1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 barrier();
104
105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 ctl, igu_addr_ctl);
107 REG_WR(bp, igu_addr_ctl, ctl);
108 barrier();
109 }
110
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op flags:
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
201 */
202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204
205 /* for VFs, enable tx switching, bd coherency, and mac address
206 * anti-spoofing
207 */
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 if (vf->spoofchk)
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 else
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218
219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222
223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 }
226
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 }
232 }
233
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 struct bnx2x_virtf *vf, int qid,
236 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 struct bnx2x_queue_state_params *q_params;
239 int rc = 0;
240
241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242
243 /* Prepare ramrod information */
244 q_params = &qctor->qstate;
245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247
248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 goto out;
252 }
253
254 /* Run Queue 'construction' ramrods */
255 q_params->cmd = BNX2X_Q_CMD_INIT;
256 rc = bnx2x_queue_state_change(bp, q_params);
257 if (rc)
258 goto out;
259
260 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 sizeof(struct bnx2x_queue_setup_params));
262 q_params->cmd = BNX2X_Q_CMD_SETUP;
263 rc = bnx2x_queue_state_change(bp, q_params);
264 if (rc)
265 goto out;
266
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 return rc;
272 }
273
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 int qid)
276 {
277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 BNX2X_Q_CMD_TERMINATE,
279 BNX2X_Q_CMD_CFC_DEL};
280 struct bnx2x_queue_state_params q_params;
281 int rc, i;
282
283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284
285 /* Prepare ramrod information */
286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289
290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 goto out;
294 }
295
296 /* Run Queue 'destruction' ramrods */
297 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 q_params.cmd = cmds[i];
299 rc = bnx2x_queue_state_change(bp, &q_params);
300 if (rc) {
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 return rc;
303 }
304 }
305 out:
306 /* Clean Context */
307 if (bnx2x_vfq(vf, qid, cxt)) {
308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 }
311
312 return 0;
313 }
314
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 if (vf) {
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp)->first_vf_igu_entry)
322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf))
326 vf->igu_base_id = igu_sb_id;
327
328 ++vf_sb_count(vf);
329 ++vf->sb_count;
330 }
331 BP_VFDB(bp)->vf_sbs_pool++;
332 }
333
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 int qid, bool drv_only, int type)
336 {
337 struct bnx2x_vlan_mac_ramrod_params ramrod;
338 int rc;
339
340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343
344 /* Prepare ramrod params */
345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 } else if (type == BNX2X_VF_FILTER_MAC) {
350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 } else {
353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 }
355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356
357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 if (drv_only)
359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 else
361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362
363 /* Start deleting */
364 rc = ramrod.vlan_mac_obj->delete_all(bp,
365 ramrod.vlan_mac_obj,
366 &ramrod.user_req.vlan_mac_flags,
367 &ramrod.ramrod_flags);
368 if (rc) {
369 BNX2X_ERR("Failed to delete all %s\n",
370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 return rc;
373 }
374
375 return 0;
376 }
377
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 struct bnx2x_virtf *vf, int qid,
380 struct bnx2x_vf_mac_vlan_filter *filter,
381 bool drv_only)
382 {
383 struct bnx2x_vlan_mac_ramrod_params ramrod;
384 int rc;
385
386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390
391 /* Prepare ramrod params */
392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 ramrod.user_req.u.vlan.vlan = filter->vid;
396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 ramrod.user_req.u.vlan.vlan = filter->vid;
401 } else {
402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 }
406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 BNX2X_VLAN_MAC_DEL;
408
409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 if (drv_only)
411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 else
413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414
415 /* Add/Remove the filter */
416 rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 if (rc == -EEXIST)
418 return 0;
419 if (rc) {
420 BNX2X_ERR("Failed to %s %s\n",
421 filter->add ? "add" : "delete",
422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 "VLAN-MAC" :
424 (filter->type == BNX2X_VF_FILTER_MAC) ?
425 "MAC" : "VLAN");
426 return rc;
427 }
428
429 filter->applied = true;
430
431 return 0;
432 }
433
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 struct bnx2x_vf_mac_vlan_filters *filters,
436 int qid, bool drv_only)
437 {
438 int rc = 0, i;
439
440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441
442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 return -EINVAL;
444
445 /* Prepare ramrod params */
446 for (i = 0; i < filters->count; i++) {
447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 &filters->filters[i], drv_only);
449 if (rc)
450 break;
451 }
452
453 /* Rollback if needed */
454 if (i != filters->count) {
455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 i, filters->count);
457 while (--i >= 0) {
458 if (!filters->filters[i].applied)
459 continue;
460 filters->filters[i].add = !filters->filters[i].add;
461 bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 &filters->filters[i],
463 drv_only);
464 }
465 }
466
467 /* It's our responsibility to free the filters */
468 kfree(filters);
469
470 return rc;
471 }
472
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 int rc;
477
478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479
480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 if (rc)
482 goto op_err;
483
484 /* Schedule the configuration of any pending vlan filters */
485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 BNX2X_MSG_IOV);
487 return 0;
488 op_err:
489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 return rc;
491 }
492
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 int qid)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 /* If needed, clean the filtering data base */
501 if ((qid == LEADING_IDX) &&
502 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 BNX2X_VF_FILTER_VLAN_MAC);
505 if (rc)
506 goto op_err;
507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 BNX2X_VF_FILTER_VLAN);
509 if (rc)
510 goto op_err;
511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 BNX2X_VF_FILTER_MAC);
513 if (rc)
514 goto op_err;
515 }
516
517 /* Terminate queue */
518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 struct bnx2x_queue_state_params qstate;
520
521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 rc = bnx2x_queue_state_change(bp, &qstate);
527 if (rc)
528 goto op_err;
529 }
530
531 return 0;
532 op_err:
533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 return rc;
535 }
536
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 struct bnx2x_mcast_list_elem *mc = NULL;
541 struct bnx2x_mcast_ramrod_params mcast;
542 int rc, i;
543
544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545
546 /* Prepare Multicast command */
547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 mcast.mcast_obj = &vf->mcast_obj;
549 if (drv_only)
550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 else
552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 if (mc_num) {
554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 GFP_KERNEL);
556 if (!mc) {
557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 return -ENOMEM;
559 }
560 }
561
562 if (mc_num) {
563 INIT_LIST_HEAD(&mcast.mcast_list);
564 for (i = 0; i < mc_num; i++) {
565 mc[i].mac = mcasts[i];
566 list_add_tail(&mc[i].link,
567 &mcast.mcast_list);
568 }
569
570 /* add new mcasts */
571 mcast.mcast_list_len = mc_num;
572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 if (rc)
574 BNX2X_ERR("Failed to set multicasts\n");
575 } else {
576 /* clear existing mcasts */
577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 if (rc)
579 BNX2X_ERR("Failed to remove multicasts\n");
580 }
581
582 kfree(mc);
583
584 return rc;
585 }
586
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 struct bnx2x_rx_mode_ramrod_params *ramrod,
589 struct bnx2x_virtf *vf,
590 unsigned long accept_flags)
591 {
592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593
594 memset(ramrod, 0, sizeof(*ramrod));
595 ramrod->cid = vfq->cid;
596 ramrod->cl_id = vfq_cl_id(vf, vfq);
597 ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 ramrod->rx_accept_flags = accept_flags;
600 ramrod->tx_accept_flags = accept_flags;
601 ramrod->pstate = &vf->filter_state;
602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603
604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607
608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 int qid, unsigned long accept_flags)
614 {
615 struct bnx2x_rx_mode_ramrod_params ramrod;
616
617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618
619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 int rc;
628
629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630
631 /* Remove all classification configuration for leading queue */
632 if (qid == LEADING_IDX) {
633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 if (rc)
635 goto op_err;
636
637 /* Remove filtering if feasible */
638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 false,
641 BNX2X_VF_FILTER_VLAN_MAC);
642 if (rc)
643 goto op_err;
644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 false,
646 BNX2X_VF_FILTER_VLAN);
647 if (rc)
648 goto op_err;
649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 false,
651 BNX2X_VF_FILTER_MAC);
652 if (rc)
653 goto op_err;
654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 if (rc)
656 goto op_err;
657 }
658 }
659
660 /* Destroy queue */
661 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 if (rc)
663 goto op_err;
664 return rc;
665 op_err:
666 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 vf->abs_vfid, qid, rc);
668 return rc;
669 }
670
671 /* VF enable primitives
672 * when pretend is required the caller is responsible
673 * for calling pretend prior to calling these routines
674 */
675
676 /* internal vf enable - until vf is enabled internally all transactions
677 * are blocked. This routine should always be called last with pretend.
