• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	u32 btf_id;
242 	u32 ret_btf_id;
243 };
244 
245 struct btf *btf_vmlinux;
246 
247 static DEFINE_MUTEX(bpf_verifier_lock);
248 
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 	const struct bpf_line_info *linfo;
253 	const struct bpf_prog *prog;
254 	u32 i, nr_linfo;
255 
256 	prog = env->prog;
257 	nr_linfo = prog->aux->nr_linfo;
258 
259 	if (!nr_linfo || insn_off >= prog->len)
260 		return NULL;
261 
262 	linfo = prog->aux->linfo;
263 	for (i = 1; i < nr_linfo; i++)
264 		if (insn_off < linfo[i].insn_off)
265 			break;
266 
267 	return &linfo[i - 1];
268 }
269 
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 		       va_list args)
272 {
273 	unsigned int n;
274 
275 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276 
277 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 		  "verifier log line truncated - local buffer too short\n");
279 
280 	n = min(log->len_total - log->len_used - 1, n);
281 	log->kbuf[n] = '\0';
282 
283 	if (log->level == BPF_LOG_KERNEL) {
284 		pr_err("BPF:%s\n", log->kbuf);
285 		return;
286 	}
287 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 		log->len_used += n;
289 	else
290 		log->ubuf = NULL;
291 }
292 
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 	char zero = 0;
296 
297 	if (!bpf_verifier_log_needed(log))
298 		return;
299 
300 	log->len_used = new_pos;
301 	if (put_user(zero, log->ubuf + new_pos))
302 		log->ubuf = NULL;
303 }
304 
305 /* log_level controls verbosity level of eBPF verifier.
306  * bpf_verifier_log_write() is used to dump the verification trace to the log,
307  * so the user can figure out what's wrong with the program
308  */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 					   const char *fmt, ...)
311 {
312 	va_list args;
313 
314 	if (!bpf_verifier_log_needed(&env->log))
315 		return;
316 
317 	va_start(args, fmt);
318 	bpf_verifier_vlog(&env->log, fmt, args);
319 	va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322 
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 	struct bpf_verifier_env *env = private_data;
326 	va_list args;
327 
328 	if (!bpf_verifier_log_needed(&env->log))
329 		return;
330 
331 	va_start(args, fmt);
332 	bpf_verifier_vlog(&env->log, fmt, args);
333 	va_end(args);
334 }
335 
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 			    const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	if (!bpf_verifier_log_needed(log))
342 		return;
343 
344 	va_start(args, fmt);
345 	bpf_verifier_vlog(log, fmt, args);
346 	va_end(args);
347 }
348 
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 	while (isspace(*s))
352 		s++;
353 
354 	return s;
355 }
356 
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 					 u32 insn_off,
359 					 const char *prefix_fmt, ...)
360 {
361 	const struct bpf_line_info *linfo;
362 
363 	if (!bpf_verifier_log_needed(&env->log))
364 		return;
365 
366 	linfo = find_linfo(env, insn_off);
367 	if (!linfo || linfo == env->prev_linfo)
368 		return;
369 
370 	if (prefix_fmt) {
371 		va_list args;
372 
373 		va_start(args, prefix_fmt);
374 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 		va_end(args);
376 	}
377 
378 	verbose(env, "%s\n",
379 		ltrim(btf_name_by_offset(env->prog->aux->btf,
380 					 linfo->line_off)));
381 
382 	env->prev_linfo = linfo;
383 }
384 
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 	return type == PTR_TO_PACKET ||
388 	       type == PTR_TO_PACKET_META;
389 }
390 
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 	return type == PTR_TO_SOCKET ||
394 		type == PTR_TO_SOCK_COMMON ||
395 		type == PTR_TO_TCP_SOCK ||
396 		type == PTR_TO_XDP_SOCK;
397 }
398 
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_TCP_SOCK ||
403 		type == PTR_TO_MAP_VALUE ||
404 		type == PTR_TO_SOCK_COMMON;
405 }
406 
reg_type_may_be_null(enum bpf_reg_type type)407 static bool reg_type_may_be_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
410 	       type == PTR_TO_SOCKET_OR_NULL ||
411 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
412 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
413 	       type == PTR_TO_BTF_ID_OR_NULL ||
414 	       type == PTR_TO_MEM_OR_NULL ||
415 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 	       type == PTR_TO_RDWR_BUF_OR_NULL;
417 }
418 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420 {
421 	return reg->type == PTR_TO_MAP_VALUE &&
422 		map_value_has_spin_lock(reg->map_ptr);
423 }
424 
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_SOCKET ||
428 		type == PTR_TO_SOCKET_OR_NULL ||
429 		type == PTR_TO_TCP_SOCK ||
430 		type == PTR_TO_TCP_SOCK_OR_NULL ||
431 		type == PTR_TO_MEM ||
432 		type == PTR_TO_MEM_OR_NULL;
433 }
434 
arg_type_may_be_refcounted(enum bpf_arg_type type)435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
436 {
437 	return type == ARG_PTR_TO_SOCK_COMMON;
438 }
439 
arg_type_may_be_null(enum bpf_arg_type type)440 static bool arg_type_may_be_null(enum bpf_arg_type type)
441 {
442 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 	       type == ARG_PTR_TO_MEM_OR_NULL ||
444 	       type == ARG_PTR_TO_CTX_OR_NULL ||
445 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447 }
448 
449 /* Determine whether the function releases some resources allocated by another
450  * function call. The first reference type argument will be assumed to be
451  * released by release_reference().
452  */
is_release_function(enum bpf_func_id func_id)453 static bool is_release_function(enum bpf_func_id func_id)
454 {
455 	return func_id == BPF_FUNC_sk_release ||
456 	       func_id == BPF_FUNC_ringbuf_submit ||
457 	       func_id == BPF_FUNC_ringbuf_discard;
458 }
459 
may_be_acquire_function(enum bpf_func_id func_id)460 static bool may_be_acquire_function(enum bpf_func_id func_id)
461 {
462 	return func_id == BPF_FUNC_sk_lookup_tcp ||
463 		func_id == BPF_FUNC_sk_lookup_udp ||
464 		func_id == BPF_FUNC_skc_lookup_tcp ||
465 		func_id == BPF_FUNC_map_lookup_elem ||
466 	        func_id == BPF_FUNC_ringbuf_reserve;
467 }
468 
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)469 static bool is_acquire_function(enum bpf_func_id func_id,
470 				const struct bpf_map *map)
471 {
472 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473 
474 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 	    func_id == BPF_FUNC_sk_lookup_udp ||
476 	    func_id == BPF_FUNC_skc_lookup_tcp ||
477 	    func_id == BPF_FUNC_ringbuf_reserve)
478 		return true;
479 
480 	if (func_id == BPF_FUNC_map_lookup_elem &&
481 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 	     map_type == BPF_MAP_TYPE_SOCKHASH))
483 		return true;
484 
485 	return false;
486 }
487 
is_ptr_cast_function(enum bpf_func_id func_id)488 static bool is_ptr_cast_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_tcp_sock ||
491 		func_id == BPF_FUNC_sk_fullsock ||
492 		func_id == BPF_FUNC_skc_to_tcp_sock ||
493 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 		func_id == BPF_FUNC_skc_to_udp6_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
497 }
498 
499 /* string representation of 'enum bpf_reg_type' */
500 static const char * const reg_type_str[] = {
501 	[NOT_INIT]		= "?",
502 	[SCALAR_VALUE]		= "inv",
503 	[PTR_TO_CTX]		= "ctx",
504 	[CONST_PTR_TO_MAP]	= "map_ptr",
505 	[PTR_TO_MAP_VALUE]	= "map_value",
506 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
507 	[PTR_TO_STACK]		= "fp",
508 	[PTR_TO_PACKET]		= "pkt",
509 	[PTR_TO_PACKET_META]	= "pkt_meta",
510 	[PTR_TO_PACKET_END]	= "pkt_end",
511 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
512 	[PTR_TO_SOCKET]		= "sock",
513 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
514 	[PTR_TO_SOCK_COMMON]	= "sock_common",
515 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
516 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
517 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
518 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
519 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
520 	[PTR_TO_BTF_ID]		= "ptr_",
521 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
522 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
523 	[PTR_TO_MEM]		= "mem",
524 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
525 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
526 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
528 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
529 };
530 
531 static char slot_type_char[] = {
532 	[STACK_INVALID]	= '?',
533 	[STACK_SPILL]	= 'r',
534 	[STACK_MISC]	= 'm',
535 	[STACK_ZERO]	= '0',
536 };
537 
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)538 static void print_liveness(struct bpf_verifier_env *env,
539 			   enum bpf_reg_liveness live)
540 {
541 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
542 	    verbose(env, "_");
543 	if (live & REG_LIVE_READ)
544 		verbose(env, "r");
545 	if (live & REG_LIVE_WRITTEN)
546 		verbose(env, "w");
547 	if (live & REG_LIVE_DONE)
548 		verbose(env, "D");
549 }
550 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)551 static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 				   const struct bpf_reg_state *reg)
553 {
554 	struct bpf_verifier_state *cur = env->cur_state;
555 
556 	return cur->frame[reg->frameno];
557 }
558 
kernel_type_name(u32 id)559 const char *kernel_type_name(u32 id)
560 {
561 	return btf_name_by_offset(btf_vmlinux,
562 				  btf_type_by_id(btf_vmlinux, id)->name_off);
563 }
564 
565 /* The reg state of a pointer or a bounded scalar was saved when
566  * it was spilled to the stack.
567  */
is_spilled_reg(const struct bpf_stack_state * stack)568 static bool is_spilled_reg(const struct bpf_stack_state *stack)
569 {
570 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
571 }
572 
scrub_spilled_slot(u8 * stype)573 static void scrub_spilled_slot(u8 *stype)
574 {
575 	if (*stype != STACK_INVALID)
576 		*stype = STACK_MISC;
577 }
578 
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)579 static void print_verifier_state(struct bpf_verifier_env *env,
580 				 const struct bpf_func_state *state)
581 {
582 	const struct bpf_reg_state *reg;
583 	enum bpf_reg_type t;
584 	int i;
585 
586 	if (state->frameno)
587 		verbose(env, " frame%d:", state->frameno);
588 	for (i = 0; i < MAX_BPF_REG; i++) {
589 		reg = &state->regs[i];
590 		t = reg->type;
591 		if (t == NOT_INIT)
592 			continue;
593 		verbose(env, " R%d", i);
594 		print_liveness(env, reg->live);
595 		verbose(env, "=%s", reg_type_str[t]);
596 		if (t == SCALAR_VALUE && reg->precise)
597 			verbose(env, "P");
598 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
599 		    tnum_is_const(reg->var_off)) {
600 			/* reg->off should be 0 for SCALAR_VALUE */
601 			verbose(env, "%lld", reg->var_off.value + reg->off);
602 		} else {
603 			if (t == PTR_TO_BTF_ID ||
604 			    t == PTR_TO_BTF_ID_OR_NULL ||
605 			    t == PTR_TO_PERCPU_BTF_ID)
606 				verbose(env, "%s", kernel_type_name(reg->btf_id));
607 			verbose(env, "(id=%d", reg->id);
608 			if (reg_type_may_be_refcounted_or_null(t))
609 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
610 			if (t != SCALAR_VALUE)
611 				verbose(env, ",off=%d", reg->off);
612 			if (type_is_pkt_pointer(t))
613 				verbose(env, ",r=%d", reg->range);
614 			else if (t == CONST_PTR_TO_MAP ||
615 				 t == PTR_TO_MAP_VALUE ||
616 				 t == PTR_TO_MAP_VALUE_OR_NULL)
617 				verbose(env, ",ks=%d,vs=%d",
618 					reg->map_ptr->key_size,
619 					reg->map_ptr->value_size);
620 			if (tnum_is_const(reg->var_off)) {
621 				/* Typically an immediate SCALAR_VALUE, but
622 				 * could be a pointer whose offset is too big
623 				 * for reg->off
624 				 */
625 				verbose(env, ",imm=%llx", reg->var_off.value);
626 			} else {
627 				if (reg->smin_value != reg->umin_value &&
628 				    reg->smin_value != S64_MIN)
629 					verbose(env, ",smin_value=%lld",
630 						(long long)reg->smin_value);
631 				if (reg->smax_value != reg->umax_value &&
632 				    reg->smax_value != S64_MAX)
633 					verbose(env, ",smax_value=%lld",
634 						(long long)reg->smax_value);
635 				if (reg->umin_value != 0)
636 					verbose(env, ",umin_value=%llu",
637 						(unsigned long long)reg->umin_value);
638 				if (reg->umax_value != U64_MAX)
639 					verbose(env, ",umax_value=%llu",
640 						(unsigned long long)reg->umax_value);
641 				if (!tnum_is_unknown(reg->var_off)) {
642 					char tn_buf[48];
643 
644 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
645 					verbose(env, ",var_off=%s", tn_buf);
646 				}
647 				if (reg->s32_min_value != reg->smin_value &&
648 				    reg->s32_min_value != S32_MIN)
649 					verbose(env, ",s32_min_value=%d",
650 						(int)(reg->s32_min_value));
651 				if (reg->s32_max_value != reg->smax_value &&
652 				    reg->s32_max_value != S32_MAX)
653 					verbose(env, ",s32_max_value=%d",
654 						(int)(reg->s32_max_value));
655 				if (reg->u32_min_value != reg->umin_value &&
656 				    reg->u32_min_value != U32_MIN)
657 					verbose(env, ",u32_min_value=%d",
658 						(int)(reg->u32_min_value));
659 				if (reg->u32_max_value != reg->umax_value &&
660 				    reg->u32_max_value != U32_MAX)
661 					verbose(env, ",u32_max_value=%d",
662 						(int)(reg->u32_max_value));
663 			}
664 			verbose(env, ")");
665 		}
666 	}
667 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
668 		char types_buf[BPF_REG_SIZE + 1];
669 		bool valid = false;
670 		int j;
671 
672 		for (j = 0; j < BPF_REG_SIZE; j++) {
673 			if (state->stack[i].slot_type[j] != STACK_INVALID)
674 				valid = true;
675 			types_buf[j] = slot_type_char[
676 					state->stack[i].slot_type[j]];
677 		}
678 		types_buf[BPF_REG_SIZE] = 0;
679 		if (!valid)
680 			continue;
681 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
682 		print_liveness(env, state->stack[i].spilled_ptr.live);
683 		if (is_spilled_reg(&state->stack[i])) {
684 			reg = &state->stack[i].spilled_ptr;
685 			t = reg->type;
686 			verbose(env, "=%s", reg_type_str[t]);
687 			if (t == SCALAR_VALUE && reg->precise)
688 				verbose(env, "P");
689 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
690 				verbose(env, "%lld", reg->var_off.value + reg->off);
691 		} else {
692 			verbose(env, "=%s", types_buf);
693 		}
694 	}
695 	if (state->acquired_refs && state->refs[0].id) {
696 		verbose(env, " refs=%d", state->refs[0].id);
697 		for (i = 1; i < state->acquired_refs; i++)
698 			if (state->refs[i].id)
699 				verbose(env, ",%d", state->refs[i].id);
700 	}
701 	verbose(env, "\n");
702 }
703 
704 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
705 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
706 			       const struct bpf_func_state *src)	\
707 {									\
708 	if (!src->FIELD)						\
709 		return 0;						\
710 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
711 		/* internal bug, make state invalid to reject the program */ \
712 		memset(dst, 0, sizeof(*dst));				\
713 		return -EFAULT;						\
714 	}								\
715 	memcpy(dst->FIELD, src->FIELD,					\
716 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
717 	return 0;							\
718 }
719 /* copy_reference_state() */
720 COPY_STATE_FN(reference, acquired_refs, refs, 1)
721 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)722 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
723 #undef COPY_STATE_FN
724 
725 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
726 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
727 				  bool copy_old)			\
728 {									\
729 	u32 old_size = state->COUNT;					\
730 	struct bpf_##NAME##_state *new_##FIELD;				\
731 	int slot = size / SIZE;						\
732 									\
733 	if (size <= old_size || !size) {				\
734 		if (copy_old)						\
735 			return 0;					\
736 		state->COUNT = slot * SIZE;				\
737 		if (!size && old_size) {				\
738 			kfree(state->FIELD);				\
739 			state->FIELD = NULL;				\
740 		}							\
741 		return 0;						\
742 	}								\
743 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
744 				    GFP_KERNEL);			\
745 	if (!new_##FIELD)						\
746 		return -ENOMEM;						\
747 	if (copy_old) {							\
748 		if (state->FIELD)					\
749 			memcpy(new_##FIELD, state->FIELD,		\
750 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
751 		memset(new_##FIELD + old_size / SIZE, 0,		\
752 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
753 	}								\
754 	state->COUNT = slot * SIZE;					\
755 	kfree(state->FIELD);						\
756 	state->FIELD = new_##FIELD;					\
757 	return 0;							\
758 }
759 /* realloc_reference_state() */
760 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
761 /* realloc_stack_state() */
762 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
763 #undef REALLOC_STATE_FN
764 
765 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
766  * make it consume minimal amount of memory. check_stack_write() access from
767  * the program calls into realloc_func_state() to grow the stack size.
768  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
769  * which realloc_stack_state() copies over. It points to previous
770  * bpf_verifier_state which is never reallocated.
771  */
772 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
773 			      int refs_size, bool copy_old)
774 {
775 	int err = realloc_reference_state(state, refs_size, copy_old);
776 	if (err)
777 		return err;
778 	return realloc_stack_state(state, stack_size, copy_old);
779 }
780 
781 /* Acquire a pointer id from the env and update the state->refs to include
782  * this new pointer reference.
783  * On success, returns a valid pointer id to associate with the register
784  * On failure, returns a negative errno.
785  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)786 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
787 {
788 	struct bpf_func_state *state = cur_func(env);
789 	int new_ofs = state->acquired_refs;
790 	int id, err;
791 
792 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
793 	if (err)
794 		return err;
795 	id = ++env->id_gen;
796 	state->refs[new_ofs].id = id;
797 	state->refs[new_ofs].insn_idx = insn_idx;
798 
799 	return id;
800 }
801 
802 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)803 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
804 {
805 	int i, last_idx;
806 
807 	last_idx = state->acquired_refs - 1;
808 	for (i = 0; i < state->acquired_refs; i++) {
809 		if (state->refs[i].id == ptr_id) {
810 			if (last_idx && i != last_idx)
811 				memcpy(&state->refs[i], &state->refs[last_idx],
812 				       sizeof(*state->refs));
813 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
814 			state->acquired_refs--;
815 			return 0;
816 		}
817 	}
818 	return -EINVAL;
819 }
820 
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)821 static int transfer_reference_state(struct bpf_func_state *dst,
822 				    struct bpf_func_state *src)
823 {
824 	int err = realloc_reference_state(dst, src->acquired_refs, false);
825 	if (err)
826 		return err;
827 	err = copy_reference_state(dst, src);
828 	if (err)
829 		return err;
830 	return 0;
831 }
832 
free_func_state(struct bpf_func_state * state)833 static void free_func_state(struct bpf_func_state *state)
834 {
835 	if (!state)
836 		return;
837 	kfree(state->refs);
838 	kfree(state->stack);
839 	kfree(state);
840 }
841 
clear_jmp_history(struct bpf_verifier_state * state)842 static void clear_jmp_history(struct bpf_verifier_state *state)
843 {
844 	kfree(state->jmp_history);
845 	state->jmp_history = NULL;
846 	state->jmp_history_cnt = 0;
847 }
848 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)849 static void free_verifier_state(struct bpf_verifier_state *state,
850 				bool free_self)
851 {
852 	int i;
853 
854 	for (i = 0; i <= state->curframe; i++) {
855 		free_func_state(state->frame[i]);
856 		state->frame[i] = NULL;
857 	}
858 	clear_jmp_history(state);
859 	if (free_self)
860 		kfree(state);
861 }
862 
863 /* copy verifier state from src to dst growing dst stack space
864  * when necessary to accommodate larger src stack
865  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)866 static int copy_func_state(struct bpf_func_state *dst,
867 			   const struct bpf_func_state *src)
868 {
869 	int err;
870 
871 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
872 				 false);
873 	if (err)
874 		return err;
875 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
876 	err = copy_reference_state(dst, src);
877 	if (err)
878 		return err;
879 	return copy_stack_state(dst, src);
880 }
881 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)882 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
883 			       const struct bpf_verifier_state *src)
884 {
885 	struct bpf_func_state *dst;
886 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
887 	int i, err;
888 
889 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
890 		kfree(dst_state->jmp_history);
891 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
892 		if (!dst_state->jmp_history)
893 			return -ENOMEM;
894 	}
895 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
896 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
897 
898 	/* if dst has more stack frames then src frame, free them */
899 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
900 		free_func_state(dst_state->frame[i]);
901 		dst_state->frame[i] = NULL;
902 	}
903 	dst_state->speculative = src->speculative;
904 	dst_state->curframe = src->curframe;
905 	dst_state->active_spin_lock = src->active_spin_lock;
906 	dst_state->branches = src->branches;
907 	dst_state->parent = src->parent;
908 	dst_state->first_insn_idx = src->first_insn_idx;
909 	dst_state->last_insn_idx = src->last_insn_idx;
910 	for (i = 0; i <= src->curframe; i++) {
911 		dst = dst_state->frame[i];
912 		if (!dst) {
913 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
914 			if (!dst)
915 				return -ENOMEM;
916 			dst_state->frame[i] = dst;
917 		}
918 		err = copy_func_state(dst, src->frame[i]);
919 		if (err)
920 			return err;
921 	}
922 	return 0;
923 }
924 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)925 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
926 {
927 	while (st) {
928 		u32 br = --st->branches;
929 
930 		/* WARN_ON(br > 1) technically makes sense here,
931 		 * but see comment in push_stack(), hence:
932 		 */
933 		WARN_ONCE((int)br < 0,
934 			  "BUG update_branch_counts:branches_to_explore=%d\n",
935 			  br);
936 		if (br)
937 			break;
938 		st = st->parent;
939 	}
940 }
941 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)942 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
943 		     int *insn_idx, bool pop_log)
944 {
945 	struct bpf_verifier_state *cur = env->cur_state;
946 	struct bpf_verifier_stack_elem *elem, *head = env->head;
947 	int err;
948 
949 	if (env->head == NULL)
950 		return -ENOENT;
951 
952 	if (cur) {
953 		err = copy_verifier_state(cur, &head->st);
954 		if (err)
955 			return err;
956 	}
957 	if (pop_log)
958 		bpf_vlog_reset(&env->log, head->log_pos);
959 	if (insn_idx)
960 		*insn_idx = head->insn_idx;
961 	if (prev_insn_idx)
962 		*prev_insn_idx = head->prev_insn_idx;
963 	elem = head->next;
964 	free_verifier_state(&head->st, false);
965 	kfree(head);
966 	env->head = elem;
967 	env->stack_size--;
968 	return 0;
969 }
970 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)971 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
972 					     int insn_idx, int prev_insn_idx,
973 					     bool speculative)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem;
977 	int err;
978 
979 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
980 	if (!elem)
981 		goto err;
982 
983 	elem->insn_idx = insn_idx;
984 	elem->prev_insn_idx = prev_insn_idx;
985 	elem->next = env->head;
986 	elem->log_pos = env->log.len_used;
987 	env->head = elem;
988 	env->stack_size++;
989 	err = copy_verifier_state(&elem->st, cur);
990 	if (err)
991 		goto err;
992 	elem->st.speculative |= speculative;
993 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
994 		verbose(env, "The sequence of %d jumps is too complex.\n",
995 			env->stack_size);
996 		goto err;
997 	}
998 	if (elem->st.parent) {
999 		++elem->st.parent->branches;
1000 		/* WARN_ON(branches > 2) technically makes sense here,
1001 		 * but
1002 		 * 1. speculative states will bump 'branches' for non-branch
1003 		 * instructions
1004 		 * 2. is_state_visited() heuristics may decide not to create
1005 		 * a new state for a sequence of branches and all such current
1006 		 * and cloned states will be pointing to a single parent state
1007 		 * which might have large 'branches' count.
1008 		 */
1009 	}
1010 	return &elem->st;
1011 err:
1012 	free_verifier_state(env->cur_state, true);
1013 	env->cur_state = NULL;
1014 	/* pop all elements and return */
1015 	while (!pop_stack(env, NULL, NULL, false));
1016 	return NULL;
1017 }
1018 
1019 #define CALLER_SAVED_REGS 6
1020 static const int caller_saved[CALLER_SAVED_REGS] = {
1021 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1022 };
1023 
1024 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1025 				struct bpf_reg_state *reg);
1026 
1027 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1028 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1029 {
1030 	reg->var_off = tnum_const(imm);
1031 	reg->smin_value = (s64)imm;
1032 	reg->smax_value = (s64)imm;
1033 	reg->umin_value = imm;
1034 	reg->umax_value = imm;
1035 
1036 	reg->s32_min_value = (s32)imm;
1037 	reg->s32_max_value = (s32)imm;
1038 	reg->u32_min_value = (u32)imm;
1039 	reg->u32_max_value = (u32)imm;
1040 }
1041 
1042 /* Mark the unknown part of a register (variable offset or scalar value) as
1043  * known to have the value @imm.
1044  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1045 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1046 {
1047 	/* Clear id, off, and union(map_ptr, range) */
1048 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1049 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1050 	___mark_reg_known(reg, imm);
1051 }
1052 
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1053 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1054 {
1055 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1056 	reg->s32_min_value = (s32)imm;
1057 	reg->s32_max_value = (s32)imm;
1058 	reg->u32_min_value = (u32)imm;
1059 	reg->u32_max_value = (u32)imm;
1060 }
1061 
1062 /* Mark the 'variable offset' part of a register as zero.  This should be
1063  * used only on registers holding a pointer type.
1064  */
__mark_reg_known_zero(struct bpf_reg_state * reg)1065 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1066 {
1067 	__mark_reg_known(reg, 0);
1068 }
1069 
__mark_reg_const_zero(struct bpf_reg_state * reg)1070 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1071 {
1072 	__mark_reg_known(reg, 0);
1073 	reg->type = SCALAR_VALUE;
1074 }
1075 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1076 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1077 				struct bpf_reg_state *regs, u32 regno)
1078 {
1079 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1080 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1081 		/* Something bad happened, let's kill all regs */
1082 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1083 			__mark_reg_not_init(env, regs + regno);
1084 		return;
1085 	}
1086 	__mark_reg_known_zero(regs + regno);
1087 }
1088 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1089 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1090 {
1091 	return type_is_pkt_pointer(reg->type);
1092 }
1093 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1094 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1095 {
1096 	return reg_is_pkt_pointer(reg) ||
1097 	       reg->type == PTR_TO_PACKET_END;
1098 }
1099 
1100 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1101 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1102 				    enum bpf_reg_type which)
1103 {
1104 	/* The register can already have a range from prior markings.
1105 	 * This is fine as long as it hasn't been advanced from its
1106 	 * origin.
1107 	 */
1108 	return reg->type == which &&
1109 	       reg->id == 0 &&
1110 	       reg->off == 0 &&
1111 	       tnum_equals_const(reg->var_off, 0);
1112 }
1113 
1114 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1115 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1116 {
1117 	reg->smin_value = S64_MIN;
1118 	reg->smax_value = S64_MAX;
1119 	reg->umin_value = 0;
1120 	reg->umax_value = U64_MAX;
1121 
1122 	reg->s32_min_value = S32_MIN;
1123 	reg->s32_max_value = S32_MAX;
1124 	reg->u32_min_value = 0;
1125 	reg->u32_max_value = U32_MAX;
1126 }
1127 
__mark_reg64_unbounded(struct bpf_reg_state * reg)1128 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1129 {
1130 	reg->smin_value = S64_MIN;
1131 	reg->smax_value = S64_MAX;
1132 	reg->umin_value = 0;
1133 	reg->umax_value = U64_MAX;
1134 }
1135 
__mark_reg32_unbounded(struct bpf_reg_state * reg)1136 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1137 {
1138 	reg->s32_min_value = S32_MIN;
1139 	reg->s32_max_value = S32_MAX;
1140 	reg->u32_min_value = 0;
1141 	reg->u32_max_value = U32_MAX;
1142 }
1143 
__update_reg32_bounds(struct bpf_reg_state * reg)1144 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1145 {
1146 	struct tnum var32_off = tnum_subreg(reg->var_off);
1147 
1148 	/* min signed is max(sign bit) | min(other bits) */
1149 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1150 			var32_off.value | (var32_off.mask & S32_MIN));
1151 	/* max signed is min(sign bit) | max(other bits) */
1152 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1153 			var32_off.value | (var32_off.mask & S32_MAX));
1154 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1155 	reg->u32_max_value = min(reg->u32_max_value,
1156 				 (u32)(var32_off.value | var32_off.mask));
1157 }
1158 
__update_reg64_bounds(struct bpf_reg_state * reg)1159 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1160 {
1161 	/* min signed is max(sign bit) | min(other bits) */
1162 	reg->smin_value = max_t(s64, reg->smin_value,
1163 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1164 	/* max signed is min(sign bit) | max(other bits) */
1165 	reg->smax_value = min_t(s64, reg->smax_value,
1166 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1167 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1168 	reg->umax_value = min(reg->umax_value,
1169 			      reg->var_off.value | reg->var_off.mask);
1170 }
1171 
__update_reg_bounds(struct bpf_reg_state * reg)1172 static void __update_reg_bounds(struct bpf_reg_state *reg)
1173 {
1174 	__update_reg32_bounds(reg);
1175 	__update_reg64_bounds(reg);
1176 }
1177 
1178 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1179 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1180 {
1181 	/* Learn sign from signed bounds.
1182 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1183 	 * are the same, so combine.  This works even in the negative case, e.g.
1184 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1185 	 */
1186 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1187 		reg->s32_min_value = reg->u32_min_value =
1188 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1189 		reg->s32_max_value = reg->u32_max_value =
1190 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1191 		return;
1192 	}
1193 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1194 	 * boundary, so we must be careful.
1195 	 */
1196 	if ((s32)reg->u32_max_value >= 0) {
1197 		/* Positive.  We can't learn anything from the smin, but smax
1198 		 * is positive, hence safe.
1199 		 */
1200 		reg->s32_min_value = reg->u32_min_value;
1201 		reg->s32_max_value = reg->u32_max_value =
1202 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1203 	} else if ((s32)reg->u32_min_value < 0) {
1204 		/* Negative.  We can't learn anything from the smax, but smin
1205 		 * is negative, hence safe.
1206 		 */
1207 		reg->s32_min_value = reg->u32_min_value =
1208 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1209 		reg->s32_max_value = reg->u32_max_value;
1210 	}
1211 }
1212 
__reg64_deduce_bounds(struct bpf_reg_state * reg)1213 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1214 {
1215 	/* Learn sign from signed bounds.
1216 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1217 	 * are the same, so combine.  This works even in the negative case, e.g.
1218 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1219 	 */
1220 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1221 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1222 							  reg->umin_value);
1223 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1224 							  reg->umax_value);
1225 		return;
1226 	}
1227 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1228 	 * boundary, so we must be careful.
1229 	 */
1230 	if ((s64)reg->umax_value >= 0) {
1231 		/* Positive.  We can't learn anything from the smin, but smax
1232 		 * is positive, hence safe.
1233 		 */
1234 		reg->smin_value = reg->umin_value;
1235 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1236 							  reg->umax_value);
1237 	} else if ((s64)reg->umin_value < 0) {
1238 		/* Negative.  We can't learn anything from the smax, but smin
1239 		 * is negative, hence safe.
1240 		 */
1241 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1242 							  reg->umin_value);
1243 		reg->smax_value = reg->umax_value;
1244 	}
1245 }
1246 
__reg_deduce_bounds(struct bpf_reg_state * reg)1247 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1248 {
1249 	__reg32_deduce_bounds(reg);
1250 	__reg64_deduce_bounds(reg);
1251 }
1252 
1253 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1254 static void __reg_bound_offset(struct bpf_reg_state *reg)
1255 {
1256 	struct tnum var64_off = tnum_intersect(reg->var_off,
1257 					       tnum_range(reg->umin_value,
1258 							  reg->umax_value));
1259 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1260 						tnum_range(reg->u32_min_value,
1261 							   reg->u32_max_value));
1262 
1263 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1264 }
1265 
reg_bounds_sync(struct bpf_reg_state * reg)1266 static void reg_bounds_sync(struct bpf_reg_state *reg)
1267 {
1268 	/* We might have learned new bounds from the var_off. */
1269 	__update_reg_bounds(reg);
1270 	/* We might have learned something about the sign bit. */
1271 	__reg_deduce_bounds(reg);
1272 	/* We might have learned some bits from the bounds. */
1273 	__reg_bound_offset(reg);
1274 	/* Intersecting with the old var_off might have improved our bounds
1275 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1276 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1277 	 */
1278 	__update_reg_bounds(reg);
1279 }
1280 
__reg32_bound_s64(s32 a)1281 static bool __reg32_bound_s64(s32 a)
1282 {
1283 	return a >= 0 && a <= S32_MAX;
1284 }
1285 
__reg_assign_32_into_64(struct bpf_reg_state * reg)1286 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1287 {
1288 	reg->umin_value = reg->u32_min_value;
1289 	reg->umax_value = reg->u32_max_value;
1290 
1291 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1292 	 * be positive otherwise set to worse case bounds and refine later
1293 	 * from tnum.
1294 	 */
1295 	if (__reg32_bound_s64(reg->s32_min_value) &&
1296 	    __reg32_bound_s64(reg->s32_max_value)) {
1297 		reg->smin_value = reg->s32_min_value;
1298 		reg->smax_value = reg->s32_max_value;
1299 	} else {
1300 		reg->smin_value = 0;
1301 		reg->smax_value = U32_MAX;
1302 	}
1303 }
1304 
__reg_combine_32_into_64(struct bpf_reg_state * reg)1305 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1306 {
1307 	/* special case when 64-bit register has upper 32-bit register
1308 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1309 	 * allowing us to use 32-bit bounds directly,
1310 	 */
1311 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1312 		__reg_assign_32_into_64(reg);
1313 	} else {
1314 		/* Otherwise the best we can do is push lower 32bit known and
1315 		 * unknown bits into register (var_off set from jmp logic)
1316 		 * then learn as much as possible from the 64-bit tnum
1317 		 * known and unknown bits. The previous smin/smax bounds are
1318 		 * invalid here because of jmp32 compare so mark them unknown
1319 		 * so they do not impact tnum bounds calculation.
1320 		 */
1321 		__mark_reg64_unbounded(reg);
1322 	}
1323 	reg_bounds_sync(reg);
1324 }
1325 
__reg64_bound_s32(s64 a)1326 static bool __reg64_bound_s32(s64 a)
1327 {
1328 	return a >= S32_MIN && a <= S32_MAX;
1329 }
1330 
__reg64_bound_u32(u64 a)1331 static bool __reg64_bound_u32(u64 a)
1332 {
1333 	return a >= U32_MIN && a <= U32_MAX;
1334 }
1335 
__reg_combine_64_into_32(struct bpf_reg_state * reg)1336 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1337 {
1338 	__mark_reg32_unbounded(reg);
1339 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1340 		reg->s32_min_value = (s32)reg->smin_value;
1341 		reg->s32_max_value = (s32)reg->smax_value;
1342 	}
1343 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1344 		reg->u32_min_value = (u32)reg->umin_value;
1345 		reg->u32_max_value = (u32)reg->umax_value;
1346 	}
1347 	reg_bounds_sync(reg);
1348 }
1349 
1350 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1351 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1352 			       struct bpf_reg_state *reg)
1353 {
1354 	/*
1355 	 * Clear type, id, off, and union(map_ptr, range) and
1356 	 * padding between 'type' and union
1357 	 */
1358 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1359 	reg->type = SCALAR_VALUE;
1360 	reg->var_off = tnum_unknown;
1361 	reg->frameno = 0;
1362 	reg->precise = !env->bpf_capable;
1363 	__mark_reg_unbounded(reg);
1364 }
1365 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1366 static void mark_reg_unknown(struct bpf_verifier_env *env,
1367 			     struct bpf_reg_state *regs, u32 regno)
1368 {
1369 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1370 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1371 		/* Something bad happened, let's kill all regs except FP */
1372 		for (regno = 0; regno < BPF_REG_FP; regno++)
1373 			__mark_reg_not_init(env, regs + regno);
1374 		return;
1375 	}
1376 	__mark_reg_unknown(env, regs + regno);
1377 }
1378 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1379 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1380 				struct bpf_reg_state *reg)
1381 {
1382 	__mark_reg_unknown(env, reg);
1383 	reg->type = NOT_INIT;
1384 }
1385 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1386 static void mark_reg_not_init(struct bpf_verifier_env *env,
1387 			      struct bpf_reg_state *regs, u32 regno)
1388 {
1389 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1390 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1391 		/* Something bad happened, let's kill all regs except FP */
1392 		for (regno = 0; regno < BPF_REG_FP; regno++)
1393 			__mark_reg_not_init(env, regs + regno);
1394 		return;
1395 	}
1396 	__mark_reg_not_init(env, regs + regno);
1397 }
1398 
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1399 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1400 			    struct bpf_reg_state *regs, u32 regno,
1401 			    enum bpf_reg_type reg_type, u32 btf_id)
1402 {
1403 	if (reg_type == SCALAR_VALUE) {
1404 		mark_reg_unknown(env, regs, regno);
1405 		return;
1406 	}
1407 	mark_reg_known_zero(env, regs, regno);
1408 	regs[regno].type = PTR_TO_BTF_ID;
1409 	regs[regno].btf_id = btf_id;
1410 }
1411 
1412 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1413 static void init_reg_state(struct bpf_verifier_env *env,
1414 			   struct bpf_func_state *state)
1415 {
1416 	struct bpf_reg_state *regs = state->regs;
1417 	int i;
1418 
1419 	for (i = 0; i < MAX_BPF_REG; i++) {
1420 		mark_reg_not_init(env, regs, i);
1421 		regs[i].live = REG_LIVE_NONE;
1422 		regs[i].parent = NULL;
1423 		regs[i].subreg_def = DEF_NOT_SUBREG;
1424 	}
1425 
1426 	/* frame pointer */
1427 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1428 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1429 	regs[BPF_REG_FP].frameno = state->frameno;
1430 }
1431 
1432 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1433 static void init_func_state(struct bpf_verifier_env *env,
1434 			    struct bpf_func_state *state,
1435 			    int callsite, int frameno, int subprogno)
1436 {
1437 	state->callsite = callsite;
1438 	state->frameno = frameno;
1439 	state->subprogno = subprogno;
1440 	init_reg_state(env, state);
1441 }
1442 
1443 enum reg_arg_type {
1444 	SRC_OP,		/* register is used as source operand */
1445 	DST_OP,		/* register is used as destination operand */
1446 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1447 };
1448 
cmp_subprogs(const void * a,const void * b)1449 static int cmp_subprogs(const void *a, const void *b)
1450 {
1451 	return ((struct bpf_subprog_info *)a)->start -
1452 	       ((struct bpf_subprog_info *)b)->start;
1453 }
1454 
find_subprog(struct bpf_verifier_env * env,int off)1455 static int find_subprog(struct bpf_verifier_env *env, int off)
1456 {
1457 	struct bpf_subprog_info *p;
1458 
1459 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1460 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1461 	if (!p)
1462 		return -ENOENT;
1463 	return p - env->subprog_info;
1464 
1465 }
1466 
add_subprog(struct bpf_verifier_env * env,int off)1467 static int add_subprog(struct bpf_verifier_env *env, int off)
1468 {
1469 	int insn_cnt = env->prog->len;
1470 	int ret;
1471 
1472 	if (off >= insn_cnt || off < 0) {
1473 		verbose(env, "call to invalid destination\n");
1474 		return -EINVAL;
1475 	}
1476 	ret = find_subprog(env, off);
1477 	if (ret >= 0)
1478 		return 0;
1479 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1480 		verbose(env, "too many subprograms\n");
1481 		return -E2BIG;
1482 	}
1483 	env->subprog_info[env->subprog_cnt++].start = off;
1484 	sort(env->subprog_info, env->subprog_cnt,
1485 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1486 	return 0;
1487 }
1488 
check_subprogs(struct bpf_verifier_env * env)1489 static int check_subprogs(struct bpf_verifier_env *env)
1490 {
1491 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1492 	struct bpf_subprog_info *subprog = env->subprog_info;
1493 	struct bpf_insn *insn = env->prog->insnsi;
1494 	int insn_cnt = env->prog->len;
1495 
1496 	/* Add entry function. */
1497 	ret = add_subprog(env, 0);
1498 	if (ret < 0)
1499 		return ret;
1500 
1501 	/* determine subprog starts. The end is one before the next starts */
1502 	for (i = 0; i < insn_cnt; i++) {
1503 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1504 			continue;
1505 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1506 			continue;
1507 		if (!env->bpf_capable) {
1508 			verbose(env,
1509 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1510 			return -EPERM;
1511 		}
1512 		ret = add_subprog(env, i + insn[i].imm + 1);
1513 		if (ret < 0)
1514 			return ret;
1515 	}
1516 
1517 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1518 	 * logic. 'subprog_cnt' should not be increased.
