• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 #include <trace/hooks/block.h>
45 
46 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
blk_mq_poll_stats_bkt(const struct request * rq)51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 /*
69  * Check if any of the ctx, dispatch list or elevator
70  * have pending work in this hardware queue.
71  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)72 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
73 {
74 	return !list_empty_careful(&hctx->dispatch) ||
75 		sbitmap_any_bit_set(&hctx->ctx_map) ||
76 			blk_mq_sched_has_work(hctx);
77 }
78 
79 /*
80  * Mark this ctx as having pending work in this hardware queue
81  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)82 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
83 				     struct blk_mq_ctx *ctx)
84 {
85 	const int bit = ctx->index_hw[hctx->type];
86 
87 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
88 		sbitmap_set_bit(&hctx->ctx_map, bit);
89 }
90 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)91 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
92 				      struct blk_mq_ctx *ctx)
93 {
94 	const int bit = ctx->index_hw[hctx->type];
95 
96 	sbitmap_clear_bit(&hctx->ctx_map, bit);
97 }
98 
99 struct mq_inflight {
100 	struct hd_struct *part;
101 	unsigned int inflight[2];
102 };
103 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)104 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
105 				  struct request *rq, void *priv,
106 				  bool reserved)
107 {
108 	struct mq_inflight *mi = priv;
109 
110 	if ((!mi->part->partno || rq->part == mi->part) &&
111 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
112 		mi->inflight[rq_data_dir(rq)]++;
113 
114 	return true;
115 }
116 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)117 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
118 {
119 	struct mq_inflight mi = { .part = part };
120 
121 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 
123 	return mi.inflight[0] + mi.inflight[1];
124 }
125 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])126 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
127 			 unsigned int inflight[2])
128 {
129 	struct mq_inflight mi = { .part = part };
130 
131 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
132 	inflight[0] = mi.inflight[0];
133 	inflight[1] = mi.inflight[1];
134 }
135 
blk_freeze_queue_start(struct request_queue * q)136 void blk_freeze_queue_start(struct request_queue *q)
137 {
138 	mutex_lock(&q->mq_freeze_lock);
139 	if (++q->mq_freeze_depth == 1) {
140 		percpu_ref_kill(&q->q_usage_counter);
141 		mutex_unlock(&q->mq_freeze_lock);
142 		if (queue_is_mq(q))
143 			blk_mq_run_hw_queues(q, false);
144 	} else {
145 		mutex_unlock(&q->mq_freeze_lock);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	blk_mq_freeze_queue_wait(q);
180 }
181 
blk_mq_freeze_queue(struct request_queue * q)182 void blk_mq_freeze_queue(struct request_queue *q)
183 {
184 	/*
185 	 * ...just an alias to keep freeze and unfreeze actions balanced
186 	 * in the blk_mq_* namespace
187 	 */
188 	blk_freeze_queue(q);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
191 
blk_mq_unfreeze_queue(struct request_queue * q)192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194 	mutex_lock(&q->mq_freeze_lock);
195 	q->mq_freeze_depth--;
196 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
197 	if (!q->mq_freeze_depth) {
198 		percpu_ref_resurrect(&q->q_usage_counter);
199 		wake_up_all(&q->mq_freeze_wq);
200 	}
201 	mutex_unlock(&q->mq_freeze_lock);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
204 
205 /*
206  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
207  * mpt3sas driver such that this function can be removed.
208  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)209 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
210 {
211 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
217  * @q: request queue.
218  *
219  * Note: this function does not prevent that the struct request end_io()
220  * callback function is invoked. Once this function is returned, we make
221  * sure no dispatch can happen until the queue is unquiesced via
222  * blk_mq_unquiesce_queue().
223  */
blk_mq_quiesce_queue(struct request_queue * q)224 void blk_mq_quiesce_queue(struct request_queue *q)
225 {
226 	struct blk_mq_hw_ctx *hctx;
227 	unsigned int i;
228 	bool rcu = false;
229 
230 	blk_mq_quiesce_queue_nowait(q);
231 
232 	queue_for_each_hw_ctx(q, hctx, i) {
233 		if (hctx->flags & BLK_MQ_F_BLOCKING)
234 			synchronize_srcu(hctx->srcu);
235 		else
236 			rcu = true;
237 	}
238 	if (rcu)
239 		synchronize_rcu();
240 }
241 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
242 
243 /*
244  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
245  * @q: request queue.
246  *
247  * This function recovers queue into the state before quiescing
248  * which is done by blk_mq_quiesce_queue.
249  */
blk_mq_unquiesce_queue(struct request_queue * q)250 void blk_mq_unquiesce_queue(struct request_queue *q)
251 {
252 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
253 
254 	/* dispatch requests which are inserted during quiescing */
255 	blk_mq_run_hw_queues(q, true);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
258 
blk_mq_wake_waiters(struct request_queue * q)259 void blk_mq_wake_waiters(struct request_queue *q)
260 {
261 	struct blk_mq_hw_ctx *hctx;
262 	unsigned int i;
263 
264 	queue_for_each_hw_ctx(q, hctx, i)
265 		if (blk_mq_hw_queue_mapped(hctx))
266 			blk_mq_tag_wakeup_all(hctx->tags, true);
267 }
268 
269 /*
270  * Only need start/end time stamping if we have iostat or
271  * blk stats enabled, or using an IO scheduler.
272  */
blk_mq_need_time_stamp(struct request * rq)273 static inline bool blk_mq_need_time_stamp(struct request *rq)
274 {
275 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
276 }
277 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 		unsigned int tag, u64 alloc_time_ns)
280 {
281 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 	struct request *rq = tags->static_rqs[tag];
283 
284 	if (data->q->elevator) {
285 		rq->tag = BLK_MQ_NO_TAG;
286 		rq->internal_tag = tag;
287 	} else {
288 		rq->tag = tag;
289 		rq->internal_tag = BLK_MQ_NO_TAG;
290 	}
291 
292 	/* csd/requeue_work/fifo_time is initialized before use */
293 	rq->q = data->q;
294 	rq->mq_ctx = data->ctx;
295 	rq->mq_hctx = data->hctx;
296 	rq->rq_flags = 0;
297 	rq->cmd_flags = data->cmd_flags;
298 	if (data->flags & BLK_MQ_REQ_PM)
299 		rq->rq_flags |= RQF_PM;
300 	if (blk_queue_io_stat(data->q))
301 		rq->rq_flags |= RQF_IO_STAT;
302 	INIT_LIST_HEAD(&rq->queuelist);
303 	INIT_HLIST_NODE(&rq->hash);
304 	RB_CLEAR_NODE(&rq->rb_node);
305 	rq->rq_disk = NULL;
306 	rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 	rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 	if (blk_mq_need_time_stamp(rq))
311 		rq->start_time_ns = ktime_get_ns();
312 	else
313 		rq->start_time_ns = 0;
314 	rq->io_start_time_ns = 0;
315 	rq->stats_sectors = 0;
316 	rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 	rq->nr_integrity_segments = 0;
319 #endif
320 	blk_crypto_rq_set_defaults(rq);
321 	/* tag was already set */
322 	WRITE_ONCE(rq->deadline, 0);
323 
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 
329 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
330 	refcount_set(&rq->ref, 1);
331 
332 	if (!op_is_flush(data->cmd_flags)) {
333 		struct elevator_queue *e = data->q->elevator;
334 
335 		rq->elv.icq = NULL;
336 		if (e && e->type->ops.prepare_request) {
337 			if (e->type->icq_cache)
338 				blk_mq_sched_assign_ioc(rq);
339 
340 			e->type->ops.prepare_request(rq);
341 			rq->rq_flags |= RQF_ELVPRIV;
342 		}
343 	}
344 
345 	data->hctx->queued++;
346 	trace_android_vh_blk_rq_ctx_init(rq, tags, data, alloc_time_ns);
347 	return rq;
348 }
349 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351 {
352 	struct request_queue *q = data->q;
353 	struct elevator_queue *e = q->elevator;
354 	u64 alloc_time_ns = 0;
355 	unsigned int tag;
356 	bool skip = false;
357 
358 	/* alloc_time includes depth and tag waits */
359 	if (blk_queue_rq_alloc_time(q))
360 		alloc_time_ns = ktime_get_ns();
361 
362 	if (data->cmd_flags & REQ_NOWAIT)
363 		data->flags |= BLK_MQ_REQ_NOWAIT;
364 
365 	if (e) {
366 		/*
367 		 * Flush requests are special and go directly to the
368 		 * dispatch list. Don't include reserved tags in the
369 		 * limiting, as it isn't useful.
370 		 */
371 		if (!op_is_flush(data->cmd_flags) &&
372 		    e->type->ops.limit_depth &&
373 		    !(data->flags & BLK_MQ_REQ_RESERVED))
374 			e->type->ops.limit_depth(data->cmd_flags, data);
375 	}
376 
377 retry:
378 	data->ctx = blk_mq_get_ctx(q);
379 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
380 	if (!e)
381 		blk_mq_tag_busy(data->hctx);
382 
383 	/*
384 	 * Waiting allocations only fail because of an inactive hctx.  In that
385 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
386 	 * should have migrated us to an online CPU by now.
387 	 */
388 	trace_android_rvh_internal_blk_mq_alloc_request(&skip, &tag, data);
389 	if (!skip)
390 		tag = blk_mq_get_tag(data);
391 	if (tag == BLK_MQ_NO_TAG) {
392 		if (data->flags & BLK_MQ_REQ_NOWAIT)
393 			return NULL;
394 
395 		/*
396 		 * Give up the CPU and sleep for a random short time to ensure
397 		 * that thread using a realtime scheduling class are migrated
398 		 * off the CPU, and thus off the hctx that is going away.
399 		 */
400 		msleep(3);
401 		goto retry;
402 	}
403 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
404 }
405 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)406 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
407 		blk_mq_req_flags_t flags)
408 {
409 	struct blk_mq_alloc_data data = {
410 		.q		= q,
411 		.flags		= flags,
412 		.cmd_flags	= op,
413 	};
414 	struct request *rq;
415 	int ret;
416 
417 	ret = blk_queue_enter(q, flags);
418 	if (ret)
419 		return ERR_PTR(ret);
420 
421 	rq = __blk_mq_alloc_request(&data);
422 	if (!rq)
423 		goto out_queue_exit;
424 	rq->__data_len = 0;
425 	rq->__sector = (sector_t) -1;
426 	rq->bio = rq->biotail = NULL;
427 	return rq;
428 out_queue_exit:
429 	blk_queue_exit(q);
430 	return ERR_PTR(-EWOULDBLOCK);
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 	struct blk_mq_alloc_data data = {
438 		.q		= q,
439 		.flags		= flags,
440 		.cmd_flags	= op,
441 	};
442 	u64 alloc_time_ns = 0;
443 	unsigned int cpu;
444 	unsigned int tag;
445 	int ret;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	/*
452 	 * If the tag allocator sleeps we could get an allocation for a
453 	 * different hardware context.  No need to complicate the low level
454 	 * allocator for this for the rare use case of a command tied to
455 	 * a specific queue.
456 	 */
457 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
458 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
459 		return ERR_PTR(-EINVAL);
460 
461 	if (hctx_idx >= q->nr_hw_queues)
462 		return ERR_PTR(-EIO);
463 
464 	ret = blk_queue_enter(q, flags);
465 	if (ret)
466 		return ERR_PTR(ret);
467 
468 	/*
469 	 * Check if the hardware context is actually mapped to anything.
470 	 * If not tell the caller that it should skip this queue.
471 	 */
472 	ret = -EXDEV;
473 	data.hctx = q->queue_hw_ctx[hctx_idx];
474 	if (!blk_mq_hw_queue_mapped(data.hctx))
475 		goto out_queue_exit;
476 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
477 	if (cpu >= nr_cpu_ids)
478 		goto out_queue_exit;
479 	data.ctx = __blk_mq_get_ctx(q, cpu);
480 
481 	if (!q->elevator)
482 		blk_mq_tag_busy(data.hctx);
483 
484 	ret = -EWOULDBLOCK;
485 	tag = blk_mq_get_tag(&data);
486 	if (tag == BLK_MQ_NO_TAG)
487 		goto out_queue_exit;
488 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489 
490 out_queue_exit:
491 	blk_queue_exit(q);
492 	return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495 
__blk_mq_free_request(struct request * rq)496 static void __blk_mq_free_request(struct request *rq)
497 {
498 	struct request_queue *q = rq->q;
499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
500 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501 	const int sched_tag = rq->internal_tag;
502 	bool skip = false;
503 
504 	blk_crypto_free_request(rq);
505 	blk_pm_mark_last_busy(rq);
506 	rq->mq_hctx = NULL;
507 
508 	trace_android_vh_internal_blk_mq_free_request(&skip, rq, hctx);
509 	if (!skip) {
510 		if (rq->tag != BLK_MQ_NO_TAG)
511 			blk_mq_put_tag(hctx->tags, ctx, rq->tag);
512 	}
513 	if (sched_tag != BLK_MQ_NO_TAG)
514 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
515 	blk_mq_sched_restart(hctx);
516 	blk_queue_exit(q);
517 }
518 
blk_mq_free_request(struct request * rq)519 void blk_mq_free_request(struct request *rq)
520 {
521 	struct request_queue *q = rq->q;
522 	struct elevator_queue *e = q->elevator;
523 	struct blk_mq_ctx *ctx = rq->mq_ctx;
524 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
525 
526 	if (rq->rq_flags & RQF_ELVPRIV) {
527 		if (e && e->type->ops.finish_request)
528 			e->type->ops.finish_request(rq);
529 		if (rq->elv.icq) {
530 			put_io_context(rq->elv.icq->ioc);
531 			rq->elv.icq = NULL;
532 		}
533 	}
534 
535 	ctx->rq_completed[rq_is_sync(rq)]++;
536 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
537 		__blk_mq_dec_active_requests(hctx);
538 
539 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
540 		laptop_io_completion(q->backing_dev_info);
541 
542 	rq_qos_done(q, rq);
543 
544 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
545 	if (refcount_dec_and_test(&rq->ref))
546 		__blk_mq_free_request(rq);
547 }
548 EXPORT_SYMBOL_GPL(blk_mq_free_request);
549 
__blk_mq_end_request(struct request * rq,blk_status_t error)550 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
551 {
552 	u64 now = 0;
553 
554 	if (blk_mq_need_time_stamp(rq))
555 		now = ktime_get_ns();
556 
557 	if (rq->rq_flags & RQF_STATS) {
558 		blk_mq_poll_stats_start(rq->q);
559 		blk_stat_add(rq, now);
560 	}
561 
562 	blk_mq_sched_completed_request(rq, now);
563 
564 	blk_account_io_done(rq, now);
565 
566 	if (rq->end_io) {
567 		rq_qos_done(rq->q, rq);
568 		rq->end_io(rq, error);
569 	} else {
570 		blk_mq_free_request(rq);
571 	}
572 }
573 EXPORT_SYMBOL(__blk_mq_end_request);
574 
blk_mq_end_request(struct request * rq,blk_status_t error)575 void blk_mq_end_request(struct request *rq, blk_status_t error)
576 {
577 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
578 		BUG();
579 	__blk_mq_end_request(rq, error);
580 }
581 EXPORT_SYMBOL(blk_mq_end_request);
582 
583 /*
584  * Softirq action handler - move entries to local list and loop over them
585  * while passing them to the queue registered handler.