678 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683
684 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 u32 was_err_reg = 0;
697
698 switch (was_err_group) {
699 case 0:
700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 break;
702 case 1:
703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 break;
705 case 2:
706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 break;
708 case 3:
709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 break;
711 }
712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 int i;
718 u32 val;
719
720 /* Set VF masks and configuration - pretend */
721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722
723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729
730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 val &= ~IGU_VF_CONF_PARENT_MASK;
733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735
736 DP(BNX2X_MSG_IOV,
737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 vf->abs_vfid, val);
739
740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741
742 /* iterate over all queues, clear sb consumer */
743 for (i = 0; i < vf_sb_count(vf); i++) {
744 u8 igu_sb_id = vf_igu_sb(vf, i);
745
746 /* zero prod memory */
747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748
749 /* clear sb state machine */
750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 false /* VF */);
752
753 /* disable + update */
754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 IGU_INT_DISABLE, 1);
756 }
757 }
758
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 u16 abs_fid;
762
763 abs_fid = FW_VF_HANDLE(abs_vfid);
764
765 /* set the VF-PF association in the FW */
766 storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 storm_memset_func_en(bp, abs_fid, 1);
768
769 /* Invalidate fp_hsi version for vfs */
770 if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773
774 /* clear vf errors*/
775 bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777
778 /* internal vf-enable - pretend */
779 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 bnx2x_vf_enable_internal(bp, true);
782 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 /* Reset vf in IGU interrupts are still disabled */
788 bnx2x_vf_igu_reset(bp, vf);
789
790 /* pretend to enable the vf with the PBF */
791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
799 struct pci_dev *dev;
800 bool pending;
801
802 if (!vf)
803 return false;
804
805 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
806 if (!dev)
807 return false;
808 pending = bnx2x_is_pcie_pending(dev);
809 pci_dev_put(dev);
810
811 return pending;
812 }
813
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)814 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
815 {
816 /* Verify no pending pci transactions */
817 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
818 BNX2X_ERR("PCIE Transactions still pending\n");
819
820 return 0;
821 }
822
823 /* must be called after the number of PF queues and the number of VFs are
824 * both known
825 */
826 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)827 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
828 {
829 struct vf_pf_resc_request *resc = &vf->alloc_resc;
830
831 /* will be set only during VF-ACQUIRE */
832 resc->num_rxqs = 0;
833 resc->num_txqs = 0;
834
835 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
836 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
837
838 /* no real limitation */
839 resc->num_mc_filters = 0;
840
841 /* num_sbs already set */
842 resc->num_sbs = vf->sb_count;
843 }
844
845 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)846 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
847 {
848 /* reset the state variables */
849 bnx2x_iov_static_resc(bp, vf);
850 vf->state = VF_FREE;
851 }
852
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)853 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
856
857 /* DQ usage counter */
858 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
859 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
860 "DQ VF usage counter timed out",
861 poll_cnt);
862 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
863
864 /* FW cleanup command - poll for the results */
865 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
866 poll_cnt))
867 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
868
869 /* verify TX hw is flushed */
870 bnx2x_tx_hw_flushed(bp, poll_cnt);
871 }
872
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)873 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
874 {
875 int rc, i;
876
877 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
878
879 /* the cleanup operations are valid if and only if the VF
880 * was first acquired.
881 */
882 for (i = 0; i < vf_rxq_count(vf); i++) {
883 rc = bnx2x_vf_queue_flr(bp, vf, i);
884 if (rc)
885 goto out;
886 }
887
888 /* remove multicasts */
889 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
890
891 /* dispatch final cleanup and wait for HW queues to flush */
892 bnx2x_vf_flr_clnup_hw(bp, vf);
893
894 /* release VF resources */
895 bnx2x_vf_free_resc(bp, vf);
896
897 vf->malicious = false;
898
899 /* re-open the mailbox */
900 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
901 return;
902 out:
903 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
904 vf->abs_vfid, i, rc);
905 }
906
bnx2x_vf_flr_clnup(struct bnx2x * bp)907 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
908 {
909 struct bnx2x_virtf *vf;
910 int i;
911
912 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
913 /* VF should be RESET & in FLR cleanup states */
914 if (bnx2x_vf(bp, i, state) != VF_RESET ||
915 !bnx2x_vf(bp, i, flr_clnup_stage))
916 continue;
917
918 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
919 i, BNX2X_NR_VIRTFN(bp));
920
921 vf = BP_VF(bp, i);
922
923 /* lock the vf pf channel */
924 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
925
926 /* invoke the VF FLR SM */
927 bnx2x_vf_flr(bp, vf);
928
929 /* mark the VF to be ACKED and continue */
930 vf->flr_clnup_stage = false;
931 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932 }
933
934 /* Acknowledge the handled VFs.
935 * we are acknowledge all the vfs which an flr was requested for, even
936 * if amongst them there are such that we never opened, since the mcp
937 * will interrupt us immediately again if we only ack some of the bits,
938 * resulting in an endless loop. This can happen for example in KVM
939 * where an 'all ones' flr request is sometimes given by hyper visor
940 */
941 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
942 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
943 for (i = 0; i < FLRD_VFS_DWORDS; i++)
944 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
945 bp->vfdb->flrd_vfs[i]);
946
947 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
948
949 /* clear the acked bits - better yet if the MCP implemented
950 * write to clear semantics
951 */
952 for (i = 0; i < FLRD_VFS_DWORDS; i++)
953 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
954 }
955
bnx2x_vf_handle_flr_event(struct bnx2x * bp)956 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
957 {
958 int i;
959
960 /* Read FLR'd VFs */
961 for (i = 0; i < FLRD_VFS_DWORDS; i++)
962 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
963
964 DP(BNX2X_MSG_MCP,
965 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
966 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
967
968 for_each_vf(bp, i) {
969 struct bnx2x_virtf *vf = BP_VF(bp, i);
970 u32 reset = 0;
971
972 if (vf->abs_vfid < 32)
973 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
974 else
975 reset = bp->vfdb->flrd_vfs[1] &
976 (1 << (vf->abs_vfid - 32));
977
978 if (reset) {
979 /* set as reset and ready for cleanup */
980 vf->state = VF_RESET;
981 vf->flr_clnup_stage = true;
982
983 DP(BNX2X_MSG_IOV,
984 "Initiating Final cleanup for VF %d\n",
985 vf->abs_vfid);
986 }
987 }
988
989 /* do the FLR cleanup for all marked VFs*/
990 bnx2x_vf_flr_clnup(bp);
991 }
992
993 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)994 void bnx2x_iov_init_dq(struct bnx2x *bp)
995 {
996 if (!IS_SRIOV(bp))
997 return;
998
999 /* Set the DQ such that the CID reflect the abs_vfid */
1000 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1001 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1002
1003 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1004 * the PF L2 queues
1005 */
1006 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1007
1008 /* The VF window size is the log2 of the max number of CIDs per VF */
1009 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1010
1011 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1012 * the Pf doorbell size although the 2 are independent.
1013 */
1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1015
1016 /* No security checks for now -
1017 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1018 * CID range 0 - 0x1ffff
1019 */
1020 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1021 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1022 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1023 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1024
1025 /* set the VF doorbell threshold. This threshold represents the amount
1026 * of doorbells allowed in the main DORQ fifo for a specific VF.
1027 */
1028 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1029 }
1030
bnx2x_iov_init_dmae(struct bnx2x * bp)1031 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1032 {
1033 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1034 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1035 }
1036
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1037 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1038 {
1039 struct pci_dev *dev = bp->pdev;
1040
1041 return pci_domain_nr(dev->bus);
1042 }
1043
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 struct pci_dev *dev = bp->pdev;
1047 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048
1049 return dev->bus->number + ((dev->devfn + iov->offset +
1050 iov->stride * vfid) >> 8);
1051 }
1052
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 struct pci_dev *dev = bp->pdev;
1056 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057
1058 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 int i, n;
1064 struct pci_dev *dev = bp->pdev;
1065 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066
1067 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070
1071 size /= iov->total;
1072 vf->bars[n].bar = start + size * vf->abs_vfid;
1073 vf->bars[n].size = size;
1074 }
1075 }
1076
1077 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1078 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1079 {
1080 int sb_id;
1081 u32 val;
1082 u8 fid, current_pf = 0;
1083
1084 /* IGU in normal mode - read CAM */
1085 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1086 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1087 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1088 continue;
1089 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1090 if (fid & IGU_FID_ENCODE_IS_PF)
1091 current_pf = fid & IGU_FID_PF_NUM_MASK;
1092 else if (current_pf == BP_FUNC(bp))
1093 bnx2x_vf_set_igu_info(bp, sb_id,
1094 (fid & IGU_FID_VF_NUM_MASK));
1095 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1096 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1097 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1098 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1099 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1100 }
1101 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1102 return BP_VFDB(bp)->vf_sbs_pool;
1103 }
1104
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1105 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1106 {
1107 if (bp->vfdb) {
1108 kfree(bp->vfdb->vfqs);
1109 kfree(bp->vfdb->vfs);
1110 kfree(bp->vfdb);
1111 }
1112 bp->vfdb = NULL;
1113 }
1114
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1115 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1116 {
1117 int pos;
1118 struct pci_dev *dev = bp->pdev;
1119
1120 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1121 if (!pos) {
1122 BNX2X_ERR("failed to find SRIOV capability in device\n");
1123 return -ENODEV;
1124 }
1125
1126 iov->pos = pos;
1127 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1128 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1129 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1130 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1131 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1132 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1133 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1134 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1135 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1136
1137 return 0;
1138 }
1139
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1140 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1141 {
1142 u32 val;
1143
1144 /* read the SRIOV capability structure
1145 * The fields can be read via configuration read or
1146 * directly from the device (starting at offset PCICFG_OFFSET)
1147 */
1148 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1149 return -ENODEV;
1150
1151 /* get the number of SRIOV bars */
1152 iov->nres = 0;
1153
1154 /* read the first_vfid */
1155 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1156 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1157 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1158
1159 DP(BNX2X_MSG_IOV,
1160 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1161 BP_FUNC(bp),
1162 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1163 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1164
1165 return 0;
1166 }
1167
1168 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1169 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1170 int num_vfs_param)
1171 {
1172 int err, i;
1173 struct bnx2x_sriov *iov;
1174 struct pci_dev *dev = bp->pdev;
1175
1176 bp->vfdb = NULL;
1177
1178 /* verify is pf */
1179 if (IS_VF(bp))
1180 return 0;
1181
1182 /* verify sriov capability is present in configuration space */
1183 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1184 return 0;
1185
1186 /* verify chip revision */
1187 if (CHIP_IS_E1x(bp))
1188 return 0;
1189
1190 /* check if SRIOV support is turned off */
1191 if (!num_vfs_param)
1192 return 0;
1193
1194 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1195 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1196 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1197 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1198 return 0;
1199 }
1200
1201 /* SRIOV can be enabled only with MSIX */
1202 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1203 int_mode_param == BNX2X_INT_MODE_INTX) {
1204 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1205 return 0;
1206 }
1207
1208 err = -EIO;
1209 /* verify ari is enabled */
1210 if (!pci_ari_enabled(bp->pdev->bus)) {
1211 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1212 return 0;
1213 }
1214
1215 /* verify igu is in normal mode */
1216 if (CHIP_INT_MODE_IS_BC(bp)) {
1217 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1218 return 0;
1219 }
1220
1221 /* allocate the vfs database */
1222 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1223 if (!bp->vfdb) {
1224 BNX2X_ERR("failed to allocate vf database\n");
1225 err = -ENOMEM;
1226 goto failed;
1227 }
1228
1229 /* get the sriov info - Linux already collected all the pertinent
1230 * information, however the sriov structure is for the private use
1231 * of the pci module. Also we want this information regardless
1232 * of the hyper-visor.