1519 	 */
1520 	subprog[env->subprog_cnt].start = insn_cnt;
1521 
1522 	if (env->log.level & BPF_LOG_LEVEL2)
1523 		for (i = 0; i < env->subprog_cnt; i++)
1524 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1525 
1526 	/* now check that all jumps are within the same subprog */
1527 	subprog_start = subprog[cur_subprog].start;
1528 	subprog_end = subprog[cur_subprog + 1].start;
1529 	for (i = 0; i < insn_cnt; i++) {
1530 		u8 code = insn[i].code;
1531 
1532 		if (code == (BPF_JMP | BPF_CALL) &&
1533 		    insn[i].imm == BPF_FUNC_tail_call &&
1534 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1535 			subprog[cur_subprog].has_tail_call = true;
1536 		if (BPF_CLASS(code) == BPF_LD &&
1537 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1538 			subprog[cur_subprog].has_ld_abs = true;
1539 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1540 			goto next;
1541 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1542 			goto next;
1543 		off = i + insn[i].off + 1;
1544 		if (off < subprog_start || off >= subprog_end) {
1545 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1546 			return -EINVAL;
1547 		}
1548 next:
1549 		if (i == subprog_end - 1) {
1550 			/* to avoid fall-through from one subprog into another
1551 			 * the last insn of the subprog should be either exit
1552 			 * or unconditional jump back
1553 			 */
1554 			if (code != (BPF_JMP | BPF_EXIT) &&
1555 			    code != (BPF_JMP | BPF_JA)) {
1556 				verbose(env, "last insn is not an exit or jmp\n");
1557 				return -EINVAL;
1558 			}
1559 			subprog_start = subprog_end;
1560 			cur_subprog++;
1561 			if (cur_subprog < env->subprog_cnt)
1562 				subprog_end = subprog[cur_subprog + 1].start;
1563 		}
1564 	}
1565 	return 0;
1566 }
1567 
1568 /* Parentage chain of this register (or stack slot) should take care of all
1569  * issues like callee-saved registers, stack slot allocation time, etc.
1570  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1571 static int mark_reg_read(struct bpf_verifier_env *env,
1572 			 const struct bpf_reg_state *state,
1573 			 struct bpf_reg_state *parent, u8 flag)
1574 {
1575 	bool writes = parent == state->parent; /* Observe write marks */
1576 	int cnt = 0;
1577 
1578 	while (parent) {
1579 		/* if read wasn't screened by an earlier write ... */
1580 		if (writes && state->live & REG_LIVE_WRITTEN)
1581 			break;
1582 		if (parent->live & REG_LIVE_DONE) {
1583 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1584 				reg_type_str[parent->type],
1585 				parent->var_off.value, parent->off);
1586 			return -EFAULT;
1587 		}
1588 		/* The first condition is more likely to be true than the
1589 		 * second, checked it first.
1590 		 */
1591 		if ((parent->live & REG_LIVE_READ) == flag ||
1592 		    parent->live & REG_LIVE_READ64)
1593 			/* The parentage chain never changes and
1594 			 * this parent was already marked as LIVE_READ.
1595 			 * There is no need to keep walking the chain again and
1596 			 * keep re-marking all parents as LIVE_READ.
1597 			 * This case happens when the same register is read
1598 			 * multiple times without writes into it in-between.
1599 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1600 			 * then no need to set the weak REG_LIVE_READ32.
1601 			 */
1602 			break;
1603 		/* ... then we depend on parent's value */
1604 		parent->live |= flag;
1605 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1606 		if (flag == REG_LIVE_READ64)
1607 			parent->live &= ~REG_LIVE_READ32;
1608 		state = parent;
1609 		parent = state->parent;
1610 		writes = true;
1611 		cnt++;
1612 	}
1613 
1614 	if (env->longest_mark_read_walk < cnt)
1615 		env->longest_mark_read_walk = cnt;
1616 	return 0;
1617 }
1618 
1619 /* This function is supposed to be used by the following 32-bit optimization
1620  * code only. It returns TRUE if the source or destination register operates
1621  * on 64-bit, otherwise return FALSE.
1622  */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1623 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1624 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1625 {
1626 	u8 code, class, op;
1627 
1628 	code = insn->code;
1629 	class = BPF_CLASS(code);
1630 	op = BPF_OP(code);
1631 	if (class == BPF_JMP) {
1632 		/* BPF_EXIT for "main" will reach here. Return TRUE
1633 		 * conservatively.
1634 		 */
1635 		if (op == BPF_EXIT)
1636 			return true;
1637 		if (op == BPF_CALL) {
1638 			/* BPF to BPF call will reach here because of marking
1639 			 * caller saved clobber with DST_OP_NO_MARK for which we
1640 			 * don't care the register def because they are anyway
1641 			 * marked as NOT_INIT already.
1642 			 */
1643 			if (insn->src_reg == BPF_PSEUDO_CALL)
1644 				return false;
1645 			/* Helper call will reach here because of arg type
1646 			 * check, conservatively return TRUE.
1647 			 */
1648 			if (t == SRC_OP)
1649 				return true;
1650 
1651 			return false;
1652 		}
1653 	}
1654 
1655 	if (class == BPF_ALU64 || class == BPF_JMP ||
1656 	    /* BPF_END always use BPF_ALU class. */
1657 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1658 		return true;
1659 
1660 	if (class == BPF_ALU || class == BPF_JMP32)
1661 		return false;
1662 
1663 	if (class == BPF_LDX) {
1664 		if (t != SRC_OP)
1665 			return BPF_SIZE(code) == BPF_DW;
1666 		/* LDX source must be ptr. */
1667 		return true;
1668 	}
1669 
1670 	if (class == BPF_STX) {
1671 		if (reg->type != SCALAR_VALUE)
1672 			return true;
1673 		return BPF_SIZE(code) == BPF_DW;
1674 	}
1675 
1676 	if (class == BPF_LD) {
1677 		u8 mode = BPF_MODE(code);
1678 
1679 		/* LD_IMM64 */
1680 		if (mode == BPF_IMM)
1681 			return true;
1682 
1683 		/* Both LD_IND and LD_ABS return 32-bit data. */
1684 		if (t != SRC_OP)
1685 			return  false;
1686 
1687 		/* Implicit ctx ptr. */
1688 		if (regno == BPF_REG_6)
1689 			return true;
1690 
1691 		/* Explicit source could be any width. */
1692 		return true;
1693 	}
1694 
1695 	if (class == BPF_ST)
1696 		/* The only source register for BPF_ST is a ptr. */
1697 		return true;
1698 
1699 	/* Conservatively return true at default. */
1700 	return true;
1701 }
1702 
1703 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1704 static bool insn_no_def(struct bpf_insn *insn)
1705 {
1706 	u8 class = BPF_CLASS(insn->code);
1707 
1708 	return (class == BPF_JMP || class == BPF_JMP32 ||
1709 		class == BPF_STX || class == BPF_ST);
1710 }
1711 
1712 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1713 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1714 {
1715 	if (insn_no_def(insn))
1716 		return false;
1717 
1718 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1719 }
1720 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1721 static void mark_insn_zext(struct bpf_verifier_env *env,
1722 			   struct bpf_reg_state *reg)
1723 {
1724 	s32 def_idx = reg->subreg_def;
1725 
1726 	if (def_idx == DEF_NOT_SUBREG)
1727 		return;
1728 
1729 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1730 	/* The dst will be zero extended, so won't be sub-register anymore. */
1731 	reg->subreg_def = DEF_NOT_SUBREG;
1732 }
1733 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1734 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1735 			 enum reg_arg_type t)
1736 {
1737 	struct bpf_verifier_state *vstate = env->cur_state;
1738 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1739 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1740 	struct bpf_reg_state *reg, *regs = state->regs;
1741 	bool rw64;
1742 
1743 	if (regno >= MAX_BPF_REG) {
1744 		verbose(env, "R%d is invalid\n", regno);
1745 		return -EINVAL;
1746 	}
1747 
1748 	reg = &regs[regno];
1749 	rw64 = is_reg64(env, insn, regno, reg, t);
1750 	if (t == SRC_OP) {
1751 		/* check whether register used as source operand can be read */
1752 		if (reg->type == NOT_INIT) {
1753 			verbose(env, "R%d !read_ok\n", regno);
1754 			return -EACCES;
1755 		}
1756 		/* We don't need to worry about FP liveness because it's read-only */
1757 		if (regno == BPF_REG_FP)
1758 			return 0;
1759 
1760 		if (rw64)
1761 			mark_insn_zext(env, reg);
1762 
1763 		return mark_reg_read(env, reg, reg->parent,
1764 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1765 	} else {
1766 		/* check whether register used as dest operand can be written to */
1767 		if (regno == BPF_REG_FP) {
1768 			verbose(env, "frame pointer is read only\n");
1769 			return -EACCES;
1770 		}
1771 		reg->live |= REG_LIVE_WRITTEN;
1772 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1773 		if (t == DST_OP)
1774 			mark_reg_unknown(env, regs, regno);
1775 	}
1776 	return 0;
1777 }
1778 
1779 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1780 static int push_jmp_history(struct bpf_verifier_env *env,
1781 			    struct bpf_verifier_state *cur)
1782 {
1783 	u32 cnt = cur->jmp_history_cnt;
1784 	struct bpf_idx_pair *p;
1785 
1786 	cnt++;
1787 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1788 	if (!p)
1789 		return -ENOMEM;
1790 	p[cnt - 1].idx = env->insn_idx;
1791 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1792 	cur->jmp_history = p;
1793 	cur->jmp_history_cnt = cnt;
1794 	return 0;
1795 }
1796 
1797 /* Backtrack one insn at a time. If idx is not at the top of recorded
1798  * history then previous instruction came from straight line execution.
1799  */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1800 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1801 			     u32 *history)
1802 {
1803 	u32 cnt = *history;
1804 
1805 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1806 		i = st->jmp_history[cnt - 1].prev_idx;
1807 		(*history)--;
1808 	} else {
1809 		i--;
1810 	}
1811 	return i;
1812 }
1813 
1814 /* For given verifier state backtrack_insn() is called from the last insn to
1815  * the first insn. Its purpose is to compute a bitmask of registers and
1816  * stack slots that needs precision in the parent verifier state.
1817  */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1818 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1819 			  u32 *reg_mask, u64 *stack_mask)
1820 {
1821 	const struct bpf_insn_cbs cbs = {
1822 		.cb_print	= verbose,
1823 		.private_data	= env,
1824 	};
1825 	struct bpf_insn *insn = env->prog->insnsi + idx;
1826 	u8 class = BPF_CLASS(insn->code);
1827 	u8 opcode = BPF_OP(insn->code);
1828 	u8 mode = BPF_MODE(insn->code);
1829 	u32 dreg = 1u << insn->dst_reg;
1830 	u32 sreg = 1u << insn->src_reg;
1831 	u32 spi;
1832 
1833 	if (insn->code == 0)
1834 		return 0;
1835 	if (env->log.level & BPF_LOG_LEVEL) {
1836 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1837 		verbose(env, "%d: ", idx);
1838 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1839 	}
1840 
1841 	if (class == BPF_ALU || class == BPF_ALU64) {
1842 		if (!(*reg_mask & dreg))
1843 			return 0;
1844 		if (opcode == BPF_END || opcode == BPF_NEG) {
1845 			/* sreg is reserved and unused
1846 			 * dreg still need precision before this insn
1847 			 */
1848 			return 0;
1849 		} else if (opcode == BPF_MOV) {
1850 			if (BPF_SRC(insn->code) == BPF_X) {
1851 				/* dreg = sreg
1852 				 * dreg needs precision after this insn
1853 				 * sreg needs precision before this insn
1854 				 */
1855 				*reg_mask &= ~dreg;
1856 				*reg_mask |= sreg;
1857 			} else {
1858 				/* dreg = K
1859 				 * dreg needs precision after this insn.
1860 				 * Corresponding register is already marked
1861 				 * as precise=true in this verifier state.
1862 				 * No further markings in parent are necessary
1863 				 */
1864 				*reg_mask &= ~dreg;
1865 			}
1866 		} else {
1867 			if (BPF_SRC(insn->code) == BPF_X) {
1868 				/* dreg += sreg
1869 				 * both dreg and sreg need precision
1870 				 * before this insn
1871 				 */
1872 				*reg_mask |= sreg;
1873 			} /* else dreg += K
1874 			   * dreg still needs precision before this insn
1875 			   */
1876 		}
1877 	} else if (class == BPF_LDX) {
1878 		if (!(*reg_mask & dreg))
1879 			return 0;
1880 		*reg_mask &= ~dreg;
1881 
1882 		/* scalars can only be spilled into stack w/o losing precision.
1883 		 * Load from any other memory can be zero extended.
1884 		 * The desire to keep that precision is already indicated
1885 		 * by 'precise' mark in corresponding register of this state.
1886 		 * No further tracking necessary.
1887 		 */
1888 		if (insn->src_reg != BPF_REG_FP)
1889 			return 0;
1890 
1891 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1892 		 * that [fp - off] slot contains scalar that needs to be
1893 		 * tracked with precision
1894 		 */
1895 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1896 		if (spi >= 64) {
1897 			verbose(env, "BUG spi %d\n", spi);
1898 			WARN_ONCE(1, "verifier backtracking bug");
1899 			return -EFAULT;
1900 		}
1901 		*stack_mask |= 1ull << spi;
1902 	} else if (class == BPF_STX || class == BPF_ST) {
1903 		if (*reg_mask & dreg)
1904 			/* stx & st shouldn't be using _scalar_ dst_reg
1905 			 * to access memory. It means backtracking
1906 			 * encountered a case of pointer subtraction.
1907 			 */
1908 			return -ENOTSUPP;
1909 		/* scalars can only be spilled into stack */
1910 		if (insn->dst_reg != BPF_REG_FP)
1911 			return 0;
1912 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1913 		if (spi >= 64) {
1914 			verbose(env, "BUG spi %d\n", spi);
1915 			WARN_ONCE(1, "verifier backtracking bug");
1916 			return -EFAULT;
1917 		}
1918 		if (!(*stack_mask & (1ull << spi)))
1919 			return 0;
1920 		*stack_mask &= ~(1ull << spi);
1921 		if (class == BPF_STX)
1922 			*reg_mask |= sreg;
1923 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1924 		if (opcode == BPF_CALL) {
1925 			if (insn->src_reg == BPF_PSEUDO_CALL)
1926 				return -ENOTSUPP;
1927 			/* regular helper call sets R0 */
1928 			*reg_mask &= ~1;
1929 			if (*reg_mask & 0x3f) {
1930 				/* if backtracing was looking for registers R1-R5
1931 				 * they should have been found already.
1932 				 */
1933 				verbose(env, "BUG regs %x\n", *reg_mask);
1934 				WARN_ONCE(1, "verifier backtracking bug");
1935 				return -EFAULT;
1936 			}
1937 		} else if (opcode == BPF_EXIT) {
1938 			return -ENOTSUPP;
1939 		} else if (BPF_SRC(insn->code) == BPF_X) {
1940 			if (!(*reg_mask & (dreg | sreg)))
1941 				return 0;
1942 			/* dreg <cond> sreg
1943 			 * Both dreg and sreg need precision before
1944 			 * this insn. If only sreg was marked precise
1945 			 * before it would be equally necessary to
1946 			 * propagate it to dreg.
1947 			 */
1948 			*reg_mask |= (sreg | dreg);
1949 			 /* else dreg <cond> K
1950 			  * Only dreg still needs precision before
1951 			  * this insn, so for the K-based conditional
1952 			  * there is nothing new to be marked.
1953 			  */
1954 		}
1955 	} else if (class == BPF_LD) {
1956 		if (!(*reg_mask & dreg))
1957 			return 0;
1958 		*reg_mask &= ~dreg;
1959 		/* It's ld_imm64 or ld_abs or ld_ind.
1960 		 * For ld_imm64 no further tracking of precision
1961 		 * into parent is necessary
1962 		 */
1963 		if (mode == BPF_IND || mode == BPF_ABS)
1964 			/* to be analyzed */
1965 			return -ENOTSUPP;
1966 	}
1967 	return 0;
1968 }
1969 
1970 /* the scalar precision tracking algorithm:
1971  * . at the start all registers have precise=false.
1972  * . scalar ranges are tracked as normal through alu and jmp insns.
1973  * . once precise value of the scalar register is used in:
1974  *   .  ptr + scalar alu
1975  *   . if (scalar cond K|scalar)
1976  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1977  *   backtrack through the verifier states and mark all registers and
1978  *   stack slots with spilled constants that these scalar regisers
1979  *   should be precise.
1980  * . during state pruning two registers (or spilled stack slots)
1981  *   are equivalent if both are not precise.
1982  *
1983  * Note the verifier cannot simply walk register parentage chain,
1984  * since many different registers and stack slots could have been
1985  * used to compute single precise scalar.
1986  *
1987  * The approach of starting with precise=true for all registers and then
1988  * backtrack to mark a register as not precise when the verifier detects
1989  * that program doesn't care about specific value (e.g., when helper
1990  * takes register as ARG_ANYTHING parameter) is not safe.
1991  *
1992  * It's ok to walk single parentage chain of the verifier states.
1993  * It's possible that this backtracking will go all the way till 1st insn.
1994  * All other branches will be explored for needing precision later.
1995  *
1996  * The backtracking needs to deal with cases like:
1997  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1998  * r9 -= r8
1999  * r5 = r9
2000  * if r5 > 0x79f goto pc+7
2001  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2002  * r5 += 1
2003  * ...
2004  * call bpf_perf_event_output#25
2005  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2006  *
2007  * and this case:
2008  * r6 = 1
2009  * call foo // uses callee's r6 inside to compute r0
2010  * r0 += r6
2011  * if r0 == 0 goto
2012  *
2013  * to track above reg_mask/stack_mask needs to be independent for each frame.
2014  *
2015  * Also if parent's curframe > frame where backtracking started,
2016  * the verifier need to mark registers in both frames, otherwise callees
2017  * may incorrectly prune callers. This is similar to
2018  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2019  *
2020  * For now backtracking falls back into conservative marking.
2021  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2022 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2023 				     struct bpf_verifier_state *st)
2024 {
2025 	struct bpf_func_state *func;
2026 	struct bpf_reg_state *reg;
2027 	int i, j;
2028 
2029 	/* big hammer: mark all scalars precise in this path.
2030 	 * pop_stack may still get !precise scalars.
2031 	 * We also skip current state and go straight to first parent state,
2032 	 * because precision markings in current non-checkpointed state are
2033 	 * not needed. See why in the comment in __mark_chain_precision below.
2034 	 */
2035 	for (st = st->parent; st; st = st->parent) {
2036 		for (i = 0; i <= st->curframe; i++) {
2037 			func = st->frame[i];
2038 			for (j = 0; j < BPF_REG_FP; j++) {
2039 				reg = &func->regs[j];
2040 				if (reg->type != SCALAR_VALUE)
2041 					continue;
2042 				reg->precise = true;
2043 			}
2044 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2045 				if (!is_spilled_reg(&func->stack[j]))
2046 					continue;
2047 				reg = &func->stack[j].spilled_ptr;
2048 				if (reg->type != SCALAR_VALUE)
2049 					continue;
2050 				reg->precise = true;
2051 			}
2052 		}
2053 	}
2054 }
2055 
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2056 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2057 {
2058 	struct bpf_func_state *func;
2059 	struct bpf_reg_state *reg;
2060 	int i, j;
2061 
2062 	for (i = 0; i <= st->curframe; i++) {
2063 		func = st->frame[i];
2064 		for (j = 0; j < BPF_REG_FP; j++) {
2065 			reg = &func->regs[j];
2066 			if (reg->type != SCALAR_VALUE)
2067 				continue;
2068 			reg->precise = false;
2069 		}
2070 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2071 			if (!is_spilled_reg(&func->stack[j]))
2072 				continue;
2073 			reg = &func->stack[j].spilled_ptr;
2074 			if (reg->type != SCALAR_VALUE)
2075 				continue;
2076 			reg->precise = false;
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  * __mark_chain_precision() backtracks BPF program instruction sequence and
2083  * chain of verifier states making sure that register *regno* (if regno >= 0)
2084  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2085  * SCALARS, as well as any other registers and slots that contribute to
2086  * a tracked state of given registers/stack slots, depending on specific BPF
2087  * assembly instructions (see backtrack_insns() for exact instruction handling
2088  * logic). This backtracking relies on recorded jmp_history and is able to
2089  * traverse entire chain of parent states. This process ends only when all the
2090  * necessary registers/slots and their transitive dependencies are marked as
2091  * precise.
2092  *
2093  * One important and subtle aspect is that precise marks *do not matter* in
2094  * the currently verified state (current state). It is important to understand
2095  * why this is the case.
2096  *
2097  * First, note that current state is the state that is not yet "checkpointed",
2098  * i.e., it is not yet put into env->explored_states, and it has no children
2099  * states as well. It's ephemeral, and can end up either a) being discarded if
2100  * compatible explored state is found at some point or BPF_EXIT instruction is
2101  * reached or b) checkpointed and put into env->explored_states, branching out
2102  * into one or more children states.
2103  *
2104  * In the former case, precise markings in current state are completely
2105  * ignored by state comparison code (see regsafe() for details). Only
2106  * checkpointed ("old") state precise markings are important, and if old
2107  * state's register/slot is precise, regsafe() assumes current state's
2108  * register/slot as precise and checks value ranges exactly and precisely. If
2109  * states turn out to be compatible, current state's necessary precise
2110  * markings and any required parent states' precise markings are enforced
2111  * after the fact with propagate_precision() logic, after the fact. But it's
2112  * important to realize that in this case, even after marking current state
2113  * registers/slots as precise, we immediately discard current state. So what
2114  * actually matters is any of the precise markings propagated into current
2115  * state's parent states, which are always checkpointed (due to b) case above).
2116  * As such, for scenario a) it doesn't matter if current state has precise
2117  * markings set or not.
2118  *
2119  * Now, for the scenario b), checkpointing and forking into child(ren)
2120  * state(s). Note that before current state gets to checkpointing step, any
2121  * processed instruction always assumes precise SCALAR register/slot
2122  * knowledge: if precise value or range is useful to prune jump branch, BPF
2123  * verifier takes this opportunity enthusiastically. Similarly, when
2124  * register's value is used to calculate offset or memory address, exact
2125  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2126  * what we mentioned above about state comparison ignoring precise markings
2127  * during state comparison, BPF verifier ignores and also assumes precise
2128  * markings *at will* during instruction verification process. But as verifier
2129  * assumes precision, it also propagates any precision dependencies across
2130  * parent states, which are not yet finalized, so can be further restricted
2131  * based on new knowledge gained from restrictions enforced by their children
2132  * states. This is so that once those parent states are finalized, i.e., when
2133  * they have no more active children state, state comparison logic in
2134  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2135  * required for correctness.
2136  *
2137  * To build a bit more intuition, note also that once a state is checkpointed,
2138  * the path we took to get to that state is not important. This is crucial
2139  * property for state pruning. When state is checkpointed and finalized at
2140  * some instruction index, it can be correctly and safely used to "short
2141  * circuit" any *compatible* state that reaches exactly the same instruction
2142  * index. I.e., if we jumped to that instruction from a completely different
2143  * code path than original finalized state was derived from, it doesn't
2144  * matter, current state can be discarded because from that instruction
2145  * forward having a compatible state will ensure we will safely reach the
2146  * exit. States describe preconditions for further exploration, but completely
2147  * forget the history of how we got here.
2148  *
2149  * This also means that even if we needed precise SCALAR range to get to
2150  * finalized state, but from that point forward *that same* SCALAR register is
2151  * never used in a precise context (i.e., it's precise value is not needed for
2152  * correctness), it's correct and safe to mark such register as "imprecise"
2153  * (i.e., precise marking set to false). This is what we rely on when we do
2154  * not set precise marking in current state. If no child state requires
2155  * precision for any given SCALAR register, it's safe to dictate that it can
2156  * be imprecise. If any child state does require this register to be precise,
2157  * we'll mark it precise later retroactively during precise markings
2158  * propagation from child state to parent states.
2159  *
2160  * Skipping precise marking setting in current state is a mild version of
2161  * relying on the above observation. But we can utilize this property even
2162  * more aggressively by proactively forgetting any precise marking in the
2163  * current state (which we inherited from the parent state), right before we
2164  * checkpoint it and branch off into new child state. This is done by
2165  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2166  * finalized states which help in short circuiting more future states.
2167  */
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2168 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2169 				  int spi)
2170 {
2171 	struct bpf_verifier_state *st = env->cur_state;
2172 	int first_idx = st->first_insn_idx;
2173 	int last_idx = env->insn_idx;
2174 	struct bpf_func_state *func;
2175 	struct bpf_reg_state *reg;
2176 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2177 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2178 	bool skip_first = true;
2179 	bool new_marks = false;
2180 	int i, err;
2181 
2182 	if (!env->bpf_capable)
2183 		return 0;
2184 
2185 	/* Do sanity checks against current state of register and/or stack
2186 	 * slot, but don't set precise flag in current state, as precision
2187 	 * tracking in the current state is unnecessary.
2188 	 */
2189 	func = st->frame[frame];
2190 	if (regno >= 0) {
2191 		reg = &func->regs[regno];
2192 		if (reg->type != SCALAR_VALUE) {
2193 			WARN_ONCE(1, "backtracing misuse");
2194 			return -EFAULT;
2195 		}
2196 		new_marks = true;
2197 	}
2198 
2199 	while (spi >= 0) {
2200 		if (!is_spilled_reg(&func->stack[spi])) {
2201 			stack_mask = 0;
2202 			break;
2203 		}
2204 		reg = &func->stack[spi].spilled_ptr;
2205 		if (reg->type != SCALAR_VALUE) {
2206 			stack_mask = 0;
2207 			break;
2208 		}
2209 		new_marks = true;
2210 		break;
2211 	}
2212 
2213 	if (!new_marks)
2214 		return 0;
2215 	if (!reg_mask && !stack_mask)
2216 		return 0;
2217 
2218 	for (;;) {
2219 		DECLARE_BITMAP(mask, 64);
2220 		u32 history = st->jmp_history_cnt;
2221 
2222 		if (env->log.level & BPF_LOG_LEVEL)
2223 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2224 
2225 		if (last_idx < 0) {
2226 			/* we are at the entry into subprog, which
2227 			 * is expected for global funcs, but only if
2228 			 * requested precise registers are R1-R5
2229 			 * (which are global func's input arguments)
2230 			 */
2231 			if (st->curframe == 0 &&
2232 			    st->frame[0]->subprogno > 0 &&
2233 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
2234 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2235 				bitmap_from_u64(mask, reg_mask);
2236 				for_each_set_bit(i, mask, 32) {
2237 					reg = &st->frame[0]->regs[i];
2238 					if (reg->type != SCALAR_VALUE) {
2239 						reg_mask &= ~(1u << i);
2240 						continue;
2241 					}
2242 					reg->precise = true;
2243 				}
2244 				return 0;
2245 			}
2246 
2247 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2248 				st->frame[0]->subprogno, reg_mask, stack_mask);
2249 			WARN_ONCE(1, "verifier backtracking bug");
2250 			return -EFAULT;
2251 		}
2252 
2253 		for (i = last_idx;;) {
2254 			if (skip_first) {
2255 				err = 0;
2256 				skip_first = false;
2257 			} else {
2258 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2259 			}
2260 			if (err == -ENOTSUPP) {
2261 				mark_all_scalars_precise(env, st);
2262 				return 0;
2263 			} else if (err) {
2264 				return err;
2265 			}
2266 			if (!reg_mask && !stack_mask)
2267 				/* Found assignment(s) into tracked register in this state.
2268 				 * Since this state is already marked, just return.
2269 				 * Nothing to be tracked further in the parent state.
2270 				 */
2271 				return 0;
2272 			if (i == first_idx)
2273 				break;
2274 			i = get_prev_insn_idx(st, i, &history);
2275 			if (i >= env->prog->len) {
2276 				/* This can happen if backtracking reached insn 0
2277 				 * and there are still reg_mask or stack_mask
2278 				 * to backtrack.
2279 				 * It means the backtracking missed the spot where
2280 				 * particular register was initialized with a constant.
2281 				 */
2282 				verbose(env, "BUG backtracking idx %d\n", i);
2283 				WARN_ONCE(1, "verifier backtracking bug");
2284 				return -EFAULT;
2285 			}
2286 		}
2287 		st = st->parent;
2288 		if (!st)
2289 			break;
2290 
2291 		new_marks = false;
2292 		func = st->frame[frame];
2293 		bitmap_from_u64(mask, reg_mask);
2294 		for_each_set_bit(i, mask, 32) {
2295 			reg = &func->regs[i];
2296 			if (reg->type != SCALAR_VALUE) {
2297 				reg_mask &= ~(1u << i);
2298 				continue;
2299 			}
2300 			if (!reg->precise)
2301 				new_marks = true;
2302 			reg->precise = true;
2303 		}
2304 
2305 		bitmap_from_u64(mask, stack_mask);
2306 		for_each_set_bit(i, mask, 64) {
2307 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2308 				/* the sequence of instructions:
2309 				 * 2: (bf) r3 = r10
2310 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2311 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2312 				 * doesn't contain jmps. It's backtracked
2313 				 * as a single block.
2314 				 * During backtracking insn 3 is not recognized as
2315 				 * stack access, so at the end of backtracking
2316 				 * stack slot fp-8 is still marked in stack_mask.
2317 				 * However the parent state may not have accessed
2318 				 * fp-8 and it's "unallocated" stack space.
2319 				 * In such case fallback to conservative.
2320 				 */
2321 				mark_all_scalars_precise(env, st);
2322 				return 0;
2323 			}
2324 
2325 			if (!is_spilled_reg(&func->stack[i])) {
2326 				stack_mask &= ~(1ull << i);
2327 				continue;
2328 			}
2329 			reg = &func->stack[i].spilled_ptr;
2330 			if (reg->type != SCALAR_VALUE) {
2331 				stack_mask &= ~(1ull << i);
2332 				continue;
2333 			}
2334 			if (!reg->precise)
2335 				new_marks = true;
2336 			reg->precise = true;
2337 		}
2338 		if (env->log.level & BPF_LOG_LEVEL) {
2339 			print_verifier_state(env, func);
2340 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2341 				new_marks ? "didn't have" : "already had",
2342 				reg_mask, stack_mask);
2343 		}
2344 
2345 		if (!reg_mask && !stack_mask)
2346 			break;
2347 		if (!new_marks)
2348 			break;
2349 
2350 		last_idx = st->last_insn_idx;
2351 		first_idx = st->first_insn_idx;
2352 	}
2353 	return 0;
2354 }
2355 
mark_chain_precision(struct bpf_verifier_env * env,int regno)2356 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2357 {
2358 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2359 }
2360 
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2361 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2362 {
2363 	return __mark_chain_precision(env, frame, regno, -1);
2364 }
2365 
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2366 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2367 {
2368 	return __mark_chain_precision(env, frame, -1, spi);
2369 }
2370 
is_spillable_regtype(enum bpf_reg_type type)2371 static bool is_spillable_regtype(enum bpf_reg_type type)
2372 {
2373 	switch (type) {
2374 	case PTR_TO_MAP_VALUE:
2375 	case PTR_TO_MAP_VALUE_OR_NULL:
2376 	case PTR_TO_STACK:
2377 	case PTR_TO_CTX:
2378 	case PTR_TO_PACKET:
2379 	case PTR_TO_PACKET_META:
2380 	case PTR_TO_PACKET_END:
2381 	case PTR_TO_FLOW_KEYS:
2382 	case CONST_PTR_TO_MAP:
2383 	case PTR_TO_SOCKET:
2384 	case PTR_TO_SOCKET_OR_NULL:
2385 	case PTR_TO_SOCK_COMMON:
2386 	case PTR_TO_SOCK_COMMON_OR_NULL:
2387 	case PTR_TO_TCP_SOCK:
2388 	case PTR_TO_TCP_SOCK_OR_NULL:
2389 	case PTR_TO_XDP_SOCK:
2390 	case PTR_TO_BTF_ID:
2391 	case PTR_TO_BTF_ID_OR_NULL:
2392 	case PTR_TO_RDONLY_BUF:
2393 	case PTR_TO_RDONLY_BUF_OR_NULL:
2394 	case PTR_TO_RDWR_BUF:
2395 	case PTR_TO_RDWR_BUF_OR_NULL:
2396 	case PTR_TO_PERCPU_BTF_ID:
2397 	case PTR_TO_MEM:
2398 	case PTR_TO_MEM_OR_NULL:
2399 		return true;
2400 	default:
2401 		return false;
2402 	}
2403 }
2404 
2405 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2406 static bool register_is_null(struct bpf_reg_state *reg)
2407 {
2408 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2409 }
2410 
register_is_const(struct bpf_reg_state * reg)2411 static bool register_is_const(struct bpf_reg_state *reg)
2412 {
2413 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2414 }
2415 
__is_scalar_unbounded(struct bpf_reg_state * reg)2416 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2417 {
2418 	return tnum_is_unknown(reg->var_off) &&
2419 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2420 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2421 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2422 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2423 }
2424 
register_is_bounded(struct bpf_reg_state * reg)2425 static bool register_is_bounded(struct bpf_reg_state *reg)
2426 {
2427 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2428 }
2429 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2430 static bool __is_pointer_value(bool allow_ptr_leaks,
2431 			       const struct bpf_reg_state *reg)
2432 {
2433 	if (allow_ptr_leaks)
2434 		return false;
2435 
2436 	return reg->type != SCALAR_VALUE;
2437 }
2438 
2439 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)2440 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
2441 {
2442 	struct bpf_reg_state *parent = dst->parent;
2443 	enum bpf_reg_liveness live = dst->live;
2444 
2445 	*dst = *src;
2446 	dst->parent = parent;
2447 	dst->live = live;
2448 }
2449 
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)2450 static void save_register_state(struct bpf_func_state *state,
2451 				int spi, struct bpf_reg_state *reg,
2452 				int size)
2453 {
2454 	int i;
2455 
2456 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
2457 	if (size == BPF_REG_SIZE)
2458 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2459 
2460 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2461 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2462 
2463 	/* size < 8 bytes spill */
2464 	for (; i; i--)
2465 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2466 }
2467 
is_bpf_st_mem(struct bpf_insn * insn)2468 static bool is_bpf_st_mem(struct bpf_insn *insn)
2469 {
2470 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
2471 }
2472 
2473 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2474  * stack boundary and alignment are checked in check_mem_access()
2475  */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2476 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2477 				       /* stack frame we're writing to */
2478 				       struct bpf_func_state *state,
2479 				       int off, int size, int value_regno,
2480 				       int insn_idx)
2481 {
2482 	struct bpf_func_state *cur; /* state of the current function */
2483 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2484 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
2485 	struct bpf_reg_state *reg = NULL;
2486 	u32 dst_reg = insn->dst_reg;
2487 
2488 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2489 				 state->acquired_refs, true);
2490 	if (err)
2491 		return err;
2492 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2493 	 * so it's aligned access and [off, off + size) are within stack limits
2494 	 */
2495 	if (!env->allow_ptr_leaks &&
2496 	    is_spilled_reg(&state->stack[spi]) &&
2497 	    size != BPF_REG_SIZE) {
2498 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2499 		return -EACCES;
2500 	}
2501 
2502 	cur = env->cur_state->frame[env->cur_state->curframe];
2503 	if (value_regno >= 0)
2504 		reg = &cur->regs[value_regno];
2505 	if (!env->bypass_spec_v4) {
2506 		bool sanitize = reg && is_spillable_regtype(reg->type);
2507 
2508 		for (i = 0; i < size; i++) {
2509 			u8 type = state->stack[spi].slot_type[i];
2510 
2511 			if (type != STACK_MISC && type != STACK_ZERO) {
2512 				sanitize = true;
2513 				break;
2514 			}
2515 		}
2516 
2517 		if (sanitize)
2518 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2519 	}
2520 
2521 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2522 	    !register_is_null(reg) && env->bpf_capable) {
2523 		if (dst_reg != BPF_REG_FP) {
2524 			/* The backtracking logic can only recognize explicit
2525 			 * stack slot address like [fp - 8]. Other spill of
2526 			 * scalar via different register has to be conervative.
2527 			 * Backtrack from here and mark all registers as precise
2528 			 * that contributed into 'reg' being a constant.
2529 			 */
2530 			err = mark_chain_precision(env, value_regno);
2531 			if (err)
2532 				return err;
2533 		}
2534 		save_register_state(state, spi, reg, size);
2535 		/* Break the relation on a narrowing spill. */
2536 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
2537 			state->stack[spi].spilled_ptr.id = 0;
2538 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
2539 		   insn->imm != 0 && env->bpf_capable) {
2540 		struct bpf_reg_state fake_reg = {};
2541 
2542 		__mark_reg_known(&fake_reg, insn->imm);
2543 		fake_reg.type = SCALAR_VALUE;
2544 		save_register_state(state, spi, &fake_reg, size);
2545 	} else if (reg && is_spillable_regtype(reg->type)) {
2546 		/* register containing pointer is being spilled into stack */
2547 		if (size != BPF_REG_SIZE) {
2548 			verbose_linfo(env, insn_idx, "; ");
2549 			verbose(env, "invalid size of register spill\n");
2550 			return -EACCES;
2551 		}
2552 		if (state != cur && reg->type == PTR_TO_STACK) {
2553 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2554 			return -EINVAL;
2555 		}
2556 		save_register_state(state, spi, reg, size);
2557 	} else {
2558 		u8 type = STACK_MISC;
2559 
2560 		/* regular write of data into stack destroys any spilled ptr */
2561 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2562 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2563 		if (is_spilled_reg(&state->stack[spi]))
2564 			for (i = 0; i < BPF_REG_SIZE; i++)
2565 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2566 
2567 		/* only mark the slot as written if all 8 bytes were written
2568 		 * otherwise read propagation may incorrectly stop too soon
2569 		 * when stack slots are partially written.
2570 		 * This heuristic means that read propagation will be
2571 		 * conservative, since it will add reg_live_read marks
2572 		 * to stack slots all the way to first state when programs
2573 		 * writes+reads less than 8 bytes
2574 		 */
2575 		if (size == BPF_REG_SIZE)
2576 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2577 
2578 		/* when we zero initialize stack slots mark them as such */
2579 		if ((reg && register_is_null(reg)) ||
2580 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
2581 			/* backtracking doesn't work for STACK_ZERO yet. */
2582 			err = mark_chain_precision(env, value_regno);
2583 			if (err)
2584 				return err;
2585 			type = STACK_ZERO;
2586 		}
2587 
2588 		/* Mark slots affected by this stack write. */
2589 		for (i = 0; i < size; i++)
2590 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2591 				type;
2592 	}
2593 	return 0;
2594 }
2595 
2596 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2597  * known to contain a variable offset.
2598  * This function checks whether the write is permitted and conservatively
2599  * tracks the effects of the write, considering that each stack slot in the
2600  * dynamic range is potentially written to.
2601  *
2602  * 'off' includes 'regno->off'.
2603  * 'value_regno' can be -1, meaning that an unknown value is being written to
2604  * the stack.
2605  *
2606  * Spilled pointers in range are not marked as written because we don't know
2607  * what's going to be actually written. This means that read propagation for
2608  * future reads cannot be terminated by this write.
2609  *
2610  * For privileged programs, uninitialized stack slots are considered
2611  * initialized by this write (even though we don't know exactly what offsets
2612  * are going to be written to). The idea is that we don't want the verifier to
2613  * reject future reads that access slots written to through variable offsets.
2614  */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2615 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2616 				     /* func where register points to */
2617 				     struct bpf_func_state *state,
2618 				     int ptr_regno, int off, int size,
2619 				     int value_regno, int insn_idx)
2620 {
2621 	struct bpf_func_state *cur; /* state of the current function */
2622 	int min_off, max_off;
2623 	int i, err;
2624 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2625 	bool writing_zero = false;
2626 	/* set if the fact that we're writing a zero is used to let any
2627 	 * stack slots remain STACK_ZERO
2628 	 */
2629 	bool zero_used = false;
2630 
2631 	cur = env->cur_state->frame[env->cur_state->curframe];
2632 	ptr_reg = &cur->regs[ptr_regno];
2633 	min_off = ptr_reg->smin_value + off;
2634 	max_off = ptr_reg->smax_value + off + size;
2635 	if (value_regno >= 0)
2636 		value_reg = &cur->regs[value_regno];
2637 	if (value_reg && register_is_null(value_reg))
2638 		writing_zero = true;
2639 
2640 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2641 				 state->acquired_refs, true);
2642 	if (err)
2643 		return err;
2644 
2645 
2646 	/* Variable offset writes destroy any spilled pointers in range. */
2647 	for (i = min_off; i < max_off; i++) {
2648 		u8 new_type, *stype;
2649 		int slot, spi;
2650 
2651 		slot = -i - 1;
2652 		spi = slot / BPF_REG_SIZE;
2653 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2654 
2655 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
2656 			/* Reject the write if range we may write to has not
2657 			 * been initialized beforehand. If we didn't reject
2658 			 * here, the ptr status would be erased below (even
2659 			 * though not all slots are actually overwritten),
2660 			 * possibly opening the door to leaks.