586  */
blk_done_softirq(struct softirq_action * h)587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589 	struct list_head *cpu_list, local_list;
590 
591 	local_irq_disable();
592 	cpu_list = this_cpu_ptr(&blk_cpu_done);
593 	list_replace_init(cpu_list, &local_list);
594 	local_irq_enable();
595 
596 	while (!list_empty(&local_list)) {
597 		struct request *rq;
598 
599 		rq = list_entry(local_list.next, struct request, ipi_list);
600 		list_del_init(&rq->ipi_list);
601 		rq->q->mq_ops->complete(rq);
602 	}
603 }
604 
blk_mq_trigger_softirq(struct request * rq)605 static void blk_mq_trigger_softirq(struct request *rq)
606 {
607 	struct list_head *list;
608 	unsigned long flags;
609 
610 	local_irq_save(flags);
611 	list = this_cpu_ptr(&blk_cpu_done);
612 	list_add_tail(&rq->ipi_list, list);
613 
614 	/*
615 	 * If the list only contains our just added request, signal a raise of
616 	 * the softirq.  If there are already entries there, someone already
617 	 * raised the irq but it hasn't run yet.
618 	 */
619 	if (list->next == &rq->ipi_list)
620 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
621 	local_irq_restore(flags);
622 }
623 
blk_softirq_cpu_dead(unsigned int cpu)624 static int blk_softirq_cpu_dead(unsigned int cpu)
625 {
626 	/*
627 	 * If a CPU goes away, splice its entries to the current CPU
628 	 * and trigger a run of the softirq
629 	 */
630 	local_irq_disable();
631 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
632 			 this_cpu_ptr(&blk_cpu_done));
633 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
634 	local_irq_enable();
635 
636 	return 0;
637 }
638 
639 
__blk_mq_complete_request_remote(void * data)640 static void __blk_mq_complete_request_remote(void *data)
641 {
642 	struct request *rq = data;
643 
644 	/*
645 	 * For most of single queue controllers, there is only one irq vector
646 	 * for handling I/O completion, and the only irq's affinity is set
647 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
648 	 * is handled on one specific CPU.
649 	 *
650 	 * So complete I/O requests in softirq context in case of single queue
651 	 * devices to avoid degrading I/O performance due to irqsoff latency.
652 	 */
653 	if (rq->q->nr_hw_queues == 1)
654 		blk_mq_trigger_softirq(rq);
655 	else
656 		rq->q->mq_ops->complete(rq);
657 }
658 
blk_mq_complete_need_ipi(struct request * rq)659 static inline bool blk_mq_complete_need_ipi(struct request *rq)
660 {
661 	int cpu = raw_smp_processor_id();
662 
663 	if (!IS_ENABLED(CONFIG_SMP) ||
664 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
665 		return false;
666 
667 	/* same CPU or cache domain?  Complete locally */
668 	if (cpu == rq->mq_ctx->cpu ||
669 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
670 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
671 		return false;
672 
673 	/* don't try to IPI to an offline CPU */
674 	return cpu_online(rq->mq_ctx->cpu);
675 }
676 
blk_mq_complete_request_remote(struct request * rq)677 bool blk_mq_complete_request_remote(struct request *rq)
678 {
679 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
680 
681 	/*
682 	 * For a polled request, always complete locallly, it's pointless
683 	 * to redirect the completion.
684 	 */
685 	if (rq->cmd_flags & REQ_HIPRI)
686 		return false;
687 
688 	if (blk_mq_complete_need_ipi(rq)) {
689 		rq->csd.func = __blk_mq_complete_request_remote;
690 		rq->csd.info = rq;
691 		rq->csd.flags = 0;
692 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
693 	} else {
694 		if (rq->q->nr_hw_queues > 1)
695 			return false;
696 		blk_mq_trigger_softirq(rq);
697 	}
698 
699 	return true;
700 }
701 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
702 
703 /**
704  * blk_mq_complete_request - end I/O on a request
705  * @rq:		the request being processed
706  *
707  * Description:
708  *	Complete a request by scheduling the ->complete_rq operation.
709  **/
blk_mq_complete_request(struct request * rq)710 void blk_mq_complete_request(struct request *rq)
711 {
712 	bool skip = false;
713 
714 	trace_android_vh_blk_mq_complete_request(&skip, rq);
715 	if (skip)
716 		return;
717 	if (!blk_mq_complete_request_remote(rq))
718 		rq->q->mq_ops->complete(rq);
719 }
720 EXPORT_SYMBOL(blk_mq_complete_request);
721 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)722 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
723 	__releases(hctx->srcu)
724 {
725 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
726 		rcu_read_unlock();
727 	else
728 		srcu_read_unlock(hctx->srcu, srcu_idx);
729 }
730 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)731 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
732 	__acquires(hctx->srcu)
733 {
734 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
735 		/* shut up gcc false positive */
736 		*srcu_idx = 0;
737 		rcu_read_lock();
738 	} else
739 		*srcu_idx = srcu_read_lock(hctx->srcu);
740 }
741 
742 /**
743  * blk_mq_start_request - Start processing a request
744  * @rq: Pointer to request to be started
745  *
746  * Function used by device drivers to notify the block layer that a request
747  * is going to be processed now, so blk layer can do proper initializations
748  * such as starting the timeout timer.
749  */
blk_mq_start_request(struct request * rq)750 void blk_mq_start_request(struct request *rq)
751 {
752 	struct request_queue *q = rq->q;
753 
754 	trace_block_rq_issue(q, rq);
755 
756 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
757 		rq->io_start_time_ns = ktime_get_ns();
758 		rq->stats_sectors = blk_rq_sectors(rq);
759 		rq->rq_flags |= RQF_STATS;
760 		rq_qos_issue(q, rq);
761 	}
762 
763 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
764 
765 	blk_add_timer(rq);
766 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
767 
768 #ifdef CONFIG_BLK_DEV_INTEGRITY
769 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
770 		q->integrity.profile->prepare_fn(rq);
771 #endif
772 }
773 EXPORT_SYMBOL(blk_mq_start_request);
774 
__blk_mq_requeue_request(struct request * rq)775 static void __blk_mq_requeue_request(struct request *rq)
776 {
777 	struct request_queue *q = rq->q;
778 
779 	blk_mq_put_driver_tag(rq);
780 
781 	trace_block_rq_requeue(q, rq);
782 	rq_qos_requeue(q, rq);
783 
784 	if (blk_mq_request_started(rq)) {
785 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
786 		rq->rq_flags &= ~RQF_TIMED_OUT;
787 	}
788 }
789 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)790 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
791 {
792 	__blk_mq_requeue_request(rq);
793 
794 	/* this request will be re-inserted to io scheduler queue */
795 	blk_mq_sched_requeue_request(rq);
796 
797 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
798 }
799 EXPORT_SYMBOL(blk_mq_requeue_request);
800 
blk_mq_requeue_work(struct work_struct * work)801 static void blk_mq_requeue_work(struct work_struct *work)
802 {
803 	struct request_queue *q =
804 		container_of(work, struct request_queue, requeue_work.work);
805 	LIST_HEAD(rq_list);
806 	struct request *rq, *next;
807 
808 	spin_lock_irq(&q->requeue_lock);
809 	list_splice_init(&q->requeue_list, &rq_list);
810 	spin_unlock_irq(&q->requeue_lock);
811 
812 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
813 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
814 			continue;
815 
816 		rq->rq_flags &= ~RQF_SOFTBARRIER;
817 		list_del_init(&rq->queuelist);
818 		/*
819 		 * If RQF_DONTPREP, rq has contained some driver specific
820 		 * data, so insert it to hctx dispatch list to avoid any
821 		 * merge.
822 		 */
823 		if (rq->rq_flags & RQF_DONTPREP)
824 			blk_mq_request_bypass_insert(rq, false, false);
825 		else
826 			blk_mq_sched_insert_request(rq, true, false, false);
827 	}
828 
829 	while (!list_empty(&rq_list)) {
830 		rq = list_entry(rq_list.next, struct request, queuelist);
831 		list_del_init(&rq->queuelist);
832 		blk_mq_sched_insert_request(rq, false, false, false);
833 	}
834 
835 	blk_mq_run_hw_queues(q, false);
836 }
837 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)838 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
839 				bool kick_requeue_list)
840 {
841 	struct request_queue *q = rq->q;
842 	unsigned long flags;
843 	bool skip = false;
844 
845 	trace_android_vh_blk_mq_add_to_requeue_list(&skip, rq,
846 						     kick_requeue_list);
847 	if (skip)
848 		return;
849 	/*
850 	 * We abuse this flag that is otherwise used by the I/O scheduler to
851 	 * request head insertion from the workqueue.
852 	 */
853 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
854 
855 	spin_lock_irqsave(&q->requeue_lock, flags);
856 	if (at_head) {
857 		rq->rq_flags |= RQF_SOFTBARRIER;
858 		list_add(&rq->queuelist, &q->requeue_list);
859 	} else {
860 		list_add_tail(&rq->queuelist, &q->requeue_list);
861 	}
862 	spin_unlock_irqrestore(&q->requeue_lock, flags);
863 
864 	if (kick_requeue_list)
865 		blk_mq_kick_requeue_list(q);
866 }
867 
blk_mq_kick_requeue_list(struct request_queue * q)868 void blk_mq_kick_requeue_list(struct request_queue *q)
869 {
870 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
871 }
872 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
873 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)874 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
875 				    unsigned long msecs)
876 {
877 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
878 				    msecs_to_jiffies(msecs));
879 }
880 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
881 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)882 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
883 {
884 	if (tag < tags->nr_tags) {
885 		prefetch(tags->rqs[tag]);
886 		return tags->rqs[tag];
887 	}
888 
889 	return NULL;
890 }
891 EXPORT_SYMBOL(blk_mq_tag_to_rq);
892 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)893 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
894 			       void *priv, bool reserved)
895 {
896 	/*
897 	 * If we find a request that isn't idle and the queue matches,
898 	 * we know the queue is busy. Return false to stop the iteration.
899 	 */
900 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
901 		bool *busy = priv;
902 
903 		*busy = true;
904 		return false;
905 	}
906 
907 	return true;
908 }
909 
blk_mq_queue_inflight(struct request_queue * q)910 bool blk_mq_queue_inflight(struct request_queue *q)
911 {
912 	bool busy = false;
913 
914 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
915 	return busy;
916 }
917 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
918 
blk_mq_rq_timed_out(struct request * req,bool reserved)919 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
920 {
921 	req->rq_flags |= RQF_TIMED_OUT;
922 	if (req->q->mq_ops->timeout) {
923 		enum blk_eh_timer_return ret;
924 
925 		ret = req->q->mq_ops->timeout(req, reserved);
926 		if (ret == BLK_EH_DONE)
927 			return;
928 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
929 	}
930 
931 	blk_add_timer(req);
932 }
933 
blk_mq_req_expired(struct request * rq,unsigned long * next)934 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
935 {
936 	unsigned long deadline;
937 
938 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
939 		return false;
940 	if (rq->rq_flags & RQF_TIMED_OUT)
941 		return false;
942 
943 	deadline = READ_ONCE(rq->deadline);
944 	if (time_after_eq(jiffies, deadline))
945 		return true;
946 
947 	if (*next == 0)
948 		*next = deadline;
949 	else if (time_after(*next, deadline))
950 		*next = deadline;
951 	return false;
952 }
953 
blk_mq_put_rq_ref(struct request * rq)954 void blk_mq_put_rq_ref(struct request *rq)
955 {
956 	if (is_flush_rq(rq))
957 		rq->end_io(rq, 0);
958 	else if (refcount_dec_and_test(&rq->ref))
959 		__blk_mq_free_request(rq);
960 }
961 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)962 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
963 		struct request *rq, void *priv, bool reserved)
964 {
965 	unsigned long *next = priv;
966 
967 	/*
968 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
969 	 * be reallocated underneath the timeout handler's processing, then
970 	 * the expire check is reliable. If the request is not expired, then
971 	 * it was completed and reallocated as a new request after returning
972 	 * from blk_mq_check_expired().
973 	 */
974 	if (blk_mq_req_expired(rq, next))
975 		blk_mq_rq_timed_out(rq, reserved);
976 	return true;
977 }
978 
blk_mq_timeout_work(struct work_struct * work)979 static void blk_mq_timeout_work(struct work_struct *work)
980 {
981 	struct request_queue *q =
982 		container_of(work, struct request_queue, timeout_work);
983 	unsigned long next = 0;
984 	struct blk_mq_hw_ctx *hctx;
985 	int i;
986 
987 	/* A deadlock might occur if a request is stuck requiring a
988 	 * timeout at the same time a queue freeze is waiting
989 	 * completion, since the timeout code would not be able to
990 	 * acquire the queue reference here.
991 	 *
992 	 * That's why we don't use blk_queue_enter here; instead, we use
993 	 * percpu_ref_tryget directly, because we need to be able to
994 	 * obtain a reference even in the short window between the queue
995 	 * starting to freeze, by dropping the first reference in
996 	 * blk_freeze_queue_start, and the moment the last request is
997 	 * consumed, marked by the instant q_usage_counter reaches
998 	 * zero.
999 	 */
1000 	if (!percpu_ref_tryget(&q->q_usage_counter))
1001 		return;
1002 
1003 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1004 
1005 	if (next != 0) {
1006 		mod_timer(&q->timeout, next);
1007 	} else {
1008 		/*
1009 		 * Request timeouts are handled as a forward rolling timer. If
1010 		 * we end up here it means that no requests are pending and
1011 		 * also that no request has been pending for a while. Mark
1012 		 * each hctx as idle.
