• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_sriov.c: QLogic Everest network driver.
2  *
3  * Copyright 2009-2013 Broadcom Corporation
4  * Copyright 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * Unless you and QLogic execute a separate written software license
8  * agreement governing use of this software, this software is licensed to you
9  * under the terms of the GNU General Public License version 2, available
10  * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11  *
12  * Notwithstanding the above, under no circumstances may you combine this
13  * software in any way with any other QLogic software provided under a
14  * license other than the GPL, without QLogic's express prior written
15  * consent.
16  *
17  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18  * Written by: Shmulik Ravid
19  *	       Ariel Elior <ariel.elior@qlogic.com>
20  *
21  */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28 
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 			    struct bnx2x_virtf **vf,
31 			    struct pf_vf_bulletin_content **bulletin,
32 			    bool test_queue);
33 
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 					 u16 pf_id)
37 {
38 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 		pf_id);
40 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 		pf_id);
42 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 		pf_id);
44 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 		pf_id);
46 }
47 
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 					u8 enable)
50 {
51 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 		enable);
53 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 		enable);
55 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 		enable);
57 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 		enable);
59 }
60 
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 	int idx;
64 
65 	for_each_vf(bp, idx)
66 		if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 			break;
68 	return idx;
69 }
70 
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 	u16 idx =  (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 	return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77 
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 				u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 				u8 update)
81 {
82 	/* acking a VF sb through the PF - use the GRC */
83 	u32 ctl;
84 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 	u32 func_encode = vf->abs_vfid;
87 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 	struct igu_regular cmd_data = {0};
89 
90 	cmd_data.sb_id_and_flags =
91 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95 
96 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
97 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
98 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99 
100 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 	   cmd_data.sb_id_and_flags, igu_addr_data);
102 	REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 	barrier();
104 
105 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 	   ctl, igu_addr_ctl);
107 	REG_WR(bp, igu_addr_ctl, ctl);
108 	barrier();
109 }
110 
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 				       struct bnx2x_virtf *vf,
113 				       bool print_err)
114 {
115 	if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 		if (print_err)
117 			BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 		else
119 			DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 		return false;
121 	}
122 	return true;
123 }
124 
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 			      struct bnx2x_queue_init_params *init_params,
128 			      struct bnx2x_queue_setup_params *setup_params,
129 			      u16 q_idx, u16 sb_idx)
130 {
131 	DP(BNX2X_MSG_IOV,
132 	   "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 	   vf->abs_vfid,
134 	   q_idx,
135 	   sb_idx,
136 	   init_params->tx.sb_cq_index,
137 	   init_params->tx.hc_rate,
138 	   setup_params->flags,
139 	   setup_params->txq_params.traffic_type);
140 }
141 
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 			    struct bnx2x_queue_init_params *init_params,
144 			    struct bnx2x_queue_setup_params *setup_params,
145 			    u16 q_idx, u16 sb_idx)
146 {
147 	struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148 
149 	DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 	   "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 	   vf->abs_vfid,
152 	   q_idx,
153 	   sb_idx,
154 	   init_params->rx.sb_cq_index,
155 	   init_params->rx.hc_rate,
156 	   setup_params->gen_params.mtu,
157 	   rxq_params->buf_sz,
158 	   rxq_params->sge_buf_sz,
159 	   rxq_params->max_sges_pkt,
160 	   rxq_params->tpa_agg_sz,
161 	   setup_params->flags,
162 	   rxq_params->drop_flags,
163 	   rxq_params->cache_line_log);
164 }
165 
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 			   struct bnx2x_virtf *vf,
168 			   struct bnx2x_vf_queue *q,
169 			   struct bnx2x_vf_queue_construct_params *p,
170 			   unsigned long q_type)
171 {
172 	struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 	struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174 
175 	/* INIT */
176 
177 	/* Enable host coalescing in the transition to INIT state */
178 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180 
181 	if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183 
184 	/* FW SB ID */
185 	init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 	init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187 
188 	/* context */
189 	init_p->cxts[0] = q->cxt;
190 
191 	/* SETUP */
192 
193 	/* Setup-op general parameters */
194 	setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 	setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 	setup_p->gen_params.fp_hsi = vf->fp_hsi;
197 
198 	/* Setup-op flags:
199 	 * collect statistics, zero statistics, local-switching, security,
200 	 * OV for Flex10, RSS and MCAST for leading
201 	 */
202 	if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204 
205 	/* for VFs, enable tx switching, bd coherency, and mac address
206 	 * anti-spoofing
207 	 */
208 	__set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 	__set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 	if (vf->spoofchk)
211 		__set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 	else
213 		__clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214 
215 	/* Setup-op rx parameters */
216 	if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 		struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218 
219 		rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 		rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 		rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222 
223 		if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 			rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 	}
226 
227 	/* Setup-op tx parameters */
228 	if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 		setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 		setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 	}
232 }
233 
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 				 struct bnx2x_virtf *vf, int qid,
236 				 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 	struct bnx2x_queue_state_params *q_params;
239 	int rc = 0;
240 
241 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242 
243 	/* Prepare ramrod information */
244 	q_params = &qctor->qstate;
245 	q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 	set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247 
248 	if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 	    BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 		DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 		goto out;
252 	}
253 
254 	/* Run Queue 'construction' ramrods */
255 	q_params->cmd = BNX2X_Q_CMD_INIT;
256 	rc = bnx2x_queue_state_change(bp, q_params);
257 	if (rc)
258 		goto out;
259 
260 	memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 	       sizeof(struct bnx2x_queue_setup_params));
262 	q_params->cmd = BNX2X_Q_CMD_SETUP;
263 	rc = bnx2x_queue_state_change(bp, q_params);
264 	if (rc)
265 		goto out;
266 
267 	/* enable interrupts */
268 	bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 			    USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 	return rc;
272 }
273 
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 				  int qid)
276 {
277 	enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 				       BNX2X_Q_CMD_TERMINATE,
279 				       BNX2X_Q_CMD_CFC_DEL};
280 	struct bnx2x_queue_state_params q_params;
281 	int rc, i;
282 
283 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284 
285 	/* Prepare ramrod information */
286 	memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 	q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 	set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289 
290 	if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 	    BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 		DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 		goto out;
294 	}
295 
296 	/* Run Queue 'destruction' ramrods */
297 	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 		q_params.cmd = cmds[i];
299 		rc = bnx2x_queue_state_change(bp, &q_params);
300 		if (rc) {
301 			BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 			return rc;
303 		}
304 	}
305 out:
306 	/* Clean Context */
307 	if (bnx2x_vfq(vf, qid, cxt)) {
308 		bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 		bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 	}
311 
312 	return 0;
313 }
314 
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 	if (vf) {
320 		/* the first igu entry belonging to VFs of this PF */
321 		if (!BP_VFDB(bp)->first_vf_igu_entry)
322 			BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323 
324 		/* the first igu entry belonging to this VF */
325 		if (!vf_sb_count(vf))
326 			vf->igu_base_id = igu_sb_id;
327 
328 		++vf_sb_count(vf);
329 		++vf->sb_count;
330 	}
331 	BP_VFDB(bp)->vf_sbs_pool++;
332 }
333 
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 				   int qid, bool drv_only, int type)
336 {
337 	struct bnx2x_vlan_mac_ramrod_params ramrod;
338 	int rc;
339 
340 	DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343 
344 	/* Prepare ramrod params */
345 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 	if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 	} else if (type == BNX2X_VF_FILTER_MAC) {
350 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 	} else {
353 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 	}
355 	ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356 
357 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 	if (drv_only)
359 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 	else
361 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362 
363 	/* Start deleting */
364 	rc = ramrod.vlan_mac_obj->delete_all(bp,
365 					     ramrod.vlan_mac_obj,
366 					     &ramrod.user_req.vlan_mac_flags,
367 					     &ramrod.ramrod_flags);
368 	if (rc) {
369 		BNX2X_ERR("Failed to delete all %s\n",
370 			  (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 			  (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 		return rc;
373 	}
374 
375 	return 0;
376 }
377 
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 				    struct bnx2x_virtf *vf, int qid,
380 				    struct bnx2x_vf_mac_vlan_filter *filter,
381 				    bool drv_only)
382 {
383 	struct bnx2x_vlan_mac_ramrod_params ramrod;
384 	int rc;
385 
386 	DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 	   vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 	   (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 	   (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390 
391 	/* Prepare ramrod params */
392 	memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 	if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 		ramrod.user_req.u.vlan.vlan = filter->vid;
396 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 	} else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 		ramrod.user_req.u.vlan.vlan = filter->vid;
401 	} else {
402 		set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 		ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 		memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 	}
406 	ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 					    BNX2X_VLAN_MAC_DEL;
408 
409 	set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 	if (drv_only)
411 		set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 	else
413 		set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414 
415 	/* Add/Remove the filter */
416 	rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 	if (rc == -EEXIST)
418 		return 0;
419 	if (rc) {
420 		BNX2X_ERR("Failed to %s %s\n",
421 			  filter->add ? "add" : "delete",
422 			  (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 				"VLAN-MAC" :
424 			  (filter->type == BNX2X_VF_FILTER_MAC) ?