2661 			 *
2662 			 * We do however catch STACK_INVALID case below, and
2663 			 * only allow reading possibly uninitialized memory
2664 			 * later for CAP_PERFMON, as the write may not happen to
2665 			 * that slot.
2666 			 */
2667 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2668 				insn_idx, i);
2669 			return -EINVAL;
2670 		}
2671 
2672 		/* Erase all spilled pointers. */
2673 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2674 
2675 		/* Update the slot type. */
2676 		new_type = STACK_MISC;
2677 		if (writing_zero && *stype == STACK_ZERO) {
2678 			new_type = STACK_ZERO;
2679 			zero_used = true;
2680 		}
2681 		/* If the slot is STACK_INVALID, we check whether it's OK to
2682 		 * pretend that it will be initialized by this write. The slot
2683 		 * might not actually be written to, and so if we mark it as
2684 		 * initialized future reads might leak uninitialized memory.
2685 		 * For privileged programs, we will accept such reads to slots
2686 		 * that may or may not be written because, if we're reject
2687 		 * them, the error would be too confusing.
2688 		 */
2689 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2690 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2691 					insn_idx, i);
2692 			return -EINVAL;
2693 		}
2694 		*stype = new_type;
2695 	}
2696 	if (zero_used) {
2697 		/* backtracking doesn't work for STACK_ZERO yet. */
2698 		err = mark_chain_precision(env, value_regno);
2699 		if (err)
2700 			return err;
2701 	}
2702 	return 0;
2703 }
2704 
2705 /* When register 'dst_regno' is assigned some values from stack[min_off,
2706  * max_off), we set the register's type according to the types of the
2707  * respective stack slots. If all the stack values are known to be zeros, then
2708  * so is the destination reg. Otherwise, the register is considered to be
2709  * SCALAR. This function does not deal with register filling; the caller must
2710  * ensure that all spilled registers in the stack range have been marked as
2711  * read.
2712  */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2713 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2714 				/* func where src register points to */
2715 				struct bpf_func_state *ptr_state,
2716 				int min_off, int max_off, int dst_regno)
2717 {
2718 	struct bpf_verifier_state *vstate = env->cur_state;
2719 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2720 	int i, slot, spi;
2721 	u8 *stype;
2722 	int zeros = 0;
2723 
2724 	for (i = min_off; i < max_off; i++) {
2725 		slot = -i - 1;
2726 		spi = slot / BPF_REG_SIZE;
2727 		stype = ptr_state->stack[spi].slot_type;
2728 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2729 			break;
2730 		zeros++;
2731 	}
2732 	if (zeros == max_off - min_off) {
2733 		/* any access_size read into register is zero extended,
2734 		 * so the whole register == const_zero
2735 		 */
2736 		__mark_reg_const_zero(&state->regs[dst_regno]);
2737 		/* backtracking doesn't support STACK_ZERO yet,
2738 		 * so mark it precise here, so that later
2739 		 * backtracking can stop here.
2740 		 * Backtracking may not need this if this register
2741 		 * doesn't participate in pointer adjustment.
2742 		 * Forward propagation of precise flag is not
2743 		 * necessary either. This mark is only to stop
2744 		 * backtracking. Any register that contributed
2745 		 * to const 0 was marked precise before spill.
2746 		 */
2747 		state->regs[dst_regno].precise = true;
2748 	} else {
2749 		/* have read misc data from the stack */
2750 		mark_reg_unknown(env, state->regs, dst_regno);
2751 	}
2752 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2753 }
2754 
2755 /* Read the stack at 'off' and put the results into the register indicated by
2756  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2757  * spilled reg.
2758  *
2759  * 'dst_regno' can be -1, meaning that the read value is not going to a
2760  * register.
2761  *
2762  * The access is assumed to be within the current stack bounds.
2763  */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2764 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2765 				      /* func where src register points to */
2766 				      struct bpf_func_state *reg_state,
2767 				      int off, int size, int dst_regno)
2768 {
2769 	struct bpf_verifier_state *vstate = env->cur_state;
2770 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2771 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2772 	struct bpf_reg_state *reg;
2773 	u8 *stype, type;
2774 
2775 	stype = reg_state->stack[spi].slot_type;
2776 	reg = &reg_state->stack[spi].spilled_ptr;
2777 
2778 	if (is_spilled_reg(&reg_state->stack[spi])) {
2779 		u8 spill_size = 1;
2780 
2781 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
2782 			spill_size++;
2783 
2784 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
2785 			if (reg->type != SCALAR_VALUE) {
2786 				verbose_linfo(env, env->insn_idx, "; ");
2787 				verbose(env, "invalid size of register fill\n");
2788 				return -EACCES;
2789 			}
2790 
2791 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2792 			if (dst_regno < 0)
2793 				return 0;
2794 
2795 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
2796 				/* The earlier check_reg_arg() has decided the
2797 				 * subreg_def for this insn.  Save it first.
2798 				 */
2799 				s32 subreg_def = state->regs[dst_regno].subreg_def;
2800 
2801 				copy_register_state(&state->regs[dst_regno], reg);
2802 				state->regs[dst_regno].subreg_def = subreg_def;
2803 			} else {
2804 				for (i = 0; i < size; i++) {
2805 					type = stype[(slot - i) % BPF_REG_SIZE];
2806 					if (type == STACK_SPILL)
2807 						continue;
2808 					if (type == STACK_MISC)
2809 						continue;
2810 					verbose(env, "invalid read from stack off %d+%d size %d\n",
2811 						off, i, size);
2812 					return -EACCES;
2813 				}
2814 				mark_reg_unknown(env, state->regs, dst_regno);
2815 			}
2816 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2817 			return 0;
2818 		}
2819 
2820 		if (dst_regno >= 0) {
2821 			/* restore register state from stack */
2822 			copy_register_state(&state->regs[dst_regno], reg);
2823 			/* mark reg as written since spilled pointer state likely
2824 			 * has its liveness marks cleared by is_state_visited()
2825 			 * which resets stack/reg liveness for state transitions
2826 			 */
2827 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2828 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2829 			/* If dst_regno==-1, the caller is asking us whether
2830 			 * it is acceptable to use this value as a SCALAR_VALUE
2831 			 * (e.g. for XADD).
2832 			 * We must not allow unprivileged callers to do that
2833 			 * with spilled pointers.
2834 			 */
2835 			verbose(env, "leaking pointer from stack off %d\n",
2836 				off);
2837 			return -EACCES;
2838 		}
2839 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2840 	} else {
2841 		for (i = 0; i < size; i++) {
2842 			type = stype[(slot - i) % BPF_REG_SIZE];
2843 			if (type == STACK_MISC)
2844 				continue;
2845 			if (type == STACK_ZERO)
2846 				continue;
2847 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2848 				off, i, size);
2849 			return -EACCES;
2850 		}
2851 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2852 		if (dst_regno >= 0)
2853 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2854 	}
2855 	return 0;
2856 }
2857 
2858 enum stack_access_src {
2859 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2860 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2861 };
2862 
2863 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2864 					 int regno, int off, int access_size,
2865 					 bool zero_size_allowed,
2866 					 enum stack_access_src type,
2867 					 struct bpf_call_arg_meta *meta);
2868 
reg_state(struct bpf_verifier_env * env,int regno)2869 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2870 {
2871 	return cur_regs(env) + regno;
2872 }
2873 
2874 /* Read the stack at 'ptr_regno + off' and put the result into the register
2875  * 'dst_regno'.
2876  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2877  * but not its variable offset.
2878  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2879  *
2880  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2881  * filling registers (i.e. reads of spilled register cannot be detected when
2882  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2883  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2884  * offset; for a fixed offset check_stack_read_fixed_off should be used
2885  * instead.
2886  */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2887 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2888 				    int ptr_regno, int off, int size, int dst_regno)
2889 {
2890 	/* The state of the source register. */
2891 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2892 	struct bpf_func_state *ptr_state = func(env, reg);
2893 	int err;
2894 	int min_off, max_off;
2895 
2896 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2897 	 */
2898 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2899 					    false, ACCESS_DIRECT, NULL);
2900 	if (err)
2901 		return err;
2902 
2903 	min_off = reg->smin_value + off;
2904 	max_off = reg->smax_value + off;
2905 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2906 	return 0;
2907 }
2908 
2909 /* check_stack_read dispatches to check_stack_read_fixed_off or
2910  * check_stack_read_var_off.
2911  *
2912  * The caller must ensure that the offset falls within the allocated stack
2913  * bounds.
2914  *
2915  * 'dst_regno' is a register which will receive the value from the stack. It
2916  * can be -1, meaning that the read value is not going to a register.
2917  */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2918 static int check_stack_read(struct bpf_verifier_env *env,
2919 			    int ptr_regno, int off, int size,
2920 			    int dst_regno)
2921 {
2922 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2923 	struct bpf_func_state *state = func(env, reg);
2924 	int err;
2925 	/* Some accesses are only permitted with a static offset. */
2926 	bool var_off = !tnum_is_const(reg->var_off);
2927 
2928 	/* The offset is required to be static when reads don't go to a
2929 	 * register, in order to not leak pointers (see
2930 	 * check_stack_read_fixed_off).
2931 	 */
2932 	if (dst_regno < 0 && var_off) {
2933 		char tn_buf[48];
2934 
2935 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2936 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2937 			tn_buf, off, size);
2938 		return -EACCES;
2939 	}
2940 	/* Variable offset is prohibited for unprivileged mode for simplicity
2941 	 * since it requires corresponding support in Spectre masking for stack
2942 	 * ALU. See also retrieve_ptr_limit(). The check in
2943 	 * check_stack_access_for_ptr_arithmetic() called by
2944 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
2945 	 * with variable offsets, therefore no check is required here. Further,
2946 	 * just checking it here would be insufficient as speculative stack
2947 	 * writes could still lead to unsafe speculative behaviour.
2948 	 */
2949 	if (!var_off) {
2950 		off += reg->var_off.value;
2951 		err = check_stack_read_fixed_off(env, state, off, size,
2952 						 dst_regno);
2953 	} else {
2954 		/* Variable offset stack reads need more conservative handling
2955 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2956 		 * branch.
2957 		 */
2958 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2959 					       dst_regno);
2960 	}
2961 	return err;
2962 }
2963 
2964 
2965 /* check_stack_write dispatches to check_stack_write_fixed_off or
2966  * check_stack_write_var_off.
2967  *
2968  * 'ptr_regno' is the register used as a pointer into the stack.
2969  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2970  * 'value_regno' is the register whose value we're writing to the stack. It can
2971  * be -1, meaning that we're not writing from a register.
2972  *
2973  * The caller must ensure that the offset falls within the maximum stack size.
2974  */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2975 static int check_stack_write(struct bpf_verifier_env *env,
2976 			     int ptr_regno, int off, int size,
2977 			     int value_regno, int insn_idx)
2978 {
2979 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2980 	struct bpf_func_state *state = func(env, reg);
2981 	int err;
2982 
2983 	if (tnum_is_const(reg->var_off)) {
2984 		off += reg->var_off.value;
2985 		err = check_stack_write_fixed_off(env, state, off, size,
2986 						  value_regno, insn_idx);
2987 	} else {
2988 		/* Variable offset stack reads need more conservative handling
2989 		 * than fixed offset ones.
2990 		 */
2991 		err = check_stack_write_var_off(env, state,
2992 						ptr_regno, off, size,
2993 						value_regno, insn_idx);
2994 	}
2995 	return err;
2996 }
2997 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2998 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2999 				 int off, int size, enum bpf_access_type type)
3000 {
3001 	struct bpf_reg_state *regs = cur_regs(env);
3002 	struct bpf_map *map = regs[regno].map_ptr;
3003 	u32 cap = bpf_map_flags_to_cap(map);
3004 
3005 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3006 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3007 			map->value_size, off, size);
3008 		return -EACCES;
3009 	}
3010 
3011 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3012 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3013 			map->value_size, off, size);
3014 		return -EACCES;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3021 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3022 			      int off, int size, u32 mem_size,
3023 			      bool zero_size_allowed)
3024 {
3025 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3026 	struct bpf_reg_state *reg;
3027 
3028 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3029 		return 0;
3030 
3031 	reg = &cur_regs(env)[regno];
3032 	switch (reg->type) {
3033 	case PTR_TO_MAP_VALUE:
3034 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3035 			mem_size, off, size);
3036 		break;
3037 	case PTR_TO_PACKET:
3038 	case PTR_TO_PACKET_META:
3039 	case PTR_TO_PACKET_END:
3040 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3041 			off, size, regno, reg->id, off, mem_size);
3042 		break;
3043 	case PTR_TO_MEM:
3044 	default:
3045 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3046 			mem_size, off, size);
3047 	}
3048 
3049 	return -EACCES;
3050 }
3051 
3052 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3053 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3054 				   int off, int size, u32 mem_size,
3055 				   bool zero_size_allowed)
3056 {
3057 	struct bpf_verifier_state *vstate = env->cur_state;
3058 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3059 	struct bpf_reg_state *reg = &state->regs[regno];
3060 	int err;
3061 
3062 	/* We may have adjusted the register pointing to memory region, so we
3063 	 * need to try adding each of min_value and max_value to off
3064 	 * to make sure our theoretical access will be safe.
3065 	 */
3066 	if (env->log.level & BPF_LOG_LEVEL)
3067 		print_verifier_state(env, state);
3068 
3069 	/* The minimum value is only important with signed
3070 	 * comparisons where we can't assume the floor of a
3071 	 * value is 0.  If we are using signed variables for our
3072 	 * index'es we need to make sure that whatever we use
3073 	 * will have a set floor within our range.
3074 	 */
3075 	if (reg->smin_value < 0 &&
3076 	    (reg->smin_value == S64_MIN ||
3077 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3078 	      reg->smin_value + off < 0)) {
3079 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3080 			regno);
3081 		return -EACCES;
3082 	}
3083 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3084 				 mem_size, zero_size_allowed);
3085 	if (err) {
3086 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3087 			regno);
3088 		return err;
3089 	}
3090 
3091 	/* If we haven't set a max value then we need to bail since we can't be
3092 	 * sure we won't do bad things.
3093 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3094 	 */
3095 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3096 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3097 			regno);
3098 		return -EACCES;
3099 	}
3100 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3101 				 mem_size, zero_size_allowed);
3102 	if (err) {
3103 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3104 			regno);
3105 		return err;
3106 	}
3107 
3108 	return 0;
3109 }
3110 
3111 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3112 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3113 			    int off, int size, bool zero_size_allowed)
3114 {
3115 	struct bpf_verifier_state *vstate = env->cur_state;
3116 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3117 	struct bpf_reg_state *reg = &state->regs[regno];
3118 	struct bpf_map *map = reg->map_ptr;
3119 	int err;
3120 
3121 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3122 				      zero_size_allowed);
3123 	if (err)
3124 		return err;
3125 
3126 	if (map_value_has_spin_lock(map)) {
3127 		u32 lock = map->spin_lock_off;
3128 
3129 		/* if any part of struct bpf_spin_lock can be touched by
3130 		 * load/store reject this program.
3131 		 * To check that [x1, x2) overlaps with [y1, y2)
3132 		 * it is sufficient to check x1 < y2 && y1 < x2.
3133 		 */
3134 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3135 		     lock < reg->umax_value + off + size) {
3136 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3137 			return -EACCES;
3138 		}
3139 	}
3140 	return err;
3141 }
3142 
3143 #define MAX_PACKET_OFF 0xffff
3144 
resolve_prog_type(struct bpf_prog * prog)3145 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3146 {
3147 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3148 }
3149 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3150 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3151 				       const struct bpf_call_arg_meta *meta,
3152 				       enum bpf_access_type t)
3153 {
3154 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3155 
3156 	switch (prog_type) {
3157 	/* Program types only with direct read access go here! */
3158 	case BPF_PROG_TYPE_LWT_IN:
3159 	case BPF_PROG_TYPE_LWT_OUT:
3160 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3161 	case BPF_PROG_TYPE_SK_REUSEPORT:
3162 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3163 	case BPF_PROG_TYPE_CGROUP_SKB:
3164 		if (t == BPF_WRITE)
3165 			return false;
3166 		fallthrough;
3167 
3168 	/* Program types with direct read + write access go here! */
3169 	case BPF_PROG_TYPE_SCHED_CLS:
3170 	case BPF_PROG_TYPE_SCHED_ACT:
3171 	case BPF_PROG_TYPE_XDP:
3172 	case BPF_PROG_TYPE_LWT_XMIT:
3173 	case BPF_PROG_TYPE_SK_SKB:
3174 	case BPF_PROG_TYPE_SK_MSG:
3175 		if (meta)
3176 			return meta->pkt_access;
3177 
3178 		env->seen_direct_write = true;
3179 		return true;
3180 
3181 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3182 		if (t == BPF_WRITE)
3183 			env->seen_direct_write = true;
3184 
3185 		return true;
3186 
3187 	default:
3188 		return false;
3189 	}
3190 }
3191 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3192 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3193 			       int size, bool zero_size_allowed)
3194 {
3195 	struct bpf_reg_state *regs = cur_regs(env);
3196 	struct bpf_reg_state *reg = &regs[regno];
3197 	int err;
3198 
3199 	/* We may have added a variable offset to the packet pointer; but any
3200 	 * reg->range we have comes after that.  We are only checking the fixed
3201 	 * offset.
3202 	 */
3203 
3204 	/* We don't allow negative numbers, because we aren't tracking enough
3205 	 * detail to prove they're safe.
3206 	 */
3207 	if (reg->smin_value < 0) {
3208 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3209 			regno);
3210 		return -EACCES;
3211 	}
3212 
3213 	err = reg->range < 0 ? -EINVAL :
3214 	      __check_mem_access(env, regno, off, size, reg->range,
3215 				 zero_size_allowed);
3216 	if (err) {
3217 		verbose(env, "R%d offset is outside of the packet\n", regno);
3218 		return err;
3219 	}
3220 
3221 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3222 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3223 	 * otherwise find_good_pkt_pointers would have refused to set range info
3224 	 * that __check_mem_access would have rejected this pkt access.
3225 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3226 	 */
3227 	env->prog->aux->max_pkt_offset =
3228 		max_t(u32, env->prog->aux->max_pkt_offset,
3229 		      off + reg->umax_value + size - 1);
3230 
3231 	return err;
3232 }
3233 
3234 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)3235 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3236 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3237 			    u32 *btf_id)
3238 {
3239 	struct bpf_insn_access_aux info = {
3240 		.reg_type = *reg_type,
3241 		.log = &env->log,
3242 	};
3243 
3244 	if (env->ops->is_valid_access &&
3245 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3246 		/* A non zero info.ctx_field_size indicates that this field is a
3247 		 * candidate for later verifier transformation to load the whole
3248 		 * field and then apply a mask when accessed with a narrower
3249 		 * access than actual ctx access size. A zero info.ctx_field_size
3250 		 * will only allow for whole field access and rejects any other
3251 		 * type of narrower access.
3252 		 */
3253 		*reg_type = info.reg_type;
3254 
3255 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
3256 			*btf_id = info.btf_id;
3257 		else
3258 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3259 		/* remember the offset of last byte accessed in ctx */
3260 		if (env->prog->aux->max_ctx_offset < off + size)
3261 			env->prog->aux->max_ctx_offset = off + size;
3262 		return 0;
3263 	}
3264 
3265 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3266 	return -EACCES;
3267 }
3268 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3269 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3270 				  int size)
3271 {
3272 	if (size < 0 || off < 0 ||
3273 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3274 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3275 			off, size);
3276 		return -EACCES;
3277 	}
3278 	return 0;
3279 }
3280 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3281 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3282 			     u32 regno, int off, int size,
3283 			     enum bpf_access_type t)
3284 {
3285 	struct bpf_reg_state *regs = cur_regs(env);
3286 	struct bpf_reg_state *reg = &regs[regno];
3287 	struct bpf_insn_access_aux info = {};
3288 	bool valid;
3289 
3290 	if (reg->smin_value < 0) {
3291 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3292 			regno);
3293 		return -EACCES;
3294 	}
3295 
3296 	switch (reg->type) {
3297 	case PTR_TO_SOCK_COMMON:
3298 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3299 		break;
3300 	case PTR_TO_SOCKET:
3301 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3302 		break;
3303 	case PTR_TO_TCP_SOCK:
3304 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3305 		break;
3306 	case PTR_TO_XDP_SOCK:
3307 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3308 		break;
3309 	default:
3310 		valid = false;
3311 	}
3312 
3313 
3314 	if (valid) {
3315 		env->insn_aux_data[insn_idx].ctx_field_size =
3316 			info.ctx_field_size;
3317 		return 0;
3318 	}
3319 
3320 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3321 		regno, reg_type_str[reg->type], off, size);
3322 
3323 	return -EACCES;
3324 }
3325 
is_pointer_value(struct bpf_verifier_env * env,int regno)3326 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3327 {
3328 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3329 }
3330 
is_ctx_reg(struct bpf_verifier_env * env,int regno)3331 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3332 {
3333 	const struct bpf_reg_state *reg = reg_state(env, regno);
3334 
3335 	return reg->type == PTR_TO_CTX;
3336 }
3337 
is_sk_reg(struct bpf_verifier_env * env,int regno)3338 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3339 {
3340 	const struct bpf_reg_state *reg = reg_state(env, regno);
3341 
3342 	return type_is_sk_pointer(reg->type);
3343 }
3344 
is_pkt_reg(struct bpf_verifier_env * env,int regno)3345 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3346 {
3347 	const struct bpf_reg_state *reg = reg_state(env, regno);
3348 
3349 	return type_is_pkt_pointer(reg->type);
3350 }
3351 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3352 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3353 {
3354 	const struct bpf_reg_state *reg = reg_state(env, regno);
3355 
3356 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3357 	return reg->type == PTR_TO_FLOW_KEYS;
3358 }
3359 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3360 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3361 				   const struct bpf_reg_state *reg,
3362 				   int off, int size, bool strict)
3363 {
3364 	struct tnum reg_off;
3365 	int ip_align;
3366 
3367 	/* Byte size accesses are always allowed. */
3368 	if (!strict || size == 1)
3369 		return 0;
3370 
3371 	/* For platforms that do not have a Kconfig enabling
3372 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3373 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3374 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3375 	 * to this code only in strict mode where we want to emulate
3376 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3377 	 * unconditional IP align value of '2'.
3378 	 */
3379 	ip_align = 2;
3380 
3381 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3382 	if (!tnum_is_aligned(reg_off, size)) {
3383 		char tn_buf[48];
3384 
3385 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3386 		verbose(env,
3387 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3388 			ip_align, tn_buf, reg->off, off, size);
3389 		return -EACCES;
3390 	}
3391 
3392 	return 0;
3393 }
3394 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3395 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3396 				       const struct bpf_reg_state *reg,
3397 				       const char *pointer_desc,
3398 				       int off, int size, bool strict)
3399 {
3400 	struct tnum reg_off;
3401 
3402 	/* Byte size accesses are always allowed. */
3403 	if (!strict || size == 1)
3404 		return 0;
3405 
3406 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3407 	if (!tnum_is_aligned(reg_off, size)) {
3408 		char tn_buf[48];
3409 
3410 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3411 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3412 			pointer_desc, tn_buf, reg->off, off, size);
3413 		return -EACCES;
3414 	}
3415 
3416 	return 0;
3417 }
3418 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3419 static int check_ptr_alignment(struct bpf_verifier_env *env,
3420 			       const struct bpf_reg_state *reg, int off,
3421 			       int size, bool strict_alignment_once)
3422 {
3423 	bool strict = env->strict_alignment || strict_alignment_once;
3424 	const char *pointer_desc = "";
3425 
3426 	switch (reg->type) {
3427 	case PTR_TO_PACKET:
3428 	case PTR_TO_PACKET_META:
3429 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3430 		 * right in front, treat it the very same way.
3431 		 */
3432 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3433 	case PTR_TO_FLOW_KEYS:
3434 		pointer_desc = "flow keys ";
3435 		break;
3436 	case PTR_TO_MAP_VALUE:
3437 		pointer_desc = "value ";
3438 		break;
3439 	case PTR_TO_CTX:
3440 		pointer_desc = "context ";
3441 		break;
3442 	case PTR_TO_STACK:
3443 		pointer_desc = "stack ";
3444 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3445 		 * and check_stack_read_fixed_off() relies on stack accesses being
3446 		 * aligned.
3447 		 */
3448 		strict = true;
3449 		break;
3450 	case PTR_TO_SOCKET:
3451 		pointer_desc = "sock ";
3452 		break;
3453 	case PTR_TO_SOCK_COMMON:
3454 		pointer_desc = "sock_common ";
3455 		break;
3456 	case PTR_TO_TCP_SOCK:
3457 		pointer_desc = "tcp_sock ";
3458 		break;
3459 	case PTR_TO_XDP_SOCK:
3460 		pointer_desc = "xdp_sock ";
3461 		break;
3462 	default:
3463 		break;
3464 	}
3465 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3466 					   strict);
3467 }
3468 
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3469 static int update_stack_depth(struct bpf_verifier_env *env,
3470 			      const struct bpf_func_state *func,
3471 			      int off)
3472 {
3473 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3474 
3475 	if (stack >= -off)
3476 		return 0;
3477 
3478 	/* update known max for given subprogram */
3479 	env->subprog_info[func->subprogno].stack_depth = -off;
3480 	return 0;
3481 }
3482 
3483 /* starting from main bpf function walk all instructions of the function
3484  * and recursively walk all callees that given function can call.
3485  * Ignore jump and exit insns.
3486  * Since recursion is prevented by check_cfg() this algorithm
3487  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3488  */
check_max_stack_depth(struct bpf_verifier_env * env)3489 static int check_max_stack_depth(struct bpf_verifier_env *env)
3490 {
3491 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3492 	struct bpf_subprog_info *subprog = env->subprog_info;
3493 	struct bpf_insn *insn = env->prog->insnsi;
3494 	bool tail_call_reachable = false;
3495 	int ret_insn[MAX_CALL_FRAMES];
3496 	int ret_prog[MAX_CALL_FRAMES];
3497 	int j;
3498 
3499 process_func:
3500 	/* protect against potential stack overflow that might happen when
3501 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3502 	 * depth for such case down to 256 so that the worst case scenario
3503 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3504 	 * 8k).
3505 	 *
3506 	 * To get the idea what might happen, see an example:
3507 	 * func1 -> sub rsp, 128
3508 	 *  subfunc1 -> sub rsp, 256
3509 	 *  tailcall1 -> add rsp, 256
3510 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3511 	 *   subfunc2 -> sub rsp, 64
3512 	 *   subfunc22 -> sub rsp, 128
3513 	 *   tailcall2 -> add rsp, 128
3514 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3515 	 *
3516 	 * tailcall will unwind the current stack frame but it will not get rid
3517 	 * of caller's stack as shown on the example above.
3518 	 */
3519 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3520 		verbose(env,
3521 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3522 			depth);
3523 		return -EACCES;
3524 	}
3525 	/* round up to 32-bytes, since this is granularity
3526 	 * of interpreter stack size
3527 	 */
3528 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3529 	if (depth > MAX_BPF_STACK) {
3530 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3531 			frame + 1, depth);
3532 		return -EACCES;
3533 	}
3534 continue_func:
3535 	subprog_end = subprog[idx + 1].start;
3536 	for (; i < subprog_end; i++) {
3537 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3538 			continue;
3539 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3540 			continue;
3541 		/* remember insn and function to return to */
3542 		ret_insn[frame] = i + 1;
3543 		ret_prog[frame] = idx;
3544 
3545 		/* find the callee */
3546 		i = i + insn[i].imm + 1;
3547 		idx = find_subprog(env, i);
3548 		if (idx < 0) {
3549 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3550 				  i);
3551 			return -EFAULT;
3552 		}
3553 
3554 		if (subprog[idx].has_tail_call)
3555 			tail_call_reachable = true;
3556 
3557 		frame++;
3558 		if (frame >= MAX_CALL_FRAMES) {
3559 			verbose(env, "the call stack of %d frames is too deep !\n",
3560 				frame);
3561 			return -E2BIG;
3562 		}
3563 		goto process_func;
3564 	}
3565 	/* if tail call got detected across bpf2bpf calls then mark each of the
3566 	 * currently present subprog frames as tail call reachable subprogs;
3567 	 * this info will be utilized by JIT so that we will be preserving the
3568 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3569 	 */
3570 	if (tail_call_reachable)
3571 		for (j = 0; j < frame; j++)
3572 			subprog[ret_prog[j]].tail_call_reachable = true;
3573 	if (subprog[0].tail_call_reachable)
3574 		env->prog->aux->tail_call_reachable = true;
3575 
3576 	/* end of for() loop means the last insn of the 'subprog'
3577 	 * was reached. Doesn't matter whether it was JA or EXIT
3578 	 */
3579 	if (frame == 0)
3580 		return 0;
3581 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3582 	frame--;
3583 	i = ret_insn[frame];
3584 	idx = ret_prog[frame];
3585 	goto continue_func;
3586 }
3587 
3588 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3589 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3590 				  const struct bpf_insn *insn, int idx)
3591 {
3592 	int start = idx + insn->imm + 1, subprog;
3593 
3594 	subprog = find_subprog(env, start);
3595 	if (subprog < 0) {
3596 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3597 			  start);
3598 		return -EFAULT;
3599 	}
3600 	return env->subprog_info[subprog].stack_depth;
3601 }
3602 #endif
3603 
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3604 int check_ctx_reg(struct bpf_verifier_env *env,
3605 		  const struct bpf_reg_state *reg, int regno)
3606 {
3607 	/* Access to ctx or passing it to a helper is only allowed in
3608 	 * its original, unmodified form.
3609 	 */
3610 
3611 	if (reg->off) {
3612 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3613 			regno, reg->off);
3614 		return -EACCES;
3615 	}
3616 
3617 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3618 		char tn_buf[48];
3619 
3620 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3621 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3622 		return -EACCES;
3623 	}
3624 
3625 	return 0;
3626 }
3627 
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3628 static int __check_buffer_access(struct bpf_verifier_env *env,
3629 				 const char *buf_info,
3630 				 const struct bpf_reg_state *reg,
3631 				 int regno, int off, int size)
3632 {
3633 	if (off < 0) {
3634 		verbose(env,
3635 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3636 			regno, buf_info, off, size);
3637 		return -EACCES;
3638 	}
3639 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3640 		char tn_buf[48];
3641 
3642 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3643 		verbose(env,
3644 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3645 			regno, off, tn_buf);
3646 		return -EACCES;
3647 	}
3648 
3649 	return 0;
3650 }
3651 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3652 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3653 				  const struct bpf_reg_state *reg,
3654 				  int regno, int off, int size)
3655 {
3656 	int err;
3657 
3658 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3659 	if (err)
3660 		return err;
3661 
3662 	if (off + size > env->prog->aux->max_tp_access)
3663 		env->prog->aux->max_tp_access = off + size;
3664 
3665 	return 0;
3666 }
3667 
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3668 static int check_buffer_access(struct bpf_verifier_env *env,
3669 			       const struct bpf_reg_state *reg,
3670 			       int regno, int off, int size,
3671 			       bool zero_size_allowed,
3672 			       const char *buf_info,
3673 			       u32 *max_access)
3674 {
3675 	int err;
3676 
3677 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3678 	if (err)
3679 		return err;
3680 
3681 	if (off + size > *max_access)
3682 		*max_access = off + size;
3683 
3684 	return 0;
3685 }
3686 
3687 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3688 static void zext_32_to_64(struct bpf_reg_state *reg)
3689 {
3690 	reg->var_off = tnum_subreg(reg->var_off);
3691 	__reg_assign_32_into_64(reg);
3692 }
3693 
3694 /* truncate register to smaller size (in bytes)
3695  * must be called with size < BPF_REG_SIZE
3696  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3697 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3698 {
3699 	u64 mask;
3700 
3701 	/* clear high bits in bit representation */
3702 	reg->var_off = tnum_cast(reg->var_off, size);
3703 
3704 	/* fix arithmetic bounds */
3705 	mask = ((u64)1 << (size * 8)) - 1;
3706 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3707 		reg->umin_value &= mask;
3708 		reg->umax_value &= mask;
3709 	} else {
3710 		reg->umin_value = 0;
3711 		reg->umax_value = mask;
3712 	}
3713 	reg->smin_value = reg->umin_value;
3714 	reg->smax_value = reg->umax_value;
3715 
3716 	/* If size is smaller than 32bit register the 32bit register
3717 	 * values are also truncated so we push 64-bit bounds into
3718 	 * 32-bit bounds. Above were truncated < 32-bits already.
3719 	 */
3720 	if (size >= 4)
3721 		return;
3722 	__reg_combine_64_into_32(reg);
3723 }
3724 
bpf_map_is_rdonly(const struct bpf_map * map)3725 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3726 {
3727 	/* A map is considered read-only if the following condition are true:
3728 	 *
3729 	 * 1) BPF program side cannot change any of the map content. The
3730 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3731 	 *    and was set at map creation time.
3732 	 * 2) The map value(s) have been initialized from user space by a
3733 	 *    loader and then "frozen", such that no new map update/delete
3734 	 *    operations from syscall side are possible for the rest of
3735 	 *    the map's lifetime from that point onwards.
3736 	 * 3) Any parallel/pending map update/delete operations from syscall
3737 	 *    side have been completed. Only after that point, it's safe to
3738 	 *    assume that map value(s) are immutable.
3739 	 */
3740 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
3741 	       READ_ONCE(map->frozen) &&
3742 	       !bpf_map_write_active(map);
3743 }
3744 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3745 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3746 {
3747 	void *ptr;
3748 	u64 addr;
3749 	int err;
3750 
3751 	err = map->ops->map_direct_value_addr(map, &addr, off);
3752 	if (err)
3753 		return err;
3754 	ptr = (void *)(long)addr + off;
3755 
3756 	switch (size) {
3757 	case sizeof(u8):
3758 		*val = (u64)*(u8 *)ptr;
3759 		break;
3760 	case sizeof(u16):
3761 		*val = (u64)*(u16 *)ptr;
3762 		break;
3763 	case sizeof(u32):
3764 		*val = (u64)*(u32 *)ptr;
3765 		break;
3766 	case sizeof(u64):
3767 		*val = *(u64 *)ptr;
3768 		break;
3769 	default:
3770 		return -EINVAL;
3771 	}
3772 	return 0;
3773 }
3774 
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3775 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3776 				   struct bpf_reg_state *regs,
3777 				   int regno, int off, int size,
3778 				   enum bpf_access_type atype,
3779 				   int value_regno)
3780 {
3781 	struct bpf_reg_state *reg = regs + regno;
3782 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3783 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3784 	u32 btf_id;
3785 	int ret;
3786 
3787 	if (off < 0) {
3788 		verbose(env,
3789 			"R%d is ptr_%s invalid negative access: off=%d\n",
3790 			regno, tname, off);
3791 		return -EACCES;
3792 	}
3793 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3794 		char tn_buf[48];
3795 
3796 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3797 		verbose(env,
3798 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3799 			regno, tname, off, tn_buf);
3800 		return -EACCES;
3801 	}
3802 
3803 	if (env->ops->btf_struct_access) {
3804 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3805 						  atype, &btf_id);
3806 	} else {
3807 		if (atype != BPF_READ) {
3808 			verbose(env, "only read is supported\n");
3809 			return -EACCES;
3810 		}
3811 
3812 		ret = btf_struct_access(&env->log, t, off, size, atype,
3813 					&btf_id);
3814 	}
3815 
3816 	if (ret < 0)
3817 		return ret;
3818 
3819 	if (atype == BPF_READ && value_regno >= 0)
3820 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3821 
3822 	return 0;
3823 }
3824 
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3825 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3826 				   struct bpf_reg_state *regs,
3827 				   int regno, int off, int size,
3828 				   enum bpf_access_type atype,
3829 				   int value_regno)
3830 {
3831 	struct bpf_reg_state *reg = regs + regno;
3832 	struct bpf_map *map = reg->map_ptr;
3833 	const struct btf_type *t;
3834 	const char *tname;
3835 	u32 btf_id;
3836 	int ret;
3837 
3838 	if (!btf_vmlinux) {
3839 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3840 		return -ENOTSUPP;
3841 	}
3842 
3843 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3844 		verbose(env, "map_ptr access not supported for map type %d\n",
3845 			map->map_type);
3846 		return -ENOTSUPP;
3847 	}
3848 
3849 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3850 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3851 
3852 	if (!env->allow_ptr_to_map_access) {
3853 		verbose(env,
3854 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3855 			tname);
3856 		return -EPERM;
3857 	}
3858 
3859 	if (off < 0) {
3860 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3861 			regno, tname, off);
3862 		return -EACCES;
3863 	}
3864 
3865 	if (atype != BPF_READ) {
3866 		verbose(env, "only read from %s is supported\n", tname);
3867 		return -EACCES;
3868 	}
3869 
3870 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3871 	if (ret < 0)
3872 		return ret;
3873 
3874 	if (value_regno >= 0)
3875 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3876 
3877 	return 0;
3878 }
3879 
3880 /* Check that the stack access at the given offset is within bounds. The
3881  * maximum valid offset is -1.
3882  *
3883  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3884  * -state->allocated_stack for reads.
3885  */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)3886 static int check_stack_slot_within_bounds(int off,
3887 					  struct bpf_func_state *state,
3888 					  enum bpf_access_type t)
3889 {
3890 	int min_valid_off;
3891 
3892 	if (t == BPF_WRITE)
3893 		min_valid_off = -MAX_BPF_STACK;
3894 	else
3895 		min_valid_off = -state->allocated_stack;
3896 
3897 	if (off < min_valid_off || off > -1)
3898 		return -EACCES;
3899 	return 0;
3900 }
3901 
3902 /* Check that the stack access at 'regno + off' falls within the maximum stack
3903  * bounds.
3904  *
3905  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3906  */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3907 static int check_stack_access_within_bounds(
3908 		struct bpf_verifier_env *env,
3909 		int regno, int off, int access_size,
3910 		enum stack_access_src src, enum bpf_access_type type)
3911 {
3912 	struct bpf_reg_state *regs = cur_regs(env);
3913 	struct bpf_reg_state *reg = regs + regno;
3914 	struct bpf_func_state *state = func(env, reg);
3915 	int min_off, max_off;
3916 	int err;
3917 	char *err_extra;
3918 
3919 	if (src == ACCESS_HELPER)
3920 		/* We don't know if helpers are reading or writing (or both). */
3921 		err_extra = " indirect access to";
3922 	else if (type == BPF_READ)
3923 		err_extra = " read from";
3924 	else
3925 		err_extra = " write to";
3926 
3927 	if (tnum_is_const(reg->var_off)) {
3928 		min_off = reg->var_off.value + off;
3929 		max_off = min_off + access_size;
3930 	} else {
3931 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3932 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3933 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3934 				err_extra, regno);
3935 			return -EACCES;
3936 		}
3937 		min_off = reg->smin_value + off;
3938 		max_off = reg->smax_value + off + access_size;
3939 	}
3940 
3941 	err = check_stack_slot_within_bounds(min_off, state, type);
3942 	if (!err && max_off > 0)
3943 		err = -EINVAL; /* out of stack access into non-negative offsets */
3944 
3945 	if (err) {
3946 		if (tnum_is_const(reg->var_off)) {
3947 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3948 				err_extra, regno, off, access_size);
3949 		} else {
3950 			char tn_buf[48];
3951 
3952 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3953 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3954 				err_extra, regno, tn_buf, access_size);
3955 		}
3956 	}
3957 	return err;
3958 }
3959 
3960 /* check whether memory at (regno + off) is accessible for t = (read | write)
3961  * if t==write, value_regno is a register which value is stored into memory
3962  * if t==read, value_regno is a register which will receive the value from memory
3963  * if t==write && value_regno==-1, some unknown value is stored into memory
3964  * if t==read && value_regno==-1, don't care what we read from memory
3965  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3966 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3967 			    int off, int bpf_size, enum bpf_access_type t,
3968 			    int value_regno, bool strict_alignment_once)
3969 {
3970 	struct bpf_reg_state *regs = cur_regs(env);
3971 	struct bpf_reg_state *reg = regs + regno;
3972 	struct bpf_func_state *state;
3973 	int size, err = 0;
3974 
3975 	size = bpf_size_to_bytes(bpf_size);
3976 	if (size < 0)
3977 		return size;
3978 
3979 	/* alignment checks will add in reg->off themselves */
3980 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3981 	if (err)
3982 		return err;
3983 
3984 	/* for access checks, reg->off is just part of off */
3985 	off += reg->off;
3986 
3987 	if (reg->type == PTR_TO_MAP_VALUE) {
3988 		if (t == BPF_WRITE && value_regno >= 0 &&
3989 		    is_pointer_value(env, value_regno)) {
3990 			verbose(env, "R%d leaks addr into map\n", value_regno);
3991 			return -EACCES;
3992 		}
3993 		err = check_map_access_type(env, regno, off, size, t);
3994 		if (err)
3995 			return err;
3996 		err = check_map_access(env, regno, off, size, false);
3997 		if (!err && t == BPF_READ && value_regno >= 0) {
3998 			struct bpf_map *map = reg->map_ptr;
3999 
4000 			/* if map is read-only, track its contents as scalars */
4001 			if (tnum_is_const(reg->var_off) &&
4002 			    bpf_map_is_rdonly(map) &&
4003 			    map->ops->map_direct_value_addr) {
4004 				int map_off = off + reg->var_off.value;
4005 				u64 val = 0;
4006 
4007 				err = bpf_map_direct_read(map, map_off, size,
4008 							  &val);
4009 				if (err)
4010 					return err;
4011 
4012 				regs[value_regno].type = SCALAR_VALUE;
4013 				__mark_reg_known(&regs[value_regno], val);
4014 			} else {
4015 				mark_reg_unknown(env, regs, value_regno);
4016 			}
4017 		}
4018 	} else if (reg->type == PTR_TO_MEM) {
4019 		if (t == BPF_WRITE && value_regno >= 0 &&
4020 		    is_pointer_value(env, value_regno)) {
4021 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4022 			return -EACCES;
4023 		}
4024 		err = check_mem_region_access(env, regno, off, size,
4025 					      reg->mem_size, false);
4026 		if (!err && t == BPF_READ && value_regno >= 0)
4027 			mark_reg_unknown(env, regs, value_regno);
4028 	} else if (reg->type == PTR_TO_CTX) {
4029 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4030 		u32 btf_id = 0;
4031 
4032 		if (t == BPF_WRITE && value_regno >= 0 &&
4033 		    is_pointer_value(env, value_regno)) {
4034 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4035 			return -EACCES;
4036 		}
4037 
4038 		err = check_ctx_reg(env, reg, regno);
4039 		if (err < 0)
4040 			return err;
4041 
4042 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
4043 		if (err)
4044 			verbose_linfo(env, insn_idx, "; ");
4045 		if (!err && t == BPF_READ && value_regno >= 0) {
4046 			/* ctx access returns either a scalar, or a
4047 			 * PTR_TO_PACKET[_META,_END]. In the latter
4048 			 * case, we know the offset is zero.
