• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
33 #include "bnx2x_sp.h"
34 
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
38 static int bnx2x_poll(struct napi_struct *napi, int budget);
39 
bnx2x_add_all_napi_cnic(struct bnx2x * bp)40 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
41 {
42 	int i;
43 
44 	/* Add NAPI objects */
45 	for_each_rx_queue_cnic(bp, i) {
46 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
47 			       bnx2x_poll, NAPI_POLL_WEIGHT);
48 	}
49 }
50 
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
58 			       bnx2x_poll, NAPI_POLL_WEIGHT);
59 	}
60 }
61 
bnx2x_calc_num_queues(struct bnx2x * bp)62 static int bnx2x_calc_num_queues(struct bnx2x *bp)
63 {
64 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
65 
66 	/* Reduce memory usage in kdump environment by using only one queue */
67 	if (is_kdump_kernel())
68 		nq = 1;
69 
70 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
71 	return nq;
72 }
73 
74 /**
75  * bnx2x_move_fp - move content of the fastpath structure.
76  *
77  * @bp:		driver handle
78  * @from:	source FP index
79  * @to:		destination FP index
80  *
81  * Makes sure the contents of the bp->fp[to].napi is kept
82  * intact. This is done by first copying the napi struct from
83  * the target to the source, and then mem copying the entire
84  * source onto the target. Update txdata pointers and related
85  * content.
86  */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)87 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
88 {
89 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
90 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
91 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
92 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
93 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
94 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
95 	int old_max_eth_txqs, new_max_eth_txqs;
96 	int old_txdata_index = 0, new_txdata_index = 0;
97 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
98 
99 	/* Copy the NAPI object as it has been already initialized */
100 	from_fp->napi = to_fp->napi;
101 
102 	/* Move bnx2x_fastpath contents */
103 	memcpy(to_fp, from_fp, sizeof(*to_fp));
104 	to_fp->index = to;
105 
106 	/* Retain the tpa_info of the original `to' version as we don't want
107 	 * 2 FPs to contain the same tpa_info pointer.
108 	 */
109 	to_fp->tpa_info = old_tpa_info;
110 
111 	/* move sp_objs contents as well, as their indices match fp ones */
112 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
113 
114 	/* move fp_stats contents as well, as their indices match fp ones */
115 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
116 
117 	/* Update txdata pointers in fp and move txdata content accordingly:
118 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 	 * decremented by max_cos x delta.
120 	 */
121 
122 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
123 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
124 				(bp)->max_cos;
125 	if (from == FCOE_IDX(bp)) {
126 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 	}
129 
130 	memcpy(&bp->bnx2x_txq[new_txdata_index],
131 	       &bp->bnx2x_txq[old_txdata_index],
132 	       sizeof(struct bnx2x_fp_txdata));
133 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
134 }
135 
136 /**
137  * bnx2x_fill_fw_str - Fill buffer with FW version string.
138  *
139  * @bp:        driver handle
140  * @buf:       character buffer to fill with the fw name
141  * @buf_len:   length of the above buffer
142  *
143  */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)144 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
145 {
146 	if (IS_PF(bp)) {
147 		u8 phy_fw_ver[PHY_FW_VER_LEN];
148 
149 		phy_fw_ver[0] = '\0';
150 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
151 					     phy_fw_ver, PHY_FW_VER_LEN);
152 		strlcpy(buf, bp->fw_ver, buf_len);
153 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
154 			 "bc %d.%d.%d%s%s",
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	/* Ensure subsequent loads occur after hw_cons */
289 	smp_rmb();
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  * @num_of_coalesced_segs: count of segments
508  *
509  * Approximate value of the MSS for this aggregation calculated using
510  * the first packet of it.
511  * Compute number of aggregated segments, and gso_type.
512  */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 				 u16 len_on_bd, unsigned int pkt_len,
515 				 u16 num_of_coalesced_segs)
516 {
517 	/* TPA aggregation won't have either IP options or TCP options
518 	 * other than timestamp or IPv6 extension headers.
519 	 */
520 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521 
522 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 	    PRS_FLAG_OVERETH_IPV6) {
524 		hdrs_len += sizeof(struct ipv6hdr);
525 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 	} else {
527 		hdrs_len += sizeof(struct iphdr);
528 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 	}
530 
531 	/* Check if there was a TCP timestamp, if there is it's will
532 	 * always be 12 bytes length: nop nop kind length echo val.
533 	 *
534 	 * Otherwise FW would close the aggregation.
535 	 */
536 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 		hdrs_len += TPA_TSTAMP_OPT_LEN;
538 
539 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540 
541 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 	 * to skb_shinfo(skb)->gso_segs
543 	 */
544 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546 
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 			      u16 index, gfp_t gfp_mask)
549 {
550 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 	dma_addr_t mapping;
554 
555 	if (!pool->page) {
556 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 		if (unlikely(!pool->page))
558 			return -ENOMEM;
559 
560 		pool->offset = 0;
561 	}
562 
563 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 		BNX2X_ERR("Can't map sge\n");
567 		return -ENOMEM;
568 	}
569 
570 	sw_buf->page = pool->page;
571 	sw_buf->offset = pool->offset;
572 
573 	dma_unmap_addr_set(sw_buf, mapping, mapping);
574 
575 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577 
578 	pool->offset += SGE_PAGE_SIZE;
579 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 		get_page(pool->page);
581 	else
582 		pool->page = NULL;
583 	return 0;
584 }
585 
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 			       struct bnx2x_agg_info *tpa_info,
588 			       u16 pages,
589 			       struct sk_buff *skb,
590 			       struct eth_end_agg_rx_cqe *cqe,
591 			       u16 cqe_idx)
592 {
593 	struct sw_rx_page *rx_pg, old_rx_pg;
594 	u32 i, frag_len, frag_size;
595 	int err, j, frag_id = 0;
596 	u16 len_on_bd = tpa_info->len_on_bd;
597 	u16 full_page = 0, gro_size = 0;
598 
599 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600 
601 	if (fp->mode == TPA_MODE_GRO) {
602 		gro_size = tpa_info->gro_size;
603 		full_page = tpa_info->full_page;
604 	}
605 
606 	/* This is needed in order to enable forwarding support */
607 	if (frag_size)
608 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 				     le16_to_cpu(cqe->pkt_len),
610 				     le16_to_cpu(cqe->num_of_coalesced_segs));
611 
612 #ifdef BNX2X_STOP_ON_ERROR
613 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 			  pages, cqe_idx);
616 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 		bnx2x_panic();
618 		return -EINVAL;
619 	}
620 #endif
621 
622 	/* Run through the SGL and compose the fragmented skb */
623 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625 
626 		/* FW gives the indices of the SGE as if the ring is an array
627 		   (meaning that "next" element will consume 2 indices) */
628 		if (fp->mode == TPA_MODE_GRO)
629 			frag_len = min_t(u32, frag_size, (u32)full_page);
630 		else /* LRO */
631 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632 
633 		rx_pg = &fp->rx_page_ring[sge_idx];
634 		old_rx_pg = *rx_pg;
635 
636 		/* If we fail to allocate a substitute page, we simply stop
637 		   where we are and drop the whole packet */
638 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 		if (unlikely(err)) {
640 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 			return err;
642 		}
643 
644 		dma_unmap_page(&bp->pdev->dev,
645 			       dma_unmap_addr(&old_rx_pg, mapping),
646 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 		/* Add one frag and update the appropriate fields in the skb */
648 		if (fp->mode == TPA_MODE_LRO)
649 			skb_fill_page_desc(skb, j, old_rx_pg.page,
650 					   old_rx_pg.offset, frag_len);
651 		else { /* GRO */
652 			int rem;
653 			int offset = 0;
654 			for (rem = frag_len; rem > 0; rem -= gro_size) {
655 				int len = rem > gro_size ? gro_size : rem;
656 				skb_fill_page_desc(skb, frag_id++,
657 						   old_rx_pg.page,
658 						   old_rx_pg.offset + offset,
659 						   len);
660 				if (offset)
661 					get_page(old_rx_pg.page);
662 				offset += len;
663 			}
664 		}
665 
666 		skb->data_len += frag_len;
667 		skb->truesize += SGE_PAGES;
668 		skb->len += frag_len;
669 
670 		frag_size -= frag_len;
671 	}
672 
673 	return 0;
674 }
675 
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 	if (fp->rx_frag_size)
679 		skb_free_frag(data);
680 	else
681 		kfree(data);
682 }
683 
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 	if (fp->rx_frag_size) {
687 		/* GFP_KERNEL allocations are used only during initialization */
688 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 			return (void *)__get_free_page(gfp_mask);
690 
691 		return napi_alloc_frag(fp->rx_frag_size);
692 	}
693 
694 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696 
697 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 	const struct iphdr *iph = ip_hdr(skb);
701 	struct tcphdr *th;
702 
703 	skb_set_transport_header(skb, sizeof(struct iphdr));
704 	th = tcp_hdr(skb);
705 
706 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 				  iph->saddr, iph->daddr, 0);
708 }
709 
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 	struct ipv6hdr *iph = ipv6_hdr(skb);
713 	struct tcphdr *th;
714 
715 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 	th = tcp_hdr(skb);
717 
718 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 				  &iph->saddr, &iph->daddr, 0);
720 }
721 
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 	skb_reset_network_header(skb);
726 	gro_func(bp, skb);
727 	tcp_gro_complete(skb);
728 }
729 #endif
730 
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 			       struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 	if (skb_shinfo(skb)->gso_size) {
736 		switch (be16_to_cpu(skb->protocol)) {
737 		case ETH_P_IP:
738 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 			break;
740 		case ETH_P_IPV6:
741 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 			break;
743 		default:
744 			netdev_WARN_ONCE(bp->dev,
745 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 					 be16_to_cpu(skb->protocol));
747 		}
748 	}
749 #endif
750 	skb_record_rx_queue(skb, fp->rx_queue);
751 	napi_gro_receive(&fp->napi, skb);
752 }
753 
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)754 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
755 			   struct bnx2x_agg_info *tpa_info,
756 			   u16 pages,
757 			   struct eth_end_agg_rx_cqe *cqe,
758 			   u16 cqe_idx)
759 {
760 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
761 	u8 pad = tpa_info->placement_offset;
762 	u16 len = tpa_info->len_on_bd;
763 	struct sk_buff *skb = NULL;
764 	u8 *new_data, *data = rx_buf->data;
765 	u8 old_tpa_state = tpa_info->tpa_state;
766 
767 	tpa_info->tpa_state = BNX2X_TPA_STOP;
768 
769 	/* If we there was an error during the handling of the TPA_START -
770 	 * drop this aggregation.
771 	 */
772 	if (old_tpa_state == BNX2X_TPA_ERROR)
773 		goto drop;
774 
775 	/* Try to allocate the new data */
776 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
777 	/* Unmap skb in the pool anyway, as we are going to change
778 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
779 	   fails. */
780 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
781 			 fp->rx_buf_size, DMA_FROM_DEVICE);
782 	if (likely(new_data))
783 		skb = build_skb(data, fp->rx_frag_size);
784 
785 	if (likely(skb)) {
786 #ifdef BNX2X_STOP_ON_ERROR
787 		if (pad + len > fp->rx_buf_size) {
788 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
789 				  pad, len, fp->rx_buf_size);
790 			bnx2x_panic();
791 			bnx2x_frag_free(fp, new_data);
792 			return;
793 		}
794 #endif
795 
796 		skb_reserve(skb, pad + NET_SKB_PAD);
797 		skb_put(skb, len);
798 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799 
800 		skb->protocol = eth_type_trans(skb, bp->dev);
801 		skb->ip_summed = CHECKSUM_UNNECESSARY;
802 
803 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 					 skb, cqe, cqe_idx)) {
805 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 			bnx2x_gro_receive(bp, fp, skb);
808 		} else {
809 			DP(NETIF_MSG_RX_STATUS,
810 			   "Failed to allocate new pages - dropping packet!\n");
811 			dev_kfree_skb_any(skb);
812 		}
813 
814 		/* put new data in bin */
815 		rx_buf->data = new_data;
816 
817 		return;
818 	}
819 	if (new_data)
820 		bnx2x_frag_free(fp, new_data);
821 drop:
822 	/* drop the packet and keep the buffer in the bin */
823 	DP(NETIF_MSG_RX_STATUS,
824 	   "Failed to allocate or map a new skb - dropping packet!\n");
825 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827 
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 			       u16 index, gfp_t gfp_mask)
830 {
831 	u8 *data;
832 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 	dma_addr_t mapping;
835 
836 	data = bnx2x_frag_alloc(fp, gfp_mask);
837 	if (unlikely(data == NULL))
838 		return -ENOMEM;
839 
840 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 				 fp->rx_buf_size,
842 				 DMA_FROM_DEVICE);
843 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 		bnx2x_frag_free(fp, data);
845 		BNX2X_ERR("Can't map rx data\n");
846 		return -ENOMEM;
847 	}
848 
849 	rx_buf->data = data;
850 	dma_unmap_addr_set(rx_buf, mapping, mapping);
851 
852 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854 
855 	return 0;
856 }
857 
858 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 				 struct bnx2x_fastpath *fp,
861 				 struct bnx2x_eth_q_stats *qstats)
862 {
863 	/* Do nothing if no L4 csum validation was done.
864 	 * We do not check whether IP csum was validated. For IPv4 we assume
865 	 * that if the card got as far as validating the L4 csum, it also
866 	 * validated the IP csum. IPv6 has no IP csum.
867 	 */
868 	if (cqe->fast_path_cqe.status_flags &
869 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 		return;
871 
872 	/* If L4 validation was done, check if an error was found. */
873 
874 	if (cqe->fast_path_cqe.type_error_flags &
875 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 		qstats->hw_csum_err++;
878 	else
879 		skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881 
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 	struct bnx2x *bp = fp->bp;
885 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 	u16 sw_comp_cons, sw_comp_prod;
887 	int rx_pkt = 0;
888 	union eth_rx_cqe *cqe;
889 	struct eth_fast_path_rx_cqe *cqe_fp;
890 
891 #ifdef BNX2X_STOP_ON_ERROR
892 	if (unlikely(bp->panic))
893 		return 0;
894 #endif
895 	if (budget <= 0)
896 		return rx_pkt;
897 
898 	bd_cons = fp->rx_bd_cons;
899 	bd_prod = fp->rx_bd_prod;
900 	bd_prod_fw = bd_prod;
901 	sw_comp_cons = fp->rx_comp_cons;
902 	sw_comp_prod = fp->rx_comp_prod;
903 
904 	comp_ring_cons = RCQ_BD(sw_comp_cons);
905 	cqe = &fp->rx_comp_ring[comp_ring_cons];
906 	cqe_fp = &cqe->fast_path_cqe;
907 
908 	DP(NETIF_MSG_RX_STATUS,
909 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910 
911 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 		struct sw_rx_bd *rx_buf = NULL;
913 		struct sk_buff *skb;
914 		u8 cqe_fp_flags;
915 		enum eth_rx_cqe_type cqe_fp_type;
916 		u16 len, pad, queue;
917 		u8 *data;
918 		u32 rxhash;
919 		enum pkt_hash_types rxhash_type;
920 
921 #ifdef BNX2X_STOP_ON_ERROR
922 		if (unlikely(bp->panic))
923 			return 0;
924 #endif
925 
926 		bd_prod = RX_BD(bd_prod);
927 		bd_cons = RX_BD(bd_cons);
928 
929 		/* A rmb() is required to ensure that the CQE is not read
930 		 * before it is written by the adapter DMA.  PCI ordering
931 		 * rules will make sure the other fields are written before
932 		 * the marker at the end of struct eth_fast_path_rx_cqe
933 		 * but without rmb() a weakly ordered processor can process
934 		 * stale data.  Without the barrier TPA state-machine might
935 		 * enter inconsistent state and kernel stack might be
936 		 * provided with incorrect packet description - these lead
937 		 * to various kernel crashed.