425 				"MAC" : "VLAN");
426 		return rc;
427 	}
428 
429 	filter->applied = true;
430 
431 	return 0;
432 }
433 
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 				  struct bnx2x_vf_mac_vlan_filters *filters,
436 				  int qid, bool drv_only)
437 {
438 	int rc = 0, i;
439 
440 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441 
442 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 		return -EINVAL;
444 
445 	/* Prepare ramrod params */
446 	for (i = 0; i < filters->count; i++) {
447 		rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 					      &filters->filters[i], drv_only);
449 		if (rc)
450 			break;
451 	}
452 
453 	/* Rollback if needed */
454 	if (i != filters->count) {
455 		BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 			  i, filters->count);
457 		while (--i >= 0) {
458 			if (!filters->filters[i].applied)
459 				continue;
460 			filters->filters[i].add = !filters->filters[i].add;
461 			bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 						 &filters->filters[i],
463 						 drv_only);
464 		}
465 	}
466 
467 	/* It's our responsibility to free the filters */
468 	kfree(filters);
469 
470 	return rc;
471 }
472 
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 			 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 	int rc;
477 
478 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479 
480 	rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 	if (rc)
482 		goto op_err;
483 
484 	/* Schedule the configuration of any pending vlan filters */
485 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 			       BNX2X_MSG_IOV);
487 	return 0;
488 op_err:
489 	BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 	return rc;
491 }
492 
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 			       int qid)
495 {
496 	int rc;
497 
498 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499 
500 	/* If needed, clean the filtering data base */
501 	if ((qid == LEADING_IDX) &&
502 	    bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 					     BNX2X_VF_FILTER_VLAN_MAC);
505 		if (rc)
506 			goto op_err;
507 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 					     BNX2X_VF_FILTER_VLAN);
509 		if (rc)
510 			goto op_err;
511 		rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 					     BNX2X_VF_FILTER_MAC);
513 		if (rc)
514 			goto op_err;
515 	}
516 
517 	/* Terminate queue */
518 	if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 		struct bnx2x_queue_state_params qstate;
520 
521 		memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 		qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 		qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 		set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 		rc = bnx2x_queue_state_change(bp, &qstate);
527 		if (rc)
528 			goto op_err;
529 	}
530 
531 	return 0;
532 op_err:
533 	BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 	return rc;
535 }
536 
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 		   bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 	struct bnx2x_mcast_list_elem *mc = NULL;
541 	struct bnx2x_mcast_ramrod_params mcast;
542 	int rc, i;
543 
544 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545 
546 	/* Prepare Multicast command */
547 	memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 	mcast.mcast_obj = &vf->mcast_obj;
549 	if (drv_only)
550 		set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 	else
552 		set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 	if (mc_num) {
554 		mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 			     GFP_KERNEL);
556 		if (!mc) {
557 			BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 			return -ENOMEM;
559 		}
560 	}
561 
562 	if (mc_num) {
563 		INIT_LIST_HEAD(&mcast.mcast_list);
564 		for (i = 0; i < mc_num; i++) {
565 			mc[i].mac = mcasts[i];
566 			list_add_tail(&mc[i].link,
567 				      &mcast.mcast_list);
568 		}
569 
570 		/* add new mcasts */
571 		mcast.mcast_list_len = mc_num;
572 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 		if (rc)
574 			BNX2X_ERR("Failed to set multicasts\n");
575 	} else {
576 		/* clear existing mcasts */
577 		rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 		if (rc)
579 			BNX2X_ERR("Failed to remove multicasts\n");
580 	}
581 
582 	kfree(mc);
583 
584 	return rc;
585 }
586 
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 				  struct bnx2x_rx_mode_ramrod_params *ramrod,
589 				  struct bnx2x_virtf *vf,
590 				  unsigned long accept_flags)
591 {
592 	struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593 
594 	memset(ramrod, 0, sizeof(*ramrod));
595 	ramrod->cid = vfq->cid;
596 	ramrod->cl_id = vfq_cl_id(vf, vfq);
597 	ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 	ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 	ramrod->rx_accept_flags = accept_flags;
600 	ramrod->tx_accept_flags = accept_flags;
601 	ramrod->pstate = &vf->filter_state;
602 	ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603 
604 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 	set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 	set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607 
608 	ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 	ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611 
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 		    int qid, unsigned long accept_flags)
614 {
615 	struct bnx2x_rx_mode_ramrod_params ramrod;
616 
617 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618 
619 	bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 	set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 	vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 	return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624 
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 	int rc;
628 
629 	DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630 
631 	/* Remove all classification configuration for leading queue */
632 	if (qid == LEADING_IDX) {
633 		rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 		if (rc)
635 			goto op_err;
636 
637 		/* Remove filtering if feasible */
638 		if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 						     false,
641 						     BNX2X_VF_FILTER_VLAN_MAC);
642 			if (rc)
643 				goto op_err;
644 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 						     false,
646 						     BNX2X_VF_FILTER_VLAN);
647 			if (rc)
648 				goto op_err;
649 			rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 						     false,
651 						     BNX2X_VF_FILTER_MAC);
652 			if (rc)
653 				goto op_err;
654 			rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 			if (rc)
656 				goto op_err;
657 		}
658 	}
659 
660 	/* Destroy queue */
661 	rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 	if (rc)
663 		goto op_err;
664 	return rc;
665 op_err:
666 	BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 		  vf->abs_vfid, qid, rc);
668 	return rc;
669 }
670 
671 /* VF enable primitives
672  * when pretend is required the caller is responsible
673  * for calling pretend prior to calling these routines
674  */
675 
676 /* internal vf enable - until vf is enabled internally all transactions
677  * are blocked. This routine should always be called last with pretend.
678  */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 	REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683 
684 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 	REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 	REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 	REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 	REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692 
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 	u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 	u32 was_err_reg = 0;
697 
698 	switch (was_err_group) {
699 	case 0:
700 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 	    break;
702 	case 1:
703 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 	    break;
705 	case 2:
706 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 	    break;
708 	case 3:
709 	    was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 	    break;
711 	}
712 	REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714 
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 	int i;
718 	u32 val;
719 
720 	/* Set VF masks and configuration - pretend */
721 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722 
723 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 	REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 	REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 	REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 	REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 	REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729 
730 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 	val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 	val &= ~IGU_VF_CONF_PARENT_MASK;
733 	val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735 
736 	DP(BNX2X_MSG_IOV,
737 	   "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 	   vf->abs_vfid, val);
739 
740 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741 
742 	/* iterate over all queues, clear sb consumer */
743 	for (i = 0; i < vf_sb_count(vf); i++) {
744 		u8 igu_sb_id = vf_igu_sb(vf, i);
745 
746 		/* zero prod memory */
747 		REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748 
749 		/* clear sb state machine */
750 		bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 				       false /* VF */);
752 
753 		/* disable + update */
754 		bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 				    IGU_INT_DISABLE, 1);
756 	}
757 }
758 
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 	u16 abs_fid;
762 
763 	abs_fid = FW_VF_HANDLE(abs_vfid);
764 
765 	/* set the VF-PF association in the FW */
766 	storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 	storm_memset_func_en(bp, abs_fid, 1);
768 
769 	/* Invalidate fp_hsi version for vfs */
770 	if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 		REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 			    XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773 
774 	/* clear vf errors*/
775 	bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 	bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777 
778 	/* internal vf-enable - pretend */
779 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 	DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 	bnx2x_vf_enable_internal(bp, true);
782 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784 
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 	/* Reset vf in IGU  interrupts are still disabled */
788 	bnx2x_vf_igu_reset(bp, vf);
789 
790 	/* pretend to enable the vf with the PBF */
791 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 	REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795 
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 	struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
799 	struct pci_dev *dev;
800 	bool pending;
801 
802 	if (!vf)
803 		return false;
804 
805 	dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
806 	if (!dev)
807 		return false;
808 	pending = bnx2x_is_pcie_pending(dev);
809 	pci_dev_put(dev);
810 
811 	return pending;
812 }
813 
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)814 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
815 {
816 	/* Verify no pending pci transactions */
817 	if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
818 		BNX2X_ERR("PCIE Transactions still pending\n");
819 
820 	return 0;
821 }
822 
823 /* must be called after the number of PF queues and the number of VFs are
824  * both known
825  */
826 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)827 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
828 {
829 	struct vf_pf_resc_request *resc = &vf->alloc_resc;
830 
831 	/* will be set only during VF-ACQUIRE */
832 	resc->num_rxqs = 0;
833 	resc->num_txqs = 0;
834 
835 	resc->num_mac_filters = VF_MAC_CREDIT_CNT;
836 	resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
837 
838 	/* no real limitation */
839 	resc->num_mc_filters = 0;
840 
841 	/* num_sbs already set */
842 	resc->num_sbs = vf->sb_count;
843 }
844 
845 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)846 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
847 {
848 	/* reset the state variables */
849 	bnx2x_iov_static_resc(bp, vf);
850 	vf->state = VF_FREE;
851 }
852 
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)853 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
856 
857 	/* DQ usage counter */
858 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
859 	bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
860 					"DQ VF usage counter timed out",
861 					poll_cnt);
862 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
863 
864 	/* FW cleanup command - poll for the results */
865 	if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
866 				   poll_cnt))
867 		BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
868 
869 	/* verify TX hw is flushed */
870 	bnx2x_tx_hw_flushed(bp, poll_cnt);
871 }
872 
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)873 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
874 {
875 	int rc, i;
876 
877 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
878 
879 	/* the cleanup operations are valid if and only if the VF
880 	 * was first acquired.
881 	 */
882 	for (i = 0; i < vf_rxq_count(vf); i++) {
883 		rc = bnx2x_vf_queue_flr(bp, vf, i);
884 		if (rc)
885 			goto out;
886 	}
887 
888 	/* remove multicasts */
889 	bnx2x_vf_mcast(bp, vf, NULL, 0, true);
890 
891 	/* dispatch final cleanup and wait for HW queues to flush */
892 	bnx2x_vf_flr_clnup_hw(bp, vf);
893 
894 	/* release VF resources */
895 	bnx2x_vf_free_resc(bp, vf);
896 
897 	vf->malicious = false;
898 
899 	/* re-open the mailbox */
900 	bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
901 	return;
902 out:
903 	BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
904 		  vf->abs_vfid, i, rc);
905 }
906 
bnx2x_vf_flr_clnup(struct bnx2x * bp)907 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
908 {
909 	struct bnx2x_virtf *vf;
910 	int i;
911 
912 	for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
913 		/* VF should be RESET & in FLR cleanup states */
914 		if (bnx2x_vf(bp, i, state) != VF_RESET ||
915 		    !bnx2x_vf(bp, i, flr_clnup_stage))
916 			continue;
917 
918 		DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
919 		   i, BNX2X_NR_VIRTFN(bp));
920 
921 		vf = BP_VF(bp, i);
922 
923 		/* lock the vf pf channel */
924 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
925 
926 		/* invoke the VF FLR SM */
927 		bnx2x_vf_flr(bp, vf);
928 
929 		/* mark the VF to be ACKED and continue */
930 		vf->flr_clnup_stage = false;
931 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 	}
933 
934 	/* Acknowledge the handled VFs.
935 	 * we are acknowledge all the vfs which an flr was requested for, even
936 	 * if amongst them there are such that we never opened, since the mcp
937 	 * will interrupt us immediately again if we only ack some of the bits,
938 	 * resulting in an endless loop. This can happen for example in KVM
939 	 * where an 'all ones' flr request is sometimes given by hyper visor
940 	 */
941 	DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
942 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
943 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
944 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
945 			  bp->vfdb->flrd_vfs[i]);
946 
947 	bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
948 
949 	/* clear the acked bits - better yet if the MCP implemented
950 	 * write to clear semantics
951 	 */
952 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
953 		SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
954 }
955 
bnx2x_vf_handle_flr_event(struct bnx2x * bp)956 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
957 {
958 	int i;
959 
960 	/* Read FLR'd VFs */
961 	for (i = 0; i < FLRD_VFS_DWORDS; i++)
962 		bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
963 
964 	DP(BNX2X_MSG_MCP,
965 	   "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
966 	   bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
967 
968 	for_each_vf(bp, i) {
969 		struct bnx2x_virtf *vf = BP_VF(bp, i);
970 		u32 reset = 0;
971 
972 		if (vf->abs_vfid < 32)
973 			reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
974 		else
975 			reset = bp->vfdb->flrd_vfs[1] &
976 				(1 << (vf->abs_vfid - 32));
977 
978 		if (reset) {
979 			/* set as reset and ready for cleanup */
980 			vf->state = VF_RESET;
981 			vf->flr_clnup_stage = true;
982 
983 			DP(BNX2X_MSG_IOV,
984 			   "Initiating Final cleanup for VF %d\n",
985 			   vf->abs_vfid);
986 		}
987 	}
988 
989 	/* do the FLR cleanup for all marked VFs*/
990 	bnx2x_vf_flr_clnup(bp);
991 }
992 
993 /* IOV global initialization routines  */
bnx2x_iov_init_dq(struct bnx2x * bp)994 void bnx2x_iov_init_dq(struct bnx2x *bp)
995 {
996 	if (!IS_SRIOV(bp))
997 		return;
998 
999 	/* Set the DQ such that the CID reflect the abs_vfid */
1000 	REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1001 	REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1002 
1003 	/* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1004 	 * the PF L2 queues
1005 	 */
1006 	REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1007 
1008 	/* The VF window size is the log2 of the max number of CIDs per VF */
1009 	REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1010 
1011 	/* The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
1012 	 * the Pf doorbell size although the 2 are independent.