4049 			 */
4050 			if (reg_type == SCALAR_VALUE) {
4051 				mark_reg_unknown(env, regs, value_regno);
4052 			} else {
4053 				mark_reg_known_zero(env, regs,
4054 						    value_regno);
4055 				if (reg_type_may_be_null(reg_type))
4056 					regs[value_regno].id = ++env->id_gen;
4057 				/* A load of ctx field could have different
4058 				 * actual load size with the one encoded in the
4059 				 * insn. When the dst is PTR, it is for sure not
4060 				 * a sub-register.
4061 				 */
4062 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4063 				if (reg_type == PTR_TO_BTF_ID ||
4064 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
4065 					regs[value_regno].btf_id = btf_id;
4066 			}
4067 			regs[value_regno].type = reg_type;
4068 		}
4069 
4070 	} else if (reg->type == PTR_TO_STACK) {
4071 		/* Basic bounds checks. */
4072 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4073 		if (err)
4074 			return err;
4075 
4076 		state = func(env, reg);
4077 		err = update_stack_depth(env, state, off);
4078 		if (err)
4079 			return err;
4080 
4081 		if (t == BPF_READ)
4082 			err = check_stack_read(env, regno, off, size,
4083 					       value_regno);
4084 		else
4085 			err = check_stack_write(env, regno, off, size,
4086 						value_regno, insn_idx);
4087 	} else if (reg_is_pkt_pointer(reg)) {
4088 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4089 			verbose(env, "cannot write into packet\n");
4090 			return -EACCES;
4091 		}
4092 		if (t == BPF_WRITE && value_regno >= 0 &&
4093 		    is_pointer_value(env, value_regno)) {
4094 			verbose(env, "R%d leaks addr into packet\n",
4095 				value_regno);
4096 			return -EACCES;
4097 		}
4098 		err = check_packet_access(env, regno, off, size, false);
4099 		if (!err && t == BPF_READ && value_regno >= 0)
4100 			mark_reg_unknown(env, regs, value_regno);
4101 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4102 		if (t == BPF_WRITE && value_regno >= 0 &&
4103 		    is_pointer_value(env, value_regno)) {
4104 			verbose(env, "R%d leaks addr into flow keys\n",
4105 				value_regno);
4106 			return -EACCES;
4107 		}
4108 
4109 		err = check_flow_keys_access(env, off, size);
4110 		if (!err && t == BPF_READ && value_regno >= 0)
4111 			mark_reg_unknown(env, regs, value_regno);
4112 	} else if (type_is_sk_pointer(reg->type)) {
4113 		if (t == BPF_WRITE) {
4114 			verbose(env, "R%d cannot write into %s\n",
4115 				regno, reg_type_str[reg->type]);
4116 			return -EACCES;
4117 		}
4118 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4119 		if (!err && value_regno >= 0)
4120 			mark_reg_unknown(env, regs, value_regno);
4121 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4122 		err = check_tp_buffer_access(env, reg, regno, off, size);
4123 		if (!err && t == BPF_READ && value_regno >= 0)
4124 			mark_reg_unknown(env, regs, value_regno);
4125 	} else if (reg->type == PTR_TO_BTF_ID) {
4126 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4127 					      value_regno);
4128 	} else if (reg->type == CONST_PTR_TO_MAP) {
4129 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4130 					      value_regno);
4131 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4132 		if (t == BPF_WRITE) {
4133 			verbose(env, "R%d cannot write into %s\n",
4134 				regno, reg_type_str[reg->type]);
4135 			return -EACCES;
4136 		}
4137 		err = check_buffer_access(env, reg, regno, off, size, false,
4138 					  "rdonly",
4139 					  &env->prog->aux->max_rdonly_access);
4140 		if (!err && value_regno >= 0)
4141 			mark_reg_unknown(env, regs, value_regno);
4142 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4143 		err = check_buffer_access(env, reg, regno, off, size, false,
4144 					  "rdwr",
4145 					  &env->prog->aux->max_rdwr_access);
4146 		if (!err && t == BPF_READ && value_regno >= 0)
4147 			mark_reg_unknown(env, regs, value_regno);
4148 	} else {
4149 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4150 			reg_type_str[reg->type]);
4151 		return -EACCES;
4152 	}
4153 
4154 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4155 	    regs[value_regno].type == SCALAR_VALUE) {
4156 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4157 		coerce_reg_to_size(&regs[value_regno], size);
4158 	}
4159 	return err;
4160 }
4161 
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4162 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4163 {
4164 	int err;
4165 
4166 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
4167 	    insn->imm != 0) {
4168 		verbose(env, "BPF_XADD uses reserved fields\n");
4169 		return -EINVAL;
4170 	}
4171 
4172 	/* check src1 operand */
4173 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4174 	if (err)
4175 		return err;
4176 
4177 	/* check src2 operand */
4178 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4179 	if (err)
4180 		return err;
4181 
4182 	if (is_pointer_value(env, insn->src_reg)) {
4183 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4184 		return -EACCES;
4185 	}
4186 
4187 	if (is_ctx_reg(env, insn->dst_reg) ||
4188 	    is_pkt_reg(env, insn->dst_reg) ||
4189 	    is_flow_key_reg(env, insn->dst_reg) ||
4190 	    is_sk_reg(env, insn->dst_reg)) {
4191 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
4192 			insn->dst_reg,
4193 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4194 		return -EACCES;
4195 	}
4196 
4197 	/* check whether atomic_add can read the memory */
4198 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4199 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
4200 	if (err)
4201 		return err;
4202 
4203 	/* check whether atomic_add can write into the same memory */
4204 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4205 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4206 }
4207 
4208 /* When register 'regno' is used to read the stack (either directly or through
4209  * a helper function) make sure that it's within stack boundary and, depending
4210  * on the access type, that all elements of the stack are initialized.
4211  *
4212  * 'off' includes 'regno->off', but not its dynamic part (if any).
4213  *
4214  * All registers that have been spilled on the stack in the slots within the
4215  * read offsets are marked as read.
4216  */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4217 static int check_stack_range_initialized(
4218 		struct bpf_verifier_env *env, int regno, int off,
4219 		int access_size, bool zero_size_allowed,
4220 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4221 {
4222 	struct bpf_reg_state *reg = reg_state(env, regno);
4223 	struct bpf_func_state *state = func(env, reg);
4224 	int err, min_off, max_off, i, j, slot, spi;
4225 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4226 	enum bpf_access_type bounds_check_type;
4227 	/* Some accesses can write anything into the stack, others are
4228 	 * read-only.
4229 	 */
4230 	bool clobber = false;
4231 
4232 	if (access_size == 0 && !zero_size_allowed) {
4233 		verbose(env, "invalid zero-sized read\n");
4234 		return -EACCES;
4235 	}
4236 
4237 	if (type == ACCESS_HELPER) {
4238 		/* The bounds checks for writes are more permissive than for
4239 		 * reads. However, if raw_mode is not set, we'll do extra
4240 		 * checks below.
4241 		 */
4242 		bounds_check_type = BPF_WRITE;
4243 		clobber = true;
4244 	} else {
4245 		bounds_check_type = BPF_READ;
4246 	}
4247 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4248 					       type, bounds_check_type);
4249 	if (err)
4250 		return err;
4251 
4252 
4253 	if (tnum_is_const(reg->var_off)) {
4254 		min_off = max_off = reg->var_off.value + off;
4255 	} else {
4256 		/* Variable offset is prohibited for unprivileged mode for
4257 		 * simplicity since it requires corresponding support in
4258 		 * Spectre masking for stack ALU.
4259 		 * See also retrieve_ptr_limit().
4260 		 */
4261 		if (!env->bypass_spec_v1) {
4262 			char tn_buf[48];
4263 
4264 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4265 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4266 				regno, err_extra, tn_buf);
4267 			return -EACCES;
4268 		}
4269 		/* Only initialized buffer on stack is allowed to be accessed
4270 		 * with variable offset. With uninitialized buffer it's hard to
4271 		 * guarantee that whole memory is marked as initialized on
4272 		 * helper return since specific bounds are unknown what may
4273 		 * cause uninitialized stack leaking.
4274 		 */
4275 		if (meta && meta->raw_mode)
4276 			meta = NULL;
4277 
4278 		min_off = reg->smin_value + off;
4279 		max_off = reg->smax_value + off;
4280 	}
4281 
4282 	if (meta && meta->raw_mode) {
4283 		meta->access_size = access_size;
4284 		meta->regno = regno;
4285 		return 0;
4286 	}
4287 
4288 	for (i = min_off; i < max_off + access_size; i++) {
4289 		u8 *stype;
4290 
4291 		slot = -i - 1;
4292 		spi = slot / BPF_REG_SIZE;
4293 		if (state->allocated_stack <= slot)
4294 			goto err;
4295 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4296 		if (*stype == STACK_MISC)
4297 			goto mark;
4298 		if (*stype == STACK_ZERO) {
4299 			if (clobber) {
4300 				/* helper can write anything into the stack */
4301 				*stype = STACK_MISC;
4302 			}
4303 			goto mark;
4304 		}
4305 
4306 		if (is_spilled_reg(&state->stack[spi]) &&
4307 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4308 			goto mark;
4309 
4310 		if (is_spilled_reg(&state->stack[spi]) &&
4311 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4312 		     env->allow_ptr_leaks)) {
4313 			if (clobber) {
4314 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4315 				for (j = 0; j < BPF_REG_SIZE; j++)
4316 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4317 			}
4318 			goto mark;
4319 		}
4320 
4321 err:
4322 		if (tnum_is_const(reg->var_off)) {
4323 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4324 				err_extra, regno, min_off, i - min_off, access_size);
4325 		} else {
4326 			char tn_buf[48];
4327 
4328 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4329 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4330 				err_extra, regno, tn_buf, i - min_off, access_size);
4331 		}
4332 		return -EACCES;
4333 mark:
4334 		/* reading any byte out of 8-byte 'spill_slot' will cause
4335 		 * the whole slot to be marked as 'read'
4336 		 */
4337 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4338 			      state->stack[spi].spilled_ptr.parent,
4339 			      REG_LIVE_READ64);
4340 	}
4341 	return update_stack_depth(env, state, min_off);
4342 }
4343 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4344 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4345 				   int access_size, bool zero_size_allowed,
4346 				   struct bpf_call_arg_meta *meta)
4347 {
4348 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4349 
4350 	switch (reg->type) {
4351 	case PTR_TO_PACKET:
4352 	case PTR_TO_PACKET_META:
4353 		return check_packet_access(env, regno, reg->off, access_size,
4354 					   zero_size_allowed);
4355 	case PTR_TO_MAP_VALUE:
4356 		if (check_map_access_type(env, regno, reg->off, access_size,
4357 					  meta && meta->raw_mode ? BPF_WRITE :
4358 					  BPF_READ))
4359 			return -EACCES;
4360 		return check_map_access(env, regno, reg->off, access_size,
4361 					zero_size_allowed);
4362 	case PTR_TO_MEM:
4363 		return check_mem_region_access(env, regno, reg->off,
4364 					       access_size, reg->mem_size,
4365 					       zero_size_allowed);
4366 	case PTR_TO_RDONLY_BUF:
4367 		if (meta && meta->raw_mode)
4368 			return -EACCES;
4369 		return check_buffer_access(env, reg, regno, reg->off,
4370 					   access_size, zero_size_allowed,
4371 					   "rdonly",
4372 					   &env->prog->aux->max_rdonly_access);
4373 	case PTR_TO_RDWR_BUF:
4374 		return check_buffer_access(env, reg, regno, reg->off,
4375 					   access_size, zero_size_allowed,
4376 					   "rdwr",
4377 					   &env->prog->aux->max_rdwr_access);
4378 	case PTR_TO_STACK:
4379 		return check_stack_range_initialized(
4380 				env,
4381 				regno, reg->off, access_size,
4382 				zero_size_allowed, ACCESS_HELPER, meta);
4383 	default: /* scalar_value or invalid ptr */
4384 		/* Allow zero-byte read from NULL, regardless of pointer type */
4385 		if (zero_size_allowed && access_size == 0 &&
4386 		    register_is_null(reg))
4387 			return 0;
4388 
4389 		verbose(env, "R%d type=%s expected=%s\n", regno,
4390 			reg_type_str[reg->type],
4391 			reg_type_str[PTR_TO_STACK]);
4392 		return -EACCES;
4393 	}
4394 }
4395 
4396 /* Implementation details:
4397  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4398  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4399  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4400  * value_or_null->value transition, since the verifier only cares about
4401  * the range of access to valid map value pointer and doesn't care about actual
4402  * address of the map element.
4403  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4404  * reg->id > 0 after value_or_null->value transition. By doing so
4405  * two bpf_map_lookups will be considered two different pointers that
4406  * point to different bpf_spin_locks.
4407  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4408  * dead-locks.
4409  * Since only one bpf_spin_lock is allowed the checks are simpler than
4410  * reg_is_refcounted() logic. The verifier needs to remember only
4411  * one spin_lock instead of array of acquired_refs.
4412  * cur_state->active_spin_lock remembers which map value element got locked
4413  * and clears it after bpf_spin_unlock.
4414  */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4415 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4416 			     bool is_lock)
4417 {
4418 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4419 	struct bpf_verifier_state *cur = env->cur_state;
4420 	bool is_const = tnum_is_const(reg->var_off);
4421 	struct bpf_map *map = reg->map_ptr;
4422 	u64 val = reg->var_off.value;
4423 
4424 	if (!is_const) {
4425 		verbose(env,
4426 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4427 			regno);
4428 		return -EINVAL;
4429 	}
4430 	if (!map->btf) {
4431 		verbose(env,
4432 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4433 			map->name);
4434 		return -EINVAL;
4435 	}
4436 	if (!map_value_has_spin_lock(map)) {
4437 		if (map->spin_lock_off == -E2BIG)
4438 			verbose(env,
4439 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4440 				map->name);
4441 		else if (map->spin_lock_off == -ENOENT)
4442 			verbose(env,
4443 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4444 				map->name);
4445 		else
4446 			verbose(env,
4447 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4448 				map->name);
4449 		return -EINVAL;
4450 	}
4451 	if (map->spin_lock_off != val + reg->off) {
4452 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4453 			val + reg->off);
4454 		return -EINVAL;
4455 	}
4456 	if (is_lock) {
4457 		if (cur->active_spin_lock) {
4458 			verbose(env,
4459 				"Locking two bpf_spin_locks are not allowed\n");
4460 			return -EINVAL;
4461 		}
4462 		cur->active_spin_lock = reg->id;
4463 	} else {
4464 		if (!cur->active_spin_lock) {
4465 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4466 			return -EINVAL;
4467 		}
4468 		if (cur->active_spin_lock != reg->id) {
4469 			verbose(env, "bpf_spin_unlock of different lock\n");
4470 			return -EINVAL;
4471 		}
4472 		cur->active_spin_lock = 0;
4473 	}
4474 	return 0;
4475 }
4476 
arg_type_is_mem_ptr(enum bpf_arg_type type)4477 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4478 {
4479 	return type == ARG_PTR_TO_MEM ||
4480 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4481 	       type == ARG_PTR_TO_UNINIT_MEM;
4482 }
4483 
arg_type_is_mem_size(enum bpf_arg_type type)4484 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4485 {
4486 	return type == ARG_CONST_SIZE ||
4487 	       type == ARG_CONST_SIZE_OR_ZERO;
4488 }
4489 
arg_type_is_alloc_size(enum bpf_arg_type type)4490 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4491 {
4492 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4493 }
4494 
arg_type_is_int_ptr(enum bpf_arg_type type)4495 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4496 {
4497 	return type == ARG_PTR_TO_INT ||
4498 	       type == ARG_PTR_TO_LONG;
4499 }
4500 
int_ptr_type_to_size(enum bpf_arg_type type)4501 static int int_ptr_type_to_size(enum bpf_arg_type type)
4502 {
4503 	if (type == ARG_PTR_TO_INT)
4504 		return sizeof(u32);
4505 	else if (type == ARG_PTR_TO_LONG)
4506 		return sizeof(u64);
4507 
4508 	return -EINVAL;
4509 }
4510 
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4511 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4512 				 const struct bpf_call_arg_meta *meta,
4513 				 enum bpf_arg_type *arg_type)
4514 {
4515 	if (!meta->map_ptr) {
4516 		/* kernel subsystem misconfigured verifier */
4517 		verbose(env, "invalid map_ptr to access map->type\n");
4518 		return -EACCES;
4519 	}
4520 
4521 	switch (meta->map_ptr->map_type) {
4522 	case BPF_MAP_TYPE_SOCKMAP:
4523 	case BPF_MAP_TYPE_SOCKHASH:
4524 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4525 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4526 		} else {
4527 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4528 			return -EINVAL;
4529 		}
4530 		break;
4531 
4532 	default:
4533 		break;
4534 	}
4535 	return 0;
4536 }
4537 
4538 struct bpf_reg_types {
4539 	const enum bpf_reg_type types[10];
4540 	u32 *btf_id;
4541 };
4542 
4543 static const struct bpf_reg_types map_key_value_types = {
4544 	.types = {
4545 		PTR_TO_STACK,
4546 		PTR_TO_PACKET,
4547 		PTR_TO_PACKET_META,
4548 		PTR_TO_MAP_VALUE,
4549 	},
4550 };
4551 
4552 static const struct bpf_reg_types sock_types = {
4553 	.types = {
4554 		PTR_TO_SOCK_COMMON,
4555 		PTR_TO_SOCKET,
4556 		PTR_TO_TCP_SOCK,
4557 		PTR_TO_XDP_SOCK,
4558 	},
4559 };
4560 
4561 #ifdef CONFIG_NET
4562 static const struct bpf_reg_types btf_id_sock_common_types = {
4563 	.types = {
4564 		PTR_TO_SOCK_COMMON,
4565 		PTR_TO_SOCKET,
4566 		PTR_TO_TCP_SOCK,
4567 		PTR_TO_XDP_SOCK,
4568 		PTR_TO_BTF_ID,
4569 	},
4570 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4571 };
4572 #endif
4573 
4574 static const struct bpf_reg_types mem_types = {
4575 	.types = {
4576 		PTR_TO_STACK,
4577 		PTR_TO_PACKET,
4578 		PTR_TO_PACKET_META,
4579 		PTR_TO_MAP_VALUE,
4580 		PTR_TO_MEM,
4581 		PTR_TO_RDONLY_BUF,
4582 		PTR_TO_RDWR_BUF,
4583 	},
4584 };
4585 
4586 static const struct bpf_reg_types int_ptr_types = {
4587 	.types = {
4588 		PTR_TO_STACK,
4589 		PTR_TO_PACKET,
4590 		PTR_TO_PACKET_META,
4591 		PTR_TO_MAP_VALUE,
4592 	},
4593 };
4594 
4595 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4596 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4597 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4598 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4599 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4600 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4601 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4602 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4603 
4604 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4605 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4606 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4607 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4608 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4609 	[ARG_CONST_SIZE]		= &scalar_types,
4610 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4611 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4612 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4613 	[ARG_PTR_TO_CTX]		= &context_types,
4614 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4615 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4616 #ifdef CONFIG_NET
4617 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4618 #endif
4619 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4620 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4621 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4622 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4623 	[ARG_PTR_TO_MEM]		= &mem_types,
4624 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4625 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4626 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4627 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4628 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4629 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4630 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4631 };
4632 
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4633 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4634 			  enum bpf_arg_type arg_type,
4635 			  const u32 *arg_btf_id)
4636 {
4637 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4638 	enum bpf_reg_type expected, type = reg->type;
4639 	const struct bpf_reg_types *compatible;
4640 	int i, j;
4641 
4642 	compatible = compatible_reg_types[arg_type];
4643 	if (!compatible) {
4644 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4645 		return -EFAULT;
4646 	}
4647 
4648 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4649 		expected = compatible->types[i];
4650 		if (expected == NOT_INIT)
4651 			break;
4652 
4653 		if (type == expected)
4654 			goto found;
4655 	}
4656 
4657 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4658 	for (j = 0; j + 1 < i; j++)
4659 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4660 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4661 	return -EACCES;
4662 
4663 found:
4664 	if (type == PTR_TO_BTF_ID) {
4665 		if (!arg_btf_id) {
4666 			if (!compatible->btf_id) {
4667 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4668 				return -EFAULT;
4669 			}
4670 			arg_btf_id = compatible->btf_id;
4671 		}
4672 
4673 		if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4674 					  *arg_btf_id)) {
4675 			verbose(env, "R%d is of type %s but %s is expected\n",
4676 				regno, kernel_type_name(reg->btf_id),
4677 				kernel_type_name(*arg_btf_id));
4678 			return -EACCES;
4679 		}
4680 
4681 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4682 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4683 				regno);
4684 			return -EACCES;
4685 		}
4686 	}
4687 
4688 	return 0;
4689 }
4690 
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4691 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4692 			  struct bpf_call_arg_meta *meta,
4693 			  const struct bpf_func_proto *fn)
4694 {
4695 	u32 regno = BPF_REG_1 + arg;
4696 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4697 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4698 	enum bpf_reg_type type = reg->type;
4699 	int err = 0;
4700 
4701 	if (arg_type == ARG_DONTCARE)
4702 		return 0;
4703 
4704 	err = check_reg_arg(env, regno, SRC_OP);
4705 	if (err)
4706 		return err;
4707 
4708 	if (arg_type == ARG_ANYTHING) {
4709 		if (is_pointer_value(env, regno)) {
4710 			verbose(env, "R%d leaks addr into helper function\n",
4711 				regno);
4712 			return -EACCES;
4713 		}
4714 		return 0;
4715 	}
4716 
4717 	if (type_is_pkt_pointer(type) &&
4718 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4719 		verbose(env, "helper access to the packet is not allowed\n");
4720 		return -EACCES;
4721 	}
4722 
4723 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4724 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4725 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4726 		err = resolve_map_arg_type(env, meta, &arg_type);
4727 		if (err)
4728 			return err;
4729 	}
4730 
4731 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4732 		/* A NULL register has a SCALAR_VALUE type, so skip
4733 		 * type checking.
4734 		 */
4735 		goto skip_type_check;
4736 
4737 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4738 	if (err)
4739 		return err;
4740 
4741 	if (type == PTR_TO_CTX) {
4742 		err = check_ctx_reg(env, reg, regno);
4743 		if (err < 0)
4744 			return err;
4745 	}
4746 
4747 skip_type_check:
4748 	if (reg->ref_obj_id) {
4749 		if (meta->ref_obj_id) {
4750 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4751 				regno, reg->ref_obj_id,
4752 				meta->ref_obj_id);
4753 			return -EFAULT;
4754 		}
4755 		meta->ref_obj_id = reg->ref_obj_id;
4756 	}
4757 
4758 	if (arg_type == ARG_CONST_MAP_PTR) {
4759 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4760 		meta->map_ptr = reg->map_ptr;
4761 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4762 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4763 		 * check that [key, key + map->key_size) are within
4764 		 * stack limits and initialized
4765 		 */
4766 		if (!meta->map_ptr) {
4767 			/* in function declaration map_ptr must come before
4768 			 * map_key, so that it's verified and known before
4769 			 * we have to check map_key here. Otherwise it means
4770 			 * that kernel subsystem misconfigured verifier
4771 			 */
4772 			verbose(env, "invalid map_ptr to access map->key\n");
4773 			return -EACCES;
4774 		}
4775 		err = check_helper_mem_access(env, regno,
4776 					      meta->map_ptr->key_size, false,
4777 					      NULL);
4778 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4779 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4780 		    !register_is_null(reg)) ||
4781 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4782 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4783 		 * check [value, value + map->value_size) validity
4784 		 */
4785 		if (!meta->map_ptr) {
4786 			/* kernel subsystem misconfigured verifier */
4787 			verbose(env, "invalid map_ptr to access map->value\n");
4788 			return -EACCES;
4789 		}
4790 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4791 		err = check_helper_mem_access(env, regno,
4792 					      meta->map_ptr->value_size, false,
4793 					      meta);
4794 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4795 		if (!reg->btf_id) {
4796 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4797 			return -EACCES;
4798 		}
4799 		meta->ret_btf_id = reg->btf_id;
4800 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4801 		if (meta->func_id == BPF_FUNC_spin_lock) {
4802 			if (process_spin_lock(env, regno, true))
4803 				return -EACCES;
4804 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4805 			if (process_spin_lock(env, regno, false))
4806 				return -EACCES;
4807 		} else {
4808 			verbose(env, "verifier internal error\n");
4809 			return -EFAULT;
4810 		}
4811 	} else if (arg_type_is_mem_ptr(arg_type)) {
4812 		/* The access to this pointer is only checked when we hit the
4813 		 * next is_mem_size argument below.
4814 		 */
4815 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4816 	} else if (arg_type_is_mem_size(arg_type)) {
4817 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4818 
4819 		/* This is used to refine r0 return value bounds for helpers
4820 		 * that enforce this value as an upper bound on return values.
4821 		 * See do_refine_retval_range() for helpers that can refine
4822 		 * the return value. C type of helper is u32 so we pull register
4823 		 * bound from umax_value however, if negative verifier errors
4824 		 * out. Only upper bounds can be learned because retval is an
4825 		 * int type and negative retvals are allowed.
4826 		 */
4827 		meta->msize_max_value = reg->umax_value;
4828 
4829 		/* The register is SCALAR_VALUE; the access check
4830 		 * happens using its boundaries.
4831 		 */
4832 		if (!tnum_is_const(reg->var_off))
4833 			/* For unprivileged variable accesses, disable raw
4834 			 * mode so that the program is required to
4835 			 * initialize all the memory that the helper could
4836 			 * just partially fill up.
4837 			 */
4838 			meta = NULL;
4839 
4840 		if (reg->smin_value < 0) {
4841 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4842 				regno);
4843 			return -EACCES;
4844 		}
4845 
4846 		if (reg->umin_value == 0) {
4847 			err = check_helper_mem_access(env, regno - 1, 0,
4848 						      zero_size_allowed,
4849 						      meta);
4850 			if (err)
4851 				return err;
4852 		}
4853 
4854 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4855 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4856 				regno);
4857 			return -EACCES;
4858 		}
4859 		err = check_helper_mem_access(env, regno - 1,
4860 					      reg->umax_value,
4861 					      zero_size_allowed, meta);
4862 		if (!err)
4863 			err = mark_chain_precision(env, regno);
4864 	} else if (arg_type_is_alloc_size(arg_type)) {
4865 		if (!tnum_is_const(reg->var_off)) {
4866 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4867 				regno);
4868 			return -EACCES;
4869 		}
4870 		meta->mem_size = reg->var_off.value;
4871 	} else if (arg_type_is_int_ptr(arg_type)) {
4872 		int size = int_ptr_type_to_size(arg_type);
4873 
4874 		err = check_helper_mem_access(env, regno, size, false, meta);
4875 		if (err)
4876 			return err;
4877 		err = check_ptr_alignment(env, reg, 0, size, true);
4878 	}
4879 
4880 	return err;
4881 }
4882 
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4883 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4884 {
4885 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4886 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4887 
4888 	if (func_id != BPF_FUNC_map_update_elem)
4889 		return false;
4890 
4891 	/* It's not possible to get access to a locked struct sock in these
4892 	 * contexts, so updating is safe.
4893 	 */
4894 	switch (type) {
4895 	case BPF_PROG_TYPE_TRACING:
4896 		if (eatype == BPF_TRACE_ITER)
4897 			return true;
4898 		break;
4899 	case BPF_PROG_TYPE_SOCKET_FILTER:
4900 	case BPF_PROG_TYPE_SCHED_CLS:
4901 	case BPF_PROG_TYPE_SCHED_ACT:
4902 	case BPF_PROG_TYPE_XDP:
4903 	case BPF_PROG_TYPE_SK_REUSEPORT:
4904 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4905 	case BPF_PROG_TYPE_SK_LOOKUP:
4906 		return true;
4907 	default:
4908 		break;
4909 	}
4910 
4911 	verbose(env, "cannot update sockmap in this context\n");
4912 	return false;
4913 }
4914 
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4915 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4916 {
4917 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4918 }
4919 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4920 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4921 					struct bpf_map *map, int func_id)
4922 {
4923 	if (!map)
4924 		return 0;
4925 
4926 	/* We need a two way check, first is from map perspective ... */
4927 	switch (map->map_type) {
4928 	case BPF_MAP_TYPE_PROG_ARRAY:
4929 		if (func_id != BPF_FUNC_tail_call)
4930 			goto error;
4931 		break;
4932 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4933 		if (func_id != BPF_FUNC_perf_event_read &&
4934 		    func_id != BPF_FUNC_perf_event_output &&
4935 		    func_id != BPF_FUNC_skb_output &&
4936 		    func_id != BPF_FUNC_perf_event_read_value &&
4937 		    func_id != BPF_FUNC_xdp_output)
4938 			goto error;
4939 		break;
4940 	case BPF_MAP_TYPE_RINGBUF:
4941 		if (func_id != BPF_FUNC_ringbuf_output &&
4942 		    func_id != BPF_FUNC_ringbuf_reserve &&
4943 		    func_id != BPF_FUNC_ringbuf_query)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_STACK_TRACE:
4947 		if (func_id != BPF_FUNC_get_stackid)
4948 			goto error;
4949 		break;
4950 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4951 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4952 		    func_id != BPF_FUNC_current_task_under_cgroup)
4953 			goto error;
4954 		break;
4955 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4956 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4957 		if (func_id != BPF_FUNC_get_local_storage)
4958 			goto error;
4959 		break;
4960 	case BPF_MAP_TYPE_DEVMAP:
4961 	case BPF_MAP_TYPE_DEVMAP_HASH:
4962 		if (func_id != BPF_FUNC_redirect_map &&
4963 		    func_id != BPF_FUNC_map_lookup_elem)
4964 			goto error;
4965 		break;
4966 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4967 	 * appear.
4968 	 */
4969 	case BPF_MAP_TYPE_CPUMAP:
4970 		if (func_id != BPF_FUNC_redirect_map)
4971 			goto error;
4972 		break;
4973 	case BPF_MAP_TYPE_XSKMAP:
4974 		if (func_id != BPF_FUNC_redirect_map &&
4975 		    func_id != BPF_FUNC_map_lookup_elem)
4976 			goto error;
4977 		break;
4978 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4979 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4980 		if (func_id != BPF_FUNC_map_lookup_elem)
4981 			goto error;
4982 		break;
4983 	case BPF_MAP_TYPE_SOCKMAP:
4984 		if (func_id != BPF_FUNC_sk_redirect_map &&
4985 		    func_id != BPF_FUNC_sock_map_update &&
4986 		    func_id != BPF_FUNC_map_delete_elem &&
4987 		    func_id != BPF_FUNC_msg_redirect_map &&
4988 		    func_id != BPF_FUNC_sk_select_reuseport &&
4989 		    func_id != BPF_FUNC_map_lookup_elem &&
4990 		    !may_update_sockmap(env, func_id))
4991 			goto error;
4992 		break;
4993 	case BPF_MAP_TYPE_SOCKHASH:
4994 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4995 		    func_id != BPF_FUNC_sock_hash_update &&
4996 		    func_id != BPF_FUNC_map_delete_elem &&
4997 		    func_id != BPF_FUNC_msg_redirect_hash &&
4998 		    func_id != BPF_FUNC_sk_select_reuseport &&
4999 		    func_id != BPF_FUNC_map_lookup_elem &&
5000 		    !may_update_sockmap(env, func_id))
5001 			goto error;
5002 		break;
5003 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5004 		if (func_id != BPF_FUNC_sk_select_reuseport)
5005 			goto error;
5006 		break;
5007 	case BPF_MAP_TYPE_QUEUE:
5008 	case BPF_MAP_TYPE_STACK:
5009 		if (func_id != BPF_FUNC_map_peek_elem &&
5010 		    func_id != BPF_FUNC_map_pop_elem &&
5011 		    func_id != BPF_FUNC_map_push_elem)
5012 			goto error;
5013 		break;
5014 	case BPF_MAP_TYPE_SK_STORAGE:
5015 		if (func_id != BPF_FUNC_sk_storage_get &&
5016 		    func_id != BPF_FUNC_sk_storage_delete)
5017 			goto error;
5018 		break;
5019 	case BPF_MAP_TYPE_INODE_STORAGE:
5020 		if (func_id != BPF_FUNC_inode_storage_get &&
5021 		    func_id != BPF_FUNC_inode_storage_delete)
5022 			goto error;
5023 		break;
5024 	default:
5025 		break;
5026 	}
5027 
5028 	/* ... and second from the function itself. */
5029 	switch (func_id) {
5030 	case BPF_FUNC_tail_call:
5031 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5032 			goto error;
5033 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5034 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5035 			return -EINVAL;
5036 		}
5037 		break;
5038 	case BPF_FUNC_perf_event_read:
5039 	case BPF_FUNC_perf_event_output:
5040 	case BPF_FUNC_perf_event_read_value:
5041 	case BPF_FUNC_skb_output:
5042 	case BPF_FUNC_xdp_output:
5043 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5044 			goto error;
5045 		break;
5046 	case BPF_FUNC_ringbuf_output:
5047 	case BPF_FUNC_ringbuf_reserve:
5048 	case BPF_FUNC_ringbuf_query:
5049 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5050 			goto error;
5051 		break;
5052 	case BPF_FUNC_get_stackid:
5053 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5054 			goto error;
5055 		break;
5056 	case BPF_FUNC_current_task_under_cgroup:
5057 	case BPF_FUNC_skb_under_cgroup:
5058 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5059 			goto error;
5060 		break;
5061 	case BPF_FUNC_redirect_map:
5062 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5063 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5064 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5065 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5066 			goto error;
5067 		break;
5068 	case BPF_FUNC_sk_redirect_map:
5069 	case BPF_FUNC_msg_redirect_map:
5070 	case BPF_FUNC_sock_map_update:
5071 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5072 			goto error;
5073 		break;
5074 	case BPF_FUNC_sk_redirect_hash:
5075 	case BPF_FUNC_msg_redirect_hash:
5076 	case BPF_FUNC_sock_hash_update:
5077 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5078 			goto error;
5079 		break;
5080 	case BPF_FUNC_get_local_storage:
5081 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5082 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5083 			goto error;
5084 		break;
5085 	case BPF_FUNC_sk_select_reuseport:
5086 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5087 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5088 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5089 			goto error;
5090 		break;
5091 	case BPF_FUNC_map_peek_elem:
5092 	case BPF_FUNC_map_pop_elem:
5093 	case BPF_FUNC_map_push_elem:
5094 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5095 		    map->map_type != BPF_MAP_TYPE_STACK)
5096 			goto error;
5097 		break;
5098 	case BPF_FUNC_sk_storage_get:
5099 	case BPF_FUNC_sk_storage_delete:
5100 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5101 			goto error;
5102 		break;
5103 	case BPF_FUNC_inode_storage_get:
5104 	case BPF_FUNC_inode_storage_delete:
5105 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5106 			goto error;
5107 		break;
5108 	default:
5109 		break;
5110 	}
5111 
5112 	return 0;
5113 error:
5114 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5115 		map->map_type, func_id_name(func_id), func_id);
5116 	return -EINVAL;
5117 }
5118 
check_raw_mode_ok(const struct bpf_func_proto * fn)5119 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5120 {
5121 	int count = 0;
5122 
5123 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5124 		count++;
5125 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5126 		count++;
5127 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5128 		count++;
5129 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5130 		count++;
5131 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5132 		count++;
5133 
5134 	/* We only support one arg being in raw mode at the moment,
5135 	 * which is sufficient for the helper functions we have
5136 	 * right now.
5137 	 */
5138 	return count <= 1;
5139 }
5140 
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)5141 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5142 				    enum bpf_arg_type arg_next)
5143 {
5144 	return (arg_type_is_mem_ptr(arg_curr) &&
5145 	        !arg_type_is_mem_size(arg_next)) ||
5146 	       (!arg_type_is_mem_ptr(arg_curr) &&
5147 		arg_type_is_mem_size(arg_next));
5148 }
5149 
check_arg_pair_ok(const struct bpf_func_proto * fn)5150 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5151 {
5152 	/* bpf_xxx(..., buf, len) call will access 'len'
5153 	 * bytes from memory 'buf'. Both arg types need
5154 	 * to be paired, so make sure there's no buggy
5155 	 * helper function specification.
5156 	 */
5157 	if (arg_type_is_mem_size(fn->arg1_type) ||
5158 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5159 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5160 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5161 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5162 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5163 		return false;
5164 
5165 	return true;
5166 }
5167 
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5168 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5169 {
5170 	int count = 0;
5171 
5172 	if (arg_type_may_be_refcounted(fn->arg1_type))
5173 		count++;
5174 	if (arg_type_may_be_refcounted(fn->arg2_type))
5175 		count++;
5176 	if (arg_type_may_be_refcounted(fn->arg3_type))
5177 		count++;
5178 	if (arg_type_may_be_refcounted(fn->arg4_type))
5179 		count++;
5180 	if (arg_type_may_be_refcounted(fn->arg5_type))
5181 		count++;
5182 
5183 	/* A reference acquiring function cannot acquire
5184 	 * another refcounted ptr.
5185 	 */
5186 	if (may_be_acquire_function(func_id) && count)
5187 		return false;
5188 
5189 	/* We only support one arg being unreferenced at the moment,
5190 	 * which is sufficient for the helper functions we have right now.
5191 	 */
5192 	return count <= 1;
5193 }
5194 
check_btf_id_ok(const struct bpf_func_proto * fn)5195 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5196 {
5197 	int i;
5198 
5199 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5200 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5201 			return false;
5202 
5203 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5204 			return false;
5205 	}
5206 
5207 	return true;
5208 }
5209 
check_func_proto(const struct bpf_func_proto * fn,int func_id)5210 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5211 {
5212 	return check_raw_mode_ok(fn) &&
5213 	       check_arg_pair_ok(fn) &&
5214 	       check_btf_id_ok(fn) &&
5215 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5216 }
5217 
5218 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5219  * are now invalid, so turn them into unknown SCALAR_VALUE.
5220  */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5221 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5222 {
5223 	struct bpf_func_state *state;
5224 	struct bpf_reg_state *reg;
5225 
5226 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5227 		if (reg_is_pkt_pointer_any(reg))
5228 			__mark_reg_unknown(env, reg);
5229 	}));
5230 }
5231 
5232 enum {
5233 	AT_PKT_END = -1,
5234 	BEYOND_PKT_END = -2,
5235 };
5236 
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5237 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5238 {
5239 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5240 	struct bpf_reg_state *reg = &state->regs[regn];
5241 
5242 	if (reg->type != PTR_TO_PACKET)
5243 		/* PTR_TO_PACKET_META is not supported yet */
5244 		return;
5245 
5246 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5247 	 * How far beyond pkt_end it goes is unknown.
5248 	 * if (!range_open) it's the case of pkt >= pkt_end
5249 	 * if (range_open) it's the case of pkt > pkt_end
5250 	 * hence this pointer is at least 1 byte bigger than pkt_end
5251 	 */
5252 	if (range_open)
5253 		reg->range = BEYOND_PKT_END;
5254 	else
5255 		reg->range = AT_PKT_END;
5256 }
5257 
5258 /* The pointer with the specified id has released its reference to kernel
5259  * resources. Identify all copies of the same pointer and clear the reference.