938 		 */
939 		rmb();
940 
941 		cqe_fp_flags = cqe_fp->type_error_flags;
942 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943 
944 		DP(NETIF_MSG_RX_STATUS,
945 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
946 		   CQE_TYPE(cqe_fp_flags),
947 		   cqe_fp_flags, cqe_fp->status_flags,
948 		   le32_to_cpu(cqe_fp->rss_hash_result),
949 		   le16_to_cpu(cqe_fp->vlan_tag),
950 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951 
952 		/* is this a slowpath msg? */
953 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 			bnx2x_sp_event(fp, cqe);
955 			goto next_cqe;
956 		}
957 
958 		rx_buf = &fp->rx_buf_ring[bd_cons];
959 		data = rx_buf->data;
960 
961 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 			struct bnx2x_agg_info *tpa_info;
963 			u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 			/* sanity check */
966 			if (fp->mode == TPA_MODE_DISABLED &&
967 			    (CQE_TYPE_START(cqe_fp_type) ||
968 			     CQE_TYPE_STOP(cqe_fp_type)))
969 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 					  CQE_TYPE(cqe_fp_type));
971 #endif
972 
973 			if (CQE_TYPE_START(cqe_fp_type)) {
974 				u16 queue = cqe_fp->queue_index;
975 				DP(NETIF_MSG_RX_STATUS,
976 				   "calling tpa_start on queue %d\n",
977 				   queue);
978 
979 				bnx2x_tpa_start(fp, queue,
980 						bd_cons, bd_prod,
981 						cqe_fp);
982 
983 				goto next_rx;
984 			}
985 			queue = cqe->end_agg_cqe.queue_index;
986 			tpa_info = &fp->tpa_info[queue];
987 			DP(NETIF_MSG_RX_STATUS,
988 			   "calling tpa_stop on queue %d\n",
989 			   queue);
990 
991 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 				    tpa_info->len_on_bd;
993 
994 			if (fp->mode == TPA_MODE_GRO)
995 				pages = (frag_size + tpa_info->full_page - 1) /
996 					 tpa_info->full_page;
997 			else
998 				pages = SGE_PAGE_ALIGN(frag_size) >>
999 					SGE_PAGE_SHIFT;
1000 
1001 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 				       &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 			if (bp->panic)
1005 				return 0;
1006 #endif
1007 
1008 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 			goto next_cqe;
1010 		}
1011 		/* non TPA */
1012 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 		pad = cqe_fp->placement_offset;
1014 		dma_sync_single_for_cpu(&bp->pdev->dev,
1015 					dma_unmap_addr(rx_buf, mapping),
1016 					pad + RX_COPY_THRESH,
1017 					DMA_FROM_DEVICE);
1018 		pad += NET_SKB_PAD;
1019 		prefetch(data + pad); /* speedup eth_type_trans() */
1020 		/* is this an error packet? */
1021 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 			   "ERROR  flags %x  rx packet %u\n",
1024 			   cqe_fp_flags, sw_comp_cons);
1025 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 			goto reuse_rx;
1027 		}
1028 
1029 		/* Since we don't have a jumbo ring
1030 		 * copy small packets if mtu > 1500
1031 		 */
1032 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 		    (len <= RX_COPY_THRESH)) {
1034 			skb = napi_alloc_skb(&fp->napi, len);
1035 			if (skb == NULL) {
1036 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 				   "ERROR  packet dropped because of alloc failure\n");
1038 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 				goto reuse_rx;
1040 			}
1041 			memcpy(skb->data, data + pad, len);
1042 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 		} else {
1044 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 						       GFP_ATOMIC) == 0)) {
1046 				dma_unmap_single(&bp->pdev->dev,
1047 						 dma_unmap_addr(rx_buf, mapping),
1048 						 fp->rx_buf_size,
1049 						 DMA_FROM_DEVICE);
1050 				skb = build_skb(data, fp->rx_frag_size);
1051 				if (unlikely(!skb)) {
1052 					bnx2x_frag_free(fp, data);
1053 					bnx2x_fp_qstats(bp, fp)->
1054 							rx_skb_alloc_failed++;
1055 					goto next_rx;
1056 				}
1057 				skb_reserve(skb, pad);
1058 			} else {
1059 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 				   "ERROR  packet dropped because of alloc failure\n");
1061 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 				goto next_rx;
1065 			}
1066 		}
1067 
1068 		skb_put(skb, len);
1069 		skb->protocol = eth_type_trans(skb, bp->dev);
1070 
1071 		/* Set Toeplitz hash for a none-LRO skb */
1072 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 		skb_set_hash(skb, rxhash, rxhash_type);
1074 
1075 		skb_checksum_none_assert(skb);
1076 
1077 		if (bp->dev->features & NETIF_F_RXCSUM)
1078 			bnx2x_csum_validate(skb, cqe, fp,
1079 					    bnx2x_fp_qstats(bp, fp));
1080 
1081 		skb_record_rx_queue(skb, fp->rx_queue);
1082 
1083 		/* Check if this packet was timestamped */
1084 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 			bnx2x_set_rx_ts(bp, skb);
1087 
1088 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 		    PARSING_FLAGS_VLAN)
1090 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 					       le16_to_cpu(cqe_fp->vlan_tag));
1092 
1093 		napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 		rx_buf->data = NULL;
1096 
1097 		bd_cons = NEXT_RX_IDX(bd_cons);
1098 		bd_prod = NEXT_RX_IDX(bd_prod);
1099 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 		rx_pkt++;
1101 next_cqe:
1102 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104 
1105 		/* mark CQE as free */
1106 		BNX2X_SEED_CQE(cqe_fp);
1107 
1108 		if (rx_pkt == budget)
1109 			break;
1110 
1111 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 		cqe_fp = &cqe->fast_path_cqe;
1114 	} /* while */
1115 
1116 	fp->rx_bd_cons = bd_cons;
1117 	fp->rx_bd_prod = bd_prod_fw;
1118 	fp->rx_comp_cons = sw_comp_cons;
1119 	fp->rx_comp_prod = sw_comp_prod;
1120 
1121 	/* Update producers */
1122 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 			     fp->rx_sge_prod);
1124 
1125 	return rx_pkt;
1126 }
1127 
bnx2x_msix_fp_int(int irq,void * fp_cookie)1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 	struct bnx2x_fastpath *fp = fp_cookie;
1131 	struct bnx2x *bp = fp->bp;
1132 	u8 cos;
1133 
1134 	DP(NETIF_MSG_INTR,
1135 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137 
1138 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139 
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 	if (unlikely(bp->panic))
1142 		return IRQ_HANDLED;
1143 #endif
1144 
1145 	/* Handle Rx and Tx according to MSI-X vector */
1146 	for_each_cos_in_tx_queue(fp, cos)
1147 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148 
1149 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151 
1152 	return IRQ_HANDLED;
1153 }
1154 
1155 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 	mutex_lock(&bp->port.phy_mutex);
1159 
1160 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162 
bnx2x_release_phy_lock(struct bnx2x * bp)1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166 
1167 	mutex_unlock(&bp->port.phy_mutex);
1168 }
1169 
1170 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 	u16 line_speed = bp->link_vars.line_speed;
1174 	if (IS_MF(bp)) {
1175 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 						   bp->mf_config[BP_VN(bp)]);
1177 
1178 		/* Calculate the current MAX line speed limit for the MF
1179 		 * devices
1180 		 */
1181 		if (IS_MF_PERCENT_BW(bp))
1182 			line_speed = (line_speed * maxCfg) / 100;
1183 		else { /* SD mode */
1184 			u16 vn_max_rate = maxCfg * 100;
1185 
1186 			if (vn_max_rate < line_speed)
1187 				line_speed = vn_max_rate;
1188 		}
1189 	}
1190 
1191 	return line_speed;
1192 }
1193 
1194 /**
1195  * bnx2x_fill_report_data - fill link report data to report
1196  *
1197  * @bp:		driver handle
1198  * @data:	link state to update
1199  *
1200  * It uses a none-atomic bit operations because is called under the mutex.
1201  */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 				   struct bnx2x_link_report_data *data)
1204 {
1205 	memset(data, 0, sizeof(*data));
1206 
1207 	if (IS_PF(bp)) {
1208 		/* Fill the report data: effective line speed */
1209 		data->line_speed = bnx2x_get_mf_speed(bp);
1210 
1211 		/* Link is down */
1212 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 				  &data->link_report_flags);
1215 
1216 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 				  &data->link_report_flags);
1219 
1220 		/* Full DUPLEX */
1221 		if (bp->link_vars.duplex == DUPLEX_FULL)
1222 			__set_bit(BNX2X_LINK_REPORT_FD,
1223 				  &data->link_report_flags);
1224 
1225 		/* Rx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 				  &data->link_report_flags);
1229 
1230 		/* Tx Flow Control is ON */
1231 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 				  &data->link_report_flags);
1234 	} else { /* VF */
1235 		*data = bp->vf_link_vars;
1236 	}
1237 }
1238 
1239 /**
1240  * bnx2x_link_report - report link status to OS.
1241  *
1242  * @bp:		driver handle
1243  *
1244  * Calls the __bnx2x_link_report() under the same locking scheme
1245  * as a link/PHY state managing code to ensure a consistent link
1246  * reporting.
1247  */
1248 
bnx2x_link_report(struct bnx2x * bp)1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 	bnx2x_acquire_phy_lock(bp);
1252 	__bnx2x_link_report(bp);
1253 	bnx2x_release_phy_lock(bp);
1254 }
1255 
1256 /**
1257  * __bnx2x_link_report - report link status to OS.
1258  *
1259  * @bp:		driver handle
1260  *
1261  * None atomic implementation.
1262  * Should be called under the phy_lock.
1263  */
__bnx2x_link_report(struct bnx2x * bp)1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 	struct bnx2x_link_report_data cur_data;
1267 
1268 	if (bp->force_link_down) {
1269 		bp->link_vars.link_up = 0;
1270 		return;
1271 	}
1272 
1273 	/* reread mf_cfg */
1274 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1275 		bnx2x_read_mf_cfg(bp);
1276 
1277 	/* Read the current link report info */
1278 	bnx2x_fill_report_data(bp, &cur_data);
1279 
1280 	/* Don't report link down or exactly the same link status twice */
1281 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1282 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 		      &bp->last_reported_link.link_report_flags) &&
1284 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1285 		      &cur_data.link_report_flags)))
1286 		return;
1287 
1288 	bp->link_cnt++;
1289 
1290 	/* We are going to report a new link parameters now -
1291 	 * remember the current data for the next time.
1292 	 */
1293 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1294 
1295 	/* propagate status to VFs */
1296 	if (IS_PF(bp))
1297 		bnx2x_iov_link_update(bp);
1298 
1299 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1300 		     &cur_data.link_report_flags)) {
1301 		netif_carrier_off(bp->dev);
1302 		netdev_err(bp->dev, "NIC Link is Down\n");
1303 		return;
1304 	} else {
1305 		const char *duplex;
1306 		const char *flow;
1307 
1308 		netif_carrier_on(bp->dev);
1309 
1310 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1311 				       &cur_data.link_report_flags))
1312 			duplex = "full";
1313 		else
1314 			duplex = "half";
1315 
1316 		/* Handle the FC at the end so that only these flags would be
1317 		 * possibly set. This way we may easily check if there is no FC
1318 		 * enabled.
1319 		 */
1320 		if (cur_data.link_report_flags) {
1321 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1322 				     &cur_data.link_report_flags)) {
1323 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1324 				     &cur_data.link_report_flags))
1325 					flow = "ON - receive & transmit";
1326 				else
1327 					flow = "ON - receive";
1328 			} else {
1329 				flow = "ON - transmit";
1330 			}
1331 		} else {
1332 			flow = "none";
1333 		}
1334 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1335 			    cur_data.line_speed, duplex, flow);
1336 	}
1337 }
1338 
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1339 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1340 {
1341 	int i;
1342 
1343 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1344 		struct eth_rx_sge *sge;
1345 
1346 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1347 		sge->addr_hi =
1348 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1349 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1350 
1351 		sge->addr_lo =
1352 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1353 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1354 	}
1355 }
1356 
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1357 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1358 				struct bnx2x_fastpath *fp, int last)
1359 {
1360 	int i;
1361 
1362 	for (i = 0; i < last; i++) {
1363 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1364 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1365 		u8 *data = first_buf->data;
1366 
1367 		if (data == NULL) {
1368 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1369 			continue;
1370 		}
1371 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1372 			dma_unmap_single(&bp->pdev->dev,
1373 					 dma_unmap_addr(first_buf, mapping),
1374 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1375 		bnx2x_frag_free(fp, data);
1376 		first_buf->data = NULL;
1377 	}
1378 }
1379 
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1380 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1381 {
1382 	int j;
1383 
1384 	for_each_rx_queue_cnic(bp, j) {
1385 		struct bnx2x_fastpath *fp = &bp->fp[j];
1386 
1387 		fp->rx_bd_cons = 0;
1388 
1389 		/* Activate BD ring */
1390 		/* Warning!
1391 		 * this will generate an interrupt (to the TSTORM)
1392 		 * must only be done after chip is initialized
1393 		 */
1394 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1395 				     fp->rx_sge_prod);
1396 	}
1397 }
1398 
bnx2x_init_rx_rings(struct bnx2x * bp)1399 void bnx2x_init_rx_rings(struct bnx2x *bp)
1400 {
1401 	int func = BP_FUNC(bp);
1402 	u16 ring_prod;
1403 	int i, j;
1404 
1405 	/* Allocate TPA resources */
1406 	for_each_eth_queue(bp, j) {
1407 		struct bnx2x_fastpath *fp = &bp->fp[j];
1408 
1409 		DP(NETIF_MSG_IFUP,
1410 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1411 
1412 		if (fp->mode != TPA_MODE_DISABLED) {
1413 			/* Fill the per-aggregation pool */
1414 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1415 				struct bnx2x_agg_info *tpa_info =
1416 					&fp->tpa_info[i];
1417 				struct sw_rx_bd *first_buf =
1418 					&tpa_info->first_buf;
1419 
1420 				first_buf->data =
1421 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1422 				if (!first_buf->data) {
1423 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 						  j);
1425 					bnx2x_free_tpa_pool(bp, fp, i);
1426 					fp->mode = TPA_MODE_DISABLED;
1427 					break;
1428 				}
1429 				dma_unmap_addr_set(first_buf, mapping, 0);
1430 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1431 			}
1432 
1433 			/* "next page" elements initialization */
1434 			bnx2x_set_next_page_sgl(fp);
1435 
1436 			/* set SGEs bit mask */
1437 			bnx2x_init_sge_ring_bit_mask(fp);
1438 
1439 			/* Allocate SGEs and initialize the ring elements */
1440 			for (i = 0, ring_prod = 0;
1441 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1442 
1443 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1444 						       GFP_KERNEL) < 0) {
1445 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 						  i);
1447 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 						  j);
1449 					/* Cleanup already allocated elements */
1450 					bnx2x_free_rx_sge_range(bp, fp,
1451 								ring_prod);
1452 					bnx2x_free_tpa_pool(bp, fp,
1453 							    MAX_AGG_QS(bp));
1454 					fp->mode = TPA_MODE_DISABLED;
1455 					ring_prod = 0;
1456 					break;
1457 				}
1458 				ring_prod = NEXT_SGE_IDX(ring_prod);
1459 			}
1460 
1461 			fp->rx_sge_prod = ring_prod;
1462 		}
1463 	}
1464 
1465 	for_each_eth_queue(bp, j) {
1466 		struct bnx2x_fastpath *fp = &bp->fp[j];
1467 
1468 		fp->rx_bd_cons = 0;
1469 
1470 		/* Activate BD ring */
1471 		/* Warning!