1013 	 */
1014 	REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1015 
1016 	/* No security checks for now -
1017 	 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1018 	 * CID range 0 - 0x1ffff
1019 	 */
1020 	REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1021 	REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1022 	REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1023 	REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1024 
1025 	/* set the VF doorbell threshold. This threshold represents the amount
1026 	 * of doorbells allowed in the main DORQ fifo for a specific VF.
1027 	 */
1028 	REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1029 }
1030 
bnx2x_iov_init_dmae(struct bnx2x * bp)1031 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1032 {
1033 	if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1034 		REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1035 }
1036 
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1037 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1038 {
1039 	struct pci_dev *dev = bp->pdev;
1040 
1041 	return pci_domain_nr(dev->bus);
1042 }
1043 
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 	struct pci_dev *dev = bp->pdev;
1047 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048 
1049 	return dev->bus->number + ((dev->devfn + iov->offset +
1050 				    iov->stride * vfid) >> 8);
1051 }
1052 
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 	struct pci_dev *dev = bp->pdev;
1056 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057 
1058 	return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060 
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 	int i, n;
1064 	struct pci_dev *dev = bp->pdev;
1065 	struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066 
1067 	for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 		u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 		u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070 
1071 		size /= iov->total;
1072 		vf->bars[n].bar = start + size * vf->abs_vfid;
1073 		vf->bars[n].size = size;
1074 	}
1075 }
1076 
1077 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1079 {
1080 	int sb_id;
1081 	u32 val;
1082 	u8 fid, current_pf = 0;
1083 
1084 	/* IGU in normal mode - read CAM */
1085 	for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1086 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1087 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1088 			continue;
1089 		fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1090 		if (fid & IGU_FID_ENCODE_IS_PF)
1091 			current_pf = fid & IGU_FID_PF_NUM_MASK;
1092 		else if (current_pf == BP_FUNC(bp))
1093 			bnx2x_vf_set_igu_info(bp, sb_id,
1094 					      (fid & IGU_FID_VF_NUM_MASK));
1095 		DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1096 		   ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1097 		   ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1098 		   (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1099 		   GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1100 	}
1101 	DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1102 	return BP_VFDB(bp)->vf_sbs_pool;
1103 }
1104 
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1106 {
1107 	if (bp->vfdb) {
1108 		kfree(bp->vfdb->vfqs);
1109 		kfree(bp->vfdb->vfs);
1110 		kfree(bp->vfdb);
1111 	}
1112 	bp->vfdb = NULL;
1113 }
1114 
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1116 {
1117 	int pos;
1118 	struct pci_dev *dev = bp->pdev;
1119 
1120 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1121 	if (!pos) {
1122 		BNX2X_ERR("failed to find SRIOV capability in device\n");
1123 		return -ENODEV;
1124 	}
1125 
1126 	iov->pos = pos;
1127 	DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1128 	pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1129 	pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1130 	pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1131 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1132 	pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1133 	pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1134 	pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1135 	pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1136 
1137 	return 0;
1138 }
1139 
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1141 {
1142 	u32 val;
1143 
1144 	/* read the SRIOV capability structure
1145 	 * The fields can be read via configuration read or
1146 	 * directly from the device (starting at offset PCICFG_OFFSET)
1147 	 */
1148 	if (bnx2x_sriov_pci_cfg_info(bp, iov))
1149 		return -ENODEV;
1150 
1151 	/* get the number of SRIOV bars */
1152 	iov->nres = 0;
1153 
1154 	/* read the first_vfid */
1155 	val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1156 	iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1157 			       * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1158 
1159 	DP(BNX2X_MSG_IOV,
1160 	   "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1161 	   BP_FUNC(bp),
1162 	   iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1163 	   iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1164 
1165 	return 0;
1166 }
1167 
1168 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1170 		       int num_vfs_param)
1171 {
1172 	int err, i;
1173 	struct bnx2x_sriov *iov;
1174 	struct pci_dev *dev = bp->pdev;
1175 
1176 	bp->vfdb = NULL;
1177 
1178 	/* verify is pf */
1179 	if (IS_VF(bp))
1180 		return 0;
1181 
1182 	/* verify sriov capability is present in configuration space */
1183 	if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1184 		return 0;
1185 
1186 	/* verify chip revision */
1187 	if (CHIP_IS_E1x(bp))
1188 		return 0;
1189 
1190 	/* check if SRIOV support is turned off */
1191 	if (!num_vfs_param)
1192 		return 0;
1193 
1194 	/* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1195 	if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1196 		BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1197 			  BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1198 		return 0;
1199 	}
1200 
1201 	/* SRIOV can be enabled only with MSIX */
1202 	if (int_mode_param == BNX2X_INT_MODE_MSI ||
1203 	    int_mode_param == BNX2X_INT_MODE_INTX) {
1204 		BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1205 		return 0;
1206 	}
1207 
1208 	err = -EIO;
1209 	/* verify ari is enabled */
1210 	if (!pci_ari_enabled(bp->pdev->bus)) {
1211 		BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1212 		return 0;
1213 	}
1214 
1215 	/* verify igu is in normal mode */
1216 	if (CHIP_INT_MODE_IS_BC(bp)) {
1217 		BNX2X_ERR("IGU not normal mode,  SRIOV can not be enabled\n");
1218 		return 0;
1219 	}
1220 
1221 	/* allocate the vfs database */
1222 	bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1223 	if (!bp->vfdb) {
1224 		BNX2X_ERR("failed to allocate vf database\n");
1225 		err = -ENOMEM;
1226 		goto failed;
1227 	}
1228 
1229 	/* get the sriov info - Linux already collected all the pertinent
1230 	 * information, however the sriov structure is for the private use
1231 	 * of the pci module. Also we want this information regardless
1232 	 * of the hyper-visor.
1233 	 */
1234 	iov = &(bp->vfdb->sriov);
1235 	err = bnx2x_sriov_info(bp, iov);
1236 	if (err)
1237 		goto failed;
1238 
1239 	/* SR-IOV capability was enabled but there are no VFs*/
1240 	if (iov->total == 0) {
1241 		err = 0;
1242 		goto failed;
1243 	}
1244 
1245 	iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1246 
1247 	DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1248 	   num_vfs_param, iov->nr_virtfn);
1249 
1250 	/* allocate the vf array */
1251 	bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1252 				sizeof(struct bnx2x_virtf),
1253 				GFP_KERNEL);
1254 	if (!bp->vfdb->vfs) {
1255 		BNX2X_ERR("failed to allocate vf array\n");
1256 		err = -ENOMEM;
1257 		goto failed;
1258 	}
1259 
1260 	/* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1261 	for_each_vf(bp, i) {
1262 		bnx2x_vf(bp, i, index) = i;
1263 		bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1264 		bnx2x_vf(bp, i, state) = VF_FREE;
1265 		mutex_init(&bnx2x_vf(bp, i, op_mutex));
1266 		bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1267 		/* enable spoofchk by default */
1268 		bnx2x_vf(bp, i, spoofchk) = 1;
1269 	}
1270 
1271 	/* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1272 	if (!bnx2x_get_vf_igu_cam_info(bp)) {
1273 		BNX2X_ERR("No entries in IGU CAM for vfs\n");
1274 		err = -EINVAL;
1275 		goto failed;
1276 	}
1277 
1278 	/* allocate the queue arrays for all VFs */
1279 	bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1280 				 sizeof(struct bnx2x_vf_queue),
1281 				 GFP_KERNEL);
1282 
1283 	if (!bp->vfdb->vfqs) {
1284 		BNX2X_ERR("failed to allocate vf queue array\n");
1285 		err = -ENOMEM;
1286 		goto failed;
1287 	}
1288 
1289 	/* Prepare the VFs event synchronization mechanism */
1290 	mutex_init(&bp->vfdb->event_mutex);
1291 
1292 	mutex_init(&bp->vfdb->bulletin_mutex);
1293 
1294 	if (SHMEM2_HAS(bp, sriov_switch_mode))
1295 		SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1296 
1297 	return 0;
1298 failed:
1299 	DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1300 	__bnx2x_iov_free_vfdb(bp);
1301 	return err;
1302 }
1303 
bnx2x_iov_remove_one(struct bnx2x * bp)1304 void bnx2x_iov_remove_one(struct bnx2x *bp)
1305 {
1306 	int vf_idx;
1307 
1308 	/* if SRIOV is not enabled there's nothing to do */
1309 	if (!IS_SRIOV(bp))
1310 		return;
1311 
1312 	bnx2x_disable_sriov(bp);
1313 
1314 	/* disable access to all VFs */
1315 	for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1316 		bnx2x_pretend_func(bp,
1317 				   HW_VF_HANDLE(bp,
1318 						bp->vfdb->sriov.first_vf_in_pf +
1319 						vf_idx));
1320 		DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1321 		   bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1322 		bnx2x_vf_enable_internal(bp, 0);
1323 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1324 	}
1325 
1326 	/* free vf database */
1327 	__bnx2x_iov_free_vfdb(bp);
1328 }
1329 
bnx2x_iov_free_mem(struct bnx2x * bp)1330 void bnx2x_iov_free_mem(struct bnx2x *bp)
1331 {
1332 	int i;
1333 
1334 	if (!IS_SRIOV(bp))
1335 		return;
1336 
1337 	/* free vfs hw contexts */
1338 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1339 		struct hw_dma *cxt = &bp->vfdb->context[i];
1340 		BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1341 	}
1342 
1343 	BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1344 		       BP_VFDB(bp)->sp_dma.mapping,
1345 		       BP_VFDB(bp)->sp_dma.size);
1346 
1347 	BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1348 		       BP_VF_MBX_DMA(bp)->mapping,
1349 		       BP_VF_MBX_DMA(bp)->size);
1350 
1351 	BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1352 		       BP_VF_BULLETIN_DMA(bp)->mapping,
1353 		       BP_VF_BULLETIN_DMA(bp)->size);
1354 }
1355 
bnx2x_iov_alloc_mem(struct bnx2x * bp)1356 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1357 {
1358 	size_t tot_size;
1359 	int i, rc = 0;
1360 
1361 	if (!IS_SRIOV(bp))
1362 		return rc;
1363 
1364 	/* allocate vfs hw contexts */
1365 	tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1366 		BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1367 
1368 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1369 		struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1370 		cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1371 
1372 		if (cxt->size) {
1373 			cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1374 			if (!cxt->addr)
1375 				goto alloc_mem_err;
1376 		} else {
1377 			cxt->addr = NULL;
1378 			cxt->mapping = 0;
1379 		}
1380 		tot_size -= cxt->size;
1381 	}
1382 
1383 	/* allocate vfs ramrods dma memory - client_init and set_mac */
1384 	tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1385 	BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1386 						   tot_size);
1387 	if (!BP_VFDB(bp)->sp_dma.addr)
1388 		goto alloc_mem_err;
1389 	BP_VFDB(bp)->sp_dma.size = tot_size;
1390 
1391 	/* allocate mailboxes */
1392 	tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1393 	BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1394 						  tot_size);
1395 	if (!BP_VF_MBX_DMA(bp)->addr)
1396 		goto alloc_mem_err;
1397 
1398 	BP_VF_MBX_DMA(bp)->size = tot_size;
1399 
1400 	/* allocate local bulletin boards */
1401 	tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1402 	BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1403 						       tot_size);
1404 	if (!BP_VF_BULLETIN_DMA(bp)->addr)
1405 		goto alloc_mem_err;
1406 
1407 	BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1408 
1409 	return 0;
1410 
1411 alloc_mem_err:
1412 	return -ENOMEM;
1413 }
1414 
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1415 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1416 			   struct bnx2x_vf_queue *q)
1417 {
1418 	u8 cl_id = vfq_cl_id(vf, q);
1419 	u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1420 	unsigned long q_type = 0;
