1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart.
49 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)50 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
51 {
52 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
53 return;
54
55 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
56 }
57 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
58
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)59 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
60 {
61 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
62 return;
63 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64
65 /*
66 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
67 * in blk_mq_run_hw_queue(). Its pair is the barrier in
68 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
69 * meantime new request added to hctx->dispatch is missed to check in
70 * blk_mq_run_hw_queue().
71 */
72 smp_mb();
73
74 blk_mq_run_hw_queue(hctx, true);
75 }
76
sched_rq_cmp(void * priv,struct list_head * a,struct list_head * b)77 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
78 {
79 struct request *rqa = container_of(a, struct request, queuelist);
80 struct request *rqb = container_of(b, struct request, queuelist);
81
82 return rqa->mq_hctx > rqb->mq_hctx;
83 }
84
blk_mq_dispatch_hctx_list(struct list_head * rq_list)85 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
86 {
87 struct blk_mq_hw_ctx *hctx =
88 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
89 struct request *rq;
90 LIST_HEAD(hctx_list);
91 unsigned int count = 0;
92
93 list_for_each_entry(rq, rq_list, queuelist) {
94 if (rq->mq_hctx != hctx) {
95 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
96 goto dispatch;
97 }
98 count++;
99 }
100 list_splice_tail_init(rq_list, &hctx_list);
101
102 dispatch:
103 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
104 }
105
106 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
107
108 /*
109 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
110 * its queue by itself in its completion handler, so we don't need to
111 * restart queue if .get_budget() fails to get the budget.
112 *
113 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
114 * be run again. This is necessary to avoid starving flushes.
115 */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)116 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
117 {
118 struct request_queue *q = hctx->queue;
119 struct elevator_queue *e = q->elevator;
120 bool multi_hctxs = false, run_queue = false;
121 bool dispatched = false, busy = false;
122 unsigned int max_dispatch;
123 LIST_HEAD(rq_list);
124 int count = 0;
125
126 if (hctx->dispatch_busy)
127 max_dispatch = 1;
128 else
129 max_dispatch = hctx->queue->nr_requests;
130
131 do {
132 struct request *rq;
133
134 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
135 break;
136
137 if (!list_empty_careful(&hctx->dispatch)) {
138 busy = true;
139 break;
140 }
141
142 if (!blk_mq_get_dispatch_budget(q))
143 break;
144
145 rq = e->type->ops.dispatch_request(hctx);
146 if (!rq) {
147 blk_mq_put_dispatch_budget(q);
148 /*
149 * We're releasing without dispatching. Holding the
150 * budget could have blocked any "hctx"s with the
151 * same queue and if we didn't dispatch then there's
152 * no guarantee anyone will kick the queue. Kick it
153 * ourselves.
154 */
155 run_queue = true;
156 break;
157 }
158
159 /*
160 * Now this rq owns the budget which has to be released
161 * if this rq won't be queued to driver via .queue_rq()
162 * in blk_mq_dispatch_rq_list().
163 */
164 list_add_tail(&rq->queuelist, &rq_list);
165 if (rq->mq_hctx != hctx)
166 multi_hctxs = true;
167 } while (++count < max_dispatch);
168
169 if (!count) {
170 if (run_queue)
171 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
172 } else if (multi_hctxs) {
173 /*
174 * Requests from different hctx may be dequeued from some
175 * schedulers, such as bfq and deadline.
176 *
177 * Sort the requests in the list according to their hctx,
178 * dispatch batching requests from same hctx at a time.
179 */
180 list_sort(NULL, &rq_list, sched_rq_cmp);
181 do {
182 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
183 } while (!list_empty(&rq_list));
184 } else {
185 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
186 }
187
188 if (busy)
189 return -EAGAIN;
190 return !!dispatched;
191 }
192
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)193 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
194 {
195 unsigned long end = jiffies + HZ;
196 int ret;
197
198 do {
199 ret = __blk_mq_do_dispatch_sched(hctx);
200 if (ret != 1)
201 break;
202 if (need_resched() || time_is_before_jiffies(end)) {
203 blk_mq_delay_run_hw_queue(hctx, 0);
204 break;
205 }
206 } while (1);
207
208 return ret;
209 }
210
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)211 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
212 struct blk_mq_ctx *ctx)
213 {
214 unsigned short idx = ctx->index_hw[hctx->type];
215
216 if (++idx == hctx->nr_ctx)
217 idx = 0;
218
219 return hctx->ctxs[idx];
220 }
221
222 /*
223 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
224 * its queue by itself in its completion handler, so we don't need to
225 * restart queue if .get_budget() fails to get the budget.
