1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
68
69 #undef CREATE_TRACE_POINTS
70 #include <trace/hooks/block.h>
71
72 DEFINE_IDA(blk_queue_ida);
73
74 /*
75 * For queue allocation
76 */
77 struct kmem_cache *blk_requestq_cachep;
78
79 /*
80 * Controlling structure to kblockd
81 */
82 static struct workqueue_struct *kblockd_workqueue;
83
84 /**
85 * blk_queue_flag_set - atomically set a queue flag
86 * @flag: flag to be set
87 * @q: request queue
88 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)89 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
90 {
91 set_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_set);
94
95 /**
96 * blk_queue_flag_clear - atomically clear a queue flag
97 * @flag: flag to be cleared
98 * @q: request queue
99 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)100 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
101 {
102 clear_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL(blk_queue_flag_clear);
105
106 /**
107 * blk_queue_flag_test_and_set - atomically test and set a queue flag
108 * @flag: flag to be set
109 * @q: request queue
110 *
111 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
112 * the flag was already set.
113 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)114 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
115 {
116 return test_and_set_bit(flag, &q->queue_flags);
117 }
118 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
119
blk_rq_init(struct request_queue * q,struct request * rq)120 void blk_rq_init(struct request_queue *q, struct request *rq)
121 {
122 memset(rq, 0, sizeof(*rq));
123
124 INIT_LIST_HEAD(&rq->queuelist);
125 rq->q = q;
126 rq->__sector = (sector_t) -1;
127 INIT_HLIST_NODE(&rq->hash);
128 RB_CLEAR_NODE(&rq->rb_node);
129 rq->tag = BLK_MQ_NO_TAG;
130 rq->internal_tag = BLK_MQ_NO_TAG;
131 rq->start_time_ns = ktime_get_ns();
132 rq->part = NULL;
133 blk_crypto_rq_set_defaults(rq);
134 }
135 EXPORT_SYMBOL(blk_rq_init);
136
137 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
138 static const char *const blk_op_name[] = {
139 REQ_OP_NAME(READ),
140 REQ_OP_NAME(WRITE),
141 REQ_OP_NAME(FLUSH),
142 REQ_OP_NAME(DISCARD),
143 REQ_OP_NAME(SECURE_ERASE),
144 REQ_OP_NAME(ZONE_RESET),
145 REQ_OP_NAME(ZONE_RESET_ALL),
146 REQ_OP_NAME(ZONE_OPEN),
147 REQ_OP_NAME(ZONE_CLOSE),
148 REQ_OP_NAME(ZONE_FINISH),
149 REQ_OP_NAME(ZONE_APPEND),
150 REQ_OP_NAME(WRITE_SAME),
151 REQ_OP_NAME(WRITE_ZEROES),
152 REQ_OP_NAME(SCSI_IN),
153 REQ_OP_NAME(SCSI_OUT),
154 REQ_OP_NAME(DRV_IN),
155 REQ_OP_NAME(DRV_OUT),
156 };
157 #undef REQ_OP_NAME
158
159 /**
160 * blk_op_str - Return string XXX in the REQ_OP_XXX.
161 * @op: REQ_OP_XXX.
162 *
163 * Description: Centralize block layer function to convert REQ_OP_XXX into
164 * string format. Useful in the debugging and tracing bio or request. For
165 * invalid REQ_OP_XXX it returns string "UNKNOWN".
166 */
blk_op_str(unsigned int op)167 inline const char *blk_op_str(unsigned int op)
168 {
169 const char *op_str = "UNKNOWN";
170
171 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
172 op_str = blk_op_name[op];
173
174 return op_str;
175 }
176 EXPORT_SYMBOL_GPL(blk_op_str);
177
178 static const struct {
179 int errno;
180 const char *name;
181 } blk_errors[] = {
182 [BLK_STS_OK] = { 0, "" },
183 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
184 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
185 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
186 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
187 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
188 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
189 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
190 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
191 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
192 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
193 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
194
195 /* device mapper special case, should not leak out: */
196 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
197
198 /* zone device specific errors */
199 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
200 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
201
202 /* everything else not covered above: */
203 [BLK_STS_IOERR] = { -EIO, "I/O" },
204 };
205
errno_to_blk_status(int errno)206 blk_status_t errno_to_blk_status(int errno)
207 {
208 int i;
209
210 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
211 if (blk_errors[i].errno == errno)
212 return (__force blk_status_t)i;
213 }
214
215 return BLK_STS_IOERR;
216 }
217 EXPORT_SYMBOL_GPL(errno_to_blk_status);
218
blk_status_to_errno(blk_status_t status)219 int blk_status_to_errno(blk_status_t status)
220 {
221 int idx = (__force int)status;
222
223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 return -EIO;
225 return blk_errors[idx].errno;
226 }
227 EXPORT_SYMBOL_GPL(blk_status_to_errno);
228
print_req_error(struct request * req,blk_status_t status,const char * caller)229 static void print_req_error(struct request *req, blk_status_t status,
230 const char *caller)
231 {
232 int idx = (__force int)status;
233
234 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
235 return;
236
237 printk_ratelimited(KERN_ERR
238 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
239 "phys_seg %u prio class %u\n",
240 caller, blk_errors[idx].name,
241 req->rq_disk ? req->rq_disk->disk_name : "?",
242 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
243 req->cmd_flags & ~REQ_OP_MASK,
244 req->nr_phys_segments,
245 IOPRIO_PRIO_CLASS(req->ioprio));
246 }
247
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)248 static void req_bio_endio(struct request *rq, struct bio *bio,
249 unsigned int nbytes, blk_status_t error)
250 {
251 if (error)
252 bio->bi_status = error;
253
254 if (unlikely(rq->rq_flags & RQF_QUIET))
255 bio_set_flag(bio, BIO_QUIET);
256
257 bio_advance(bio, nbytes);
258
259 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
260 /*
261 * Partial zone append completions cannot be supported as the
262 * BIO fragments may end up not being written sequentially.
263 */
264 if (bio->bi_iter.bi_size)
265 bio->bi_status = BLK_STS_IOERR;
266 else
267 bio->bi_iter.bi_sector = rq->__sector;
268 }
269
270 /* don't actually finish bio if it's part of flush sequence */
271 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
272 bio_endio(bio);
273 }
274
blk_dump_rq_flags(struct request * rq,char * msg)275 void blk_dump_rq_flags(struct request *rq, char *msg)
276 {
277 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
278 rq->rq_disk ? rq->rq_disk->disk_name : "?",
279 (unsigned long long) rq->cmd_flags);
280
281 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
282 (unsigned long long)blk_rq_pos(rq),
283 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
284 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
285 rq->bio, rq->biotail, blk_rq_bytes(rq));
286 }
287 EXPORT_SYMBOL(blk_dump_rq_flags);
288
289 /**
290 * blk_sync_queue - cancel any pending callbacks on a queue
291 * @q: the queue
292 *
293 * Description:
294 * The block layer may perform asynchronous callback activity
295 * on a queue, such as calling the unplug function after a timeout.