1421 
1422 	set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1423 	set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1424 
1425 	/* Queue State object */
1426 	bnx2x_init_queue_obj(bp, &q->sp_obj,
1427 			     cl_id, &q->cid, 1, func_id,
1428 			     bnx2x_vf_sp(bp, vf, q_data),
1429 			     bnx2x_vf_sp_map(bp, vf, q_data),
1430 			     q_type);
1431 
1432 	/* sp indication is set only when vlan/mac/etc. are initialized */
1433 	q->sp_initialized = false;
1434 
1435 	DP(BNX2X_MSG_IOV,
1436 	   "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1437 	   vf->abs_vfid, q->sp_obj.func_id, q->cid);
1438 }
1439 
bnx2x_max_speed_cap(struct bnx2x * bp)1440 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1441 {
1442 	u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1443 
1444 	if (supported &
1445 	    (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1446 		return 20000;
1447 
1448 	return 10000; /* assume lowest supported speed is 10G */
1449 }
1450 
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1451 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1452 {
1453 	struct bnx2x_link_report_data *state = &bp->last_reported_link;
1454 	struct pf_vf_bulletin_content *bulletin;
1455 	struct bnx2x_virtf *vf;
1456 	bool update = true;
1457 	int rc = 0;
1458 
1459 	/* sanity and init */
1460 	rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1461 	if (rc)
1462 		return rc;
1463 
1464 	mutex_lock(&bp->vfdb->bulletin_mutex);
1465 
1466 	if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1467 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1468 
1469 		bulletin->link_speed = state->line_speed;
1470 		bulletin->link_flags = 0;
1471 		if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1472 			     &state->link_report_flags))
1473 			bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1474 		if (test_bit(BNX2X_LINK_REPORT_FD,
1475 			     &state->link_report_flags))
1476 			bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1477 		if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1478 			     &state->link_report_flags))
1479 			bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1480 		if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1481 			     &state->link_report_flags))
1482 			bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1483 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1484 		   !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1485 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1486 		bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1487 	} else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1488 		   (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1489 		bulletin->valid_bitmap |= 1 << LINK_VALID;
1490 		bulletin->link_speed = bnx2x_max_speed_cap(bp);
1491 		bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1492 	} else {
1493 		update = false;
1494 	}
1495 
1496 	if (update) {
1497 		DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1498 		   "vf %d mode %u speed %d flags %x\n", idx,
1499 		   vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1500 
1501 		/* Post update on VF's bulletin board */
1502 		rc = bnx2x_post_vf_bulletin(bp, idx);
1503 		if (rc) {
1504 			BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1505 			goto out;
1506 		}
1507 	}
1508 
1509 out:
1510 	mutex_unlock(&bp->vfdb->bulletin_mutex);
1511 	return rc;
1512 }
1513 
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1514 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1515 {
1516 	struct bnx2x *bp = netdev_priv(dev);
1517 	struct bnx2x_virtf *vf = BP_VF(bp, idx);
1518 
1519 	if (!vf)
1520 		return -EINVAL;
1521 
1522 	if (vf->link_cfg == link_state)
1523 		return 0; /* nothing todo */
1524 
1525 	vf->link_cfg = link_state;
1526 
1527 	return bnx2x_iov_link_update_vf(bp, idx);
1528 }
1529 
bnx2x_iov_link_update(struct bnx2x * bp)1530 void bnx2x_iov_link_update(struct bnx2x *bp)
1531 {
1532 	int vfid;
1533 
1534 	if (!IS_SRIOV(bp))
1535 		return;
1536 
1537 	for_each_vf(bp, vfid)
1538 		bnx2x_iov_link_update_vf(bp, vfid);
1539 }
1540 
1541 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1542 int bnx2x_iov_nic_init(struct bnx2x *bp)
1543 {
1544 	int vfid;
1545 
1546 	if (!IS_SRIOV(bp)) {
1547 		DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1548 		return 0;
1549 	}
1550 
1551 	DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1552 
1553 	/* let FLR complete ... */
1554 	msleep(100);
1555 
1556 	/* initialize vf database */
1557 	for_each_vf(bp, vfid) {
1558 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1559 
1560 		int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1561 			BNX2X_CIDS_PER_VF;
1562 
1563 		union cdu_context *base_cxt = (union cdu_context *)
1564 			BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1565 			(base_vf_cid & (ILT_PAGE_CIDS-1));
1566 
1567 		DP(BNX2X_MSG_IOV,
1568 		   "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1569 		   vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1570 		   BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1571 
1572 		/* init statically provisioned resources */
1573 		bnx2x_iov_static_resc(bp, vf);
1574 
1575 		/* queues are initialized during VF-ACQUIRE */
1576 		vf->filter_state = 0;
1577 		vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1578 
1579 		bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1580 				       vf_vlan_rules_cnt(vf));
1581 		bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1582 				       vf_mac_rules_cnt(vf));
1583 
1584 		/*  init mcast object - This object will be re-initialized
1585 		 *  during VF-ACQUIRE with the proper cl_id and cid.
1586 		 *  It needs to be initialized here so that it can be safely
1587 		 *  handled by a subsequent FLR flow.
1588 		 */
1589 		bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1590 				     0xFF, 0xFF, 0xFF,
1591 				     bnx2x_vf_sp(bp, vf, mcast_rdata),
1592 				     bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1593 				     BNX2X_FILTER_MCAST_PENDING,
1594 				     &vf->filter_state,
1595 				     BNX2X_OBJ_TYPE_RX_TX);
1596 
1597 		/* set the mailbox message addresses */
1598 		BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1599 			(((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1600 			MBX_MSG_ALIGNED_SIZE);
1601 
1602 		BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1603 			vfid * MBX_MSG_ALIGNED_SIZE;
1604 
1605 		/* Enable vf mailbox */
1606 		bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1607 	}
1608 
1609 	/* Final VF init */
1610 	for_each_vf(bp, vfid) {
1611 		struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1612 
1613 		/* fill in the BDF and bars */
1614 		vf->domain = bnx2x_vf_domain(bp, vfid);
1615 		vf->bus = bnx2x_vf_bus(bp, vfid);
1616 		vf->devfn = bnx2x_vf_devfn(bp, vfid);
1617 		bnx2x_vf_set_bars(bp, vf);
1618 
1619 		DP(BNX2X_MSG_IOV,
1620 		   "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1621 		   vf->abs_vfid, vf->bus, vf->devfn,
1622 		   (unsigned)vf->bars[0].bar, vf->bars[0].size,
1623 		   (unsigned)vf->bars[1].bar, vf->bars[1].size,
1624 		   (unsigned)vf->bars[2].bar, vf->bars[2].size);
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1631 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1632 {
1633 	int i;
1634 
1635 	if (!IS_SRIOV(bp))
1636 		return 0;
1637 
1638 	/* release all the VFs */
1639 	for_each_vf(bp, i)
1640 		bnx2x_vf_release(bp, BP_VF(bp, i));
1641 
1642 	return 0;
1643 }
1644 
1645 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1646 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1647 {
1648 	int i;
1649 	struct bnx2x_ilt *ilt = BP_ILT(bp);
1650 
1651 	if (!IS_SRIOV(bp))
1652 		return line;
1653 
1654 	/* set vfs ilt lines */
1655 	for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1656 		struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1657 
1658 		ilt->lines[line+i].page = hw_cxt->addr;
1659 		ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1660 		ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1661 	}
1662 	return line + i;
1663 }
1664 
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1665 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1666 {
1667 	return ((cid >= BNX2X_FIRST_VF_CID) &&
1668 		((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1669 }
1670 
1671 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1672 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1673 					struct bnx2x_vf_queue *vfq,
1674 					union event_ring_elem *elem)
1675 {
1676 	unsigned long ramrod_flags = 0;
1677 	int rc = 0;
1678 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1679 
1680 	/* Always push next commands out, don't wait here */
1681 	set_bit(RAMROD_CONT, &ramrod_flags);
1682 
1683 	switch (echo >> BNX2X_SWCID_SHIFT) {
1684 	case BNX2X_FILTER_MAC_PENDING:
1685 		rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1686 					   &ramrod_flags);
1687 		break;
1688 	case BNX2X_FILTER_VLAN_PENDING:
1689 		rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1690 					    &ramrod_flags);
1691 		break;
1692 	default:
1693 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1694 		return;
1695 	}
1696 	if (rc < 0)
1697 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1698 	else if (rc > 0)
1699 		DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1700 }
1701 
1702 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1703 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1704 			       struct bnx2x_virtf *vf)
1705 {
1706 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
1707 	int rc;
1708 
1709 	rparam.mcast_obj = &vf->mcast_obj;
1710 	vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1711 
1712 	/* If there are pending mcast commands - send them */
1713 	if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1714 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1715 		if (rc < 0)
1716 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1717 				  rc);
1718 	}
1719 }
1720 
1721 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1722 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1723 				 struct bnx2x_virtf *vf)
1724 {
1725 	smp_mb__before_atomic();
1726 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1727 	smp_mb__after_atomic();
1728 }
1729 
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1730 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1731 					   struct bnx2x_virtf *vf)
1732 {
1733 	vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1734 }
1735 
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1736 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1737 {
1738 	struct bnx2x_virtf *vf;
1739 	int qidx = 0, abs_vfid;
1740 	u8 opcode;
1741 	u16 cid = 0xffff;
1742 
1743 	if (!IS_SRIOV(bp))
1744 		return 1;
1745 
1746 	/* first get the cid - the only events we handle here are cfc-delete
1747 	 * and set-mac completion
1748 	 */
1749 	opcode = elem->message.opcode;
1750 
1751 	switch (opcode) {
1752 	case EVENT_RING_OPCODE_CFC_DEL:
1753 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
1754 		DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1755 		break;
1756 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1757 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1758 	case EVENT_RING_OPCODE_FILTERS_RULES:
1759 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1760 		cid = SW_CID(elem->message.data.eth_event.echo);
1761 		DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1762 		break;
1763 	case EVENT_RING_OPCODE_VF_FLR:
1764 		abs_vfid = elem->message.data.vf_flr_event.vf_id;
1765 		DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1766 		   abs_vfid);
1767 		goto get_vf;
1768 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1769 		abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1770 		BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1771 			  abs_vfid,
1772 			  elem->message.data.malicious_vf_event.err_id);
1773 		goto get_vf;
1774 	default:
1775 		return 1;
1776 	}
1777 
1778 	/* check if the cid is the VF range */
1779 	if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1780 		DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1781 		return 1;
1782 	}
1783 
1784 	/* extract vf and rxq index from vf_cid - relies on the following:
1785 	 * 1. vfid on cid reflects the true abs_vfid
1786 	 * 2. The max number of VFs (per path) is 64
1787 	 */
1788 	qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1789 	abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1790 get_vf:
1791 	vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1792 
1793 	if (!vf) {
1794 		BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1795 			  cid, abs_vfid);
1796 		return 0;
1797 	}
1798 
1799 	switch (opcode) {
1800 	case EVENT_RING_OPCODE_CFC_DEL:
1801 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1802 		   vf->abs_vfid, qidx);
1803 		vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1804 						       &vfq_get(vf,
1805 								qidx)->sp_obj,