1013 		 */
1014 		queue_for_each_hw_ctx(q, hctx, i) {
1015 			/* the hctx may be unmapped, so check it here */
1016 			if (blk_mq_hw_queue_mapped(hctx))
1017 				blk_mq_tag_idle(hctx);
1018 		}
1019 	}
1020 	blk_queue_exit(q);
1021 }
1022 
1023 struct flush_busy_ctx_data {
1024 	struct blk_mq_hw_ctx *hctx;
1025 	struct list_head *list;
1026 };
1027 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1028 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1029 {
1030 	struct flush_busy_ctx_data *flush_data = data;
1031 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1032 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 	enum hctx_type type = hctx->type;
1034 
1035 	spin_lock(&ctx->lock);
1036 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1037 	sbitmap_clear_bit(sb, bitnr);
1038 	spin_unlock(&ctx->lock);
1039 	return true;
1040 }
1041 
1042 /*
1043  * Process software queues that have been marked busy, splicing them
1044  * to the for-dispatch
1045  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1046 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1047 {
1048 	struct flush_busy_ctx_data data = {
1049 		.hctx = hctx,
1050 		.list = list,
1051 	};
1052 
1053 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1054 }
1055 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1056 
1057 struct dispatch_rq_data {
1058 	struct blk_mq_hw_ctx *hctx;
1059 	struct request *rq;
1060 };
1061 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1062 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1063 		void *data)
1064 {
1065 	struct dispatch_rq_data *dispatch_data = data;
1066 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1067 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1068 	enum hctx_type type = hctx->type;
1069 
1070 	spin_lock(&ctx->lock);
1071 	if (!list_empty(&ctx->rq_lists[type])) {
1072 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1073 		list_del_init(&dispatch_data->rq->queuelist);
1074 		if (list_empty(&ctx->rq_lists[type]))
1075 			sbitmap_clear_bit(sb, bitnr);
1076 	}
1077 	spin_unlock(&ctx->lock);
1078 
1079 	return !dispatch_data->rq;
1080 }
1081 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1082 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1083 					struct blk_mq_ctx *start)
1084 {
1085 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1086 	struct dispatch_rq_data data = {
1087 		.hctx = hctx,
1088 		.rq   = NULL,
1089 	};
1090 
1091 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1092 			       dispatch_rq_from_ctx, &data);
1093 
1094 	return data.rq;
1095 }
1096 
queued_to_index(unsigned int queued)1097 static inline unsigned int queued_to_index(unsigned int queued)
1098 {
1099 	if (!queued)
1100 		return 0;
1101 
1102 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1103 }
1104 
__blk_mq_get_driver_tag(struct request * rq)1105 static bool __blk_mq_get_driver_tag(struct request *rq)
1106 {
1107 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1108 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1109 	int tag;
1110 
1111 	blk_mq_tag_busy(rq->mq_hctx);
1112 
1113 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1114 		bt = rq->mq_hctx->tags->breserved_tags;
1115 		tag_offset = 0;
1116 	} else {
1117 		if (!hctx_may_queue(rq->mq_hctx, bt))
1118 			return false;
1119 	}
1120 
1121 	tag = __sbitmap_queue_get(bt);
1122 	if (tag == BLK_MQ_NO_TAG)
1123 		return false;
1124 
1125 	rq->tag = tag + tag_offset;
1126 	return true;
1127 }
1128 
blk_mq_get_driver_tag(struct request * rq)1129 static bool blk_mq_get_driver_tag(struct request *rq)
1130 {
1131 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1132 
1133 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1134 		return false;
1135 
1136 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1137 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1138 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1139 		__blk_mq_inc_active_requests(hctx);
1140 	}
1141 	hctx->tags->rqs[rq->tag] = rq;
1142 	return true;
1143 }
1144 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1145 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1146 				int flags, void *key)
1147 {
1148 	struct blk_mq_hw_ctx *hctx;
1149 
1150 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1151 
1152 	spin_lock(&hctx->dispatch_wait_lock);
1153 	if (!list_empty(&wait->entry)) {
1154 		struct sbitmap_queue *sbq;
1155 
1156 		list_del_init(&wait->entry);
1157 		sbq = hctx->tags->bitmap_tags;
1158 		atomic_dec(&sbq->ws_active);
1159 	}
1160 	spin_unlock(&hctx->dispatch_wait_lock);
1161 
1162 	blk_mq_run_hw_queue(hctx, true);
1163 	return 1;
1164 }
1165 
1166 /*
1167  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1168  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1169  * restart. For both cases, take care to check the condition again after
1170  * marking us as waiting.
1171  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1172 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1173 				 struct request *rq)
1174 {
1175 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1176 	struct wait_queue_head *wq;
1177 	wait_queue_entry_t *wait;
1178 	bool ret;
1179 
1180 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1181 		blk_mq_sched_mark_restart_hctx(hctx);
1182 
1183 		/*
1184 		 * It's possible that a tag was freed in the window between the
1185 		 * allocation failure and adding the hardware queue to the wait
1186 		 * queue.
1187 		 *
1188 		 * Don't clear RESTART here, someone else could have set it.
1189 		 * At most this will cost an extra queue run.
1190 		 */
1191 		return blk_mq_get_driver_tag(rq);
1192 	}
1193 
1194 	wait = &hctx->dispatch_wait;
1195 	if (!list_empty_careful(&wait->entry))
1196 		return false;
1197 
1198 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1199 
1200 	spin_lock_irq(&wq->lock);
1201 	spin_lock(&hctx->dispatch_wait_lock);
1202 	if (!list_empty(&wait->entry)) {
1203 		spin_unlock(&hctx->dispatch_wait_lock);
1204 		spin_unlock_irq(&wq->lock);
1205 		return false;
1206 	}
1207 
1208 	atomic_inc(&sbq->ws_active);
1209 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1210 	__add_wait_queue(wq, wait);
1211 
1212 	/*
1213 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1214 	 * not imply barrier in case of failure.
1215 	 *
1216 	 * Order adding us to wait queue and allocating driver tag.
1217 	 *
1218 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1219 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1220 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1221 	 *
1222 	 * Otherwise, re-order of adding wait queue and getting driver tag
1223 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1224 	 * the waitqueue_active() may not observe us in wait queue.
1225 	 */
1226 	smp_mb();
1227 
1228 	/*
1229 	 * It's possible that a tag was freed in the window between the
1230 	 * allocation failure and adding the hardware queue to the wait
1231 	 * queue.
1232 	 */
1233 	ret = blk_mq_get_driver_tag(rq);
1234 	if (!ret) {
1235 		spin_unlock(&hctx->dispatch_wait_lock);
1236 		spin_unlock_irq(&wq->lock);
1237 		return false;
1238 	}
1239 
1240 	/*
1241 	 * We got a tag, remove ourselves from the wait queue to ensure
1242 	 * someone else gets the wakeup.
1243 	 */
1244 	list_del_init(&wait->entry);
1245 	atomic_dec(&sbq->ws_active);
1246 	spin_unlock(&hctx->dispatch_wait_lock);
1247 	spin_unlock_irq(&wq->lock);
1248 
1249 	return true;
1250 }
1251 
1252 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1253 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1254 /*
1255  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1256  * - EWMA is one simple way to compute running average value
1257  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1258  * - take 4 as factor for avoiding to get too small(0) result, and this
1259  *   factor doesn't matter because EWMA decreases exponentially
1260  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1261 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1262 {
1263 	unsigned int ewma;
1264 
1265 	ewma = hctx->dispatch_busy;
1266 
1267 	if (!ewma && !busy)
1268 		return;
1269 
1270 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1271 	if (busy)
1272 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1273 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1274 
1275 	hctx->dispatch_busy = ewma;
1276 }
1277 
1278 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1279 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1280 static void blk_mq_handle_dev_resource(struct request *rq,
1281 				       struct list_head *list)
1282 {
1283 	struct request *next =
1284 		list_first_entry_or_null(list, struct request, queuelist);
1285 
1286 	/*
1287 	 * If an I/O scheduler has been configured and we got a driver tag for
1288 	 * the next request already, free it.
1289 	 */
1290 	if (next)
1291 		blk_mq_put_driver_tag(next);
1292 
1293 	list_add(&rq->queuelist, list);
1294 	__blk_mq_requeue_request(rq);
1295 }
1296 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1297 static void blk_mq_handle_zone_resource(struct request *rq,
1298 					struct list_head *zone_list)
1299 {
1300 	/*
1301 	 * If we end up here it is because we cannot dispatch a request to a
1302 	 * specific zone due to LLD level zone-write locking or other zone
1303 	 * related resource not being available. In this case, set the request
1304 	 * aside in zone_list for retrying it later.
1305 	 */
1306 	list_add(&rq->queuelist, zone_list);
1307 	__blk_mq_requeue_request(rq);
1308 }
1309 
1310 enum prep_dispatch {
1311 	PREP_DISPATCH_OK,
1312 	PREP_DISPATCH_NO_TAG,
1313 	PREP_DISPATCH_NO_BUDGET,
1314 };
1315 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1316 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1317 						  bool need_budget)
1318 {
1319 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1320 
1321 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1322 		blk_mq_put_driver_tag(rq);
1323 		return PREP_DISPATCH_NO_BUDGET;
1324 	}
1325 
1326 	if (!blk_mq_get_driver_tag(rq)) {
1327 		/*
1328 		 * The initial allocation attempt failed, so we need to
1329 		 * rerun the hardware queue when a tag is freed. The
1330 		 * waitqueue takes care of that. If the queue is run
1331 		 * before we add this entry back on the dispatch list,
1332 		 * we'll re-run it below.
1333 		 */
1334 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1335 			/*
1336 			 * All budgets not got from this function will be put
1337 			 * together during handling partial dispatch
1338 			 */
1339 			if (need_budget)
1340 				blk_mq_put_dispatch_budget(rq->q);
1341 			return PREP_DISPATCH_NO_TAG;
1342 		}
1343 	}
1344 
1345 	return PREP_DISPATCH_OK;
1346 }
1347 
1348 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1349 static void blk_mq_release_budgets(struct request_queue *q,
1350 		unsigned int nr_budgets)
1351 {
1352 	int i;
1353 
1354 	for (i = 0; i < nr_budgets; i++)
1355 		blk_mq_put_dispatch_budget(q);
1356 }
1357 
1358 /*
1359  * Returns true if we did some work AND can potentially do more.
1360  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1361 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1362 			     unsigned int nr_budgets)
1363 {
1364 	enum prep_dispatch prep;
1365 	struct request_queue *q = hctx->queue;
1366 	struct request *rq, *nxt;
1367 	int errors, queued;
1368 	blk_status_t ret = BLK_STS_OK;
1369 	LIST_HEAD(zone_list);
1370 	bool needs_resource = false;
1371 
1372 	if (list_empty(list))
1373 		return false;
1374 
1375 	/*
1376 	 * Now process all the entries, sending them to the driver.
1377 	 */
1378 	errors = queued = 0;
1379 	do {
1380 		struct blk_mq_queue_data bd;
1381 
1382 		rq = list_first_entry(list, struct request, queuelist);
1383 
1384 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1385 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1386 		if (prep != PREP_DISPATCH_OK)
1387 			break;
1388 
1389 		list_del_init(&rq->queuelist);
1390 
1391 		bd.rq = rq;
1392 
1393 		/*
1394 		 * Flag last if we have no more requests, or if we have more
1395 		 * but can't assign a driver tag to it.
1396 		 */
1397 		if (list_empty(list))
1398 			bd.last = true;
1399 		else {
1400 			nxt = list_first_entry(list, struct request, queuelist);
1401 			bd.last = !blk_mq_get_driver_tag(nxt);
1402 		}
1403 
1404 		/*
1405 		 * once the request is queued to lld, no need to cover the
1406 		 * budget any more
1407 		 */
1408 		if (nr_budgets)
1409 			nr_budgets--;
1410 		ret = q->mq_ops->queue_rq(hctx, &bd);
1411 		switch (ret) {
1412 		case BLK_STS_OK:
1413 			queued++;
1414 			break;
1415 		case BLK_STS_RESOURCE:
1416 			needs_resource = true;
1417 			fallthrough;
1418 		case BLK_STS_DEV_RESOURCE:
1419 			blk_mq_handle_dev_resource(rq, list);
1420 			goto out;
1421 		case BLK_STS_ZONE_RESOURCE:
1422 			/*
1423 			 * Move the request to zone_list and keep going through
1424 			 * the dispatch list to find more requests the drive can
1425 			 * accept.
1426 			 */
1427 			blk_mq_handle_zone_resource(rq, &zone_list);
1428 			needs_resource = true;
1429 			break;
1430 		default:
1431 			errors++;
1432 			blk_mq_end_request(rq, BLK_STS_IOERR);
1433 		}
1434 	} while (!list_empty(list));
1435 out:
1436 	if (!list_empty(&zone_list))
1437 		list_splice_tail_init(&zone_list, list);
1438 
1439 	hctx->dispatched[queued_to_index(queued)]++;
1440 
1441 	/* If we didn't flush the entire list, we could have told the driver
1442 	 * there was more coming, but that turned out to be a lie.
1443 	 */
1444 	if ((!list_empty(list) || errors || needs_resource ||
1445 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1446 		q->mq_ops->commit_rqs(hctx);
1447 	/*
1448 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1449 	 * that is where we will continue on next queue run.
1450 	 */
1451 	if (!list_empty(list)) {
1452 		bool needs_restart;
1453 		/* For non-shared tags, the RESTART check will suffice */
1454 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1455 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1456 
1457 		blk_mq_release_budgets(q, nr_budgets);
1458 
1459 		spin_lock(&hctx->lock);
1460 		list_splice_tail_init(list, &hctx->dispatch);
1461 		spin_unlock(&hctx->lock);
1462 
1463 		/*
1464 		 * Order adding requests to hctx->dispatch and checking
1465 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1466 		 * in blk_mq_sched_restart(). Avoid restart code path to
1467 		 * miss the new added requests to hctx->dispatch, meantime
1468 		 * SCHED_RESTART is observed here.
1469 		 */
1470 		smp_mb();
1471 
1472 		/*
1473 		 * If SCHED_RESTART was set by the caller of this function and
1474 		 * it is no longer set that means that it was cleared by another
1475 		 * thread and hence that a queue rerun is needed.
1476 		 *
1477 		 * If 'no_tag' is set, that means that we failed getting
1478 		 * a driver tag with an I/O scheduler attached. If our dispatch
1479 		 * waitqueue is no longer active, ensure that we run the queue
1480 		 * AFTER adding our entries back to the list.
1481 		 *
1482 		 * If no I/O scheduler has been configured it is possible that
1483 		 * the hardware queue got stopped and restarted before requests
1484 		 * were pushed back onto the dispatch list. Rerun the queue to
1485 		 * avoid starvation. Notes:
1486 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1487 		 *   been stopped before rerunning a queue.
1488 		 * - Some but not all block drivers stop a queue before
1489 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1490 		 *   and dm-rq.
1491 		 *
1492 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1493 		 * bit is set, run queue after a delay to avoid IO stalls
1494 		 * that could otherwise occur if the queue is idle.  We'll do
1495 		 * similar if we couldn't get budget or couldn't lock a zone
1496 		 * and SCHED_RESTART is set.
1497 		 */
1498 		needs_restart = blk_mq_sched_needs_restart(hctx);
1499 		if (prep == PREP_DISPATCH_NO_BUDGET)
1500 			needs_resource = true;
1501 		if (!needs_restart ||
1502 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1503 			blk_mq_run_hw_queue(hctx, true);
1504 		else if (needs_restart && needs_resource)
1505 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1506 
1507 		blk_mq_update_dispatch_busy(hctx, true);
1508 		return false;
1509 	} else
1510 		blk_mq_update_dispatch_busy(hctx, false);
1511 
1512 	return (queued + errors) != 0;
1513 }
1514 
1515 /**
1516  * __blk_mq_run_hw_queue - Run a hardware queue.
1517  * @hctx: Pointer to the hardware queue to run.
1518  *
1519  * Send pending requests to the hardware.
1520  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1521 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1522 {
1523 	int srcu_idx;
1524 
1525 	/*
1526 	 * We should be running this queue from one of the CPUs that
1527 	 * are mapped to it.
1528 	 *
1529 	 * There are at least two related races now between setting
1530 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1531 	 * __blk_mq_run_hw_queue():
1532 	 *
1533 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1534 	 *   but later it becomes online, then this warning is harmless
1535 	 *   at all
1536 	 *
1537 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1538 	 *   but later it becomes offline, then the warning can't be
1539 	 *   triggered, and we depend on blk-mq timeout handler to
1540 	 *   handle dispatched requests to this hctx
1541 	 */
1542 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1543 		cpu_online(hctx->next_cpu)) {
1544 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1545 			raw_smp_processor_id(),
1546 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1547 		dump_stack();
1548 	}
1549 
1550 	/*
1551 	 * We can't run the queue inline with ints disabled. Ensure that
1552 	 * we catch bad users of this early.
1553 	 */
1554 	WARN_ON_ONCE(in_interrupt());
1555 
1556 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1557 
1558 	hctx_lock(hctx, &srcu_idx);
1559 	blk_mq_sched_dispatch_requests(hctx);
1560 	hctx_unlock(hctx, srcu_idx);
1561 }
1562 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1563 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1564 {
1565 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1566 
1567 	if (cpu >= nr_cpu_ids)
1568 		cpu = cpumask_first(hctx->cpumask);
1569 	return cpu;
1570 }
1571 
1572 /*
1573  * It'd be great if the workqueue API had a way to pass
1574  * in a mask and had some smarts for more clever placement.
