *c = ¤t_cpu_data;
1652 unsigned int config = read_c0_config();
1653 int sc_present = 0;
1654
1655 /*
1656 * Do the probing thing on R4000SC and R4400SC processors. Other
1657 * processors don't have a S-cache that would be relevant to the
1658 * Linux memory management.
1659 */
1660 switch (current_cpu_type()) {
1661 case CPU_R4000SC:
1662 case CPU_R4000MC:
1663 case CPU_R4400SC:
1664 case CPU_R4400MC:
1665 sc_present = run_uncached(probe_scache);
1666 if (sc_present)
1667 c->options |= MIPS_CPU_CACHE_CDEX_S;
1668 break;
1669
1670 case CPU_R10000:
1671 case CPU_R12000:
1672 case CPU_R14000:
1673 case CPU_R16000:
1674 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1675 c->scache.linesz = 64 << ((config >> 13) & 1);
1676 c->scache.ways = 2;
1677 c->scache.waybit= 0;
1678 sc_present = 1;
1679 break;
1680
1681 case CPU_R5000:
1682 case CPU_NEVADA:
1683 #ifdef CONFIG_R5000_CPU_SCACHE
1684 r5k_sc_init();
1685 #endif
1686 return;
1687
1688 case CPU_RM7000:
1689 #ifdef CONFIG_RM7000_CPU_SCACHE
1690 rm7k_sc_init();
1691 #endif
1692 return;
1693
1694 case CPU_LOONGSON2EF:
1695 loongson2_sc_init();
1696 return;
1697
1698 case CPU_LOONGSON64:
1699 loongson3_sc_init();
1700 return;
1701
1702 case CPU_CAVIUM_OCTEON3:
1703 case CPU_XLP:
1704 /* don't need to worry about L2, fully coherent */
1705 return;
1706
1707 default:
1708 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1709 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1710 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1711 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1712 #ifdef CONFIG_MIPS_CPU_SCACHE
1713 if (mips_sc_init ()) {
1714 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1715 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1716 scache_size >> 10,
1717 way_string[c->scache.ways], c->scache.linesz);
1718
1719 if (current_cpu_type() == CPU_BMIPS5000)
1720 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1721 }
1722
1723 #else
1724 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1725 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1726 #endif
1727 return;
1728 }
1729 sc_present = 0;
1730 }
1731
1732 if (!sc_present)
1733 return;
1734
1735 /* compute a couple of other cache variables */
1736 c->scache.waysize = scache_size / c->scache.ways;
1737
1738 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1739
1740 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1741 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1742
1743 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1744 }
1745
au1x00_fixup_config_od(void)1746 void au1x00_fixup_config_od(void)
1747 {
1748 /*
1749 * c0_config.od (bit 19) was write only (and read as 0)
1750 * on the early revisions of Alchemy SOCs. It disables the bus
1751 * transaction overlapping and needs to be set to fix various errata.
1752 */
1753 switch (read_c0_prid()) {
1754 case 0x00030100: /* Au1000 DA */
1755 case 0x00030201: /* Au1000 HA */
1756 case 0x00030202: /* Au1000 HB */
1757 case 0x01030200: /* Au1500 AB */
1758 /*
1759 * Au1100 errata actually keeps silence about this bit, so we set it
1760 * just in case for those revisions that require it to be set according
1761 * to the (now gone) cpu table.