296 * A block device may call blk_sync_queue to ensure that any
297 * such activity is cancelled, thus allowing it to release resources
298 * that the callbacks might use. The caller must already have made sure
299 * that its ->submit_bio will not re-add plugging prior to calling
300 * this function.
301 *
302 * This function does not cancel any asynchronous activity arising
303 * out of elevator or throttling code. That would require elevator_exit()
304 * and blkcg_exit_queue() to be called with queue lock initialized.
305 *
306 */
blk_sync_queue(struct request_queue * q)307 void blk_sync_queue(struct request_queue *q)
308 {
309 del_timer_sync(&q->timeout);
310 cancel_work_sync(&q->timeout_work);
311 }
312 EXPORT_SYMBOL(blk_sync_queue);
313
314 /**
315 * blk_set_pm_only - increment pm_only counter
316 * @q: request queue pointer
317 */
blk_set_pm_only(struct request_queue * q)318 void blk_set_pm_only(struct request_queue *q)
319 {
320 atomic_inc(&q->pm_only);
321 }
322 EXPORT_SYMBOL_GPL(blk_set_pm_only);
323
blk_clear_pm_only(struct request_queue * q)324 void blk_clear_pm_only(struct request_queue *q)
325 {
326 int pm_only;
327
328 pm_only = atomic_dec_return(&q->pm_only);
329 WARN_ON_ONCE(pm_only < 0);
330 if (pm_only == 0)
331 wake_up_all(&q->mq_freeze_wq);
332 }
333 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
334
335 /**
336 * blk_put_queue - decrement the request_queue refcount
337 * @q: the request_queue structure to decrement the refcount for
338 *
339 * Decrements the refcount of the request_queue kobject. When this reaches 0
340 * we'll have blk_release_queue() called.
341 *
342 * Context: Any context, but the last reference must not be dropped from
343 * atomic context.
344 */
blk_put_queue(struct request_queue * q)345 void blk_put_queue(struct request_queue *q)
346 {
347 kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350
blk_set_queue_dying(struct request_queue * q)351 void blk_set_queue_dying(struct request_queue *q)
352 {
353 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
354
355 /*
356 * When queue DYING flag is set, we need to block new req
357 * entering queue, so we call blk_freeze_queue_start() to
358 * prevent I/O from crossing blk_queue_enter().
359 */
360 blk_freeze_queue_start(q);
361
362 if (queue_is_mq(q))
363 blk_mq_wake_waiters(q);
364
365 /* Make blk_queue_enter() reexamine the DYING flag. */
366 wake_up_all(&q->mq_freeze_wq);
367 }
368 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
369
370 /**
371 * blk_cleanup_queue - shutdown a request queue
372 * @q: request queue to shutdown
373 *
374 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
375 * put it. All future requests will be failed immediately with -ENODEV.
376 *
377 * Context: can sleep
378 */
blk_cleanup_queue(struct request_queue * q)379 void blk_cleanup_queue(struct request_queue *q)
380 {
381 /* cannot be called from atomic context */
382 might_sleep();
383
384 WARN_ON_ONCE(blk_queue_registered(q));
385
386 /* mark @q DYING, no new request or merges will be allowed afterwards */
387 blk_set_queue_dying(q);
388
389 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
390 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
391
392 /*
393 * Drain all requests queued before DYING marking. Set DEAD flag to
394 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
395 * after draining finished.
396 */
397 blk_freeze_queue(q);
398
399 rq_qos_exit(q);
400
401 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
402
403 /* for synchronous bio-based driver finish in-flight integrity i/o */
404 blk_flush_integrity();
405
406 /* @q won't process any more request, flush async actions */
407 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
408 blk_sync_queue(q);
409
410 if (queue_is_mq(q))
411 blk_mq_exit_queue(q);
412
413 /*
414 * In theory, request pool of sched_tags belongs to request queue.
415 * However, the current implementation requires tag_set for freeing
416 * requests, so free the pool now.
417 *
418 * Queue has become frozen, there can't be any in-queue requests, so
419 * it is safe to free requests now.
420 */
421 mutex_lock(&q->sysfs_lock);
422 if (q->elevator)
423 blk_mq_sched_free_requests(q);
424 mutex_unlock(&q->sysfs_lock);
425
426 /* @q is and will stay empty, shutdown and put */
427 blk_put_queue(q);
428 }
429 EXPORT_SYMBOL(blk_cleanup_queue);
430
431 /**
432 * blk_queue_enter() - try to increase q->q_usage_counter
433 * @q: request queue pointer
434 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
435 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)436 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
437 {
438 const bool pm = flags & BLK_MQ_REQ_PM;
439
440 while (true) {
441 bool success = false;
442
443 rcu_read_lock();
444 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
445 /*
446 * The code that increments the pm_only counter is
447 * responsible for ensuring that that counter is
448 * globally visible before the queue is unfrozen.
449 */
450 if (pm || !blk_queue_pm_only(q)) {
451 success = true;
452 } else {
453 percpu_ref_put(&q->q_usage_counter);
454 }
455 }
456 rcu_read_unlock();
457
458 if (success)
459 return 0;
460
461 if (flags & BLK_MQ_REQ_NOWAIT)
462 return -EBUSY;
463
464 /*
465 * read pair of barrier in blk_freeze_queue_start(),
466 * we need to order reading __PERCPU_REF_DEAD flag of
467 * .q_usage_counter and reading .mq_freeze_depth or
468 * queue dying flag, otherwise the following wait may
469 * never return if the two reads are reordered.