1233 */
1234 iov = &(bp->vfdb->sriov);
1235 err = bnx2x_sriov_info(bp, iov);
1236 if (err)
1237 goto failed;
1238
1239 /* SR-IOV capability was enabled but there are no VFs*/
1240 if (iov->total == 0) {
1241 err = 0;
1242 goto failed;
1243 }
1244
1245 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1246
1247 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1248 num_vfs_param, iov->nr_virtfn);
1249
1250 /* allocate the vf array */
1251 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1252 sizeof(struct bnx2x_virtf),
1253 GFP_KERNEL);
1254 if (!bp->vfdb->vfs) {
1255 BNX2X_ERR("failed to allocate vf array\n");
1256 err = -ENOMEM;
1257 goto failed;
1258 }
1259
1260 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1261 for_each_vf(bp, i) {
1262 bnx2x_vf(bp, i, index) = i;
1263 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1264 bnx2x_vf(bp, i, state) = VF_FREE;
1265 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1266 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1267 /* enable spoofchk by default */
1268 bnx2x_vf(bp, i, spoofchk) = 1;
1269 }
1270
1271 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1272 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1273 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1274 err = -EINVAL;
1275 goto failed;
1276 }
1277
1278 /* allocate the queue arrays for all VFs */
1279 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1280 sizeof(struct bnx2x_vf_queue),
1281 GFP_KERNEL);
1282
1283 if (!bp->vfdb->vfqs) {
1284 BNX2X_ERR("failed to allocate vf queue array\n");
1285 err = -ENOMEM;
1286 goto failed;
1287 }
1288
1289 /* Prepare the VFs event synchronization mechanism */
1290 mutex_init(&bp->vfdb->event_mutex);
1291
1292 mutex_init(&bp->vfdb->bulletin_mutex);
1293
1294 if (SHMEM2_HAS(bp, sriov_switch_mode))
1295 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1296
1297 return 0;
1298 failed:
1299 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1300 __bnx2x_iov_free_vfdb(bp);
1301 return err;
1302 }
1303
bnx2x_iov_remove_one(struct bnx2x * bp)1304 void bnx2x_iov_remove_one(struct bnx2x *bp)
1305 {
1306 int vf_idx;
1307
1308 /* if SRIOV is not enabled there's nothing to do */
1309 if (!IS_SRIOV(bp))
1310 return;
1311
1312 bnx2x_disable_sriov(bp);
1313
1314 /* disable access to all VFs */
1315 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1316 bnx2x_pretend_func(bp,
1317 HW_VF_HANDLE(bp,
1318 bp->vfdb->sriov.first_vf_in_pf +
1319 vf_idx));
1320 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1321 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1322 bnx2x_vf_enable_internal(bp, 0);
1323 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1324 }
1325
1326 /* free vf database */
1327 __bnx2x_iov_free_vfdb(bp);
1328 }
1329
bnx2x_iov_free_mem(struct bnx2x * bp)1330 void bnx2x_iov_free_mem(struct bnx2x *bp)
1331 {
1332 int i;
1333
1334 if (!IS_SRIOV(bp))
1335 return;
1336
1337 /* free vfs hw contexts */
1338 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1339 struct hw_dma *cxt = &bp->vfdb->context[i];
1340 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1341 }
1342
1343 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1344 BP_VFDB(bp)->sp_dma.mapping,
1345 BP_VFDB(bp)->sp_dma.size);
1346
1347 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1348 BP_VF_MBX_DMA(bp)->mapping,
1349 BP_VF_MBX_DMA(bp)->size);
1350
1351 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1352 BP_VF_BULLETIN_DMA(bp)->mapping,
1353 BP_VF_BULLETIN_DMA(bp)->size);
1354 }
1355
bnx2x_iov_alloc_mem(struct bnx2x * bp)1356 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1357 {
1358 size_t tot_size;
1359 int i, rc = 0;
1360
1361 if (!IS_SRIOV(bp))
1362 return rc;
1363
1364 /* allocate vfs hw contexts */
1365 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1366 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1367
1368 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1369 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1370 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1371
1372 if (cxt->size) {
1373 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1374 if (!cxt->addr)
1375 goto alloc_mem_err;
1376 } else {
1377 cxt->addr = NULL;
1378 cxt->mapping = 0;
1379 }
1380 tot_size -= cxt->size;
1381 }
1382
1383 /* allocate vfs ramrods dma memory - client_init and set_mac */
1384 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1385 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1386 tot_size);
1387 if (!BP_VFDB(bp)->sp_dma.addr)
1388 goto alloc_mem_err;
1389 BP_VFDB(bp)->sp_dma.size = tot_size;
1390
1391 /* allocate mailboxes */
1392 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1393 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1394 tot_size);
1395 if (!BP_VF_MBX_DMA(bp)->addr)
1396 goto alloc_mem_err;
1397
1398 BP_VF_MBX_DMA(bp)->size = tot_size;
1399
1400 /* allocate local bulletin boards */
1401 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1402 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1403 tot_size);
1404 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1405 goto alloc_mem_err;
1406
1407 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1408
1409 return 0;
1410
1411 alloc_mem_err:
1412 return -ENOMEM;
1413 }
1414
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1415 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1416 struct bnx2x_vf_queue *q)
1417 {
1418 u8 cl_id = vfq_cl_id(vf, q);
1419 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1420 unsigned long q_type = 0;
1421
1422 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1423 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1424
1425 /* Queue State object */
1426 bnx2x_init_queue_obj(bp, &q->sp_obj,
1427 cl_id, &q->cid, 1, func_id,
1428 bnx2x_vf_sp(bp, vf, q_data),
1429 bnx2x_vf_sp_map(bp, vf, q_data),
1430 q_type);
1431
1432 /* sp indication is set only when vlan/mac/etc. are initialized */
1433 q->sp_initialized = false;
1434
1435 DP(BNX2X_MSG_IOV,
1436 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1437 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1438 }
1439
bnx2x_max_speed_cap(struct bnx2x * bp)1440 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1441 {
1442 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1443
1444 if (supported &
1445 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1446 return 20000;
1447
1448 return 10000; /* assume lowest supported speed is 10G */
1449 }
1450
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1451 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1452 {
1453 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1454 struct pf_vf_bulletin_content *bulletin;
1455 struct bnx2x_virtf *vf;
1456 bool update = true;
1457 int rc = 0;
1458
1459 /* sanity and init */
1460 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1461 if (rc)
1462 return rc;
1463
1464 mutex_lock(&bp->vfdb->bulletin_mutex);
1465
1466 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1467 bulletin->valid_bitmap |= 1 << LINK_VALID;
1468
1469 bulletin->link_speed = state->line_speed;
1470 bulletin->link_flags = 0;
1471 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1472 &state->link_report_flags))
1473 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1474 if (test_bit(BNX2X_LINK_REPORT_FD,
1475 &state->link_report_flags))
1476 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1477 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1478 &state->link_report_flags))
1479 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1480 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1481 &state->link_report_flags))
1482 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1483 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1484 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1485 bulletin->valid_bitmap |= 1 << LINK_VALID;
1486 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1487 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1488 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1489 bulletin->valid_bitmap |= 1 << LINK_VALID;
1490 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1491 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1492 } else {
1493 update = false;
1494 }
1495
1496 if (update) {
1497 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1498 "vf %d mode %u speed %d flags %x\n", idx,
1499 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1500
1501 /* Post update on VF's bulletin board */
1502 rc = bnx2x_post_vf_bulletin(bp, idx);
1503 if (rc) {
1504 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1505 goto out;
1506 }
1507 }
1508
1509 out:
1510 mutex_unlock(&bp->vfdb->bulletin_mutex);
1511 return rc;
1512 }
1513
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1514 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1515 {
1516 struct bnx2x *bp = netdev_priv(dev);
1517 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1518
1519 if (!vf)
1520 return -EINVAL;
1521
1522 if (vf->link_cfg == link_state)
1523 return 0; /* nothing todo */
1524
1525 vf->link_cfg = link_state;
1526
1527 return bnx2x_iov_link_update_vf(bp, idx);
1528 }
1529
bnx2x_iov_link_update(struct bnx2x * bp)1530 void bnx2x_iov_link_update(struct bnx2x *bp)
1531 {
1532 int vfid;
1533
1534 if (!IS_SRIOV(bp))
1535 return;
1536
1537 for_each_vf(bp, vfid)
1538 bnx2x_iov_link_update_vf(bp, vfid);
1539 }
1540
1541 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1542 int bnx2x_iov_nic_init(struct bnx2x *bp)
1543 {
1544 int vfid;
1545
1546 if (!IS_SRIOV(bp)) {
1547 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1548 return 0;
1549 }
1550
1551 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1552
1553 /* let FLR complete ... */
1554 msleep(100);
1555
1556 /* initialize vf database */
1557 for_each_vf(bp, vfid) {
1558 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1559
1560 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1561 BNX2X_CIDS_PER_VF;
1562
1563 union cdu_context *base_cxt = (union cdu_context *)
1564 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1565 (base_vf_cid & (ILT_PAGE_CIDS-1));
1566
1567 DP(BNX2X_MSG_IOV,
1568 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1569 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1570 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1571
1572 /* init statically provisioned resources */
1573 bnx2x_iov_static_resc(bp, vf);
1574
1575 /* queues are initialized during VF-ACQUIRE */
1576 vf->filter_state = 0;
1577 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1578
1579 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1580 vf_vlan_rules_cnt(vf));
1581 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1582 vf_mac_rules_cnt(vf));
1583
1584 /* init mcast object - This object will be re-initialized
1585 * during VF-ACQUIRE with the proper cl_id and cid.