1762 */
1763 case 0x02030200: /* Au1100 AB */
1764 case 0x02030201: /* Au1100 BA */
1765 case 0x02030202: /* Au1100 BC */
1766 set_c0_config(1 << 19);
1767 break;
1768 }
1769 }
1770
1771 /* CP0 hazard avoidance. */
1772 #define NXP_BARRIER() \
1773 __asm__ __volatile__( \
1774 ".set noreorder\n\t" \
1775 "nop; nop; nop; nop; nop; nop;\n\t" \
1776 ".set reorder\n\t")
1777
nxp_pr4450_fixup_config(void)1778 static void nxp_pr4450_fixup_config(void)
1779 {
1780 unsigned long config0;
1781
1782 config0 = read_c0_config();
1783
1784 /* clear all three cache coherency fields */
1785 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1786 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1787 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1788 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1789 write_c0_config(config0);
1790 NXP_BARRIER();
1791 }
1792
1793 static int cca = -1;
1794
cca_setup(char * str)1795 static int __init cca_setup(char *str)
1796 {
1797 get_option(&str, &cca);
1798
1799 return 0;
1800 }
1801
1802 early_param("cca", cca_setup);
1803
coherency_setup(void)1804 static void coherency_setup(void)
1805 {
1806 if (cca < 0 || cca > 7)
1807 cca = read_c0_config() & CONF_CM_CMASK;
1808 _page_cachable_default = cca << _CACHE_SHIFT;
1809
1810 pr_debug("Using cache attribute %d\n", cca);
1811 change_c0_config(CONF_CM_CMASK, cca);
1812
1813 /*
1814 * c0_status.cu=0 specifies that updates by the sc instruction use
1815 * the coherency mode specified by the TLB; 1 means cachable
1816 * coherent update on write will be used. Not all processors have
1817 * this bit and; some wire it to zero, others like Toshiba had the
1818 * silly idea of putting something else there ...
1819 */
1820 switch (current_cpu_type()) {
1821 case CPU_R4000PC:
1822 case CPU_R4000SC:
1823 case CPU_R4000MC:
1824 case CPU_R4400PC:
1825 case CPU_R4400SC:
1826 case CPU_R4400MC:
1827 clear_c0_config(CONF_CU);
1828 break;
1829 /*
1830 * We need to catch the early Alchemy SOCs with
1831 * the write-only co_config.od bit and set it back to one on:
1832 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1833 */
1834 case CPU_ALCHEMY:
1835 au1x00_fixup_config_od();
1836 break;
1837
1838 case PRID_IMP_PR4450:
1839 nxp_pr4450_fixup_config();
1840 break;
1841 }
1842 }
1843
r4k_cache_error_setup(void)1844 static void r4k_cache_error_setup(void)
1845 {
1846 extern char __weak except_vec2_generic;
1847 extern char __weak except_vec2_sb1;
1848
1849 switch (current_cpu_type()) {
1850 case CPU_SB1:
1851 case CPU_SB1A:
1852 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1853 break;
1854
1855 default:
1856 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1857 break;
1858 }
1859 }
1860
r4k_cache_init(void)1861 void r4k_cache_init(void)
1862 {
1863 extern void build_clear_page(void);
1864 extern void build_copy_page(void);
1865 struct cpuinfo_mips *c = ¤t_cpu_data;
1866
1867 probe_pcache();
1868 probe_vcache();
1869 setup_scache();
1870
1871 r4k_blast_dcache_page_setup();
1872 r4k_blast_dcache_page_indexed_setup();
1873 r4k_blast_dcache_setup();
1874 r4k_blast_icache_page_setup();
1875 r4k_blast_icache_page_indexed_setup();
1876 r4k_blast_icache_setup();
1877 r4k_blast_scache_page_setup();
1878 r4k_blast_scache_page_indexed_setup();
1879 r4k_blast_scache_setup();
1880 r4k_blast_scache_node_setup();
1881 #ifdef CONFIG_EVA
1882 r4k_blast_dcache_user_page_setup();
1883 r4k_blast_icache_user_page_setup();
1884 #endif
1885
1886 /*
1887 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1888 * This code supports virtually indexed processors and will be
1889 * unnecessarily inefficient on physically indexed processors.