1575  * For now we just round-robin here, switching for every
1576  * BLK_MQ_CPU_WORK_BATCH queued items.
1577  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1578 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1579 {
1580 	bool tried = false;
1581 	int next_cpu = hctx->next_cpu;
1582 
1583 	if (hctx->queue->nr_hw_queues == 1)
1584 		return WORK_CPU_UNBOUND;
1585 
1586 	if (--hctx->next_cpu_batch <= 0) {
1587 select_cpu:
1588 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1589 				cpu_online_mask);
1590 		if (next_cpu >= nr_cpu_ids)
1591 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1592 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1593 	}
1594 
1595 	/*
1596 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1597 	 * and it should only happen in the path of handling CPU DEAD.
1598 	 */
1599 	if (!cpu_online(next_cpu)) {
1600 		if (!tried) {
1601 			tried = true;
1602 			goto select_cpu;
1603 		}
1604 
1605 		/*
1606 		 * Make sure to re-select CPU next time once after CPUs
1607 		 * in hctx->cpumask become online again.
1608 		 */
1609 		hctx->next_cpu = next_cpu;
1610 		hctx->next_cpu_batch = 1;
1611 		return WORK_CPU_UNBOUND;
1612 	}
1613 
1614 	hctx->next_cpu = next_cpu;
1615 	return next_cpu;
1616 }
1617 
1618 /**
1619  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1620  * @hctx: Pointer to the hardware queue to run.
1621  * @async: If we want to run the queue asynchronously.
1622  * @msecs: Microseconds of delay to wait before running the queue.
1623  *
1624  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1625  * with a delay of @msecs.
1626  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1627 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1628 					unsigned long msecs)
1629 {
1630 	bool skip = false;
1631 
1632 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1633 		return;
1634 
1635 	trace_android_rvh_blk_mq_delay_run_hw_queue(&skip, hctx, async);
1636 	if (skip)
1637 		return;
1638 
1639 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1640 		int cpu = get_cpu();
1641 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1642 			__blk_mq_run_hw_queue(hctx);
1643 			put_cpu();
1644 			return;
1645 		}
1646 
1647 		put_cpu();
1648 	}
1649 
1650 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1651 				    msecs_to_jiffies(msecs));
1652 }
1653 
1654 /**
1655  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1656  * @hctx: Pointer to the hardware queue to run.
1657  * @msecs: Microseconds of delay to wait before running the queue.
1658  *
1659  * Run a hardware queue asynchronously with a delay of @msecs.
1660  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1661 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1662 {
1663 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1664 }
1665 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1666 
1667 /**
1668  * blk_mq_run_hw_queue - Start to run a hardware queue.
1669  * @hctx: Pointer to the hardware queue to run.
1670  * @async: If we want to run the queue asynchronously.
1671  *
1672  * Check if the request queue is not in a quiesced state and if there are
1673  * pending requests to be sent. If this is true, run the queue to send requests
1674  * to hardware.
1675  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1676 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1677 {
1678 	int srcu_idx;
1679 	bool need_run;
1680 
1681 	/*
1682 	 * When queue is quiesced, we may be switching io scheduler, or
1683 	 * updating nr_hw_queues, or other things, and we can't run queue
1684 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1685 	 *
1686 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1687 	 * quiesced.
1688 	 */
1689 	hctx_lock(hctx, &srcu_idx);
1690 	need_run = !blk_queue_quiesced(hctx->queue) &&
1691 		blk_mq_hctx_has_pending(hctx);
1692 	hctx_unlock(hctx, srcu_idx);
1693 
1694 	trace_android_vh_blk_mq_run_hw_queue(&need_run, hctx);
1695 	if (need_run)
1696 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1697 }
1698 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1699 
1700 /*
1701  * Is the request queue handled by an IO scheduler that does not respect
1702  * hardware queues when dispatching?
1703  */
blk_mq_has_sqsched(struct request_queue * q)1704 static bool blk_mq_has_sqsched(struct request_queue *q)
1705 {
1706 	struct elevator_queue *e = q->elevator;
1707 
1708 	if (e && e->type->ops.dispatch_request &&
1709 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1710 		return true;
1711 	return false;
1712 }
1713 
1714 /*
1715  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1716  * scheduler.
1717  */
blk_mq_get_sq_hctx(struct request_queue * q)1718 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1719 {
1720 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1721 	/*
1722 	 * If the IO scheduler does not respect hardware queues when
1723 	 * dispatching, we just don't bother with multiple HW queues and
1724 	 * dispatch from hctx for the current CPU since running multiple queues
1725 	 * just causes lock contention inside the scheduler and pointless cache
1726 	 * bouncing.
1727 	 */
1728 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1729 
1730 	if (!blk_mq_hctx_stopped(hctx))
1731 		return hctx;
1732 	return NULL;
1733 }
1734 
1735 /**
1736  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1737  * @q: Pointer to the request queue to run.
1738  * @async: If we want to run the queue asynchronously.
1739  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1740 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1741 {
1742 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1743 	int i;
1744 
1745 	sq_hctx = NULL;
1746 	if (blk_mq_has_sqsched(q))
1747 		sq_hctx = blk_mq_get_sq_hctx(q);
1748 	queue_for_each_hw_ctx(q, hctx, i) {
1749 		if (blk_mq_hctx_stopped(hctx))
1750 			continue;
1751 		/*
1752 		 * Dispatch from this hctx either if there's no hctx preferred
1753 		 * by IO scheduler or if it has requests that bypass the
1754 		 * scheduler.
1755 		 */
1756 		if (!sq_hctx || sq_hctx == hctx ||
1757 		    !list_empty_careful(&hctx->dispatch))
1758 			blk_mq_run_hw_queue(hctx, async);
1759 	}
1760 }
1761 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1762 
1763 /**
1764  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1765  * @q: Pointer to the request queue to run.
1766  * @msecs: Microseconds of delay to wait before running the queues.
1767  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1768 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1769 {
1770 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1771 	int i;
1772 
1773 	sq_hctx = NULL;
1774 	if (blk_mq_has_sqsched(q))
1775 		sq_hctx = blk_mq_get_sq_hctx(q);
1776 	queue_for_each_hw_ctx(q, hctx, i) {
1777 		if (blk_mq_hctx_stopped(hctx))
1778 			continue;
1779 		/*
1780 		 * Dispatch from this hctx either if there's no hctx preferred
1781 		 * by IO scheduler or if it has requests that bypass the
1782 		 * scheduler.
1783 		 */
1784 		if (!sq_hctx || sq_hctx == hctx ||
1785 		    !list_empty_careful(&hctx->dispatch))
1786 			blk_mq_delay_run_hw_queue(hctx, msecs);
1787 	}
1788 }
1789 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1790 
1791 /**
1792  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1793  * @q: request queue.
1794  *
1795  * The caller is responsible for serializing this function against
1796  * blk_mq_{start,stop}_hw_queue().
1797  */
blk_mq_queue_stopped(struct request_queue * q)1798 bool blk_mq_queue_stopped(struct request_queue *q)
1799 {
1800 	struct blk_mq_hw_ctx *hctx;
1801 	int i;
1802 
1803 	queue_for_each_hw_ctx(q, hctx, i)
1804 		if (blk_mq_hctx_stopped(hctx))
1805 			return true;
1806 
1807 	return false;
1808 }
1809 EXPORT_SYMBOL(blk_mq_queue_stopped);
1810 
1811 /*
1812  * This function is often used for pausing .queue_rq() by driver when
1813  * there isn't enough resource or some conditions aren't satisfied, and
1814  * BLK_STS_RESOURCE is usually returned.
1815  *
1816  * We do not guarantee that dispatch can be drained or blocked
1817  * after blk_mq_stop_hw_queue() returns. Please use
1818  * blk_mq_quiesce_queue() for that requirement.
1819  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1820 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1821 {
1822 	cancel_delayed_work(&hctx->run_work);
1823 
1824 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1825 }
1826 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1827 
1828 /*
1829  * This function is often used for pausing .queue_rq() by driver when
1830  * there isn't enough resource or some conditions aren't satisfied, and
1831  * BLK_STS_RESOURCE is usually returned.
1832  *
1833  * We do not guarantee that dispatch can be drained or blocked
1834  * after blk_mq_stop_hw_queues() returns. Please use
1835  * blk_mq_quiesce_queue() for that requirement.
1836  */
blk_mq_stop_hw_queues(struct request_queue * q)1837 void blk_mq_stop_hw_queues(struct request_queue *q)
1838 {
1839 	struct blk_mq_hw_ctx *hctx;
1840 	int i;
1841 
1842 	queue_for_each_hw_ctx(q, hctx, i)
1843 		blk_mq_stop_hw_queue(hctx);
1844 }
1845 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1846 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1847 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1848 {
1849 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1850 
1851 	blk_mq_run_hw_queue(hctx, false);
1852 }
1853 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1854 
blk_mq_start_hw_queues(struct request_queue * q)1855 void blk_mq_start_hw_queues(struct request_queue *q)
1856 {
1857 	struct blk_mq_hw_ctx *hctx;
1858 	int i;
1859 
1860 	queue_for_each_hw_ctx(q, hctx, i)
1861 		blk_mq_start_hw_queue(hctx);
1862 }
1863 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1864 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1865 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1866 {
1867 	if (!blk_mq_hctx_stopped(hctx))
1868 		return;
1869 
1870 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1871 	blk_mq_run_hw_queue(hctx, async);
1872 }
1873 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1874 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1875 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1876 {
1877 	struct blk_mq_hw_ctx *hctx;
1878 	int i;
1879 
1880 	queue_for_each_hw_ctx(q, hctx, i)
1881 		blk_mq_start_stopped_hw_queue(hctx, async);
1882 }
1883 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1884 
blk_mq_run_work_fn(struct work_struct * work)1885 static void blk_mq_run_work_fn(struct work_struct *work)
1886 {
1887 	struct blk_mq_hw_ctx *hctx;
1888 
1889 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1890 
1891 	/*
1892 	 * If we are stopped, don't run the queue.
1893 	 */
1894 	if (blk_mq_hctx_stopped(hctx))
1895 		return;
1896 
1897 	__blk_mq_run_hw_queue(hctx);
1898 }
1899 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1900 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1901 					    struct request *rq,
1902 					    bool at_head)
1903 {
1904 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1905 	enum hctx_type type = hctx->type;
1906 
1907 	lockdep_assert_held(&ctx->lock);
1908 
1909 	trace_block_rq_insert(hctx->queue, rq);
1910 
1911 	if (at_head)
1912 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1913 	else
1914 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1915 }
1916 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1917 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1918 			     bool at_head)
1919 {
1920 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1921 	bool skip = false;
1922 
1923 	lockdep_assert_held(&ctx->lock);
1924 
1925 	trace_android_vh_blk_mq_insert_request(&skip, hctx, rq);
1926 	if (skip)
1927 		return;
1928 
1929 	__blk_mq_insert_req_list(hctx, rq, at_head);
1930 	blk_mq_hctx_mark_pending(hctx, ctx);
1931 }
1932 
1933 /**
1934  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1935  * @rq: Pointer to request to be inserted.
1936  * @at_head: true if the request should be inserted at the head of the list.
1937  * @run_queue: If we should run the hardware queue after inserting the request.
1938  *
1939  * Should only be used carefully, when the caller knows we want to
1940  * bypass a potential IO scheduler on the target device.
1941  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1942 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1943 				  bool run_queue)
1944 {
1945 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1946 
1947 	spin_lock(&hctx->lock);
1948 	if (at_head)
1949 		list_add(&rq->queuelist, &hctx->dispatch);
1950 	else
1951 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1952 	spin_unlock(&hctx->lock);
1953 
1954 	if (run_queue)
1955 		blk_mq_run_hw_queue(hctx, false);
1956 }
1957 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1958 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1959 			    struct list_head *list)
1960 
1961 {
1962 	struct request *rq;
1963 	enum hctx_type type = hctx->type;
1964 
1965 	/*
1966 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1967 	 * offline now
1968 	 */
1969 	list_for_each_entry(rq, list, queuelist) {
1970 		BUG_ON(rq->mq_ctx != ctx);
1971 		trace_block_rq_insert(hctx->queue, rq);
1972 	}
1973 
1974 	spin_lock(&ctx->lock);
1975 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1976 	blk_mq_hctx_mark_pending(hctx, ctx);
1977 	spin_unlock(&ctx->lock);
1978 }
1979 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)1980 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1981 {
1982 	struct request *rqa = container_of(a, struct request, queuelist);
1983 	struct request *rqb = container_of(b, struct request, queuelist);
1984 
1985 	if (rqa->mq_ctx != rqb->mq_ctx)
1986 		return rqa->mq_ctx > rqb->mq_ctx;
1987 	if (rqa->mq_hctx != rqb->mq_hctx)
1988 		return rqa->mq_hctx > rqb->mq_hctx;
1989 
1990 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1991 }
1992 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1993 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1994 {
1995 	LIST_HEAD(list);
1996 
1997 	if (list_empty(&plug->mq_list))
1998 		return;
1999 	list_splice_init(&plug->mq_list, &list);
2000 
2001 	if (plug->rq_count > 2 && plug->multiple_queues)
2002 		list_sort(NULL, &list, plug_rq_cmp);
2003 
2004 	plug->rq_count = 0;
2005 
2006 	do {
2007 		struct list_head rq_list;
2008 		struct request *rq, *head_rq = list_entry_rq(list.next);
2009 		struct list_head *pos = &head_rq->queuelist; /* skip first */
2010 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
2011 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
2012 		unsigned int depth = 1;
2013 
2014 		list_for_each_continue(pos, &list) {
2015 			rq = list_entry_rq(pos);
2016 			BUG_ON(!rq->q);
2017 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
2018 				break;
2019 			depth++;
2020 		}
2021 
2022 		list_cut_before(&rq_list, &list, pos);
2023 		trace_block_unplug(head_rq->q, depth, !from_schedule);
2024 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
2025 						from_schedule);
2026 	} while(!list_empty(&list));
2027 }
2028 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2029 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2030 		unsigned int nr_segs)
2031 {
2032 	int err;
2033 
2034 	if (bio->bi_opf & REQ_RAHEAD)
2035 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2036 
2037 	rq->__sector = bio->bi_iter.bi_sector;
2038 	rq->write_hint = bio->bi_write_hint;
2039 	blk_rq_bio_prep(rq, bio, nr_segs);
2040 
2041 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2042 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2043 	WARN_ON_ONCE(err);
2044 
2045 	blk_account_io_start(rq);
2046 }
2047 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)2048 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2049 					    struct request *rq,
2050 					    blk_qc_t *cookie, bool last)
2051 {
2052 	struct request_queue *q = rq->q;
2053 	struct blk_mq_queue_data bd = {
2054 		.rq = rq,
2055 		.last = last,
2056 	};
2057 	blk_qc_t new_cookie;
2058 	blk_status_t ret;
2059 
2060 	new_cookie = request_to_qc_t(hctx, rq);
2061 
2062 	/*
2063 	 * For OK queue, we are done. For error, caller may kill it.
2064 	 * Any other error (busy), just add it to our list as we
2065 	 * previously would have done.