470 */
471 smp_rmb();
472
473 wait_event(q->mq_freeze_wq,
474 (!q->mq_freeze_depth &&
475 (pm || (blk_pm_request_resume(q),
476 !blk_queue_pm_only(q)))) ||
477 blk_queue_dying(q));
478 if (blk_queue_dying(q))
479 return -ENODEV;
480 }
481 }
482
bio_queue_enter(struct bio * bio)483 static inline int bio_queue_enter(struct bio *bio)
484 {
485 struct request_queue *q = bio->bi_disk->queue;
486 bool nowait = bio->bi_opf & REQ_NOWAIT;
487 int ret;
488
489 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
490 if (unlikely(ret)) {
491 if (nowait && !blk_queue_dying(q))
492 bio_wouldblock_error(bio);
493 else
494 bio_io_error(bio);
495 }
496
497 return ret;
498 }
499
blk_queue_exit(struct request_queue * q)500 void blk_queue_exit(struct request_queue *q)
501 {
502 percpu_ref_put(&q->q_usage_counter);
503 }
504
blk_queue_usage_counter_release(struct percpu_ref * ref)505 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
506 {
507 struct request_queue *q =
508 container_of(ref, struct request_queue, q_usage_counter);
509
510 wake_up_all(&q->mq_freeze_wq);
511 }
512
blk_rq_timed_out_timer(struct timer_list * t)513 static void blk_rq_timed_out_timer(struct timer_list *t)
514 {
515 struct request_queue *q = from_timer(q, t, timeout);
516
517 kblockd_schedule_work(&q->timeout_work);
518 }
519
blk_timeout_work(struct work_struct * work)520 static void blk_timeout_work(struct work_struct *work)
521 {
522 }
523
blk_alloc_queue(int node_id)524 struct request_queue *blk_alloc_queue(int node_id)
525 {
526 struct request_queue *q;
527 int ret;
528 bool skip = false;
529
530 q = kmem_cache_alloc_node(blk_requestq_cachep,
531 GFP_KERNEL | __GFP_ZERO, node_id);
532 if (!q)
533 return NULL;
534
535 q->last_merge = NULL;
536
537 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
538 if (q->id < 0)
539 goto fail_q;
540
541 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
542 if (ret)
543 goto fail_id;
544
545 q->backing_dev_info = bdi_alloc(node_id);
546 if (!q->backing_dev_info)
547 goto fail_split;
548
549 q->stats = blk_alloc_queue_stats();
550 if (!q->stats)
551 goto fail_stats;
552
553 q->node = node_id;
554
555 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
556
557 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
558 laptop_mode_timer_fn, 0);
559 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
560 INIT_WORK(&q->timeout_work, blk_timeout_work);
561 INIT_LIST_HEAD(&q->icq_list);
562 #ifdef CONFIG_BLK_CGROUP
563 INIT_LIST_HEAD(&q->blkg_list);
564 #endif
565
566 kobject_init(&q->kobj, &blk_queue_ktype);
567
568 mutex_init(&q->debugfs_mutex);
569 mutex_init(&q->sysfs_lock);
570 mutex_init(&q->sysfs_dir_lock);
571 spin_lock_init(&q->queue_lock);
572
573 init_waitqueue_head(&q->mq_freeze_wq);
574 mutex_init(&q->mq_freeze_lock);
575
576 /*
577 * Init percpu_ref in atomic mode so that it's faster to shutdown.
578 * See blk_register_queue() for details.
579 */
580 if (percpu_ref_init(&q->q_usage_counter,
581 blk_queue_usage_counter_release,
582 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
583 goto fail_bdi;
584
585 if (blkcg_init_queue(q))
586 goto fail_ref;
587
588 blk_queue_dma_alignment(q, 511);
589 blk_set_default_limits(&q->limits);
590 q->nr_requests = BLKDEV_MAX_RQ;
591
592 trace_android_rvh_blk_allocated_queue_init(&skip, q);
593 if (skip)
594 goto fail_ref;
595
596 return q;
597
598 fail_ref:
599 percpu_ref_exit(&q->q_usage_counter);
600 fail_bdi:
601 blk_free_queue_stats(q->stats);
602 fail_stats:
603 bdi_put(q->backing_dev_info);
604 fail_split:
605 bioset_exit(&q->bio_split);
606 fail_id:
607 ida_simple_remove(&blk_queue_ida, q->id);
608 fail_q:
609 kmem_cache_free(blk_requestq_cachep, q);
610 return NULL;
611 }
612 EXPORT_SYMBOL(blk_alloc_queue);
613
614 /**
615 * blk_get_queue - increment the request_queue refcount
616 * @q: the request_queue structure to increment the refcount for
617 *
618 * Increment the refcount of the request_queue kobject.
619 *
620 * Context: Any context.
621 */
blk_get_queue(struct request_queue * q)622 bool blk_get_queue(struct request_queue *q)
623 {
624 if (likely(!blk_queue_dying(q))) {
625 __blk_get_queue(q);
626 return true;
627 }
628
629 return false;
630 }
631 EXPORT_SYMBOL(blk_get_queue);
632
633 /**
634 * blk_get_request - allocate a request
635 * @q: request queue to allocate a request for
636 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
637 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
638 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)639 struct request *blk_get_request(struct request_queue *q, unsigned int op,
640 blk_mq_req_flags_t flags)
641 {
642 struct request *req;
643
644 WARN_ON_ONCE(op & REQ_NOWAIT);
645 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
646
647 req = blk_mq_alloc_request(q, op, flags);
648 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
649 q->mq_ops->initialize_rq_fn(req);
650
651 return req;
652 }
653 EXPORT_SYMBOL(blk_get_request);
654
blk_put_request(struct request * req)655 void blk_put_request(struct request *req)
656 {
657 blk_mq_free_request(req);
658 }
659 EXPORT_SYMBOL(blk_put_request);
660
handle_bad_sector(struct bio * bio,sector_t maxsector)661 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
662 {
663 char b[BDEVNAME_SIZE];
664
665 pr_info_ratelimited("attempt to access beyond end of device\n"
666 "%s: rw=%d, want=%llu, limit=%llu\n",
667 bio_devname(bio, b), bio->bi_opf,
668 bio_end_sector(bio), maxsector);
669 }
670
671 #ifdef CONFIG_FAIL_MAKE_REQUEST
672
673 static DECLARE_FAULT_ATTR(fail_make_request);
674
setup_fail_make_request(char * str)675 static int __init setup_fail_make_request(char *str)
676 {
677 return setup_fault_attr(&fail_make_request, str);
678 }
679 __setup("fail_make_request=", setup_fail_make_request);
680
should_fail_request(struct hd_struct * part,unsigned int bytes)681 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
682 {
683 return part->make_it_fail && should_fail(&fail_make_request, bytes);
684 }
685
fail_make_request_debugfs(void)686 static int __init fail_make_request_debugfs(void)
687 {
688 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
689 NULL, &fail_make_request);
690
691 return PTR_ERR_OR_ZERO(dir);
692 }
693
694 late_initcall(fail_make_request_debugfs);
695
696 #else /* CONFIG_FAIL_MAKE_REQUEST */
697
should_fail_request(struct hd_struct * part,unsigned int bytes)698 static inline bool should_fail_request(struct hd_struct *part,
699 unsigned int bytes)
700 {
701 return false;
702 }
703
704 #endif /* CONFIG_FAIL_MAKE_REQUEST */
705
bio_check_ro(struct bio * bio,struct hd_struct * part)706 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
707 {
708 const int op = bio_op(bio);
709
710 if (part->policy && op_is_write(op)) {
711 char b[BDEVNAME_SIZE];
712
713 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
714 return false;
715 pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
716 bio_devname(bio, b), part->partno);
717 /* Older lvm-tools actually trigger this */
718 return false;
719 }
720
721 return false;
722 }
723
should_fail_bio(struct bio * bio)724 static noinline int should_fail_bio(struct bio *bio)
725 {
726 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
727 return -EIO;
728 return 0;
729 }
730 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
731
732 /*
733 * Check whether this bio extends beyond the end of the device or partition.