226 *
227 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
228 * be run again. This is necessary to avoid starving flushes.
229 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)230 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
231 {
232 struct request_queue *q = hctx->queue;
233 LIST_HEAD(rq_list);
234 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
235 int ret = 0;
236 struct request *rq;
237
238 do {
239 if (!list_empty_careful(&hctx->dispatch)) {
240 ret = -EAGAIN;
241 break;
242 }
243
244 if (!sbitmap_any_bit_set(&hctx->ctx_map))
245 break;
246
247 if (!blk_mq_get_dispatch_budget(q))
248 break;
249
250 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
251 if (!rq) {
252 blk_mq_put_dispatch_budget(q);
253 /*
254 * We're releasing without dispatching. Holding the
255 * budget could have blocked any "hctx"s with the
256 * same queue and if we didn't dispatch then there's
257 * no guarantee anyone will kick the queue. Kick it
258 * ourselves.
259 */
260 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
261 break;
262 }
263
264 /*
265 * Now this rq owns the budget which has to be released
266 * if this rq won't be queued to driver via .queue_rq()
267 * in blk_mq_dispatch_rq_list().
268 */
269 list_add(&rq->queuelist, &rq_list);
270
271 /* round robin for fair dispatch */
272 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
273
274 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
275
276 WRITE_ONCE(hctx->dispatch_from, ctx);
277 return ret;
278 }
279
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)280 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
281 {
282 struct request_queue *q = hctx->queue;
283 struct elevator_queue *e = q->elevator;
284 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
285 int ret = 0;
286 LIST_HEAD(rq_list);
287
288 /*
289 * If we have previous entries on our dispatch list, grab them first for
290 * more fair dispatch.
291 */
292 if (!list_empty_careful(&hctx->dispatch)) {
293 spin_lock(&hctx->lock);
294 if (!list_empty(&hctx->dispatch))
295 list_splice_init(&hctx->dispatch, &rq_list);
296 spin_unlock(&hctx->lock);
297 }
298
299 /*
300 * Only ask the scheduler for requests, if we didn't have residual
301 * requests from the dispatch list. This is to avoid the case where
302 * we only ever dispatch a fraction of the requests available because
303 * of low device queue depth. Once we pull requests out of the IO
304 * scheduler, we can no longer merge or sort them. So it's best to
305 * leave them there for as long as we can. Mark the hw queue as
306 * needing a restart in that case.
307 *
308 * We want to dispatch from the scheduler if there was nothing
309 * on the dispatch list or we were able to dispatch from the
310 * dispatch list.
311 */
312 if (!list_empty(&rq_list)) {
313 blk_mq_sched_mark_restart_hctx(hctx);
314 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
315 if (has_sched_dispatch)
316 ret = blk_mq_do_dispatch_sched(hctx);
317 else
318 ret = blk_mq_do_dispatch_ctx(hctx);
319 }
320 } else if (has_sched_dispatch) {
321 ret = blk_mq_do_dispatch_sched(hctx);
322 } else if (hctx->dispatch_busy) {
323 /* dequeue request one by one from sw queue if queue is busy */
324 ret = blk_mq_do_dispatch_ctx(hctx);
325 } else {
326 blk_mq_flush_busy_ctxs(hctx, &rq_list);
327 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
328 }
329
330 return ret;
331 }
332
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)333 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
334 {
335 struct request_queue *q = hctx->queue;
336
337 /* RCU or SRCU read lock is needed before checking quiesced flag */
338 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
339 return;
340
341 hctx->run++;
342
343 /*
344 * A return of -EAGAIN is an indication that hctx->dispatch is not
345 * empty and we must run again in order to avoid starving flushes.
346 */
347 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
348 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
349 blk_mq_run_hw_queue(hctx, true);
350 }
351 }
352
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)353 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
354 unsigned int nr_segs)
355 {
356 struct elevator_queue *e = q->elevator;
357 struct blk_mq_ctx *ctx;
358 struct blk_mq_hw_ctx *hctx;
359 bool ret = false;
360 enum hctx_type type;
361
362 if (e && e->type->ops.bio_merge)
363 return e->type->ops.bio_merge(q, bio, nr_segs);
364
365 ctx = blk_mq_get_ctx(q);
366 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
367 type = hctx->type;
368 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
369 list_empty_careful(&ctx->rq_lists[type]))
370 return false;
371
372 /* default per sw-queue merge */
373 spin_lock(&ctx->lock);
374 /*
375 * Reverse check our software queue for entries that we could
376 * potentially merge with. Currently includes a hand-wavy stop
377 * count of 8, to not spend too much time checking for merges.