2066 	 */
2067 	ret = q->mq_ops->queue_rq(hctx, &bd);
2068 	switch (ret) {
2069 	case BLK_STS_OK:
2070 		blk_mq_update_dispatch_busy(hctx, false);
2071 		*cookie = new_cookie;
2072 		break;
2073 	case BLK_STS_RESOURCE:
2074 	case BLK_STS_DEV_RESOURCE:
2075 		blk_mq_update_dispatch_busy(hctx, true);
2076 		__blk_mq_requeue_request(rq);
2077 		break;
2078 	default:
2079 		blk_mq_update_dispatch_busy(hctx, false);
2080 		*cookie = BLK_QC_T_NONE;
2081 		break;
2082 	}
2083 
2084 	return ret;
2085 }
2086 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2087 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2088 						struct request *rq,
2089 						blk_qc_t *cookie,
2090 						bool bypass_insert, bool last)
2091 {
2092 	struct request_queue *q = rq->q;
2093 	bool run_queue = true;
2094 
2095 	/*
2096 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2097 	 *
2098 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2099 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2100 	 * and avoid driver to try to dispatch again.
2101 	 */
2102 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2103 		run_queue = false;
2104 		bypass_insert = false;
2105 		goto insert;
2106 	}
2107 
2108 	if (q->elevator && !bypass_insert)
2109 		goto insert;
2110 
2111 	if (!blk_mq_get_dispatch_budget(q))
2112 		goto insert;
2113 
2114 	if (!blk_mq_get_driver_tag(rq)) {
2115 		blk_mq_put_dispatch_budget(q);
2116 		goto insert;
2117 	}
2118 
2119 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2120 insert:
2121 	if (bypass_insert)
2122 		return BLK_STS_RESOURCE;
2123 
2124 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2125 
2126 	return BLK_STS_OK;
2127 }
2128 
2129 /**
2130  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2131  * @hctx: Pointer of the associated hardware queue.
2132  * @rq: Pointer to request to be sent.
2133  * @cookie: Request queue cookie.
2134  *
2135  * If the device has enough resources to accept a new request now, send the
2136  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2137  * we can try send it another time in the future. Requests inserted at this
2138  * queue have higher priority.
2139  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2140 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2141 		struct request *rq, blk_qc_t *cookie)
2142 {
2143 	blk_status_t ret;
2144 	int srcu_idx;
2145 
2146 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2147 
2148 	hctx_lock(hctx, &srcu_idx);
2149 
2150 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2151 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2152 		blk_mq_request_bypass_insert(rq, false, true);
2153 	else if (ret != BLK_STS_OK)
2154 		blk_mq_end_request(rq, ret);
2155 
2156 	hctx_unlock(hctx, srcu_idx);
2157 }
2158 
blk_mq_request_issue_directly(struct request * rq,bool last)2159 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2160 {
2161 	blk_status_t ret;
2162 	int srcu_idx;
2163 	blk_qc_t unused_cookie;
2164 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2165 
2166 	hctx_lock(hctx, &srcu_idx);
2167 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2168 	hctx_unlock(hctx, srcu_idx);
2169 
2170 	return ret;
2171 }
2172 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2173 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2174 		struct list_head *list)
2175 {
2176 	int queued = 0;
2177 	int errors = 0;
2178 
2179 	while (!list_empty(list)) {
2180 		blk_status_t ret;
2181 		struct request *rq = list_first_entry(list, struct request,
2182 				queuelist);
2183 
2184 		list_del_init(&rq->queuelist);
2185 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2186 		if (ret != BLK_STS_OK) {
2187 			errors++;
2188 			if (ret == BLK_STS_RESOURCE ||
2189 					ret == BLK_STS_DEV_RESOURCE) {
2190 				blk_mq_request_bypass_insert(rq, false,
2191 							list_empty(list));
2192 				break;
2193 			}
2194 			blk_mq_end_request(rq, ret);
2195 		} else
2196 			queued++;
2197 	}
2198 
2199 	/*
2200 	 * If we didn't flush the entire list, we could have told
2201 	 * the driver there was more coming, but that turned out to
2202 	 * be a lie.
2203 	 */
2204 	if ((!list_empty(list) || errors) &&
2205 	     hctx->queue->mq_ops->commit_rqs && queued)
2206 		hctx->queue->mq_ops->commit_rqs(hctx);
2207 }
2208 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2209 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2210 {
2211 	list_add_tail(&rq->queuelist, &plug->mq_list);
2212 	plug->rq_count++;
2213 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2214 		struct request *tmp;
2215 
2216 		tmp = list_first_entry(&plug->mq_list, struct request,
2217 						queuelist);
2218 		if (tmp->q != rq->q)
2219 			plug->multiple_queues = true;
2220 	}
2221 }
2222 
2223 /*
2224  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2225  * queues. This is important for md arrays to benefit from merging
2226  * requests.
2227  */
blk_plug_max_rq_count(struct blk_plug * plug)2228 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2229 {
2230 	if (plug->multiple_queues)
2231 		return BLK_MAX_REQUEST_COUNT * 2;
2232 	return BLK_MAX_REQUEST_COUNT;
2233 }
2234 
2235 /**
2236  * blk_mq_submit_bio - Create and send a request to block device.
2237  * @bio: Bio pointer.
2238  *
2239  * Builds up a request structure from @q and @bio and send to the device. The
2240  * request may not be queued directly to hardware if:
2241  * * This request can be merged with another one
2242  * * We want to place request at plug queue for possible future merging
2243  * * There is an IO scheduler active at this queue
2244  *
2245  * It will not queue the request if there is an error with the bio, or at the
2246  * request creation.
2247  *
2248  * Returns: Request queue cookie.
2249  */
blk_mq_submit_bio(struct bio * bio)2250 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2251 {
2252 	struct request_queue *q = bio->bi_disk->queue;
2253 	const int is_sync = op_is_sync(bio->bi_opf);
2254 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2255 	struct blk_mq_alloc_data data = {
2256 		.q		= q,
2257 	};
2258 	struct request *rq;
2259 	struct blk_plug *plug;
2260 	struct request *same_queue_rq = NULL;
2261 	unsigned int nr_segs;
2262 	blk_qc_t cookie;
2263 	blk_status_t ret;
2264 
2265 	blk_queue_bounce(q, &bio);
2266 	__blk_queue_split(&bio, &nr_segs);
2267 
2268 	if (!bio_integrity_prep(bio))
2269 		goto queue_exit;
2270 
2271 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2272 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2273 		goto queue_exit;
2274 
2275 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2276 		goto queue_exit;
2277 
2278 	rq_qos_throttle(q, bio);
2279 
2280 	data.cmd_flags = bio->bi_opf;
2281 	rq = __blk_mq_alloc_request(&data);
2282 	if (unlikely(!rq)) {
2283 		rq_qos_cleanup(q, bio);
2284 		if (bio->bi_opf & REQ_NOWAIT)
2285 			bio_wouldblock_error(bio);
2286 		goto queue_exit;
2287 	}
2288 
2289 	trace_block_getrq(q, bio, bio->bi_opf);
2290 
2291 	rq_qos_track(q, rq, bio);
2292 
2293 	cookie = request_to_qc_t(data.hctx, rq);
2294 
2295 	blk_mq_bio_to_request(rq, bio, nr_segs);
2296 
2297 	ret = blk_crypto_rq_get_keyslot(rq);
2298 	if (ret != BLK_STS_OK) {
2299 		bio->bi_status = ret;
2300 		bio_endio(bio);
2301 		blk_mq_free_request(rq);
2302 		return BLK_QC_T_NONE;
2303 	}
2304 
2305 	plug = blk_mq_plug(q, bio);
2306 	if (unlikely(is_flush_fua)) {
2307 		/* Bypass scheduler for flush requests */
2308 		blk_insert_flush(rq);
2309 		blk_mq_run_hw_queue(data.hctx, true);
2310 	} else if (plug && (q->nr_hw_queues == 1 ||
2311 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2312 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2313 		/*
2314 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2315 		 * we know the driver uses bd->last in a smart fashion.
2316 		 *
2317 		 * Use normal plugging if this disk is slow HDD, as sequential
2318 		 * IO may benefit a lot from plug merging.
2319 		 */
2320 		unsigned int request_count = plug->rq_count;
2321 		struct request *last = NULL;
2322 
2323 		if (!request_count)
2324 			trace_block_plug(q);
2325 		else
2326 			last = list_entry_rq(plug->mq_list.prev);
2327 
2328 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2329 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2330 			blk_flush_plug_list(plug, false);
2331 			trace_block_plug(q);
2332 		}
2333 
2334 		blk_add_rq_to_plug(plug, rq);
2335 	} else if (q->elevator) {
2336 		/* Insert the request at the IO scheduler queue */
2337 		blk_mq_sched_insert_request(rq, false, true, true);
2338 	} else if (plug && !blk_queue_nomerges(q)) {
2339 		/*
2340 		 * We do limited plugging. If the bio can be merged, do that.
2341 		 * Otherwise the existing request in the plug list will be
2342 		 * issued. So the plug list will have one request at most
2343 		 * The plug list might get flushed before this. If that happens,
2344 		 * the plug list is empty, and same_queue_rq is invalid.
2345 		 */
2346 		if (list_empty(&plug->mq_list))
2347 			same_queue_rq = NULL;
2348 		if (same_queue_rq) {
2349 			list_del_init(&same_queue_rq->queuelist);
2350 			plug->rq_count--;
2351 		}
2352 		blk_add_rq_to_plug(plug, rq);
2353 		trace_block_plug(q);
2354 
2355 		if (same_queue_rq) {
2356 			data.hctx = same_queue_rq->mq_hctx;
2357 			trace_block_unplug(q, 1, true);
2358 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2359 					&cookie);
2360 		}
2361 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2362 			!data.hctx->dispatch_busy) {
2363 		/*
2364 		 * There is no scheduler and we can try to send directly
2365 		 * to the hardware.
2366 		 */
2367 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2368 	} else {
2369 		/* Default case. */
2370 		blk_mq_sched_insert_request(rq, false, true, true);
2371 	}
2372 
2373 	return cookie;
2374 queue_exit:
2375 	blk_queue_exit(q);
2376 	return BLK_QC_T_NONE;
2377 }
2378 
order_to_size(unsigned int order)2379 static size_t order_to_size(unsigned int order)
2380 {
2381 	return (size_t)PAGE_SIZE << order;
2382 }
2383 
2384 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2385 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2386 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2387 {
2388 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2389 	struct page *page;
2390 	unsigned long flags;
2391 
2392 	list_for_each_entry(page, &tags->page_list, lru) {
2393 		unsigned long start = (unsigned long)page_address(page);
2394 		unsigned long end = start + order_to_size(page->private);
2395 		int i;
2396 
2397 		for (i = 0; i < set->queue_depth; i++) {
2398 			struct request *rq = drv_tags->rqs[i];
2399 			unsigned long rq_addr = (unsigned long)rq;
2400 
2401 			if (rq_addr >= start && rq_addr < end) {
2402 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2403 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2404 			}
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Wait until all pending iteration is done.
2410 	 *
2411 	 * Request reference is cleared and it is guaranteed to be observed
2412 	 * after the ->lock is released.
2413 	 */
2414 	spin_lock_irqsave(&drv_tags->lock, flags);
2415 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2416 }
2417 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2418 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2419 		     unsigned int hctx_idx)
2420 {
2421 	struct page *page;
2422 
2423 	if (tags->rqs && set->ops->exit_request) {
2424 		int i;
2425 
2426 		for (i = 0; i < tags->nr_tags; i++) {
2427 			struct request *rq = tags->static_rqs[i];
2428 
2429 			if (!rq)
2430 				continue;
2431 			set->ops->exit_request(set, rq, hctx_idx);
2432 			tags->static_rqs[i] = NULL;
2433 		}
2434 	}
2435 
2436 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2437 
2438 	while (!list_empty(&tags->page_list)) {
2439 		page = list_first_entry(&tags->page_list, struct page, lru);
2440 		list_del_init(&page->lru);
2441 		/*
2442 		 * Remove kmemleak object previously allocated in
2443 		 * blk_mq_alloc_rqs().
2444 		 */
2445 		kmemleak_free(page_address(page));
2446 		__free_pages(page, page->private);
2447 	}
2448 }
2449 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2450 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2451 {
2452 	kfree(tags->rqs);
2453 	tags->rqs = NULL;
2454 	kfree(tags->static_rqs);
2455 	tags->static_rqs = NULL;
2456 
2457 	blk_mq_free_tags(tags, flags);
2458 }
2459 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2460 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2461 					unsigned int hctx_idx,
2462 					unsigned int nr_tags,
2463 					unsigned int reserved_tags,
2464 					unsigned int flags)
2465 {
2466 	struct blk_mq_tags *tags;
2467 	int node;
2468 	bool skip = false;
2469 
2470 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2471 	if (node == NUMA_NO_NODE)
2472 		node = set->numa_node;
2473 
2474 	trace_android_rvh_blk_mq_alloc_rq_map(&skip, &tags, set, node, flags);
2475 	if (!skip)
2476 		tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2477 	if (!tags)
2478 		return NULL;
2479 
2480 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2481 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2482 				 node);
2483 	if (!tags->rqs) {
2484 		blk_mq_free_tags(tags, flags);
2485 		return NULL;
2486 	}
2487 
2488 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2489 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2490 					node);
2491 	if (!tags->static_rqs) {
2492 		kfree(tags->rqs);
2493 		blk_mq_free_tags(tags, flags);
2494 		return NULL;
2495 	}
2496 
2497 	return tags;
2498 }
2499 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2500 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2501 			       unsigned int hctx_idx, int node)
2502 {
2503 	int ret;
2504 
2505 	if (set->ops->init_request) {
2506 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2507 		if (ret)
2508 			return ret;
2509 	}
2510 
2511 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2512 	return 0;
2513 }
2514 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2515 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2516 		     unsigned int hctx_idx, unsigned int depth)
2517 {
2518 	unsigned int i, j, entries_per_page, max_order = 4;
2519 	size_t rq_size, left;
2520 	int node;
2521 
2522 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2523 	if (node == NUMA_NO_NODE)
2524 		node = set->numa_node;
2525 
2526 	INIT_LIST_HEAD(&tags->page_list);
2527 
2528 	/*
2529 	 * rq_size is the size of the request plus driver payload, rounded
2530 	 * to the cacheline size
2531 	 */
2532 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2533 				cache_line_size());
2534 	trace_android_vh_blk_alloc_rqs(&rq_size, set, tags);
2535 	left = rq_size * depth;
2536 
2537 	for (i = 0; i < depth; ) {
2538 		int this_order = max_order;
2539 		struct page *page;
2540 		int to_do;
2541 		void *p;
2542 
2543 		while (this_order && left < order_to_size(this_order - 1))
2544 			this_order--;
2545 
2546 		do {
2547 			page = alloc_pages_node(node,
2548 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2549 				this_order);
2550 			if (page)
2551 				break;
2552 			if (!this_order--)
2553 				break;
2554 			if (order_to_size(this_order) < rq_size)
2555 				break;
2556 		} while (1);
2557 
2558 		if (!page)
2559 			goto fail;
2560 
2561 		page->private = this_order;
2562 		list_add_tail(&page->lru, &tags->page_list);
2563 
2564 		p = page_address(page);
2565 		/*
2566 		 * Allow kmemleak to scan these pages as they contain pointers
2567 		 * to additional allocations like via ops->init_request().