734 * This may well happen - the kernel calls bread() without checking the size of
735 * the device, e.g., when mounting a file system.
736 */
bio_check_eod(struct bio * bio,sector_t maxsector)737 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
738 {
739 unsigned int nr_sectors = bio_sectors(bio);
740
741 if (nr_sectors && maxsector &&
742 (nr_sectors > maxsector ||
743 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
744 handle_bad_sector(bio, maxsector);
745 return -EIO;
746 }
747 return 0;
748 }
749
750 /*
751 * Remap block n of partition p to block n+start(p) of the disk.
752 */
blk_partition_remap(struct bio * bio)753 static inline int blk_partition_remap(struct bio *bio)
754 {
755 struct hd_struct *p;
756 int ret = -EIO;
757
758 rcu_read_lock();
759 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
760 if (unlikely(!p))
761 goto out;
762 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
763 goto out;
764 if (unlikely(bio_check_ro(bio, p)))
765 goto out;
766
767 if (bio_sectors(bio)) {
768 if (bio_check_eod(bio, part_nr_sects_read(p)))
769 goto out;
770 bio->bi_iter.bi_sector += p->start_sect;
771 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
772 bio->bi_iter.bi_sector - p->start_sect);
773 }
774 bio->bi_partno = 0;
775 ret = 0;
776 out:
777 rcu_read_unlock();
778 return ret;
779 }
780
781 /*
782 * Check write append to a zoned block device.
783 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)784 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
785 struct bio *bio)
786 {
787 sector_t pos = bio->bi_iter.bi_sector;
788 int nr_sectors = bio_sectors(bio);
789
790 /* Only applicable to zoned block devices */
791 if (!blk_queue_is_zoned(q))
792 return BLK_STS_NOTSUPP;
793
794 /* The bio sector must point to the start of a sequential zone */
795 if (pos & (blk_queue_zone_sectors(q) - 1) ||
796 !blk_queue_zone_is_seq(q, pos))
797 return BLK_STS_IOERR;
798
799 /*
800 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
801 * split and could result in non-contiguous sectors being written in
802 * different zones.
803 */
804 if (nr_sectors > q->limits.chunk_sectors)
805 return BLK_STS_IOERR;
806
807 /* Make sure the BIO is small enough and will not get split */
808 if (nr_sectors > q->limits.max_zone_append_sectors)
809 return BLK_STS_IOERR;
810
811 bio->bi_opf |= REQ_NOMERGE;
812
813 return BLK_STS_OK;
814 }
815
submit_bio_checks(struct bio * bio)816 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
817 {
818 struct request_queue *q = bio->bi_disk->queue;
819 blk_status_t status = BLK_STS_IOERR;
820 struct blk_plug *plug;
821
822 might_sleep();
823
824 plug = blk_mq_plug(q, bio);
825 if (plug && plug->nowait)
826 bio->bi_opf |= REQ_NOWAIT;
827
828 /*
829 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
830 * if queue does not support NOWAIT.
831 */
832 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
833 goto not_supported;
834
835 if (should_fail_bio(bio))
836 goto end_io;
837
838 if (bio->bi_partno) {
839 if (unlikely(blk_partition_remap(bio)))
840 goto end_io;
841 } else {
842 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
843 goto end_io;
844 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
845 goto end_io;
846 }
847
848 /*
849 * Filter flush bio's early so that bio based drivers without flush
850 * support don't have to worry about them.
851 */
852 if (op_is_flush(bio->bi_opf) &&
853 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
854 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
855 if (!bio_sectors(bio)) {
856 status = BLK_STS_OK;
857 goto end_io;
858 }
859 }
860
861 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
862 bio->bi_opf &= ~REQ_HIPRI;
863
864 switch (bio_op(bio)) {
865 case REQ_OP_DISCARD:
866 if (!blk_queue_discard(q))
867 goto not_supported;
868 break;
869 case REQ_OP_SECURE_ERASE:
870 if (!blk_queue_secure_erase(q))
871 goto not_supported;
872 break;
873 case REQ_OP_WRITE_SAME:
874 if (!q->limits.max_write_same_sectors)
875 goto not_supported;
876 break;
877 case REQ_OP_ZONE_APPEND:
878 status = blk_check_zone_append(q, bio);
879 if (status != BLK_STS_OK)
880 goto end_io;
881 break;
882 case REQ_OP_ZONE_RESET:
883 case REQ_OP_ZONE_OPEN:
884 case REQ_OP_ZONE_CLOSE:
885 case REQ_OP_ZONE_FINISH:
886 if (!blk_queue_is_zoned(q))
887 goto not_supported;
888 break;
889 case REQ_OP_ZONE_RESET_ALL:
890 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
891 goto not_supported;
892 break;
893 case REQ_OP_WRITE_ZEROES:
894 if (!q->limits.max_write_zeroes_sectors)
895 goto not_supported;
896 break;
897 default:
898 break;
899 }
900
901 /*
902 * Various block parts want %current->io_context, so allocate it up
903 * front rather than dealing with lots of pain to allocate it only
904 * where needed. This may fail and the block layer knows how to live
905 * with it.
906 */
907 if (unlikely(!current->io_context))
908 create_task_io_context(current, GFP_ATOMIC, q->node);
909
910 if (blk_throtl_bio(bio))
911 return false;
912
913 blk_cgroup_bio_start(bio);
914 blkcg_bio_issue_init(bio);
915
916 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
917 trace_block_bio_queue(q, bio);
918 /* Now that enqueuing has been traced, we need to trace
919 * completion as well.
920 */
921 bio_set_flag(bio, BIO_TRACE_COMPLETION);
922 }
923 return true;
924
925 not_supported:
926 status = BLK_STS_NOTSUPP;
927 end_io:
928 bio->bi_status = status;
929 bio_endio(bio);
930 return false;
931 }
932
__submit_bio(struct bio * bio)933 static blk_qc_t __submit_bio(struct bio *bio)
934 {
935 struct gendisk *disk = bio->bi_disk;
936 blk_qc_t ret = BLK_QC_T_NONE;
937
938 if (blk_crypto_bio_prep(&bio)) {
939 if (!disk->fops->submit_bio)
940 return blk_mq_submit_bio(bio);
941 ret = disk->fops->submit_bio(bio);
942 }
943 blk_queue_exit(disk->queue);
944 return ret;
945 }
946
947 /*
948 * The loop in this function may be a bit non-obvious, and so deserves some
949 * explanation:
950 *
951 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
952 * that), so we have a list with a single bio.
953 * - We pretend that we have just taken it off a longer list, so we assign
954 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
955 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
956 * bios through a recursive call to submit_bio_noacct. If it did, we find a
957 * non-NULL value in bio_list and re-enter the loop from the top.
958 * - In this case we really did just take the bio of the top of the list (no
959 * pretending) and so remove it from bio_list, and call into ->submit_bio()
960 * again.