378 */
379 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
380 ctx->rq_merged++;
381 ret = true;
382 }
383
384 spin_unlock(&ctx->lock);
385
386 return ret;
387 }
388
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq)389 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
390 {
391 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
394
blk_mq_sched_request_inserted(struct request * rq)395 void blk_mq_sched_request_inserted(struct request *rq)
396 {
397 trace_block_rq_insert(rq->q, rq);
398 }
399 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
400
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)401 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
402 bool has_sched,
403 struct request *rq)
404 {
405 /*
406 * dispatch flush and passthrough rq directly
407 *
408 * passthrough request has to be added to hctx->dispatch directly.
409 * For some reason, device may be in one situation which can't
410 * handle FS request, so STS_RESOURCE is always returned and the
411 * FS request will be added to hctx->dispatch. However passthrough
412 * request may be required at that time for fixing the problem. If
413 * passthrough request is added to scheduler queue, there isn't any
414 * chance to dispatch it given we prioritize requests in hctx->dispatch.
415 */
416 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
417 return true;
418
419 if (has_sched)
420 rq->rq_flags |= RQF_SORTED;
421
422 return false;
423 }
424
425 #include <trace/hooks/block.h>
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)426 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
427 bool run_queue, bool async)
428 {
429 struct request_queue *q = rq->q;
430 struct elevator_queue *e = q->elevator;
431 struct blk_mq_ctx *ctx = rq->mq_ctx;
432 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
433 bool skip = false;
434
435 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
436
437 trace_android_vh_blk_mq_sched_insert_request(&skip, rq);
438
439 if (!skip && blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
440 /*
441 * Firstly normal IO request is inserted to scheduler queue or
442 * sw queue, meantime we add flush request to dispatch queue(
443 * hctx->dispatch) directly and there is at most one in-flight
444 * flush request for each hw queue, so it doesn't matter to add
445 * flush request to tail or front of the dispatch queue.
446 *
447 * Secondly in case of NCQ, flush request belongs to non-NCQ
448 * command, and queueing it will fail when there is any
449 * in-flight normal IO request(NCQ command). When adding flush
450 * rq to the front of hctx->dispatch, it is easier to introduce
451 * extra time to flush rq's latency because of S_SCHED_RESTART
452 * compared with adding to the tail of dispatch queue, then
453 * chance of flush merge is increased, and less flush requests
454 * will be issued to controller. It is observed that ~10% time
455 * is saved in blktests block/004 on disk attached to AHCI/NCQ
456 * drive when adding flush rq to the front of hctx->dispatch.
457 *
458 * Simply queue flush rq to the front of hctx->dispatch so that
459 * intensive flush workloads can benefit in case of NCQ HW.
460 */
461 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
462 blk_mq_request_bypass_insert(rq, at_head, false);
463 goto run;
464 }
465
466 if (e && e->type->ops.insert_requests) {
467 LIST_HEAD(list);
468
469 list_add(&rq->queuelist, &list);
470 e->type->ops.insert_requests(hctx, &list, at_head);
471 } else {
472 spin_lock(&ctx->lock);
473 __blk_mq_insert_request(hctx, rq, at_head);
474 spin_unlock(&ctx->lock);
475 }
476
477 run:
478 if (run_queue)
479 blk_mq_run_hw_queue(hctx, async);
480 }
481
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)482 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
483 struct blk_mq_ctx *ctx,
484 struct list_head *list, bool run_queue_async)
485 {
486 struct elevator_queue *e;
487 struct request_queue *q = hctx->queue;
488
489 /*
490 * blk_mq_sched_insert_requests() is called from flush plug
491 * context only, and hold one usage counter to prevent queue
492 * from being released.
493 */
494 percpu_ref_get(&q->q_usage_counter);
495
496 e = hctx->queue->elevator;
497 if (e && e->type->ops.insert_requests)
498 e->type->ops.insert_requests(hctx, list, false);
499 else {
500 /*
501 * try to issue requests directly if the hw queue isn't
502 * busy in case of 'none' scheduler, and this way may save
503 * us one extra enqueue & dequeue to sw queue.