2568 		 */
2569 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2570 		entries_per_page = order_to_size(this_order) / rq_size;
2571 		to_do = min(entries_per_page, depth - i);
2572 		left -= to_do * rq_size;
2573 		for (j = 0; j < to_do; j++) {
2574 			struct request *rq = p;
2575 
2576 			tags->static_rqs[i] = rq;
2577 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2578 				tags->static_rqs[i] = NULL;
2579 				goto fail;
2580 			}
2581 
2582 			p += rq_size;
2583 			i++;
2584 		}
2585 	}
2586 	return 0;
2587 
2588 fail:
2589 	blk_mq_free_rqs(set, tags, hctx_idx);
2590 	return -ENOMEM;
2591 }
2592 
2593 struct rq_iter_data {
2594 	struct blk_mq_hw_ctx *hctx;
2595 	bool has_rq;
2596 };
2597 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2598 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2599 {
2600 	struct rq_iter_data *iter_data = data;
2601 
2602 	if (rq->mq_hctx != iter_data->hctx)
2603 		return true;
2604 	iter_data->has_rq = true;
2605 	return false;
2606 }
2607 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2608 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2609 {
2610 	struct blk_mq_tags *tags = hctx->sched_tags ?
2611 			hctx->sched_tags : hctx->tags;
2612 	struct rq_iter_data data = {
2613 		.hctx	= hctx,
2614 	};
2615 
2616 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2617 	return data.has_rq;
2618 }
2619 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2620 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2621 		struct blk_mq_hw_ctx *hctx)
2622 {
2623 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2624 		return false;
2625 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2626 		return false;
2627 	return true;
2628 }
2629 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2630 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2631 {
2632 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2633 			struct blk_mq_hw_ctx, cpuhp_online);
2634 
2635 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2636 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2637 		return 0;
2638 
2639 	/*
2640 	 * Prevent new request from being allocated on the current hctx.
2641 	 *
2642 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2643 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2644 	 * seen once we return from the tag allocator.
2645 	 */
2646 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2647 	smp_mb__after_atomic();
2648 
2649 	/*
2650 	 * Try to grab a reference to the queue and wait for any outstanding
2651 	 * requests.  If we could not grab a reference the queue has been
2652 	 * frozen and there are no requests.
2653 	 */
2654 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2655 		while (blk_mq_hctx_has_requests(hctx))
2656 			msleep(5);
2657 		percpu_ref_put(&hctx->queue->q_usage_counter);
2658 	}
2659 
2660 	return 0;
2661 }
2662 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2663 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2664 {
2665 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2666 			struct blk_mq_hw_ctx, cpuhp_online);
2667 
2668 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2669 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2670 	return 0;
2671 }
2672 
2673 /*
2674  * 'cpu' is going away. splice any existing rq_list entries from this
2675  * software queue to the hw queue dispatch list, and ensure that it
2676  * gets run.
2677  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2678 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2679 {
2680 	struct blk_mq_hw_ctx *hctx;
2681 	struct blk_mq_ctx *ctx;
2682 	LIST_HEAD(tmp);
2683 	enum hctx_type type;
2684 
2685 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2686 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2687 		return 0;
2688 
2689 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2690 	type = hctx->type;
2691 
2692 	spin_lock(&ctx->lock);
2693 	if (!list_empty(&ctx->rq_lists[type])) {
2694 		list_splice_init(&ctx->rq_lists[type], &tmp);
2695 		blk_mq_hctx_clear_pending(hctx, ctx);
2696 	}
2697 	spin_unlock(&ctx->lock);
2698 
2699 	if (list_empty(&tmp))
2700 		return 0;
2701 
2702 	spin_lock(&hctx->lock);
2703 	list_splice_tail_init(&tmp, &hctx->dispatch);
2704 	spin_unlock(&hctx->lock);
2705 
2706 	blk_mq_run_hw_queue(hctx, true);
2707 	return 0;
2708 }
2709 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2710 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2711 {
2712 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2713 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2714 						    &hctx->cpuhp_online);
2715 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2716 					    &hctx->cpuhp_dead);
2717 }
2718 
2719 /*
2720  * Before freeing hw queue, clearing the flush request reference in
2721  * tags->rqs[] for avoiding potential UAF.
2722  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2723 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2724 		unsigned int queue_depth, struct request *flush_rq)
2725 {
2726 	int i;
2727 	unsigned long flags;
2728 
2729 	/* The hw queue may not be mapped yet */
2730 	if (!tags)
2731 		return;
2732 
2733 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2734 
2735 	for (i = 0; i < queue_depth; i++)
2736 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2737 
2738 	/*
2739 	 * Wait until all pending iteration is done.
2740 	 *
2741 	 * Request reference is cleared and it is guaranteed to be observed
2742 	 * after the ->lock is released.
2743 	 */
2744 	spin_lock_irqsave(&tags->lock, flags);
2745 	spin_unlock_irqrestore(&tags->lock, flags);
2746 }
2747 
2748 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2749 static void blk_mq_exit_hctx(struct request_queue *q,
2750 		struct blk_mq_tag_set *set,
2751 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2752 {
2753 	struct request *flush_rq = hctx->fq->flush_rq;
2754 
2755 	if (blk_mq_hw_queue_mapped(hctx))
2756 		blk_mq_tag_idle(hctx);
2757 
2758 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2759 			set->queue_depth, flush_rq);
2760 	if (set->ops->exit_request)
2761 		set->ops->exit_request(set, flush_rq, hctx_idx);
2762 
2763 	if (set->ops->exit_hctx)
2764 		set->ops->exit_hctx(hctx, hctx_idx);
2765 
2766 	blk_mq_remove_cpuhp(hctx);
2767 
2768 	spin_lock(&q->unused_hctx_lock);
2769 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2770 	spin_unlock(&q->unused_hctx_lock);
2771 }
2772 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2773 static void blk_mq_exit_hw_queues(struct request_queue *q,
2774 		struct blk_mq_tag_set *set, int nr_queue)
2775 {
2776 	struct blk_mq_hw_ctx *hctx;
2777 	unsigned int i;
2778 
2779 	queue_for_each_hw_ctx(q, hctx, i) {
2780 		if (i == nr_queue)
2781 			break;
2782 		blk_mq_debugfs_unregister_hctx(hctx);
2783 		blk_mq_exit_hctx(q, set, hctx, i);
2784 	}
2785 }
2786 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2787 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2788 {
2789 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2790 
2791 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2792 			   __alignof__(struct blk_mq_hw_ctx)) !=
2793 		     sizeof(struct blk_mq_hw_ctx));
2794 
2795 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2796 		hw_ctx_size += sizeof(struct srcu_struct);
2797 
2798 	return hw_ctx_size;
2799 }
2800 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2801 static int blk_mq_init_hctx(struct request_queue *q,
2802 		struct blk_mq_tag_set *set,
2803 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2804 {
2805 	hctx->queue_num = hctx_idx;
2806 
2807 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2808 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2809 				&hctx->cpuhp_online);
2810 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2811 
2812 	hctx->tags = set->tags[hctx_idx];
2813 
2814 	if (set->ops->init_hctx &&
2815 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2816 		goto unregister_cpu_notifier;
2817 
2818 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2819 				hctx->numa_node))
2820 		goto exit_hctx;
2821 	return 0;
2822 
2823  exit_hctx:
2824 	if (set->ops->exit_hctx)
2825 		set->ops->exit_hctx(hctx, hctx_idx);
2826  unregister_cpu_notifier:
2827 	blk_mq_remove_cpuhp(hctx);
2828 	return -1;
2829 }
2830 
2831 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2832 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2833 		int node)
2834 {
2835 	struct blk_mq_hw_ctx *hctx;
2836 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2837 
2838 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2839 	if (!hctx)
2840 		goto fail_alloc_hctx;
2841 
2842 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2843 		goto free_hctx;
2844 
2845 	atomic_set(&hctx->nr_active, 0);
2846 	if (node == NUMA_NO_NODE)
2847 		node = set->numa_node;
2848 	hctx->numa_node = node;
2849 
2850 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2851 	spin_lock_init(&hctx->lock);
2852 	INIT_LIST_HEAD(&hctx->dispatch);
2853 	hctx->queue = q;
2854 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2855 
2856 	INIT_LIST_HEAD(&hctx->hctx_list);
2857 
2858 	/*
2859 	 * Allocate space for all possible cpus to avoid allocation at
2860 	 * runtime
2861 	 */
2862 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2863 			gfp, node);
2864 	if (!hctx->ctxs)
2865 		goto free_cpumask;
2866 
2867 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2868 				gfp, node))
2869 		goto free_ctxs;
2870 	hctx->nr_ctx = 0;
2871 
2872 	spin_lock_init(&hctx->dispatch_wait_lock);
2873 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2874 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2875 
2876 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2877 	if (!hctx->fq)
2878 		goto free_bitmap;
2879 
2880 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2881 		init_srcu_struct(hctx->srcu);
2882 	blk_mq_hctx_kobj_init(hctx);
2883 
2884 	return hctx;
2885 
2886  free_bitmap:
2887 	sbitmap_free(&hctx->ctx_map);
2888  free_ctxs:
2889 	kfree(hctx->ctxs);
2890  free_cpumask:
2891 	free_cpumask_var(hctx->cpumask);
2892  free_hctx:
2893 	kfree(hctx);
2894  fail_alloc_hctx:
2895 	return NULL;
2896 }
2897 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2898 static void blk_mq_init_cpu_queues(struct request_queue *q,
2899 				   unsigned int nr_hw_queues)
2900 {
2901 	struct blk_mq_tag_set *set = q->tag_set;
2902 	unsigned int i, j;
2903 
2904 	for_each_possible_cpu(i) {
2905 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2906 		struct blk_mq_hw_ctx *hctx;
2907 		int k;
2908 
2909 		__ctx->cpu = i;
2910 		spin_lock_init(&__ctx->lock);
2911 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2912 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2913 
2914 		__ctx->queue = q;
2915 
2916 		/*
2917 		 * Set local node, IFF we have more than one hw queue. If
2918 		 * not, we remain on the home node of the device
2919 		 */
2920 		for (j = 0; j < set->nr_maps; j++) {
2921 			hctx = blk_mq_map_queue_type(q, j, i);
2922 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2923 				hctx->numa_node = cpu_to_node(i);
2924 		}
2925 	}
2926 }
2927 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2928 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2929 					int hctx_idx)
2930 {
2931 	unsigned int flags = set->flags;
2932 	int ret = 0;
2933 
2934 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2935 					set->queue_depth, set->reserved_tags, flags);
2936 	if (!set->tags[hctx_idx])
2937 		return false;
2938 
2939 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2940 				set->queue_depth);
2941 	if (!ret)
2942 		return true;
2943 
2944 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2945 	set->tags[hctx_idx] = NULL;
2946 	return false;
2947 }
2948 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2949 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2950 					 unsigned int hctx_idx)
2951 {
2952 	unsigned int flags = set->flags;
2953 
2954 	if (set->tags && set->tags[hctx_idx]) {
2955 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2956 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2957 		set->tags[hctx_idx] = NULL;
2958 	}
2959 }
2960 
blk_mq_map_swqueue(struct request_queue * q)2961 static void blk_mq_map_swqueue(struct request_queue *q)
2962 {
2963 	unsigned int i, j, hctx_idx;
2964 	struct blk_mq_hw_ctx *hctx;
2965 	struct blk_mq_ctx *ctx;
2966 	struct blk_mq_tag_set *set = q->tag_set;
2967 
2968 	queue_for_each_hw_ctx(q, hctx, i) {
2969 		cpumask_clear(hctx->cpumask);
2970 		hctx->nr_ctx = 0;
2971 		hctx->dispatch_from = NULL;
2972 	}
2973 
2974 	/*
2975 	 * Map software to hardware queues.
2976 	 *
2977 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2978 	 */
2979 	for_each_possible_cpu(i) {
2980 
2981 		ctx = per_cpu_ptr(q->queue_ctx, i);
2982 		for (j = 0; j < set->nr_maps; j++) {
2983 			if (!set->map[j].nr_queues) {
2984 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2985 						HCTX_TYPE_DEFAULT, i);
2986 				continue;
2987 			}
2988 			hctx_idx = set->map[j].mq_map[i];
2989 			/* unmapped hw queue can be remapped after CPU topo changed */
2990 			if (!set->tags[hctx_idx] &&
2991 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2992 				/*
2993 				 * If tags initialization fail for some hctx,
2994 				 * that hctx won't be brought online.  In this
2995 				 * case, remap the current ctx to hctx[0] which
2996 				 * is guaranteed to always have tags allocated
2997 				 */
2998 				set->map[j].mq_map[i] = 0;
2999 			}
3000 
3001 			hctx = blk_mq_map_queue_type(q, j, i);
3002 			ctx->hctxs[j] = hctx;
3003 			/*
3004 			 * If the CPU is already set in the mask, then we've
3005 			 * mapped this one already. This can happen if
3006 			 * devices share queues across queue maps.
3007 			 */
3008 			if (cpumask_test_cpu(i, hctx->cpumask))
3009 				continue;
3010 
3011 			cpumask_set_cpu(i, hctx->cpumask);
3012 			hctx->type = j;
3013 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3014 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3015 
3016 			/*
3017 			 * If the nr_ctx type overflows, we have exceeded the
3018 			 * amount of sw queues we can support.
3019 			 */
3020 			BUG_ON(!hctx->nr_ctx);
3021 		}
3022 
3023 		for (; j < HCTX_MAX_TYPES; j++)
3024 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3025 					HCTX_TYPE_DEFAULT, i);
3026 	}
3027 
3028 	queue_for_each_hw_ctx(q, hctx, i) {
3029 		/*
3030 		 * If no software queues are mapped to this hardware queue,
3031 		 * disable it and free the request entries.
3032 		 */
3033 		if (!hctx->nr_ctx) {
3034 			/* Never unmap queue 0.  We need it as a
3035 			 * fallback in case of a new remap fails
3036 			 * allocation
3037 			 */
3038 			if (i && set->tags[i])
3039 				blk_mq_free_map_and_requests(set, i);
3040 
3041 			hctx->tags = NULL;
3042 			continue;
3043 		}
3044 
3045 		hctx->tags = set->tags[i];
3046 		WARN_ON(!hctx->tags);
3047 
3048 		/*
3049 		 * Set the map size to the number of mapped software queues.
3050 		 * This is more accurate and more efficient than looping
3051 		 * over all possibly mapped software queues.
3052 		 */
3053 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3054 
3055 		/*
3056 		 * Initialize batch roundrobin counts
3057 		 */
3058 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3059 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3060 	}
3061 }
3062 
3063 /*
3064  * Caller needs to ensure that we're either frozen/quiesced, or that
3065  * the queue isn't live yet.