1586 * It needs to be initialized here so that it can be safely
1587 * handled by a subsequent FLR flow.
1588 */
1589 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1590 0xFF, 0xFF, 0xFF,
1591 bnx2x_vf_sp(bp, vf, mcast_rdata),
1592 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1593 BNX2X_FILTER_MCAST_PENDING,
1594 &vf->filter_state,
1595 BNX2X_OBJ_TYPE_RX_TX);
1596
1597 /* set the mailbox message addresses */
1598 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1599 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1600 MBX_MSG_ALIGNED_SIZE);
1601
1602 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1603 vfid * MBX_MSG_ALIGNED_SIZE;
1604
1605 /* Enable vf mailbox */
1606 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1607 }
1608
1609 /* Final VF init */
1610 for_each_vf(bp, vfid) {
1611 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1612
1613 /* fill in the BDF and bars */
1614 vf->domain = bnx2x_vf_domain(bp, vfid);
1615 vf->bus = bnx2x_vf_bus(bp, vfid);
1616 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1617 bnx2x_vf_set_bars(bp, vf);
1618
1619 DP(BNX2X_MSG_IOV,
1620 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1621 vf->abs_vfid, vf->bus, vf->devfn,
1622 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1623 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1624 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1625 }
1626
1627 return 0;
1628 }
1629
1630 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1631 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1632 {
1633 int i;
1634
1635 if (!IS_SRIOV(bp))
1636 return 0;
1637
1638 /* release all the VFs */
1639 for_each_vf(bp, i)
1640 bnx2x_vf_release(bp, BP_VF(bp, i));
1641
1642 return 0;
1643 }
1644
1645 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1646 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1647 {
1648 int i;
1649 struct bnx2x_ilt *ilt = BP_ILT(bp);
1650
1651 if (!IS_SRIOV(bp))
1652 return line;
1653
1654 /* set vfs ilt lines */
1655 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1656 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1657
1658 ilt->lines[line+i].page = hw_cxt->addr;
1659 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1660 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1661 }
1662 return line + i;
1663 }
1664
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1665 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1666 {
1667 return ((cid >= BNX2X_FIRST_VF_CID) &&
1668 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1669 }
1670
1671 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1672 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1673 struct bnx2x_vf_queue *vfq,
1674 union event_ring_elem *elem)
1675 {
1676 unsigned long ramrod_flags = 0;
1677 int rc = 0;
1678 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1679
1680 /* Always push next commands out, don't wait here */
1681 set_bit(RAMROD_CONT, &ramrod_flags);
1682
1683 switch (echo >> BNX2X_SWCID_SHIFT) {
1684 case BNX2X_FILTER_MAC_PENDING:
1685 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1686 &ramrod_flags);
1687 break;
1688 case BNX2X_FILTER_VLAN_PENDING:
1689 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1690 &ramrod_flags);
1691 break;
1692 default:
1693 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1694 return;
1695 }
1696 if (rc < 0)
1697 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1698 else if (rc > 0)
1699 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1700 }
1701
1702 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1703 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1704 struct bnx2x_virtf *vf)
1705 {
1706 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1707 int rc;
1708
1709 rparam.mcast_obj = &vf->mcast_obj;
1710 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1711
1712 /* If there are pending mcast commands - send them */
1713 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1714 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1715 if (rc < 0)
1716 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1717 rc);
1718 }
1719 }
1720
1721 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1722 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1723 struct bnx2x_virtf *vf)
1724 {
1725 smp_mb__before_atomic();
1726 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1727 smp_mb__after_atomic();
1728 }
1729
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1730 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1731 struct bnx2x_virtf *vf)
1732 {
1733 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1734 }
1735
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1736 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1737 {
1738 struct bnx2x_virtf *vf;
1739 int qidx = 0, abs_vfid;
1740 u8 opcode;
1741 u16 cid = 0xffff;
1742
1743 if (!IS_SRIOV(bp))
1744 return 1;
1745
1746 /* first get the cid - the only events we handle here are cfc-delete
1747 * and set-mac completion
1748 */
1749 opcode = elem->message.opcode;
1750
1751 switch (opcode) {
1752 case EVENT_RING_OPCODE_CFC_DEL:
1753 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1754 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1755 break;
1756 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1757 case EVENT_RING_OPCODE_MULTICAST_RULES:
1758 case EVENT_RING_OPCODE_FILTERS_RULES:
1759 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1760 cid = SW_CID(elem->message.data.eth_event.echo);
1761 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1762 break;
1763 case EVENT_RING_OPCODE_VF_FLR:
1764 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1765 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1766 abs_vfid);
1767 goto get_vf;
1768 case EVENT_RING_OPCODE_MALICIOUS_VF:
1769 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1770 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1771 abs_vfid,
1772 elem->message.data.malicious_vf_event.err_id);
1773 goto get_vf;
1774 default:
1775 return 1;
1776 }
1777
1778 /* check if the cid is the VF range */
1779 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1780 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1781 return 1;
1782 }
1783
1784 /* extract vf and rxq index from vf_cid - relies on the following:
1785 * 1. vfid on cid reflects the true abs_vfid
1786 * 2. The max number of VFs (per path) is 64
1787 */
1788 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1789 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1790 get_vf:
1791 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1792
1793 if (!vf) {
1794 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1795 cid, abs_vfid);
1796 return 0;
1797 }
1798
1799 switch (opcode) {
1800 case EVENT_RING_OPCODE_CFC_DEL:
1801 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1802 vf->abs_vfid, qidx);
1803 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1804 &vfq_get(vf,
1805 qidx)->sp_obj,
1806 BNX2X_Q_CMD_CFC_DEL);
1807 break;
1808 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1809 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1810 vf->abs_vfid, qidx);
1811 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1812 break;
1813 case EVENT_RING_OPCODE_MULTICAST_RULES:
1814 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1815 vf->abs_vfid, qidx);
1816 bnx2x_vf_handle_mcast_eqe(bp, vf);
1817 break;
1818 case EVENT_RING_OPCODE_FILTERS_RULES:
1819 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1820 vf->abs_vfid, qidx);
1821 bnx2x_vf_handle_filters_eqe(bp, vf);
1822 break;
1823 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1824 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1825 vf->abs_vfid, qidx);
1826 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1827 fallthrough;
1828 case EVENT_RING_OPCODE_VF_FLR:
1829 /* Do nothing for now */
1830 return 0;
1831 case EVENT_RING_OPCODE_MALICIOUS_VF:
1832 vf->malicious = true;
1833 return 0;
1834 }
1835
1836 return 0;
1837 }
1838
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1839 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1840 {
1841 /* extract the vf from vf_cid - relies on the following:
1842 * 1. vfid on cid reflects the true abs_vfid
1843 * 2. The max number of VFs (per path) is 64
1844 */
1845 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1846 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1847 }
1848
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1849 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1850 struct bnx2x_queue_sp_obj **q_obj)
1851 {
1852 struct bnx2x_virtf *vf;
1853
1854 if (!IS_SRIOV(bp))
1855 return;
1856
1857 vf = bnx2x_vf_by_cid(bp, vf_cid);
1858
1859 if (vf) {
1860 /* extract queue index from vf_cid - relies on the following:
1861 * 1. vfid on cid reflects the true abs_vfid
1862 * 2. The max number of VFs (per path) is 64
1863 */
1864 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1865 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1866 } else {
1867 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1868 }
1869 }
1870
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1871 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1872 {
1873 int i;
1874 int first_queue_query_index, num_queues_req;
1875 dma_addr_t cur_data_offset;
1876 struct stats_query_entry *cur_query_entry;
1877 u8 stats_count = 0;
1878 bool is_fcoe = false;
1879
1880 if (!IS_SRIOV(bp))
1881 return;
1882
1883 if (!NO_FCOE(bp))
1884 is_fcoe = true;
1885
1886 /* fcoe adds one global request and one queue request */
1887 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1888 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1889 (is_fcoe ? 0 : 1);
