1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/page-io.c
4 *
5 * This contains the new page_io functions for ext4
6 *
7 * Written by Theodore Ts'o, 2010.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35
ext4_init_pageio(void)36 int __init ext4_init_pageio(void)
37 {
38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 if (io_end_cachep == NULL)
40 return -ENOMEM;
41
42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 if (io_end_vec_cachep == NULL) {
44 kmem_cache_destroy(io_end_cachep);
45 return -ENOMEM;
46 }
47 return 0;
48 }
49
ext4_exit_pageio(void)50 void ext4_exit_pageio(void)
51 {
52 kmem_cache_destroy(io_end_cachep);
53 kmem_cache_destroy(io_end_vec_cachep);
54 }
55
ext4_alloc_io_end_vec(ext4_io_end_t * io_end)56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 struct ext4_io_end_vec *io_end_vec;
59
60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 if (!io_end_vec)
62 return ERR_PTR(-ENOMEM);
63 INIT_LIST_HEAD(&io_end_vec->list);
64 list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 return io_end_vec;
66 }
67
ext4_free_io_end_vec(ext4_io_end_t * io_end)68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 struct ext4_io_end_vec *io_end_vec, *tmp;
71
72 if (list_empty(&io_end->list_vec))
73 return;
74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 list_del(&io_end_vec->list);
76 kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 }
78 }
79
ext4_last_io_end_vec(ext4_io_end_t * io_end)80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 BUG_ON(list_empty(&io_end->list_vec));
83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85
86 /*
87 * Print an buffer I/O error compatible with the fs/buffer.c. This
88 * provides compatibility with dmesg scrapers that look for a specific
89 * buffer I/O error message. We really need a unified error reporting
90 * structure to userspace ala Digital Unix's uerf system, but it's
91 * probably not going to happen in my lifetime, due to LKML politics...
92 */
buffer_io_error(struct buffer_head * bh)93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 bh->b_bdev,
97 (unsigned long long)bh->b_blocknr);
98 }
99
ext4_finish_bio(struct bio * bio)100 static void ext4_finish_bio(struct bio *bio)
101 {
102 struct bio_vec *bvec;
103 struct bvec_iter_all iter_all;
104
105 bio_for_each_segment_all(bvec, bio, iter_all) {
106 struct page *page = bvec->bv_page;
107 struct page *bounce_page = NULL;
108 struct buffer_head *bh, *head;
109 unsigned bio_start = bvec->bv_offset;
110 unsigned bio_end = bio_start + bvec->bv_len;
111 unsigned under_io = 0;
112 unsigned long flags;
113
114 if (!page)
115 continue;
116
117 if (fscrypt_is_bounce_page(page)) {
118 bounce_page = page;
119 page = fscrypt_pagecache_page(bounce_page);
120 }
121
122 if (bio->bi_status) {
123 SetPageError(page);
124 mapping_set_error(page->mapping, -EIO);
125 }
126 bh = head = page_buffers(page);
127 /*
128 * We check all buffers in the page under b_uptodate_lock
129 * to avoid races with other end io clearing async_write flags
130 */
131 spin_lock_irqsave(&head->b_uptodate_lock, flags);
132 do {
133 if (bh_offset(bh) < bio_start ||
134 bh_offset(bh) + bh->b_size > bio_end) {
135 if (buffer_async_write(bh))
136 under_io++;
137 continue;
138 }
139 clear_buffer_async_write(bh);
140 if (bio->bi_status) {
141 set_buffer_write_io_error(bh);
142 buffer_io_error(bh);
143 }
144 } while ((bh = bh->b_this_page) != head);
145 spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
146 if (!under_io) {
147 fscrypt_free_bounce_page(bounce_page);
148 end_page_writeback(page);
149 }
150 }
151 }
152
ext4_release_io_end(ext4_io_end_t * io_end)153 static void ext4_release_io_end(ext4_io_end_t *io_end)
154 {
155 struct bio *bio, *next_bio;
156
157 BUG_ON(!list_empty(&io_end->list));
158 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
159 WARN_ON(io_end->handle);
160
161 for (bio = io_end->bio; bio; bio = next_bio) {
162 next_bio = bio->bi_private;
163 ext4_finish_bio(bio);
164 bio_put(bio);
165 }
166 ext4_free_io_end_vec(io_end);
167 kmem_cache_free(io_end_cachep, io_end);
168 }
169
170 /*
171 * Check a range of space and convert unwritten extents to written. Note that
172 * we are protected from truncate touching same part of extent tree by the
173 * fact that truncate code waits for all DIO to finish (thus exclusion from
174 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
175 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
176 * completed (happens from ext4_free_ioend()).