961 *
962 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
963 * bio_list_on_stack[1] contains bios that were submitted before the current
964 * ->submit_bio_bio, but that haven't been processed yet.
965 */
__submit_bio_noacct(struct bio * bio)966 static blk_qc_t __submit_bio_noacct(struct bio *bio)
967 {
968 struct bio_list bio_list_on_stack[2];
969 blk_qc_t ret = BLK_QC_T_NONE;
970
971 BUG_ON(bio->bi_next);
972
973 bio_list_init(&bio_list_on_stack[0]);
974 current->bio_list = bio_list_on_stack;
975
976 do {
977 struct request_queue *q = bio->bi_disk->queue;
978 struct bio_list lower, same;
979
980 if (unlikely(bio_queue_enter(bio) != 0))
981 continue;
982
983 /*
984 * Create a fresh bio_list for all subordinate requests.
985 */
986 bio_list_on_stack[1] = bio_list_on_stack[0];
987 bio_list_init(&bio_list_on_stack[0]);
988
989 ret = __submit_bio(bio);
990
991 /*
992 * Sort new bios into those for a lower level and those for the
993 * same level.
994 */
995 bio_list_init(&lower);
996 bio_list_init(&same);
997 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
998 if (q == bio->bi_disk->queue)
999 bio_list_add(&same, bio);
1000 else
1001 bio_list_add(&lower, bio);
1002
1003 /*
1004 * Now assemble so we handle the lowest level first.
1005 */
1006 bio_list_merge(&bio_list_on_stack[0], &lower);
1007 bio_list_merge(&bio_list_on_stack[0], &same);
1008 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1009 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1010
1011 current->bio_list = NULL;
1012 return ret;
1013 }
1014
__submit_bio_noacct_mq(struct bio * bio)1015 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1016 {
1017 struct bio_list bio_list[2] = { };
1018 blk_qc_t ret = BLK_QC_T_NONE;
1019
1020 current->bio_list = bio_list;
1021
1022 do {
1023 struct gendisk *disk = bio->bi_disk;
1024
1025 if (unlikely(bio_queue_enter(bio) != 0))
1026 continue;
1027
1028 if (!blk_crypto_bio_prep(&bio)) {
1029 blk_queue_exit(disk->queue);
1030 ret = BLK_QC_T_NONE;
1031 continue;
1032 }
1033
1034 ret = blk_mq_submit_bio(bio);
1035 } while ((bio = bio_list_pop(&bio_list[0])));
1036
1037 current->bio_list = NULL;
1038 return ret;
1039 }
1040
1041 /**
1042 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1043 * @bio: The bio describing the location in memory and on the device.
1044 *
1045 * This is a version of submit_bio() that shall only be used for I/O that is
1046 * resubmitted to lower level drivers by stacking block drivers. All file
1047 * systems and other upper level users of the block layer should use
1048 * submit_bio() instead.
1049 */
submit_bio_noacct(struct bio * bio)1050 blk_qc_t submit_bio_noacct(struct bio *bio)
1051 {
1052 if (!submit_bio_checks(bio))
1053 return BLK_QC_T_NONE;
1054
1055 /*
1056 * We only want one ->submit_bio to be active at a time, else stack
1057 * usage with stacked devices could be a problem. Use current->bio_list
1058 * to collect a list of requests submited by a ->submit_bio method while
1059 * it is active, and then process them after it returned.
1060 */
1061 if (current->bio_list) {
1062 bio_list_add(¤t->bio_list[0], bio);
1063 return BLK_QC_T_NONE;
1064 }
1065
1066 if (!bio->bi_disk->fops->submit_bio)
1067 return __submit_bio_noacct_mq(bio);
1068 return __submit_bio_noacct(bio);
1069 }
1070 EXPORT_SYMBOL(submit_bio_noacct);
1071
1072 /**
1073 * submit_bio - submit a bio to the block device layer for I/O
1074 * @bio: The &struct bio which describes the I/O
1075 *
1076 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1077 * fully set up &struct bio that describes the I/O that needs to be done. The
1078 * bio will be send to the device described by the bi_disk and bi_partno fields.
1079 *
1080 * The success/failure status of the request, along with notification of
1081 * completion, is delivered asynchronously through the ->bi_end_io() callback
1082 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1083 * been called.
1084 */
submit_bio(struct bio * bio)1085 blk_qc_t submit_bio(struct bio *bio)
1086 {
1087 if (blkcg_punt_bio_submit(bio))
1088 return BLK_QC_T_NONE;
1089
1090 /*
1091 * If it's a regular read/write or a barrier with data attached,
1092 * go through the normal accounting stuff before submission.
1093 */
1094 if (bio_has_data(bio)) {
1095 unsigned int count;
1096
1097 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1098 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1099 else
1100 count = bio_sectors(bio);
1101
1102 if (op_is_write(bio_op(bio))) {
1103 count_vm_events(PGPGOUT, count);
1104 } else {
1105 task_io_account_read(bio->bi_iter.bi_size);
1106 count_vm_events(PGPGIN, count);
1107 }
1108
1109 if (unlikely(block_dump)) {
1110 char b[BDEVNAME_SIZE];
1111 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1112 current->comm, task_pid_nr(current),
1113 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1114 (unsigned long long)bio->bi_iter.bi_sector,
1115 bio_devname(bio, b), count);
1116 }
1117 }
1118
1119 /*
1120 * If we're reading data that is part of the userspace workingset, count
1121 * submission time as memory stall. When the device is congested, or
1122 * the submitting cgroup IO-throttled, submission can be a significant
1123 * part of overall IO time.
1124 */
1125 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1126 bio_flagged(bio, BIO_WORKINGSET))) {
1127 unsigned long pflags;
1128 blk_qc_t ret;
1129
1130 psi_memstall_enter(&pflags);
1131 ret = submit_bio_noacct(bio);
1132 psi_memstall_leave(&pflags);
1133
1134 return ret;
1135 }
1136
1137 return submit_bio_noacct(bio);
1138 }
1139 EXPORT_SYMBOL(submit_bio);
1140
1141 /**
1142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1143 * for the new queue limits
1144 * @q: the queue
1145 * @rq: the request being checked
1146 *
1147 * Description:
1148 * @rq may have been made based on weaker limitations of upper-level queues
1149 * in request stacking drivers, and it may violate the limitation of @q.
1150 * Since the block layer and the underlying device driver trust @rq
1151 * after it is inserted to @q, it should be checked against @q before
1152 * the insertion using this generic function.
1153 *
1154 * Request stacking drivers like request-based dm may change the queue
1155 * limits when retrying requests on other queues. Those requests need
1156 * to be checked against the new queue limits again during dispatch.