1472 		 * this will generate an interrupt (to the TSTORM)
1473 		 * must only be done after chip is initialized
1474 		 */
1475 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1476 				     fp->rx_sge_prod);
1477 
1478 		if (j != 0)
1479 			continue;
1480 
1481 		if (CHIP_IS_E1(bp)) {
1482 			REG_WR(bp, BAR_USTRORM_INTMEM +
1483 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1484 			       U64_LO(fp->rx_comp_mapping));
1485 			REG_WR(bp, BAR_USTRORM_INTMEM +
1486 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1487 			       U64_HI(fp->rx_comp_mapping));
1488 		}
1489 	}
1490 }
1491 
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1492 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1493 {
1494 	u8 cos;
1495 	struct bnx2x *bp = fp->bp;
1496 
1497 	for_each_cos_in_tx_queue(fp, cos) {
1498 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1499 		unsigned pkts_compl = 0, bytes_compl = 0;
1500 
1501 		u16 sw_prod = txdata->tx_pkt_prod;
1502 		u16 sw_cons = txdata->tx_pkt_cons;
1503 
1504 		while (sw_cons != sw_prod) {
1505 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1506 					  &pkts_compl, &bytes_compl);
1507 			sw_cons++;
1508 		}
1509 
1510 		netdev_tx_reset_queue(
1511 			netdev_get_tx_queue(bp->dev,
1512 					    txdata->txq_index));
1513 	}
1514 }
1515 
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1516 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1517 {
1518 	int i;
1519 
1520 	for_each_tx_queue_cnic(bp, i) {
1521 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1522 	}
1523 }
1524 
bnx2x_free_tx_skbs(struct bnx2x * bp)1525 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1526 {
1527 	int i;
1528 
1529 	for_each_eth_queue(bp, i) {
1530 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1531 	}
1532 }
1533 
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1534 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1535 {
1536 	struct bnx2x *bp = fp->bp;
1537 	int i;
1538 
1539 	/* ring wasn't allocated */
1540 	if (fp->rx_buf_ring == NULL)
1541 		return;
1542 
1543 	for (i = 0; i < NUM_RX_BD; i++) {
1544 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1545 		u8 *data = rx_buf->data;
1546 
1547 		if (data == NULL)
1548 			continue;
1549 		dma_unmap_single(&bp->pdev->dev,
1550 				 dma_unmap_addr(rx_buf, mapping),
1551 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1552 
1553 		rx_buf->data = NULL;
1554 		bnx2x_frag_free(fp, data);
1555 	}
1556 }
1557 
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1558 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1559 {
1560 	int j;
1561 
1562 	for_each_rx_queue_cnic(bp, j) {
1563 		bnx2x_free_rx_bds(&bp->fp[j]);
1564 	}
1565 }
1566 
bnx2x_free_rx_skbs(struct bnx2x * bp)1567 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1568 {
1569 	int j;
1570 
1571 	for_each_eth_queue(bp, j) {
1572 		struct bnx2x_fastpath *fp = &bp->fp[j];
1573 
1574 		bnx2x_free_rx_bds(fp);
1575 
1576 		if (fp->mode != TPA_MODE_DISABLED)
1577 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1578 	}
1579 }
1580 
bnx2x_free_skbs_cnic(struct bnx2x * bp)1581 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1582 {
1583 	bnx2x_free_tx_skbs_cnic(bp);
1584 	bnx2x_free_rx_skbs_cnic(bp);
1585 }
1586 
bnx2x_free_skbs(struct bnx2x * bp)1587 void bnx2x_free_skbs(struct bnx2x *bp)
1588 {
1589 	bnx2x_free_tx_skbs(bp);
1590 	bnx2x_free_rx_skbs(bp);
1591 }
1592 
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1593 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1594 {
1595 	/* load old values */
1596 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1597 
1598 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1599 		/* leave all but MAX value */
1600 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1601 
1602 		/* set new MAX value */
1603 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1604 				& FUNC_MF_CFG_MAX_BW_MASK;
1605 
1606 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1607 	}
1608 }
1609 
1610 /**
1611  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612  *
1613  * @bp:		driver handle
1614  * @nvecs:	number of vectors to be released
1615  */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1616 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1617 {
1618 	int i, offset = 0;
1619 
1620 	if (nvecs == offset)
1621 		return;
1622 
1623 	/* VFs don't have a default SB */
1624 	if (IS_PF(bp)) {
1625 		free_irq(bp->msix_table[offset].vector, bp->dev);
1626 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1627 		   bp->msix_table[offset].vector);
1628 		offset++;
1629 	}
1630 
1631 	if (CNIC_SUPPORT(bp)) {
1632 		if (nvecs == offset)
1633 			return;
1634 		offset++;
1635 	}
1636 
1637 	for_each_eth_queue(bp, i) {
1638 		if (nvecs == offset)
1639 			return;
1640 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1641 		   i, bp->msix_table[offset].vector);
1642 
1643 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1644 	}
1645 }
1646 
bnx2x_free_irq(struct bnx2x * bp)1647 void bnx2x_free_irq(struct bnx2x *bp)
1648 {
1649 	if (bp->flags & USING_MSIX_FLAG &&
1650 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1651 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1652 
1653 		/* vfs don't have a default status block */
1654 		if (IS_PF(bp))
1655 			nvecs++;
1656 
1657 		bnx2x_free_msix_irqs(bp, nvecs);
1658 	} else {
1659 		free_irq(bp->dev->irq, bp->dev);
1660 	}
1661 }
1662 
bnx2x_enable_msix(struct bnx2x * bp)1663 int bnx2x_enable_msix(struct bnx2x *bp)
1664 {
1665 	int msix_vec = 0, i, rc;
1666 
1667 	/* VFs don't have a default status block */
1668 	if (IS_PF(bp)) {
1669 		bp->msix_table[msix_vec].entry = msix_vec;
1670 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1671 			       bp->msix_table[0].entry);
1672 		msix_vec++;
1673 	}
1674 
1675 	/* Cnic requires an msix vector for itself */
1676 	if (CNIC_SUPPORT(bp)) {
1677 		bp->msix_table[msix_vec].entry = msix_vec;
1678 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1679 			       msix_vec, bp->msix_table[msix_vec].entry);
1680 		msix_vec++;
1681 	}
1682 
1683 	/* We need separate vectors for ETH queues only (not FCoE) */
1684 	for_each_eth_queue(bp, i) {
1685 		bp->msix_table[msix_vec].entry = msix_vec;
1686 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1687 			       msix_vec, msix_vec, i);
1688 		msix_vec++;
1689 	}
1690 
1691 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1692 	   msix_vec);
1693 
1694 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1695 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1696 	/*
1697 	 * reconfigure number of tx/rx queues according to available
1698 	 * MSI-X vectors
1699 	 */
1700 	if (rc == -ENOSPC) {
1701 		/* Get by with single vector */
1702 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1703 		if (rc < 0) {
1704 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1705 				       rc);
1706 			goto no_msix;
1707 		}
1708 
1709 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1710 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1711 
1712 		BNX2X_DEV_INFO("set number of queues to 1\n");
1713 		bp->num_ethernet_queues = 1;
1714 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1715 	} else if (rc < 0) {
1716 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1717 		goto no_msix;
1718 	} else if (rc < msix_vec) {
1719 		/* how less vectors we will have? */
1720 		int diff = msix_vec - rc;
1721 
1722 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1723 
1724 		/*
1725 		 * decrease number of queues by number of unallocated entries
1726 		 */
1727 		bp->num_ethernet_queues -= diff;
1728 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1729 
1730 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1731 			       bp->num_queues);
1732 	}
1733 
1734 	bp->flags |= USING_MSIX_FLAG;
1735 
1736 	return 0;
1737 
1738 no_msix:
1739 	/* fall to INTx if not enough memory */
1740 	if (rc == -ENOMEM)
1741 		bp->flags |= DISABLE_MSI_FLAG;
1742 
1743 	return rc;
1744 }
1745 
bnx2x_req_msix_irqs(struct bnx2x * bp)1746 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1747 {
1748 	int i, rc, offset = 0;
1749 
1750 	/* no default status block for vf */
1751 	if (IS_PF(bp)) {
1752 		rc = request_irq(bp->msix_table[offset++].vector,
1753 				 bnx2x_msix_sp_int, 0,
1754 				 bp->dev->name, bp->dev);
1755 		if (rc) {
1756 			BNX2X_ERR("request sp irq failed\n");
1757 			return -EBUSY;
1758 		}
1759 	}
1760 
1761 	if (CNIC_SUPPORT(bp))
1762 		offset++;
1763 
1764 	for_each_eth_queue(bp, i) {
1765 		struct bnx2x_fastpath *fp = &bp->fp[i];
1766 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1767 			 bp->dev->name, i);
1768 
1769 		rc = request_irq(bp->msix_table[offset].vector,
1770 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1771 		if (rc) {
1772 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1773 			      bp->msix_table[offset].vector, rc);
1774 			bnx2x_free_msix_irqs(bp, offset);
1775 			return -EBUSY;
1776 		}
1777 
1778 		offset++;
1779 	}
1780 
1781 	i = BNX2X_NUM_ETH_QUEUES(bp);
1782 	if (IS_PF(bp)) {
1783 		offset = 1 + CNIC_SUPPORT(bp);
1784 		netdev_info(bp->dev,
1785 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1786 			    bp->msix_table[0].vector,
1787 			    0, bp->msix_table[offset].vector,
1788 			    i - 1, bp->msix_table[offset + i - 1].vector);
1789 	} else {
1790 		offset = CNIC_SUPPORT(bp);
1791 		netdev_info(bp->dev,
1792 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1793 			    0, bp->msix_table[offset].vector,
1794 			    i - 1, bp->msix_table[offset + i - 1].vector);
1795 	}
1796 	return 0;
1797 }
1798 
bnx2x_enable_msi(struct bnx2x * bp)1799 int bnx2x_enable_msi(struct bnx2x *bp)
1800 {
1801 	int rc;
1802 
1803 	rc = pci_enable_msi(bp->pdev);
1804 	if (rc) {
1805 		BNX2X_DEV_INFO("MSI is not attainable\n");
1806 		return -1;
1807 	}
1808 	bp->flags |= USING_MSI_FLAG;
1809 
1810 	return 0;
1811 }
1812 
bnx2x_req_irq(struct bnx2x * bp)1813 static int bnx2x_req_irq(struct bnx2x *bp)
1814 {
1815 	unsigned long flags;
1816 	unsigned int irq;
1817 
1818 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1819 		flags = 0;
1820 	else
1821 		flags = IRQF_SHARED;
1822 
1823 	if (bp->flags & USING_MSIX_FLAG)
1824 		irq = bp->msix_table[0].vector;
1825 	else
1826 		irq = bp->pdev->irq;
1827 
1828 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1829 }
1830 
bnx2x_setup_irqs(struct bnx2x * bp)1831 static int bnx2x_setup_irqs(struct bnx2x *bp)
1832 {
1833 	int rc = 0;
1834 	if (bp->flags & USING_MSIX_FLAG &&
1835 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1836 		rc = bnx2x_req_msix_irqs(bp);
1837 		if (rc)
1838 			return rc;
1839 	} else {
1840 		rc = bnx2x_req_irq(bp);
1841 		if (rc) {
1842 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1843 			return rc;
1844 		}
1845 		if (bp->flags & USING_MSI_FLAG) {
1846 			bp->dev->irq = bp->pdev->irq;
1847 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1848 				    bp->dev->irq);
1849 		}
1850 		if (bp->flags & USING_MSIX_FLAG) {
1851 			bp->dev->irq = bp->msix_table[0].vector;
1852 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1853 				    bp->dev->irq);
1854 		}
1855 	}
1856 
1857 	return 0;
1858 }
1859 
bnx2x_napi_enable_cnic(struct bnx2x * bp)1860 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1861 {
1862 	int i;
1863 
1864 	for_each_rx_queue_cnic(bp, i) {
1865 		napi_enable(&bnx2x_fp(bp, i, napi));
1866 	}
1867 }
1868 
bnx2x_napi_enable(struct bnx2x * bp)1869 static void bnx2x_napi_enable(struct bnx2x *bp)
1870 {
1871 	int i;
1872 
1873 	for_each_eth_queue(bp, i) {
1874 		napi_enable(&bnx2x_fp(bp, i, napi));
1875 	}
1876 }
1877 
bnx2x_napi_disable_cnic(struct bnx2x * bp)1878 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1879 {
1880 	int i;
1881 
1882 	for_each_rx_queue_cnic(bp, i) {
1883 		napi_disable(&bnx2x_fp(bp, i, napi));
1884 	}
1885 }
1886 
bnx2x_napi_disable(struct bnx2x * bp)1887 static void bnx2x_napi_disable(struct bnx2x *bp)
1888 {
1889 	int i;
1890 
1891 	for_each_eth_queue(bp, i) {
1892 		napi_disable(&bnx2x_fp(bp, i, napi));
1893 	}
1894 }
1895 
bnx2x_netif_start(struct bnx2x * bp)1896 void bnx2x_netif_start(struct bnx2x *bp)
1897 {
1898 	if (netif_running(bp->dev)) {
1899 		bnx2x_napi_enable(bp);
1900 		if (CNIC_LOADED(bp))
1901 			bnx2x_napi_enable_cnic(bp);
1902 		bnx2x_int_enable(bp);
1903 		if (bp->state == BNX2X_STATE_OPEN)
1904 			netif_tx_wake_all_queues(bp->dev);
1905 	}
1906 }
1907 
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1908 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1909 {
1910 	bnx2x_int_disable_sync(bp, disable_hw);
1911 	bnx2x_napi_disable(bp);
1912 	if (CNIC_LOADED(bp))
1913 		bnx2x_napi_disable_cnic(bp);
1914 }
1915 
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1916 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1917 		       struct net_device *sb_dev)
1918 {
1919 	struct bnx2x *bp = netdev_priv(dev);
1920 
1921 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1922 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1923 		u16 ether_type = ntohs(hdr->h_proto);
1924 
1925 		/* Skip VLAN tag if present */
1926 		if (ether_type == ETH_P_8021Q) {
1927 			struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
1928 
1929 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1930 		}
1931 
1932 		/* If ethertype is FCoE or FIP - use FCoE ring */
1933 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1934 			return bnx2x_fcoe_tx(bp, txq_index);
1935 	}
1936 
1937 	/* select a non-FCoE queue */
1938 	return netdev_pick_tx(dev, skb, NULL) %
1939 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1940 }
1941 
bnx2x_set_num_queues(struct bnx2x * bp)1942 void bnx2x_set_num_queues(struct bnx2x *bp)
1943 {
1944 	/* RSS queues */
1945 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1946 
1947 	/* override in STORAGE SD modes */
1948 	if (IS_MF_STORAGE_ONLY(bp))
1949 		bp->num_ethernet_queues = 1;
1950 
1951 	/* Add special queues */
1952 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1953 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1954 
1955 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1956 }
1957 
1958 /**
1959  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1960  *
1961  * @bp:		Driver handle
1962  * @include_cnic: handle cnic case
1963  *
1964  * We currently support for at most 16 Tx queues for each CoS thus we will
1965  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1966  * bp->max_cos.
1967  *
1968  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1969  * index after all ETH L2 indices.
1970  *
1971  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1972  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1973  * 16..31,...) with indices that are not coupled with any real Tx queue.
1974  *
1975  * The proper configuration of skb->queue_mapping is handled by
1976  * bnx2x_select_queue() and __skb_tx_hash().
1977  *
1978  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1979  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1980  */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1981 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1982 {
1983 	int rc, tx, rx;
1984 
1985 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1986 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1987 
1988 /* account for fcoe queue */
1989 	if (include_cnic && !NO_FCOE(bp)) {
1990 		rx++;
1991 		tx++;
1992 	}
1993 
1994 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1995 	if (rc) {
1996 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1997 		return rc;
1998 	}
1999 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2000 	if (rc) {
2001 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2002 		return rc;
2003 	}
2004 
2005 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2006 			  tx, rx);
2007 
2008 	return rc;
2009 }
2010 
bnx2x_set_rx_buf_size(struct bnx2x * bp)2011 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2012 {
2013 	int i;
2014 
2015 	for_each_queue(bp, i) {
2016 		struct bnx2x_fastpath *fp = &bp->fp[i];
2017 		u32 mtu;
2018 
2019 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2020 		if (IS_FCOE_IDX(i))
2021 			/*
2022 			 * Although there are no IP frames expected to arrive to
2023 			 * this ring we still want to add an
2024 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2025 			 * overrun attack.
2026 			 */
2027 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2028 		else
2029 			mtu = bp->dev->mtu;
2030 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2031 				  IP_HEADER_ALIGNMENT_PADDING +
2032 				  ETH_OVERHEAD +
2033 				  mtu +
2034 				  BNX2X_FW_RX_ALIGN_END;
2035 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2036 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2037 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2038 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2039 		else
2040 			fp->rx_frag_size = 0;
2041 	}
2042 }
2043 
bnx2x_init_rss(struct bnx2x * bp)2044 static int bnx2x_init_rss(struct bnx2x *bp)
2045 {
2046 	int i;
2047 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2048 
2049 	/* Prepare the initial contents for the indirection table if RSS is
2050 	 * enabled
2051 	 */
2052 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2053 		bp->rss_conf_obj.ind_table[i] =
2054 			bp->fp->cl_id +
2055 			ethtool_rxfh_indir_default(i, num_eth_queues);
2056 
2057 	/*
2058 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2059 	 * per-port, so if explicit configuration is needed , do it only
2060 	 * for a PMF.
2061 	 *
2062 	 * For 57712 and newer on the other hand it's a per-function
2063 	 * configuration.
2064 	 */
2065 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2066 }
2067 
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2068 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2069 	      bool config_hash, bool enable)
2070 {
2071 	struct bnx2x_config_rss_params params = {NULL};
2072 
2073 	/* Although RSS is meaningless when there is a single HW queue we
2074 	 * still need it enabled in order to have HW Rx hash generated.
2075 	 *
2076 	 * if (!is_eth_multi(bp))
2077 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2078 	 */
2079 
2080 	params.rss_obj = rss_obj;
2081 
2082 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2083 
2084 	if (enable) {
2085 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2086 
2087 		/* RSS configuration */
2088 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2089 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2090 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2091 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2092 		if (rss_obj->udp_rss_v4)
2093 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2094 		if (rss_obj->udp_rss_v6)
2095 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2096 
2097 		if (!CHIP_IS_E1x(bp)) {
2098 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2099 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2100 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2101 
2102 			/* valid only for TUNN_MODE_GRE tunnel mode */
2103 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2104 		}
2105 	} else {
2106 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2107 	}
2108 
2109 	/* Hash bits */
2110 	params.rss_result_mask = MULTI_MASK;
2111 
2112 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2113 
2114 	if (config_hash) {
2115 		/* RSS keys */
2116 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2117 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2118 	}
2119 
2120 	if (IS_PF(bp))
2121 		return bnx2x_config_rss(bp, &params);
2122 	else
2123 		return bnx2x_vfpf_config_rss(bp, &params);
2124 }
2125 
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2126 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2127 {
2128 	struct bnx2x_func_state_params func_params = {NULL};
2129 
2130 	/* Prepare parameters for function state transitions */
2131 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2132 
2133 	func_params.f_obj = &bp->func_obj;
2134 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2135 
2136 	func_params.params.hw_init.load_phase = load_code;
2137 
2138 	return bnx2x_func_state_change(bp, &func_params);
2139 }
2140 
2141 /*
2142  * Cleans the object that have internal lists without sending
2143  * ramrods. Should be run when interrupts are disabled.
2144  */
bnx2x_squeeze_objects(struct bnx2x * bp)2145 void bnx2x_squeeze_objects(struct bnx2x *bp)
2146 {
2147 	int rc;
2148 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2149 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2150 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2151 
2152 	/***************** Cleanup MACs' object first *************************/
2153 
2154 	/* Wait for completion of requested */
2155 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2156 	/* Perform a dry cleanup */
2157 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2158 
2159 	/* Clean ETH primary MAC */
2160 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2161 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2162 				 &ramrod_flags);
2163 	if (rc != 0)
2164 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2165 
2166 	/* Cleanup UC list */
2167 	vlan_mac_flags = 0;
2168 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2169 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2170 				 &ramrod_flags);
2171 	if (rc != 0)
2172 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2173 
2174 	/***************** Now clean mcast object *****************************/
2175 	rparam.mcast_obj = &bp->mcast_obj;
2176 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2177 
2178 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2179 	 * we take a lock surrounding both the initial send and the CONTs,
2180 	 * as we don't want a true completion to disrupt us in the middle.