1890
1891 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1892 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1893 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1894 first_queue_query_index + num_queues_req);
1895
1896 cur_data_offset = bp->fw_stats_data_mapping +
1897 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1898 num_queues_req * sizeof(struct per_queue_stats);
1899
1900 cur_query_entry = &bp->fw_stats_req->
1901 query[first_queue_query_index + num_queues_req];
1902
1903 for_each_vf(bp, i) {
1904 int j;
1905 struct bnx2x_virtf *vf = BP_VF(bp, i);
1906
1907 if (vf->state != VF_ENABLED) {
1908 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1909 "vf %d not enabled so no stats for it\n",
1910 vf->abs_vfid);
1911 continue;
1912 }
1913
1914 if (vf->malicious) {
1915 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1916 "vf %d malicious so no stats for it\n",
1917 vf->abs_vfid);
1918 continue;
1919 }
1920
1921 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1922 "add addresses for vf %d\n", vf->abs_vfid);
1923 for_each_vfq(vf, j) {
1924 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1925
1926 dma_addr_t q_stats_addr =
1927 vf->fw_stat_map + j * vf->stats_stride;
1928
1929 /* collect stats fro active queues only */
1930 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1931 BNX2X_Q_LOGICAL_STATE_STOPPED)
1932 continue;
1933
1934 /* create stats query entry for this queue */
1935 cur_query_entry->kind = STATS_TYPE_QUEUE;
1936 cur_query_entry->index = vfq_stat_id(vf, rxq);
1937 cur_query_entry->funcID =
1938 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1939 cur_query_entry->address.hi =
1940 cpu_to_le32(U64_HI(q_stats_addr));
1941 cur_query_entry->address.lo =
1942 cpu_to_le32(U64_LO(q_stats_addr));
1943 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1944 "added address %x %x for vf %d queue %d client %d\n",
1945 cur_query_entry->address.hi,
1946 cur_query_entry->address.lo,
1947 cur_query_entry->funcID,
1948 j, cur_query_entry->index);
1949 cur_query_entry++;
1950 cur_data_offset += sizeof(struct per_queue_stats);
1951 stats_count++;
1952
1953 /* all stats are coalesced to the leading queue */
1954 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1955 break;
1956 }
1957 }
1958 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1959 }
1960
1961 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1962 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1963 u8 enable)
1964 {
1965 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1966 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1967
1968 REG_WR(bp, reg, val);
1969 }
1970
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1971 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1972 {
1973 int i;
1974
1975 for_each_vfq(vf, i)
1976 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1977 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1978 }
1979
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1980 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1981 {
1982 u32 val;
1983
1984 /* clear the VF configuration - pretend */
1985 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1986 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1987 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1988 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1989 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1990 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1991 }
1992
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1993 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1994 {
1995 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1996 BNX2X_VF_MAX_QUEUES);
1997 }
1998
1999 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)2000 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
2001 struct vf_pf_resc_request *req_resc)
2002 {
2003 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2004 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2005
2006 return ((req_resc->num_rxqs <= rxq_cnt) &&
2007 (req_resc->num_txqs <= txq_cnt) &&
2008 (req_resc->num_sbs <= vf_sb_count(vf)) &&
2009 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2010 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2011 }
2012
2013 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2014 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2015 struct vf_pf_resc_request *resc)
2016 {
2017 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2018 BNX2X_CIDS_PER_VF;
2019
2020 union cdu_context *base_cxt = (union cdu_context *)
2021 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2022 (base_vf_cid & (ILT_PAGE_CIDS-1));
2023 int i;
2024
2025 /* if state is 'acquired' the VF was not released or FLR'd, in
2026 * this case the returned resources match the acquired already
2027 * acquired resources. Verify that the requested numbers do
2028 * not exceed the already acquired numbers.
2029 */
2030 if (vf->state == VF_ACQUIRED) {
2031 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2032 vf->abs_vfid);
2033
2034 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2035 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2036 vf->abs_vfid);
2037 return -EINVAL;
2038 }
2039 return 0;
2040 }
2041
2042 /* Otherwise vf state must be 'free' or 'reset' */
2043 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2044 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2045 vf->abs_vfid, vf->state);
2046 return -EINVAL;
2047 }
2048
2049 /* static allocation:
2050 * the global maximum number are fixed per VF. Fail the request if
2051 * requested number exceed these globals
2052 */
2053 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2054 DP(BNX2X_MSG_IOV,
2055 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2056 /* set the max resource in the vf */
2057 return -ENOMEM;
2058 }
2059
2060 /* Set resources counters - 0 request means max available */
2061 vf_sb_count(vf) = resc->num_sbs;
2062 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2063 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2064
2065 DP(BNX2X_MSG_IOV,
2066 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2067 vf_sb_count(vf), vf_rxq_count(vf),
2068 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2069 vf_vlan_rules_cnt(vf));
2070
2071 /* Initialize the queues */
2072 if (!vf->vfqs) {
2073 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2074 return -EINVAL;
2075 }
2076
2077 for_each_vfq(vf, i) {
2078 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2079
2080 if (!q) {
2081 BNX2X_ERR("q number %d was not allocated\n", i);
2082 return -EINVAL;
2083 }
2084
2085 q->index = i;
2086 q->cxt = &((base_cxt + i)->eth);
2087 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2088
2089 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2090 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2091
2092 /* init SP objects */
2093 bnx2x_vfq_init(bp, vf, q);
2094 }
2095 vf->state = VF_ACQUIRED;
2096 return 0;
2097 }
2098
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2099 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2100 {
2101 struct bnx2x_func_init_params func_init = {0};
2102 int i;
2103
2104 /* the sb resources are initialized at this point, do the
2105 * FW/HW initializations
2106 */
2107 for_each_vf_sb(vf, i)
2108 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2109 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2110
2111 /* Sanity checks */
2112 if (vf->state != VF_ACQUIRED) {
2113 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2114 vf->abs_vfid, vf->state);
2115 return -EINVAL;
2116 }
2117
2118 /* let FLR complete ... */
2119 msleep(100);
2120
2121 /* FLR cleanup epilogue */
2122 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2123 return -EBUSY;
2124
2125 /* reset IGU VF statistics: MSIX */
2126 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2127
2128 /* function setup */
2129 func_init.pf_id = BP_FUNC(bp);
2130 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2131 bnx2x_func_init(bp, &func_init);
2132
2133 /* Enable the vf */
2134 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2135 bnx2x_vf_enable_traffic(bp, vf);
2136
2137 /* queue protection table */
2138 for_each_vfq(vf, i)
2139 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2140 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2141
2142 vf->state = VF_ENABLED;
2143
2144 /* update vf bulletin board */
2145 bnx2x_post_vf_bulletin(bp, vf->index);
2146
2147 return 0;
2148 }
2149
2150 struct set_vf_state_cookie {
2151 struct bnx2x_virtf *vf;
2152 u8 state;
2153 };
2154
bnx2x_set_vf_state(void * cookie)2155 static void bnx2x_set_vf_state(void *cookie)
2156 {
2157 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2158
2159 p->vf->state = p->state;
2160 }
2161
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2162 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2163 {
2164 int rc = 0, i;
2165
2166 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2167
2168 /* Close all queues */
2169 for (i = 0; i < vf_rxq_count(vf); i++) {
2170 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2171 if (rc)
2172 goto op_err;
2173 }
2174
2175 /* disable the interrupts */
2176 DP(BNX2X_MSG_IOV, "disabling igu\n");
2177 bnx2x_vf_igu_disable(bp, vf);
2178
2179 /* disable the VF */
2180 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2181 bnx2x_vf_clr_qtbl(bp, vf);
2182
2183 /* need to make sure there are no outstanding stats ramrods which may
2184 * cause the device to access the VF's stats buffer which it will free
2185 * as soon as we return from the close flow.