177 */
ext4_end_io_end(ext4_io_end_t * io_end)178 static int ext4_end_io_end(ext4_io_end_t *io_end)
179 {
180 struct inode *inode = io_end->inode;
181 handle_t *handle = io_end->handle;
182 int ret = 0;
183
184 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
185 "list->prev 0x%p\n",
186 io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
187
188 io_end->handle = NULL; /* Following call will use up the handle */
189 ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
190 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
191 ext4_msg(inode->i_sb, KERN_EMERG,
192 "failed to convert unwritten extents to written "
193 "extents -- potential data loss! "
194 "(inode %lu, error %d)", inode->i_ino, ret);
195 }
196 ext4_clear_io_unwritten_flag(io_end);
197 ext4_release_io_end(io_end);
198 return ret;
199 }
200
dump_completed_IO(struct inode * inode,struct list_head * head)201 static void dump_completed_IO(struct inode *inode, struct list_head *head)
202 {
203 #ifdef EXT4FS_DEBUG
204 struct list_head *cur, *before, *after;
205 ext4_io_end_t *io_end, *io_end0, *io_end1;
206
207 if (list_empty(head))
208 return;
209
210 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
211 list_for_each_entry(io_end, head, list) {
212 cur = &io_end->list;
213 before = cur->prev;
214 io_end0 = container_of(before, ext4_io_end_t, list);
215 after = cur->next;
216 io_end1 = container_of(after, ext4_io_end_t, list);
217
218 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
219 io_end, inode->i_ino, io_end0, io_end1);
220 }
221 #endif
222 }
223
224 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)225 static void ext4_add_complete_io(ext4_io_end_t *io_end)
226 {
227 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
228 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
229 struct workqueue_struct *wq;
230 unsigned long flags;
231
232 /* Only reserved conversions from writeback should enter here */
233 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
234 WARN_ON(!io_end->handle && sbi->s_journal);
235 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
236 wq = sbi->rsv_conversion_wq;
237 if (list_empty(&ei->i_rsv_conversion_list))
238 queue_work(wq, &ei->i_rsv_conversion_work);
239 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
240 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
241 }
242
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)243 static int ext4_do_flush_completed_IO(struct inode *inode,
244 struct list_head *head)
245 {
246 ext4_io_end_t *io_end;
247 struct list_head unwritten;
248 unsigned long flags;
249 struct ext4_inode_info *ei = EXT4_I(inode);
250 int err, ret = 0;
251
252 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
253 dump_completed_IO(inode, head);
254 list_replace_init(head, &unwritten);
255 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
256
257 while (!list_empty(&unwritten)) {
258 io_end = list_entry(unwritten.next, ext4_io_end_t, list);
259 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
260 list_del_init(&io_end->list);
261
262 err = ext4_end_io_end(io_end);
263 if (unlikely(!ret && err))
264 ret = err;
265 }
266 return ret;
267 }
268
269 /*
270 * work on completed IO, to convert unwritten extents to extents
271 */
ext4_end_io_rsv_work(struct work_struct * work)272 void ext4_end_io_rsv_work(struct work_struct *work)
273 {
274 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
275 i_rsv_conversion_work);
276 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
277 }
278
ext4_init_io_end(struct inode * inode,gfp_t flags)279 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
280 {
281 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
282
283 if (io_end) {
284 io_end->inode = inode;
285 INIT_LIST_HEAD(&io_end->list);
286 INIT_LIST_HEAD(&io_end->list_vec);
287 atomic_set(&io_end->count, 1);
288 }
289 return io_end;
290 }
291
ext4_put_io_end_defer(ext4_io_end_t * io_end)292 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
293 {
294 if (atomic_dec_and_test(&io_end->count)) {
295 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
296 list_empty(&io_end->list_vec)) {
297 ext4_release_io_end(io_end);
298 return;
299 }
300 ext4_add_complete_io(io_end);
301 }
302 }
303
ext4_put_io_end(ext4_io_end_t * io_end)304 int ext4_put_io_end(ext4_io_end_t *io_end)
305 {
306 int err = 0;
307
308 if (atomic_dec_and_test(&io_end->count)) {
309 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
310 err = ext4_convert_unwritten_io_end_vec(io_end->handle,
311 io_end);
312 io_end->handle = NULL;
313 ext4_clear_io_unwritten_flag(io_end);
314 }
315 ext4_release_io_end(io_end);
316 }
317 return err;
318 }
319
ext4_get_io_end(ext4_io_end_t * io_end)320 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