2181 	 */
2182 	netif_addr_lock_bh(bp->dev);
2183 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2184 	if (rc < 0)
2185 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2186 			  rc);
2187 
2188 	/* ...and wait until all pending commands are cleared */
2189 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2190 	while (rc != 0) {
2191 		if (rc < 0) {
2192 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2193 				  rc);
2194 			netif_addr_unlock_bh(bp->dev);
2195 			return;
2196 		}
2197 
2198 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2199 	}
2200 	netif_addr_unlock_bh(bp->dev);
2201 }
2202 
2203 #ifndef BNX2X_STOP_ON_ERROR
2204 #define LOAD_ERROR_EXIT(bp, label) \
2205 	do { \
2206 		(bp)->state = BNX2X_STATE_ERROR; \
2207 		goto label; \
2208 	} while (0)
2209 
2210 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2211 	do { \
2212 		bp->cnic_loaded = false; \
2213 		goto label; \
2214 	} while (0)
2215 #else /*BNX2X_STOP_ON_ERROR*/
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 	do { \
2218 		(bp)->state = BNX2X_STATE_ERROR; \
2219 		(bp)->panic = 1; \
2220 		return -EBUSY; \
2221 	} while (0)
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 	do { \
2224 		bp->cnic_loaded = false; \
2225 		(bp)->panic = 1; \
2226 		return -EBUSY; \
2227 	} while (0)
2228 #endif /*BNX2X_STOP_ON_ERROR*/
2229 
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2230 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2231 {
2232 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2233 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2234 	return;
2235 }
2236 
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2237 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2238 {
2239 	int num_groups, vf_headroom = 0;
2240 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2241 
2242 	/* number of queues for statistics is number of eth queues + FCoE */
2243 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2244 
2245 	/* Total number of FW statistics requests =
2246 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2247 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2248 	 * for fcoe l2 queue if applicable)
2249 	 */
2250 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2251 
2252 	/* vf stats appear in the request list, but their data is allocated by
2253 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2254 	 * it is used to determine where to place the vf stats queries in the
2255 	 * request struct
2256 	 */
2257 	if (IS_SRIOV(bp))
2258 		vf_headroom = bnx2x_vf_headroom(bp);
2259 
2260 	/* Request is built from stats_query_header and an array of
2261 	 * stats_query_cmd_group each of which contains
2262 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2263 	 * configured in the stats_query_header.
2264 	 */
2265 	num_groups =
2266 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2267 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2268 		 1 : 0));
2269 
2270 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2271 	   bp->fw_stats_num, vf_headroom, num_groups);
2272 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2273 		num_groups * sizeof(struct stats_query_cmd_group);
2274 
2275 	/* Data for statistics requests + stats_counter
2276 	 * stats_counter holds per-STORM counters that are incremented
2277 	 * when STORM has finished with the current request.
2278 	 * memory for FCoE offloaded statistics are counted anyway,
2279 	 * even if they will not be sent.
2280 	 * VF stats are not accounted for here as the data of VF stats is stored
2281 	 * in memory allocated by the VF, not here.
2282 	 */
2283 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2284 		sizeof(struct per_pf_stats) +
2285 		sizeof(struct fcoe_statistics_params) +
2286 		sizeof(struct per_queue_stats) * num_queue_stats +
2287 		sizeof(struct stats_counter);
2288 
2289 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2290 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2291 	if (!bp->fw_stats)
2292 		goto alloc_mem_err;
2293 
2294 	/* Set shortcuts */
2295 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2296 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2297 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2298 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2299 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2300 		bp->fw_stats_req_sz;
2301 
2302 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2303 	   U64_HI(bp->fw_stats_req_mapping),
2304 	   U64_LO(bp->fw_stats_req_mapping));
2305 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2306 	   U64_HI(bp->fw_stats_data_mapping),
2307 	   U64_LO(bp->fw_stats_data_mapping));
2308 	return 0;
2309 
2310 alloc_mem_err:
2311 	bnx2x_free_fw_stats_mem(bp);
2312 	BNX2X_ERR("Can't allocate FW stats memory\n");
2313 	return -ENOMEM;
2314 }
2315 
2316 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2317 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2318 {
2319 	u32 param;
2320 
2321 	/* init fw_seq */
2322 	bp->fw_seq =
2323 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2324 		 DRV_MSG_SEQ_NUMBER_MASK);
2325 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2326 
2327 	/* Get current FW pulse sequence */
2328 	bp->fw_drv_pulse_wr_seq =
2329 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2330 		 DRV_PULSE_SEQ_MASK);
2331 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2332 
2333 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2334 
2335 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2336 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2337 
2338 	/* load request */
2339 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2340 
2341 	/* if mcp fails to respond we must abort */
2342 	if (!(*load_code)) {
2343 		BNX2X_ERR("MCP response failure, aborting\n");
2344 		return -EBUSY;
2345 	}
2346 
2347 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2348 	 * must abort
2349 	 */
2350 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2351 		BNX2X_ERR("MCP refused load request, aborting\n");
2352 		return -EBUSY;
2353 	}
2354 	return 0;
2355 }
2356 
2357 /* check whether another PF has already loaded FW to chip. In
2358  * virtualized environments a pf from another VM may have already
2359  * initialized the device including loading FW
2360  */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2361 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2362 {
2363 	/* is another pf loaded on this engine? */
2364 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2365 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2366 		u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2367 		u32 loaded_fw;
2368 
2369 		/* read loaded FW from chip */
2370 		loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2371 
2372 		loaded_fw_major = loaded_fw & 0xff;
2373 		loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2374 		loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2375 		loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2376 
2377 		DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2378 		   loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2379 
2380 		/* abort nic load if version mismatch */
2381 		if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2382 		    loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2383 		    loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2384 		    loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2385 			if (print_err)
2386 				BNX2X_ERR("loaded FW incompatible. Aborting\n");
2387 			else
2388 				BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2389 
2390 			return -EBUSY;
2391 		}
2392 	}
2393 	return 0;
2394 }
2395 
2396 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2397 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2398 {
2399 	int path = BP_PATH(bp);
2400 
2401 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2402 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2403 	   bnx2x_load_count[path][2]);
2404 	bnx2x_load_count[path][0]++;
2405 	bnx2x_load_count[path][1 + port]++;
2406 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2407 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2408 	   bnx2x_load_count[path][2]);
2409 	if (bnx2x_load_count[path][0] == 1)
2410 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2411 	else if (bnx2x_load_count[path][1 + port] == 1)
2412 		return FW_MSG_CODE_DRV_LOAD_PORT;
2413 	else
2414 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2415 }
2416 
2417 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2418 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2419 {
2420 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2421 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2422 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2423 		bp->port.pmf = 1;
2424 		/* We need the barrier to ensure the ordering between the
2425 		 * writing to bp->port.pmf here and reading it from the
2426 		 * bnx2x_periodic_task().
2427 		 */
2428 		smp_mb();
2429 	} else {
2430 		bp->port.pmf = 0;
2431 	}
2432 
2433 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2434 }
2435 
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2436 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2437 {
2438 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2439 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2440 	    (bp->common.shmem2_base)) {
2441 		if (SHMEM2_HAS(bp, dcc_support))
2442 			SHMEM2_WR(bp, dcc_support,
2443 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2444 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2445 		if (SHMEM2_HAS(bp, afex_driver_support))
2446 			SHMEM2_WR(bp, afex_driver_support,
2447 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2448 	}
2449 
2450 	/* Set AFEX default VLAN tag to an invalid value */
2451 	bp->afex_def_vlan_tag = -1;
2452 }
2453 
2454 /**
2455  * bnx2x_bz_fp - zero content of the fastpath structure.
2456  *
2457  * @bp:		driver handle
2458  * @index:	fastpath index to be zeroed
2459  *
2460  * Makes sure the contents of the bp->fp[index].napi is kept
2461  * intact.
2462  */
bnx2x_bz_fp(struct bnx2x * bp,int index)2463 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2464 {
2465 	struct bnx2x_fastpath *fp = &bp->fp[index];
2466 	int cos;
2467 	struct napi_struct orig_napi = fp->napi;
2468 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2469 
2470 	/* bzero bnx2x_fastpath contents */
2471 	if (fp->tpa_info)
2472 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2473 		       sizeof(struct bnx2x_agg_info));
2474 	memset(fp, 0, sizeof(*fp));
2475 
2476 	/* Restore the NAPI object as it has been already initialized */
2477 	fp->napi = orig_napi;
2478 	fp->tpa_info = orig_tpa_info;
2479 	fp->bp = bp;
2480 	fp->index = index;
2481 	if (IS_ETH_FP(fp))
2482 		fp->max_cos = bp->max_cos;
2483 	else
2484 		/* Special queues support only one CoS */
2485 		fp->max_cos = 1;
2486 
2487 	/* Init txdata pointers */
2488 	if (IS_FCOE_FP(fp))
2489 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2490 	if (IS_ETH_FP(fp))
2491 		for_each_cos_in_tx_queue(fp, cos)
2492 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2493 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2494 
2495 	/* set the tpa flag for each queue. The tpa flag determines the queue
2496 	 * minimal size so it must be set prior to queue memory allocation
2497 	 */
2498 	if (bp->dev->features & NETIF_F_LRO)
2499 		fp->mode = TPA_MODE_LRO;
2500 	else if (bp->dev->features & NETIF_F_GRO_HW)
2501 		fp->mode = TPA_MODE_GRO;
2502 	else
2503 		fp->mode = TPA_MODE_DISABLED;
2504 
2505 	/* We don't want TPA if it's disabled in bp
2506 	 * or if this is an FCoE L2 ring.
2507 	 */
2508 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2509 		fp->mode = TPA_MODE_DISABLED;
2510 }
2511 
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2512 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2513 {
2514 	u32 cur;
2515 
2516 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2517 		return;
2518 
2519 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2520 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2521 	   cur, state);
2522 
2523 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2524 }
2525 
bnx2x_load_cnic(struct bnx2x * bp)2526 int bnx2x_load_cnic(struct bnx2x *bp)
2527 {
2528 	int i, rc, port = BP_PORT(bp);
2529 
2530 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2531 
2532 	mutex_init(&bp->cnic_mutex);
2533 
2534 	if (IS_PF(bp)) {
2535 		rc = bnx2x_alloc_mem_cnic(bp);
2536 		if (rc) {
2537 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2538 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2539 		}
2540 	}
2541 
2542 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2543 	if (rc) {
2544 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2545 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2546 	}
2547 
2548 	/* Update the number of queues with the cnic queues */
2549 	rc = bnx2x_set_real_num_queues(bp, 1);
2550 	if (rc) {
2551 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2552 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2553 	}
2554 
2555 	/* Add all CNIC NAPI objects */
2556 	bnx2x_add_all_napi_cnic(bp);
2557 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2558 	bnx2x_napi_enable_cnic(bp);
2559 
2560 	rc = bnx2x_init_hw_func_cnic(bp);
2561 	if (rc)
2562 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2563 
2564 	bnx2x_nic_init_cnic(bp);
2565 
2566 	if (IS_PF(bp)) {
2567 		/* Enable Timer scan */
2568 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2569 
2570 		/* setup cnic queues */
2571 		for_each_cnic_queue(bp, i) {
2572 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2573 			if (rc) {
2574 				BNX2X_ERR("Queue setup failed\n");
2575 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2576 			}
2577 		}
2578 	}
2579 
2580 	/* Initialize Rx filter. */
2581 	bnx2x_set_rx_mode_inner(bp);
2582 
2583 	/* re-read iscsi info */
2584 	bnx2x_get_iscsi_info(bp);
2585 	bnx2x_setup_cnic_irq_info(bp);
2586 	bnx2x_setup_cnic_info(bp);
2587 	bp->cnic_loaded = true;
2588 	if (bp->state == BNX2X_STATE_OPEN)
2589 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2590 
2591 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2592 
2593 	return 0;
2594 
2595 #ifndef BNX2X_STOP_ON_ERROR
2596 load_error_cnic2:
2597 	/* Disable Timer scan */
2598 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2599 
2600 load_error_cnic1:
2601 	bnx2x_napi_disable_cnic(bp);
2602 	/* Update the number of queues without the cnic queues */
2603 	if (bnx2x_set_real_num_queues(bp, 0))
2604 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2605 load_error_cnic0:
2606 	BNX2X_ERR("CNIC-related load failed\n");
2607 	bnx2x_free_fp_mem_cnic(bp);
2608 	bnx2x_free_mem_cnic(bp);
2609 	return rc;
2610 #endif /* ! BNX2X_STOP_ON_ERROR */
2611 }
2612 
2613 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2614 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2615 {
2616 	int port = BP_PORT(bp);
2617 	int i, rc = 0, load_code = 0;
2618 
2619 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2620 	DP(NETIF_MSG_IFUP,
2621 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2622 
2623 #ifdef BNX2X_STOP_ON_ERROR
2624 	if (unlikely(bp->panic)) {
2625 		BNX2X_ERR("Can't load NIC when there is panic\n");
2626 		return -EPERM;
2627 	}
2628 #endif
2629 
2630 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2631 
2632 	/* zero the structure w/o any lock, before SP handler is initialized */
2633 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2634 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2635 		&bp->last_reported_link.link_report_flags);
2636 
2637 	if (IS_PF(bp))
2638 		/* must be called before memory allocation and HW init */
2639 		bnx2x_ilt_set_info(bp);
2640 
2641 	/*
2642 	 * Zero fastpath structures preserving invariants like napi, which are
2643 	 * allocated only once, fp index, max_cos, bp pointer.
2644 	 * Also set fp->mode and txdata_ptr.
2645 	 */
2646 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2647 	for_each_queue(bp, i)
2648 		bnx2x_bz_fp(bp, i);
2649 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2650 				  bp->num_cnic_queues) *
2651 				  sizeof(struct bnx2x_fp_txdata));
2652 
2653 	bp->fcoe_init = false;
2654 
2655 	/* Set the receive queues buffer size */
2656 	bnx2x_set_rx_buf_size(bp);
2657 
2658 	if (IS_PF(bp)) {
2659 		rc = bnx2x_alloc_mem(bp);
2660 		if (rc) {
2661 			BNX2X_ERR("Unable to allocate bp memory\n");
2662 			return rc;
2663 		}
2664 	}
2665 
2666 	/* need to be done after alloc mem, since it's self adjusting to amount
2667 	 * of memory available for RSS queues
2668 	 */
2669 	rc = bnx2x_alloc_fp_mem(bp);
2670 	if (rc) {
2671 		BNX2X_ERR("Unable to allocate memory for fps\n");
2672 		LOAD_ERROR_EXIT(bp, load_error0);
2673 	}
2674 
2675 	/* Allocated memory for FW statistics  */
2676 	rc = bnx2x_alloc_fw_stats_mem(bp);
2677 	if (rc)
2678 		LOAD_ERROR_EXIT(bp, load_error0);
2679 
2680 	/* request pf to initialize status blocks */
2681 	if (IS_VF(bp)) {
2682 		rc = bnx2x_vfpf_init(bp);
2683 		if (rc)
2684 			LOAD_ERROR_EXIT(bp, load_error0);
2685 	}
2686 
2687 	/* As long as bnx2x_alloc_mem() may possibly update
2688 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2689 	 * come after it. At this stage cnic queues are not counted.
2690 	 */
2691 	rc = bnx2x_set_real_num_queues(bp, 0);
2692 	if (rc) {
2693 		BNX2X_ERR("Unable to set real_num_queues\n");
2694 		LOAD_ERROR_EXIT(bp, load_error0);
2695 	}
2696 
2697 	/* configure multi cos mappings in kernel.
2698 	 * this configuration may be overridden by a multi class queue
2699 	 * discipline or by a dcbx negotiation result.