1157 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1158 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1159 struct request *rq)
1160 {
1161 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1162
1163 if (blk_rq_sectors(rq) > max_sectors) {
1164 /*
1165 * SCSI device does not have a good way to return if
1166 * Write Same/Zero is actually supported. If a device rejects
1167 * a non-read/write command (discard, write same,etc.) the
1168 * low-level device driver will set the relevant queue limit to
1169 * 0 to prevent blk-lib from issuing more of the offending
1170 * operations. Commands queued prior to the queue limit being
1171 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1172 * errors being propagated to upper layers.
1173 */
1174 if (max_sectors == 0)
1175 return BLK_STS_NOTSUPP;
1176
1177 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1178 __func__, blk_rq_sectors(rq), max_sectors);
1179 return BLK_STS_IOERR;
1180 }
1181
1182 /*
1183 * queue's settings related to segment counting like q->bounce_pfn
1184 * may differ from that of other stacking queues.
1185 * Recalculate it to check the request correctly on this queue's
1186 * limitation.
1187 */
1188 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1189 if (rq->nr_phys_segments > queue_max_segments(q)) {
1190 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1191 __func__, rq->nr_phys_segments, queue_max_segments(q));
1192 return BLK_STS_IOERR;
1193 }
1194
1195 return BLK_STS_OK;
1196 }
1197
1198 /**
1199 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1200 * @q: the queue to submit the request
1201 * @rq: the request being queued
1202 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1203 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1204 {
1205 blk_status_t ret;
1206
1207 ret = blk_cloned_rq_check_limits(q, rq);
1208 if (ret != BLK_STS_OK)
1209 return ret;
1210
1211 if (rq->rq_disk &&
1212 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1213 return BLK_STS_IOERR;
1214
1215 if (blk_crypto_insert_cloned_request(rq))
1216 return BLK_STS_IOERR;
1217
1218 if (blk_queue_io_stat(q))
1219 blk_account_io_start(rq);
1220
1221 /*
1222 * Since we have a scheduler attached on the top device,
1223 * bypass a potential scheduler on the bottom device for
1224 * insert.
1225 */
1226 return blk_mq_request_issue_directly(rq, true);
1227 }
1228 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1229
1230 /**
1231 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1232 * @rq: request to examine
1233 *
1234 * Description:
1235 * A request could be merge of IOs which require different failure
1236 * handling. This function determines the number of bytes which
1237 * can be failed from the beginning of the request without
1238 * crossing into area which need to be retried further.
1239 *
1240 * Return:
1241 * The number of bytes to fail.
1242 */
blk_rq_err_bytes(const struct request * rq)1243 unsigned int blk_rq_err_bytes(const struct request *rq)
1244 {
1245 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1246 unsigned int bytes = 0;
1247 struct bio *bio;
1248
1249 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1250 return blk_rq_bytes(rq);
1251
1252 /*
1253 * Currently the only 'mixing' which can happen is between
1254 * different fastfail types. We can safely fail portions
1255 * which have all the failfast bits that the first one has -
1256 * the ones which are at least as eager to fail as the first
1257 * one.
1258 */
1259 for (bio = rq->bio; bio; bio = bio->bi_next) {
1260 if ((bio->bi_opf & ff) != ff)
1261 break;
1262 bytes += bio->bi_iter.bi_size;
1263 }
1264
1265 /* this could lead to infinite loop */
1266 BUG_ON(blk_rq_bytes(rq) && !bytes);
1267 return bytes;
1268 }
1269 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1270
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1271 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1272 {
1273 unsigned long stamp;
1274 again:
1275 stamp = READ_ONCE(part->stamp);
1276 if (unlikely(stamp != now)) {
1277 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1278 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1279 }
1280 if (part->partno) {
1281 part = &part_to_disk(part)->part0;
1282 goto again;
1283 }
1284 }
1285
blk_account_io_completion(struct request * req,unsigned int bytes)1286 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1287 {
1288 if (req->part && blk_do_io_stat(req)) {
1289 const int sgrp = op_stat_group(req_op(req));
1290 struct hd_struct *part;
1291
1292 part_stat_lock();
1293 part = req->part;
1294 part_stat_add(part, sectors[sgrp], bytes >> 9);
1295 part_stat_unlock();
1296 }
1297 }
1298
blk_account_io_done(struct request * req,u64 now)1299 void blk_account_io_done(struct request *req, u64 now)
1300 {
1301 /*
1302 * Account IO completion. flush_rq isn't accounted as a
1303 * normal IO on queueing nor completion. Accounting the
1304 * containing request is enough.
1305 */
1306 if (req->part && blk_do_io_stat(req) &&
1307 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1308 const int sgrp = op_stat_group(req_op(req));
1309 struct hd_struct *part;
1310
1311 part_stat_lock();
1312 part = req->part;
1313
1314 update_io_ticks(part, jiffies, true);
1315 part_stat_inc(part, ios[sgrp]);
1316 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1317 part_stat_unlock();
1318
1319 hd_struct_put(part);
1320 }
1321 }
1322
blk_account_io_start(struct request * rq)1323 void blk_account_io_start(struct request *rq)
1324 {
1325 if (!blk_do_io_stat(rq))
1326 return;
1327
1328 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1329
1330 part_stat_lock();
1331 update_io_ticks(rq->part, jiffies, false);
1332 part_stat_unlock();
1333 }
1334
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1335 static unsigned long __part_start_io_acct(struct hd_struct *part,
1336 unsigned int sectors, unsigned int op)
1337 {
1338 const int sgrp = op_stat_group(op);
1339 unsigned long now = READ_ONCE(jiffies);
1340
1341 part_stat_lock();
1342 update_io_ticks(part, now, false);
1343 part_stat_inc(part, ios[sgrp]);
1344 part_stat_add(part, sectors[sgrp], sectors);
1345 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1346 part_stat_unlock();
1347
1348 return now;
1349 }
1350
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1351 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1352 struct bio *bio)
1353 {
1354 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1355
1356 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1357 }
1358 EXPORT_SYMBOL_GPL(part_start_io_acct);
1359
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1360 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1361 unsigned int op)
1362 {
1363 return __part_start_io_acct(&disk->part0, sectors, op);
1364 }
1365 EXPORT_SYMBOL(disk_start_io_acct);
1366
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1367 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1368 unsigned long start_time)
1369 {
1370 const int sgrp = op_stat_group(op);
1371 unsigned long now = READ_ONCE(jiffies);
1372 unsigned long duration = now - start_time;
1373
1374 part_stat_lock();
1375 update_io_ticks(part, now, true);
1376 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1377 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1378 part_stat_unlock();
1379 }
1380
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1381 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1382 unsigned long start_time)
1383 {
1384 __part_end_io_acct(part, bio_op(bio), start_time);
1385 hd_struct_put(part);
1386 }
1387 EXPORT_SYMBOL_GPL(part_end_io_acct);
1388
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1389 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1390 unsigned long start_time)
1391 {
1392 __part_end_io_acct(&disk->part0, op, start_time);
1393 }
1394 EXPORT_SYMBOL(disk_end_io_acct);
1395
1396 /*
1397 * Steal bios from a request and add them to a bio list.