321 {
322 atomic_inc(&io_end->count);
323 return io_end;
324 }
325
326 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)327 static void ext4_end_bio(struct bio *bio)
328 {
329 ext4_io_end_t *io_end = bio->bi_private;
330 sector_t bi_sector = bio->bi_iter.bi_sector;
331 char b[BDEVNAME_SIZE];
332
333 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
334 bio_devname(bio, b),
335 (long long) bio->bi_iter.bi_sector,
336 (unsigned) bio_sectors(bio),
337 bio->bi_status)) {
338 ext4_finish_bio(bio);
339 bio_put(bio);
340 return;
341 }
342 bio->bi_end_io = NULL;
343
344 if (bio->bi_status) {
345 struct inode *inode = io_end->inode;
346
347 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
348 "starting block %llu)",
349 bio->bi_status, inode->i_ino,
350 (unsigned long long)
351 bi_sector >> (inode->i_blkbits - 9));
352 mapping_set_error(inode->i_mapping,
353 blk_status_to_errno(bio->bi_status));
354 }
355
356 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
357 /*
358 * Link bio into list hanging from io_end. We have to do it
359 * atomically as bio completions can be racing against each
360 * other.
361 */
362 bio->bi_private = xchg(&io_end->bio, bio);
363 ext4_put_io_end_defer(io_end);
364 } else {
365 /*
366 * Drop io_end reference early. Inode can get freed once
367 * we finish the bio.
368 */
369 ext4_put_io_end_defer(io_end);
370 ext4_finish_bio(bio);
371 bio_put(bio);
372 }
373 }
374
ext4_io_submit(struct ext4_io_submit * io)375 void ext4_io_submit(struct ext4_io_submit *io)
376 {
377 struct bio *bio = io->io_bio;
378
379 if (bio) {
380 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
381 REQ_SYNC : 0;
382 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
383 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
384 submit_bio(io->io_bio);
385 }
386 io->io_bio = NULL;
387 }
388
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)389 void ext4_io_submit_init(struct ext4_io_submit *io,
390 struct writeback_control *wbc)
391 {
392 io->io_wbc = wbc;
393 io->io_bio = NULL;
394 io->io_end = NULL;
395 }
396
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)397 static void io_submit_init_bio(struct ext4_io_submit *io,
398 struct buffer_head *bh)
399 {
400 struct bio *bio;
401
402 /*
403 * bio_alloc will _always_ be able to allocate a bio if
404 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
405 */
406 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
407 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
408 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
409 bio_set_dev(bio, bh->b_bdev);
410 bio->bi_end_io = ext4_end_bio;
411 bio->bi_private = ext4_get_io_end(io->io_end);
412 io->io_bio = bio;
413 io->io_next_block = bh->b_blocknr;
414 wbc_init_bio(io->io_wbc, bio);
415 }
416
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct page * pagecache_page,struct page * bounce_page,struct buffer_head * bh)417 static void io_submit_add_bh(struct ext4_io_submit *io,
418 struct inode *inode,
419 struct page *pagecache_page,
420 struct page *bounce_page,
421 struct buffer_head *bh)
422 {
423 int ret;
424
425 if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
426 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
427 submit_and_retry:
428 ext4_io_submit(io);
429 }
430 if (io->io_bio == NULL) {
431 io_submit_init_bio(io, bh);
432 io->io_bio->bi_write_hint = inode->i_write_hint;
433 }
434 ret = bio_add_page(io->io_bio, bounce_page ?: pagecache_page,
435 bh->b_size, bh_offset(bh));
436 if (ret != bh->b_size)
437 goto submit_and_retry;
438 wbc_account_cgroup_owner(io->io_wbc, pagecache_page, bh->b_size);
439 io->io_next_block++;
440 }
441
ext4_bio_write_page(struct ext4_io_submit * io,struct page * page,int len,struct writeback_control * wbc,bool keep_towrite)442 int ext4_bio_write_page(struct ext4_io_submit *io,
443 struct page *page,
444 int len,
445 struct writeback_control *wbc,
446 bool keep_towrite)
447 {
448 struct page *bounce_page = NULL;
449 struct inode *inode = page->mapping->host;
450 unsigned block_start;
451 struct buffer_head *bh, *head;
452 int ret = 0;
453 int nr_submitted = 0;
454 int nr_to_submit = 0;
455
456 BUG_ON(!PageLocked(page));
457 BUG_ON(PageWriteback(page));
458
459 if (keep_towrite)
460 set_page_writeback_keepwrite(page);
461 else
462 set_page_writeback(page);
463 ClearPageError(page);
464
465 /*
466 * Comments copied from block_write_full_page:
467 *
468 * The page straddles i_size. It must be zeroed out on each and every
469 * writepage invocation because it may be mmapped. "A file is mapped
470 * in multiples of the page size. For a file that is not a multiple of
471 * the page size, the remaining memory is zeroed when mapped, and
472 * writes to that region are not written out to the file."