5260  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5261 static int release_reference(struct bpf_verifier_env *env,
5262 			     int ref_obj_id)
5263 {
5264 	struct bpf_func_state *state;
5265 	struct bpf_reg_state *reg;
5266 	int err;
5267 
5268 	err = release_reference_state(cur_func(env), ref_obj_id);
5269 	if (err)
5270 		return err;
5271 
5272 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5273 		if (reg->ref_obj_id == ref_obj_id) {
5274 			if (!env->allow_ptr_leaks)
5275 				__mark_reg_not_init(env, reg);
5276 			else
5277 				__mark_reg_unknown(env, reg);
5278 		}
5279 	}));
5280 
5281 	return 0;
5282 }
5283 
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5284 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5285 				    struct bpf_reg_state *regs)
5286 {
5287 	int i;
5288 
5289 	/* after the call registers r0 - r5 were scratched */
5290 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5291 		mark_reg_not_init(env, regs, caller_saved[i]);
5292 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5293 	}
5294 }
5295 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5296 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5297 			   int *insn_idx)
5298 {
5299 	struct bpf_verifier_state *state = env->cur_state;
5300 	struct bpf_func_info_aux *func_info_aux;
5301 	struct bpf_func_state *caller, *callee;
5302 	int i, err, subprog, target_insn;
5303 	bool is_global = false;
5304 
5305 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5306 		verbose(env, "the call stack of %d frames is too deep\n",
5307 			state->curframe + 2);
5308 		return -E2BIG;
5309 	}
5310 
5311 	target_insn = *insn_idx + insn->imm;
5312 	subprog = find_subprog(env, target_insn + 1);
5313 	if (subprog < 0) {
5314 		verbose(env, "verifier bug. No program starts at insn %d\n",
5315 			target_insn + 1);
5316 		return -EFAULT;
5317 	}
5318 
5319 	caller = state->frame[state->curframe];
5320 	if (state->frame[state->curframe + 1]) {
5321 		verbose(env, "verifier bug. Frame %d already allocated\n",
5322 			state->curframe + 1);
5323 		return -EFAULT;
5324 	}
5325 
5326 	func_info_aux = env->prog->aux->func_info_aux;
5327 	if (func_info_aux)
5328 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5329 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5330 	if (err == -EFAULT)
5331 		return err;
5332 	if (is_global) {
5333 		if (err) {
5334 			verbose(env, "Caller passes invalid args into func#%d\n",
5335 				subprog);
5336 			return err;
5337 		} else {
5338 			if (env->log.level & BPF_LOG_LEVEL)
5339 				verbose(env,
5340 					"Func#%d is global and valid. Skipping.\n",
5341 					subprog);
5342 			clear_caller_saved_regs(env, caller->regs);
5343 
5344 			/* All global functions return a 64-bit SCALAR_VALUE */
5345 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5346 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5347 
5348 			/* continue with next insn after call */
5349 			return 0;
5350 		}
5351 	}
5352 
5353 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5354 	if (!callee)
5355 		return -ENOMEM;
5356 	state->frame[state->curframe + 1] = callee;
5357 
5358 	/* callee cannot access r0, r6 - r9 for reading and has to write
5359 	 * into its own stack before reading from it.
5360 	 * callee can read/write into caller's stack
5361 	 */
5362 	init_func_state(env, callee,
5363 			/* remember the callsite, it will be used by bpf_exit */
5364 			*insn_idx /* callsite */,
5365 			state->curframe + 1 /* frameno within this callchain */,
5366 			subprog /* subprog number within this prog */);
5367 
5368 	/* Transfer references to the callee */
5369 	err = transfer_reference_state(callee, caller);
5370 	if (err)
5371 		return err;
5372 
5373 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5374 	 * pointers, which connects us up to the liveness chain
5375 	 */
5376 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5377 		callee->regs[i] = caller->regs[i];
5378 
5379 	clear_caller_saved_regs(env, caller->regs);
5380 
5381 	/* only increment it after check_reg_arg() finished */
5382 	state->curframe++;
5383 
5384 	/* and go analyze first insn of the callee */
5385 	*insn_idx = target_insn;
5386 
5387 	if (env->log.level & BPF_LOG_LEVEL) {
5388 		verbose(env, "caller:\n");
5389 		print_verifier_state(env, caller);
5390 		verbose(env, "callee:\n");
5391 		print_verifier_state(env, callee);
5392 	}
5393 	return 0;
5394 }
5395 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5396 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5397 {
5398 	struct bpf_verifier_state *state = env->cur_state;
5399 	struct bpf_func_state *caller, *callee;
5400 	struct bpf_reg_state *r0;
5401 	int err;
5402 
5403 	callee = state->frame[state->curframe];
5404 	r0 = &callee->regs[BPF_REG_0];
5405 	if (r0->type == PTR_TO_STACK) {
5406 		/* technically it's ok to return caller's stack pointer
5407 		 * (or caller's caller's pointer) back to the caller,
5408 		 * since these pointers are valid. Only current stack
5409 		 * pointer will be invalid as soon as function exits,
5410 		 * but let's be conservative
5411 		 */
5412 		verbose(env, "cannot return stack pointer to the caller\n");
5413 		return -EINVAL;
5414 	}
5415 
5416 	state->curframe--;
5417 	caller = state->frame[state->curframe];
5418 	/* return to the caller whatever r0 had in the callee */
5419 	caller->regs[BPF_REG_0] = *r0;
5420 
5421 	/* Transfer references to the caller */
5422 	err = transfer_reference_state(caller, callee);
5423 	if (err)
5424 		return err;
5425 
5426 	*insn_idx = callee->callsite + 1;
5427 	if (env->log.level & BPF_LOG_LEVEL) {
5428 		verbose(env, "returning from callee:\n");
5429 		print_verifier_state(env, callee);
5430 		verbose(env, "to caller at %d:\n", *insn_idx);
5431 		print_verifier_state(env, caller);
5432 	}
5433 	/* clear everything in the callee */
5434 	free_func_state(callee);
5435 	state->frame[state->curframe + 1] = NULL;
5436 	return 0;
5437 }
5438 
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5439 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5440 				   int func_id,
5441 				   struct bpf_call_arg_meta *meta)
5442 {
5443 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5444 
5445 	if (ret_type != RET_INTEGER ||
5446 	    (func_id != BPF_FUNC_get_stack &&
5447 	     func_id != BPF_FUNC_probe_read_str &&
5448 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5449 	     func_id != BPF_FUNC_probe_read_user_str))
5450 		return;
5451 
5452 	ret_reg->smax_value = meta->msize_max_value;
5453 	ret_reg->s32_max_value = meta->msize_max_value;
5454 	ret_reg->smin_value = -MAX_ERRNO;
5455 	ret_reg->s32_min_value = -MAX_ERRNO;
5456 	reg_bounds_sync(ret_reg);
5457 }
5458 
5459 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5460 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5461 		int func_id, int insn_idx)
5462 {
5463 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5464 	struct bpf_map *map = meta->map_ptr;
5465 
5466 	if (func_id != BPF_FUNC_tail_call &&
5467 	    func_id != BPF_FUNC_map_lookup_elem &&
5468 	    func_id != BPF_FUNC_map_update_elem &&
5469 	    func_id != BPF_FUNC_map_delete_elem &&
5470 	    func_id != BPF_FUNC_map_push_elem &&
5471 	    func_id != BPF_FUNC_map_pop_elem &&
5472 	    func_id != BPF_FUNC_map_peek_elem)
5473 		return 0;
5474 
5475 	if (map == NULL) {
5476 		verbose(env, "kernel subsystem misconfigured verifier\n");
5477 		return -EINVAL;
5478 	}
5479 
5480 	/* In case of read-only, some additional restrictions
5481 	 * need to be applied in order to prevent altering the
5482 	 * state of the map from program side.
5483 	 */
5484 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5485 	    (func_id == BPF_FUNC_map_delete_elem ||
5486 	     func_id == BPF_FUNC_map_update_elem ||
5487 	     func_id == BPF_FUNC_map_push_elem ||
5488 	     func_id == BPF_FUNC_map_pop_elem)) {
5489 		verbose(env, "write into map forbidden\n");
5490 		return -EACCES;
5491 	}
5492 
5493 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5494 		bpf_map_ptr_store(aux, meta->map_ptr,
5495 				  !meta->map_ptr->bypass_spec_v1);
5496 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5497 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5498 				  !meta->map_ptr->bypass_spec_v1);
5499 	return 0;
5500 }
5501 
5502 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5503 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5504 		int func_id, int insn_idx)
5505 {
5506 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5507 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5508 	struct bpf_map *map = meta->map_ptr;
5509 	u64 val, max;
5510 	int err;
5511 
5512 	if (func_id != BPF_FUNC_tail_call)
5513 		return 0;
5514 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5515 		verbose(env, "kernel subsystem misconfigured verifier\n");
5516 		return -EINVAL;
5517 	}
5518 
5519 	reg = &regs[BPF_REG_3];
5520 	val = reg->var_off.value;
5521 	max = map->max_entries;
5522 
5523 	if (!(register_is_const(reg) && val < max)) {
5524 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5525 		return 0;
5526 	}
5527 
5528 	err = mark_chain_precision(env, BPF_REG_3);
5529 	if (err)
5530 		return err;
5531 	if (bpf_map_key_unseen(aux))
5532 		bpf_map_key_store(aux, val);
5533 	else if (!bpf_map_key_poisoned(aux) &&
5534 		  bpf_map_key_immediate(aux) != val)
5535 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5536 	return 0;
5537 }
5538 
check_reference_leak(struct bpf_verifier_env * env)5539 static int check_reference_leak(struct bpf_verifier_env *env)
5540 {
5541 	struct bpf_func_state *state = cur_func(env);
5542 	int i;
5543 
5544 	for (i = 0; i < state->acquired_refs; i++) {
5545 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5546 			state->refs[i].id, state->refs[i].insn_idx);
5547 	}
5548 	return state->acquired_refs ? -EINVAL : 0;
5549 }
5550 
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5551 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5552 {
5553 	const struct bpf_func_proto *fn = NULL;
5554 	struct bpf_reg_state *regs;
5555 	struct bpf_call_arg_meta meta;
5556 	bool changes_data;
5557 	int i, err;
5558 
5559 	/* find function prototype */
5560 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5561 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5562 			func_id);
5563 		return -EINVAL;
5564 	}
5565 
5566 	if (env->ops->get_func_proto)
5567 		fn = env->ops->get_func_proto(func_id, env->prog);
5568 	if (!fn) {
5569 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5570 			func_id);
5571 		return -EINVAL;
5572 	}
5573 
5574 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5575 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5576 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5577 		return -EINVAL;
5578 	}
5579 
5580 	if (fn->allowed && !fn->allowed(env->prog)) {
5581 		verbose(env, "helper call is not allowed in probe\n");
5582 		return -EINVAL;
5583 	}
5584 
5585 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5586 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5587 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5588 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5589 			func_id_name(func_id), func_id);
5590 		return -EINVAL;
5591 	}
5592 
5593 	memset(&meta, 0, sizeof(meta));
5594 	meta.pkt_access = fn->pkt_access;
5595 
5596 	err = check_func_proto(fn, func_id);
5597 	if (err) {
5598 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5599 			func_id_name(func_id), func_id);
5600 		return err;
5601 	}
5602 
5603 	meta.func_id = func_id;
5604 	/* check args */
5605 	for (i = 0; i < 5; i++) {
5606 		err = check_func_arg(env, i, &meta, fn);
5607 		if (err)
5608 			return err;
5609 	}
5610 
5611 	err = record_func_map(env, &meta, func_id, insn_idx);
5612 	if (err)
5613 		return err;
5614 
5615 	err = record_func_key(env, &meta, func_id, insn_idx);
5616 	if (err)
5617 		return err;
5618 
5619 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5620 	 * is inferred from register state.
5621 	 */
5622 	for (i = 0; i < meta.access_size; i++) {
5623 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5624 				       BPF_WRITE, -1, false);
5625 		if (err)
5626 			return err;
5627 	}
5628 
5629 	if (func_id == BPF_FUNC_tail_call) {
5630 		err = check_reference_leak(env);
5631 		if (err) {
5632 			verbose(env, "tail_call would lead to reference leak\n");
5633 			return err;
5634 		}
5635 	} else if (is_release_function(func_id)) {
5636 		err = release_reference(env, meta.ref_obj_id);
5637 		if (err) {
5638 			verbose(env, "func %s#%d reference has not been acquired before\n",
5639 				func_id_name(func_id), func_id);
5640 			return err;
5641 		}
5642 	}
5643 
5644 	regs = cur_regs(env);
5645 
5646 	/* check that flags argument in get_local_storage(map, flags) is 0,
5647 	 * this is required because get_local_storage() can't return an error.
5648 	 */
5649 	if (func_id == BPF_FUNC_get_local_storage &&
5650 	    !register_is_null(&regs[BPF_REG_2])) {
5651 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5652 		return -EINVAL;
5653 	}
5654 
5655 	/* reset caller saved regs */
5656 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5657 		mark_reg_not_init(env, regs, caller_saved[i]);
5658 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5659 	}
5660 
5661 	/* helper call returns 64-bit value. */
5662 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5663 
5664 	/* update return register (already marked as written above) */
5665 	if (fn->ret_type == RET_INTEGER) {
5666 		/* sets type to SCALAR_VALUE */
5667 		mark_reg_unknown(env, regs, BPF_REG_0);
5668 	} else if (fn->ret_type == RET_VOID) {
5669 		regs[BPF_REG_0].type = NOT_INIT;
5670 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5671 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5672 		/* There is no offset yet applied, variable or fixed */
5673 		mark_reg_known_zero(env, regs, BPF_REG_0);
5674 		/* remember map_ptr, so that check_map_access()
5675 		 * can check 'value_size' boundary of memory access
5676 		 * to map element returned from bpf_map_lookup_elem()
5677 		 */
5678 		if (meta.map_ptr == NULL) {
5679 			verbose(env,
5680 				"kernel subsystem misconfigured verifier\n");
5681 			return -EINVAL;
5682 		}
5683 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5684 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5685 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5686 			if (map_value_has_spin_lock(meta.map_ptr))
5687 				regs[BPF_REG_0].id = ++env->id_gen;
5688 		} else {
5689 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5690 		}
5691 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5692 		mark_reg_known_zero(env, regs, BPF_REG_0);
5693 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5694 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5695 		mark_reg_known_zero(env, regs, BPF_REG_0);
5696 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5697 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5698 		mark_reg_known_zero(env, regs, BPF_REG_0);
5699 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5700 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5701 		mark_reg_known_zero(env, regs, BPF_REG_0);
5702 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5703 		regs[BPF_REG_0].mem_size = meta.mem_size;
5704 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5705 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5706 		const struct btf_type *t;
5707 
5708 		mark_reg_known_zero(env, regs, BPF_REG_0);
5709 		t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5710 		if (!btf_type_is_struct(t)) {
5711 			u32 tsize;
5712 			const struct btf_type *ret;
5713 			const char *tname;
5714 
5715 			/* resolve the type size of ksym. */
5716 			ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5717 			if (IS_ERR(ret)) {
5718 				tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5719 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5720 					tname, PTR_ERR(ret));
5721 				return -EINVAL;
5722 			}
5723 			regs[BPF_REG_0].type =
5724 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5725 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5726 			regs[BPF_REG_0].mem_size = tsize;
5727 		} else {
5728 			regs[BPF_REG_0].type =
5729 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5730 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5731 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5732 		}
5733 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5734 		int ret_btf_id;
5735 
5736 		mark_reg_known_zero(env, regs, BPF_REG_0);
5737 		regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5738 		ret_btf_id = *fn->ret_btf_id;
5739 		if (ret_btf_id == 0) {
5740 			verbose(env, "invalid return type %d of func %s#%d\n",
5741 				fn->ret_type, func_id_name(func_id), func_id);
5742 			return -EINVAL;
5743 		}
5744 		regs[BPF_REG_0].btf_id = ret_btf_id;
5745 	} else {
5746 		verbose(env, "unknown return type %d of func %s#%d\n",
5747 			fn->ret_type, func_id_name(func_id), func_id);
5748 		return -EINVAL;
5749 	}
5750 
5751 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5752 		regs[BPF_REG_0].id = ++env->id_gen;
5753 
5754 	if (is_ptr_cast_function(func_id)) {
5755 		/* For release_reference() */
5756 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5757 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5758 		int id = acquire_reference_state(env, insn_idx);
5759 
5760 		if (id < 0)
5761 			return id;
5762 		/* For mark_ptr_or_null_reg() */
5763 		regs[BPF_REG_0].id = id;
5764 		/* For release_reference() */
5765 		regs[BPF_REG_0].ref_obj_id = id;
5766 	}
5767 
5768 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5769 
5770 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5771 	if (err)
5772 		return err;
5773 
5774 	if ((func_id == BPF_FUNC_get_stack ||
5775 	     func_id == BPF_FUNC_get_task_stack) &&
5776 	    !env->prog->has_callchain_buf) {
5777 		const char *err_str;
5778 
5779 #ifdef CONFIG_PERF_EVENTS
5780 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5781 		err_str = "cannot get callchain buffer for func %s#%d\n";
5782 #else
5783 		err = -ENOTSUPP;
5784 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5785 #endif
5786 		if (err) {
5787 			verbose(env, err_str, func_id_name(func_id), func_id);
5788 			return err;
5789 		}
5790 
5791 		env->prog->has_callchain_buf = true;
5792 	}
5793 
5794 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5795 		env->prog->call_get_stack = true;
5796 
5797 	if (changes_data)
5798 		clear_all_pkt_pointers(env);
5799 	return 0;
5800 }
5801 
signed_add_overflows(s64 a,s64 b)5802 static bool signed_add_overflows(s64 a, s64 b)
5803 {
5804 	/* Do the add in u64, where overflow is well-defined */
5805 	s64 res = (s64)((u64)a + (u64)b);
5806 
5807 	if (b < 0)
5808 		return res > a;
5809 	return res < a;
5810 }
5811 
signed_add32_overflows(s32 a,s32 b)5812 static bool signed_add32_overflows(s32 a, s32 b)
5813 {
5814 	/* Do the add in u32, where overflow is well-defined */
5815 	s32 res = (s32)((u32)a + (u32)b);
5816 
5817 	if (b < 0)
5818 		return res > a;
5819 	return res < a;
5820 }
5821 
signed_sub_overflows(s64 a,s64 b)5822 static bool signed_sub_overflows(s64 a, s64 b)
5823 {
5824 	/* Do the sub in u64, where overflow is well-defined */
5825 	s64 res = (s64)((u64)a - (u64)b);
5826 
5827 	if (b < 0)
5828 		return res < a;
5829 	return res > a;
5830 }
5831 
signed_sub32_overflows(s32 a,s32 b)5832 static bool signed_sub32_overflows(s32 a, s32 b)
5833 {
5834 	/* Do the sub in u32, where overflow is well-defined */
5835 	s32 res = (s32)((u32)a - (u32)b);
5836 
5837 	if (b < 0)
5838 		return res < a;
5839 	return res > a;
5840 }
5841 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5842 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5843 				  const struct bpf_reg_state *reg,
5844 				  enum bpf_reg_type type)
5845 {
5846 	bool known = tnum_is_const(reg->var_off);
5847 	s64 val = reg->var_off.value;
5848 	s64 smin = reg->smin_value;
5849 
5850 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5851 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5852 			reg_type_str[type], val);
5853 		return false;
5854 	}
5855 
5856 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5857 		verbose(env, "%s pointer offset %d is not allowed\n",
5858 			reg_type_str[type], reg->off);
5859 		return false;
5860 	}
5861 
5862 	if (smin == S64_MIN) {
5863 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5864 			reg_type_str[type]);
5865 		return false;
5866 	}
5867 
5868 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5869 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5870 			smin, reg_type_str[type]);
5871 		return false;
5872 	}
5873 
5874 	return true;
5875 }
5876 
cur_aux(struct bpf_verifier_env * env)5877 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5878 {
5879 	return &env->insn_aux_data[env->insn_idx];
5880 }
5881 
5882 enum {
5883 	REASON_BOUNDS	= -1,
5884 	REASON_TYPE	= -2,
5885 	REASON_PATHS	= -3,
5886 	REASON_LIMIT	= -4,
5887 	REASON_STACK	= -5,
5888 };
5889 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5890 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5891 			      u32 *alu_limit, bool mask_to_left)
5892 {
5893 	u32 max = 0, ptr_limit = 0;
5894 
5895 	switch (ptr_reg->type) {
5896 	case PTR_TO_STACK:
5897 		/* Offset 0 is out-of-bounds, but acceptable start for the
5898 		 * left direction, see BPF_REG_FP. Also, unknown scalar
5899 		 * offset where we would need to deal with min/max bounds is
5900 		 * currently prohibited for unprivileged.
5901 		 */
5902 		max = MAX_BPF_STACK + mask_to_left;
5903 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5904 		break;
5905 	case PTR_TO_MAP_VALUE:
5906 		max = ptr_reg->map_ptr->value_size;
5907 		ptr_limit = (mask_to_left ?
5908 			     ptr_reg->smin_value :
5909 			     ptr_reg->umax_value) + ptr_reg->off;
5910 		break;
5911 	default:
5912 		return REASON_TYPE;
5913 	}
5914 
5915 	if (ptr_limit >= max)
5916 		return REASON_LIMIT;
5917 	*alu_limit = ptr_limit;
5918 	return 0;
5919 }
5920 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5921 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5922 				    const struct bpf_insn *insn)
5923 {
5924 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5925 }
5926 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5927 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5928 				       u32 alu_state, u32 alu_limit)
5929 {
5930 	/* If we arrived here from different branches with different
5931 	 * state or limits to sanitize, then this won't work.
5932 	 */
5933 	if (aux->alu_state &&
5934 	    (aux->alu_state != alu_state ||
5935 	     aux->alu_limit != alu_limit))
5936 		return REASON_PATHS;
5937 
5938 	/* Corresponding fixup done in fixup_bpf_calls(). */
5939 	aux->alu_state = alu_state;
5940 	aux->alu_limit = alu_limit;
5941 	return 0;
5942 }
5943 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)5944 static int sanitize_val_alu(struct bpf_verifier_env *env,
5945 			    struct bpf_insn *insn)
5946 {
5947 	struct bpf_insn_aux_data *aux = cur_aux(env);
5948 
5949 	if (can_skip_alu_sanitation(env, insn))
5950 		return 0;
5951 
5952 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5953 }
5954 
sanitize_needed(u8 opcode)5955 static bool sanitize_needed(u8 opcode)
5956 {
5957 	return opcode == BPF_ADD || opcode == BPF_SUB;
5958 }
5959 
5960 struct bpf_sanitize_info {
5961 	struct bpf_insn_aux_data aux;
5962 	bool mask_to_left;
5963 };
5964 
5965 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)5966 sanitize_speculative_path(struct bpf_verifier_env *env,
5967 			  const struct bpf_insn *insn,
5968 			  u32 next_idx, u32 curr_idx)
5969 {
5970 	struct bpf_verifier_state *branch;
5971 	struct bpf_reg_state *regs;
5972 
5973 	branch = push_stack(env, next_idx, curr_idx, true);
5974 	if (branch && insn) {
5975 		regs = branch->frame[branch->curframe]->regs;
5976 		if (BPF_SRC(insn->code) == BPF_K) {
5977 			mark_reg_unknown(env, regs, insn->dst_reg);
5978 		} else if (BPF_SRC(insn->code) == BPF_X) {
5979 			mark_reg_unknown(env, regs, insn->dst_reg);
5980 			mark_reg_unknown(env, regs, insn->src_reg);
5981 		}
5982 	}
5983 	return branch;
5984 }
5985 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)5986 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5987 			    struct bpf_insn *insn,
5988 			    const struct bpf_reg_state *ptr_reg,
5989 			    const struct bpf_reg_state *off_reg,
5990 			    struct bpf_reg_state *dst_reg,
5991 			    struct bpf_sanitize_info *info,
5992 			    const bool commit_window)
5993 {
5994 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
5995 	struct bpf_verifier_state *vstate = env->cur_state;
5996 	bool off_is_imm = tnum_is_const(off_reg->var_off);
5997 	bool off_is_neg = off_reg->smin_value < 0;
5998 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5999 	u8 opcode = BPF_OP(insn->code);
6000 	u32 alu_state, alu_limit;
6001 	struct bpf_reg_state tmp;
6002 	bool ret;
6003 	int err;
6004 
6005 	if (can_skip_alu_sanitation(env, insn))
6006 		return 0;
6007 
6008 	/* We already marked aux for masking from non-speculative
6009 	 * paths, thus we got here in the first place. We only care
6010 	 * to explore bad access from here.
6011 	 */
6012 	if (vstate->speculative)
6013 		goto do_sim;
6014 
6015 	if (!commit_window) {
6016 		if (!tnum_is_const(off_reg->var_off) &&
6017 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6018 			return REASON_BOUNDS;
6019 
6020 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6021 				     (opcode == BPF_SUB && !off_is_neg);
6022 	}
6023 
6024 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6025 	if (err < 0)
6026 		return err;
6027 
6028 	if (commit_window) {
6029 		/* In commit phase we narrow the masking window based on
6030 		 * the observed pointer move after the simulated operation.
6031 		 */
6032 		alu_state = info->aux.alu_state;
6033 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6034 	} else {
6035 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6036 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6037 		alu_state |= ptr_is_dst_reg ?
6038 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6039 
6040 		/* Limit pruning on unknown scalars to enable deep search for
6041 		 * potential masking differences from other program paths.
6042 		 */
6043 		if (!off_is_imm)
6044 			env->explore_alu_limits = true;
6045 	}
6046 
6047 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6048 	if (err < 0)
6049 		return err;
6050 do_sim:
6051 	/* If we're in commit phase, we're done here given we already
6052 	 * pushed the truncated dst_reg into the speculative verification
6053 	 * stack.
6054 	 *
6055 	 * Also, when register is a known constant, we rewrite register-based
6056 	 * operation to immediate-based, and thus do not need masking (and as
6057 	 * a consequence, do not need to simulate the zero-truncation either).
6058 	 */
6059 	if (commit_window || off_is_imm)
6060 		return 0;
6061 
6062 	/* Simulate and find potential out-of-bounds access under
6063 	 * speculative execution from truncation as a result of
6064 	 * masking when off was not within expected range. If off
6065 	 * sits in dst, then we temporarily need to move ptr there
6066 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6067 	 * for cases where we use K-based arithmetic in one direction
6068 	 * and truncated reg-based in the other in order to explore
6069 	 * bad access.
6070 	 */
6071 	if (!ptr_is_dst_reg) {
6072 		tmp = *dst_reg;
6073 		copy_register_state(dst_reg, ptr_reg);
6074 	}
6075 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6076 					env->insn_idx);
6077 	if (!ptr_is_dst_reg && ret)
6078 		*dst_reg = tmp;
6079 	return !ret ? REASON_STACK : 0;
6080 }
6081 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)6082 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6083 {
6084 	struct bpf_verifier_state *vstate = env->cur_state;
6085 
6086 	/* If we simulate paths under speculation, we don't update the
6087 	 * insn as 'seen' such that when we verify unreachable paths in
6088 	 * the non-speculative domain, sanitize_dead_code() can still
6089 	 * rewrite/sanitize them.
6090 	 */
6091 	if (!vstate->speculative)
6092 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6093 }
6094 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)6095 static int sanitize_err(struct bpf_verifier_env *env,
6096 			const struct bpf_insn *insn, int reason,
6097 			const struct bpf_reg_state *off_reg,
6098 			const struct bpf_reg_state *dst_reg)
6099 {
6100 	static const char *err = "pointer arithmetic with it prohibited for !root";
6101 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6102 	u32 dst = insn->dst_reg, src = insn->src_reg;
6103 
6104 	switch (reason) {
6105 	case REASON_BOUNDS:
6106 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6107 			off_reg == dst_reg ? dst : src, err);
6108 		break;
6109 	case REASON_TYPE:
6110 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6111 			off_reg == dst_reg ? src : dst, err);
6112 		break;
6113 	case REASON_PATHS:
6114 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6115 			dst, op, err);
6116 		break;
6117 	case REASON_LIMIT:
6118 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6119 			dst, op, err);
6120 		break;
6121 	case REASON_STACK:
6122 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6123 			dst, err);
6124 		break;
6125 	default:
6126 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6127 			reason);
6128 		break;
6129 	}
6130 
6131 	return -EACCES;
6132 }
6133 
6134 /* check that stack access falls within stack limits and that 'reg' doesn't
6135  * have a variable offset.
6136  *
6137  * Variable offset is prohibited for unprivileged mode for simplicity since it
6138  * requires corresponding support in Spectre masking for stack ALU.  See also
6139  * retrieve_ptr_limit().
6140  *
6141  *
6142  * 'off' includes 'reg->off'.
6143  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)6144 static int check_stack_access_for_ptr_arithmetic(
6145 				struct bpf_verifier_env *env,
6146 				int regno,
6147 				const struct bpf_reg_state *reg,
6148 				int off)
6149 {
6150 	if (!tnum_is_const(reg->var_off)) {
6151 		char tn_buf[48];
6152 
6153 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6154 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6155 			regno, tn_buf, off);
6156 		return -EACCES;
6157 	}
6158 
6159 	if (off >= 0 || off < -MAX_BPF_STACK) {
6160 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6161 			"prohibited for !root; off=%d\n", regno, off);
6162 		return -EACCES;
6163 	}
6164 
6165 	return 0;
6166 }
6167 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)6168 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6169 				 const struct bpf_insn *insn,
6170 				 const struct bpf_reg_state *dst_reg)
6171 {
6172 	u32 dst = insn->dst_reg;
6173 
6174 	/* For unprivileged we require that resulting offset must be in bounds
6175 	 * in order to be able to sanitize access later on.
6176 	 */
6177 	if (env->bypass_spec_v1)
6178 		return 0;
6179 
6180 	switch (dst_reg->type) {
6181 	case PTR_TO_STACK:
6182 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6183 					dst_reg->off + dst_reg->var_off.value))
6184 			return -EACCES;
6185 		break;
6186 	case PTR_TO_MAP_VALUE:
6187 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6188 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6189 				"prohibited for !root\n", dst);
6190 			return -EACCES;
6191 		}
6192 		break;
6193 	default:
6194 		break;
6195 	}
6196 
6197 	return 0;
6198 }
6199 
6200 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6201  * Caller should also handle BPF_MOV case separately.
6202  * If we return -EACCES, caller may want to try again treating pointer as a
6203  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6204  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6205 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6206 				   struct bpf_insn *insn,
6207 				   const struct bpf_reg_state *ptr_reg,
6208 				   const struct bpf_reg_state *off_reg)
6209 {
6210 	struct bpf_verifier_state *vstate = env->cur_state;
6211 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6212 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6213 	bool known = tnum_is_const(off_reg->var_off);
6214 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6215 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6216 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6217 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6218 	struct bpf_sanitize_info info = {};
6219 	u8 opcode = BPF_OP(insn->code);
6220 	u32 dst = insn->dst_reg;
6221 	int ret;
6222 
6223 	dst_reg = &regs[dst];
6224 
6225 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6226 	    smin_val > smax_val || umin_val > umax_val) {
6227 		/* Taint dst register if offset had invalid bounds derived from
6228 		 * e.g. dead branches.
6229 		 */
6230 		__mark_reg_unknown(env, dst_reg);
6231 		return 0;
6232 	}
6233 
6234 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6235 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6236 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6237 			__mark_reg_unknown(env, dst_reg);
6238 			return 0;
6239 		}
6240 
6241 		verbose(env,
6242 			"R%d 32-bit pointer arithmetic prohibited\n",
6243 			dst);
6244 		return -EACCES;
6245 	}
6246 
6247 	switch (ptr_reg->type) {
6248 	case PTR_TO_MAP_VALUE_OR_NULL:
6249 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6250 			dst, reg_type_str[ptr_reg->type]);
6251 		return -EACCES;
6252 	case CONST_PTR_TO_MAP:
6253 		/* smin_val represents the known value */
6254 		if (known && smin_val == 0 && opcode == BPF_ADD)
6255 			break;
6256 		fallthrough;
6257 	case PTR_TO_PACKET_END:
6258 	case PTR_TO_SOCKET:
6259 	case PTR_TO_SOCK_COMMON:
6260 	case PTR_TO_TCP_SOCK:
6261 	case PTR_TO_XDP_SOCK:
6262 reject:
6263 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6264 			dst, reg_type_str[ptr_reg->type]);
6265 		return -EACCES;
6266 	default:
6267 		if (reg_type_may_be_null(ptr_reg->type))
6268 			goto reject;
6269 		break;
6270 	}
6271 
6272 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6273 	 * The id may be overwritten later if we create a new variable offset.
6274 	 */
6275 	dst_reg->type = ptr_reg->type;
6276 	dst_reg->id = ptr_reg->id;
6277 
6278 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6279 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6280 		return -EINVAL;
6281 
6282 	/* pointer types do not carry 32-bit bounds at the moment. */
6283 	__mark_reg32_unbounded(dst_reg);
6284 
6285 	if (sanitize_needed(opcode)) {
6286 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6287 				       &info, false);
6288 		if (ret < 0)
6289 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6290 	}
6291 
6292 	switch (opcode) {
6293 	case BPF_ADD:
6294 		/* We can take a fixed offset as long as it doesn't overflow
6295 		 * the s32 'off' field
6296 		 */
6297 		if (known && (ptr_reg->off + smin_val ==
6298 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6299 			/* pointer += K.  Accumulate it into fixed offset */
6300 			dst_reg->smin_value = smin_ptr;
6301 			dst_reg->smax_value = smax_ptr;
6302 			dst_reg->umin_value = umin_ptr;
6303 			dst_reg->umax_value = umax_ptr;
6304 			dst_reg->var_off = ptr_reg->var_off;
6305 			dst_reg->off = ptr_reg->off + smin_val;
6306 			dst_reg->raw = ptr_reg->raw;
6307 			break;
6308 		}
6309 		/* A new variable offset is created.  Note that off_reg->off
6310 		 * == 0, since it's a scalar.
6311 		 * dst_reg gets the pointer type and since some positive
6312 		 * integer value was added to the pointer, give it a new 'id'
6313 		 * if it's a PTR_TO_PACKET.
6314 		 * this creates a new 'base' pointer, off_reg (variable) gets
6315 		 * added into the variable offset, and we copy the fixed offset
6316 		 * from ptr_reg.
6317 		 */
6318 		if (signed_add_overflows(smin_ptr, smin_val) ||
6319 		    signed_add_overflows(smax_ptr, smax_val)) {
6320 			dst_reg->smin_value = S64_MIN;
6321 			dst_reg->smax_value = S64_MAX;
6322 		} else {
6323 			dst_reg->smin_value = smin_ptr + smin_val;
6324 			dst_reg->smax_value = smax_ptr + smax_val;
6325 		}
6326 		if (umin_ptr + umin_val < umin_ptr ||
6327 		    umax_ptr + umax_val < umax_ptr) {
6328 			dst_reg->umin_value = 0;
6329 			dst_reg->umax_value = U64_MAX;
6330 		} else {
6331 			dst_reg->umin_value = umin_ptr + umin_val;
6332 			dst_reg->umax_value = umax_ptr + umax_val;
6333 		}
6334 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6335 		dst_reg->off = ptr_reg->off;
6336 		dst_reg->raw = ptr_reg->raw;
6337 		if (reg_is_pkt_pointer(ptr_reg)) {
6338 			dst_reg->id = ++env->id_gen;
6339 			/* something was added to pkt_ptr, set range to zero */
6340 			dst_reg->raw = 0;
6341 		}
6342 		break;
6343 	case BPF_SUB:
6344 		if (dst_reg == off_reg) {
6345 			/* scalar -= pointer.  Creates an unknown scalar */
6346 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6347 				dst);
6348 			return -EACCES;
6349 		}
6350 		/* We don't allow subtraction from FP, because (according to
6351 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6352 		 * be able to deal with it.
6353 		 */
6354 		if (ptr_reg->type == PTR_TO_STACK) {
6355 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6356 				dst);
6357 			return -EACCES;
6358 		}
6359 		if (known && (ptr_reg->off - smin_val ==
6360 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6361 			/* pointer -= K.  Subtract it from fixed offset */
6362 			dst_reg->smin_value = smin_ptr;
6363 			dst_reg->smax_value = smax_ptr;
6364 			dst_reg->umin_value = umin_ptr;
6365 			dst_reg->umax_value = umax_ptr;
6366 			dst_reg->var_off = ptr_reg->var_off;
6367 			dst_reg->id = ptr_reg->id;
6368 			dst_reg->off = ptr_reg->off - smin_val;
6369 			dst_reg->raw = ptr_reg->raw;
6370 			break;
6371 		}
6372 		/* A new variable offset is created.  If the subtrahend is known
6373 		 * nonnegative, then any reg->range we had before is still good.
6374 		 */
6375 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6376 		    signed_sub_overflows(smax_ptr, smin_val)) {
6377 			/* Overflow possible, we know nothing */
6378 			dst_reg->smin_value = S64_MIN;
6379 			dst_reg->smax_value = S64_MAX;
6380 		} else {
6381 			dst_reg->smin_value = smin_ptr - smax_val;
6382 			dst_reg->smax_value = smax_ptr - smin_val;
6383 		}
6384 		if (umin_ptr < umax_val) {
6385 			/* Overflow possible, we know nothing */
6386 			dst_reg->umin_value = 0;
6387 			dst_reg->umax_value = U64_MAX;
6388 		} else {
6389 			/* Cannot overflow (as long as bounds are consistent) */
6390 			dst_reg->umin_value = umin_ptr - umax_val;
6391 			dst_reg->umax_value = umax_ptr - umin_val;
6392 		}
6393 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6394 		dst_reg->off = ptr_reg->off;
6395 		dst_reg->raw = ptr_reg->raw;
6396 		if (reg_is_pkt_pointer(ptr_reg)) {
6397 			dst_reg->id = ++env->id_gen;
6398 			/* something was added to pkt_ptr, set range to zero */
6399 			if (smin_val < 0)
6400 				dst_reg->raw = 0;
6401 		}
6402 		break;
6403 	case BPF_AND:
6404 	case BPF_OR:
6405 	case BPF_XOR:
6406 		/* bitwise ops on pointers are troublesome, prohibit. */
6407 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6408 			dst, bpf_alu_string[opcode >> 4]);
6409 		return -EACCES;
6410 	default:
6411 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6412 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6413 			dst, bpf_alu_string[opcode >> 4]);
6414 		return -EACCES;
6415 	}
6416 
6417 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6418 		return -EINVAL;
6419 	reg_bounds_sync(dst_reg);
6420 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6421 		return -EACCES;
6422 	if (sanitize_needed(opcode)) {
6423 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6424 				       &info, true);
6425 		if (ret < 0)
6426 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6427 	}
6428 
6429 	return 0;
6430 }
6431 
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6432 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6433 				 struct bpf_reg_state *src_reg)
6434 {
6435 	s32 smin_val = src_reg->s32_min_value;
6436 	s32 smax_val = src_reg->s32_max_value;
6437 	u32 umin_val = src_reg->u32_min_value;
6438 	u32 umax_val = src_reg->u32_max_value;
6439 
6440 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6441 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6442 		dst_reg->s32_min_value = S32_MIN;
6443 		dst_reg->s32_max_value = S32_MAX;
6444 	} else {
6445 		dst_reg->s32_min_value += smin_val;
6446 		dst_reg->s32_max_value += smax_val;
6447 	}
6448 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6449 	    dst_reg->u32_max_value + umax_val < umax_val) {
6450 		dst_reg->u32_min_value = 0;
6451 		dst_reg->u32_max_value = U32_MAX;
6452 	} else {
6453 		dst_reg->u32_min_value += umin_val;
6454 		dst_reg->u32_max_value += umax_val;
6455 	}
6456 }
6457 
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6458 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6459 			       struct bpf_reg_state *src_reg)
6460 {
6461 	s64 smin_val = src_reg->smin_value;
6462 	s64 smax_val = src_reg->smax_value;
6463 	u64 umin_val = src_reg->umin_value;
6464 	u64 umax_val = src_reg->umax_value;
6465 
6466 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6467 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6468 		dst_reg->smin_value = S64_MIN;
6469 		dst_reg->smax_value = S64_MAX;
6470 	} else {
6471 		dst_reg->smin_value += smin_val;
6472 		dst_reg->smax_value += smax_val;
6473 	}
6474 	if (dst_reg->umin_value + umin_val < umin_val ||
6475 	    dst_reg->umax_value + umax_val < umax_val) {
6476 		dst_reg->umin_value = 0;
6477 		dst_reg->umax_value = U64_MAX;
6478 	} else {
6479 		dst_reg->umin_value += umin_val;
6480 		dst_reg->umax_value += umax_val;
6481 	}
6482 }
6483 
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6484 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6485 				 struct bpf_reg_state *src_reg)
6486 {
6487 	s32 smin_val = src_reg->s32_min_value;
6488 	s32 smax_val = src_reg->s32_max_value;
6489 	u32 umin_val = src_reg->u32_min_value;
6490 	u32 umax_val = src_reg->u32_max_value;
6491 
6492 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6493 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6494 		/* Overflow possible, we know nothing */
6495 		dst_reg->s32_min_value = S32_MIN;
6496 		dst_reg->s32_max_value = S32_MAX;
6497 	} else {
6498 		dst_reg->s32_min_value -= smax_val;
6499 		dst_reg->s32_max_value -= smin_val;
6500 	}
6501 	if (dst_reg->u32_min_value < umax_val) {
6502 		/* Overflow possible, we know nothing */
6503 		dst_reg->u32_min_value = 0;
6504 		dst_reg->u32_max_value = U32_MAX;
6505 	} else {
6506 		/* Cannot overflow (as long as bounds are consistent) */
6507 		dst_reg->u32_min_value -= umax_val;
6508 		dst_reg->u32_max_value -= umin_val;
6509 	}
6510 }
6511 
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6512 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6513 			       struct bpf_reg_state *src_reg)
6514 {
6515 	s64 smin_val = src_reg->smin_value;
6516 	s64 smax_val = src_reg->smax_value;
6517 	u64 umin_val = src_reg->umin_value;
6518 	u64 umax_val = src_reg->umax_value;
6519 
6520 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6521 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6522 		/* Overflow possible, we know nothing */
6523 		dst_reg->smin_value = S64_MIN;
6524 		dst_reg->smax_value = S64_MAX;
6525 	} else {
6526 		dst_reg->smin_value -= smax_val;
6527 		dst_reg->smax_value -= smin_val;
6528 	}
6529 	if (dst_reg->umin_value < umax_val) {
6530 		/* Overflow possible, we know nothing */
6531 		dst_reg->umin_value = 0;
6532 		dst_reg->umax_value = U64_MAX;
6533 	} else {
6534 		/* Cannot overflow (as long as bounds are consistent) */
6535 		dst_reg->umin_value -= umax_val;
6536 		dst_reg->umax_value -= umin_val;
6537 	}
6538 }
6539 
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6540 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6541 				 struct bpf_reg_state *src_reg)
6542 {
6543 	s32 smin_val = src_reg->s32_min_value;
6544 	u32 umin_val = src_reg->u32_min_value;
6545 	u32 umax_val = src_reg->u32_max_value;
6546 
6547 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6548 		/* Ain't nobody got time to multiply that sign */
6549 		__mark_reg32_unbounded(dst_reg);
6550 		return;
6551 	}
6552 	/* Both values are positive, so we can work with unsigned and
6553 	 * copy the result to signed (unless it exceeds S32_MAX).