1398 * The request must not have been partially completed before.
1399 */
blk_steal_bios(struct bio_list * list,struct request * rq)1400 void blk_steal_bios(struct bio_list *list, struct request *rq)
1401 {
1402 if (rq->bio) {
1403 if (list->tail)
1404 list->tail->bi_next = rq->bio;
1405 else
1406 list->head = rq->bio;
1407 list->tail = rq->biotail;
1408
1409 rq->bio = NULL;
1410 rq->biotail = NULL;
1411 }
1412
1413 rq->__data_len = 0;
1414 }
1415 EXPORT_SYMBOL_GPL(blk_steal_bios);
1416
1417 /**
1418 * blk_update_request - Special helper function for request stacking drivers
1419 * @req: the request being processed
1420 * @error: block status code
1421 * @nr_bytes: number of bytes to complete @req
1422 *
1423 * Description:
1424 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1425 * the request structure even if @req doesn't have leftover.
1426 * If @req has leftover, sets it up for the next range of segments.
1427 *
1428 * This special helper function is only for request stacking drivers
1429 * (e.g. request-based dm) so that they can handle partial completion.
1430 * Actual device drivers should use blk_mq_end_request instead.
1431 *
1432 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1433 * %false return from this function.
1434 *
1435 * Note:
1436 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1437 * blk_rq_bytes() and in blk_update_request().
1438 *
1439 * Return:
1440 * %false - this request doesn't have any more data
1441 * %true - this request has more data
1442 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1443 bool blk_update_request(struct request *req, blk_status_t error,
1444 unsigned int nr_bytes)
1445 {
1446 int total_bytes;
1447
1448 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1449
1450 if (!req->bio)
1451 return false;
1452
1453 #ifdef CONFIG_BLK_DEV_INTEGRITY
1454 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1455 error == BLK_STS_OK)
1456 req->q->integrity.profile->complete_fn(req, nr_bytes);
1457 #endif
1458
1459 /*
1460 * Upper layers may call blk_crypto_evict_key() anytime after the last
1461 * bio_endio(). Therefore, the keyslot must be released before that.
1462 */
1463 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1464 __blk_crypto_rq_put_keyslot(req);
1465
1466 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1467 !(req->rq_flags & RQF_QUIET)))
1468 print_req_error(req, error, __func__);
1469
1470 blk_account_io_completion(req, nr_bytes);
1471
1472 total_bytes = 0;
1473 while (req->bio) {
1474 struct bio *bio = req->bio;
1475 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1476
1477 if (bio_bytes == bio->bi_iter.bi_size)
1478 req->bio = bio->bi_next;
1479
1480 /* Completion has already been traced */
1481 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1482 req_bio_endio(req, bio, bio_bytes, error);
1483
1484 total_bytes += bio_bytes;
1485 nr_bytes -= bio_bytes;
1486
1487 if (!nr_bytes)
1488 break;
1489 }
1490
1491 /*
1492 * completely done
1493 */
1494 if (!req->bio) {
1495 /*
1496 * Reset counters so that the request stacking driver
1497 * can find how many bytes remain in the request
1498 * later.
1499 */
1500 req->__data_len = 0;
1501 return false;
1502 }
1503
1504 req->__data_len -= total_bytes;
1505
1506 /* update sector only for requests with clear definition of sector */
1507 if (!blk_rq_is_passthrough(req))
1508 req->__sector += total_bytes >> 9;
1509
1510 /* mixed attributes always follow the first bio */
1511 if (req->rq_flags & RQF_MIXED_MERGE) {
1512 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1513 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1514 }
1515
1516 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1517 /*
1518 * If total number of sectors is less than the first segment
1519 * size, something has gone terribly wrong.
1520 */
1521 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1522 blk_dump_rq_flags(req, "request botched");
1523 req->__data_len = blk_rq_cur_bytes(req);
1524 }
1525
1526 /* recalculate the number of segments */
1527 req->nr_phys_segments = blk_recalc_rq_segments(req);
1528 }
1529
1530 return true;
1531 }
1532 EXPORT_SYMBOL_GPL(blk_update_request);
1533
1534 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1535 /**
1536 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1537 * @rq: the request to be flushed
1538 *
1539 * Description:
1540 * Flush all pages in @rq.
1541 */
rq_flush_dcache_pages(struct request * rq)1542 void rq_flush_dcache_pages(struct request *rq)
1543 {
1544 struct req_iterator iter;
1545 struct bio_vec bvec;
1546
1547 rq_for_each_segment(bvec, rq, iter)
1548 flush_dcache_page(bvec.bv_page);
1549 }
1550 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1551 #endif
1552
1553 /**
1554 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1555 * @q : the queue of the device being checked
1556 *
1557 * Description:
1558 * Check if underlying low-level drivers of a device are busy.
1559 * If the drivers want to export their busy state, they must set own
1560 * exporting function using blk_queue_lld_busy() first.
1561 *
1562 * Basically, this function is used only by request stacking drivers
1563 * to stop dispatching requests to underlying devices when underlying
1564 * devices are busy. This behavior helps more I/O merging on the queue
1565 * of the request stacking driver and prevents I/O throughput regression
1566 * on burst I/O load.
1567 *
1568 * Return:
1569 * 0 - Not busy (The request stacking driver should dispatch request)
1570 * 1 - Busy (The request stacking driver should stop dispatching request)
1571 */
blk_lld_busy(struct request_queue * q)1572 int blk_lld_busy(struct request_queue *q)
1573 {
1574 if (queue_is_mq(q) && q->mq_ops->busy)
1575 return q->mq_ops->busy(q);
1576
1577 return 0;
1578 }
1579 EXPORT_SYMBOL_GPL(blk_lld_busy);
1580
1581 /**
1582 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1583 * @rq: the clone request to be cleaned up
1584 *
1585 * Description:
1586 * Free all bios in @rq for a cloned request.
1587 */
blk_rq_unprep_clone(struct request * rq)1588 void blk_rq_unprep_clone(struct request *rq)
1589 {
1590 struct bio *bio;
1591
1592 while ((bio = rq->bio) != NULL) {
1593 rq->bio = bio->bi_next;
1594
1595 bio_put(bio);
1596 }
1597 }
1598 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1599
1600 /**
1601 * blk_rq_prep_clone - Helper function to setup clone request
1602 * @rq: the request to be setup
1603 * @rq_src: original request to be cloned
1604 * @bs: bio_set that bios for clone are allocated from
1605 * @gfp_mask: memory allocation mask for bio
1606 * @bio_ctr: setup function to be called for each clone bio.
1607 * Returns %0 for success, non %0 for failure.
1608 * @data: private data to be passed to @bio_ctr
1609 *
1610 * Description:
1611 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1612 * Also, pages which the original bios are pointing to are not copied
1613 * and the cloned bios just point same pages.
1614 * So cloned bios must be completed before original bios, which means
1615 * the caller must complete @rq before @rq_src.