1806 						       BNX2X_Q_CMD_CFC_DEL);
1807 		break;
1808 	case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1809 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1810 		   vf->abs_vfid, qidx);
1811 		bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1812 		break;
1813 	case EVENT_RING_OPCODE_MULTICAST_RULES:
1814 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1815 		   vf->abs_vfid, qidx);
1816 		bnx2x_vf_handle_mcast_eqe(bp, vf);
1817 		break;
1818 	case EVENT_RING_OPCODE_FILTERS_RULES:
1819 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1820 		   vf->abs_vfid, qidx);
1821 		bnx2x_vf_handle_filters_eqe(bp, vf);
1822 		break;
1823 	case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1824 		DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1825 		   vf->abs_vfid, qidx);
1826 		bnx2x_vf_handle_rss_update_eqe(bp, vf);
1827 		fallthrough;
1828 	case EVENT_RING_OPCODE_VF_FLR:
1829 		/* Do nothing for now */
1830 		return 0;
1831 	case EVENT_RING_OPCODE_MALICIOUS_VF:
1832 		vf->malicious = true;
1833 		return 0;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1839 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1840 {
1841 	/* extract the vf from vf_cid - relies on the following:
1842 	 * 1. vfid on cid reflects the true abs_vfid
1843 	 * 2. The max number of VFs (per path) is 64
1844 	 */
1845 	int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1846 	return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1847 }
1848 
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1849 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1850 				struct bnx2x_queue_sp_obj **q_obj)
1851 {
1852 	struct bnx2x_virtf *vf;
1853 
1854 	if (!IS_SRIOV(bp))
1855 		return;
1856 
1857 	vf = bnx2x_vf_by_cid(bp, vf_cid);
1858 
1859 	if (vf) {
1860 		/* extract queue index from vf_cid - relies on the following:
1861 		 * 1. vfid on cid reflects the true abs_vfid
1862 		 * 2. The max number of VFs (per path) is 64
1863 		 */
1864 		int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1865 		*q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1866 	} else {
1867 		BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1868 	}
1869 }
1870 
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1871 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1872 {
1873 	int i;
1874 	int first_queue_query_index, num_queues_req;
1875 	dma_addr_t cur_data_offset;
1876 	struct stats_query_entry *cur_query_entry;
1877 	u8 stats_count = 0;
1878 	bool is_fcoe = false;
1879 
1880 	if (!IS_SRIOV(bp))
1881 		return;
1882 
1883 	if (!NO_FCOE(bp))
1884 		is_fcoe = true;
1885 
1886 	/* fcoe adds one global request and one queue request */
1887 	num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1888 	first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1889 		(is_fcoe ? 0 : 1);
1890 
1891 	DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1892 	       "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1893 	       BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1894 	       first_queue_query_index + num_queues_req);
1895 
1896 	cur_data_offset = bp->fw_stats_data_mapping +
1897 		offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1898 		num_queues_req * sizeof(struct per_queue_stats);
1899 
1900 	cur_query_entry = &bp->fw_stats_req->
1901 		query[first_queue_query_index + num_queues_req];
1902 
1903 	for_each_vf(bp, i) {
1904 		int j;
1905 		struct bnx2x_virtf *vf = BP_VF(bp, i);
1906 
1907 		if (vf->state != VF_ENABLED) {
1908 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1909 			       "vf %d not enabled so no stats for it\n",
1910 			       vf->abs_vfid);
1911 			continue;
1912 		}
1913 
1914 		if (vf->malicious) {
1915 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1916 			       "vf %d malicious so no stats for it\n",
1917 			       vf->abs_vfid);
1918 			continue;
1919 		}
1920 
1921 		DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1922 		       "add addresses for vf %d\n", vf->abs_vfid);
1923 		for_each_vfq(vf, j) {
1924 			struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1925 
1926 			dma_addr_t q_stats_addr =
1927 				vf->fw_stat_map + j * vf->stats_stride;
1928 
1929 			/* collect stats fro active queues only */
1930 			if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1931 			    BNX2X_Q_LOGICAL_STATE_STOPPED)
1932 				continue;
1933 
1934 			/* create stats query entry for this queue */
1935 			cur_query_entry->kind = STATS_TYPE_QUEUE;
1936 			cur_query_entry->index = vfq_stat_id(vf, rxq);
1937 			cur_query_entry->funcID =
1938 				cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1939 			cur_query_entry->address.hi =
1940 				cpu_to_le32(U64_HI(q_stats_addr));
1941 			cur_query_entry->address.lo =
1942 				cpu_to_le32(U64_LO(q_stats_addr));
1943 			DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1944 			       "added address %x %x for vf %d queue %d client %d\n",
1945 			       cur_query_entry->address.hi,
1946 			       cur_query_entry->address.lo,
1947 			       cur_query_entry->funcID,
1948 			       j, cur_query_entry->index);
1949 			cur_query_entry++;
1950 			cur_data_offset += sizeof(struct per_queue_stats);
1951 			stats_count++;
1952 
1953 			/* all stats are coalesced to the leading queue */
1954 			if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1955 				break;
1956 		}
1957 	}
1958 	bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1959 }
1960 
1961 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1962 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1963 				u8 enable)
1964 {
1965 	u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1966 	u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1967 
1968 	REG_WR(bp, reg, val);
1969 }
1970 
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1971 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1972 {
1973 	int i;
1974 
1975 	for_each_vfq(vf, i)
1976 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1977 				    vfq_qzone_id(vf, vfq_get(vf, i)), false);
1978 }
1979 
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1980 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1981 {
1982 	u32 val;
1983 
1984 	/* clear the VF configuration - pretend */
1985 	bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1986 	val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1987 	val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1988 		 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1989 	REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1990 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1991 }
1992 
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1993 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1994 {
1995 	return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1996 		     BNX2X_VF_MAX_QUEUES);
1997 }
1998 
1999 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)2000 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2001 			    struct vf_pf_resc_request *req_resc)
2002 {
2003 	u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2004 	u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2005 
2006 	return ((req_resc->num_rxqs <= rxq_cnt) &&
2007 		(req_resc->num_txqs <= txq_cnt) &&
2008 		(req_resc->num_sbs <= vf_sb_count(vf))   &&
2009 		(req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2010 		(req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2011 }
2012 
2013 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2014 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2015 		     struct vf_pf_resc_request *resc)
2016 {
2017 	int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2018 		BNX2X_CIDS_PER_VF;
2019 
2020 	union cdu_context *base_cxt = (union cdu_context *)
2021 		BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2022 		(base_vf_cid & (ILT_PAGE_CIDS-1));
2023 	int i;
2024 
2025 	/* if state is 'acquired' the VF was not released or FLR'd, in
2026 	 * this case the returned resources match the acquired already
2027 	 * acquired resources. Verify that the requested numbers do
2028 	 * not exceed the already acquired numbers.
2029 	 */
2030 	if (vf->state == VF_ACQUIRED) {
2031 		DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2032 		   vf->abs_vfid);
2033 
2034 		if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2035 			BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2036 				  vf->abs_vfid);
2037 			return -EINVAL;
2038 		}
2039 		return 0;
2040 	}
2041 
2042 	/* Otherwise vf state must be 'free' or 'reset' */
2043 	if (vf->state != VF_FREE && vf->state != VF_RESET) {
2044 		BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2045 			  vf->abs_vfid, vf->state);
2046 		return -EINVAL;
2047 	}
2048 
2049 	/* static allocation:
2050 	 * the global maximum number are fixed per VF. Fail the request if
2051 	 * requested number exceed these globals
2052 	 */
2053 	if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2054 		DP(BNX2X_MSG_IOV,
2055 		   "cannot fulfill vf resource request. Placing maximal available values in response\n");
2056 		/* set the max resource in the vf */
2057 		return -ENOMEM;
2058 	}
2059 
2060 	/* Set resources counters - 0 request means max available */
2061 	vf_sb_count(vf) = resc->num_sbs;
2062 	vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2063 	vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2064 
2065 	DP(BNX2X_MSG_IOV,
2066 	   "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2067 	   vf_sb_count(vf), vf_rxq_count(vf),
2068 	   vf_txq_count(vf), vf_mac_rules_cnt(vf),
2069 	   vf_vlan_rules_cnt(vf));
2070 
2071 	/* Initialize the queues */
2072 	if (!vf->vfqs) {
2073 		DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2074 		return -EINVAL;
2075 	}
2076 
2077 	for_each_vfq(vf, i) {
2078 		struct bnx2x_vf_queue *q = vfq_get(vf, i);
2079 
2080 		if (!q) {
2081 			BNX2X_ERR("q number %d was not allocated\n", i);
2082 			return -EINVAL;
2083 		}
2084 
2085 		q->index = i;
2086 		q->cxt = &((base_cxt + i)->eth);
2087 		q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2088 
2089 		DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2090 		   vf->abs_vfid, i, q->index, q->cid, q->cxt);
2091 
2092 		/* init SP objects */
2093 		bnx2x_vfq_init(bp, vf, q);
2094 	}
2095 	vf->state = VF_ACQUIRED;
2096 	return 0;
2097 }
2098 
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2099 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2100 {
2101 	struct bnx2x_func_init_params func_init = {0};
2102 	int i;
2103 
2104 	/* the sb resources are initialized at this point, do the
2105 	 * FW/HW initializations
2106 	 */
2107 	for_each_vf_sb(vf, i)
2108 		bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2109 			      vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2110 
2111 	/* Sanity checks */
2112 	if (vf->state != VF_ACQUIRED) {
2113 		DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2114 		   vf->abs_vfid, vf->state);
2115 		return -EINVAL;
2116 	}
2117 
2118 	/* let FLR complete ... */
2119 	msleep(100);
2120 
2121 	/* FLR cleanup epilogue */
2122 	if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2123 		return -EBUSY;
2124 
2125 	/* reset IGU VF statistics: MSIX */
2126 	REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2127 
2128 	/* function setup */
2129 	func_init.pf_id = BP_FUNC(bp);
2130 	func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2131 	bnx2x_func_init(bp, &func_init);
2132 
2133 	/* Enable the vf */
2134 	bnx2x_vf_enable_access(bp, vf->abs_vfid);
2135 	bnx2x_vf_enable_traffic(bp, vf);
2136 
2137 	/* queue protection table */
2138 	for_each_vfq(vf, i)
2139 		bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2140 				    vfq_qzone_id(vf, vfq_get(vf, i)), true);
2141 
2142 	vf->state = VF_ENABLED;
2143 
2144 	/* update vf bulletin board */
2145 	bnx2x_post_vf_bulletin(bp, vf->index);
2146 
2147 	return 0;
2148 }
2149 
2150 struct set_vf_state_cookie {
2151 	struct bnx2x_virtf *vf;
2152 	u8 state;
2153 };
2154 
bnx2x_set_vf_state(void * cookie)2155 static void bnx2x_set_vf_state(void *cookie)
2156 {
2157 	struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2158 
2159 	p->vf->state = p->state;
2160 }
2161 
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2162 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2163 {
2164 	int rc = 0, i;
2165 
2166 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2167 
2168 	/* Close all queues */
2169 	for (i = 0; i < vf_rxq_count(vf); i++) {
2170 		rc = bnx2x_vf_queue_teardown(bp, vf, i);
2171 		if (rc)
2172 			goto op_err;
2173 	}
2174 
2175 	/* disable the interrupts */
2176 	DP(BNX2X_MSG_IOV, "disabling igu\n");
2177 	bnx2x_vf_igu_disable(bp, vf);
2178 
2179 	/* disable the VF */
2180 	DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2181 	bnx2x_vf_clr_qtbl(bp, vf);
2182 
2183 	/* need to make sure there are no outstanding stats ramrods which may
2184 	 * cause the device to access the VF's stats buffer which it will free
2185 	 * as soon as we return from the close flow.