2186 */
2187 {
2188 struct set_vf_state_cookie cookie;
2189
2190 cookie.vf = vf;
2191 cookie.state = VF_ACQUIRED;
2192 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2193 if (rc)
2194 goto op_err;
2195 }
2196
2197 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2198
2199 return 0;
2200 op_err:
2201 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2202 return rc;
2203 }
2204
2205 /* VF release can be called either: 1. The VF was acquired but
2206 * not enabled 2. the vf was enabled or in the process of being
2207 * enabled
2208 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2209 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2210 {
2211 int rc;
2212
2213 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2214 vf->state == VF_FREE ? "Free" :
2215 vf->state == VF_ACQUIRED ? "Acquired" :
2216 vf->state == VF_ENABLED ? "Enabled" :
2217 vf->state == VF_RESET ? "Reset" :
2218 "Unknown");
2219
2220 switch (vf->state) {
2221 case VF_ENABLED:
2222 rc = bnx2x_vf_close(bp, vf);
2223 if (rc)
2224 goto op_err;
2225 fallthrough; /* to release resources */
2226 case VF_ACQUIRED:
2227 DP(BNX2X_MSG_IOV, "about to free resources\n");
2228 bnx2x_vf_free_resc(bp, vf);
2229 break;
2230
2231 case VF_FREE:
2232 case VF_RESET:
2233 default:
2234 break;
2235 }
2236 return 0;
2237 op_err:
2238 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2239 return rc;
2240 }
2241
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2242 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2243 struct bnx2x_config_rss_params *rss)
2244 {
2245 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2246 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2247 return bnx2x_config_rss(bp, rss);
2248 }
2249
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2250 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2251 struct vfpf_tpa_tlv *tlv,
2252 struct bnx2x_queue_update_tpa_params *params)
2253 {
2254 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2255 struct bnx2x_queue_state_params qstate;
2256 int qid, rc = 0;
2257
2258 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2259
2260 /* Set ramrod params */
2261 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2262 memcpy(&qstate.params.update_tpa, params,
2263 sizeof(struct bnx2x_queue_update_tpa_params));
2264 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2265 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2266
2267 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2268 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2269 qstate.params.update_tpa.sge_map = sge_addr[qid];
2270 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2271 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2272 U64_LO(sge_addr[qid]));
2273 rc = bnx2x_queue_state_change(bp, &qstate);
2274 if (rc) {
2275 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2276 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2277 vf->abs_vfid, qid);
2278 return rc;
2279 }
2280 }
2281
2282 return rc;
2283 }
2284
2285 /* VF release ~ VF close + VF release-resources
2286 * Release is the ultimate SW shutdown and is called whenever an
2287 * irrecoverable error is encountered.
2288 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2289 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2290 {
2291 int rc;
2292
2293 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2294 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2295
2296 rc = bnx2x_vf_free(bp, vf);
2297 if (rc)
2298 WARN(rc,
2299 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2300 vf->abs_vfid, rc);
2301 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2302 return rc;
2303 }
2304
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2305 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2306 enum channel_tlvs tlv)
2307 {
2308 /* we don't lock the channel for unsupported tlvs */
2309 if (!bnx2x_tlv_supported(tlv)) {
2310 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2311 return;
2312 }
2313
2314 /* lock the channel */
2315 mutex_lock(&vf->op_mutex);
2316
2317 /* record the locking op */
2318 vf->op_current = tlv;
2319
2320 /* log the lock */
2321 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2322 vf->abs_vfid, tlv);
2323 }
2324
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2325 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2326 enum channel_tlvs expected_tlv)
2327 {
2328 enum channel_tlvs current_tlv;
2329
2330 if (!vf) {
2331 BNX2X_ERR("VF was %p\n", vf);
2332 return;
2333 }
2334
2335 current_tlv = vf->op_current;
2336
2337 /* we don't unlock the channel for unsupported tlvs */
2338 if (!bnx2x_tlv_supported(expected_tlv))
2339 return;
2340
2341 WARN(expected_tlv != vf->op_current,
2342 "lock mismatch: expected %d found %d", expected_tlv,
2343 vf->op_current);
2344
2345 /* record the locking op */
2346 vf->op_current = CHANNEL_TLV_NONE;
2347
2348 /* lock the channel */
2349 mutex_unlock(&vf->op_mutex);
2350
2351 /* log the unlock */
2352 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2353 vf->abs_vfid, current_tlv);
2354 }
2355
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2356 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2357 {
2358 struct bnx2x_queue_state_params q_params;
2359 u32 prev_flags;
2360 int i, rc;
2361
2362 /* Verify changes are needed and record current Tx switching state */
2363 prev_flags = bp->flags;
2364 if (enable)
2365 bp->flags |= TX_SWITCHING;
2366 else
2367 bp->flags &= ~TX_SWITCHING;
2368 if (prev_flags == bp->flags)
2369 return 0;
2370
2371 /* Verify state enables the sending of queue ramrods */
2372 if ((bp->state != BNX2X_STATE_OPEN) ||
2373 (bnx2x_get_q_logical_state(bp,
2374 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2375 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2376 return 0;
2377
2378 /* send q. update ramrod to configure Tx switching */
2379 memset(&q_params, 0, sizeof(q_params));
2380 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2381 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2382 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2383 &q_params.params.update.update_flags);
2384 if (enable)
2385 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2386 &q_params.params.update.update_flags);
2387 else
2388 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2389 &q_params.params.update.update_flags);
2390
2391 /* send the ramrod on all the queues of the PF */
2392 for_each_eth_queue(bp, i) {
2393 struct bnx2x_fastpath *fp = &bp->fp[i];
2394 int tx_idx;
2395
2396 /* Set the appropriate Queue object */
2397 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2398
2399 for (tx_idx = FIRST_TX_COS_INDEX;
2400 tx_idx < fp->max_cos; tx_idx++) {
2401 q_params.params.update.cid_index = tx_idx;
2402
2403 /* Update the Queue state */
2404 rc = bnx2x_queue_state_change(bp, &q_params);
2405 if (rc) {
2406 BNX2X_ERR("Failed to configure Tx switching\n");
2407 return rc;
2408 }
2409 }
2410 }
2411
2412 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2413 return 0;
2414 }
2415
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2416 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2417 {
2418 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2419
2420 if (!IS_SRIOV(bp)) {
2421 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2422 return -EINVAL;
2423 }
2424
2425 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2426 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427
2428 /* HW channel is only operational when PF is up */
2429 if (bp->state != BNX2X_STATE_OPEN) {
2430 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2431 return -EINVAL;
2432 }
2433
2434 /* we are always bound by the total_vfs in the configuration space */
2435 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2436 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2437 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2438 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2439 }
2440
2441 bp->requested_nr_virtfn = num_vfs_param;
2442 if (num_vfs_param == 0) {
2443 bnx2x_set_pf_tx_switching(bp, false);
2444 bnx2x_disable_sriov(bp);
2445 return 0;
2446 } else {
2447 return bnx2x_enable_sriov(bp);
2448 }
2449 }
2450
2451 #define IGU_ENTRY_SIZE 4
2452
bnx2x_enable_sriov(struct bnx2x * bp)2453 int bnx2x_enable_sriov(struct bnx2x *bp)
2454 {
2455 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2456 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2457 u32 igu_entry, address;
2458 u16 num_vf_queues;
2459
2460 if (req_vfs == 0)
2461 return 0;
2462
2463 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2464
2465 /* statically distribute vf sb pool between VFs */
2466 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2467 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2468
2469 /* zero previous values learned from igu cam */
2470 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2471 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2472
2473 vf->sb_count = 0;
2474 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2475 }
2476 bp->vfdb->vf_sbs_pool = 0;
2477
2478 /* prepare IGU cam */
2479 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2480 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2481 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2482 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2483 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2484 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2485 IGU_REG_MAPPING_MEMORY_VALID;
2486 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2487 sb_idx, vf_idx);
2488 REG_WR(bp, address, igu_entry);
2489 sb_idx++;
2490 address += IGU_ENTRY_SIZE;
2491 }
2492 }
2493
2494 /* Reinitialize vf database according to igu cam */
2495 bnx2x_get_vf_igu_cam_info(bp);
2496
2497 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2498 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2499
2500 qcount = 0;
2501 for_each_vf(bp, vf_idx) {
2502 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2503
2504 /* set local queue arrays */
2505 vf->vfqs = &bp->vfdb->vfqs[qcount];
2506 qcount += vf_sb_count(vf);
2507 bnx2x_iov_static_resc(bp, vf);
2508 }
2509
2510 /* prepare msix vectors in VF configuration space - the value in the
2511 * PCI configuration space should be the index of the last entry,
2512 * namely one less than the actual size of the table
2513 */
2514 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2515 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2516 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2517 num_vf_queues - 1);
2518 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2519 vf_idx, num_vf_queues - 1);
2520 }
2521 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2522
2523 /* enable sriov. This will probe all the VFs, and consequentially cause
2524 * the "acquire" messages to appear on the VF PF channel.