6554 	 */
6555 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6556 		/* Potential overflow, we know nothing */
6557 		__mark_reg32_unbounded(dst_reg);
6558 		return;
6559 	}
6560 	dst_reg->u32_min_value *= umin_val;
6561 	dst_reg->u32_max_value *= umax_val;
6562 	if (dst_reg->u32_max_value > S32_MAX) {
6563 		/* Overflow possible, we know nothing */
6564 		dst_reg->s32_min_value = S32_MIN;
6565 		dst_reg->s32_max_value = S32_MAX;
6566 	} else {
6567 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6568 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6569 	}
6570 }
6571 
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6572 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6573 			       struct bpf_reg_state *src_reg)
6574 {
6575 	s64 smin_val = src_reg->smin_value;
6576 	u64 umin_val = src_reg->umin_value;
6577 	u64 umax_val = src_reg->umax_value;
6578 
6579 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6580 		/* Ain't nobody got time to multiply that sign */
6581 		__mark_reg64_unbounded(dst_reg);
6582 		return;
6583 	}
6584 	/* Both values are positive, so we can work with unsigned and
6585 	 * copy the result to signed (unless it exceeds S64_MAX).
6586 	 */
6587 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6588 		/* Potential overflow, we know nothing */
6589 		__mark_reg64_unbounded(dst_reg);
6590 		return;
6591 	}
6592 	dst_reg->umin_value *= umin_val;
6593 	dst_reg->umax_value *= umax_val;
6594 	if (dst_reg->umax_value > S64_MAX) {
6595 		/* Overflow possible, we know nothing */
6596 		dst_reg->smin_value = S64_MIN;
6597 		dst_reg->smax_value = S64_MAX;
6598 	} else {
6599 		dst_reg->smin_value = dst_reg->umin_value;
6600 		dst_reg->smax_value = dst_reg->umax_value;
6601 	}
6602 }
6603 
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6604 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6605 				 struct bpf_reg_state *src_reg)
6606 {
6607 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6608 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6609 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6610 	s32 smin_val = src_reg->s32_min_value;
6611 	u32 umax_val = src_reg->u32_max_value;
6612 
6613 	if (src_known && dst_known) {
6614 		__mark_reg32_known(dst_reg, var32_off.value);
6615 		return;
6616 	}
6617 
6618 	/* We get our minimum from the var_off, since that's inherently
6619 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6620 	 */
6621 	dst_reg->u32_min_value = var32_off.value;
6622 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6623 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6624 		/* Lose signed bounds when ANDing negative numbers,
6625 		 * ain't nobody got time for that.
6626 		 */
6627 		dst_reg->s32_min_value = S32_MIN;
6628 		dst_reg->s32_max_value = S32_MAX;
6629 	} else {
6630 		/* ANDing two positives gives a positive, so safe to
6631 		 * cast result into s64.
6632 		 */
6633 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6634 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6635 	}
6636 }
6637 
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6638 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6639 			       struct bpf_reg_state *src_reg)
6640 {
6641 	bool src_known = tnum_is_const(src_reg->var_off);
6642 	bool dst_known = tnum_is_const(dst_reg->var_off);
6643 	s64 smin_val = src_reg->smin_value;
6644 	u64 umax_val = src_reg->umax_value;
6645 
6646 	if (src_known && dst_known) {
6647 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6648 		return;
6649 	}
6650 
6651 	/* We get our minimum from the var_off, since that's inherently
6652 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6653 	 */
6654 	dst_reg->umin_value = dst_reg->var_off.value;
6655 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6656 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6657 		/* Lose signed bounds when ANDing negative numbers,
6658 		 * ain't nobody got time for that.
6659 		 */
6660 		dst_reg->smin_value = S64_MIN;
6661 		dst_reg->smax_value = S64_MAX;
6662 	} else {
6663 		/* ANDing two positives gives a positive, so safe to
6664 		 * cast result into s64.
6665 		 */
6666 		dst_reg->smin_value = dst_reg->umin_value;
6667 		dst_reg->smax_value = dst_reg->umax_value;
6668 	}
6669 	/* We may learn something more from the var_off */
6670 	__update_reg_bounds(dst_reg);
6671 }
6672 
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6673 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6674 				struct bpf_reg_state *src_reg)
6675 {
6676 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6677 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6678 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6679 	s32 smin_val = src_reg->s32_min_value;
6680 	u32 umin_val = src_reg->u32_min_value;
6681 
6682 	if (src_known && dst_known) {
6683 		__mark_reg32_known(dst_reg, var32_off.value);
6684 		return;
6685 	}
6686 
6687 	/* We get our maximum from the var_off, and our minimum is the
6688 	 * maximum of the operands' minima
6689 	 */
6690 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6691 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6692 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6693 		/* Lose signed bounds when ORing negative numbers,
6694 		 * ain't nobody got time for that.
6695 		 */
6696 		dst_reg->s32_min_value = S32_MIN;
6697 		dst_reg->s32_max_value = S32_MAX;
6698 	} else {
6699 		/* ORing two positives gives a positive, so safe to
6700 		 * cast result into s64.
6701 		 */
6702 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6703 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6704 	}
6705 }
6706 
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6707 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6708 			      struct bpf_reg_state *src_reg)
6709 {
6710 	bool src_known = tnum_is_const(src_reg->var_off);
6711 	bool dst_known = tnum_is_const(dst_reg->var_off);
6712 	s64 smin_val = src_reg->smin_value;
6713 	u64 umin_val = src_reg->umin_value;
6714 
6715 	if (src_known && dst_known) {
6716 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6717 		return;
6718 	}
6719 
6720 	/* We get our maximum from the var_off, and our minimum is the
6721 	 * maximum of the operands' minima
6722 	 */
6723 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6724 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6725 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6726 		/* Lose signed bounds when ORing negative numbers,
6727 		 * ain't nobody got time for that.
6728 		 */
6729 		dst_reg->smin_value = S64_MIN;
6730 		dst_reg->smax_value = S64_MAX;
6731 	} else {
6732 		/* ORing two positives gives a positive, so safe to
6733 		 * cast result into s64.
6734 		 */
6735 		dst_reg->smin_value = dst_reg->umin_value;
6736 		dst_reg->smax_value = dst_reg->umax_value;
6737 	}
6738 	/* We may learn something more from the var_off */
6739 	__update_reg_bounds(dst_reg);
6740 }
6741 
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6742 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6743 				 struct bpf_reg_state *src_reg)
6744 {
6745 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6746 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6747 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6748 	s32 smin_val = src_reg->s32_min_value;
6749 
6750 	if (src_known && dst_known) {
6751 		__mark_reg32_known(dst_reg, var32_off.value);
6752 		return;
6753 	}
6754 
6755 	/* We get both minimum and maximum from the var32_off. */
6756 	dst_reg->u32_min_value = var32_off.value;
6757 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6758 
6759 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6760 		/* XORing two positive sign numbers gives a positive,
6761 		 * so safe to cast u32 result into s32.
6762 		 */
6763 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6764 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6765 	} else {
6766 		dst_reg->s32_min_value = S32_MIN;
6767 		dst_reg->s32_max_value = S32_MAX;
6768 	}
6769 }
6770 
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6771 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6772 			       struct bpf_reg_state *src_reg)
6773 {
6774 	bool src_known = tnum_is_const(src_reg->var_off);
6775 	bool dst_known = tnum_is_const(dst_reg->var_off);
6776 	s64 smin_val = src_reg->smin_value;
6777 
6778 	if (src_known && dst_known) {
6779 		/* dst_reg->var_off.value has been updated earlier */
6780 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6781 		return;
6782 	}
6783 
6784 	/* We get both minimum and maximum from the var_off. */
6785 	dst_reg->umin_value = dst_reg->var_off.value;
6786 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6787 
6788 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6789 		/* XORing two positive sign numbers gives a positive,
6790 		 * so safe to cast u64 result into s64.
6791 		 */
6792 		dst_reg->smin_value = dst_reg->umin_value;
6793 		dst_reg->smax_value = dst_reg->umax_value;
6794 	} else {
6795 		dst_reg->smin_value = S64_MIN;
6796 		dst_reg->smax_value = S64_MAX;
6797 	}
6798 
6799 	__update_reg_bounds(dst_reg);
6800 }
6801 
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6802 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6803 				   u64 umin_val, u64 umax_val)
6804 {
6805 	/* We lose all sign bit information (except what we can pick
6806 	 * up from var_off)
6807 	 */
6808 	dst_reg->s32_min_value = S32_MIN;
6809 	dst_reg->s32_max_value = S32_MAX;
6810 	/* If we might shift our top bit out, then we know nothing */
6811 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6812 		dst_reg->u32_min_value = 0;
6813 		dst_reg->u32_max_value = U32_MAX;
6814 	} else {
6815 		dst_reg->u32_min_value <<= umin_val;
6816 		dst_reg->u32_max_value <<= umax_val;
6817 	}
6818 }
6819 
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6820 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6821 				 struct bpf_reg_state *src_reg)
6822 {
6823 	u32 umax_val = src_reg->u32_max_value;
6824 	u32 umin_val = src_reg->u32_min_value;
6825 	/* u32 alu operation will zext upper bits */
6826 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6827 
6828 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6829 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6830 	/* Not required but being careful mark reg64 bounds as unknown so
6831 	 * that we are forced to pick them up from tnum and zext later and
6832 	 * if some path skips this step we are still safe.
6833 	 */
6834 	__mark_reg64_unbounded(dst_reg);
6835 	__update_reg32_bounds(dst_reg);
6836 }
6837 
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6838 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6839 				   u64 umin_val, u64 umax_val)
6840 {
6841 	/* Special case <<32 because it is a common compiler pattern to sign
6842 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6843 	 * positive we know this shift will also be positive so we can track
6844 	 * bounds correctly. Otherwise we lose all sign bit information except
6845 	 * what we can pick up from var_off. Perhaps we can generalize this
6846 	 * later to shifts of any length.
6847 	 */
6848 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6849 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6850 	else
6851 		dst_reg->smax_value = S64_MAX;
6852 
6853 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6854 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6855 	else
6856 		dst_reg->smin_value = S64_MIN;
6857 
6858 	/* If we might shift our top bit out, then we know nothing */
6859 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6860 		dst_reg->umin_value = 0;
6861 		dst_reg->umax_value = U64_MAX;
6862 	} else {
6863 		dst_reg->umin_value <<= umin_val;
6864 		dst_reg->umax_value <<= umax_val;
6865 	}
6866 }
6867 
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6868 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6869 			       struct bpf_reg_state *src_reg)
6870 {
6871 	u64 umax_val = src_reg->umax_value;
6872 	u64 umin_val = src_reg->umin_value;
6873 
6874 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6875 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6876 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6877 
6878 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6879 	/* We may learn something more from the var_off */
6880 	__update_reg_bounds(dst_reg);
6881 }
6882 
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6883 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6884 				 struct bpf_reg_state *src_reg)
6885 {
6886 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6887 	u32 umax_val = src_reg->u32_max_value;
6888 	u32 umin_val = src_reg->u32_min_value;
6889 
6890 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6891 	 * be negative, then either:
6892 	 * 1) src_reg might be zero, so the sign bit of the result is
6893 	 *    unknown, so we lose our signed bounds
6894 	 * 2) it's known negative, thus the unsigned bounds capture the
6895 	 *    signed bounds
6896 	 * 3) the signed bounds cross zero, so they tell us nothing
6897 	 *    about the result
6898 	 * If the value in dst_reg is known nonnegative, then again the
6899 	 * unsigned bounts capture the signed bounds.
6900 	 * Thus, in all cases it suffices to blow away our signed bounds
6901 	 * and rely on inferring new ones from the unsigned bounds and
6902 	 * var_off of the result.
6903 	 */
6904 	dst_reg->s32_min_value = S32_MIN;
6905 	dst_reg->s32_max_value = S32_MAX;
6906 
6907 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6908 	dst_reg->u32_min_value >>= umax_val;
6909 	dst_reg->u32_max_value >>= umin_val;
6910 
6911 	__mark_reg64_unbounded(dst_reg);
6912 	__update_reg32_bounds(dst_reg);
6913 }
6914 
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6915 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6916 			       struct bpf_reg_state *src_reg)
6917 {
6918 	u64 umax_val = src_reg->umax_value;
6919 	u64 umin_val = src_reg->umin_value;
6920 
6921 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6922 	 * be negative, then either:
6923 	 * 1) src_reg might be zero, so the sign bit of the result is
6924 	 *    unknown, so we lose our signed bounds
6925 	 * 2) it's known negative, thus the unsigned bounds capture the
6926 	 *    signed bounds
6927 	 * 3) the signed bounds cross zero, so they tell us nothing
6928 	 *    about the result
6929 	 * If the value in dst_reg is known nonnegative, then again the
6930 	 * unsigned bounts capture the signed bounds.
6931 	 * Thus, in all cases it suffices to blow away our signed bounds
6932 	 * and rely on inferring new ones from the unsigned bounds and
6933 	 * var_off of the result.
6934 	 */
6935 	dst_reg->smin_value = S64_MIN;
6936 	dst_reg->smax_value = S64_MAX;
6937 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6938 	dst_reg->umin_value >>= umax_val;
6939 	dst_reg->umax_value >>= umin_val;
6940 
6941 	/* Its not easy to operate on alu32 bounds here because it depends
6942 	 * on bits being shifted in. Take easy way out and mark unbounded
6943 	 * so we can recalculate later from tnum.
6944 	 */
6945 	__mark_reg32_unbounded(dst_reg);
6946 	__update_reg_bounds(dst_reg);
6947 }
6948 
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6949 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6950 				  struct bpf_reg_state *src_reg)
6951 {
6952 	u64 umin_val = src_reg->u32_min_value;
6953 
6954 	/* Upon reaching here, src_known is true and
6955 	 * umax_val is equal to umin_val.
6956 	 */
6957 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6958 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6959 
6960 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6961 
6962 	/* blow away the dst_reg umin_value/umax_value and rely on
6963 	 * dst_reg var_off to refine the result.
6964 	 */
6965 	dst_reg->u32_min_value = 0;
6966 	dst_reg->u32_max_value = U32_MAX;
6967 
6968 	__mark_reg64_unbounded(dst_reg);
6969 	__update_reg32_bounds(dst_reg);
6970 }
6971 
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6972 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6973 				struct bpf_reg_state *src_reg)
6974 {
6975 	u64 umin_val = src_reg->umin_value;
6976 
6977 	/* Upon reaching here, src_known is true and umax_val is equal
6978 	 * to umin_val.
6979 	 */
6980 	dst_reg->smin_value >>= umin_val;
6981 	dst_reg->smax_value >>= umin_val;
6982 
6983 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6984 
6985 	/* blow away the dst_reg umin_value/umax_value and rely on
6986 	 * dst_reg var_off to refine the result.
6987 	 */
6988 	dst_reg->umin_value = 0;
6989 	dst_reg->umax_value = U64_MAX;
6990 
6991 	/* Its not easy to operate on alu32 bounds here because it depends
6992 	 * on bits being shifted in from upper 32-bits. Take easy way out
6993 	 * and mark unbounded so we can recalculate later from tnum.
6994 	 */
6995 	__mark_reg32_unbounded(dst_reg);
6996 	__update_reg_bounds(dst_reg);
6997 }
6998 
6999 /* WARNING: This function does calculations on 64-bit values, but the actual
7000  * execution may occur on 32-bit values. Therefore, things like bitshifts
7001  * need extra checks in the 32-bit case.
7002  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)7003 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7004 				      struct bpf_insn *insn,
7005 				      struct bpf_reg_state *dst_reg,
7006 				      struct bpf_reg_state src_reg)
7007 {
7008 	struct bpf_reg_state *regs = cur_regs(env);
7009 	u8 opcode = BPF_OP(insn->code);
7010 	bool src_known;
7011 	s64 smin_val, smax_val;
7012 	u64 umin_val, umax_val;
7013 	s32 s32_min_val, s32_max_val;
7014 	u32 u32_min_val, u32_max_val;
7015 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7016 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7017 	int ret;
7018 
7019 	smin_val = src_reg.smin_value;
7020 	smax_val = src_reg.smax_value;
7021 	umin_val = src_reg.umin_value;
7022 	umax_val = src_reg.umax_value;
7023 
7024 	s32_min_val = src_reg.s32_min_value;
7025 	s32_max_val = src_reg.s32_max_value;
7026 	u32_min_val = src_reg.u32_min_value;
7027 	u32_max_val = src_reg.u32_max_value;
7028 
7029 	if (alu32) {
7030 		src_known = tnum_subreg_is_const(src_reg.var_off);
7031 		if ((src_known &&
7032 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7033 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7034 			/* Taint dst register if offset had invalid bounds
7035 			 * derived from e.g. dead branches.
7036 			 */
7037 			__mark_reg_unknown(env, dst_reg);
7038 			return 0;
7039 		}
7040 	} else {
7041 		src_known = tnum_is_const(src_reg.var_off);
7042 		if ((src_known &&
7043 		     (smin_val != smax_val || umin_val != umax_val)) ||
7044 		    smin_val > smax_val || umin_val > umax_val) {
7045 			/* Taint dst register if offset had invalid bounds
7046 			 * derived from e.g. dead branches.
7047 			 */
7048 			__mark_reg_unknown(env, dst_reg);
7049 			return 0;
7050 		}
7051 	}
7052 
7053 	if (!src_known &&
7054 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7055 		__mark_reg_unknown(env, dst_reg);
7056 		return 0;
7057 	}
7058 
7059 	if (sanitize_needed(opcode)) {
7060 		ret = sanitize_val_alu(env, insn);
7061 		if (ret < 0)
7062 			return sanitize_err(env, insn, ret, NULL, NULL);
7063 	}
7064 
7065 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7066 	 * There are two classes of instructions: The first class we track both
7067 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7068 	 * greatest amount of precision when alu operations are mixed with jmp32
7069 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7070 	 * and BPF_OR. This is possible because these ops have fairly easy to
7071 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7072 	 * See alu32 verifier tests for examples. The second class of
7073 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7074 	 * with regards to tracking sign/unsigned bounds because the bits may
7075 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7076 	 * the reg unbounded in the subreg bound space and use the resulting
7077 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7078 	 */
7079 	switch (opcode) {
7080 	case BPF_ADD:
7081 		scalar32_min_max_add(dst_reg, &src_reg);
7082 		scalar_min_max_add(dst_reg, &src_reg);
7083 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7084 		break;
7085 	case BPF_SUB:
7086 		scalar32_min_max_sub(dst_reg, &src_reg);
7087 		scalar_min_max_sub(dst_reg, &src_reg);
7088 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7089 		break;
7090 	case BPF_MUL:
7091 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7092 		scalar32_min_max_mul(dst_reg, &src_reg);
7093 		scalar_min_max_mul(dst_reg, &src_reg);
7094 		break;
7095 	case BPF_AND:
7096 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7097 		scalar32_min_max_and(dst_reg, &src_reg);
7098 		scalar_min_max_and(dst_reg, &src_reg);
7099 		break;
7100 	case BPF_OR:
7101 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7102 		scalar32_min_max_or(dst_reg, &src_reg);
7103 		scalar_min_max_or(dst_reg, &src_reg);
7104 		break;
7105 	case BPF_XOR:
7106 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7107 		scalar32_min_max_xor(dst_reg, &src_reg);
7108 		scalar_min_max_xor(dst_reg, &src_reg);
7109 		break;
7110 	case BPF_LSH:
7111 		if (umax_val >= insn_bitness) {
7112 			/* Shifts greater than 31 or 63 are undefined.
7113 			 * This includes shifts by a negative number.
7114 			 */
7115 			mark_reg_unknown(env, regs, insn->dst_reg);
7116 			break;
7117 		}
7118 		if (alu32)
7119 			scalar32_min_max_lsh(dst_reg, &src_reg);
7120 		else
7121 			scalar_min_max_lsh(dst_reg, &src_reg);
7122 		break;
7123 	case BPF_RSH:
7124 		if (umax_val >= insn_bitness) {
7125 			/* Shifts greater than 31 or 63 are undefined.
7126 			 * This includes shifts by a negative number.
7127 			 */
7128 			mark_reg_unknown(env, regs, insn->dst_reg);
7129 			break;
7130 		}
7131 		if (alu32)
7132 			scalar32_min_max_rsh(dst_reg, &src_reg);
7133 		else
7134 			scalar_min_max_rsh(dst_reg, &src_reg);
7135 		break;
7136 	case BPF_ARSH:
7137 		if (umax_val >= insn_bitness) {
7138 			/* Shifts greater than 31 or 63 are undefined.
7139 			 * This includes shifts by a negative number.
7140 			 */
7141 			mark_reg_unknown(env, regs, insn->dst_reg);
7142 			break;
7143 		}
7144 		if (alu32)
7145 			scalar32_min_max_arsh(dst_reg, &src_reg);
7146 		else
7147 			scalar_min_max_arsh(dst_reg, &src_reg);
7148 		break;
7149 	default:
7150 		mark_reg_unknown(env, regs, insn->dst_reg);
7151 		break;
7152 	}
7153 
7154 	/* ALU32 ops are zero extended into 64bit register */
7155 	if (alu32)
7156 		zext_32_to_64(dst_reg);
7157 	reg_bounds_sync(dst_reg);
7158 	return 0;
7159 }
7160 
7161 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7162  * and var_off.
7163  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7164 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7165 				   struct bpf_insn *insn)
7166 {
7167 	struct bpf_verifier_state *vstate = env->cur_state;
7168 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7169 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7170 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7171 	u8 opcode = BPF_OP(insn->code);
7172 	int err;
7173 
7174 	dst_reg = &regs[insn->dst_reg];
7175 	src_reg = NULL;
7176 	if (dst_reg->type != SCALAR_VALUE)
7177 		ptr_reg = dst_reg;
7178 	else
7179 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7180 		 * incorrectly propagated into other registers by find_equal_scalars()
7181 		 */
7182 		dst_reg->id = 0;
7183 	if (BPF_SRC(insn->code) == BPF_X) {
7184 		src_reg = &regs[insn->src_reg];
7185 		if (src_reg->type != SCALAR_VALUE) {
7186 			if (dst_reg->type != SCALAR_VALUE) {
7187 				/* Combining two pointers by any ALU op yields
7188 				 * an arbitrary scalar. Disallow all math except
7189 				 * pointer subtraction
7190 				 */
7191 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7192 					mark_reg_unknown(env, regs, insn->dst_reg);
7193 					return 0;
7194 				}
7195 				verbose(env, "R%d pointer %s pointer prohibited\n",
7196 					insn->dst_reg,
7197 					bpf_alu_string[opcode >> 4]);
7198 				return -EACCES;
7199 			} else {
7200 				/* scalar += pointer
7201 				 * This is legal, but we have to reverse our
7202 				 * src/dest handling in computing the range
7203 				 */
7204 				err = mark_chain_precision(env, insn->dst_reg);
7205 				if (err)
7206 					return err;
7207 				return adjust_ptr_min_max_vals(env, insn,
7208 							       src_reg, dst_reg);
7209 			}
7210 		} else if (ptr_reg) {
7211 			/* pointer += scalar */
7212 			err = mark_chain_precision(env, insn->src_reg);
7213 			if (err)
7214 				return err;
7215 			return adjust_ptr_min_max_vals(env, insn,
7216 						       dst_reg, src_reg);
7217 		} else if (dst_reg->precise) {
7218 			/* if dst_reg is precise, src_reg should be precise as well */
7219 			err = mark_chain_precision(env, insn->src_reg);
7220 			if (err)
7221 				return err;
7222 		}
7223 	} else {
7224 		/* Pretend the src is a reg with a known value, since we only
7225 		 * need to be able to read from this state.
7226 		 */
7227 		off_reg.type = SCALAR_VALUE;
7228 		__mark_reg_known(&off_reg, insn->imm);
7229 		src_reg = &off_reg;
7230 		if (ptr_reg) /* pointer += K */
7231 			return adjust_ptr_min_max_vals(env, insn,
7232 						       ptr_reg, src_reg);
7233 	}
7234 
7235 	/* Got here implies adding two SCALAR_VALUEs */
7236 	if (WARN_ON_ONCE(ptr_reg)) {
7237 		print_verifier_state(env, state);
7238 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7239 		return -EINVAL;
7240 	}
7241 	if (WARN_ON(!src_reg)) {
7242 		print_verifier_state(env, state);
7243 		verbose(env, "verifier internal error: no src_reg\n");
7244 		return -EINVAL;
7245 	}
7246 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7247 }
7248 
7249 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7250 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7251 {
7252 	struct bpf_reg_state *regs = cur_regs(env);
7253 	u8 opcode = BPF_OP(insn->code);
7254 	int err;
7255 
7256 	if (opcode == BPF_END || opcode == BPF_NEG) {
7257 		if (opcode == BPF_NEG) {
7258 			if (BPF_SRC(insn->code) != 0 ||
7259 			    insn->src_reg != BPF_REG_0 ||
7260 			    insn->off != 0 || insn->imm != 0) {
7261 				verbose(env, "BPF_NEG uses reserved fields\n");
7262 				return -EINVAL;
7263 			}
7264 		} else {
7265 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7266 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7267 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7268 				verbose(env, "BPF_END uses reserved fields\n");
7269 				return -EINVAL;
7270 			}
7271 		}
7272 
7273 		/* check src operand */
7274 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7275 		if (err)
7276 			return err;
7277 
7278 		if (is_pointer_value(env, insn->dst_reg)) {
7279 			verbose(env, "R%d pointer arithmetic prohibited\n",
7280 				insn->dst_reg);
7281 			return -EACCES;
7282 		}
7283 
7284 		/* check dest operand */
7285 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7286 		if (err)
7287 			return err;
7288 
7289 	} else if (opcode == BPF_MOV) {
7290 
7291 		if (BPF_SRC(insn->code) == BPF_X) {
7292 			if (insn->imm != 0 || insn->off != 0) {
7293 				verbose(env, "BPF_MOV uses reserved fields\n");
7294 				return -EINVAL;
7295 			}
7296 
7297 			/* check src operand */
7298 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7299 			if (err)
7300 				return err;
7301 		} else {
7302 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7303 				verbose(env, "BPF_MOV uses reserved fields\n");
7304 				return -EINVAL;
7305 			}
7306 		}
7307 
7308 		/* check dest operand, mark as required later */
7309 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7310 		if (err)
7311 			return err;
7312 
7313 		if (BPF_SRC(insn->code) == BPF_X) {
7314 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7315 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7316 
7317 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7318 				/* case: R1 = R2
7319 				 * copy register state to dest reg
7320 				 */
7321 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7322 					/* Assign src and dst registers the same ID
7323 					 * that will be used by find_equal_scalars()
7324 					 * to propagate min/max range.
7325 					 */
7326 					src_reg->id = ++env->id_gen;
7327 				copy_register_state(dst_reg, src_reg);
7328 				dst_reg->live |= REG_LIVE_WRITTEN;
7329 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7330 			} else {
7331 				/* R1 = (u32) R2 */
7332 				if (is_pointer_value(env, insn->src_reg)) {
7333 					verbose(env,
7334 						"R%d partial copy of pointer\n",
7335 						insn->src_reg);
7336 					return -EACCES;
7337 				} else if (src_reg->type == SCALAR_VALUE) {
7338 					copy_register_state(dst_reg, src_reg);
7339 					/* Make sure ID is cleared otherwise
7340 					 * dst_reg min/max could be incorrectly
7341 					 * propagated into src_reg by find_equal_scalars()
7342 					 */
7343 					dst_reg->id = 0;
7344 					dst_reg->live |= REG_LIVE_WRITTEN;
7345 					dst_reg->subreg_def = env->insn_idx + 1;
7346 				} else {
7347 					mark_reg_unknown(env, regs,
7348 							 insn->dst_reg);
7349 				}
7350 				zext_32_to_64(dst_reg);
7351 				reg_bounds_sync(dst_reg);
7352 			}
7353 		} else {
7354 			/* case: R = imm
7355 			 * remember the value we stored into this reg
7356 			 */
7357 			/* clear any state __mark_reg_known doesn't set */
7358 			mark_reg_unknown(env, regs, insn->dst_reg);
7359 			regs[insn->dst_reg].type = SCALAR_VALUE;
7360 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7361 				__mark_reg_known(regs + insn->dst_reg,
7362 						 insn->imm);
7363 			} else {
7364 				__mark_reg_known(regs + insn->dst_reg,
7365 						 (u32)insn->imm);
7366 			}
7367 		}
7368 
7369 	} else if (opcode > BPF_END) {
7370 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7371 		return -EINVAL;
7372 
7373 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7374 
7375 		if (BPF_SRC(insn->code) == BPF_X) {
7376 			if (insn->imm != 0 || insn->off != 0) {
7377 				verbose(env, "BPF_ALU uses reserved fields\n");
7378 				return -EINVAL;
7379 			}
7380 			/* check src1 operand */
7381 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7382 			if (err)
7383 				return err;
7384 		} else {
7385 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7386 				verbose(env, "BPF_ALU uses reserved fields\n");
7387 				return -EINVAL;
7388 			}
7389 		}
7390 
7391 		/* check src2 operand */
7392 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7393 		if (err)
7394 			return err;
7395 
7396 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7397 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7398 			verbose(env, "div by zero\n");
7399 			return -EINVAL;
7400 		}
7401 
7402 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7403 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7404 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7405 
7406 			if (insn->imm < 0 || insn->imm >= size) {
7407 				verbose(env, "invalid shift %d\n", insn->imm);
7408 				return -EINVAL;
7409 			}
7410 		}
7411 
7412 		/* check dest operand */
7413 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7414 		if (err)
7415 			return err;
7416 
7417 		return adjust_reg_min_max_vals(env, insn);
7418 	}
7419 
7420 	return 0;
7421 }
7422 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7423 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7424 				   struct bpf_reg_state *dst_reg,
7425 				   enum bpf_reg_type type,
7426 				   bool range_right_open)
7427 {
7428 	struct bpf_func_state *state;
7429 	struct bpf_reg_state *reg;
7430 	int new_range;
7431 
7432 	if (dst_reg->off < 0 ||
7433 	    (dst_reg->off == 0 && range_right_open))
7434 		/* This doesn't give us any range */
7435 		return;
7436 
7437 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7438 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7439 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7440 		 * than pkt_end, but that's because it's also less than pkt.
7441 		 */
7442 		return;
7443 
7444 	new_range = dst_reg->off;
7445 	if (range_right_open)
7446 		new_range++;
7447 
7448 	/* Examples for register markings:
7449 	 *
7450 	 * pkt_data in dst register:
7451 	 *
7452 	 *   r2 = r3;
7453 	 *   r2 += 8;
7454 	 *   if (r2 > pkt_end) goto <handle exception>
7455 	 *   <access okay>
7456 	 *
7457 	 *   r2 = r3;
7458 	 *   r2 += 8;
7459 	 *   if (r2 < pkt_end) goto <access okay>
7460 	 *   <handle exception>
7461 	 *
7462 	 *   Where:
7463 	 *     r2 == dst_reg, pkt_end == src_reg
7464 	 *     r2=pkt(id=n,off=8,r=0)
7465 	 *     r3=pkt(id=n,off=0,r=0)
7466 	 *
7467 	 * pkt_data in src register:
7468 	 *
7469 	 *   r2 = r3;
7470 	 *   r2 += 8;
7471 	 *   if (pkt_end >= r2) goto <access okay>
7472 	 *   <handle exception>
7473 	 *
7474 	 *   r2 = r3;
7475 	 *   r2 += 8;
7476 	 *   if (pkt_end <= r2) goto <handle exception>
7477 	 *   <access okay>
7478 	 *
7479 	 *   Where:
7480 	 *     pkt_end == dst_reg, r2 == src_reg
7481 	 *     r2=pkt(id=n,off=8,r=0)
7482 	 *     r3=pkt(id=n,off=0,r=0)
7483 	 *
7484 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7485 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7486 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7487 	 * the check.
7488 	 */
7489 
7490 	/* If our ids match, then we must have the same max_value.  And we
7491 	 * don't care about the other reg's fixed offset, since if it's too big
7492 	 * the range won't allow anything.
7493 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7494 	 */
7495 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7496 		if (reg->type == type && reg->id == dst_reg->id)
7497 			/* keep the maximum range already checked */
7498 			reg->range = max(reg->range, new_range);
7499 	}));
7500 }
7501 
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7502 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7503 {
7504 	struct tnum subreg = tnum_subreg(reg->var_off);
7505 	s32 sval = (s32)val;
7506 
7507 	switch (opcode) {
7508 	case BPF_JEQ:
7509 		if (tnum_is_const(subreg))
7510 			return !!tnum_equals_const(subreg, val);
7511 		break;
7512 	case BPF_JNE:
7513 		if (tnum_is_const(subreg))
7514 			return !tnum_equals_const(subreg, val);
7515 		break;
7516 	case BPF_JSET:
7517 		if ((~subreg.mask & subreg.value) & val)
7518 			return 1;
7519 		if (!((subreg.mask | subreg.value) & val))
7520 			return 0;
7521 		break;
7522 	case BPF_JGT:
7523 		if (reg->u32_min_value > val)
7524 			return 1;
7525 		else if (reg->u32_max_value <= val)
7526 			return 0;
7527 		break;
7528 	case BPF_JSGT:
7529 		if (reg->s32_min_value > sval)
7530 			return 1;
7531 		else if (reg->s32_max_value <= sval)
7532 			return 0;
7533 		break;
7534 	case BPF_JLT:
7535 		if (reg->u32_max_value < val)
7536 			return 1;
7537 		else if (reg->u32_min_value >= val)
7538 			return 0;
7539 		break;
7540 	case BPF_JSLT:
7541 		if (reg->s32_max_value < sval)
7542 			return 1;
7543 		else if (reg->s32_min_value >= sval)
7544 			return 0;
7545 		break;
7546 	case BPF_JGE:
7547 		if (reg->u32_min_value >= val)
7548 			return 1;
7549 		else if (reg->u32_max_value < val)
7550 			return 0;
7551 		break;
7552 	case BPF_JSGE:
7553 		if (reg->s32_min_value >= sval)
7554 			return 1;
7555 		else if (reg->s32_max_value < sval)
7556 			return 0;
7557 		break;
7558 	case BPF_JLE:
7559 		if (reg->u32_max_value <= val)
7560 			return 1;
7561 		else if (reg->u32_min_value > val)
7562 			return 0;
7563 		break;
7564 	case BPF_JSLE:
7565 		if (reg->s32_max_value <= sval)
7566 			return 1;
7567 		else if (reg->s32_min_value > sval)
7568 			return 0;
7569 		break;
7570 	}
7571 
7572 	return -1;
7573 }
7574 
7575 
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7576 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7577 {
7578 	s64 sval = (s64)val;
7579 
7580 	switch (opcode) {
7581 	case BPF_JEQ:
7582 		if (tnum_is_const(reg->var_off))
7583 			return !!tnum_equals_const(reg->var_off, val);
7584 		break;
7585 	case BPF_JNE:
7586 		if (tnum_is_const(reg->var_off))
7587 			return !tnum_equals_const(reg->var_off, val);
7588 		break;
7589 	case BPF_JSET:
7590 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7591 			return 1;
7592 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7593 			return 0;
7594 		break;
7595 	case BPF_JGT:
7596 		if (reg->umin_value > val)
7597 			return 1;
7598 		else if (reg->umax_value <= val)
7599 			return 0;
7600 		break;
7601 	case BPF_JSGT:
7602 		if (reg->smin_value > sval)
7603 			return 1;
7604 		else if (reg->smax_value <= sval)
7605 			return 0;
7606 		break;
7607 	case BPF_JLT:
7608 		if (reg->umax_value < val)
7609 			return 1;
7610 		else if (reg->umin_value >= val)
7611 			return 0;
7612 		break;
7613 	case BPF_JSLT:
7614 		if (reg->smax_value < sval)
7615 			return 1;
7616 		else if (reg->smin_value >= sval)
7617 			return 0;
7618 		break;
7619 	case BPF_JGE:
7620 		if (reg->umin_value >= val)
7621 			return 1;
7622 		else if (reg->umax_value < val)
7623 			return 0;
7624 		break;
7625 	case BPF_JSGE:
7626 		if (reg->smin_value >= sval)
7627 			return 1;
7628 		else if (reg->smax_value < sval)
7629 			return 0;
7630 		break;
7631 	case BPF_JLE:
7632 		if (reg->umax_value <= val)
7633 			return 1;
7634 		else if (reg->umin_value > val)
7635 			return 0;
7636 		break;
7637 	case BPF_JSLE:
7638 		if (reg->smax_value <= sval)
7639 			return 1;
7640 		else if (reg->smin_value > sval)
7641 			return 0;
7642 		break;
7643 	}
7644 
7645 	return -1;
7646 }
7647 
7648 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7649  * and return:
7650  *  1 - branch will be taken and "goto target" will be executed
7651  *  0 - branch will not be taken and fall-through to next insn
7652  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7653  *      range [0,10]
7654  */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7655 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7656 			   bool is_jmp32)
7657 {
7658 	if (__is_pointer_value(false, reg)) {
7659 		if (!reg_type_not_null(reg->type))
7660 			return -1;
7661 
7662 		/* If pointer is valid tests against zero will fail so we can
7663 		 * use this to direct branch taken.