3066  */
queue_set_hctx_shared(struct request_queue * q,bool shared)3067 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3068 {
3069 	struct blk_mq_hw_ctx *hctx;
3070 	int i;
3071 
3072 	queue_for_each_hw_ctx(q, hctx, i) {
3073 		if (shared)
3074 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3075 		else
3076 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3077 	}
3078 }
3079 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3080 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3081 					 bool shared)
3082 {
3083 	struct request_queue *q;
3084 
3085 	lockdep_assert_held(&set->tag_list_lock);
3086 
3087 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3088 		blk_mq_freeze_queue(q);
3089 		queue_set_hctx_shared(q, shared);
3090 		blk_mq_unfreeze_queue(q);
3091 	}
3092 }
3093 
blk_mq_del_queue_tag_set(struct request_queue * q)3094 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3095 {
3096 	struct blk_mq_tag_set *set = q->tag_set;
3097 
3098 	mutex_lock(&set->tag_list_lock);
3099 	list_del(&q->tag_set_list);
3100 	if (list_is_singular(&set->tag_list)) {
3101 		/* just transitioned to unshared */
3102 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3103 		/* update existing queue */
3104 		blk_mq_update_tag_set_shared(set, false);
3105 	}
3106 	mutex_unlock(&set->tag_list_lock);
3107 	INIT_LIST_HEAD(&q->tag_set_list);
3108 }
3109 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3110 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3111 				     struct request_queue *q)
3112 {
3113 	mutex_lock(&set->tag_list_lock);
3114 
3115 	/*
3116 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3117 	 */
3118 	if (!list_empty(&set->tag_list) &&
3119 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3120 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3121 		/* update existing queue */
3122 		blk_mq_update_tag_set_shared(set, true);
3123 	}
3124 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3125 		queue_set_hctx_shared(q, true);
3126 	list_add_tail(&q->tag_set_list, &set->tag_list);
3127 
3128 	mutex_unlock(&set->tag_list_lock);
3129 }
3130 
3131 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3132 static int blk_mq_alloc_ctxs(struct request_queue *q)
3133 {
3134 	struct blk_mq_ctxs *ctxs;
3135 	int cpu;
3136 
3137 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3138 	if (!ctxs)
3139 		return -ENOMEM;
3140 
3141 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3142 	if (!ctxs->queue_ctx)
3143 		goto fail;
3144 
3145 	for_each_possible_cpu(cpu) {
3146 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3147 		ctx->ctxs = ctxs;
3148 	}
3149 
3150 	q->mq_kobj = &ctxs->kobj;
3151 	q->queue_ctx = ctxs->queue_ctx;
3152 
3153 	return 0;
3154  fail:
3155 	kfree(ctxs);
3156 	return -ENOMEM;
3157 }
3158 
3159 /*
3160  * It is the actual release handler for mq, but we do it from
3161  * request queue's release handler for avoiding use-after-free
3162  * and headache because q->mq_kobj shouldn't have been introduced,
3163  * but we can't group ctx/kctx kobj without it.
3164  */
blk_mq_release(struct request_queue * q)3165 void blk_mq_release(struct request_queue *q)
3166 {
3167 	struct blk_mq_hw_ctx *hctx, *next;
3168 	int i;
3169 
3170 	queue_for_each_hw_ctx(q, hctx, i)
3171 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3172 
3173 	/* all hctx are in .unused_hctx_list now */
3174 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3175 		list_del_init(&hctx->hctx_list);
3176 		kobject_put(&hctx->kobj);
3177 	}
3178 
3179 	kfree(q->queue_hw_ctx);
3180 
3181 	/*
3182 	 * release .mq_kobj and sw queue's kobject now because
3183 	 * both share lifetime with request queue.
3184 	 */
3185 	blk_mq_sysfs_deinit(q);
3186 }
3187 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3188 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3189 		void *queuedata)
3190 {
3191 	struct request_queue *uninit_q, *q;
3192 
3193 	uninit_q = blk_alloc_queue(set->numa_node);
3194 	if (!uninit_q)
3195 		return ERR_PTR(-ENOMEM);
3196 	uninit_q->queuedata = queuedata;
3197 
3198 	/*
3199 	 * Initialize the queue without an elevator. device_add_disk() will do
3200 	 * the initialization.
3201 	 */
3202 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3203 	if (IS_ERR(q))
3204 		blk_cleanup_queue(uninit_q);
3205 
3206 	return q;
3207 }
3208 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3209 
blk_mq_init_queue(struct blk_mq_tag_set * set)3210 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3211 {
3212 	return blk_mq_init_queue_data(set, NULL);
3213 }
3214 EXPORT_SYMBOL(blk_mq_init_queue);
3215 
3216 /*
3217  * Helper for setting up a queue with mq ops, given queue depth, and
3218  * the passed in mq ops flags.
3219  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3220 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3221 					   const struct blk_mq_ops *ops,
3222 					   unsigned int queue_depth,
3223 					   unsigned int set_flags)
3224 {
3225 	struct request_queue *q;
3226 	int ret;
3227 
3228 	memset(set, 0, sizeof(*set));
3229 	set->ops = ops;
3230 	set->nr_hw_queues = 1;
3231 	set->nr_maps = 1;
3232 	set->queue_depth = queue_depth;
3233 	set->numa_node = NUMA_NO_NODE;
3234 	set->flags = set_flags;
3235 
3236 	ret = blk_mq_alloc_tag_set(set);
3237 	if (ret)
3238 		return ERR_PTR(ret);
3239 
3240 	q = blk_mq_init_queue(set);
3241 	if (IS_ERR(q)) {
3242 		blk_mq_free_tag_set(set);
3243 		return q;
3244 	}
3245 
3246 	return q;
3247 }
3248 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3249 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3250 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3251 		struct blk_mq_tag_set *set, struct request_queue *q,
3252 		int hctx_idx, int node)
3253 {
3254 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3255 
3256 	/* reuse dead hctx first */
3257 	spin_lock(&q->unused_hctx_lock);
3258 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3259 		if (tmp->numa_node == node) {
3260 			hctx = tmp;
3261 			break;
3262 		}
3263 	}
3264 	if (hctx)
3265 		list_del_init(&hctx->hctx_list);
3266 	spin_unlock(&q->unused_hctx_lock);
3267 
3268 	if (!hctx)
3269 		hctx = blk_mq_alloc_hctx(q, set, node);
3270 	if (!hctx)
3271 		goto fail;
3272 
3273 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3274 		goto free_hctx;
3275 
3276 	return hctx;
3277 
3278  free_hctx:
3279 	kobject_put(&hctx->kobj);
3280  fail:
3281 	return NULL;
3282 }
3283 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3284 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3285 						struct request_queue *q)
3286 {
3287 	int i, j, end;
3288 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3289 
3290 	if (q->nr_hw_queues < set->nr_hw_queues) {
3291 		struct blk_mq_hw_ctx **new_hctxs;
3292 
3293 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3294 				       sizeof(*new_hctxs), GFP_KERNEL,
3295 				       set->numa_node);
3296 		if (!new_hctxs)
3297 			return;
3298 		if (hctxs)
3299 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3300 			       sizeof(*hctxs));
3301 		q->queue_hw_ctx = new_hctxs;
3302 		kfree(hctxs);
3303 		hctxs = new_hctxs;
3304 	}
3305 
3306 	/* protect against switching io scheduler  */
3307 	mutex_lock(&q->sysfs_lock);
3308 	for (i = 0; i < set->nr_hw_queues; i++) {
3309 		int node;
3310 		struct blk_mq_hw_ctx *hctx;
3311 
3312 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3313 		/*
3314 		 * If the hw queue has been mapped to another numa node,
3315 		 * we need to realloc the hctx. If allocation fails, fallback
3316 		 * to use the previous one.
3317 		 */
3318 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3319 			continue;
3320 
3321 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3322 		if (hctx) {
3323 			if (hctxs[i])
3324 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3325 			hctxs[i] = hctx;
3326 		} else {
3327 			if (hctxs[i])
3328 				pr_warn("Allocate new hctx on node %d fails,\
3329 						fallback to previous one on node %d\n",
3330 						node, hctxs[i]->numa_node);
3331 			else
3332 				break;
3333 		}
3334 	}
3335 	/*
3336 	 * Increasing nr_hw_queues fails. Free the newly allocated
3337 	 * hctxs and keep the previous q->nr_hw_queues.
3338 	 */
3339 	if (i != set->nr_hw_queues) {
3340 		j = q->nr_hw_queues;
3341 		end = i;
3342 	} else {
3343 		j = i;
3344 		end = q->nr_hw_queues;
3345 		q->nr_hw_queues = set->nr_hw_queues;
3346 	}
3347 
3348 	for (; j < end; j++) {
3349 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3350 
3351 		if (hctx) {
3352 			if (hctx->tags)
3353 				blk_mq_free_map_and_requests(set, j);
3354 			blk_mq_exit_hctx(q, set, hctx, j);
3355 			hctxs[j] = NULL;
3356 		}
3357 	}
3358 	mutex_unlock(&q->sysfs_lock);
3359 }
3360 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3361 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3362 						  struct request_queue *q,
3363 						  bool elevator_init)
3364 {
3365 	/* mark the queue as mq asap */
3366 	q->mq_ops = set->ops;
3367 
3368 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3369 					     blk_mq_poll_stats_bkt,
3370 					     BLK_MQ_POLL_STATS_BKTS, q);
3371 	if (!q->poll_cb)
3372 		goto err_exit;
3373 
3374 	if (blk_mq_alloc_ctxs(q))
3375 		goto err_poll;
3376 
3377 	/* init q->mq_kobj and sw queues' kobjects */
3378 	blk_mq_sysfs_init(q);
3379 
3380 	INIT_LIST_HEAD(&q->unused_hctx_list);
3381 	spin_lock_init(&q->unused_hctx_lock);
3382 
3383 	blk_mq_realloc_hw_ctxs(set, q);
3384 	if (!q->nr_hw_queues)
3385 		goto err_hctxs;
3386 
3387 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3388 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3389 
3390 	q->tag_set = set;
3391 
3392 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3393 	if (set->nr_maps > HCTX_TYPE_POLL &&
3394 	    set->map[HCTX_TYPE_POLL].nr_queues)
3395 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3396 
3397 	q->sg_reserved_size = INT_MAX;
3398 
3399 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3400 	INIT_LIST_HEAD(&q->requeue_list);
3401 	spin_lock_init(&q->requeue_lock);
3402 
3403 	q->nr_requests = set->queue_depth;
3404 
3405 	/*
3406 	 * Default to classic polling
3407 	 */
3408 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3409 
3410 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3411 	blk_mq_add_queue_tag_set(set, q);
3412 	blk_mq_map_swqueue(q);
3413 
3414 	trace_android_rvh_blk_mq_init_allocated_queue(q);
3415 
3416 	if (elevator_init)
3417 		elevator_init_mq(q);
3418 
3419 	return q;
3420 
3421 err_hctxs:
3422 	kfree(q->queue_hw_ctx);
3423 	q->nr_hw_queues = 0;
3424 	blk_mq_sysfs_deinit(q);
3425 err_poll:
3426 	blk_stat_free_callback(q->poll_cb);
3427 	q->poll_cb = NULL;
3428 err_exit:
3429 	q->mq_ops = NULL;
3430 	return ERR_PTR(-ENOMEM);
3431 }
3432 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3433 
3434 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3435 void blk_mq_exit_queue(struct request_queue *q)
3436 {
3437 	struct blk_mq_tag_set *set = q->tag_set;
3438 
3439 	trace_android_vh_blk_mq_exit_queue(q);
3440 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3441 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3442 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3443 	blk_mq_del_queue_tag_set(q);
3444 }
3445 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3446 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3447 {
3448 	int i;
3449 
3450 	for (i = 0; i < set->nr_hw_queues; i++) {
3451 		if (!__blk_mq_alloc_map_and_request(set, i))
3452 			goto out_unwind;
3453 		cond_resched();
3454 	}
3455 
3456 	return 0;
3457 
3458 out_unwind:
3459 	while (--i >= 0)
3460 		blk_mq_free_map_and_requests(set, i);
3461 
3462 	return -ENOMEM;
3463 }
3464 
3465 /*
3466  * Allocate the request maps associated with this tag_set. Note that this
3467  * may reduce the depth asked for, if memory is tight. set->queue_depth
3468  * will be updated to reflect the allocated depth.
3469  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3470 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3471 {
3472 	unsigned int depth;
3473 	int err;
3474 
3475 	depth = set->queue_depth;
3476 	do {
3477 		err = __blk_mq_alloc_rq_maps(set);
3478 		if (!err)
3479 			break;
3480 
3481 		set->queue_depth >>= 1;
3482 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3483 			err = -ENOMEM;
3484 			break;
3485 		}
3486 	} while (set->queue_depth);
3487 
3488 	if (!set->queue_depth || err) {
3489 		pr_err("blk-mq: failed to allocate request map\n");
3490 		return -ENOMEM;
3491 	}
3492 
3493 	if (depth != set->queue_depth)
3494 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3495 						depth, set->queue_depth);
3496 
3497 	return 0;
3498 }
3499 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3500 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3501 {
3502 	/*
3503 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3504 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3505 	 * number of hardware queues.
3506 	 */
3507 	if (set->nr_maps == 1)
3508 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3509 
3510 	if (set->ops->map_queues && !is_kdump_kernel()) {
3511 		int i;
3512 
3513 		/*
3514 		 * transport .map_queues is usually done in the following
3515 		 * way:
3516 		 *
3517 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3518 		 * 	mask = get_cpu_mask(queue)
3519 		 * 	for_each_cpu(cpu, mask)
3520 		 * 		set->map[x].mq_map[cpu] = queue;
3521 		 * }
3522 		 *
3523 		 * When we need to remap, the table has to be cleared for
3524 		 * killing stale mapping since one CPU may not be mapped
3525 		 * to any hw queue.
3526 		 */
3527 		for (i = 0; i < set->nr_maps; i++)
3528 			blk_mq_clear_mq_map(&set->map[i]);
3529 
3530 		return set->ops->map_queues(set);
3531 	} else {
3532 		BUG_ON(set->nr_maps > 1);
3533 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3534 	}
3535 }
3536 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3537 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3538 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3539 {
3540 	struct blk_mq_tags **new_tags;
3541 
3542 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3543 		return 0;
3544 
3545 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3546 				GFP_KERNEL, set->numa_node);
3547 	if (!new_tags)
3548 		return -ENOMEM;
3549 
3550 	if (set->tags)
3551 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3552 		       sizeof(*set->tags));
3553 	kfree(set->tags);
3554 	set->tags = new_tags;
3555 	set->nr_hw_queues = new_nr_hw_queues;
3556 
3557 	return 0;
3558 }
3559 
3560 /*
3561  * Alloc a tag set to be associated with one or more request queues.
3562  * May fail with EINVAL for various error conditions. May adjust the
3563  * requested depth down, if it's too large. In that case, the set
3564  * value will be stored in set->queue_depth.
3565  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3566 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3567 {
3568 	int i, ret;
3569 
3570 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3571 
3572 	if (!set->nr_hw_queues)
3573 		return -EINVAL;
3574 	if (!set->queue_depth)
3575 		return -EINVAL;
3576 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3577 		return -EINVAL;
3578 
3579 	if (!set->ops->queue_rq)
3580 		return -EINVAL;
3581 
3582 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3583 		return -EINVAL;
3584 
3585 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3586 		pr_info("blk-mq: reduced tag depth to %u\n",
3587 			BLK_MQ_MAX_DEPTH);
3588 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3589 	}
3590 
3591 	if (!set->nr_maps)
3592 		set->nr_maps = 1;
3593 	else if (set->nr_maps > HCTX_MAX_TYPES)
3594 		return -EINVAL;
3595 
3596 	/*
3597 	 * If a crashdump is active, then we are potentially in a very
3598 	 * memory constrained environment. Limit us to 1 queue and
3599 	 * 64 tags to prevent using too much memory.