2525 */
2526 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2527 bnx2x_disable_sriov(bp);
2528
2529 rc = bnx2x_set_pf_tx_switching(bp, true);
2530 if (rc)
2531 return rc;
2532
2533 rc = pci_enable_sriov(bp->pdev, req_vfs);
2534 if (rc) {
2535 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2536 return rc;
2537 }
2538 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2539 return req_vfs;
2540 }
2541
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2542 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2543 {
2544 int vfidx;
2545 struct pf_vf_bulletin_content *bulletin;
2546
2547 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2548 for_each_vf(bp, vfidx) {
2549 bulletin = BP_VF_BULLETIN(bp, vfidx);
2550 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2551 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2552 htons(ETH_P_8021Q));
2553 }
2554 }
2555
bnx2x_disable_sriov(struct bnx2x * bp)2556 void bnx2x_disable_sriov(struct bnx2x *bp)
2557 {
2558 if (pci_vfs_assigned(bp->pdev)) {
2559 DP(BNX2X_MSG_IOV,
2560 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2561 return;
2562 }
2563
2564 pci_disable_sriov(bp->pdev);
2565 }
2566
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2567 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2568 struct bnx2x_virtf **vf,
2569 struct pf_vf_bulletin_content **bulletin,
2570 bool test_queue)
2571 {
2572 if (bp->state != BNX2X_STATE_OPEN) {
2573 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2574 return -EINVAL;
2575 }
2576
2577 if (!IS_SRIOV(bp)) {
2578 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2579 return -EINVAL;
2580 }
2581
2582 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2583 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2584 vfidx, BNX2X_NR_VIRTFN(bp));
2585 return -EINVAL;
2586 }
2587
2588 /* init members */
2589 *vf = BP_VF(bp, vfidx);
2590 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2591
2592 if (!*vf) {
2593 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2594 return -EINVAL;
2595 }
2596
2597 if (test_queue && !(*vf)->vfqs) {
2598 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2599 vfidx);
2600 return -EINVAL;
2601 }
2602
2603 if (!*bulletin) {
2604 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2605 vfidx);
2606 return -EINVAL;
2607 }
2608
2609 return 0;
2610 }
2611
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2612 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2613 struct ifla_vf_info *ivi)
2614 {
2615 struct bnx2x *bp = netdev_priv(dev);
2616 struct bnx2x_virtf *vf = NULL;
2617 struct pf_vf_bulletin_content *bulletin = NULL;
2618 struct bnx2x_vlan_mac_obj *mac_obj;
2619 struct bnx2x_vlan_mac_obj *vlan_obj;
2620 int rc;
2621
2622 /* sanity and init */
2623 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2624 if (rc)
2625 return rc;
2626
2627 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2628 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2629 if (!mac_obj || !vlan_obj) {
2630 BNX2X_ERR("VF partially initialized\n");
2631 return -EINVAL;
2632 }
2633
2634 ivi->vf = vfidx;
2635 ivi->qos = 0;
2636 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2637 ivi->min_tx_rate = 0;
2638 ivi->spoofchk = vf->spoofchk ? 1 : 0;
2639 ivi->linkstate = vf->link_cfg;
2640 if (vf->state == VF_ENABLED) {
2641 /* mac and vlan are in vlan_mac objects */
2642 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2643 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2644 0, ETH_ALEN);
2645 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2646 (u8 *)&ivi->vlan, 0,
2647 VLAN_HLEN);
2648 }
2649 } else {
2650 mutex_lock(&bp->vfdb->bulletin_mutex);
2651 /* mac */
2652 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2653 /* mac configured by ndo so its in bulletin board */
2654 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2655 else
2656 /* function has not been loaded yet. Show mac as 0s */
2657 eth_zero_addr(ivi->mac);
2658
2659 /* vlan */
2660 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2661 /* vlan configured by ndo so its in bulletin board */
2662 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2663 else
2664 /* function has not been loaded yet. Show vlans as 0s */
2665 memset(&ivi->vlan, 0, VLAN_HLEN);
2666
2667 mutex_unlock(&bp->vfdb->bulletin_mutex);
2668 }
2669
2670 return 0;
2671 }
2672
2673 /* New mac for VF. Consider these cases:
2674 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2675 * supply at acquire.
2676 * 2. VF has already been acquired but has not yet initialized - store in local
2677 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2678 * will configure this mac when it is ready.
2679 * 3. VF has already initialized but has not yet setup a queue - post the new
2680 * mac on VF's bulletin board right now. VF will configure this mac when it
2681 * is ready.
2682 * 4. VF has already set a queue - delete any macs already configured for this
2683 * queue and manually config the new mac.
2684 * In any event, once this function has been called refuse any attempts by the
2685 * VF to configure any mac for itself except for this mac. In case of a race
2686 * where the VF fails to see the new post on its bulletin board before sending a
2687 * mac configuration request, the PF will simply fail the request and VF can try
2688 * again after consulting its bulletin board.
2689 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2690 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2691 {
2692 struct bnx2x *bp = netdev_priv(dev);
2693 int rc, q_logical_state;
2694 struct bnx2x_virtf *vf = NULL;
2695 struct pf_vf_bulletin_content *bulletin = NULL;
2696
2697 if (!is_valid_ether_addr(mac)) {
2698 BNX2X_ERR("mac address invalid\n");
2699 return -EINVAL;
2700 }
2701
2702 /* sanity and init */
2703 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2704 if (rc)
2705 return rc;
2706
2707 mutex_lock(&bp->vfdb->bulletin_mutex);
2708
2709 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2710 * configuration requests from vf unless match this mac
2711 */
2712 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2713 memcpy(bulletin->mac, mac, ETH_ALEN);
2714
2715 /* Post update on VF's bulletin board */
2716 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2717
2718 /* release lock before checking return code */
2719 mutex_unlock(&bp->vfdb->bulletin_mutex);
2720
2721 if (rc) {
2722 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2723 return rc;
2724 }
2725
2726 q_logical_state =
2727 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2728 if (vf->state == VF_ENABLED &&
2729 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2730 /* configure the mac in device on this vf's queue */
2731 unsigned long ramrod_flags = 0;
2732 struct bnx2x_vlan_mac_obj *mac_obj;
2733
2734 /* User should be able to see failure reason in system logs */
2735 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2736 return -EINVAL;
2737
2738 /* must lock vfpf channel to protect against vf flows */
2739 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2740
2741 /* remove existing eth macs */
2742 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2743 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2744 if (rc) {
2745 BNX2X_ERR("failed to delete eth macs\n");
2746 rc = -EINVAL;
2747 goto out;
2748 }
2749
2750 /* remove existing uc list macs */
2751 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2752 if (rc) {
2753 BNX2X_ERR("failed to delete uc_list macs\n");
2754 rc = -EINVAL;
2755 goto out;
2756 }
2757
2758 /* configure the new mac to device */
2759 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2760 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2761 BNX2X_ETH_MAC, &ramrod_flags);
2762
2763 out:
2764 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2765 }
2766
2767 return rc;
2768 }
2769
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2770 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2771 struct bnx2x_virtf *vf, bool accept)
2772 {
2773 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2774 unsigned long accept_flags;
2775
2776 /* need to remove/add the VF's accept_any_vlan bit */
2777 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2778 if (accept)
2779 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2780 else
2781 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2782
2783 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2784 accept_flags);
2785 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2786 bnx2x_config_rx_mode(bp, &rx_ramrod);
2787 }
2788
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2789 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2790 u16 vlan, bool add)
2791 {
2792 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2793 unsigned long ramrod_flags = 0;
2794 int rc = 0;
2795
2796 /* configure the new vlan to device */
2797 memset(&ramrod_param, 0, sizeof(ramrod_param));
2798 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2799 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2800 ramrod_param.ramrod_flags = ramrod_flags;
2801 ramrod_param.user_req.u.vlan.vlan = vlan;
2802 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2803 : BNX2X_VLAN_MAC_DEL;
2804 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2805 if (rc) {
2806 BNX2X_ERR("failed to configure vlan\n");
2807 return -EINVAL;
2808 }
2809
2810 return 0;
2811 }
2812
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2813 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2814 __be16 vlan_proto)
2815 {
2816 struct pf_vf_bulletin_content *bulletin = NULL;
2817 struct bnx2x *bp = netdev_priv(dev);
2818 struct bnx2x_vlan_mac_obj *vlan_obj;
2819 unsigned long vlan_mac_flags = 0;
2820 unsigned long ramrod_flags = 0;
2821 struct bnx2x_virtf *vf = NULL;
2822 int i, rc;
2823
2824 if (vlan > 4095) {
2825 BNX2X_ERR("illegal vlan value %d\n", vlan);
2826 return -EINVAL;
2827 }
2828
2829 if (vlan_proto != htons(ETH_P_8021Q))
2830 return -EPROTONOSUPPORT;
2831
2832 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2833 vfidx, vlan, 0);
2834
2835 /* sanity and init */
2836 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2837 if (rc)
2838 return rc;
2839
2840 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2841 * to the VF since it doesn't have anything to do with it. But it useful
2842 * to store it here in case the VF is not up yet and we can only
2843 * configure the vlan later when it does. Treat vlan id 0 as remove the
2844 * Host tag.
2845 */
2846 mutex_lock(&bp->vfdb->bulletin_mutex);
2847
2848 if (vlan > 0)
2849 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2850 else
2851 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2852 bulletin->vlan = vlan;
2853
2854 /* Post update on VF's bulletin board */
2855 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2856 if (rc)
2857 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2858 mutex_unlock(&bp->vfdb->bulletin_mutex);
2859
2860 /* is vf initialized and queue set up? */
2861 if (vf->state != VF_ENABLED ||
2862 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2863 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2864 return rc;
2865
2866 /* User should be able to see error in system logs */
2867 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2868 return -EINVAL;
2869
2870 /* must lock vfpf channel to protect against vf flows */
2871 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2872
2873 /* remove existing vlans */
2874 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2875 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2876 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2877 &ramrod_flags);
2878 if (rc) {
2879 BNX2X_ERR("failed to delete vlans\n");
2880 rc = -EINVAL;
2881 goto out;
2882 }
2883
2884 /* clear accept_any_vlan when HV forces vlan, otherwise
2885 * according to VF capabilities
2886 */
2887 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2888 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2889
2890 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2891 if (rc)
2892 goto out;
2893
2894 /* send queue update ramrods to configure default vlan and
2895 * silent vlan removal
2896 */
2897 for_each_vfq(vf, i) {
2898 struct bnx2x_queue_state_params q_params = {NULL};
2899 struct bnx2x_queue_update_params *update_params;
2900
2901 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2902
2903 /* validate the Q is UP */
2904 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2905 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2906 continue;
2907
2908 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2909 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2910 update_params = &q_params.params.update;
2911 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2912 &update_params->update_flags);
2913 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2914 &update_params->update_flags);
2915 if (vlan == 0) {
2916 /* if vlan is 0 then we want to leave the VF traffic
2917 * untagged, and leave the incoming traffic untouched
2918 * (i.e. do not remove any vlan tags).