2700 	 */
2701 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2702 
2703 	/* Add all NAPI objects */
2704 	bnx2x_add_all_napi(bp);
2705 	DP(NETIF_MSG_IFUP, "napi added\n");
2706 	bnx2x_napi_enable(bp);
2707 
2708 	if (IS_PF(bp)) {
2709 		/* set pf load just before approaching the MCP */
2710 		bnx2x_set_pf_load(bp);
2711 
2712 		/* if mcp exists send load request and analyze response */
2713 		if (!BP_NOMCP(bp)) {
2714 			/* attempt to load pf */
2715 			rc = bnx2x_nic_load_request(bp, &load_code);
2716 			if (rc)
2717 				LOAD_ERROR_EXIT(bp, load_error1);
2718 
2719 			/* what did mcp say? */
2720 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2721 			if (rc) {
2722 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2723 				LOAD_ERROR_EXIT(bp, load_error2);
2724 			}
2725 		} else {
2726 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2727 		}
2728 
2729 		/* mark pmf if applicable */
2730 		bnx2x_nic_load_pmf(bp, load_code);
2731 
2732 		/* Init Function state controlling object */
2733 		bnx2x__init_func_obj(bp);
2734 
2735 		/* Initialize HW */
2736 		rc = bnx2x_init_hw(bp, load_code);
2737 		if (rc) {
2738 			BNX2X_ERR("HW init failed, aborting\n");
2739 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2740 			LOAD_ERROR_EXIT(bp, load_error2);
2741 		}
2742 	}
2743 
2744 	bnx2x_pre_irq_nic_init(bp);
2745 
2746 	/* Connect to IRQs */
2747 	rc = bnx2x_setup_irqs(bp);
2748 	if (rc) {
2749 		BNX2X_ERR("setup irqs failed\n");
2750 		if (IS_PF(bp))
2751 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2752 		LOAD_ERROR_EXIT(bp, load_error2);
2753 	}
2754 
2755 	/* Init per-function objects */
2756 	if (IS_PF(bp)) {
2757 		/* Setup NIC internals and enable interrupts */
2758 		bnx2x_post_irq_nic_init(bp, load_code);
2759 
2760 		bnx2x_init_bp_objs(bp);
2761 		bnx2x_iov_nic_init(bp);
2762 
2763 		/* Set AFEX default VLAN tag to an invalid value */
2764 		bp->afex_def_vlan_tag = -1;
2765 		bnx2x_nic_load_afex_dcc(bp, load_code);
2766 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2767 		rc = bnx2x_func_start(bp);
2768 		if (rc) {
2769 			BNX2X_ERR("Function start failed!\n");
2770 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2771 
2772 			LOAD_ERROR_EXIT(bp, load_error3);
2773 		}
2774 
2775 		/* Send LOAD_DONE command to MCP */
2776 		if (!BP_NOMCP(bp)) {
2777 			load_code = bnx2x_fw_command(bp,
2778 						     DRV_MSG_CODE_LOAD_DONE, 0);
2779 			if (!load_code) {
2780 				BNX2X_ERR("MCP response failure, aborting\n");
2781 				rc = -EBUSY;
2782 				LOAD_ERROR_EXIT(bp, load_error3);
2783 			}
2784 		}
2785 
2786 		/* initialize FW coalescing state machines in RAM */
2787 		bnx2x_update_coalesce(bp);
2788 	}
2789 
2790 	/* setup the leading queue */
2791 	rc = bnx2x_setup_leading(bp);
2792 	if (rc) {
2793 		BNX2X_ERR("Setup leading failed!\n");
2794 		LOAD_ERROR_EXIT(bp, load_error3);
2795 	}
2796 
2797 	/* set up the rest of the queues */
2798 	for_each_nondefault_eth_queue(bp, i) {
2799 		if (IS_PF(bp))
2800 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2801 		else /* VF */
2802 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2803 		if (rc) {
2804 			BNX2X_ERR("Queue %d setup failed\n", i);
2805 			LOAD_ERROR_EXIT(bp, load_error3);
2806 		}
2807 	}
2808 
2809 	/* setup rss */
2810 	rc = bnx2x_init_rss(bp);
2811 	if (rc) {
2812 		BNX2X_ERR("PF RSS init failed\n");
2813 		LOAD_ERROR_EXIT(bp, load_error3);
2814 	}
2815 
2816 	/* Now when Clients are configured we are ready to work */
2817 	bp->state = BNX2X_STATE_OPEN;
2818 
2819 	/* Configure a ucast MAC */
2820 	if (IS_PF(bp))
2821 		rc = bnx2x_set_eth_mac(bp, true);
2822 	else /* vf */
2823 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2824 					   true);
2825 	if (rc) {
2826 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2827 		LOAD_ERROR_EXIT(bp, load_error3);
2828 	}
2829 
2830 	if (IS_PF(bp) && bp->pending_max) {
2831 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2832 		bp->pending_max = 0;
2833 	}
2834 
2835 	bp->force_link_down = false;
2836 	if (bp->port.pmf) {
2837 		rc = bnx2x_initial_phy_init(bp, load_mode);
2838 		if (rc)
2839 			LOAD_ERROR_EXIT(bp, load_error3);
2840 	}
2841 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2842 
2843 	/* Start fast path */
2844 
2845 	/* Re-configure vlan filters */
2846 	rc = bnx2x_vlan_reconfigure_vid(bp);
2847 	if (rc)
2848 		LOAD_ERROR_EXIT(bp, load_error3);
2849 
2850 	/* Initialize Rx filter. */
2851 	bnx2x_set_rx_mode_inner(bp);
2852 
2853 	if (bp->flags & PTP_SUPPORTED) {
2854 		bnx2x_register_phc(bp);
2855 		bnx2x_init_ptp(bp);
2856 		bnx2x_configure_ptp_filters(bp);
2857 	}
2858 	/* Start Tx */
2859 	switch (load_mode) {
2860 	case LOAD_NORMAL:
2861 		/* Tx queue should be only re-enabled */
2862 		netif_tx_wake_all_queues(bp->dev);
2863 		break;
2864 
2865 	case LOAD_OPEN:
2866 		netif_tx_start_all_queues(bp->dev);
2867 		smp_mb__after_atomic();
2868 		break;
2869 
2870 	case LOAD_DIAG:
2871 	case LOAD_LOOPBACK_EXT:
2872 		bp->state = BNX2X_STATE_DIAG;
2873 		break;
2874 
2875 	default:
2876 		break;
2877 	}
2878 
2879 	if (bp->port.pmf)
2880 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2881 	else
2882 		bnx2x__link_status_update(bp);
2883 
2884 	/* start the timer */
2885 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2886 
2887 	if (CNIC_ENABLED(bp))
2888 		bnx2x_load_cnic(bp);
2889 
2890 	if (IS_PF(bp))
2891 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2892 
2893 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2894 		/* mark driver is loaded in shmem2 */
2895 		u32 val;
2896 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2897 		val &= ~DRV_FLAGS_MTU_MASK;
2898 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2899 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2900 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2901 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2902 	}
2903 
2904 	/* Wait for all pending SP commands to complete */
2905 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2906 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2907 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2908 		return -EBUSY;
2909 	}
2910 
2911 	/* Update driver data for On-Chip MFW dump. */
2912 	if (IS_PF(bp))
2913 		bnx2x_update_mfw_dump(bp);
2914 
2915 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2916 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2917 		bnx2x_dcbx_init(bp, false);
2918 
2919 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2920 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2921 
2922 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2923 
2924 	return 0;
2925 
2926 #ifndef BNX2X_STOP_ON_ERROR
2927 load_error3:
2928 	if (IS_PF(bp)) {
2929 		bnx2x_int_disable_sync(bp, 1);
2930 
2931 		/* Clean queueable objects */
2932 		bnx2x_squeeze_objects(bp);
2933 	}
2934 
2935 	/* Free SKBs, SGEs, TPA pool and driver internals */
2936 	bnx2x_free_skbs(bp);
2937 	for_each_rx_queue(bp, i)
2938 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2939 
2940 	/* Release IRQs */
2941 	bnx2x_free_irq(bp);
2942 load_error2:
2943 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2944 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2945 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2946 	}
2947 
2948 	bp->port.pmf = 0;
2949 load_error1:
2950 	bnx2x_napi_disable(bp);
2951 	bnx2x_del_all_napi(bp);
2952 
2953 	/* clear pf_load status, as it was already set */
2954 	if (IS_PF(bp))
2955 		bnx2x_clear_pf_load(bp);
2956 load_error0:
2957 	bnx2x_free_fw_stats_mem(bp);
2958 	bnx2x_free_fp_mem(bp);
2959 	bnx2x_free_mem(bp);
2960 
2961 	return rc;
2962 #endif /* ! BNX2X_STOP_ON_ERROR */
2963 }
2964 
bnx2x_drain_tx_queues(struct bnx2x * bp)2965 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2966 {
2967 	u8 rc = 0, cos, i;
2968 
2969 	/* Wait until tx fastpath tasks complete */
2970 	for_each_tx_queue(bp, i) {
2971 		struct bnx2x_fastpath *fp = &bp->fp[i];
2972 
2973 		for_each_cos_in_tx_queue(fp, cos)
2974 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2975 		if (rc)
2976 			return rc;
2977 	}
2978 	return 0;
2979 }
2980 
2981 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2982 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2983 {
2984 	int i;
2985 	bool global = false;
2986 
2987 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2988 
2989 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2990 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2991 
2992 	/* mark driver is unloaded in shmem2 */
2993 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2994 		u32 val;
2995 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2996 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2997 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2998 	}
2999 
3000 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3001 	    (bp->state == BNX2X_STATE_CLOSED ||
3002 	     bp->state == BNX2X_STATE_ERROR)) {
3003 		/* We can get here if the driver has been unloaded
3004 		 * during parity error recovery and is either waiting for a
3005 		 * leader to complete or for other functions to unload and
3006 		 * then ifdown has been issued. In this case we want to
3007 		 * unload and let other functions to complete a recovery
3008 		 * process.
3009 		 */
3010 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3011 		bp->is_leader = 0;
3012 		bnx2x_release_leader_lock(bp);
3013 		smp_mb();
3014 
3015 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3016 		BNX2X_ERR("Can't unload in closed or error state\n");
3017 		return -EINVAL;
3018 	}
3019 
3020 	/* Nothing to do during unload if previous bnx2x_nic_load()
3021 	 * have not completed successfully - all resources are released.
3022 	 *
3023 	 * we can get here only after unsuccessful ndo_* callback, during which
3024 	 * dev->IFF_UP flag is still on.
3025 	 */
3026 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3027 		return 0;
3028 
3029 	/* It's important to set the bp->state to the value different from
3030 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3031 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3032 	 */
3033 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3034 	smp_mb();
3035 
3036 	/* indicate to VFs that the PF is going down */
3037 	bnx2x_iov_channel_down(bp);
3038 
3039 	if (CNIC_LOADED(bp))
3040 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3041 
3042 	/* Stop Tx */
3043 	bnx2x_tx_disable(bp);
3044 	netdev_reset_tc(bp->dev);
3045 
3046 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3047 
3048 	del_timer_sync(&bp->timer);
3049 
3050 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3051 		/* Set ALWAYS_ALIVE bit in shmem */
3052 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3053 		bnx2x_drv_pulse(bp);
3054 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3055 		bnx2x_save_statistics(bp);
3056 	}
3057 
3058 	/* wait till consumers catch up with producers in all queues.
3059 	 * If we're recovering, FW can't write to host so no reason
3060 	 * to wait for the queues to complete all Tx.
3061 	 */
3062 	if (unload_mode != UNLOAD_RECOVERY)
3063 		bnx2x_drain_tx_queues(bp);
3064 
3065 	/* if VF indicate to PF this function is going down (PF will delete sp
3066 	 * elements and clear initializations
3067 	 */
3068 	if (IS_VF(bp)) {
3069 		bnx2x_clear_vlan_info(bp);
3070 		bnx2x_vfpf_close_vf(bp);
3071 	} else if (unload_mode != UNLOAD_RECOVERY) {
3072 		/* if this is a normal/close unload need to clean up chip*/
3073 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3074 	} else {
3075 		/* Send the UNLOAD_REQUEST to the MCP */
3076 		bnx2x_send_unload_req(bp, unload_mode);
3077 
3078 		/* Prevent transactions to host from the functions on the
3079 		 * engine that doesn't reset global blocks in case of global
3080 		 * attention once global blocks are reset and gates are opened
3081 		 * (the engine which leader will perform the recovery
3082 		 * last).
3083 		 */
3084 		if (!CHIP_IS_E1x(bp))
3085 			bnx2x_pf_disable(bp);
3086 
3087 		/* Disable HW interrupts, NAPI */
3088 		bnx2x_netif_stop(bp, 1);
3089 		/* Delete all NAPI objects */
3090 		bnx2x_del_all_napi(bp);
3091 		if (CNIC_LOADED(bp))
3092 			bnx2x_del_all_napi_cnic(bp);
3093 		/* Release IRQs */
3094 		bnx2x_free_irq(bp);
3095 
3096 		/* Report UNLOAD_DONE to MCP */
3097 		bnx2x_send_unload_done(bp, false);
3098 	}
3099 
3100 	/*
3101 	 * At this stage no more interrupts will arrive so we may safely clean
3102 	 * the queueable objects here in case they failed to get cleaned so far.
3103 	 */
3104 	if (IS_PF(bp))
3105 		bnx2x_squeeze_objects(bp);
3106 
3107 	/* There should be no more pending SP commands at this stage */
3108 	bp->sp_state = 0;
3109 
3110 	bp->port.pmf = 0;
3111 
3112 	/* clear pending work in rtnl task */
3113 	bp->sp_rtnl_state = 0;
3114 	smp_mb();
3115 
3116 	/* Free SKBs, SGEs, TPA pool and driver internals */
3117 	bnx2x_free_skbs(bp);
3118 	if (CNIC_LOADED(bp))
3119 		bnx2x_free_skbs_cnic(bp);
3120 	for_each_rx_queue(bp, i)
3121 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3122 
3123 	bnx2x_free_fp_mem(bp);
3124 	if (CNIC_LOADED(bp))
3125 		bnx2x_free_fp_mem_cnic(bp);
3126 
3127 	if (IS_PF(bp)) {
3128 		if (CNIC_LOADED(bp))
3129 			bnx2x_free_mem_cnic(bp);
3130 	}
3131 	bnx2x_free_mem(bp);
3132 
3133 	bp->state = BNX2X_STATE_CLOSED;
3134 	bp->cnic_loaded = false;
3135 
3136 	/* Clear driver version indication in shmem */
3137 	if (IS_PF(bp) && !BP_NOMCP(bp))
3138 		bnx2x_update_mng_version(bp);
3139 
3140 	/* Check if there are pending parity attentions. If there are - set
3141 	 * RECOVERY_IN_PROGRESS.
3142 	 */
3143 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3144 		bnx2x_set_reset_in_progress(bp);
3145 
3146 		/* Set RESET_IS_GLOBAL if needed */
3147 		if (global)
3148 			bnx2x_set_reset_global(bp);
3149 	}
3150 
3151 	/* The last driver must disable a "close the gate" if there is no
3152 	 * parity attention or "process kill" pending.
3153 	 */
3154 	if (IS_PF(bp) &&
3155 	    !bnx2x_clear_pf_load(bp) &&
3156 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3157 		bnx2x_disable_close_the_gate(bp);
3158 
3159 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3160 
3161 	return 0;
3162 }
3163 
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3164 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3165 {
3166 	u16 pmcsr;
3167 
3168 	/* If there is no power capability, silently succeed */
3169 	if (!bp->pdev->pm_cap) {
3170 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3171 		return 0;
3172 	}
3173 
3174 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3175 
3176 	switch (state) {
3177 	case PCI_D0:
3178 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3179 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3180 				       PCI_PM_CTRL_PME_STATUS));
3181 
3182 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3183 			/* delay required during transition out of D3hot */
3184 			msleep(20);
3185 		break;
3186 
3187 	case PCI_D3hot:
3188 		/* If there are other clients above don't
3189 		   shut down the power */
3190 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3191 			return 0;
3192 		/* Don't shut down the power for emulation and FPGA */
3193 		if (CHIP_REV_IS_SLOW(bp))
3194 			return 0;
3195 
3196 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3197 		pmcsr |= 3;
3198 
3199 		if (bp->wol)
3200 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3201 
3202 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3203 				      pmcsr);
3204 
3205 		/* No more memory access after this point until
3206 		* device is brought back to D0.
3207 		*/
3208 		break;
3209 
3210 	default:
3211 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3212 		return -EINVAL;
3213 	}
3214 	return 0;
3215 }
3216 
3217 /*
3218  * net_device service functions
3219  */
bnx2x_poll(struct napi_struct * napi,int budget)3220 static int bnx2x_poll(struct napi_struct *napi, int budget)
3221 {
3222 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3223 						 napi);
3224 	struct bnx2x *bp = fp->bp;
3225 	int rx_work_done;
3226 	u8 cos;
3227 
3228 #ifdef BNX2X_STOP_ON_ERROR
3229 	if (unlikely(bp->panic)) {
3230 		napi_complete(napi);
3231 		return 0;
3232 	}
3233 #endif
3234 	for_each_cos_in_tx_queue(fp, cos)
3235 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3236 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3237 
3238 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3239 
3240 	if (rx_work_done < budget) {
3241 		/* No need to update SB for FCoE L2 ring as long as
3242 		 * it's connected to the default SB and the SB
3243 		 * has been updated when NAPI was scheduled.
3244 		 */
3245 		if (IS_FCOE_FP(fp)) {
3246 			napi_complete_done(napi, rx_work_done);
3247 		} else {
3248 			bnx2x_update_fpsb_idx(fp);
3249 			/* bnx2x_has_rx_work() reads the status block,
3250 			 * thus we need to ensure that status block indices
3251 			 * have been actually read (bnx2x_update_fpsb_idx)
3252 			 * prior to this check (bnx2x_has_rx_work) so that
3253 			 * we won't write the "newer" value of the status block
3254 			 * to IGU (if there was a DMA right after
3255 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3256 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3257 			 * to right before bnx2x_ack_sb). In this case there
3258 			 * will never be another interrupt until there is
3259 			 * another update of the status block, while there
3260 			 * is still unhandled work.