473 */
474 if (len < PAGE_SIZE)
475 zero_user_segment(page, len, PAGE_SIZE);
476 /*
477 * In the first loop we prepare and mark buffers to submit. We have to
478 * mark all buffers in the page before submitting so that
479 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
480 * on the first buffer finishes and we are still working on submitting
481 * the second buffer.
482 */
483 bh = head = page_buffers(page);
484 do {
485 block_start = bh_offset(bh);
486 if (block_start >= len) {
487 clear_buffer_dirty(bh);
488 set_buffer_uptodate(bh);
489 continue;
490 }
491 if (!buffer_dirty(bh) || buffer_delay(bh) ||
492 !buffer_mapped(bh) || buffer_unwritten(bh)) {
493 /* A hole? We can safely clear the dirty bit */
494 if (!buffer_mapped(bh))
495 clear_buffer_dirty(bh);
496 if (io->io_bio)
497 ext4_io_submit(io);
498 continue;
499 }
500 if (buffer_new(bh))
501 clear_buffer_new(bh);
502 set_buffer_async_write(bh);
503 nr_to_submit++;
504 } while ((bh = bh->b_this_page) != head);
505
506 bh = head = page_buffers(page);
507
508 /*
509 * If any blocks are being written to an encrypted file, encrypt them
510 * into a bounce page. For simplicity, just encrypt until the last
511 * block which might be needed. This may cause some unneeded blocks
512 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
513 * can't happen in the common case of blocksize == PAGE_SIZE.
514 */
515 if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
516 gfp_t gfp_flags = GFP_NOFS;
517 unsigned int enc_bytes = round_up(len, i_blocksize(inode));
518
519 /*
520 * Since bounce page allocation uses a mempool, we can only use
521 * a waiting mask (i.e. request guaranteed allocation) on the
522 * first page of the bio. Otherwise it can deadlock.
523 */
524 if (io->io_bio)
525 gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
526 retry_encrypt:
527 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
528 0, gfp_flags);
529 if (IS_ERR(bounce_page)) {
530 ret = PTR_ERR(bounce_page);
531 if (ret == -ENOMEM &&
532 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
533 gfp_flags = GFP_NOFS;
534 if (io->io_bio)
535 ext4_io_submit(io);
536 else
537 gfp_flags |= __GFP_NOFAIL;
538 congestion_wait(BLK_RW_ASYNC, HZ/50);
539 goto retry_encrypt;
540 }
541
542 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543 redirty_page_for_writepage(wbc, page);
544 do {
545 clear_buffer_async_write(bh);
546 bh = bh->b_this_page;
547 } while (bh != head);
548 goto unlock;
549 }
550 }
551
552 /* Now submit buffers to write */
553 do {
554 if (!buffer_async_write(bh))
555 continue;
556 io_submit_add_bh(io, inode, page, bounce_page, bh);
557 nr_submitted++;
558 clear_buffer_dirty(bh);
559 } while ((bh = bh->b_this_page) != head);
560
561 unlock:
562 unlock_page(page);
563 /* Nothing submitted - we have to end page writeback */
564 if (!nr_submitted)
565 end_page_writeback(page);
566 return ret;
567 }
568