1616 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1617 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1618 struct bio_set *bs, gfp_t gfp_mask,
1619 int (*bio_ctr)(struct bio *, struct bio *, void *),
1620 void *data)
1621 {
1622 struct bio *bio, *bio_src;
1623
1624 if (!bs)
1625 bs = &fs_bio_set;
1626
1627 __rq_for_each_bio(bio_src, rq_src) {
1628 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1629 if (!bio)
1630 goto free_and_out;
1631
1632 if (bio_ctr && bio_ctr(bio, bio_src, data))
1633 goto free_and_out;
1634
1635 if (rq->bio) {
1636 rq->biotail->bi_next = bio;
1637 rq->biotail = bio;
1638 } else {
1639 rq->bio = rq->biotail = bio;
1640 }
1641 bio = NULL;
1642 }
1643
1644 /* Copy attributes of the original request to the clone request. */
1645 rq->__sector = blk_rq_pos(rq_src);
1646 rq->__data_len = blk_rq_bytes(rq_src);
1647 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1648 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1649 rq->special_vec = rq_src->special_vec;
1650 }
1651 rq->nr_phys_segments = rq_src->nr_phys_segments;
1652 rq->ioprio = rq_src->ioprio;
1653
1654 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1655 goto free_and_out;
1656
1657 return 0;
1658
1659 free_and_out:
1660 if (bio)
1661 bio_put(bio);
1662 blk_rq_unprep_clone(rq);
1663
1664 return -ENOMEM;
1665 }
1666 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1667
kblockd_schedule_work(struct work_struct * work)1668 int kblockd_schedule_work(struct work_struct *work)
1669 {
1670 return queue_work(kblockd_workqueue, work);
1671 }
1672 EXPORT_SYMBOL(kblockd_schedule_work);
1673
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1674 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1675 unsigned long delay)
1676 {
1677 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1678 }
1679 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1680
1681 /**
1682 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1683 * @plug: The &struct blk_plug that needs to be initialized
1684 *
1685 * Description:
1686 * blk_start_plug() indicates to the block layer an intent by the caller
1687 * to submit multiple I/O requests in a batch. The block layer may use
1688 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1689 * is called. However, the block layer may choose to submit requests
1690 * before a call to blk_finish_plug() if the number of queued I/Os
1691 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1692 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1693 * the task schedules (see below).
1694 *
1695 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1696 * pending I/O should the task end up blocking between blk_start_plug() and
1697 * blk_finish_plug(). This is important from a performance perspective, but
1698 * also ensures that we don't deadlock. For instance, if the task is blocking
1699 * for a memory allocation, memory reclaim could end up wanting to free a
1700 * page belonging to that request that is currently residing in our private
1701 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1702 * this kind of deadlock.
1703 */
blk_start_plug(struct blk_plug * plug)1704 void blk_start_plug(struct blk_plug *plug)
1705 {
1706 struct task_struct *tsk = current;
1707
1708 /*
1709 * If this is a nested plug, don't actually assign it.
1710 */
1711 if (tsk->plug)
1712 return;
1713
1714 INIT_LIST_HEAD(&plug->mq_list);
1715 INIT_LIST_HEAD(&plug->cb_list);
1716 plug->rq_count = 0;
1717 plug->multiple_queues = false;
1718 plug->nowait = false;
1719
1720 /*
1721 * Store ordering should not be needed here, since a potential
1722 * preempt will imply a full memory barrier
1723 */
1724 tsk->plug = plug;
1725 }
1726 EXPORT_SYMBOL(blk_start_plug);
1727
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1728 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1729 {
1730 LIST_HEAD(callbacks);
1731
1732 while (!list_empty(&plug->cb_list)) {
1733 list_splice_init(&plug->cb_list, &callbacks);
1734
1735 while (!list_empty(&callbacks)) {
1736 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1737 struct blk_plug_cb,
1738 list);
1739 list_del(&cb->list);
1740 cb->callback(cb, from_schedule);
1741 }
1742 }
1743 }
1744
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1745 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1746 int size)
1747 {
1748 struct blk_plug *plug = current->plug;
1749 struct blk_plug_cb *cb;
1750
1751 if (!plug)
1752 return NULL;
1753
1754 list_for_each_entry(cb, &plug->cb_list, list)
1755 if (cb->callback == unplug && cb->data == data)
1756 return cb;
1757
1758 /* Not currently on the callback list */
1759 BUG_ON(size < sizeof(*cb));
1760 cb = kzalloc(size, GFP_ATOMIC);
1761 if (cb) {
1762 cb->data = data;
1763 cb->callback = unplug;
1764 list_add(&cb->list, &plug->cb_list);
1765 }
1766 return cb;
1767 }
1768 EXPORT_SYMBOL(blk_check_plugged);
1769
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1770 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1771 {
1772 trace_android_rvh_blk_flush_plug_list(plug, from_schedule);
1773 flush_plug_callbacks(plug, from_schedule);
1774
1775 if (!list_empty(&plug->mq_list))
1776 blk_mq_flush_plug_list(plug, from_schedule);
1777 }
1778
1779 /**
1780 * blk_finish_plug - mark the end of a batch of submitted I/O
1781 * @plug: The &struct blk_plug passed to blk_start_plug()
1782 *
1783 * Description:
1784 * Indicate that a batch of I/O submissions is complete. This function
1785 * must be paired with an initial call to blk_start_plug(). The intent
1786 * is to allow the block layer to optimize I/O submission. See the
1787 * documentation for blk_start_plug() for more information.
1788 */
blk_finish_plug(struct blk_plug * plug)1789 void blk_finish_plug(struct blk_plug *plug)
1790 {
1791 if (plug != current->plug)
1792 return;
1793 blk_flush_plug_list(plug, false);
1794
1795 current->plug = NULL;
1796 }
1797 EXPORT_SYMBOL(blk_finish_plug);
1798
blk_io_schedule(void)1799 void blk_io_schedule(void)
1800 {
1801 /* Prevent hang_check timer from firing at us during very long I/O */
1802 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1803
1804 if (timeout)
1805 io_schedule_timeout(timeout);
1806 else
1807 io_schedule();
1808 }
1809 EXPORT_SYMBOL_GPL(blk_io_schedule);
1810
blk_dev_init(void)1811 int __init blk_dev_init(void)
1812 {
1813 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1814 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1815 sizeof_field(struct request, cmd_flags));
1816 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1817 sizeof_field(struct bio, bi_opf));
1818
1819 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1820 kblockd_workqueue = alloc_workqueue("kblockd",
1821 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1822 if (!kblockd_workqueue)
1823 panic("Failed to create kblockd\n");
1824
1825 blk_requestq_cachep = kmem_cache_create("request_queue",
1826 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1827
1828 blk_debugfs_root = debugfs_create_dir("block", NULL);
1829
1830 return 0;
1831 }
1832