3261 			 */
3262 			rmb();
3263 
3264 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3265 				if (napi_complete_done(napi, rx_work_done)) {
3266 					/* Re-enable interrupts */
3267 					DP(NETIF_MSG_RX_STATUS,
3268 					   "Update index to %d\n", fp->fp_hc_idx);
3269 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3270 						     le16_to_cpu(fp->fp_hc_idx),
3271 						     IGU_INT_ENABLE, 1);
3272 				}
3273 			} else {
3274 				rx_work_done = budget;
3275 			}
3276 		}
3277 	}
3278 
3279 	return rx_work_done;
3280 }
3281 
3282 /* we split the first BD into headers and data BDs
3283  * to ease the pain of our fellow microcode engineers
3284  * we use one mapping for both BDs
3285  */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3286 static u16 bnx2x_tx_split(struct bnx2x *bp,
3287 			  struct bnx2x_fp_txdata *txdata,
3288 			  struct sw_tx_bd *tx_buf,
3289 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3290 			  u16 bd_prod)
3291 {
3292 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3293 	struct eth_tx_bd *d_tx_bd;
3294 	dma_addr_t mapping;
3295 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3296 
3297 	/* first fix first BD */
3298 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3299 
3300 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3301 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3302 
3303 	/* now get a new data BD
3304 	 * (after the pbd) and fill it */
3305 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3306 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3307 
3308 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3309 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3310 
3311 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3312 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3313 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3314 
3315 	/* this marks the BD as one that has no individual mapping */
3316 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3317 
3318 	DP(NETIF_MSG_TX_QUEUED,
3319 	   "TSO split data size is %d (%x:%x)\n",
3320 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3321 
3322 	/* update tx_bd */
3323 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3324 
3325 	return bd_prod;
3326 }
3327 
3328 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3329 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3330 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3331 {
3332 	__sum16 tsum = (__force __sum16) csum;
3333 
3334 	if (fix > 0)
3335 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3336 				  csum_partial(t_header - fix, fix, 0)));
3337 
3338 	else if (fix < 0)
3339 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3340 				  csum_partial(t_header, -fix, 0)));
3341 
3342 	return bswab16(tsum);
3343 }
3344 
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3345 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3346 {
3347 	u32 rc;
3348 	__u8 prot = 0;
3349 	__be16 protocol;
3350 
3351 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3352 		return XMIT_PLAIN;
3353 
3354 	protocol = vlan_get_protocol(skb);
3355 	if (protocol == htons(ETH_P_IPV6)) {
3356 		rc = XMIT_CSUM_V6;
3357 		prot = ipv6_hdr(skb)->nexthdr;
3358 	} else {
3359 		rc = XMIT_CSUM_V4;
3360 		prot = ip_hdr(skb)->protocol;
3361 	}
3362 
3363 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3364 		if (inner_ip_hdr(skb)->version == 6) {
3365 			rc |= XMIT_CSUM_ENC_V6;
3366 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3367 				rc |= XMIT_CSUM_TCP;
3368 		} else {
3369 			rc |= XMIT_CSUM_ENC_V4;
3370 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3371 				rc |= XMIT_CSUM_TCP;
3372 		}
3373 	}
3374 	if (prot == IPPROTO_TCP)
3375 		rc |= XMIT_CSUM_TCP;
3376 
3377 	if (skb_is_gso(skb)) {
3378 		if (skb_is_gso_v6(skb)) {
3379 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3380 			if (rc & XMIT_CSUM_ENC)
3381 				rc |= XMIT_GSO_ENC_V6;
3382 		} else {
3383 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3384 			if (rc & XMIT_CSUM_ENC)
3385 				rc |= XMIT_GSO_ENC_V4;
3386 		}
3387 	}
3388 
3389 	return rc;
3390 }
3391 
3392 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3393 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3394 
3395 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3396 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3397 
3398 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3399 /* check if packet requires linearization (packet is too fragmented)
3400    no need to check fragmentation if page size > 8K (there will be no
3401    violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3402 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3403 			     u32 xmit_type)
3404 {
3405 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3406 	int to_copy = 0, hlen = 0;
3407 
3408 	if (xmit_type & XMIT_GSO_ENC)
3409 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3410 
3411 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3412 		if (xmit_type & XMIT_GSO) {
3413 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3414 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3415 			/* Number of windows to check */
3416 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3417 			int wnd_idx = 0;
3418 			int frag_idx = 0;
3419 			u32 wnd_sum = 0;
3420 
3421 			/* Headers length */
3422 			if (xmit_type & XMIT_GSO_ENC)
3423 				hlen = (int)(skb_inner_transport_header(skb) -
3424 					     skb->data) +
3425 					     inner_tcp_hdrlen(skb);
3426 			else
3427 				hlen = (int)(skb_transport_header(skb) -
3428 					     skb->data) + tcp_hdrlen(skb);
3429 
3430 			/* Amount of data (w/o headers) on linear part of SKB*/
3431 			first_bd_sz = skb_headlen(skb) - hlen;
3432 
3433 			wnd_sum  = first_bd_sz;
3434 
3435 			/* Calculate the first sum - it's special */
3436 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3437 				wnd_sum +=
3438 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3439 
3440 			/* If there was data on linear skb data - check it */
3441 			if (first_bd_sz > 0) {
3442 				if (unlikely(wnd_sum < lso_mss)) {
3443 					to_copy = 1;
3444 					goto exit_lbl;
3445 				}
3446 
3447 				wnd_sum -= first_bd_sz;
3448 			}
3449 
3450 			/* Others are easier: run through the frag list and
3451 			   check all windows */
3452 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3453 				wnd_sum +=
3454 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3455 
3456 				if (unlikely(wnd_sum < lso_mss)) {
3457 					to_copy = 1;
3458 					break;
3459 				}
3460 				wnd_sum -=
3461 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3462 			}
3463 		} else {
3464 			/* in non-LSO too fragmented packet should always
3465 			   be linearized */
3466 			to_copy = 1;
3467 		}
3468 	}
3469 
3470 exit_lbl:
3471 	if (unlikely(to_copy))
3472 		DP(NETIF_MSG_TX_QUEUED,
3473 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3474 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3475 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3476 
3477 	return to_copy;
3478 }
3479 #endif
3480 
3481 /**
3482  * bnx2x_set_pbd_gso - update PBD in GSO case.
3483  *
3484  * @skb:	packet skb
3485  * @pbd:	parse BD
3486  * @xmit_type:	xmit flags
3487  */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3488 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3489 			      struct eth_tx_parse_bd_e1x *pbd,
3490 			      u32 xmit_type)
3491 {
3492 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3493 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3494 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3495 
3496 	if (xmit_type & XMIT_GSO_V4) {
3497 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3498 		pbd->tcp_pseudo_csum =
3499 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3500 						   ip_hdr(skb)->daddr,
3501 						   0, IPPROTO_TCP, 0));
3502 	} else {
3503 		pbd->tcp_pseudo_csum =
3504 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3505 						 &ipv6_hdr(skb)->daddr,
3506 						 0, IPPROTO_TCP, 0));
3507 	}
3508 
3509 	pbd->global_data |=
3510 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3511 }
3512 
3513 /**
3514  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3515  *
3516  * @bp:			driver handle
3517  * @skb:		packet skb
3518  * @parsing_data:	data to be updated
3519  * @xmit_type:		xmit flags
3520  *
3521  * 57712/578xx related, when skb has encapsulation
3522  */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3523 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3524 				 u32 *parsing_data, u32 xmit_type)
3525 {
3526 	*parsing_data |=
3527 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3528 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3529 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3530 
3531 	if (xmit_type & XMIT_CSUM_TCP) {
3532 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3533 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3534 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3535 
3536 		return skb_inner_transport_header(skb) +
3537 			inner_tcp_hdrlen(skb) - skb->data;
3538 	}
3539 
3540 	/* We support checksum offload for TCP and UDP only.
3541 	 * No need to pass the UDP header length - it's a constant.
3542 	 */
3543 	return skb_inner_transport_header(skb) +
3544 		sizeof(struct udphdr) - skb->data;
3545 }
3546 
3547 /**
3548  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3549  *
3550  * @bp:			driver handle
3551  * @skb:		packet skb
3552  * @parsing_data:	data to be updated
3553  * @xmit_type:		xmit flags
3554  *
3555  * 57712/578xx related
3556  */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3557 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3558 				u32 *parsing_data, u32 xmit_type)
3559 {
3560 	*parsing_data |=
3561 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3562 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3563 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3564 
3565 	if (xmit_type & XMIT_CSUM_TCP) {
3566 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3567 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3568 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3569 
3570 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3571 	}
3572 	/* We support checksum offload for TCP and UDP only.
3573 	 * No need to pass the UDP header length - it's a constant.
3574 	 */
3575 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3576 }
3577 
3578 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3579 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3580 			       struct eth_tx_start_bd *tx_start_bd,
3581 			       u32 xmit_type)
3582 {
3583 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3584 
3585 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3586 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3587 
3588 	if (!(xmit_type & XMIT_CSUM_TCP))
3589 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3590 }
3591 
3592 /**
3593  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3594  *
3595  * @bp:		driver handle
3596  * @skb:	packet skb
3597  * @pbd:	parse BD to be updated
3598  * @xmit_type:	xmit flags
3599  */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3600 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3601 			     struct eth_tx_parse_bd_e1x *pbd,
3602 			     u32 xmit_type)
3603 {
3604 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3605 
3606 	/* for now NS flag is not used in Linux */
3607 	pbd->global_data =
3608 		cpu_to_le16(hlen |
3609 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3610 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3611 
3612 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3613 			skb_network_header(skb)) >> 1;
3614 
3615 	hlen += pbd->ip_hlen_w;
3616 
3617 	/* We support checksum offload for TCP and UDP only */
3618 	if (xmit_type & XMIT_CSUM_TCP)
3619 		hlen += tcp_hdrlen(skb) / 2;
3620 	else
3621 		hlen += sizeof(struct udphdr) / 2;
3622 
3623 	pbd->total_hlen_w = cpu_to_le16(hlen);
3624 	hlen = hlen*2;
3625 
3626 	if (xmit_type & XMIT_CSUM_TCP) {
3627 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3628 
3629 	} else {
3630 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3631 
3632 		DP(NETIF_MSG_TX_QUEUED,
3633 		   "hlen %d  fix %d  csum before fix %x\n",
3634 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3635 
3636 		/* HW bug: fixup the CSUM */
3637 		pbd->tcp_pseudo_csum =
3638 			bnx2x_csum_fix(skb_transport_header(skb),
3639 				       SKB_CS(skb), fix);
3640 
3641 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3642 		   pbd->tcp_pseudo_csum);
3643 	}
3644 
3645 	return hlen;
3646 }
3647 
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3648 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3649 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3650 				      struct eth_tx_parse_2nd_bd *pbd2,
3651 				      u16 *global_data,
3652 				      u32 xmit_type)
3653 {
3654 	u16 hlen_w = 0;
3655 	u8 outerip_off, outerip_len = 0;
3656 
3657 	/* from outer IP to transport */
3658 	hlen_w = (skb_inner_transport_header(skb) -
3659 		  skb_network_header(skb)) >> 1;
3660 
3661 	/* transport len */
3662 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3663 
3664 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3665 
3666 	/* outer IP header info */
3667 	if (xmit_type & XMIT_CSUM_V4) {
3668 		struct iphdr *iph = ip_hdr(skb);
3669 		u32 csum = (__force u32)(~iph->check) -
3670 			   (__force u32)iph->tot_len -
3671 			   (__force u32)iph->frag_off;
3672 
3673 		outerip_len = iph->ihl << 1;
3674 
3675 		pbd2->fw_ip_csum_wo_len_flags_frag =
3676 			bswab16(csum_fold((__force __wsum)csum));
3677 	} else {
3678 		pbd2->fw_ip_hdr_to_payload_w =
3679 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3680 		pbd_e2->data.tunnel_data.flags |=
3681 			ETH_TUNNEL_DATA_IPV6_OUTER;
3682 	}
3683 
3684 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3685 
3686 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3687 
3688 	/* inner IP header info */
3689 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3690 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3691 
3692 		pbd_e2->data.tunnel_data.pseudo_csum =
3693 			bswab16(~csum_tcpudp_magic(
3694 					inner_ip_hdr(skb)->saddr,
3695 					inner_ip_hdr(skb)->daddr,
3696 					0, IPPROTO_TCP, 0));
3697 	} else {
3698 		pbd_e2->data.tunnel_data.pseudo_csum =
3699 			bswab16(~csum_ipv6_magic(
3700 					&inner_ipv6_hdr(skb)->saddr,
3701 					&inner_ipv6_hdr(skb)->daddr,
3702 					0, IPPROTO_TCP, 0));
3703 	}
3704 
3705 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3706 
3707 	*global_data |=
3708 		outerip_off |
3709 		(outerip_len <<
3710 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3711 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3712 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3713 
3714 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3715 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3716 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3717 	}
3718 }
3719 
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3720 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3721 					 u32 xmit_type)
3722 {
3723 	struct ipv6hdr *ipv6;
3724 
3725 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3726 		return;
3727 
3728 	if (xmit_type & XMIT_GSO_ENC_V6)
3729 		ipv6 = inner_ipv6_hdr(skb);
3730 	else /* XMIT_GSO_V6 */
3731 		ipv6 = ipv6_hdr(skb);
3732 
3733 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3734 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3735 }
3736 
3737 /* called with netif_tx_lock
3738  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3739  * netif_wake_queue()
3740  */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3741 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3742 {
3743 	struct bnx2x *bp = netdev_priv(dev);
3744 
3745 	struct netdev_queue *txq;
3746 	struct bnx2x_fp_txdata *txdata;
3747 	struct sw_tx_bd *tx_buf;
3748 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3749 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3750 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3751 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3752 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3753 	u32 pbd_e2_parsing_data = 0;
3754 	u16 pkt_prod, bd_prod;
3755 	int nbd, txq_index;
3756 	dma_addr_t mapping;
3757 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3758 	int i;
3759 	u8 hlen = 0;
3760 	__le16 pkt_size = 0;
3761 	struct ethhdr *eth;
3762 	u8 mac_type = UNICAST_ADDRESS;
3763 
3764 #ifdef BNX2X_STOP_ON_ERROR
3765 	if (unlikely(bp->panic))
3766 		return NETDEV_TX_BUSY;
3767 #endif
3768 
3769 	txq_index = skb_get_queue_mapping(skb);
3770 	txq = netdev_get_tx_queue(dev, txq_index);
3771 
3772 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3773 
3774 	txdata = &bp->bnx2x_txq[txq_index];
3775 
3776 	/* enable this debug print to view the transmission queue being used
3777 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3778 	   txq_index, fp_index, txdata_index); */
3779 
3780 	/* enable this debug print to view the transmission details
3781 	DP(NETIF_MSG_TX_QUEUED,
3782 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3783 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3784 
3785 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3786 			skb_shinfo(skb)->nr_frags +
3787 			BDS_PER_TX_PKT +
3788 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3789 		/* Handle special storage cases separately */
3790 		if (txdata->tx_ring_size == 0) {
3791 			struct bnx2x_eth_q_stats *q_stats =
3792 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3793 			q_stats->driver_filtered_tx_pkt++;
3794 			dev_kfree_skb(skb);
3795 			return NETDEV_TX_OK;
3796 		}
3797 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3798 		netif_tx_stop_queue(txq);
3799 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3800 
3801 		return NETDEV_TX_BUSY;
3802 	}
3803 
3804 	DP(NETIF_MSG_TX_QUEUED,
3805 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3806 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3807 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3808 	   skb->len);
3809 
3810 	eth = (struct ethhdr *)skb->data;
3811 
3812 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3813 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3814 		if (is_broadcast_ether_addr(eth->h_dest))
3815 			mac_type = BROADCAST_ADDRESS;
3816 		else
3817 			mac_type = MULTICAST_ADDRESS;
3818 	}
3819 
3820 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3821 	/* First, check if we need to linearize the skb (due to FW
3822 	   restrictions). No need to check fragmentation if page size > 8K
3823 	   (there will be no violation to FW restrictions) */
3824 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3825 		/* Statistics of linearization */
3826 		bp->lin_cnt++;
3827 		if (skb_linearize(skb) != 0) {
3828 			DP(NETIF_MSG_TX_QUEUED,
3829 			   "SKB linearization failed - silently dropping this SKB\n");
3830 			dev_kfree_skb_any(skb);
3831 			return NETDEV_TX_OK;
3832 		}
3833 	}
3834 #endif
3835 	/* Map skb linear data for DMA */
3836 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3837 				 skb_headlen(skb), DMA_TO_DEVICE);
3838 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3839 		DP(NETIF_MSG_TX_QUEUED,
3840 		   "SKB mapping failed - silently dropping this SKB\n");
3841 		dev_kfree_skb_any(skb);
3842 		return NETDEV_TX_OK;
3843 	}
3844 	/*
3845 	Please read carefully. First we use one BD which we mark as start,
3846 	then we have a parsing info BD (used for TSO or xsum),
3847 	and only then we have the rest of the TSO BDs.
3848 	(don't forget to mark the last one as last,
3849 	and to unmap only AFTER you write to the BD ...)
3850 	And above all, all pdb sizes are in words - NOT DWORDS!
3851 	*/
3852 
3853 	/* get current pkt produced now - advance it just before sending packet
3854 	 * since mapping of pages may fail and cause packet to be dropped
3855 	 */
3856 	pkt_prod = txdata->tx_pkt_prod;
3857 	bd_prod = TX_BD(txdata->tx_bd_prod);
3858 
3859 	/* get a tx_buf and first BD
3860 	 * tx_start_bd may be changed during SPLIT,
3861 	 * but first_bd will always stay first
3862 	 */
3863 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3864 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3865 	first_bd = tx_start_bd;
3866 
3867 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3868 
3869 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3870 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3871 			bp->eth_stats.ptp_skip_tx_ts++;
3872 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3873 		} else if (bp->ptp_tx_skb) {
3874 			bp->eth_stats.ptp_skip_tx_ts++;
3875 			netdev_err_once(bp->dev,
3876 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3877 		} else {
3878 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3879 			/* schedule check for Tx timestamp */
3880 			bp->ptp_tx_skb = skb_get(skb);
3881 			bp->ptp_tx_start = jiffies;
3882 			schedule_work(&bp->ptp_task);
3883 		}
3884 	}
3885 
3886 	/* header nbd: indirectly zero other flags! */
3887 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3888 
3889 	/* remember the first BD of the packet */
3890 	tx_buf->first_bd = txdata->tx_bd_prod;
3891 	tx_buf->skb = skb;
3892 	tx_buf->flags = 0;
3893 
3894 	DP(NETIF_MSG_TX_QUEUED,
3895 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3896 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3897 
3898 	if (skb_vlan_tag_present(skb)) {
3899 		tx_start_bd->vlan_or_ethertype =
3900 		    cpu_to_le16(skb_vlan_tag_get(skb));
3901 		tx_start_bd->bd_flags.as_bitfield |=
3902 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3903 	} else {
3904 		/* when transmitting in a vf, start bd must hold the ethertype
3905 		 * for fw to enforce it
3906 		 */
3907 		u16 vlan_tci = 0;
3908 #ifndef BNX2X_STOP_ON_ERROR
3909 		if (IS_VF(bp)) {
3910 #endif
3911 			/* Still need to consider inband vlan for enforced */
3912 			if (__vlan_get_tag(skb, &vlan_tci)) {
3913 				tx_start_bd->vlan_or_ethertype =
3914 					cpu_to_le16(ntohs(eth->h_proto));
3915 			} else {
3916 				tx_start_bd->bd_flags.as_bitfield |=
3917 					(X_ETH_INBAND_VLAN <<
3918 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3919 				tx_start_bd->vlan_or_ethertype =
3920 					cpu_to_le16(vlan_tci);
3921 			}
3922 #ifndef BNX2X_STOP_ON_ERROR
3923 		} else {
3924 			/* used by FW for packet accounting */
3925 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3926 		}
3927 #endif
3928 	}
3929 
3930 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3931 
3932 	/* turn on parsing and get a BD */
3933 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3934 
3935 	if (xmit_type & XMIT_CSUM)
3936 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3937 
3938 	if (!CHIP_IS_E1x(bp)) {
3939 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3940 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3941 
3942 		if (xmit_type & XMIT_CSUM_ENC) {
3943 			u16 global_data = 0;
3944 
3945 			/* Set PBD in enc checksum offload case */
3946 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3947 						      &pbd_e2_parsing_data,
3948 						      xmit_type);
3949 
3950 			/* turn on 2nd parsing and get a BD */
3951 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3952 
3953 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3954 
3955 			memset(pbd2, 0, sizeof(*pbd2));
3956 
3957 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3958 				(skb_inner_network_header(skb) -
3959 				 skb->data) >> 1;
3960 
3961 			if (xmit_type & XMIT_GSO_ENC)
3962 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3963 							  &global_data,
3964 							  xmit_type);
3965 
3966 			pbd2->global_data = cpu_to_le16(global_data);
3967 
3968 			/* add addition parse BD indication to start BD */
3969 			SET_FLAG(tx_start_bd->general_data,
3970 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3971 			/* set encapsulation flag in start BD */
3972 			SET_FLAG(tx_start_bd->general_data,
3973 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3974 
3975 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3976 
3977 			nbd++;
3978 		} else if (xmit_type & XMIT_CSUM) {
3979 			/* Set PBD in checksum offload case w/o encapsulation */
3980 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3981 						     &pbd_e2_parsing_data,
3982 						     xmit_type);
3983 		}
3984 
3985 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3986 		/* Add the macs to the parsing BD if this is a vf or if
3987 		 * Tx Switching is enabled.