2186 	 */
2187 	{
2188 		struct set_vf_state_cookie cookie;
2189 
2190 		cookie.vf = vf;
2191 		cookie.state = VF_ACQUIRED;
2192 		rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2193 		if (rc)
2194 			goto op_err;
2195 	}
2196 
2197 	DP(BNX2X_MSG_IOV, "set state to acquired\n");
2198 
2199 	return 0;
2200 op_err:
2201 	BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2202 	return rc;
2203 }
2204 
2205 /* VF release can be called either: 1. The VF was acquired but
2206  * not enabled 2. the vf was enabled or in the process of being
2207  * enabled
2208  */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2209 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2210 {
2211 	int rc;
2212 
2213 	DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2214 	   vf->state == VF_FREE ? "Free" :
2215 	   vf->state == VF_ACQUIRED ? "Acquired" :
2216 	   vf->state == VF_ENABLED ? "Enabled" :
2217 	   vf->state == VF_RESET ? "Reset" :
2218 	   "Unknown");
2219 
2220 	switch (vf->state) {
2221 	case VF_ENABLED:
2222 		rc = bnx2x_vf_close(bp, vf);
2223 		if (rc)
2224 			goto op_err;
2225 		fallthrough;	/* to release resources */
2226 	case VF_ACQUIRED:
2227 		DP(BNX2X_MSG_IOV, "about to free resources\n");
2228 		bnx2x_vf_free_resc(bp, vf);
2229 		break;
2230 
2231 	case VF_FREE:
2232 	case VF_RESET:
2233 	default:
2234 		break;
2235 	}
2236 	return 0;
2237 op_err:
2238 	BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2239 	return rc;
2240 }
2241 
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2242 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2243 			struct bnx2x_config_rss_params *rss)
2244 {
2245 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2246 	set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2247 	return bnx2x_config_rss(bp, rss);
2248 }
2249 
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2250 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2251 			struct vfpf_tpa_tlv *tlv,
2252 			struct bnx2x_queue_update_tpa_params *params)
2253 {
2254 	aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2255 	struct bnx2x_queue_state_params qstate;
2256 	int qid, rc = 0;
2257 
2258 	DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2259 
2260 	/* Set ramrod params */
2261 	memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2262 	memcpy(&qstate.params.update_tpa, params,
2263 	       sizeof(struct bnx2x_queue_update_tpa_params));
2264 	qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2265 	set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2266 
2267 	for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2268 		qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2269 		qstate.params.update_tpa.sge_map = sge_addr[qid];
2270 		DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2271 		   vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2272 		   U64_LO(sge_addr[qid]));
2273 		rc = bnx2x_queue_state_change(bp, &qstate);
2274 		if (rc) {
2275 			BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2276 				  U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2277 				  vf->abs_vfid, qid);
2278 			return rc;
2279 		}
2280 	}
2281 
2282 	return rc;
2283 }
2284 
2285 /* VF release ~ VF close + VF release-resources
2286  * Release is the ultimate SW shutdown and is called whenever an
2287  * irrecoverable error is encountered.
2288  */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2289 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2290 {
2291 	int rc;
2292 
2293 	DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2294 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2295 
2296 	rc = bnx2x_vf_free(bp, vf);
2297 	if (rc)
2298 		WARN(rc,
2299 		     "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2300 		     vf->abs_vfid, rc);
2301 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2302 	return rc;
2303 }
2304 
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2305 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2306 			      enum channel_tlvs tlv)
2307 {
2308 	/* we don't lock the channel for unsupported tlvs */
2309 	if (!bnx2x_tlv_supported(tlv)) {
2310 		BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2311 		return;
2312 	}
2313 
2314 	/* lock the channel */
2315 	mutex_lock(&vf->op_mutex);
2316 
2317 	/* record the locking op */
2318 	vf->op_current = tlv;
2319 
2320 	/* log the lock */
2321 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2322 	   vf->abs_vfid, tlv);
2323 }
2324 
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2325 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2326 				enum channel_tlvs expected_tlv)
2327 {
2328 	enum channel_tlvs current_tlv;
2329 
2330 	if (!vf) {
2331 		BNX2X_ERR("VF was %p\n", vf);
2332 		return;
2333 	}
2334 
2335 	current_tlv = vf->op_current;
2336 
2337 	/* we don't unlock the channel for unsupported tlvs */
2338 	if (!bnx2x_tlv_supported(expected_tlv))
2339 		return;
2340 
2341 	WARN(expected_tlv != vf->op_current,
2342 	     "lock mismatch: expected %d found %d", expected_tlv,
2343 	     vf->op_current);
2344 
2345 	/* record the locking op */
2346 	vf->op_current = CHANNEL_TLV_NONE;
2347 
2348 	/* lock the channel */
2349 	mutex_unlock(&vf->op_mutex);
2350 
2351 	/* log the unlock */
2352 	DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2353 	   vf->abs_vfid, current_tlv);
2354 }
2355 
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2356 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2357 {
2358 	struct bnx2x_queue_state_params q_params;
2359 	u32 prev_flags;
2360 	int i, rc;
2361 
2362 	/* Verify changes are needed and record current Tx switching state */
2363 	prev_flags = bp->flags;
2364 	if (enable)
2365 		bp->flags |= TX_SWITCHING;
2366 	else
2367 		bp->flags &= ~TX_SWITCHING;
2368 	if (prev_flags == bp->flags)
2369 		return 0;
2370 
2371 	/* Verify state enables the sending of queue ramrods */
2372 	if ((bp->state != BNX2X_STATE_OPEN) ||
2373 	    (bnx2x_get_q_logical_state(bp,
2374 				      &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2375 	     BNX2X_Q_LOGICAL_STATE_ACTIVE))
2376 		return 0;
2377 
2378 	/* send q. update ramrod to configure Tx switching */
2379 	memset(&q_params, 0, sizeof(q_params));
2380 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2381 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
2382 	__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2383 		  &q_params.params.update.update_flags);
2384 	if (enable)
2385 		__set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2386 			  &q_params.params.update.update_flags);
2387 	else
2388 		__clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2389 			    &q_params.params.update.update_flags);
2390 
2391 	/* send the ramrod on all the queues of the PF */
2392 	for_each_eth_queue(bp, i) {
2393 		struct bnx2x_fastpath *fp = &bp->fp[i];
2394 		int tx_idx;
2395 
2396 		/* Set the appropriate Queue object */
2397 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2398 
2399 		for (tx_idx = FIRST_TX_COS_INDEX;
2400 		     tx_idx < fp->max_cos; tx_idx++) {
2401 			q_params.params.update.cid_index = tx_idx;
2402 
2403 			/* Update the Queue state */
2404 			rc = bnx2x_queue_state_change(bp, &q_params);
2405 			if (rc) {
2406 				BNX2X_ERR("Failed to configure Tx switching\n");
2407 				return rc;
2408 			}
2409 		}
2410 	}
2411 
2412 	DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2413 	return 0;
2414 }
2415 
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2416 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2417 {
2418 	struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2419 
2420 	if (!IS_SRIOV(bp)) {
2421 		BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2422 		return -EINVAL;
2423 	}
2424 
2425 	DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2426 	   num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427 
2428 	/* HW channel is only operational when PF is up */
2429 	if (bp->state != BNX2X_STATE_OPEN) {
2430 		BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2431 		return -EINVAL;
2432 	}
2433 
2434 	/* we are always bound by the total_vfs in the configuration space */
2435 	if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2436 		BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2437 			  num_vfs_param, BNX2X_NR_VIRTFN(bp));
2438 		num_vfs_param = BNX2X_NR_VIRTFN(bp);
2439 	}
2440 
2441 	bp->requested_nr_virtfn = num_vfs_param;
2442 	if (num_vfs_param == 0) {
2443 		bnx2x_set_pf_tx_switching(bp, false);
2444 		bnx2x_disable_sriov(bp);
2445 		return 0;
2446 	} else {
2447 		return bnx2x_enable_sriov(bp);
2448 	}
2449 }
2450 
2451 #define IGU_ENTRY_SIZE 4
2452 
bnx2x_enable_sriov(struct bnx2x * bp)2453 int bnx2x_enable_sriov(struct bnx2x *bp)
2454 {
2455 	int rc = 0, req_vfs = bp->requested_nr_virtfn;
2456 	int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2457 	u32 igu_entry, address;
2458 	u16 num_vf_queues;
2459 
2460 	if (req_vfs == 0)
2461 		return 0;
2462 
2463 	first_vf = bp->vfdb->sriov.first_vf_in_pf;
2464 
2465 	/* statically distribute vf sb pool between VFs */
2466 	num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2467 			      BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2468 
2469 	/* zero previous values learned from igu cam */
2470 	for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2471 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2472 
2473 		vf->sb_count = 0;
2474 		vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2475 	}
2476 	bp->vfdb->vf_sbs_pool = 0;
2477 
2478 	/* prepare IGU cam */
2479 	sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2480 	address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2481 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2482 		for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2483 			igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2484 				vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2485 				IGU_REG_MAPPING_MEMORY_VALID;
2486 			DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2487 			   sb_idx, vf_idx);
2488 			REG_WR(bp, address, igu_entry);
2489 			sb_idx++;
2490 			address += IGU_ENTRY_SIZE;
2491 		}
2492 	}
2493 
2494 	/* Reinitialize vf database according to igu cam */
2495 	bnx2x_get_vf_igu_cam_info(bp);
2496 
2497 	DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2498 	   BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2499 
2500 	qcount = 0;
2501 	for_each_vf(bp, vf_idx) {
2502 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2503 
2504 		/* set local queue arrays */
2505 		vf->vfqs = &bp->vfdb->vfqs[qcount];
2506 		qcount += vf_sb_count(vf);
2507 		bnx2x_iov_static_resc(bp, vf);
2508 	}
2509 
2510 	/* prepare msix vectors in VF configuration space - the value in the
2511 	 * PCI configuration space should be the index of the last entry,
2512 	 * namely one less than the actual size of the table
2513 	 */
2514 	for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2515 		bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2516 		REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2517 		       num_vf_queues - 1);
2518 		DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2519 		   vf_idx, num_vf_queues - 1);
2520 	}
2521 	bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2522 
2523 	/* enable sriov. This will probe all the VFs, and consequentially cause
2524 	 * the "acquire" messages to appear on the VF PF channel.