2919 */
2920 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2921 &update_params->update_flags);
2922 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2923 &update_params->update_flags);
2924 } else {
2925 /* configure default vlan to vf queue and set silent
2926 * vlan removal (the vf remains unaware of this vlan).
2927 */
2928 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2929 &update_params->update_flags);
2930 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2931 &update_params->update_flags);
2932 update_params->def_vlan = vlan;
2933 update_params->silent_removal_value =
2934 vlan & VLAN_VID_MASK;
2935 update_params->silent_removal_mask = VLAN_VID_MASK;
2936 }
2937
2938 /* Update the Queue state */
2939 rc = bnx2x_queue_state_change(bp, &q_params);
2940 if (rc) {
2941 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2942 i);
2943 goto out;
2944 }
2945 }
2946 out:
2947 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2948
2949 if (rc)
2950 DP(BNX2X_MSG_IOV,
2951 "updated VF[%d] vlan configuration (vlan = %d)\n",
2952 vfidx, vlan);
2953
2954 return rc;
2955 }
2956
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2957 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2958 {
2959 struct bnx2x *bp = netdev_priv(dev);
2960 struct bnx2x_virtf *vf;
2961 int i, rc = 0;
2962
2963 vf = BP_VF(bp, idx);
2964 if (!vf)
2965 return -EINVAL;
2966
2967 /* nothing to do */
2968 if (vf->spoofchk == val)
2969 return 0;
2970
2971 vf->spoofchk = val ? 1 : 0;
2972
2973 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2974 val ? "enabling" : "disabling", idx);
2975
2976 /* is vf initialized and queue set up? */
2977 if (vf->state != VF_ENABLED ||
2978 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2979 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2980 return rc;
2981
2982 /* User should be able to see error in system logs */
2983 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2984 return -EINVAL;
2985
2986 /* send queue update ramrods to configure spoofchk */
2987 for_each_vfq(vf, i) {
2988 struct bnx2x_queue_state_params q_params = {NULL};
2989 struct bnx2x_queue_update_params *update_params;
2990
2991 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2992
2993 /* validate the Q is UP */
2994 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2995 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2996 continue;
2997
2998 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2999 q_params.cmd = BNX2X_Q_CMD_UPDATE;
3000 update_params = &q_params.params.update;
3001 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
3002 &update_params->update_flags);
3003 if (val) {
3004 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3005 &update_params->update_flags);
3006 } else {
3007 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
3008 &update_params->update_flags);
3009 }
3010
3011 /* Update the Queue state */
3012 rc = bnx2x_queue_state_change(bp, &q_params);
3013 if (rc) {
3014 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3015 val ? "enable" : "disable", idx, i);
3016 goto out;
3017 }
3018 }
3019 out:
3020 if (!rc)
3021 DP(BNX2X_MSG_IOV,
3022 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3023 idx);
3024
3025 return rc;
3026 }
3027
3028 /* crc is the first field in the bulletin board. Compute the crc over the
3029 * entire bulletin board excluding the crc field itself. Use the length field
3030 * as the Bulletin Board was posted by a PF with possibly a different version
3031 * from the vf which will sample it. Therefore, the length is computed by the
3032 * PF and then used blindly by the VF.
3033 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3034 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3035 {
3036 return crc32(BULLETIN_CRC_SEED,
3037 ((u8 *)bulletin) + sizeof(bulletin->crc),
3038 bulletin->length - sizeof(bulletin->crc));
3039 }
3040
3041 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3042 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3043 {
3044 struct pf_vf_bulletin_content *bulletin;
3045 int attempts;
3046
3047 /* sampling structure in mid post may result with corrupted data
3048 * validate crc to ensure coherency.
3049 */
3050 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3051 u32 crc;
3052
3053 /* sample the bulletin board */
3054 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3055 sizeof(union pf_vf_bulletin));
3056
3057 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3058
3059 if (bp->shadow_bulletin.content.crc == crc)
3060 break;
3061
3062 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3063 bp->shadow_bulletin.content.crc, crc);
3064 }
3065
3066 if (attempts >= BULLETIN_ATTEMPTS) {
3067 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3068 attempts);
3069 return PFVF_BULLETIN_CRC_ERR;
3070 }
3071 bulletin = &bp->shadow_bulletin.content;
3072
3073 /* bulletin board hasn't changed since last sample */
3074 if (bp->old_bulletin.version == bulletin->version)
3075 return PFVF_BULLETIN_UNCHANGED;
3076
3077 /* the mac address in bulletin board is valid and is new */
3078 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3079 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3080 /* update new mac to net device */
3081 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3082 }
3083
3084 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3085 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3086 bulletin->link_speed, bulletin->link_flags);
3087
3088 bp->vf_link_vars.line_speed = bulletin->link_speed;
3089 bp->vf_link_vars.link_report_flags = 0;
3090 /* Link is down */
3091 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3092 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3093 &bp->vf_link_vars.link_report_flags);
3094 /* Full DUPLEX */
3095 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3096 __set_bit(BNX2X_LINK_REPORT_FD,
3097 &bp->vf_link_vars.link_report_flags);
3098 /* Rx Flow Control is ON */
3099 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3100 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3101 &bp->vf_link_vars.link_report_flags);
3102 /* Tx Flow Control is ON */
3103 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3104 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3105 &bp->vf_link_vars.link_report_flags);
3106 __bnx2x_link_report(bp);
3107 }
3108
3109 /* copy new bulletin board to bp */
3110 memcpy(&bp->old_bulletin, bulletin,
3111 sizeof(struct pf_vf_bulletin_content));
3112
3113 return PFVF_BULLETIN_UPDATED;
3114 }
3115
bnx2x_timer_sriov(struct bnx2x * bp)3116 void bnx2x_timer_sriov(struct bnx2x *bp)
3117 {
3118 bnx2x_sample_bulletin(bp);
3119
3120 /* if channel is down we need to self destruct */
3121 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3122 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3123 BNX2X_MSG_IOV);
3124 }
3125
bnx2x_vf_doorbells(struct bnx2x * bp)3126 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3127 {
3128 /* vf doorbells are embedded within the regview */
3129 return bp->regview + PXP_VF_ADDR_DB_START;
3130 }
3131
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3132 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3133 {
3134 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3135 sizeof(struct bnx2x_vf_mbx_msg));
3136 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3137 sizeof(union pf_vf_bulletin));
3138 }
3139
bnx2x_vf_pci_alloc(struct bnx2x * bp)3140 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3141 {
3142 mutex_init(&bp->vf2pf_mutex);
3143
3144 /* allocate vf2pf mailbox for vf to pf channel */
3145 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3146 sizeof(struct bnx2x_vf_mbx_msg));
3147 if (!bp->vf2pf_mbox)
3148 goto alloc_mem_err;
3149
3150 /* allocate pf 2 vf bulletin board */
3151 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3152 sizeof(union pf_vf_bulletin));
3153 if (!bp->pf2vf_bulletin)
3154 goto alloc_mem_err;
3155
3156 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3157
3158 return 0;
3159
3160 alloc_mem_err:
3161 bnx2x_vf_pci_dealloc(bp);
3162 return -ENOMEM;
3163 }
3164
bnx2x_iov_channel_down(struct bnx2x * bp)3165 void bnx2x_iov_channel_down(struct bnx2x *bp)
3166 {
3167 int vf_idx;
3168 struct pf_vf_bulletin_content *bulletin;
3169
3170 if (!IS_SRIOV(bp))
3171 return;
3172
3173 for_each_vf(bp, vf_idx) {
3174 /* locate this VFs bulletin board and update the channel down
3175 * bit
3176 */
3177 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3178 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3179
3180 /* update vf bulletin board */
3181 bnx2x_post_vf_bulletin(bp, vf_idx);
3182 }
3183 }
3184
bnx2x_iov_task(struct work_struct * work)3185 void bnx2x_iov_task(struct work_struct *work)
3186 {
3187 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3188
3189 if (!netif_running(bp->dev))
3190 return;
3191
3192 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3193 &bp->iov_task_state))
3194 bnx2x_vf_handle_flr_event(bp);
3195
3196 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3197 &bp->iov_task_state))
3198 bnx2x_vf_mbx(bp);
3199 }
3200
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3201 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3202 {
3203 smp_mb__before_atomic();
3204 set_bit(flag, &bp->iov_task_state);
3205 smp_mb__after_atomic();
3206 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3207 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3208 }
3209