3988 		 */
3989 		if (IS_VF(bp)) {
3990 			/* override GRE parameters in BD */
3991 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3992 					      &pbd_e2->data.mac_addr.src_mid,
3993 					      &pbd_e2->data.mac_addr.src_lo,
3994 					      eth->h_source);
3995 
3996 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3997 					      &pbd_e2->data.mac_addr.dst_mid,
3998 					      &pbd_e2->data.mac_addr.dst_lo,
3999 					      eth->h_dest);
4000 		} else {
4001 			if (bp->flags & TX_SWITCHING)
4002 				bnx2x_set_fw_mac_addr(
4003 						&pbd_e2->data.mac_addr.dst_hi,
4004 						&pbd_e2->data.mac_addr.dst_mid,
4005 						&pbd_e2->data.mac_addr.dst_lo,
4006 						eth->h_dest);
4007 #ifdef BNX2X_STOP_ON_ERROR
4008 			/* Enforce security is always set in Stop on Error -
4009 			 * source mac should be present in the parsing BD
4010 			 */
4011 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4012 					      &pbd_e2->data.mac_addr.src_mid,
4013 					      &pbd_e2->data.mac_addr.src_lo,
4014 					      eth->h_source);
4015 #endif
4016 		}
4017 
4018 		SET_FLAG(pbd_e2_parsing_data,
4019 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4020 	} else {
4021 		u16 global_data = 0;
4022 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4023 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4024 		/* Set PBD in checksum offload case */
4025 		if (xmit_type & XMIT_CSUM)
4026 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4027 
4028 		SET_FLAG(global_data,
4029 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4030 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4031 	}
4032 
4033 	/* Setup the data pointer of the first BD of the packet */
4034 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4035 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4036 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4037 	pkt_size = tx_start_bd->nbytes;
4038 
4039 	DP(NETIF_MSG_TX_QUEUED,
4040 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4041 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4042 	   le16_to_cpu(tx_start_bd->nbytes),
4043 	   tx_start_bd->bd_flags.as_bitfield,
4044 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4045 
4046 	if (xmit_type & XMIT_GSO) {
4047 
4048 		DP(NETIF_MSG_TX_QUEUED,
4049 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4050 		   skb->len, hlen, skb_headlen(skb),
4051 		   skb_shinfo(skb)->gso_size);
4052 
4053 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4054 
4055 		if (unlikely(skb_headlen(skb) > hlen)) {
4056 			nbd++;
4057 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4058 						 &tx_start_bd, hlen,
4059 						 bd_prod);
4060 		}
4061 		if (!CHIP_IS_E1x(bp))
4062 			pbd_e2_parsing_data |=
4063 				(skb_shinfo(skb)->gso_size <<
4064 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4065 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4066 		else
4067 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4068 	}
4069 
4070 	/* Set the PBD's parsing_data field if not zero
4071 	 * (for the chips newer than 57711).
4072 	 */
4073 	if (pbd_e2_parsing_data)
4074 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4075 
4076 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4077 
4078 	/* Handle fragmented skb */
4079 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4080 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4081 
4082 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4083 					   skb_frag_size(frag), DMA_TO_DEVICE);
4084 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4085 			unsigned int pkts_compl = 0, bytes_compl = 0;
4086 
4087 			DP(NETIF_MSG_TX_QUEUED,
4088 			   "Unable to map page - dropping packet...\n");
4089 
4090 			/* we need unmap all buffers already mapped
4091 			 * for this SKB;
4092 			 * first_bd->nbd need to be properly updated
4093 			 * before call to bnx2x_free_tx_pkt
4094 			 */
4095 			first_bd->nbd = cpu_to_le16(nbd);
4096 			bnx2x_free_tx_pkt(bp, txdata,
4097 					  TX_BD(txdata->tx_pkt_prod),
4098 					  &pkts_compl, &bytes_compl);
4099 			return NETDEV_TX_OK;
4100 		}
4101 
4102 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4103 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4104 		if (total_pkt_bd == NULL)
4105 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4106 
4107 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4108 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4109 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4110 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4111 		nbd++;
4112 
4113 		DP(NETIF_MSG_TX_QUEUED,
4114 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4115 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4116 		   le16_to_cpu(tx_data_bd->nbytes));
4117 	}
4118 
4119 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4120 
4121 	/* update with actual num BDs */
4122 	first_bd->nbd = cpu_to_le16(nbd);
4123 
4124 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4125 
4126 	/* now send a tx doorbell, counting the next BD
4127 	 * if the packet contains or ends with it
4128 	 */
4129 	if (TX_BD_POFF(bd_prod) < nbd)
4130 		nbd++;
4131 
4132 	/* total_pkt_bytes should be set on the first data BD if
4133 	 * it's not an LSO packet and there is more than one
4134 	 * data BD. In this case pkt_size is limited by an MTU value.
4135 	 * However we prefer to set it for an LSO packet (while we don't
4136 	 * have to) in order to save some CPU cycles in a none-LSO
4137 	 * case, when we much more care about them.
4138 	 */
4139 	if (total_pkt_bd != NULL)
4140 		total_pkt_bd->total_pkt_bytes = pkt_size;
4141 
4142 	if (pbd_e1x)
4143 		DP(NETIF_MSG_TX_QUEUED,
4144 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4145 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4146 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4147 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4148 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4149 	if (pbd_e2)
4150 		DP(NETIF_MSG_TX_QUEUED,
4151 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4152 		   pbd_e2,
4153 		   pbd_e2->data.mac_addr.dst_hi,
4154 		   pbd_e2->data.mac_addr.dst_mid,
4155 		   pbd_e2->data.mac_addr.dst_lo,
4156 		   pbd_e2->data.mac_addr.src_hi,
4157 		   pbd_e2->data.mac_addr.src_mid,
4158 		   pbd_e2->data.mac_addr.src_lo,
4159 		   pbd_e2->parsing_data);
4160 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4161 
4162 	netdev_tx_sent_queue(txq, skb->len);
4163 
4164 	skb_tx_timestamp(skb);
4165 
4166 	txdata->tx_pkt_prod++;
4167 	/*
4168 	 * Make sure that the BD data is updated before updating the producer
4169 	 * since FW might read the BD right after the producer is updated.
4170 	 * This is only applicable for weak-ordered memory model archs such
4171 	 * as IA-64. The following barrier is also mandatory since FW will
4172 	 * assumes packets must have BDs.
4173 	 */
4174 	wmb();
4175 
4176 	txdata->tx_db.data.prod += nbd;
4177 	/* make sure descriptor update is observed by HW */
4178 	wmb();
4179 
4180 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4181 
4182 	txdata->tx_bd_prod += nbd;
4183 
4184 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4185 		netif_tx_stop_queue(txq);
4186 
4187 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4188 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4189 		 * fp->bd_tx_cons */
4190 		smp_mb();
4191 
4192 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4193 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4194 			netif_tx_wake_queue(txq);
4195 	}
4196 	txdata->tx_pkt++;
4197 
4198 	return NETDEV_TX_OK;
4199 }
4200 
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4201 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4202 {
4203 	int mfw_vn = BP_FW_MB_IDX(bp);
4204 	u32 tmp;
4205 
4206 	/* If the shmem shouldn't affect configuration, reflect */
4207 	if (!IS_MF_BD(bp)) {
4208 		int i;
4209 
4210 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4211 			c2s_map[i] = i;
4212 		*c2s_default = 0;
4213 
4214 		return;
4215 	}
4216 
4217 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4218 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4219 	c2s_map[0] = tmp & 0xff;
4220 	c2s_map[1] = (tmp >> 8) & 0xff;
4221 	c2s_map[2] = (tmp >> 16) & 0xff;
4222 	c2s_map[3] = (tmp >> 24) & 0xff;
4223 
4224 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4225 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4226 	c2s_map[4] = tmp & 0xff;
4227 	c2s_map[5] = (tmp >> 8) & 0xff;
4228 	c2s_map[6] = (tmp >> 16) & 0xff;
4229 	c2s_map[7] = (tmp >> 24) & 0xff;
4230 
4231 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4232 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4233 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4234 }
4235 
4236 /**
4237  * bnx2x_setup_tc - routine to configure net_device for multi tc
4238  *
4239  * @dev: net device to configure
4240  * @num_tc: number of traffic classes to enable
4241  *
4242  * callback connected to the ndo_setup_tc function pointer
4243  */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4244 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4245 {
4246 	struct bnx2x *bp = netdev_priv(dev);
4247 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4248 	int cos, prio, count, offset;
4249 
4250 	/* setup tc must be called under rtnl lock */
4251 	ASSERT_RTNL();
4252 
4253 	/* no traffic classes requested. Aborting */
4254 	if (!num_tc) {
4255 		netdev_reset_tc(dev);
4256 		return 0;
4257 	}
4258 
4259 	/* requested to support too many traffic classes */
4260 	if (num_tc > bp->max_cos) {
4261 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4262 			  num_tc, bp->max_cos);
4263 		return -EINVAL;
4264 	}
4265 
4266 	/* declare amount of supported traffic classes */
4267 	if (netdev_set_num_tc(dev, num_tc)) {
4268 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4269 		return -EINVAL;
4270 	}
4271 
4272 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4273 
4274 	/* configure priority to traffic class mapping */
4275 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4276 		int outer_prio = c2s_map[prio];
4277 
4278 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4279 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4280 		   "mapping priority %d to tc %d\n",
4281 		   outer_prio, bp->prio_to_cos[outer_prio]);
4282 	}
4283 
4284 	/* Use this configuration to differentiate tc0 from other COSes
4285 	   This can be used for ets or pfc, and save the effort of setting
4286 	   up a multio class queue disc or negotiating DCBX with a switch
4287 	netdev_set_prio_tc_map(dev, 0, 0);
4288 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4289 	for (prio = 1; prio < 16; prio++) {
4290 		netdev_set_prio_tc_map(dev, prio, 1);
4291 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4292 	} */
4293 
4294 	/* configure traffic class to transmission queue mapping */
4295 	for (cos = 0; cos < bp->max_cos; cos++) {
4296 		count = BNX2X_NUM_ETH_QUEUES(bp);
4297 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4298 		netdev_set_tc_queue(dev, cos, count, offset);
4299 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4300 		   "mapping tc %d to offset %d count %d\n",
4301 		   cos, offset, count);
4302 	}
4303 
4304 	return 0;
4305 }
4306 
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4307 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4308 		     void *type_data)
4309 {
4310 	struct tc_mqprio_qopt *mqprio = type_data;
4311 
4312 	if (type != TC_SETUP_QDISC_MQPRIO)
4313 		return -EOPNOTSUPP;
4314 
4315 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4316 
4317 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4318 }
4319 
4320 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4321 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4322 {
4323 	struct sockaddr *addr = p;
4324 	struct bnx2x *bp = netdev_priv(dev);
4325 	int rc = 0;
4326 
4327 	if (!is_valid_ether_addr(addr->sa_data)) {
4328 		BNX2X_ERR("Requested MAC address is not valid\n");
4329 		return -EINVAL;
4330 	}
4331 
4332 	if (IS_MF_STORAGE_ONLY(bp)) {
4333 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4334 		return -EINVAL;
4335 	}
4336 
4337 	if (netif_running(dev))  {
4338 		rc = bnx2x_set_eth_mac(bp, false);
4339 		if (rc)
4340 			return rc;
4341 	}
4342 
4343 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4344 
4345 	if (netif_running(dev))
4346 		rc = bnx2x_set_eth_mac(bp, true);
4347 
4348 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4349 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4350 
4351 	return rc;
4352 }
4353 
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4354 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4355 {
4356 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4357 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4358 	u8 cos;
4359 
4360 	/* Common */
4361 
4362 	if (IS_FCOE_IDX(fp_index)) {
4363 		memset(sb, 0, sizeof(union host_hc_status_block));
4364 		fp->status_blk_mapping = 0;
4365 	} else {
4366 		/* status blocks */
4367 		if (!CHIP_IS_E1x(bp))
4368 			BNX2X_PCI_FREE(sb->e2_sb,
4369 				       bnx2x_fp(bp, fp_index,
4370 						status_blk_mapping),
4371 				       sizeof(struct host_hc_status_block_e2));
4372 		else
4373 			BNX2X_PCI_FREE(sb->e1x_sb,
4374 				       bnx2x_fp(bp, fp_index,
4375 						status_blk_mapping),
4376 				       sizeof(struct host_hc_status_block_e1x));
4377 	}
4378 
4379 	/* Rx */
4380 	if (!skip_rx_queue(bp, fp_index)) {
4381 		bnx2x_free_rx_bds(fp);
4382 
4383 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4384 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4385 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4386 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4387 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4388 
4389 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4390 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4391 			       sizeof(struct eth_fast_path_rx_cqe) *
4392 			       NUM_RCQ_BD);
4393 
4394 		/* SGE ring */
4395 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4396 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4397 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4398 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4399 	}
4400 
4401 	/* Tx */
4402 	if (!skip_tx_queue(bp, fp_index)) {
4403 		/* fastpath tx rings: tx_buf tx_desc */
4404 		for_each_cos_in_tx_queue(fp, cos) {
4405 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4406 
4407 			DP(NETIF_MSG_IFDOWN,
4408 			   "freeing tx memory of fp %d cos %d cid %d\n",
4409 			   fp_index, cos, txdata->cid);
4410 
4411 			BNX2X_FREE(txdata->tx_buf_ring);
4412 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4413 				txdata->tx_desc_mapping,
4414 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4415 		}
4416 	}
4417 	/* end of fastpath */
4418 }
4419 
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4420 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4421 {
4422 	int i;
4423 	for_each_cnic_queue(bp, i)
4424 		bnx2x_free_fp_mem_at(bp, i);
4425 }
4426 
bnx2x_free_fp_mem(struct bnx2x * bp)4427 void bnx2x_free_fp_mem(struct bnx2x *bp)
4428 {
4429 	int i;
4430 	for_each_eth_queue(bp, i)
4431 		bnx2x_free_fp_mem_at(bp, i);
4432 }
4433 
set_sb_shortcuts(struct bnx2x * bp,int index)4434 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4435 {
4436 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4437 	if (!CHIP_IS_E1x(bp)) {
4438 		bnx2x_fp(bp, index, sb_index_values) =
4439 			(__le16 *)status_blk.e2_sb->sb.index_values;
4440 		bnx2x_fp(bp, index, sb_running_index) =
4441 			(__le16 *)status_blk.e2_sb->sb.running_index;
4442 	} else {
4443 		bnx2x_fp(bp, index, sb_index_values) =
4444 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4445 		bnx2x_fp(bp, index, sb_running_index) =
4446 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4447 	}
4448 }
4449 
4450 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4451 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4452 			      int rx_ring_size)
4453 {
4454 	struct bnx2x *bp = fp->bp;
4455 	u16 ring_prod, cqe_ring_prod;
4456 	int i, failure_cnt = 0;
4457 
4458 	fp->rx_comp_cons = 0;
4459 	cqe_ring_prod = ring_prod = 0;
4460 
4461 	/* This routine is called only during fo init so
4462 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4463 	 */
4464 	for (i = 0; i < rx_ring_size; i++) {
4465 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4466 			failure_cnt++;
4467 			continue;
4468 		}
4469 		ring_prod = NEXT_RX_IDX(ring_prod);
4470 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4471 		WARN_ON(ring_prod <= (i - failure_cnt));
4472 	}
4473 
4474 	if (failure_cnt)
4475 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4476 			  i - failure_cnt, fp->index);
4477 
4478 	fp->rx_bd_prod = ring_prod;
4479 	/* Limit the CQE producer by the CQE ring size */
4480 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4481 			       cqe_ring_prod);
4482 
4483 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4484 
4485 	return i - failure_cnt;
4486 }
4487 
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4488 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4489 {
4490 	int i;
4491 
4492 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4493 		struct eth_rx_cqe_next_page *nextpg;
4494 
4495 		nextpg = (struct eth_rx_cqe_next_page *)
4496 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4497 		nextpg->addr_hi =
4498 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4499 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4500 		nextpg->addr_lo =
4501 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4502 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4503 	}
4504 }
4505 
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4506 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4507 {
4508 	union host_hc_status_block *sb;
4509 	struct bnx2x_fastpath *fp = &bp->fp[index];
4510 	int ring_size = 0;
4511 	u8 cos;
4512 	int rx_ring_size = 0;
4513 
4514 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4515 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4516 		bp->rx_ring_size = rx_ring_size;
4517 	} else if (!bp->rx_ring_size) {
4518 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4519 
4520 		if (CHIP_IS_E3(bp)) {
4521 			u32 cfg = SHMEM_RD(bp,
4522 					   dev_info.port_hw_config[BP_PORT(bp)].