2525 	 */
2526 	DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2527 	bnx2x_disable_sriov(bp);
2528 
2529 	rc = bnx2x_set_pf_tx_switching(bp, true);
2530 	if (rc)
2531 		return rc;
2532 
2533 	rc = pci_enable_sriov(bp->pdev, req_vfs);
2534 	if (rc) {
2535 		BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2536 		return rc;
2537 	}
2538 	DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2539 	return req_vfs;
2540 }
2541 
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2542 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2543 {
2544 	int vfidx;
2545 	struct pf_vf_bulletin_content *bulletin;
2546 
2547 	DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2548 	for_each_vf(bp, vfidx) {
2549 		bulletin = BP_VF_BULLETIN(bp, vfidx);
2550 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2551 			bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2552 					  htons(ETH_P_8021Q));
2553 	}
2554 }
2555 
bnx2x_disable_sriov(struct bnx2x * bp)2556 void bnx2x_disable_sriov(struct bnx2x *bp)
2557 {
2558 	if (pci_vfs_assigned(bp->pdev)) {
2559 		DP(BNX2X_MSG_IOV,
2560 		   "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2561 		return;
2562 	}
2563 
2564 	pci_disable_sriov(bp->pdev);
2565 }
2566 
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2567 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2568 			    struct bnx2x_virtf **vf,
2569 			    struct pf_vf_bulletin_content **bulletin,
2570 			    bool test_queue)
2571 {
2572 	if (bp->state != BNX2X_STATE_OPEN) {
2573 		BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (!IS_SRIOV(bp)) {
2578 		BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2579 		return -EINVAL;
2580 	}
2581 
2582 	if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2583 		BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2584 			  vfidx, BNX2X_NR_VIRTFN(bp));
2585 		return -EINVAL;
2586 	}
2587 
2588 	/* init members */
2589 	*vf = BP_VF(bp, vfidx);
2590 	*bulletin = BP_VF_BULLETIN(bp, vfidx);
2591 
2592 	if (!*vf) {
2593 		BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2594 		return -EINVAL;
2595 	}
2596 
2597 	if (test_queue && !(*vf)->vfqs) {
2598 		BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2599 			  vfidx);
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (!*bulletin) {
2604 		BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2605 			  vfidx);
2606 		return -EINVAL;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2612 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2613 			struct ifla_vf_info *ivi)
2614 {
2615 	struct bnx2x *bp = netdev_priv(dev);
2616 	struct bnx2x_virtf *vf = NULL;
2617 	struct pf_vf_bulletin_content *bulletin = NULL;
2618 	struct bnx2x_vlan_mac_obj *mac_obj;
2619 	struct bnx2x_vlan_mac_obj *vlan_obj;
2620 	int rc;
2621 
2622 	/* sanity and init */
2623 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2624 	if (rc)
2625 		return rc;
2626 
2627 	mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2628 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2629 	if (!mac_obj || !vlan_obj) {
2630 		BNX2X_ERR("VF partially initialized\n");
2631 		return -EINVAL;
2632 	}
2633 
2634 	ivi->vf = vfidx;
2635 	ivi->qos = 0;
2636 	ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2637 	ivi->min_tx_rate = 0;
2638 	ivi->spoofchk = vf->spoofchk ? 1 : 0;
2639 	ivi->linkstate = vf->link_cfg;
2640 	if (vf->state == VF_ENABLED) {
2641 		/* mac and vlan are in vlan_mac objects */
2642 		if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2643 			mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2644 						0, ETH_ALEN);
2645 			vlan_obj->get_n_elements(bp, vlan_obj, 1,
2646 						 (u8 *)&ivi->vlan, 0,
2647 						 VLAN_HLEN);
2648 		}
2649 	} else {
2650 		mutex_lock(&bp->vfdb->bulletin_mutex);
2651 		/* mac */
2652 		if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2653 			/* mac configured by ndo so its in bulletin board */
2654 			memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2655 		else
2656 			/* function has not been loaded yet. Show mac as 0s */
2657 			eth_zero_addr(ivi->mac);
2658 
2659 		/* vlan */
2660 		if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2661 			/* vlan configured by ndo so its in bulletin board */
2662 			memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2663 		else
2664 			/* function has not been loaded yet. Show vlans as 0s */
2665 			memset(&ivi->vlan, 0, VLAN_HLEN);
2666 
2667 		mutex_unlock(&bp->vfdb->bulletin_mutex);
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /* New mac for VF. Consider these cases:
2674  * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2675  *    supply at acquire.
2676  * 2. VF has already been acquired but has not yet initialized - store in local
2677  *    bulletin board. mac will be posted on VF bulletin board after VF init. VF
2678  *    will configure this mac when it is ready.
2679  * 3. VF has already initialized but has not yet setup a queue - post the new
2680  *    mac on VF's bulletin board right now. VF will configure this mac when it
2681  *    is ready.
2682  * 4. VF has already set a queue - delete any macs already configured for this
2683  *    queue and manually config the new mac.
2684  * In any event, once this function has been called refuse any attempts by the
2685  * VF to configure any mac for itself except for this mac. In case of a race
2686  * where the VF fails to see the new post on its bulletin board before sending a
2687  * mac configuration request, the PF will simply fail the request and VF can try
2688  * again after consulting its bulletin board.
2689  */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2690 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2691 {
2692 	struct bnx2x *bp = netdev_priv(dev);
2693 	int rc, q_logical_state;
2694 	struct bnx2x_virtf *vf = NULL;
2695 	struct pf_vf_bulletin_content *bulletin = NULL;
2696 
2697 	if (!is_valid_ether_addr(mac)) {
2698 		BNX2X_ERR("mac address invalid\n");
2699 		return -EINVAL;
2700 	}
2701 
2702 	/* sanity and init */
2703 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2704 	if (rc)
2705 		return rc;
2706 
2707 	mutex_lock(&bp->vfdb->bulletin_mutex);
2708 
2709 	/* update PF's copy of the VF's bulletin. Will no longer accept mac
2710 	 * configuration requests from vf unless match this mac
2711 	 */
2712 	bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2713 	memcpy(bulletin->mac, mac, ETH_ALEN);
2714 
2715 	/* Post update on VF's bulletin board */
2716 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2717 
2718 	/* release lock before checking return code */
2719 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2720 
2721 	if (rc) {
2722 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2723 		return rc;
2724 	}
2725 
2726 	q_logical_state =
2727 		bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2728 	if (vf->state == VF_ENABLED &&
2729 	    q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2730 		/* configure the mac in device on this vf's queue */
2731 		unsigned long ramrod_flags = 0;
2732 		struct bnx2x_vlan_mac_obj *mac_obj;
2733 
2734 		/* User should be able to see failure reason in system logs */
2735 		if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2736 			return -EINVAL;
2737 
2738 		/* must lock vfpf channel to protect against vf flows */
2739 		bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2740 
2741 		/* remove existing eth macs */
2742 		mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2743 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2744 		if (rc) {
2745 			BNX2X_ERR("failed to delete eth macs\n");
2746 			rc = -EINVAL;
2747 			goto out;
2748 		}
2749 
2750 		/* remove existing uc list macs */
2751 		rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2752 		if (rc) {
2753 			BNX2X_ERR("failed to delete uc_list macs\n");
2754 			rc = -EINVAL;
2755 			goto out;
2756 		}
2757 
2758 		/* configure the new mac to device */
2759 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2760 		bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2761 				  BNX2X_ETH_MAC, &ramrod_flags);
2762 
2763 out:
2764 		bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2765 	}
2766 
2767 	return rc;
2768 }
2769 
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2770 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2771 					 struct bnx2x_virtf *vf, bool accept)
2772 {
2773 	struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2774 	unsigned long accept_flags;
2775 
2776 	/* need to remove/add the VF's accept_any_vlan bit */
2777 	accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2778 	if (accept)
2779 		set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2780 	else
2781 		clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2782 
2783 	bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2784 			      accept_flags);
2785 	bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2786 	bnx2x_config_rx_mode(bp, &rx_ramrod);
2787 }
2788 
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2789 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2790 				    u16 vlan, bool add)
2791 {
2792 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2793 	unsigned long ramrod_flags = 0;
2794 	int rc = 0;
2795 
2796 	/* configure the new vlan to device */
2797 	memset(&ramrod_param, 0, sizeof(ramrod_param));
2798 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2799 	ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2800 	ramrod_param.ramrod_flags = ramrod_flags;
2801 	ramrod_param.user_req.u.vlan.vlan = vlan;
2802 	ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2803 					: BNX2X_VLAN_MAC_DEL;
2804 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2805 	if (rc) {
2806 		BNX2X_ERR("failed to configure vlan\n");
2807 		return -EINVAL;
2808 	}
2809 
2810 	return 0;
2811 }
2812 
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2813 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2814 		      __be16 vlan_proto)
2815 {
2816 	struct pf_vf_bulletin_content *bulletin = NULL;
2817 	struct bnx2x *bp = netdev_priv(dev);
2818 	struct bnx2x_vlan_mac_obj *vlan_obj;
2819 	unsigned long vlan_mac_flags = 0;
2820 	unsigned long ramrod_flags = 0;
2821 	struct bnx2x_virtf *vf = NULL;
2822 	int i, rc;
2823 
2824 	if (vlan > 4095) {
2825 		BNX2X_ERR("illegal vlan value %d\n", vlan);
2826 		return -EINVAL;
2827 	}
2828 
2829 	if (vlan_proto != htons(ETH_P_8021Q))
2830 		return -EPROTONOSUPPORT;
2831 
2832 	DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2833 	   vfidx, vlan, 0);
2834 
2835 	/* sanity and init */
2836 	rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2837 	if (rc)
2838 		return rc;
2839 
2840 	/* update PF's copy of the VF's bulletin. No point in posting the vlan
2841 	 * to the VF since it doesn't have anything to do with it. But it useful
2842 	 * to store it here in case the VF is not up yet and we can only
2843 	 * configure the vlan later when it does. Treat vlan id 0 as remove the
2844 	 * Host tag.