7664 		 */
7665 		if (val != 0)
7666 			return -1;
7667 
7668 		switch (opcode) {
7669 		case BPF_JEQ:
7670 			return 0;
7671 		case BPF_JNE:
7672 			return 1;
7673 		default:
7674 			return -1;
7675 		}
7676 	}
7677 
7678 	if (is_jmp32)
7679 		return is_branch32_taken(reg, val, opcode);
7680 	return is_branch64_taken(reg, val, opcode);
7681 }
7682 
flip_opcode(u32 opcode)7683 static int flip_opcode(u32 opcode)
7684 {
7685 	/* How can we transform "a <op> b" into "b <op> a"? */
7686 	static const u8 opcode_flip[16] = {
7687 		/* these stay the same */
7688 		[BPF_JEQ  >> 4] = BPF_JEQ,
7689 		[BPF_JNE  >> 4] = BPF_JNE,
7690 		[BPF_JSET >> 4] = BPF_JSET,
7691 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7692 		[BPF_JGE  >> 4] = BPF_JLE,
7693 		[BPF_JGT  >> 4] = BPF_JLT,
7694 		[BPF_JLE  >> 4] = BPF_JGE,
7695 		[BPF_JLT  >> 4] = BPF_JGT,
7696 		[BPF_JSGE >> 4] = BPF_JSLE,
7697 		[BPF_JSGT >> 4] = BPF_JSLT,
7698 		[BPF_JSLE >> 4] = BPF_JSGE,
7699 		[BPF_JSLT >> 4] = BPF_JSGT
7700 	};
7701 	return opcode_flip[opcode >> 4];
7702 }
7703 
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)7704 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7705 				   struct bpf_reg_state *src_reg,
7706 				   u8 opcode)
7707 {
7708 	struct bpf_reg_state *pkt;
7709 
7710 	if (src_reg->type == PTR_TO_PACKET_END) {
7711 		pkt = dst_reg;
7712 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7713 		pkt = src_reg;
7714 		opcode = flip_opcode(opcode);
7715 	} else {
7716 		return -1;
7717 	}
7718 
7719 	if (pkt->range >= 0)
7720 		return -1;
7721 
7722 	switch (opcode) {
7723 	case BPF_JLE:
7724 		/* pkt <= pkt_end */
7725 		fallthrough;
7726 	case BPF_JGT:
7727 		/* pkt > pkt_end */
7728 		if (pkt->range == BEYOND_PKT_END)
7729 			/* pkt has at last one extra byte beyond pkt_end */
7730 			return opcode == BPF_JGT;
7731 		break;
7732 	case BPF_JLT:
7733 		/* pkt < pkt_end */
7734 		fallthrough;
7735 	case BPF_JGE:
7736 		/* pkt >= pkt_end */
7737 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7738 			return opcode == BPF_JGE;
7739 		break;
7740 	}
7741 	return -1;
7742 }
7743 
7744 /* Adjusts the register min/max values in the case that the dst_reg is the
7745  * variable register that we are working on, and src_reg is a constant or we're
7746  * simply doing a BPF_K check.
7747  * In JEQ/JNE cases we also adjust the var_off values.
7748  */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7749 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7750 			    struct bpf_reg_state *false_reg,
7751 			    u64 val, u32 val32,
7752 			    u8 opcode, bool is_jmp32)
7753 {
7754 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7755 	struct tnum false_64off = false_reg->var_off;
7756 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7757 	struct tnum true_64off = true_reg->var_off;
7758 	s64 sval = (s64)val;
7759 	s32 sval32 = (s32)val32;
7760 
7761 	/* If the dst_reg is a pointer, we can't learn anything about its
7762 	 * variable offset from the compare (unless src_reg were a pointer into
7763 	 * the same object, but we don't bother with that.
7764 	 * Since false_reg and true_reg have the same type by construction, we
7765 	 * only need to check one of them for pointerness.
7766 	 */
7767 	if (__is_pointer_value(false, false_reg))
7768 		return;
7769 
7770 	switch (opcode) {
7771 	/* JEQ/JNE comparison doesn't change the register equivalence.
7772 	 *
7773 	 * r1 = r2;
7774 	 * if (r1 == 42) goto label;
7775 	 * ...
7776 	 * label: // here both r1 and r2 are known to be 42.
7777 	 *
7778 	 * Hence when marking register as known preserve it's ID.
7779 	 */
7780 	case BPF_JEQ:
7781 		if (is_jmp32) {
7782 			__mark_reg32_known(true_reg, val32);
7783 			true_32off = tnum_subreg(true_reg->var_off);
7784 		} else {
7785 			___mark_reg_known(true_reg, val);
7786 			true_64off = true_reg->var_off;
7787 		}
7788 		break;
7789 	case BPF_JNE:
7790 		if (is_jmp32) {
7791 			__mark_reg32_known(false_reg, val32);
7792 			false_32off = tnum_subreg(false_reg->var_off);
7793 		} else {
7794 			___mark_reg_known(false_reg, val);
7795 			false_64off = false_reg->var_off;
7796 		}
7797 		break;
7798 	case BPF_JSET:
7799 		if (is_jmp32) {
7800 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7801 			if (is_power_of_2(val32))
7802 				true_32off = tnum_or(true_32off,
7803 						     tnum_const(val32));
7804 		} else {
7805 			false_64off = tnum_and(false_64off, tnum_const(~val));
7806 			if (is_power_of_2(val))
7807 				true_64off = tnum_or(true_64off,
7808 						     tnum_const(val));
7809 		}
7810 		break;
7811 	case BPF_JGE:
7812 	case BPF_JGT:
7813 	{
7814 		if (is_jmp32) {
7815 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7816 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7817 
7818 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7819 						       false_umax);
7820 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7821 						      true_umin);
7822 		} else {
7823 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7824 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7825 
7826 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7827 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7828 		}
7829 		break;
7830 	}
7831 	case BPF_JSGE:
7832 	case BPF_JSGT:
7833 	{
7834 		if (is_jmp32) {
7835 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7836 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7837 
7838 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7839 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7840 		} else {
7841 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7842 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7843 
7844 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7845 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7846 		}
7847 		break;
7848 	}
7849 	case BPF_JLE:
7850 	case BPF_JLT:
7851 	{
7852 		if (is_jmp32) {
7853 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7854 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7855 
7856 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7857 						       false_umin);
7858 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7859 						      true_umax);
7860 		} else {
7861 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7862 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7863 
7864 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7865 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7866 		}
7867 		break;
7868 	}
7869 	case BPF_JSLE:
7870 	case BPF_JSLT:
7871 	{
7872 		if (is_jmp32) {
7873 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7874 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7875 
7876 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7877 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7878 		} else {
7879 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7880 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7881 
7882 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7883 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7884 		}
7885 		break;
7886 	}
7887 	default:
7888 		return;
7889 	}
7890 
7891 	if (is_jmp32) {
7892 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7893 					     tnum_subreg(false_32off));
7894 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7895 					    tnum_subreg(true_32off));
7896 		__reg_combine_32_into_64(false_reg);
7897 		__reg_combine_32_into_64(true_reg);
7898 	} else {
7899 		false_reg->var_off = false_64off;
7900 		true_reg->var_off = true_64off;
7901 		__reg_combine_64_into_32(false_reg);
7902 		__reg_combine_64_into_32(true_reg);
7903 	}
7904 }
7905 
7906 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7907  * the variable reg.
7908  */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7909 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7910 				struct bpf_reg_state *false_reg,
7911 				u64 val, u32 val32,
7912 				u8 opcode, bool is_jmp32)
7913 {
7914 	opcode = flip_opcode(opcode);
7915 	/* This uses zero as "not present in table"; luckily the zero opcode,
7916 	 * BPF_JA, can't get here.
7917 	 */
7918 	if (opcode)
7919 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7920 }
7921 
7922 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7923 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7924 				  struct bpf_reg_state *dst_reg)
7925 {
7926 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7927 							dst_reg->umin_value);
7928 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7929 							dst_reg->umax_value);
7930 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7931 							dst_reg->smin_value);
7932 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7933 							dst_reg->smax_value);
7934 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7935 							     dst_reg->var_off);
7936 	reg_bounds_sync(src_reg);
7937 	reg_bounds_sync(dst_reg);
7938 }
7939 
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)7940 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7941 				struct bpf_reg_state *true_dst,
7942 				struct bpf_reg_state *false_src,
7943 				struct bpf_reg_state *false_dst,
7944 				u8 opcode)
7945 {
7946 	switch (opcode) {
7947 	case BPF_JEQ:
7948 		__reg_combine_min_max(true_src, true_dst);
7949 		break;
7950 	case BPF_JNE:
7951 		__reg_combine_min_max(false_src, false_dst);
7952 		break;
7953 	}
7954 }
7955 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)7956 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7957 				 struct bpf_reg_state *reg, u32 id,
7958 				 bool is_null)
7959 {
7960 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7961 	    !WARN_ON_ONCE(!reg->id)) {
7962 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7963 				 !tnum_equals_const(reg->var_off, 0) ||
7964 				 reg->off)) {
7965 			/* Old offset (both fixed and variable parts) should
7966 			 * have been known-zero, because we don't allow pointer
7967 			 * arithmetic on pointers that might be NULL. If we
7968 			 * see this happening, don't convert the register.
7969 			 */
7970 			return;
7971 		}
7972 		if (is_null) {
7973 			reg->type = SCALAR_VALUE;
7974 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7975 			const struct bpf_map *map = reg->map_ptr;
7976 
7977 			if (map->inner_map_meta) {
7978 				reg->type = CONST_PTR_TO_MAP;
7979 				reg->map_ptr = map->inner_map_meta;
7980 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7981 				reg->type = PTR_TO_XDP_SOCK;
7982 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7983 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7984 				reg->type = PTR_TO_SOCKET;
7985 			} else {
7986 				reg->type = PTR_TO_MAP_VALUE;
7987 			}
7988 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7989 			reg->type = PTR_TO_SOCKET;
7990 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7991 			reg->type = PTR_TO_SOCK_COMMON;
7992 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7993 			reg->type = PTR_TO_TCP_SOCK;
7994 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7995 			reg->type = PTR_TO_BTF_ID;
7996 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7997 			reg->type = PTR_TO_MEM;
7998 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7999 			reg->type = PTR_TO_RDONLY_BUF;
8000 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
8001 			reg->type = PTR_TO_RDWR_BUF;
8002 		}
8003 		if (is_null) {
8004 			/* We don't need id and ref_obj_id from this point
8005 			 * onwards anymore, thus we should better reset it,
8006 			 * so that state pruning has chances to take effect.
8007 			 */
8008 			reg->id = 0;
8009 			reg->ref_obj_id = 0;
8010 		} else if (!reg_may_point_to_spin_lock(reg)) {
8011 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8012 			 * in release_reference().
8013 			 *
8014 			 * reg->id is still used by spin_lock ptr. Other
8015 			 * than spin_lock ptr type, reg->id can be reset.
8016 			 */
8017 			reg->id = 0;
8018 		}
8019 	}
8020 }
8021 
8022 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8023  * be folded together at some point.
8024  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)8025 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8026 				  bool is_null)
8027 {
8028 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8029 	struct bpf_reg_state *regs = state->regs, *reg;
8030 	u32 ref_obj_id = regs[regno].ref_obj_id;
8031 	u32 id = regs[regno].id;
8032 
8033 	if (ref_obj_id && ref_obj_id == id && is_null)
8034 		/* regs[regno] is in the " == NULL" branch.
8035 		 * No one could have freed the reference state before
8036 		 * doing the NULL check.
8037 		 */
8038 		WARN_ON_ONCE(release_reference_state(state, id));
8039 
8040 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8041 		mark_ptr_or_null_reg(state, reg, id, is_null);
8042 	}));
8043 }
8044 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)8045 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8046 				   struct bpf_reg_state *dst_reg,
8047 				   struct bpf_reg_state *src_reg,
8048 				   struct bpf_verifier_state *this_branch,
8049 				   struct bpf_verifier_state *other_branch)
8050 {
8051 	if (BPF_SRC(insn->code) != BPF_X)
8052 		return false;
8053 
8054 	/* Pointers are always 64-bit. */
8055 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8056 		return false;
8057 
8058 	switch (BPF_OP(insn->code)) {
8059 	case BPF_JGT:
8060 		if ((dst_reg->type == PTR_TO_PACKET &&
8061 		     src_reg->type == PTR_TO_PACKET_END) ||
8062 		    (dst_reg->type == PTR_TO_PACKET_META &&
8063 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8064 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8065 			find_good_pkt_pointers(this_branch, dst_reg,
8066 					       dst_reg->type, false);
8067 			mark_pkt_end(other_branch, insn->dst_reg, true);
8068 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8069 			    src_reg->type == PTR_TO_PACKET) ||
8070 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8071 			    src_reg->type == PTR_TO_PACKET_META)) {
8072 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8073 			find_good_pkt_pointers(other_branch, src_reg,
8074 					       src_reg->type, true);
8075 			mark_pkt_end(this_branch, insn->src_reg, false);
8076 		} else {
8077 			return false;
8078 		}
8079 		break;
8080 	case BPF_JLT:
8081 		if ((dst_reg->type == PTR_TO_PACKET &&
8082 		     src_reg->type == PTR_TO_PACKET_END) ||
8083 		    (dst_reg->type == PTR_TO_PACKET_META &&
8084 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8085 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8086 			find_good_pkt_pointers(other_branch, dst_reg,
8087 					       dst_reg->type, true);
8088 			mark_pkt_end(this_branch, insn->dst_reg, false);
8089 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8090 			    src_reg->type == PTR_TO_PACKET) ||
8091 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8092 			    src_reg->type == PTR_TO_PACKET_META)) {
8093 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8094 			find_good_pkt_pointers(this_branch, src_reg,
8095 					       src_reg->type, false);
8096 			mark_pkt_end(other_branch, insn->src_reg, true);
8097 		} else {
8098 			return false;
8099 		}
8100 		break;
8101 	case BPF_JGE:
8102 		if ((dst_reg->type == PTR_TO_PACKET &&
8103 		     src_reg->type == PTR_TO_PACKET_END) ||
8104 		    (dst_reg->type == PTR_TO_PACKET_META &&
8105 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8106 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8107 			find_good_pkt_pointers(this_branch, dst_reg,
8108 					       dst_reg->type, true);
8109 			mark_pkt_end(other_branch, insn->dst_reg, false);
8110 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8111 			    src_reg->type == PTR_TO_PACKET) ||
8112 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8113 			    src_reg->type == PTR_TO_PACKET_META)) {
8114 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8115 			find_good_pkt_pointers(other_branch, src_reg,
8116 					       src_reg->type, false);
8117 			mark_pkt_end(this_branch, insn->src_reg, true);
8118 		} else {
8119 			return false;
8120 		}
8121 		break;
8122 	case BPF_JLE:
8123 		if ((dst_reg->type == PTR_TO_PACKET &&
8124 		     src_reg->type == PTR_TO_PACKET_END) ||
8125 		    (dst_reg->type == PTR_TO_PACKET_META &&
8126 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8127 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8128 			find_good_pkt_pointers(other_branch, dst_reg,
8129 					       dst_reg->type, false);
8130 			mark_pkt_end(this_branch, insn->dst_reg, true);
8131 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8132 			    src_reg->type == PTR_TO_PACKET) ||
8133 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8134 			    src_reg->type == PTR_TO_PACKET_META)) {
8135 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8136 			find_good_pkt_pointers(this_branch, src_reg,
8137 					       src_reg->type, true);
8138 			mark_pkt_end(other_branch, insn->src_reg, false);
8139 		} else {
8140 			return false;
8141 		}
8142 		break;
8143 	default:
8144 		return false;
8145 	}
8146 
8147 	return true;
8148 }
8149 
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)8150 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8151 			       struct bpf_reg_state *known_reg)
8152 {
8153 	struct bpf_func_state *state;
8154 	struct bpf_reg_state *reg;
8155 
8156 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8157 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8158 			copy_register_state(reg, known_reg);
8159 	}));
8160 }
8161 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)8162 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8163 			     struct bpf_insn *insn, int *insn_idx)
8164 {
8165 	struct bpf_verifier_state *this_branch = env->cur_state;
8166 	struct bpf_verifier_state *other_branch;
8167 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8168 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8169 	u8 opcode = BPF_OP(insn->code);
8170 	bool is_jmp32;
8171 	int pred = -1;
8172 	int err;
8173 
8174 	/* Only conditional jumps are expected to reach here. */
8175 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8176 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8177 		return -EINVAL;
8178 	}
8179 
8180 	if (BPF_SRC(insn->code) == BPF_X) {
8181 		if (insn->imm != 0) {
8182 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8183 			return -EINVAL;
8184 		}
8185 
8186 		/* check src1 operand */
8187 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8188 		if (err)
8189 			return err;
8190 
8191 		if (is_pointer_value(env, insn->src_reg)) {
8192 			verbose(env, "R%d pointer comparison prohibited\n",
8193 				insn->src_reg);
8194 			return -EACCES;
8195 		}
8196 		src_reg = &regs[insn->src_reg];
8197 	} else {
8198 		if (insn->src_reg != BPF_REG_0) {
8199 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8200 			return -EINVAL;
8201 		}
8202 	}
8203 
8204 	/* check src2 operand */
8205 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8206 	if (err)
8207 		return err;
8208 
8209 	dst_reg = &regs[insn->dst_reg];
8210 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8211 
8212 	if (BPF_SRC(insn->code) == BPF_K) {
8213 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8214 	} else if (src_reg->type == SCALAR_VALUE &&
8215 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8216 		pred = is_branch_taken(dst_reg,
8217 				       tnum_subreg(src_reg->var_off).value,
8218 				       opcode,
8219 				       is_jmp32);
8220 	} else if (src_reg->type == SCALAR_VALUE &&
8221 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8222 		pred = is_branch_taken(dst_reg,
8223 				       src_reg->var_off.value,
8224 				       opcode,
8225 				       is_jmp32);
8226 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8227 		   reg_is_pkt_pointer_any(src_reg) &&
8228 		   !is_jmp32) {
8229 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8230 	}
8231 
8232 	if (pred >= 0) {
8233 		/* If we get here with a dst_reg pointer type it is because
8234 		 * above is_branch_taken() special cased the 0 comparison.
8235 		 */
8236 		if (!__is_pointer_value(false, dst_reg))
8237 			err = mark_chain_precision(env, insn->dst_reg);
8238 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8239 		    !__is_pointer_value(false, src_reg))
8240 			err = mark_chain_precision(env, insn->src_reg);
8241 		if (err)
8242 			return err;
8243 	}
8244 
8245 	if (pred == 1) {
8246 		/* Only follow the goto, ignore fall-through. If needed, push
8247 		 * the fall-through branch for simulation under speculative
8248 		 * execution.
8249 		 */
8250 		if (!env->bypass_spec_v1 &&
8251 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8252 					       *insn_idx))
8253 			return -EFAULT;
8254 		*insn_idx += insn->off;
8255 		return 0;
8256 	} else if (pred == 0) {
8257 		/* Only follow the fall-through branch, since that's where the
8258 		 * program will go. If needed, push the goto branch for
8259 		 * simulation under speculative execution.
8260 		 */
8261 		if (!env->bypass_spec_v1 &&
8262 		    !sanitize_speculative_path(env, insn,
8263 					       *insn_idx + insn->off + 1,
8264 					       *insn_idx))
8265 			return -EFAULT;
8266 		return 0;
8267 	}
8268 
8269 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8270 				  false);
8271 	if (!other_branch)
8272 		return -EFAULT;
8273 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8274 
8275 	/* detect if we are comparing against a constant value so we can adjust
8276 	 * our min/max values for our dst register.
8277 	 * this is only legit if both are scalars (or pointers to the same
8278 	 * object, I suppose, but we don't support that right now), because
8279 	 * otherwise the different base pointers mean the offsets aren't
8280 	 * comparable.
8281 	 */
8282 	if (BPF_SRC(insn->code) == BPF_X) {
8283 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8284 
8285 		if (dst_reg->type == SCALAR_VALUE &&
8286 		    src_reg->type == SCALAR_VALUE) {
8287 			if (tnum_is_const(src_reg->var_off) ||
8288 			    (is_jmp32 &&
8289 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8290 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8291 						dst_reg,
8292 						src_reg->var_off.value,
8293 						tnum_subreg(src_reg->var_off).value,
8294 						opcode, is_jmp32);
8295 			else if (tnum_is_const(dst_reg->var_off) ||
8296 				 (is_jmp32 &&
8297 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8298 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8299 						    src_reg,
8300 						    dst_reg->var_off.value,
8301 						    tnum_subreg(dst_reg->var_off).value,
8302 						    opcode, is_jmp32);
8303 			else if (!is_jmp32 &&
8304 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8305 				/* Comparing for equality, we can combine knowledge */
8306 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8307 						    &other_branch_regs[insn->dst_reg],
8308 						    src_reg, dst_reg, opcode);
8309 			if (src_reg->id &&
8310 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8311 				find_equal_scalars(this_branch, src_reg);
8312 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8313 			}
8314 
8315 		}
8316 	} else if (dst_reg->type == SCALAR_VALUE) {
8317 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8318 					dst_reg, insn->imm, (u32)insn->imm,
8319 					opcode, is_jmp32);
8320 	}
8321 
8322 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8323 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8324 		find_equal_scalars(this_branch, dst_reg);
8325 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8326 	}
8327 
8328 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8329 	 * NOTE: these optimizations below are related with pointer comparison
8330 	 *       which will never be JMP32.
8331 	 */
8332 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8333 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8334 	    reg_type_may_be_null(dst_reg->type)) {
8335 		/* Mark all identical registers in each branch as either
8336 		 * safe or unknown depending R == 0 or R != 0 conditional.
8337 		 */
8338 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8339 				      opcode == BPF_JNE);
8340 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8341 				      opcode == BPF_JEQ);
8342 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8343 					   this_branch, other_branch) &&
8344 		   is_pointer_value(env, insn->dst_reg)) {
8345 		verbose(env, "R%d pointer comparison prohibited\n",
8346 			insn->dst_reg);
8347 		return -EACCES;
8348 	}
8349 	if (env->log.level & BPF_LOG_LEVEL)
8350 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8351 	return 0;
8352 }
8353 
8354 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8355 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8356 {
8357 	struct bpf_insn_aux_data *aux = cur_aux(env);
8358 	struct bpf_reg_state *regs = cur_regs(env);
8359 	struct bpf_reg_state *dst_reg;
8360 	struct bpf_map *map;
8361 	int err;
8362 
8363 	if (BPF_SIZE(insn->code) != BPF_DW) {
8364 		verbose(env, "invalid BPF_LD_IMM insn\n");
8365 		return -EINVAL;
8366 	}
8367 	if (insn->off != 0) {
8368 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8369 		return -EINVAL;
8370 	}
8371 
8372 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8373 	if (err)
8374 		return err;
8375 
8376 	dst_reg = &regs[insn->dst_reg];
8377 	if (insn->src_reg == 0) {
8378 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8379 
8380 		dst_reg->type = SCALAR_VALUE;
8381 		__mark_reg_known(&regs[insn->dst_reg], imm);
8382 		return 0;
8383 	}
8384 
8385 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8386 		mark_reg_known_zero(env, regs, insn->dst_reg);
8387 
8388 		dst_reg->type = aux->btf_var.reg_type;
8389 		switch (dst_reg->type) {
8390 		case PTR_TO_MEM:
8391 			dst_reg->mem_size = aux->btf_var.mem_size;
8392 			break;
8393 		case PTR_TO_BTF_ID:
8394 		case PTR_TO_PERCPU_BTF_ID:
8395 			dst_reg->btf_id = aux->btf_var.btf_id;
8396 			break;
8397 		default:
8398 			verbose(env, "bpf verifier is misconfigured\n");
8399 			return -EFAULT;
8400 		}
8401 		return 0;
8402 	}
8403 
8404 	map = env->used_maps[aux->map_index];
8405 	mark_reg_known_zero(env, regs, insn->dst_reg);
8406 	dst_reg->map_ptr = map;
8407 
8408 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8409 		dst_reg->type = PTR_TO_MAP_VALUE;
8410 		dst_reg->off = aux->map_off;
8411 		if (map_value_has_spin_lock(map))
8412 			dst_reg->id = ++env->id_gen;
8413 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8414 		dst_reg->type = CONST_PTR_TO_MAP;
8415 	} else {
8416 		verbose(env, "bpf verifier is misconfigured\n");
8417 		return -EINVAL;
8418 	}
8419 
8420 	return 0;
8421 }
8422 
may_access_skb(enum bpf_prog_type type)8423 static bool may_access_skb(enum bpf_prog_type type)
8424 {
8425 	switch (type) {
8426 	case BPF_PROG_TYPE_SOCKET_FILTER:
8427 	case BPF_PROG_TYPE_SCHED_CLS:
8428 	case BPF_PROG_TYPE_SCHED_ACT:
8429 		return true;
8430 	default:
8431 		return false;
8432 	}
8433 }
8434 
8435 /* verify safety of LD_ABS|LD_IND instructions:
8436  * - they can only appear in the programs where ctx == skb
8437  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8438  *   preserve R6-R9, and store return value into R0
8439  *
8440  * Implicit input:
8441  *   ctx == skb == R6 == CTX
8442  *
8443  * Explicit input:
8444  *   SRC == any register
8445  *   IMM == 32-bit immediate
8446  *
8447  * Output:
8448  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8449  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8450 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8451 {
8452 	struct bpf_reg_state *regs = cur_regs(env);
8453 	static const int ctx_reg = BPF_REG_6;
8454 	u8 mode = BPF_MODE(insn->code);
8455 	int i, err;
8456 
8457 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8458 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8459 		return -EINVAL;
8460 	}
8461 
8462 	if (!env->ops->gen_ld_abs) {
8463 		verbose(env, "bpf verifier is misconfigured\n");
8464 		return -EINVAL;
8465 	}
8466 
8467 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8468 	    BPF_SIZE(insn->code) == BPF_DW ||
8469 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8470 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8471 		return -EINVAL;
8472 	}
8473 
8474 	/* check whether implicit source operand (register R6) is readable */
8475 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8476 	if (err)
8477 		return err;
8478 
8479 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8480 	 * gen_ld_abs() may terminate the program at runtime, leading to
8481 	 * reference leak.
8482 	 */
8483 	err = check_reference_leak(env);
8484 	if (err) {
8485 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8486 		return err;
8487 	}
8488 
8489 	if (env->cur_state->active_spin_lock) {
8490 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8491 		return -EINVAL;
8492 	}
8493 
8494 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8495 		verbose(env,
8496 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8497 		return -EINVAL;
8498 	}
8499 
8500 	if (mode == BPF_IND) {
8501 		/* check explicit source operand */
8502 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8503 		if (err)
8504 			return err;
8505 	}
8506 
8507 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8508 	if (err < 0)
8509 		return err;
8510 
8511 	/* reset caller saved regs to unreadable */
8512 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8513 		mark_reg_not_init(env, regs, caller_saved[i]);
8514 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8515 	}
8516 
8517 	/* mark destination R0 register as readable, since it contains
8518 	 * the value fetched from the packet.
8519 	 * Already marked as written above.
8520 	 */
8521 	mark_reg_unknown(env, regs, BPF_REG_0);
8522 	/* ld_abs load up to 32-bit skb data. */
8523 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8524 	return 0;
8525 }
8526 
check_return_code(struct bpf_verifier_env * env)8527 static int check_return_code(struct bpf_verifier_env *env)
8528 {
8529 	struct tnum enforce_attach_type_range = tnum_unknown;
8530 	const struct bpf_prog *prog = env->prog;
8531 	struct bpf_reg_state *reg;
8532 	struct tnum range = tnum_range(0, 1);
8533 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8534 	int err;
8535 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8536 
8537 	/* LSM and struct_ops func-ptr's return type could be "void" */
8538 	if (!is_subprog &&
8539 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8540 	     prog_type == BPF_PROG_TYPE_LSM) &&
8541 	    !prog->aux->attach_func_proto->type)
8542 		return 0;
8543 
8544 	/* eBPF calling convetion is such that R0 is used
8545 	 * to return the value from eBPF program.
8546 	 * Make sure that it's readable at this time
8547 	 * of bpf_exit, which means that program wrote
8548 	 * something into it earlier
8549 	 */
8550 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8551 	if (err)
8552 		return err;
8553 
8554 	if (is_pointer_value(env, BPF_REG_0)) {
8555 		verbose(env, "R0 leaks addr as return value\n");
8556 		return -EACCES;
8557 	}
8558 
8559 	reg = cur_regs(env) + BPF_REG_0;
8560 	if (is_subprog) {
8561 		if (reg->type != SCALAR_VALUE) {
8562 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8563 				reg_type_str[reg->type]);
8564 			return -EINVAL;
8565 		}
8566 		return 0;
8567 	}
8568 
8569 	switch (prog_type) {
8570 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8571 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8572 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8573 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8574 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8575 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8576 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8577 			range = tnum_range(1, 1);
8578 		break;
8579 	case BPF_PROG_TYPE_CGROUP_SKB:
8580 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8581 			range = tnum_range(0, 3);
8582 			enforce_attach_type_range = tnum_range(2, 3);
8583 		}
8584 		break;
8585 	case BPF_PROG_TYPE_CGROUP_SOCK:
8586 	case BPF_PROG_TYPE_SOCK_OPS:
8587 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8588 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8589 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8590 		break;
8591 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8592 		if (!env->prog->aux->attach_btf_id)
8593 			return 0;
8594 		range = tnum_const(0);
8595 		break;
8596 	case BPF_PROG_TYPE_TRACING:
8597 		switch (env->prog->expected_attach_type) {
8598 		case BPF_TRACE_FENTRY:
8599 		case BPF_TRACE_FEXIT:
8600 			range = tnum_const(0);
8601 			break;
8602 		case BPF_TRACE_RAW_TP:
8603 		case BPF_MODIFY_RETURN:
8604 			return 0;
8605 		case BPF_TRACE_ITER:
8606 			break;
8607 		default:
8608 			return -ENOTSUPP;
8609 		}
8610 		break;
8611 	case BPF_PROG_TYPE_SK_LOOKUP:
8612 		range = tnum_range(SK_DROP, SK_PASS);
8613 		break;
8614 	case BPF_PROG_TYPE_EXT:
8615 		/* freplace program can return anything as its return value
8616 		 * depends on the to-be-replaced kernel func or bpf program.
8617 		 */
8618 	default:
8619 		return 0;
8620 	}
8621 
8622 	if (reg->type != SCALAR_VALUE) {
8623 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8624 			reg_type_str[reg->type]);
8625 		return -EINVAL;
8626 	}
8627 
8628 	if (!tnum_in(range, reg->var_off)) {
8629 		char tn_buf[48];
8630 
8631 		verbose(env, "At program exit the register R0 ");
8632 		if (!tnum_is_unknown(reg->var_off)) {
8633 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8634 			verbose(env, "has value %s", tn_buf);
8635 		} else {
8636 			verbose(env, "has unknown scalar value");
8637 		}
8638 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8639 		verbose(env, " should have been in %s\n", tn_buf);
8640 		return -EINVAL;
8641 	}
8642 
8643 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8644 	    tnum_in(enforce_attach_type_range, reg->var_off))
8645 		env->prog->enforce_expected_attach_type = 1;
8646 	return 0;
8647 }
8648 
8649 /* non-recursive DFS pseudo code
8650  * 1  procedure DFS-iterative(G,v):
8651  * 2      label v as discovered
8652  * 3      let S be a stack
8653  * 4      S.push(v)
8654  * 5      while S is not empty
8655  * 6            t <- S.pop()
8656  * 7            if t is what we're looking for:
8657  * 8                return t
8658  * 9            for all edges e in G.adjacentEdges(t) do
8659  * 10               if edge e is already labelled
8660  * 11                   continue with the next edge
8661  * 12               w <- G.adjacentVertex(t,e)
8662  * 13               if vertex w is not discovered and not explored
8663  * 14                   label e as tree-edge
8664  * 15                   label w as discovered
8665  * 16                   S.push(w)
8666  * 17                   continue at 5
8667  * 18               else if vertex w is discovered
8668  * 19                   label e as back-edge
8669  * 20               else
8670  * 21                   // vertex w is explored
8671  * 22                   label e as forward- or cross-edge
8672  * 23           label t as explored
8673  * 24           S.pop()
8674  *
8675  * convention:
8676  * 0x10 - discovered
8677  * 0x11 - discovered and fall-through edge labelled
8678  * 0x12 - discovered and fall-through and branch edges labelled
8679  * 0x20 - explored
8680  */
8681 
8682 enum {
8683 	DISCOVERED = 0x10,
8684 	EXPLORED = 0x20,
8685 	FALLTHROUGH = 1,
8686 	BRANCH = 2,
8687 };
8688 
state_htab_size(struct bpf_verifier_env * env)8689 static u32 state_htab_size(struct bpf_verifier_env *env)
8690 {
8691 	return env->prog->len;
8692 }
8693 
explored_state(struct bpf_verifier_env * env,int idx)8694 static struct bpf_verifier_state_list **explored_state(
8695 					struct bpf_verifier_env *env,
8696 					int idx)
8697 {
8698 	struct bpf_verifier_state *cur = env->cur_state;
8699 	struct bpf_func_state *state = cur->frame[cur->curframe];
8700 
8701 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8702 }
8703 
init_explored_state(struct bpf_verifier_env * env,int idx)8704 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8705 {
8706 	env->insn_aux_data[idx].prune_point = true;
8707 }
8708 
8709 /* t, w, e - match pseudo-code above:
8710  * t - index of current instruction
8711  * w - next instruction
8712  * e - edge
8713  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8714 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8715 		     bool loop_ok)
8716 {
8717 	int *insn_stack = env->cfg.insn_stack;
8718 	int *insn_state = env->cfg.insn_state;
8719 
8720 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8721 		return 0;
8722 
8723 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8724 		return 0;
8725 
8726 	if (w < 0 || w >= env->prog->len) {
8727 		verbose_linfo(env, t, "%d: ", t);
8728 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8729 		return -EINVAL;
8730 	}
8731 
8732 	if (e == BRANCH)
8733 		/* mark branch target for state pruning */
8734 		init_explored_state(env, w);
8735 
8736 	if (insn_state[w] == 0) {
8737 		/* tree-edge */
8738 		insn_state[t] = DISCOVERED | e;
8739 		insn_state[w] = DISCOVERED;
8740 		if (env->cfg.cur_stack >= env->prog->len)
8741 			return -E2BIG;
8742 		insn_stack[env->cfg.cur_stack++] = w;
8743 		return 1;
8744 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8745 		if (loop_ok && env->bpf_capable)
8746 			return 0;
8747 		verbose_linfo(env, t, "%d: ", t);
8748 		verbose_linfo(env, w, "%d: ", w);
8749 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8750 		return -EINVAL;
8751 	} else if (insn_state[w] == EXPLORED) {
8752 		/* forward- or cross-edge */
8753 		insn_state[t] = DISCOVERED | e;
8754 	} else {
8755 		verbose(env, "insn state internal bug\n");
8756 		return -EFAULT;
8757 	}
8758 	return 0;
8759 }
8760 
8761 /* non-recursive depth-first-search to detect loops in BPF program
8762  * loop == back-edge in directed graph
8763  */
check_cfg(struct bpf_verifier_env * env)8764 static int check_cfg(struct bpf_verifier_env *env)
8765 {
8766 	struct bpf_insn *insns = env->prog->insnsi;
8767 	int insn_cnt = env->prog->len;
8768 	int *insn_stack, *insn_state;
8769 	int ret = 0;
8770 	int i, t;
8771 
8772 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8773 	if (!insn_state)
8774 		return -ENOMEM;
8775 
8776 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8777 	if (!insn_stack) {
8778 		kvfree(insn_state);
8779 		return -ENOMEM;
8780 	}
8781 
8782 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8783 	insn_stack[0] = 0; /* 0 is the first instruction */
8784 	env->cfg.cur_stack = 1;
8785 
8786 peek_stack:
8787 	if (env->cfg.cur_stack == 0)
8788 		goto check_state;
8789 	t = insn_stack[env->cfg.cur_stack - 1];
8790 
8791 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8792 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
8793 		u8 opcode = BPF_OP(insns[t].code);
8794 
8795 		if (opcode == BPF_EXIT) {
8796 			goto mark_explored;
8797 		} else if (opcode == BPF_CALL) {
8798 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8799 			if (ret == 1)
8800 				goto peek_stack;
8801 			else if (ret < 0)
8802 				goto err_free;
8803 			if (t + 1 < insn_cnt)
8804 				init_explored_state(env, t + 1);
8805 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8806 				init_explored_state(env, t);
8807 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8808 						env, false);
8809 				if (ret == 1)
8810 					goto peek_stack;
8811 				else if (ret < 0)
8812 					goto err_free;
8813 			}
8814 		} else if (opcode == BPF_JA) {
8815 			if (BPF_SRC(insns[t].code) != BPF_K) {
8816 				ret = -EINVAL;
8817 				goto err_free;
8818 			}
8819 			/* unconditional jump with single edge */
8820 			ret = push_insn(t, t + insns[t].off + 1,
8821 					FALLTHROUGH, env, true);
8822 			if (ret == 1)
8823 				goto peek_stack;
8824 			else if (ret < 0)
8825 				goto err_free;
8826 			/* unconditional jmp is not a good pruning point,
8827 			 * but it's marked, since backtracking needs
8828 			 * to record jmp history in is_state_visited().
8829 			 */
8830 			init_explored_state(env, t + insns[t].off + 1);
8831 			/* tell verifier to check for equivalent states
8832 			 * after every call and jump
8833 			 */
8834 			if (t + 1 < insn_cnt)
8835 				init_explored_state(env, t + 1);
8836 		} else {
8837 			/* conditional jump with two edges */
8838 			init_explored_state(env, t);
8839 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8840 			if (ret == 1)
8841 				goto peek_stack;
8842 			else if (ret < 0)
8843 				goto err_free;
8844 
8845 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8846 			if (ret == 1)
8847 				goto peek_stack;
8848 			else if (ret < 0)
8849 				goto err_free;
8850 		}
8851 	} else {
8852 		/* all other non-branch instructions with single
8853 		 * fall-through edge
8854 		 */
8855 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8856 		if (ret == 1)
8857 			goto peek_stack;
8858 		else if (ret < 0)
8859 			goto err_free;
8860 	}
8861 
8862 mark_explored:
8863 	insn_state[t] = EXPLORED;
8864 	if (env->cfg.cur_stack-- <= 0) {
8865 		verbose(env, "pop stack internal bug\n");
8866 		ret = -EFAULT;
8867 		goto err_free;
8868 	}
8869 	goto peek_stack;
8870 
8871 check_state:
8872 	for (i = 0; i < insn_cnt; i++) {
8873 		if (insn_state[i] != EXPLORED) {
8874 			verbose(env, "unreachable insn %d\n", i);
8875 			ret = -EINVAL;
8876 			goto err_free;
8877 		}
8878 	}
8879 	ret = 0; /* cfg looks good */
8880 
8881 err_free:
8882 	kvfree(insn_state);
8883 	kvfree(insn_stack);
8884 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8885 	return ret;
8886 }
8887 
check_abnormal_return(struct bpf_verifier_env * env)8888 static int check_abnormal_return(struct bpf_verifier_env *env)
8889 {
8890 	int i;
8891 
8892 	for (i = 1; i < env->subprog_cnt; i++) {
8893 		if (env->subprog_info[i].has_ld_abs) {
8894 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8895 			return -EINVAL;
8896 		}
8897 		if (env->subprog_info[i].has_tail_call) {
8898 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8899 			return -EINVAL;
8900 		}
8901 	}
8902 	return 0;
8903 }
8904 
8905 /* The minimum supported BTF func info size */
8906 #define MIN_BPF_FUNCINFO_SIZE	8
8907 #define MAX_FUNCINFO_REC_SIZE	252
8908 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8909 static int check_btf_func(struct bpf_verifier_env *env,
8910 			  const union bpf_attr *attr,
8911 			  union bpf_attr __user *uattr)
8912 {
8913 	const struct btf_type *type, *func_proto, *ret_type;
8914 	u32 i, nfuncs, urec_size, min_size;
8915 	u32 krec_size = sizeof(struct bpf_func_info);
8916 	struct bpf_func_info *krecord;
8917 	struct bpf_func_info_aux *info_aux = NULL;
8918 	struct bpf_prog *prog;
8919 	const struct btf *btf;
8920 	void __user *urecord;
8921 	u32 prev_offset = 0;
8922 	bool scalar_return;
8923 	int ret = -ENOMEM;
8924 
8925 	nfuncs = attr->func_info_cnt;
8926 	if (!nfuncs) {
8927 		if (check_abnormal_return(env))
8928 			return -EINVAL;
8929 		return 0;
8930 	}
8931 
8932 	if (nfuncs != env->subprog_cnt) {
8933 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8934 		return -EINVAL;
8935 	}
8936 
8937 	urec_size = attr->func_info_rec_size;
8938 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8939 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8940 	    urec_size % sizeof(u32)) {
8941 		verbose(env, "invalid func info rec size %u\n", urec_size);
8942 		return -EINVAL;
8943 	}
8944 
8945 	prog = env->prog;
8946 	btf = prog->aux->btf;
8947 
8948 	urecord = u64_to_user_ptr(attr->func_info);
8949 	min_size = min_t(u32, krec_size, urec_size);
8950 
8951 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8952 	if (!krecord)
8953 		return -ENOMEM;
8954 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8955 	if (!info_aux)
8956 		goto err_free;
8957 
8958 	for (i = 0; i < nfuncs; i++) {
8959 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8960 		if (ret) {
8961 			if (ret == -E2BIG) {
8962 				verbose(env, "nonzero tailing record in func info");
8963 				/* set the size kernel expects so loader can zero
8964 				 * out the rest of the record.