4523 					   default_cfg);
4524 
4525 			/* Decrease ring size for 1G functions */
4526 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4527 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4528 				rx_ring_size /= 10;
4529 		}
4530 
4531 		/* allocate at least number of buffers required by FW */
4532 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4533 				     MIN_RX_SIZE_TPA, rx_ring_size);
4534 
4535 		bp->rx_ring_size = rx_ring_size;
4536 	} else /* if rx_ring_size specified - use it */
4537 		rx_ring_size = bp->rx_ring_size;
4538 
4539 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4540 
4541 	/* Common */
4542 	sb = &bnx2x_fp(bp, index, status_blk);
4543 
4544 	if (!IS_FCOE_IDX(index)) {
4545 		/* status blocks */
4546 		if (!CHIP_IS_E1x(bp)) {
4547 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4548 						    sizeof(struct host_hc_status_block_e2));
4549 			if (!sb->e2_sb)
4550 				goto alloc_mem_err;
4551 		} else {
4552 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4553 						     sizeof(struct host_hc_status_block_e1x));
4554 			if (!sb->e1x_sb)
4555 				goto alloc_mem_err;
4556 		}
4557 	}
4558 
4559 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4560 	 * set shortcuts for it.
4561 	 */
4562 	if (!IS_FCOE_IDX(index))
4563 		set_sb_shortcuts(bp, index);
4564 
4565 	/* Tx */
4566 	if (!skip_tx_queue(bp, index)) {
4567 		/* fastpath tx rings: tx_buf tx_desc */
4568 		for_each_cos_in_tx_queue(fp, cos) {
4569 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4570 
4571 			DP(NETIF_MSG_IFUP,
4572 			   "allocating tx memory of fp %d cos %d\n",
4573 			   index, cos);
4574 
4575 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4576 						      sizeof(struct sw_tx_bd),
4577 						      GFP_KERNEL);
4578 			if (!txdata->tx_buf_ring)
4579 				goto alloc_mem_err;
4580 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4581 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4582 			if (!txdata->tx_desc_ring)
4583 				goto alloc_mem_err;
4584 		}
4585 	}
4586 
4587 	/* Rx */
4588 	if (!skip_rx_queue(bp, index)) {
4589 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4590 		bnx2x_fp(bp, index, rx_buf_ring) =
4591 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4592 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4593 			goto alloc_mem_err;
4594 		bnx2x_fp(bp, index, rx_desc_ring) =
4595 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4596 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4597 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4598 			goto alloc_mem_err;
4599 
4600 		/* Seed all CQEs by 1s */
4601 		bnx2x_fp(bp, index, rx_comp_ring) =
4602 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4603 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4604 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4605 			goto alloc_mem_err;
4606 
4607 		/* SGE ring */
4608 		bnx2x_fp(bp, index, rx_page_ring) =
4609 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4610 				GFP_KERNEL);
4611 		if (!bnx2x_fp(bp, index, rx_page_ring))
4612 			goto alloc_mem_err;
4613 		bnx2x_fp(bp, index, rx_sge_ring) =
4614 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4615 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4616 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4617 			goto alloc_mem_err;
4618 		/* RX BD ring */
4619 		bnx2x_set_next_page_rx_bd(fp);
4620 
4621 		/* CQ ring */
4622 		bnx2x_set_next_page_rx_cq(fp);
4623 
4624 		/* BDs */
4625 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4626 		if (ring_size < rx_ring_size)
4627 			goto alloc_mem_err;
4628 	}
4629 
4630 	return 0;
4631 
4632 /* handles low memory cases */
4633 alloc_mem_err:
4634 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4635 						index, ring_size);
4636 	/* FW will drop all packets if queue is not big enough,
4637 	 * In these cases we disable the queue
4638 	 * Min size is different for OOO, TPA and non-TPA queues
4639 	 */
4640 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4641 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4642 			/* release memory allocated for this queue */
4643 			bnx2x_free_fp_mem_at(bp, index);
4644 			return -ENOMEM;
4645 	}
4646 	return 0;
4647 }
4648 
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4649 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4650 {
4651 	if (!NO_FCOE(bp))
4652 		/* FCoE */
4653 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4654 			/* we will fail load process instead of mark
4655 			 * NO_FCOE_FLAG
4656 			 */
4657 			return -ENOMEM;
4658 
4659 	return 0;
4660 }
4661 
bnx2x_alloc_fp_mem(struct bnx2x * bp)4662 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4663 {
4664 	int i;
4665 
4666 	/* 1. Allocate FP for leading - fatal if error
4667 	 * 2. Allocate RSS - fix number of queues if error
4668 	 */
4669 
4670 	/* leading */
4671 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4672 		return -ENOMEM;
4673 
4674 	/* RSS */
4675 	for_each_nondefault_eth_queue(bp, i)
4676 		if (bnx2x_alloc_fp_mem_at(bp, i))
4677 			break;
4678 
4679 	/* handle memory failures */
4680 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4681 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4682 
4683 		WARN_ON(delta < 0);
4684 		bnx2x_shrink_eth_fp(bp, delta);
4685 		if (CNIC_SUPPORT(bp))
4686 			/* move non eth FPs next to last eth FP
4687 			 * must be done in that order
4688 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4689 			 */
4690 
4691 			/* move FCoE fp even NO_FCOE_FLAG is on */
4692 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4693 		bp->num_ethernet_queues -= delta;
4694 		bp->num_queues = bp->num_ethernet_queues +
4695 				 bp->num_cnic_queues;
4696 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4697 			  bp->num_queues + delta, bp->num_queues);
4698 	}
4699 
4700 	return 0;
4701 }
4702 
bnx2x_free_mem_bp(struct bnx2x * bp)4703 void bnx2x_free_mem_bp(struct bnx2x *bp)
4704 {
4705 	int i;
4706 
4707 	for (i = 0; i < bp->fp_array_size; i++)
4708 		kfree(bp->fp[i].tpa_info);
4709 	kfree(bp->fp);
4710 	kfree(bp->sp_objs);
4711 	kfree(bp->fp_stats);
4712 	kfree(bp->bnx2x_txq);
4713 	kfree(bp->msix_table);
4714 	kfree(bp->ilt);
4715 }
4716 
bnx2x_alloc_mem_bp(struct bnx2x * bp)4717 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4718 {
4719 	struct bnx2x_fastpath *fp;
4720 	struct msix_entry *tbl;
4721 	struct bnx2x_ilt *ilt;
4722 	int msix_table_size = 0;
4723 	int fp_array_size, txq_array_size;
4724 	int i;
4725 
4726 	/*
4727 	 * The biggest MSI-X table we might need is as a maximum number of fast
4728 	 * path IGU SBs plus default SB (for PF only).
4729 	 */
4730 	msix_table_size = bp->igu_sb_cnt;
4731 	if (IS_PF(bp))
4732 		msix_table_size++;
4733 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4734 
4735 	/* fp array: RSS plus CNIC related L2 queues */
4736 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4737 	bp->fp_array_size = fp_array_size;
4738 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4739 
4740 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4741 	if (!fp)
4742 		goto alloc_err;
4743 	for (i = 0; i < bp->fp_array_size; i++) {
4744 		fp[i].tpa_info =
4745 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4746 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4747 		if (!(fp[i].tpa_info))
4748 			goto alloc_err;
4749 	}
4750 
4751 	bp->fp = fp;
4752 
4753 	/* allocate sp objs */
4754 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4755 			      GFP_KERNEL);
4756 	if (!bp->sp_objs)
4757 		goto alloc_err;
4758 
4759 	/* allocate fp_stats */
4760 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4761 			       GFP_KERNEL);
4762 	if (!bp->fp_stats)
4763 		goto alloc_err;
4764 
4765 	/* Allocate memory for the transmission queues array */
4766 	txq_array_size =
4767 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4768 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4769 
4770 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4771 				GFP_KERNEL);
4772 	if (!bp->bnx2x_txq)
4773 		goto alloc_err;
4774 
4775 	/* msix table */
4776 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4777 	if (!tbl)
4778 		goto alloc_err;
4779 	bp->msix_table = tbl;
4780 
4781 	/* ilt */
4782 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4783 	if (!ilt)
4784 		goto alloc_err;
4785 	bp->ilt = ilt;
4786 
4787 	return 0;
4788 alloc_err:
4789 	bnx2x_free_mem_bp(bp);
4790 	return -ENOMEM;
4791 }
4792 
bnx2x_reload_if_running(struct net_device * dev)4793 int bnx2x_reload_if_running(struct net_device *dev)
4794 {
4795 	struct bnx2x *bp = netdev_priv(dev);
4796 
4797 	if (unlikely(!netif_running(dev)))
4798 		return 0;
4799 
4800 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4801 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4802 }
4803 
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4804 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4805 {
4806 	u32 sel_phy_idx = 0;
4807 	if (bp->link_params.num_phys <= 1)
4808 		return INT_PHY;
4809 
4810 	if (bp->link_vars.link_up) {
4811 		sel_phy_idx = EXT_PHY1;
4812 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4813 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4814 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4815 			sel_phy_idx = EXT_PHY2;
4816 	} else {
4817 
4818 		switch (bnx2x_phy_selection(&bp->link_params)) {
4819 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4820 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4821 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4822 		       sel_phy_idx = EXT_PHY1;
4823 		       break;
4824 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4825 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4826 		       sel_phy_idx = EXT_PHY2;
4827 		       break;
4828 		}
4829 	}
4830 
4831 	return sel_phy_idx;
4832 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4833 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4834 {
4835 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4836 	/*
4837 	 * The selected activated PHY is always after swapping (in case PHY
4838 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4839 	 * the configuration
4840 	 */
4841 
4842 	if (bp->link_params.multi_phy_config &
4843 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4844 		if (sel_phy_idx == EXT_PHY1)
4845 			sel_phy_idx = EXT_PHY2;
4846 		else if (sel_phy_idx == EXT_PHY2)
4847 			sel_phy_idx = EXT_PHY1;
4848 	}
4849 	return LINK_CONFIG_IDX(sel_phy_idx);
4850 }
4851 
4852 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4853 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4854 {
4855 	struct bnx2x *bp = netdev_priv(dev);
4856 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4857 
4858 	switch (type) {
4859 	case NETDEV_FCOE_WWNN:
4860 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4861 				cp->fcoe_wwn_node_name_lo);
4862 		break;
4863 	case NETDEV_FCOE_WWPN:
4864 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4865 				cp->fcoe_wwn_port_name_lo);
4866 		break;
4867 	default:
4868 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4869 		return -EINVAL;
4870 	}
4871 
4872 	return 0;
4873 }
4874 #endif
4875 
4876 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4877 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4878 {
4879 	struct bnx2x *bp = netdev_priv(dev);
4880 
4881 	if (pci_num_vf(bp->pdev)) {
4882 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4883 		return -EPERM;
4884 	}
4885 
4886 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4887 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4888 		return -EAGAIN;
4889 	}
4890 
4891 	/* This does not race with packet allocation
4892 	 * because the actual alloc size is
4893 	 * only updated as part of load
4894 	 */
4895 	dev->mtu = new_mtu;
4896 
4897 	if (!bnx2x_mtu_allows_gro(new_mtu))
4898 		dev->features &= ~NETIF_F_GRO_HW;
4899 
4900 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4901 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4902 
4903 	return bnx2x_reload_if_running(dev);
4904 }
4905 
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4906 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4907 				     netdev_features_t features)
4908 {
4909 	struct bnx2x *bp = netdev_priv(dev);
4910 
4911 	if (pci_num_vf(bp->pdev)) {
4912 		netdev_features_t changed = dev->features ^ features;
4913 
4914 		/* Revert the requested changes in features if they
4915 		 * would require internal reload of PF in bnx2x_set_features().
4916 		 */
4917 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4918 			features &= ~NETIF_F_RXCSUM;
4919 			features |= dev->features & NETIF_F_RXCSUM;
4920 		}
4921 
4922 		if (changed & NETIF_F_LOOPBACK) {
4923 			features &= ~NETIF_F_LOOPBACK;
4924 			features |= dev->features & NETIF_F_LOOPBACK;
4925 		}
4926 	}
4927 
4928 	/* TPA requires Rx CSUM offloading */
4929 	if (!(features & NETIF_F_RXCSUM))
4930 		features &= ~NETIF_F_LRO;
4931 
4932 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4933 		features &= ~NETIF_F_GRO_HW;
4934 	if (features & NETIF_F_GRO_HW)
4935 		features &= ~NETIF_F_LRO;
4936 
4937 	return features;
4938 }
4939 
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4940 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4941 {
4942 	struct bnx2x *bp = netdev_priv(dev);
4943 	netdev_features_t changes = features ^ dev->features;
4944 	bool bnx2x_reload = false;
4945 	int rc;
4946 
4947 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4948 	if (!pci_num_vf(bp->pdev)) {
4949 		if (features & NETIF_F_LOOPBACK) {
4950 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4951 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4952 				bnx2x_reload = true;
4953 			}
4954 		} else {
4955 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4956 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4957 				bnx2x_reload = true;
4958 			}
4959 		}
4960 	}
4961 
4962 	/* Don't care about GRO changes */
4963 	changes &= ~NETIF_F_GRO;
4964 
4965 	if (changes)
4966 		bnx2x_reload = true;
4967 
4968 	if (bnx2x_reload) {
4969 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4970 			dev->features = features;
4971 			rc = bnx2x_reload_if_running(dev);
4972 			return rc ? rc : 1;
4973 		}
4974 		/* else: bnx2x_nic_load() will be called at end of recovery */
4975 	}
4976 
4977 	return 0;
4978 }
4979 
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4980 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4981 {
4982 	struct bnx2x *bp = netdev_priv(dev);
4983 
4984 	/* We want the information of the dump logged,
4985 	 * but calling bnx2x_panic() would kill all chances of recovery.
4986 	 */
4987 	if (!bp->panic)
4988 #ifndef BNX2X_STOP_ON_ERROR
4989 		bnx2x_panic_dump(bp, false);
4990 #else
4991 		bnx2x_panic();
4992 #endif
4993 
4994 	/* This allows the netif to be shutdown gracefully before resetting */
4995 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4996 }
4997 
bnx2x_suspend(struct device * dev_d)4998 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4999 {
5000 	struct pci_dev *pdev = to_pci_dev(dev_d);
5001 	struct net_device *dev = pci_get_drvdata(pdev);
5002 	struct bnx2x *bp;
5003 
5004 	if (!dev) {
5005 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5006 		return -ENODEV;
5007 	}
5008 	bp = netdev_priv(dev);
5009 
5010 	rtnl_lock();
5011 
5012 	if (!netif_running(dev)) {
5013 		rtnl_unlock();
5014 		return 0;
5015 	}
5016 
5017 	netif_device_detach(dev);
5018 
5019 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5020 
5021 	rtnl_unlock();
5022 
5023 	return 0;
5024 }
5025 
bnx2x_resume(struct device * dev_d)5026 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5027 {
5028 	struct pci_dev *pdev = to_pci_dev(dev_d);
5029 	struct net_device *dev = pci_get_drvdata(pdev);
5030 	struct bnx2x *bp;
5031 	int rc;
5032 
5033 	if (!dev) {
5034 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5035 		return -ENODEV;
5036 	}
5037 	bp = netdev_priv(dev);
5038 
5039 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5040 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5041 		return -EAGAIN;
5042 	}
5043 
5044 	rtnl_lock();
5045 
5046 	if (!netif_running(dev)) {
5047 		rtnl_unlock();
5048 		return 0;
5049 	}
5050 
5051 	netif_device_attach(dev);
5052 
5053 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5054 
5055 	rtnl_unlock();
5056 
5057 	return rc;
5058 }
5059 
5060 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5061 
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5062 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5063 			      u32 cid)
5064 {
5065 	if (!cxt) {
5066 		BNX2X_ERR("bad context pointer %p\n", cxt);
5067 		return;
5068 	}
5069 
5070 	/* ustorm cxt validation */
5071 	cxt->ustorm_ag_context.cdu_usage =
5072 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5073 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5074 	/* xcontext validation */
5075 	cxt->xstorm_ag_context.cdu_reserved =
5076 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5077 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5078 }
5079 
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5080 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5081 				    u8 fw_sb_id, u8 sb_index,
5082 				    u8 ticks)
5083 {
5084 	u32 addr = BAR_CSTRORM_INTMEM +
5085 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5086 	REG_WR8(bp, addr, ticks);
5087 	DP(NETIF_MSG_IFUP,
5088 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5089 	   port, fw_sb_id, sb_index, ticks);
5090 }
5091 
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5092 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5093 				    u16 fw_sb_id, u8 sb_index,
5094 				    u8 disable)
5095 {
5096 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5097 	u32 addr = BAR_CSTRORM_INTMEM +
5098 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5099 	u8 flags = REG_RD8(bp, addr);
5100 	/* clear and set */
5101 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5102 	flags |= enable_flag;
5103 	REG_WR8(bp, addr, flags);
5104 	DP(NETIF_MSG_IFUP,
5105 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5106 	   port, fw_sb_id, sb_index, disable);
5107 }
5108 
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5109 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5110 				    u8 sb_index, u8 disable, u16 usec)
5111 {
5112 	int port = BP_PORT(bp);
5113 	u8 ticks = usec / BNX2X_BTR;
5114 
5115 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5116 
5117 	disable = disable ? 1 : (usec ? 0 : 1);
5118 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5119 }
5120 
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5121 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5122 			    u32 verbose)
5123 {
5124 	smp_mb__before_atomic();
5125 	set_bit(flag, &bp->sp_rtnl_state);
5126 	smp_mb__after_atomic();
5127 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5128 	   flag);
5129 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5130 }
5131