1890 */
1891 if (c->dcache.linesz && cpu_has_dc_aliases)
1892 shm_align_mask = max_t( unsigned long,
1893 c->dcache.sets * c->dcache.linesz - 1,
1894 PAGE_SIZE - 1);
1895 else
1896 shm_align_mask = PAGE_SIZE-1;
1897
1898 __flush_cache_vmap = r4k__flush_cache_vmap;
1899 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1900
1901 flush_cache_all = cache_noop;
1902 __flush_cache_all = r4k___flush_cache_all;
1903 flush_cache_mm = r4k_flush_cache_mm;
1904 flush_cache_page = r4k_flush_cache_page;
1905 flush_cache_range = r4k_flush_cache_range;
1906
1907 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1908
1909 flush_icache_all = r4k_flush_icache_all;
1910 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1911 flush_data_cache_page = r4k_flush_data_cache_page;
1912 flush_icache_range = r4k_flush_icache_range;
1913 local_flush_icache_range = local_r4k_flush_icache_range;
1914 __flush_icache_user_range = r4k_flush_icache_user_range;
1915 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1916
1917 #ifdef CONFIG_DMA_NONCOHERENT
1918 #ifdef CONFIG_DMA_MAYBE_COHERENT
1919 if (coherentio == IO_COHERENCE_ENABLED ||
1920 (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1921 _dma_cache_wback_inv = (void *)cache_noop;
1922 _dma_cache_wback = (void *)cache_noop;
1923 _dma_cache_inv = (void *)cache_noop;
1924 } else
1925 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1926 {
1927 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1928 _dma_cache_wback = r4k_dma_cache_wback_inv;
1929 _dma_cache_inv = r4k_dma_cache_inv;
1930 }
1931 #endif /* CONFIG_DMA_NONCOHERENT */
1932
1933 build_clear_page();
1934 build_copy_page();
1935
1936 /*
1937 * We want to run CMP kernels on core with and without coherent
1938 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1939 * or not to flush caches.
1940 */
1941 local_r4k___flush_cache_all(NULL);
1942
1943 coherency_setup();
1944 board_cache_error_setup = r4k_cache_error_setup;
1945
1946 /*
1947 * Per-CPU overrides
1948 */
1949 switch (current_cpu_type()) {
1950 case CPU_BMIPS4350:
1951 case CPU_BMIPS4380:
1952 /* No IPI is needed because all CPUs share the same D$ */
1953 flush_data_cache_page = r4k_blast_dcache_page;
1954 break;
1955 case CPU_BMIPS5000:
1956 /* We lose our superpowers if L2 is disabled */
1957 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1958 break;
1959
1960 /* I$ fills from D$ just by emptying the write buffers */
1961 flush_cache_page = (void *)b5k_instruction_hazard;
1962 flush_cache_range = (void *)b5k_instruction_hazard;
1963 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1964 flush_data_cache_page = (void *)b5k_instruction_hazard;
1965 flush_icache_range = (void *)b5k_instruction_hazard;
1966 local_flush_icache_range = (void *)b5k_instruction_hazard;
1967
1968
1969 /* Optimization: an L2 flush implicitly flushes the L1 */
1970 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1971 break;
1972 case CPU_LOONGSON64:
1973 /* Loongson-3 maintains cache coherency by hardware */
1974 __flush_cache_all = cache_noop;
1975 __flush_cache_vmap = cache_noop;
1976 __flush_cache_vunmap = cache_noop;
1977 __flush_kernel_vmap_range = (void *)cache_noop;
1978 flush_cache_mm = (void *)cache_noop;
1979 flush_cache_page = (void *)cache_noop;
1980 flush_cache_range = (void *)cache_noop;
1981 flush_icache_all = (void *)cache_noop;
1982 flush_data_cache_page = (void *)cache_noop;
1983 local_flush_data_cache_page = (void *)cache_noop;
1984 break;
1985 }
1986 }
1987
r4k_cache_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1988 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1989 void *v)
1990 {
1991 switch (cmd) {
1992 case CPU_PM_ENTER_FAILED:
1993 case CPU_PM_EXIT:
1994 coherency_setup();
1995 break;
1996 }
1997
1998 return NOTIFY_OK;
1999 }
2000
2001 static struct notifier_block r4k_cache_pm_notifier_block = {
2002 .notifier_call = r4k_cache_pm_notifier,
2003 };
2004
r4k_cache_init_pm(void)2005 int __init r4k_cache_init_pm(void)
2006 {
2007 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2008 }
2009 arch_initcall(r4k_cache_init_pm);
2010