2845 	 */
2846 	mutex_lock(&bp->vfdb->bulletin_mutex);
2847 
2848 	if (vlan > 0)
2849 		bulletin->valid_bitmap |= 1 << VLAN_VALID;
2850 	else
2851 		bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2852 	bulletin->vlan = vlan;
2853 
2854 	/* Post update on VF's bulletin board */
2855 	rc = bnx2x_post_vf_bulletin(bp, vfidx);
2856 	if (rc)
2857 		BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2858 	mutex_unlock(&bp->vfdb->bulletin_mutex);
2859 
2860 	/* is vf initialized and queue set up? */
2861 	if (vf->state != VF_ENABLED ||
2862 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2863 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2864 		return rc;
2865 
2866 	/* User should be able to see error in system logs */
2867 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2868 		return -EINVAL;
2869 
2870 	/* must lock vfpf channel to protect against vf flows */
2871 	bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2872 
2873 	/* remove existing vlans */
2874 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2875 	vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2876 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2877 				  &ramrod_flags);
2878 	if (rc) {
2879 		BNX2X_ERR("failed to delete vlans\n");
2880 		rc = -EINVAL;
2881 		goto out;
2882 	}
2883 
2884 	/* clear accept_any_vlan when HV forces vlan, otherwise
2885 	 * according to VF capabilities
2886 	 */
2887 	if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2888 		bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2889 
2890 	rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2891 	if (rc)
2892 		goto out;
2893 
2894 	/* send queue update ramrods to configure default vlan and
2895 	 * silent vlan removal
2896 	 */
2897 	for_each_vfq(vf, i) {
2898 		struct bnx2x_queue_state_params q_params = {NULL};
2899 		struct bnx2x_queue_update_params *update_params;
2900 
2901 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2902 
2903 		/* validate the Q is UP */
2904 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2905 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2906 			continue;
2907 
2908 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2909 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
2910 		update_params = &q_params.params.update;
2911 		__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2912 			  &update_params->update_flags);
2913 		__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2914 			  &update_params->update_flags);
2915 		if (vlan == 0) {
2916 			/* if vlan is 0 then we want to leave the VF traffic
2917 			 * untagged, and leave the incoming traffic untouched
2918 			 * (i.e. do not remove any vlan tags).
2919 			 */
2920 			__clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2921 				    &update_params->update_flags);
2922 			__clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2923 				    &update_params->update_flags);
2924 		} else {
2925 			/* configure default vlan to vf queue and set silent
2926 			 * vlan removal (the vf remains unaware of this vlan).
2927 			 */
2928 			__set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2929 				  &update_params->update_flags);
2930 			__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2931 				  &update_params->update_flags);
2932 			update_params->def_vlan = vlan;
2933 			update_params->silent_removal_value =
2934 				vlan & VLAN_VID_MASK;
2935 			update_params->silent_removal_mask = VLAN_VID_MASK;
2936 		}
2937 
2938 		/* Update the Queue state */
2939 		rc = bnx2x_queue_state_change(bp, &q_params);
2940 		if (rc) {
2941 			BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2942 				  i);
2943 			goto out;
2944 		}
2945 	}
2946 out:
2947 	bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2948 
2949 	if (rc)
2950 		DP(BNX2X_MSG_IOV,
2951 		   "updated VF[%d] vlan configuration (vlan = %d)\n",
2952 		   vfidx, vlan);
2953 
2954 	return rc;
2955 }
2956 
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2957 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2958 {
2959 	struct bnx2x *bp = netdev_priv(dev);
2960 	struct bnx2x_virtf *vf;
2961 	int i, rc = 0;
2962 
2963 	vf = BP_VF(bp, idx);
2964 	if (!vf)
2965 		return -EINVAL;
2966 
2967 	/* nothing to do */
2968 	if (vf->spoofchk == val)
2969 		return 0;
2970 
2971 	vf->spoofchk = val ? 1 : 0;
2972 
2973 	DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2974 	   val ? "enabling" : "disabling", idx);
2975 
2976 	/* is vf initialized and queue set up? */
2977 	if (vf->state != VF_ENABLED ||
2978 	    bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2979 	    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2980 		return rc;
2981 
2982 	/* User should be able to see error in system logs */
2983 	if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2984 		return -EINVAL;
2985 
2986 	/* send queue update ramrods to configure spoofchk */
2987 	for_each_vfq(vf, i) {
2988 		struct bnx2x_queue_state_params q_params = {NULL};
2989 		struct bnx2x_queue_update_params *update_params;
2990 
2991 		q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2992 
2993 		/* validate the Q is UP */
2994 		if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2995 		    BNX2X_Q_LOGICAL_STATE_ACTIVE)
2996 			continue;
2997 
2998 		__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2999 		q_params.cmd = BNX2X_Q_CMD_UPDATE;
3000 		update_params = &q_params.params.update;
3001 		__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
3002 			  &update_params->update_flags);
3003 		if (val) {
3004 			__set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3005 				  &update_params->update_flags);
3006 		} else {
3007 			__clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3008 				    &update_params->update_flags);
3009 		}
3010 
3011 		/* Update the Queue state */
3012 		rc = bnx2x_queue_state_change(bp, &q_params);
3013 		if (rc) {
3014 			BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3015 				  val ? "enable" : "disable", idx, i);
3016 			goto out;
3017 		}
3018 	}
3019 out:
3020 	if (!rc)
3021 		DP(BNX2X_MSG_IOV,
3022 		   "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3023 		   idx);
3024 
3025 	return rc;
3026 }
3027 
3028 /* crc is the first field in the bulletin board. Compute the crc over the
3029  * entire bulletin board excluding the crc field itself. Use the length field
3030  * as the Bulletin Board was posted by a PF with possibly a different version
3031  * from the vf which will sample it. Therefore, the length is computed by the
3032  * PF and then used blindly by the VF.
3033  */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3034 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3035 {
3036 	return crc32(BULLETIN_CRC_SEED,
3037 		 ((u8 *)bulletin) + sizeof(bulletin->crc),
3038 		 bulletin->length - sizeof(bulletin->crc));
3039 }
3040 
3041 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3042 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3043 {
3044 	struct pf_vf_bulletin_content *bulletin;
3045 	int attempts;
3046 
3047 	/* sampling structure in mid post may result with corrupted data
3048 	 * validate crc to ensure coherency.
3049 	 */
3050 	for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3051 		u32 crc;
3052 
3053 		/* sample the bulletin board */
3054 		memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3055 		       sizeof(union pf_vf_bulletin));
3056 
3057 		crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3058 
3059 		if (bp->shadow_bulletin.content.crc == crc)
3060 			break;
3061 
3062 		BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3063 			  bp->shadow_bulletin.content.crc, crc);
3064 	}
3065 
3066 	if (attempts >= BULLETIN_ATTEMPTS) {
3067 		BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3068 			  attempts);
3069 		return PFVF_BULLETIN_CRC_ERR;
3070 	}
3071 	bulletin = &bp->shadow_bulletin.content;
3072 
3073 	/* bulletin board hasn't changed since last sample */
3074 	if (bp->old_bulletin.version == bulletin->version)
3075 		return PFVF_BULLETIN_UNCHANGED;
3076 
3077 	/* the mac address in bulletin board is valid and is new */
3078 	if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3079 	    !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3080 		/* update new mac to net device */
3081 		memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3082 	}
3083 
3084 	if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3085 		DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3086 		   bulletin->link_speed, bulletin->link_flags);
3087 
3088 		bp->vf_link_vars.line_speed = bulletin->link_speed;
3089 		bp->vf_link_vars.link_report_flags = 0;
3090 		/* Link is down */
3091 		if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3092 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3093 				  &bp->vf_link_vars.link_report_flags);
3094 		/* Full DUPLEX */
3095 		if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3096 			__set_bit(BNX2X_LINK_REPORT_FD,
3097 				  &bp->vf_link_vars.link_report_flags);
3098 		/* Rx Flow Control is ON */
3099 		if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3100 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3101 				  &bp->vf_link_vars.link_report_flags);
3102 		/* Tx Flow Control is ON */
3103 		if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3104 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3105 				  &bp->vf_link_vars.link_report_flags);
3106 		__bnx2x_link_report(bp);
3107 	}
3108 
3109 	/* copy new bulletin board to bp */
3110 	memcpy(&bp->old_bulletin, bulletin,
3111 	       sizeof(struct pf_vf_bulletin_content));
3112 
3113 	return PFVF_BULLETIN_UPDATED;
3114 }
3115 
bnx2x_timer_sriov(struct bnx2x * bp)3116 void bnx2x_timer_sriov(struct bnx2x *bp)
3117 {
3118 	bnx2x_sample_bulletin(bp);
3119 
3120 	/* if channel is down we need to self destruct */
3121 	if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3122 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3123 				       BNX2X_MSG_IOV);
3124 }
3125 
bnx2x_vf_doorbells(struct bnx2x * bp)3126 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3127 {
3128 	/* vf doorbells are embedded within the regview */
3129 	return bp->regview + PXP_VF_ADDR_DB_START;
3130 }
3131 
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3132 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3133 {
3134 	BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3135 		       sizeof(struct bnx2x_vf_mbx_msg));
3136 	BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3137 		       sizeof(union pf_vf_bulletin));
3138 }
3139 
bnx2x_vf_pci_alloc(struct bnx2x * bp)3140 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3141 {
3142 	mutex_init(&bp->vf2pf_mutex);
3143 
3144 	/* allocate vf2pf mailbox for vf to pf channel */
3145 	bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3146 					 sizeof(struct bnx2x_vf_mbx_msg));
3147 	if (!bp->vf2pf_mbox)
3148 		goto alloc_mem_err;
3149 
3150 	/* allocate pf 2 vf bulletin board */
3151 	bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3152 					     sizeof(union pf_vf_bulletin));
3153 	if (!bp->pf2vf_bulletin)
3154 		goto alloc_mem_err;
3155 
3156 	bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3157 
3158 	return 0;
3159 
3160 alloc_mem_err:
3161 	bnx2x_vf_pci_dealloc(bp);
3162 	return -ENOMEM;
3163 }
3164 
bnx2x_iov_channel_down(struct bnx2x * bp)3165 void bnx2x_iov_channel_down(struct bnx2x *bp)
3166 {
3167 	int vf_idx;
3168 	struct pf_vf_bulletin_content *bulletin;
3169 
3170 	if (!IS_SRIOV(bp))
3171 		return;
3172 
3173 	for_each_vf(bp, vf_idx) {
3174 		/* locate this VFs bulletin board and update the channel down
3175 		 * bit
3176 		 */
3177 		bulletin = BP_VF_BULLETIN(bp, vf_idx);
3178 		bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3179 
3180 		/* update vf bulletin board */
3181 		bnx2x_post_vf_bulletin(bp, vf_idx);
3182 	}
3183 }
3184 
bnx2x_iov_task(struct work_struct * work)3185 void bnx2x_iov_task(struct work_struct *work)
3186 {
3187 	struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3188 
3189 	if (!netif_running(bp->dev))
3190 		return;
3191 
3192 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3193 			       &bp->iov_task_state))
3194 		bnx2x_vf_handle_flr_event(bp);
3195 
3196 	if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3197 			       &bp->iov_task_state))
3198 		bnx2x_vf_mbx(bp);
3199 }
3200 
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3201 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3202 {
3203 	smp_mb__before_atomic();
3204 	set_bit(flag, &bp->iov_task_state);
3205 	smp_mb__after_atomic();
3206 	DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3207 	queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3208 }
3209