504 */
505 if (!hctx->dispatch_busy && !e && !run_queue_async) {
506 blk_mq_try_issue_list_directly(hctx, list);
507 if (list_empty(list))
508 goto out;
509 }
510 blk_mq_insert_requests(hctx, ctx, list);
511 }
512
513 blk_mq_run_hw_queue(hctx, run_queue_async);
514 out:
515 percpu_ref_put(&q->q_usage_counter);
516 }
517
blk_mq_sched_free_tags(struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)518 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
519 struct blk_mq_hw_ctx *hctx,
520 unsigned int hctx_idx)
521 {
522 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
523
524 if (hctx->sched_tags) {
525 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
526 blk_mq_free_rq_map(hctx->sched_tags, flags);
527 hctx->sched_tags = NULL;
528 }
529 }
530
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)531 static int blk_mq_sched_alloc_tags(struct request_queue *q,
532 struct blk_mq_hw_ctx *hctx,
533 unsigned int hctx_idx)
534 {
535 struct blk_mq_tag_set *set = q->tag_set;
536 /* Clear HCTX_SHARED so tags are init'ed */
537 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
538 int ret;
539
540 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
541 set->reserved_tags, flags);
542 if (!hctx->sched_tags)
543 return -ENOMEM;
544
545 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
546 if (ret)
547 blk_mq_sched_free_tags(set, hctx, hctx_idx);
548
549 return ret;
550 }
551
552 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)553 static void blk_mq_sched_tags_teardown(struct request_queue *q)
554 {
555 struct blk_mq_hw_ctx *hctx;
556 int i;
557
558 queue_for_each_hw_ctx(q, hctx, i) {
559 /* Clear HCTX_SHARED so tags are freed */
560 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
561
562 if (hctx->sched_tags) {
563 blk_mq_free_rq_map(hctx->sched_tags, flags);
564 hctx->sched_tags = NULL;
565 }
566 }
567 }
568
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)569 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
570 {
571 struct blk_mq_hw_ctx *hctx;
572 struct elevator_queue *eq;
573 unsigned int i;
574 int ret;
575
576 if (!e) {
577 q->elevator = NULL;
578 q->nr_requests = q->tag_set->queue_depth;
579 return 0;
580 }
581
582 /*
583 * Default to double of smaller one between hw queue_depth and 128,
584 * since we don't split into sync/async like the old code did.
585 * Additionally, this is a per-hw queue depth.
586 */
587 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
588 BLKDEV_MAX_RQ);
589
590 queue_for_each_hw_ctx(q, hctx, i) {
591 ret = blk_mq_sched_alloc_tags(q, hctx, i);
592 if (ret)
593 goto err;
594 }
595
596 ret = e->ops.init_sched(q, e);
597 if (ret)
598 goto err;
599
600 blk_mq_debugfs_register_sched(q);
601
602 queue_for_each_hw_ctx(q, hctx, i) {
603 if (e->ops.init_hctx) {
604 ret = e->ops.init_hctx(hctx, i);
605 if (ret) {
606 eq = q->elevator;
607 blk_mq_sched_free_requests(q);
608 blk_mq_exit_sched(q, eq);
609 kobject_put(&eq->kobj);
610 return ret;
611 }
612 }
613 blk_mq_debugfs_register_sched_hctx(q, hctx);
614 }
615
616 return 0;
617
618 err:
619 blk_mq_sched_free_requests(q);
620 blk_mq_sched_tags_teardown(q);
621 q->elevator = NULL;
622 return ret;
623 }
624
625 /*
626 * called in either blk_queue_cleanup or elevator_switch, tagset
627 * is required for freeing requests
628 */
blk_mq_sched_free_requests(struct request_queue * q)629 void blk_mq_sched_free_requests(struct request_queue *q)
630 {
631 struct blk_mq_hw_ctx *hctx;
632 int i;
633
634 queue_for_each_hw_ctx(q, hctx, i) {
635 if (hctx->sched_tags)
636 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
637 }
638 }
639
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)640 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
641 {
642 struct blk_mq_hw_ctx *hctx;
643 unsigned int i;
644
645 queue_for_each_hw_ctx(q, hctx, i) {
646 blk_mq_debugfs_unregister_sched_hctx(hctx);
647 if (e->type->ops.exit_hctx && hctx->sched_data) {
648 e->type->ops.exit_hctx(hctx, i);
649 hctx->sched_data = NULL;
650 }
651 }
652 blk_mq_debugfs_unregister_sched(q);
653 if (e->type->ops.exit_sched)
654 e->type->ops.exit_sched(e);
655 blk_mq_sched_tags_teardown(q);
656 q->elevator = NULL;
657 }
658