3600 	 */
3601 	if (is_kdump_kernel()) {
3602 		set->nr_hw_queues = 1;
3603 		set->nr_maps = 1;
3604 		set->queue_depth = min(64U, set->queue_depth);
3605 	}
3606 	/*
3607 	 * There is no use for more h/w queues than cpus if we just have
3608 	 * a single map
3609 	 */
3610 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3611 		set->nr_hw_queues = nr_cpu_ids;
3612 
3613 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3614 		return -ENOMEM;
3615 
3616 	ret = -ENOMEM;
3617 	for (i = 0; i < set->nr_maps; i++) {
3618 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3619 						  sizeof(set->map[i].mq_map[0]),
3620 						  GFP_KERNEL, set->numa_node);
3621 		if (!set->map[i].mq_map)
3622 			goto out_free_mq_map;
3623 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3624 	}
3625 
3626 	ret = blk_mq_update_queue_map(set);
3627 	if (ret)
3628 		goto out_free_mq_map;
3629 
3630 	trace_android_vh_blk_mq_alloc_tag_set(set);
3631 
3632 	ret = blk_mq_alloc_map_and_requests(set);
3633 	if (ret)
3634 		goto out_free_mq_map;
3635 
3636 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3637 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3638 
3639 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3640 			ret = -ENOMEM;
3641 			goto out_free_mq_rq_maps;
3642 		}
3643 	}
3644 
3645 	mutex_init(&set->tag_list_lock);
3646 	INIT_LIST_HEAD(&set->tag_list);
3647 
3648 	return 0;
3649 
3650 out_free_mq_rq_maps:
3651 	for (i = 0; i < set->nr_hw_queues; i++)
3652 		blk_mq_free_map_and_requests(set, i);
3653 out_free_mq_map:
3654 	for (i = 0; i < set->nr_maps; i++) {
3655 		kfree(set->map[i].mq_map);
3656 		set->map[i].mq_map = NULL;
3657 	}
3658 	kfree(set->tags);
3659 	set->tags = NULL;
3660 	return ret;
3661 }
3662 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3663 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3664 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3665 {
3666 	int i, j;
3667 
3668 	for (i = 0; i < set->nr_hw_queues; i++)
3669 		blk_mq_free_map_and_requests(set, i);
3670 
3671 	if (blk_mq_is_sbitmap_shared(set->flags))
3672 		blk_mq_exit_shared_sbitmap(set);
3673 
3674 	for (j = 0; j < set->nr_maps; j++) {
3675 		kfree(set->map[j].mq_map);
3676 		set->map[j].mq_map = NULL;
3677 	}
3678 
3679 	kfree(set->tags);
3680 	set->tags = NULL;
3681 }
3682 EXPORT_SYMBOL(blk_mq_free_tag_set);
3683 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3684 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3685 {
3686 	struct blk_mq_tag_set *set = q->tag_set;
3687 	struct blk_mq_hw_ctx *hctx;
3688 	int i, ret;
3689 
3690 	if (!set)
3691 		return -EINVAL;
3692 
3693 	if (q->nr_requests == nr)
3694 		return 0;
3695 
3696 	blk_mq_freeze_queue(q);
3697 	blk_mq_quiesce_queue(q);
3698 
3699 	ret = 0;
3700 	queue_for_each_hw_ctx(q, hctx, i) {
3701 		if (!hctx->tags)
3702 			continue;
3703 		/*
3704 		 * If we're using an MQ scheduler, just update the scheduler
3705 		 * queue depth. This is similar to what the old code would do.
3706 		 */
3707 		if (!hctx->sched_tags) {
3708 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3709 							false);
3710 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3711 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3712 		} else {
3713 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3714 							nr, true);
3715 		}
3716 		if (ret)
3717 			break;
3718 		if (q->elevator && q->elevator->type->ops.depth_updated)
3719 			q->elevator->type->ops.depth_updated(hctx);
3720 	}
3721 
3722 	if (!ret)
3723 		q->nr_requests = nr;
3724 
3725 	blk_mq_unquiesce_queue(q);
3726 	blk_mq_unfreeze_queue(q);
3727 
3728 	return ret;
3729 }
3730 
3731 /*
3732  * request_queue and elevator_type pair.
3733  * It is just used by __blk_mq_update_nr_hw_queues to cache
3734  * the elevator_type associated with a request_queue.
3735  */
3736 struct blk_mq_qe_pair {
3737 	struct list_head node;
3738 	struct request_queue *q;
3739 	struct elevator_type *type;
3740 };
3741 
3742 /*
3743  * Cache the elevator_type in qe pair list and switch the
3744  * io scheduler to 'none'
3745  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3746 static bool blk_mq_elv_switch_none(struct list_head *head,
3747 		struct request_queue *q)
3748 {
3749 	struct blk_mq_qe_pair *qe;
3750 
3751 	if (!q->elevator)
3752 		return true;
3753 
3754 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3755 	if (!qe)
3756 		return false;
3757 
3758 	INIT_LIST_HEAD(&qe->node);
3759 	qe->q = q;
3760 	qe->type = q->elevator->type;
3761 	list_add(&qe->node, head);
3762 
3763 	mutex_lock(&q->sysfs_lock);
3764 	/*
3765 	 * After elevator_switch_mq, the previous elevator_queue will be
3766 	 * released by elevator_release. The reference of the io scheduler
3767 	 * module get by elevator_get will also be put. So we need to get
3768 	 * a reference of the io scheduler module here to prevent it to be
3769 	 * removed.
3770 	 */
3771 	__module_get(qe->type->elevator_owner);
3772 	elevator_switch_mq(q, NULL);
3773 	mutex_unlock(&q->sysfs_lock);
3774 
3775 	return true;
3776 }
3777 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3778 static void blk_mq_elv_switch_back(struct list_head *head,
3779 		struct request_queue *q)
3780 {
3781 	struct blk_mq_qe_pair *qe;
3782 	struct elevator_type *t = NULL;
3783 
3784 	list_for_each_entry(qe, head, node)
3785 		if (qe->q == q) {
3786 			t = qe->type;
3787 			break;
3788 		}
3789 
3790 	if (!t)
3791 		return;
3792 
3793 	list_del(&qe->node);
3794 	kfree(qe);
3795 
3796 	mutex_lock(&q->sysfs_lock);
3797 	elevator_switch_mq(q, t);
3798 	mutex_unlock(&q->sysfs_lock);
3799 }
3800 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3801 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3802 							int nr_hw_queues)
3803 {
3804 	struct request_queue *q;
3805 	LIST_HEAD(head);
3806 	int prev_nr_hw_queues;
3807 
3808 	lockdep_assert_held(&set->tag_list_lock);
3809 
3810 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3811 		nr_hw_queues = nr_cpu_ids;
3812 	if (nr_hw_queues < 1)
3813 		return;
3814 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3815 		return;
3816 
3817 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3818 		blk_mq_freeze_queue(q);
3819 	/*
3820 	 * Switch IO scheduler to 'none', cleaning up the data associated
3821 	 * with the previous scheduler. We will switch back once we are done
3822 	 * updating the new sw to hw queue mappings.
3823 	 */
3824 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3825 		if (!blk_mq_elv_switch_none(&head, q))
3826 			goto switch_back;
3827 
3828 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3829 		blk_mq_debugfs_unregister_hctxs(q);
3830 		blk_mq_sysfs_unregister(q);
3831 	}
3832 
3833 	prev_nr_hw_queues = set->nr_hw_queues;
3834 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3835 	    0)
3836 		goto reregister;
3837 
3838 	set->nr_hw_queues = nr_hw_queues;
3839 fallback:
3840 	blk_mq_update_queue_map(set);
3841 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3842 		blk_mq_realloc_hw_ctxs(set, q);
3843 		if (q->nr_hw_queues != set->nr_hw_queues) {
3844 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3845 					nr_hw_queues, prev_nr_hw_queues);
3846 			set->nr_hw_queues = prev_nr_hw_queues;
3847 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3848 			goto fallback;
3849 		}
3850 		blk_mq_map_swqueue(q);
3851 	}
3852 
3853 reregister:
3854 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3855 		blk_mq_sysfs_register(q);
3856 		blk_mq_debugfs_register_hctxs(q);
3857 	}
3858 
3859 switch_back:
3860 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3861 		blk_mq_elv_switch_back(&head, q);
3862 
3863 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3864 		blk_mq_unfreeze_queue(q);
3865 }
3866 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3867 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3868 {
3869 	mutex_lock(&set->tag_list_lock);
3870 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3871 	mutex_unlock(&set->tag_list_lock);
3872 }
3873 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3874 
3875 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3876 static bool blk_poll_stats_enable(struct request_queue *q)
3877 {
3878 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3879 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3880 		return true;
3881 	blk_stat_add_callback(q, q->poll_cb);
3882 	return false;
3883 }
3884 
blk_mq_poll_stats_start(struct request_queue * q)3885 static void blk_mq_poll_stats_start(struct request_queue *q)
3886 {
3887 	/*
3888 	 * We don't arm the callback if polling stats are not enabled or the
3889 	 * callback is already active.
3890 	 */
3891 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3892 	    blk_stat_is_active(q->poll_cb))
3893 		return;
3894 
3895 	blk_stat_activate_msecs(q->poll_cb, 100);
3896 }
3897 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3898 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3899 {
3900 	struct request_queue *q = cb->data;
3901 	int bucket;
3902 
3903 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3904 		if (cb->stat[bucket].nr_samples)
3905 			q->poll_stat[bucket] = cb->stat[bucket];
3906 	}
3907 }
3908 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3909 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3910 				       struct request *rq)
3911 {
3912 	unsigned long ret = 0;
3913 	int bucket;
3914 
3915 	/*
3916 	 * If stats collection isn't on, don't sleep but turn it on for
3917 	 * future users
3918 	 */
3919 	if (!blk_poll_stats_enable(q))
3920 		return 0;
3921 
3922 	/*
3923 	 * As an optimistic guess, use half of the mean service time
3924 	 * for this type of request. We can (and should) make this smarter.
3925 	 * For instance, if the completion latencies are tight, we can
3926 	 * get closer than just half the mean. This is especially
3927 	 * important on devices where the completion latencies are longer
3928 	 * than ~10 usec. We do use the stats for the relevant IO size
3929 	 * if available which does lead to better estimates.
3930 	 */
3931 	bucket = blk_mq_poll_stats_bkt(rq);
3932 	if (bucket < 0)
3933 		return ret;
3934 
3935 	if (q->poll_stat[bucket].nr_samples)
3936 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3937 
3938 	return ret;
3939 }
3940 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3941 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3942 				     struct request *rq)
3943 {
3944 	struct hrtimer_sleeper hs;
3945 	enum hrtimer_mode mode;
3946 	unsigned int nsecs;
3947 	ktime_t kt;
3948 
3949 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3950 		return false;
3951 
3952 	/*
3953 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3954 	 *
3955 	 *  0:	use half of prev avg
3956 	 * >0:	use this specific value
3957 	 */
3958 	if (q->poll_nsec > 0)
3959 		nsecs = q->poll_nsec;
3960 	else
3961 		nsecs = blk_mq_poll_nsecs(q, rq);
3962 
3963 	if (!nsecs)
3964 		return false;
3965 
3966 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3967 
3968 	/*
3969 	 * This will be replaced with the stats tracking code, using
3970 	 * 'avg_completion_time / 2' as the pre-sleep target.
3971 	 */
3972 	kt = nsecs;
3973 
3974 	mode = HRTIMER_MODE_REL;
3975 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3976 	hrtimer_set_expires(&hs.timer, kt);
3977 
3978 	do {
3979 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3980 			break;
3981 		set_current_state(TASK_UNINTERRUPTIBLE);
3982 		hrtimer_sleeper_start_expires(&hs, mode);
3983 		if (hs.task)
3984 			io_schedule();
3985 		hrtimer_cancel(&hs.timer);
3986 		mode = HRTIMER_MODE_ABS;
3987 	} while (hs.task && !signal_pending(current));
3988 
3989 	__set_current_state(TASK_RUNNING);
3990 	destroy_hrtimer_on_stack(&hs.timer);
3991 	return true;
3992 }
3993 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3994 static bool blk_mq_poll_hybrid(struct request_queue *q,
3995 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3996 {
3997 	struct request *rq;
3998 
3999 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
4000 		return false;
4001 
4002 	if (!blk_qc_t_is_internal(cookie))
4003 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
4004 	else {
4005 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
4006 		/*
4007 		 * With scheduling, if the request has completed, we'll
4008 		 * get a NULL return here, as we clear the sched tag when
4009 		 * that happens. The request still remains valid, like always,
4010 		 * so we should be safe with just the NULL check.
4011 		 */
4012 		if (!rq)
4013 			return false;
4014 	}
4015 
4016 	return blk_mq_poll_hybrid_sleep(q, rq);
4017 }
4018 
4019 /**
4020  * blk_poll - poll for IO completions
4021  * @q:  the queue
4022  * @cookie: cookie passed back at IO submission time
4023  * @spin: whether to spin for completions
4024  *
4025  * Description:
4026  *    Poll for completions on the passed in queue. Returns number of
4027  *    completed entries found. If @spin is true, then blk_poll will continue
4028  *    looping until at least one completion is found, unless the task is
4029  *    otherwise marked running (or we need to reschedule).
4030  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)4031 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
4032 {
4033 	struct blk_mq_hw_ctx *hctx;
4034 	long state;
4035 
4036 	if (!blk_qc_t_valid(cookie) ||
4037 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
4038 		return 0;
4039 
4040 	if (current->plug)
4041 		blk_flush_plug_list(current->plug, false);
4042 
4043 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
4044 
4045 	/*
4046 	 * If we sleep, have the caller restart the poll loop to reset
4047 	 * the state. Like for the other success return cases, the
4048 	 * caller is responsible for checking if the IO completed. If
4049 	 * the IO isn't complete, we'll get called again and will go
4050 	 * straight to the busy poll loop.
4051 	 */
4052 	if (blk_mq_poll_hybrid(q, hctx, cookie))
4053 		return 1;
4054 
4055 	hctx->poll_considered++;
4056 
4057 	state = current->state;
4058 	do {
4059 		int ret;
4060 
4061 		hctx->poll_invoked++;
4062 
4063 		ret = q->mq_ops->poll(hctx);
4064 		if (ret > 0) {
4065 			hctx->poll_success++;
4066 			__set_current_state(TASK_RUNNING);
4067 			return ret;
4068 		}
4069 
4070 		if (signal_pending_state(state, current))
4071 			__set_current_state(TASK_RUNNING);
4072 
4073 		if (current->state == TASK_RUNNING)
4074 			return 1;
4075 		if (ret < 0 || !spin)
4076 			break;
4077 		cpu_relax();
4078 	} while (!need_resched());
4079 
4080 	__set_current_state(TASK_RUNNING);
4081 	return 0;
4082 }
4083 EXPORT_SYMBOL_GPL(blk_poll);
4084 
blk_mq_rq_cpu(struct request * rq)4085 unsigned int blk_mq_rq_cpu(struct request *rq)
4086 {
4087 	return rq->mq_ctx->cpu;
4088 }
4089 EXPORT_SYMBOL(blk_mq_rq_cpu);
4090 
blk_mq_init(void)4091 static int __init blk_mq_init(void)
4092 {
4093 	int i;
4094 
4095 	for_each_possible_cpu(i)
4096 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4097 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4098 
4099 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4100 				  "block/softirq:dead", NULL,
4101 				  blk_softirq_cpu_dead);
4102 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4103 				blk_mq_hctx_notify_dead);
4104 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4105 				blk_mq_hctx_notify_online,
4106 				blk_mq_hctx_notify_offline);
4107 	return 0;
4108 }
4109 subsys_initcall(blk_mq_init);
4110