8965 				 */
8966 				if (put_user(min_size, &uattr->func_info_rec_size))
8967 					ret = -EFAULT;
8968 			}
8969 			goto err_free;
8970 		}
8971 
8972 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8973 			ret = -EFAULT;
8974 			goto err_free;
8975 		}
8976 
8977 		/* check insn_off */
8978 		ret = -EINVAL;
8979 		if (i == 0) {
8980 			if (krecord[i].insn_off) {
8981 				verbose(env,
8982 					"nonzero insn_off %u for the first func info record",
8983 					krecord[i].insn_off);
8984 				goto err_free;
8985 			}
8986 		} else if (krecord[i].insn_off <= prev_offset) {
8987 			verbose(env,
8988 				"same or smaller insn offset (%u) than previous func info record (%u)",
8989 				krecord[i].insn_off, prev_offset);
8990 			goto err_free;
8991 		}
8992 
8993 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8994 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8995 			goto err_free;
8996 		}
8997 
8998 		/* check type_id */
8999 		type = btf_type_by_id(btf, krecord[i].type_id);
9000 		if (!type || !btf_type_is_func(type)) {
9001 			verbose(env, "invalid type id %d in func info",
9002 				krecord[i].type_id);
9003 			goto err_free;
9004 		}
9005 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9006 
9007 		func_proto = btf_type_by_id(btf, type->type);
9008 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9009 			/* btf_func_check() already verified it during BTF load */
9010 			goto err_free;
9011 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9012 		scalar_return =
9013 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9014 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9015 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9016 			goto err_free;
9017 		}
9018 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9019 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9020 			goto err_free;
9021 		}
9022 
9023 		prev_offset = krecord[i].insn_off;
9024 		urecord += urec_size;
9025 	}
9026 
9027 	prog->aux->func_info = krecord;
9028 	prog->aux->func_info_cnt = nfuncs;
9029 	prog->aux->func_info_aux = info_aux;
9030 	return 0;
9031 
9032 err_free:
9033 	kvfree(krecord);
9034 	kfree(info_aux);
9035 	return ret;
9036 }
9037 
adjust_btf_func(struct bpf_verifier_env * env)9038 static void adjust_btf_func(struct bpf_verifier_env *env)
9039 {
9040 	struct bpf_prog_aux *aux = env->prog->aux;
9041 	int i;
9042 
9043 	if (!aux->func_info)
9044 		return;
9045 
9046 	for (i = 0; i < env->subprog_cnt; i++)
9047 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9048 }
9049 
9050 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9051 		sizeof(((struct bpf_line_info *)(0))->line_col))
9052 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9053 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9054 static int check_btf_line(struct bpf_verifier_env *env,
9055 			  const union bpf_attr *attr,
9056 			  union bpf_attr __user *uattr)
9057 {
9058 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9059 	struct bpf_subprog_info *sub;
9060 	struct bpf_line_info *linfo;
9061 	struct bpf_prog *prog;
9062 	const struct btf *btf;
9063 	void __user *ulinfo;
9064 	int err;
9065 
9066 	nr_linfo = attr->line_info_cnt;
9067 	if (!nr_linfo)
9068 		return 0;
9069 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
9070 		return -EINVAL;
9071 
9072 	rec_size = attr->line_info_rec_size;
9073 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9074 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9075 	    rec_size & (sizeof(u32) - 1))
9076 		return -EINVAL;
9077 
9078 	/* Need to zero it in case the userspace may
9079 	 * pass in a smaller bpf_line_info object.
9080 	 */
9081 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9082 			 GFP_KERNEL | __GFP_NOWARN);
9083 	if (!linfo)
9084 		return -ENOMEM;
9085 
9086 	prog = env->prog;
9087 	btf = prog->aux->btf;
9088 
9089 	s = 0;
9090 	sub = env->subprog_info;
9091 	ulinfo = u64_to_user_ptr(attr->line_info);
9092 	expected_size = sizeof(struct bpf_line_info);
9093 	ncopy = min_t(u32, expected_size, rec_size);
9094 	for (i = 0; i < nr_linfo; i++) {
9095 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9096 		if (err) {
9097 			if (err == -E2BIG) {
9098 				verbose(env, "nonzero tailing record in line_info");
9099 				if (put_user(expected_size,
9100 					     &uattr->line_info_rec_size))
9101 					err = -EFAULT;
9102 			}
9103 			goto err_free;
9104 		}
9105 
9106 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9107 			err = -EFAULT;
9108 			goto err_free;
9109 		}
9110 
9111 		/*
9112 		 * Check insn_off to ensure
9113 		 * 1) strictly increasing AND
9114 		 * 2) bounded by prog->len
9115 		 *
9116 		 * The linfo[0].insn_off == 0 check logically falls into
9117 		 * the later "missing bpf_line_info for func..." case
9118 		 * because the first linfo[0].insn_off must be the
9119 		 * first sub also and the first sub must have
9120 		 * subprog_info[0].start == 0.
9121 		 */
9122 		if ((i && linfo[i].insn_off <= prev_offset) ||
9123 		    linfo[i].insn_off >= prog->len) {
9124 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9125 				i, linfo[i].insn_off, prev_offset,
9126 				prog->len);
9127 			err = -EINVAL;
9128 			goto err_free;
9129 		}
9130 
9131 		if (!prog->insnsi[linfo[i].insn_off].code) {
9132 			verbose(env,
9133 				"Invalid insn code at line_info[%u].insn_off\n",
9134 				i);
9135 			err = -EINVAL;
9136 			goto err_free;
9137 		}
9138 
9139 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9140 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9141 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9142 			err = -EINVAL;
9143 			goto err_free;
9144 		}
9145 
9146 		if (s != env->subprog_cnt) {
9147 			if (linfo[i].insn_off == sub[s].start) {
9148 				sub[s].linfo_idx = i;
9149 				s++;
9150 			} else if (sub[s].start < linfo[i].insn_off) {
9151 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9152 				err = -EINVAL;
9153 				goto err_free;
9154 			}
9155 		}
9156 
9157 		prev_offset = linfo[i].insn_off;
9158 		ulinfo += rec_size;
9159 	}
9160 
9161 	if (s != env->subprog_cnt) {
9162 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9163 			env->subprog_cnt - s, s);
9164 		err = -EINVAL;
9165 		goto err_free;
9166 	}
9167 
9168 	prog->aux->linfo = linfo;
9169 	prog->aux->nr_linfo = nr_linfo;
9170 
9171 	return 0;
9172 
9173 err_free:
9174 	kvfree(linfo);
9175 	return err;
9176 }
9177 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9178 static int check_btf_info(struct bpf_verifier_env *env,
9179 			  const union bpf_attr *attr,
9180 			  union bpf_attr __user *uattr)
9181 {
9182 	struct btf *btf;
9183 	int err;
9184 
9185 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9186 		if (check_abnormal_return(env))
9187 			return -EINVAL;
9188 		return 0;
9189 	}
9190 
9191 	btf = btf_get_by_fd(attr->prog_btf_fd);
9192 	if (IS_ERR(btf))
9193 		return PTR_ERR(btf);
9194 	env->prog->aux->btf = btf;
9195 
9196 	err = check_btf_func(env, attr, uattr);
9197 	if (err)
9198 		return err;
9199 
9200 	err = check_btf_line(env, attr, uattr);
9201 	if (err)
9202 		return err;
9203 
9204 	return 0;
9205 }
9206 
9207 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9208 static bool range_within(struct bpf_reg_state *old,
9209 			 struct bpf_reg_state *cur)
9210 {
9211 	return old->umin_value <= cur->umin_value &&
9212 	       old->umax_value >= cur->umax_value &&
9213 	       old->smin_value <= cur->smin_value &&
9214 	       old->smax_value >= cur->smax_value &&
9215 	       old->u32_min_value <= cur->u32_min_value &&
9216 	       old->u32_max_value >= cur->u32_max_value &&
9217 	       old->s32_min_value <= cur->s32_min_value &&
9218 	       old->s32_max_value >= cur->s32_max_value;
9219 }
9220 
9221 /* If in the old state two registers had the same id, then they need to have
9222  * the same id in the new state as well.  But that id could be different from
9223  * the old state, so we need to track the mapping from old to new ids.
9224  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9225  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9226  * regs with a different old id could still have new id 9, we don't care about
9227  * that.
9228  * So we look through our idmap to see if this old id has been seen before.  If
9229  * so, we require the new id to match; otherwise, we add the id pair to the map.
9230  */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9231 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9232 {
9233 	unsigned int i;
9234 
9235 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9236 		if (!idmap[i].old) {
9237 			/* Reached an empty slot; haven't seen this id before */
9238 			idmap[i].old = old_id;
9239 			idmap[i].cur = cur_id;
9240 			return true;
9241 		}
9242 		if (idmap[i].old == old_id)
9243 			return idmap[i].cur == cur_id;
9244 	}
9245 	/* We ran out of idmap slots, which should be impossible */
9246 	WARN_ON_ONCE(1);
9247 	return false;
9248 }
9249 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9250 static void clean_func_state(struct bpf_verifier_env *env,
9251 			     struct bpf_func_state *st)
9252 {
9253 	enum bpf_reg_liveness live;
9254 	int i, j;
9255 
9256 	for (i = 0; i < BPF_REG_FP; i++) {
9257 		live = st->regs[i].live;
9258 		/* liveness must not touch this register anymore */
9259 		st->regs[i].live |= REG_LIVE_DONE;
9260 		if (!(live & REG_LIVE_READ))
9261 			/* since the register is unused, clear its state
9262 			 * to make further comparison simpler
9263 			 */
9264 			__mark_reg_not_init(env, &st->regs[i]);
9265 	}
9266 
9267 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9268 		live = st->stack[i].spilled_ptr.live;
9269 		/* liveness must not touch this stack slot anymore */
9270 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9271 		if (!(live & REG_LIVE_READ)) {
9272 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9273 			for (j = 0; j < BPF_REG_SIZE; j++)
9274 				st->stack[i].slot_type[j] = STACK_INVALID;
9275 		}
9276 	}
9277 }
9278 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9279 static void clean_verifier_state(struct bpf_verifier_env *env,
9280 				 struct bpf_verifier_state *st)
9281 {
9282 	int i;
9283 
9284 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9285 		/* all regs in this state in all frames were already marked */
9286 		return;
9287 
9288 	for (i = 0; i <= st->curframe; i++)
9289 		clean_func_state(env, st->frame[i]);
9290 }
9291 
9292 /* the parentage chains form a tree.
9293  * the verifier states are added to state lists at given insn and
9294  * pushed into state stack for future exploration.
9295  * when the verifier reaches bpf_exit insn some of the verifer states
9296  * stored in the state lists have their final liveness state already,
9297  * but a lot of states will get revised from liveness point of view when
9298  * the verifier explores other branches.
9299  * Example:
9300  * 1: r0 = 1
9301  * 2: if r1 == 100 goto pc+1
9302  * 3: r0 = 2
9303  * 4: exit
9304  * when the verifier reaches exit insn the register r0 in the state list of
9305  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9306  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9307  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9308  *
9309  * Since the verifier pushes the branch states as it sees them while exploring
9310  * the program the condition of walking the branch instruction for the second
9311  * time means that all states below this branch were already explored and
9312  * their final liveness markes are already propagated.
9313  * Hence when the verifier completes the search of state list in is_state_visited()
9314  * we can call this clean_live_states() function to mark all liveness states
9315  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9316  * will not be used.
9317  * This function also clears the registers and stack for states that !READ
9318  * to simplify state merging.
9319  *
9320  * Important note here that walking the same branch instruction in the callee
9321  * doesn't meant that the states are DONE. The verifier has to compare
9322  * the callsites
9323  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9324 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9325 			      struct bpf_verifier_state *cur)
9326 {
9327 	struct bpf_verifier_state_list *sl;
9328 	int i;
9329 
9330 	sl = *explored_state(env, insn);
9331 	while (sl) {
9332 		if (sl->state.branches)
9333 			goto next;
9334 		if (sl->state.insn_idx != insn ||
9335 		    sl->state.curframe != cur->curframe)
9336 			goto next;
9337 		for (i = 0; i <= cur->curframe; i++)
9338 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9339 				goto next;
9340 		clean_verifier_state(env, &sl->state);
9341 next:
9342 		sl = sl->next;
9343 	}
9344 }
9345 
9346 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9347 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9348 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9349 {
9350 	bool equal;
9351 
9352 	if (!(rold->live & REG_LIVE_READ))
9353 		/* explored state didn't use this */
9354 		return true;
9355 
9356 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9357 
9358 	if (rold->type == PTR_TO_STACK)
9359 		/* two stack pointers are equal only if they're pointing to
9360 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9361 		 */
9362 		return equal && rold->frameno == rcur->frameno;
9363 
9364 	if (equal)
9365 		return true;
9366 
9367 	if (rold->type == NOT_INIT)
9368 		/* explored state can't have used this */
9369 		return true;
9370 	if (rcur->type == NOT_INIT)
9371 		return false;
9372 	switch (rold->type) {
9373 	case SCALAR_VALUE:
9374 		if (env->explore_alu_limits)
9375 			return false;
9376 		if (rcur->type == SCALAR_VALUE) {
9377 			if (!rold->precise)
9378 				return true;
9379 			/* new val must satisfy old val knowledge */
9380 			return range_within(rold, rcur) &&
9381 			       tnum_in(rold->var_off, rcur->var_off);
9382 		} else {
9383 			/* We're trying to use a pointer in place of a scalar.
9384 			 * Even if the scalar was unbounded, this could lead to
9385 			 * pointer leaks because scalars are allowed to leak
9386 			 * while pointers are not. We could make this safe in
9387 			 * special cases if root is calling us, but it's
9388 			 * probably not worth the hassle.
9389 			 */
9390 			return false;
9391 		}
9392 	case PTR_TO_MAP_VALUE:
9393 		/* If the new min/max/var_off satisfy the old ones and
9394 		 * everything else matches, we are OK.
9395 		 * 'id' is not compared, since it's only used for maps with
9396 		 * bpf_spin_lock inside map element and in such cases if
9397 		 * the rest of the prog is valid for one map element then
9398 		 * it's valid for all map elements regardless of the key
9399 		 * used in bpf_map_lookup()
9400 		 */
9401 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9402 		       range_within(rold, rcur) &&
9403 		       tnum_in(rold->var_off, rcur->var_off);
9404 	case PTR_TO_MAP_VALUE_OR_NULL:
9405 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9406 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9407 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9408 		 * checked, doing so could have affected others with the same
9409 		 * id, and we can't check for that because we lost the id when
9410 		 * we converted to a PTR_TO_MAP_VALUE.
9411 		 */
9412 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9413 			return false;
9414 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9415 			return false;
9416 		/* Check our ids match any regs they're supposed to */
9417 		return check_ids(rold->id, rcur->id, idmap);
9418 	case PTR_TO_PACKET_META:
9419 	case PTR_TO_PACKET:
9420 		if (rcur->type != rold->type)
9421 			return false;
9422 		/* We must have at least as much range as the old ptr
9423 		 * did, so that any accesses which were safe before are
9424 		 * still safe.  This is true even if old range < old off,
9425 		 * since someone could have accessed through (ptr - k), or
9426 		 * even done ptr -= k in a register, to get a safe access.
9427 		 */
9428 		if (rold->range > rcur->range)
9429 			return false;
9430 		/* If the offsets don't match, we can't trust our alignment;
9431 		 * nor can we be sure that we won't fall out of range.
9432 		 */
9433 		if (rold->off != rcur->off)
9434 			return false;
9435 		/* id relations must be preserved */
9436 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9437 			return false;
9438 		/* new val must satisfy old val knowledge */
9439 		return range_within(rold, rcur) &&
9440 		       tnum_in(rold->var_off, rcur->var_off);
9441 	case PTR_TO_CTX:
9442 	case CONST_PTR_TO_MAP:
9443 	case PTR_TO_PACKET_END:
9444 	case PTR_TO_FLOW_KEYS:
9445 	case PTR_TO_SOCKET:
9446 	case PTR_TO_SOCKET_OR_NULL:
9447 	case PTR_TO_SOCK_COMMON:
9448 	case PTR_TO_SOCK_COMMON_OR_NULL:
9449 	case PTR_TO_TCP_SOCK:
9450 	case PTR_TO_TCP_SOCK_OR_NULL:
9451 	case PTR_TO_XDP_SOCK:
9452 		/* Only valid matches are exact, which memcmp() above
9453 		 * would have accepted
9454 		 */
9455 	default:
9456 		/* Don't know what's going on, just say it's not safe */
9457 		return false;
9458 	}
9459 
9460 	/* Shouldn't get here; if we do, say it's not safe */
9461 	WARN_ON_ONCE(1);
9462 	return false;
9463 }
9464 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9465 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9466 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9467 {
9468 	int i, spi;
9469 
9470 	/* walk slots of the explored stack and ignore any additional
9471 	 * slots in the current stack, since explored(safe) state
9472 	 * didn't use them
9473 	 */
9474 	for (i = 0; i < old->allocated_stack; i++) {
9475 		spi = i / BPF_REG_SIZE;
9476 
9477 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9478 			i += BPF_REG_SIZE - 1;
9479 			/* explored state didn't use this */
9480 			continue;
9481 		}
9482 
9483 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9484 			continue;
9485 
9486 		/* explored stack has more populated slots than current stack
9487 		 * and these slots were used
9488 		 */
9489 		if (i >= cur->allocated_stack)
9490 			return false;
9491 
9492 		/* if old state was safe with misc data in the stack
9493 		 * it will be safe with zero-initialized stack.
9494 		 * The opposite is not true
9495 		 */
9496 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9497 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9498 			continue;
9499 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9500 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9501 			/* Ex: old explored (safe) state has STACK_SPILL in
9502 			 * this stack slot, but current has STACK_MISC ->
9503 			 * this verifier states are not equivalent,
9504 			 * return false to continue verification of this path
9505 			 */
9506 			return false;
9507 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
9508 			continue;
9509 		if (!is_spilled_reg(&old->stack[spi]))
9510 			continue;
9511 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
9512 			     &cur->stack[spi].spilled_ptr, idmap))
9513 			/* when explored and current stack slot are both storing
9514 			 * spilled registers, check that stored pointers types
9515 			 * are the same as well.
9516 			 * Ex: explored safe path could have stored
9517 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9518 			 * but current path has stored:
9519 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9520 			 * such verifier states are not equivalent.
9521 			 * return false to continue verification of this path
9522 			 */
9523 			return false;
9524 	}
9525 	return true;
9526 }
9527 
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9528 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9529 {
9530 	if (old->acquired_refs != cur->acquired_refs)
9531 		return false;
9532 	return !memcmp(old->refs, cur->refs,
9533 		       sizeof(*old->refs) * old->acquired_refs);
9534 }
9535 
9536 /* compare two verifier states
9537  *
9538  * all states stored in state_list are known to be valid, since
9539  * verifier reached 'bpf_exit' instruction through them
9540  *
9541  * this function is called when verifier exploring different branches of
9542  * execution popped from the state stack. If it sees an old state that has
9543  * more strict register state and more strict stack state then this execution
9544  * branch doesn't need to be explored further, since verifier already
9545  * concluded that more strict state leads to valid finish.
9546  *
9547  * Therefore two states are equivalent if register state is more conservative
9548  * and explored stack state is more conservative than the current one.
9549  * Example:
9550  *       explored                   current
9551  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9552  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9553  *
9554  * In other words if current stack state (one being explored) has more
9555  * valid slots than old one that already passed validation, it means
9556  * the verifier can stop exploring and conclude that current state is valid too
9557  *
9558  * Similarly with registers. If explored state has register type as invalid
9559  * whereas register type in current state is meaningful, it means that
9560  * the current state will reach 'bpf_exit' instruction safely
9561  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9562 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9563 			      struct bpf_func_state *cur)
9564 {
9565 	int i;
9566 
9567 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9568 	for (i = 0; i < MAX_BPF_REG; i++)
9569 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
9570 			     env->idmap_scratch))
9571 			return false;
9572 
9573 	if (!stacksafe(env, old, cur, env->idmap_scratch))
9574 		return false;
9575 
9576 	if (!refsafe(old, cur))
9577 		return false;
9578 
9579 	return true;
9580 }
9581 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9582 static bool states_equal(struct bpf_verifier_env *env,
9583 			 struct bpf_verifier_state *old,
9584 			 struct bpf_verifier_state *cur)
9585 {
9586 	int i;
9587 
9588 	if (old->curframe != cur->curframe)
9589 		return false;
9590 
9591 	/* Verification state from speculative execution simulation
9592 	 * must never prune a non-speculative execution one.
9593 	 */
9594 	if (old->speculative && !cur->speculative)
9595 		return false;
9596 
9597 	if (old->active_spin_lock != cur->active_spin_lock)
9598 		return false;
9599 
9600 	/* for states to be equal callsites have to be the same
9601 	 * and all frame states need to be equivalent
9602 	 */
9603 	for (i = 0; i <= old->curframe; i++) {
9604 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9605 			return false;
9606 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9607 			return false;
9608 	}
9609 	return true;
9610 }
9611 
9612 /* Return 0 if no propagation happened. Return negative error code if error
9613  * happened. Otherwise, return the propagated bit.
9614  */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9615 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9616 				  struct bpf_reg_state *reg,
9617 				  struct bpf_reg_state *parent_reg)
9618 {
9619 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9620 	u8 flag = reg->live & REG_LIVE_READ;
9621 	int err;
9622 
9623 	/* When comes here, read flags of PARENT_REG or REG could be any of
9624 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9625 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9626 	 */
9627 	if (parent_flag == REG_LIVE_READ64 ||
9628 	    /* Or if there is no read flag from REG. */
9629 	    !flag ||
9630 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9631 	    parent_flag == flag)
9632 		return 0;
9633 
9634 	err = mark_reg_read(env, reg, parent_reg, flag);
9635 	if (err)
9636 		return err;
9637 
9638 	return flag;
9639 }
9640 
9641 /* A write screens off any subsequent reads; but write marks come from the
9642  * straight-line code between a state and its parent.  When we arrive at an
9643  * equivalent state (jump target or such) we didn't arrive by the straight-line
9644  * code, so read marks in the state must propagate to the parent regardless
9645  * of the state's write marks. That's what 'parent == state->parent' comparison
9646  * in mark_reg_read() is for.
9647  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9648 static int propagate_liveness(struct bpf_verifier_env *env,
9649 			      const struct bpf_verifier_state *vstate,
9650 			      struct bpf_verifier_state *vparent)
9651 {
9652 	struct bpf_reg_state *state_reg, *parent_reg;
9653 	struct bpf_func_state *state, *parent;
9654 	int i, frame, err = 0;
9655 
9656 	if (vparent->curframe != vstate->curframe) {
9657 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9658 		     vparent->curframe, vstate->curframe);
9659 		return -EFAULT;
9660 	}
9661 	/* Propagate read liveness of registers... */
9662 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9663 	for (frame = 0; frame <= vstate->curframe; frame++) {
9664 		parent = vparent->frame[frame];
9665 		state = vstate->frame[frame];
9666 		parent_reg = parent->regs;
9667 		state_reg = state->regs;
9668 		/* We don't need to worry about FP liveness, it's read-only */
9669 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9670 			err = propagate_liveness_reg(env, &state_reg[i],
9671 						     &parent_reg[i]);
9672 			if (err < 0)
9673 				return err;
9674 			if (err == REG_LIVE_READ64)
9675 				mark_insn_zext(env, &parent_reg[i]);
9676 		}
9677 
9678 		/* Propagate stack slots. */
9679 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9680 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9681 			parent_reg = &parent->stack[i].spilled_ptr;
9682 			state_reg = &state->stack[i].spilled_ptr;
9683 			err = propagate_liveness_reg(env, state_reg,
9684 						     parent_reg);
9685 			if (err < 0)
9686 				return err;
9687 		}
9688 	}
9689 	return 0;
9690 }
9691 
9692 /* find precise scalars in the previous equivalent state and
9693  * propagate them into the current state
9694  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9695 static int propagate_precision(struct bpf_verifier_env *env,
9696 			       const struct bpf_verifier_state *old)
9697 {
9698 	struct bpf_reg_state *state_reg;
9699 	struct bpf_func_state *state;
9700 	int i, err = 0, fr;
9701 
9702 	for (fr = old->curframe; fr >= 0; fr--) {
9703 		state = old->frame[fr];
9704 		state_reg = state->regs;
9705 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9706 			if (state_reg->type != SCALAR_VALUE ||
9707 			    !state_reg->precise ||
9708 			    !(state_reg->live & REG_LIVE_READ))
9709 				continue;
9710 			if (env->log.level & BPF_LOG_LEVEL2)
9711 				verbose(env, "frame %d: propagating r%d\n", fr, i);
9712 			err = mark_chain_precision_frame(env, fr, i);
9713 			if (err < 0)
9714 				return err;
9715 		}
9716 
9717 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9718 			if (!is_spilled_reg(&state->stack[i]))
9719 				continue;
9720 			state_reg = &state->stack[i].spilled_ptr;
9721 			if (state_reg->type != SCALAR_VALUE ||
9722 			    !state_reg->precise ||
9723 			    !(state_reg->live & REG_LIVE_READ))
9724 				continue;
9725 			if (env->log.level & BPF_LOG_LEVEL2)
9726 				verbose(env, "frame %d: propagating fp%d\n",
9727 					fr, (-i - 1) * BPF_REG_SIZE);
9728 			err = mark_chain_precision_stack_frame(env, fr, i);
9729 			if (err < 0)
9730 				return err;
9731 		}
9732 	}
9733 	return 0;
9734 }
9735 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9736 static bool states_maybe_looping(struct bpf_verifier_state *old,
9737 				 struct bpf_verifier_state *cur)
9738 {
9739 	struct bpf_func_state *fold, *fcur;
9740 	int i, fr = cur->curframe;
9741 
9742 	if (old->curframe != fr)
9743 		return false;
9744 
9745 	fold = old->frame[fr];
9746 	fcur = cur->frame[fr];
9747 	for (i = 0; i < MAX_BPF_REG; i++)
9748 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9749 			   offsetof(struct bpf_reg_state, parent)))
9750 			return false;
9751 	return true;
9752 }
9753 
9754 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9755 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9756 {
9757 	struct bpf_verifier_state_list *new_sl;
9758 	struct bpf_verifier_state_list *sl, **pprev;
9759 	struct bpf_verifier_state *cur = env->cur_state, *new;
9760 	int i, j, err, states_cnt = 0;
9761 	bool add_new_state = env->test_state_freq ? true : false;
9762 
9763 	cur->last_insn_idx = env->prev_insn_idx;
9764 	if (!env->insn_aux_data[insn_idx].prune_point)
9765 		/* this 'insn_idx' instruction wasn't marked, so we will not
9766 		 * be doing state search here
9767 		 */
9768 		return 0;
9769 
9770 	/* bpf progs typically have pruning point every 4 instructions
9771 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9772 	 * Do not add new state for future pruning if the verifier hasn't seen
9773 	 * at least 2 jumps and at least 8 instructions.
9774 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9775 	 * In tests that amounts to up to 50% reduction into total verifier
9776 	 * memory consumption and 20% verifier time speedup.
9777 	 */
9778 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9779 	    env->insn_processed - env->prev_insn_processed >= 8)
9780 		add_new_state = true;
9781 
9782 	pprev = explored_state(env, insn_idx);
9783 	sl = *pprev;
9784 
9785 	clean_live_states(env, insn_idx, cur);
9786 
9787 	while (sl) {
9788 		states_cnt++;
9789 		if (sl->state.insn_idx != insn_idx)
9790 			goto next;
9791 		if (sl->state.branches) {
9792 			if (states_maybe_looping(&sl->state, cur) &&
9793 			    states_equal(env, &sl->state, cur)) {
9794 				verbose_linfo(env, insn_idx, "; ");
9795 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9796 				return -EINVAL;
9797 			}
9798 			/* if the verifier is processing a loop, avoid adding new state
9799 			 * too often, since different loop iterations have distinct
9800 			 * states and may not help future pruning.
9801 			 * This threshold shouldn't be too low to make sure that
9802 			 * a loop with large bound will be rejected quickly.
9803 			 * The most abusive loop will be:
9804 			 * r1 += 1
9805 			 * if r1 < 1000000 goto pc-2
9806 			 * 1M insn_procssed limit / 100 == 10k peak states.
9807 			 * This threshold shouldn't be too high either, since states
9808 			 * at the end of the loop are likely to be useful in pruning.
9809 			 */
9810 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9811 			    env->insn_processed - env->prev_insn_processed < 100)
9812 				add_new_state = false;
9813 			goto miss;
9814 		}
9815 		if (states_equal(env, &sl->state, cur)) {
9816 			sl->hit_cnt++;
9817 			/* reached equivalent register/stack state,
9818 			 * prune the search.
9819 			 * Registers read by the continuation are read by us.
9820 			 * If we have any write marks in env->cur_state, they
9821 			 * will prevent corresponding reads in the continuation
9822 			 * from reaching our parent (an explored_state).  Our
9823 			 * own state will get the read marks recorded, but
9824 			 * they'll be immediately forgotten as we're pruning
9825 			 * this state and will pop a new one.
9826 			 */
9827 			err = propagate_liveness(env, &sl->state, cur);
9828 
9829 			/* if previous state reached the exit with precision and
9830 			 * current state is equivalent to it (except precsion marks)
9831 			 * the precision needs to be propagated back in
9832 			 * the current state.
9833 			 */
9834 			err = err ? : push_jmp_history(env, cur);
9835 			err = err ? : propagate_precision(env, &sl->state);
9836 			if (err)
9837 				return err;
9838 			return 1;
9839 		}
9840 miss:
9841 		/* when new state is not going to be added do not increase miss count.
9842 		 * Otherwise several loop iterations will remove the state
9843 		 * recorded earlier. The goal of these heuristics is to have
9844 		 * states from some iterations of the loop (some in the beginning
9845 		 * and some at the end) to help pruning.
9846 		 */
9847 		if (add_new_state)
9848 			sl->miss_cnt++;
9849 		/* heuristic to determine whether this state is beneficial
9850 		 * to keep checking from state equivalence point of view.
9851 		 * Higher numbers increase max_states_per_insn and verification time,
9852 		 * but do not meaningfully decrease insn_processed.
9853 		 */
9854 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9855 			/* the state is unlikely to be useful. Remove it to
9856 			 * speed up verification
9857 			 */
9858 			*pprev = sl->next;
9859 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9860 				u32 br = sl->state.branches;
9861 
9862 				WARN_ONCE(br,
9863 					  "BUG live_done but branches_to_explore %d\n",
9864 					  br);
9865 				free_verifier_state(&sl->state, false);
9866 				kfree(sl);
9867 				env->peak_states--;
9868 			} else {
9869 				/* cannot free this state, since parentage chain may
9870 				 * walk it later. Add it for free_list instead to
9871 				 * be freed at the end of verification
9872 				 */
9873 				sl->next = env->free_list;
9874 				env->free_list = sl;
9875 			}
9876 			sl = *pprev;
9877 			continue;
9878 		}
9879 next:
9880 		pprev = &sl->next;
9881 		sl = *pprev;
9882 	}
9883 
9884 	if (env->max_states_per_insn < states_cnt)
9885 		env->max_states_per_insn = states_cnt;
9886 
9887 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9888 		return push_jmp_history(env, cur);
9889 
9890 	if (!add_new_state)
9891 		return push_jmp_history(env, cur);
9892 
9893 	/* There were no equivalent states, remember the current one.
9894 	 * Technically the current state is not proven to be safe yet,
9895 	 * but it will either reach outer most bpf_exit (which means it's safe)
9896 	 * or it will be rejected. When there are no loops the verifier won't be
9897 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9898 	 * again on the way to bpf_exit.
9899 	 * When looping the sl->state.branches will be > 0 and this state
9900 	 * will not be considered for equivalence until branches == 0.
9901 	 */
9902 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9903 	if (!new_sl)
9904 		return -ENOMEM;
9905 	env->total_states++;
9906 	env->peak_states++;
9907 	env->prev_jmps_processed = env->jmps_processed;
9908 	env->prev_insn_processed = env->insn_processed;
9909 
9910 	/* forget precise markings we inherited, see __mark_chain_precision */
9911 	if (env->bpf_capable)
9912 		mark_all_scalars_imprecise(env, cur);
9913 
9914 	/* add new state to the head of linked list */
9915 	new = &new_sl->state;
9916 	err = copy_verifier_state(new, cur);
9917 	if (err) {
9918 		free_verifier_state(new, false);
9919 		kfree(new_sl);
9920 		return err;
9921 	}
9922 	new->insn_idx = insn_idx;
9923 	WARN_ONCE(new->branches != 1,
9924 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9925 
9926 	cur->parent = new;
9927 	cur->first_insn_idx = insn_idx;
9928 	clear_jmp_history(cur);
9929 	new_sl->next = *explored_state(env, insn_idx);
9930 	*explored_state(env, insn_idx) = new_sl;
9931 	/* connect new state to parentage chain. Current frame needs all
9932 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9933 	 * to the stack implicitly by JITs) so in callers' frames connect just
9934 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9935 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9936 	 * from callee with its full parentage chain, anyway.
9937 	 */
9938 	/* clear write marks in current state: the writes we did are not writes
9939 	 * our child did, so they don't screen off its reads from us.
9940 	 * (There are no read marks in current state, because reads always mark
9941 	 * their parent and current state never has children yet.  Only
9942 	 * explored_states can get read marks.)
9943 	 */
9944 	for (j = 0; j <= cur->curframe; j++) {
9945 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9946 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9947 		for (i = 0; i < BPF_REG_FP; i++)
9948 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9949 	}
9950 
9951 	/* all stack frames are accessible from callee, clear them all */
9952 	for (j = 0; j <= cur->curframe; j++) {
9953 		struct bpf_func_state *frame = cur->frame[j];
9954 		struct bpf_func_state *newframe = new->frame[j];
9955 
9956 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9957 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9958 			frame->stack[i].spilled_ptr.parent =
9959 						&newframe->stack[i].spilled_ptr;
9960 		}
9961 	}
9962 	return 0;
9963 }
9964 
9965 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)9966 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9967 {
9968 	switch (type) {
9969 	case PTR_TO_CTX:
9970 	case PTR_TO_SOCKET:
9971 	case PTR_TO_SOCKET_OR_NULL:
9972 	case PTR_TO_SOCK_COMMON:
9973 	case PTR_TO_SOCK_COMMON_OR_NULL:
9974 	case PTR_TO_TCP_SOCK:
9975 	case PTR_TO_TCP_SOCK_OR_NULL:
9976 	case PTR_TO_XDP_SOCK:
9977 	case PTR_TO_BTF_ID:
9978 	case PTR_TO_BTF_ID_OR_NULL:
9979 		return false;
9980 	default:
9981 		return true;
9982 	}
9983 }
9984 
9985 /* If an instruction was previously used with particular pointer types, then we
9986  * need to be careful to avoid cases such as the below, where it may be ok
9987  * for one branch accessing the pointer, but not ok for the other branch:
9988  *
9989  * R1 = sock_ptr
9990  * goto X;
9991  * ...
9992  * R1 = some_other_valid_ptr;
9993  * goto X;
9994  * ...
9995  * R2 = *(u32 *)(R1 + 0);
9996  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)9997 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9998 {
9999 	return src != prev && (!reg_type_mismatch_ok(src) ||
10000 			       !reg_type_mismatch_ok(prev));
10001 }
10002 
do_check(struct bpf_verifier_env * env)10003 static int do_check(struct bpf_verifier_env *env)
10004 {
10005 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10006 	struct bpf_verifier_state *state = env->cur_state;
10007 	struct bpf_insn *insns = env->prog->insnsi;
10008 	struct bpf_reg_state *regs;
10009 	int insn_cnt = env->prog->len;
10010 	bool do_print_state = false;
10011 	int prev_insn_idx = -1;
10012 
10013 	for (;;) {
10014 		struct bpf_insn *insn;
10015 		u8 class;
10016 		int err;
10017 
10018 		env->prev_insn_idx = prev_insn_idx;
10019 		if (env->insn_idx >= insn_cnt) {
10020 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10021 				env->insn_idx, insn_cnt);
10022 			return -EFAULT;
10023 		}
10024 
10025 		insn = &insns[env->insn_idx];
10026 		class = BPF_CLASS(insn->code);
10027 
10028 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10029 			verbose(env,
10030 				"BPF program is too large. Processed %d insn\n",
10031 				env->insn_processed);
10032 			return -E2BIG;
10033 		}
10034 
10035 		err = is_state_visited(env, env->insn_idx);
10036 		if (err < 0)
10037 			return err;
10038 		if (err == 1) {
10039 			/* found equivalent state, can prune the search */
10040 			if (env->log.level & BPF_LOG_LEVEL) {
10041 				if (do_print_state)
10042 					verbose(env, "\nfrom %d to %d%s: safe\n",
10043 						env->prev_insn_idx, env->insn_idx,
10044 						env->cur_state->speculative ?
10045 						" (speculative execution)" : "");
10046 				else
10047 					verbose(env, "%d: safe\n", env->insn_idx);
10048 			}
10049 			goto process_bpf_exit;
10050 		}
10051 
10052 		if (signal_pending(current))
10053 			return -EAGAIN;
10054 
10055 		if (need_resched())
10056 			cond_resched();
10057 
10058 		if (env->log.level & BPF_LOG_LEVEL2 ||
10059 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10060 			if (env->log.level & BPF_LOG_LEVEL2)
10061 				verbose(env, "%d:", env->insn_idx);
10062 			else
10063 				verbose(env, "\nfrom %d to %d%s:",
10064 					env->prev_insn_idx, env->insn_idx,
10065 					env->cur_state->speculative ?
10066 					" (speculative execution)" : "");
10067 			print_verifier_state(env, state->frame[state->curframe]);
10068 			do_print_state = false;
10069 		}
10070 
10071 		if (env->log.level & BPF_LOG_LEVEL) {
10072 			const struct bpf_insn_cbs cbs = {
10073 				.cb_print	= verbose,
10074 				.private_data	= env,
10075 			};
10076 
10077 			verbose_linfo(env, env->insn_idx, "; ");
10078 			verbose(env, "%d: ", env->insn_idx);
10079 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10080 		}
10081 
10082 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10083 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10084 							   env->prev_insn_idx);
10085 			if (err)
10086 				return err;
10087 		}
10088 
10089 		regs = cur_regs(env);
10090 		sanitize_mark_insn_seen(env);
10091 		prev_insn_idx = env->insn_idx;
10092 
10093 		if (class == BPF_ALU || class == BPF_ALU64) {
10094 			err = check_alu_op(env, insn);
10095 			if (err)
10096 				return err;
10097 
10098 		} else if (class == BPF_LDX) {
10099 			enum bpf_reg_type *prev_src_type, src_reg_type;
10100 
10101 			/* check for reserved fields is already done */
10102 
10103 			/* check src operand */
10104 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10105 			if (err)
10106 				return err;
10107 
10108 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10109 			if (err)
10110 				return err;
10111 
10112 			src_reg_type = regs[insn->src_reg].type;
10113 
10114 			/* check that memory (src_reg + off) is readable,
10115 			 * the state of dst_reg will be updated by this func
10116 			 */
10117 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10118 					       insn->off, BPF_SIZE(insn->code),
10119 					       BPF_READ, insn->dst_reg, false);
10120 			if (err)
10121 				return err;
10122 
10123 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10124 
10125 			if (*prev_src_type == NOT_INIT) {
10126 				/* saw a valid insn
10127 				 * dst_reg = *(u32 *)(src_reg + off)
10128 				 * save type to validate intersecting paths
10129 				 */
10130 				*prev_src_type = src_reg_type;
10131 
10132 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10133 				/* ABuser program is trying to use the same insn
10134 				 * dst_reg = *(u32*) (src_reg + off)
10135 				 * with different pointer types:
10136 				 * src_reg == ctx in one branch and
10137 				 * src_reg == stack|map in some other branch.
10138 				 * Reject it.
10139 				 */
10140 				verbose(env, "same insn cannot be used with different pointers\n");
10141 				return -EINVAL;
10142 			}
10143 
10144 		} else if (class == BPF_STX) {
10145 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10146 
10147 			if (BPF_MODE(insn->code) == BPF_XADD) {
10148 				err = check_xadd(env, env->insn_idx, insn);
10149 				if (err)
10150 					return err;
10151 				env->insn_idx++;
10152 				continue;
10153 			}
10154 
10155 			/* check src1 operand */
10156 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10157 			if (err)
10158 				return err;
10159 			/* check src2 operand */
10160 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10161 			if (err)
10162 				return err;
10163 
10164 			dst_reg_type = regs[insn->dst_reg].type;
10165 
10166 			/* check that memory (dst_reg + off) is writeable */
10167 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10168 					       insn->off, BPF_SIZE(insn->code),
10169 					       BPF_WRITE, insn->src_reg, false);
10170 			if (err)
10171 				return err;
10172 
10173 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10174 
10175 			if (*prev_dst_type == NOT_INIT) {
10176 				*prev_dst_type = dst_reg_type;
10177 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10178 				verbose(env, "same insn cannot be used with different pointers\n");
10179 				return -EINVAL;
10180 			}
10181 
10182 		} else if (class == BPF_ST) {
10183 			if (BPF_MODE(insn->code) != BPF_MEM ||
10184 			    insn->src_reg != BPF_REG_0) {
10185 				verbose(env, "BPF_ST uses reserved fields\n");
10186 				return -EINVAL;
10187 			}
10188 			/* check src operand */
10189 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10190 			if (err)
10191 				return err;
10192 
10193 			if (is_ctx_reg(env, insn->dst_reg)) {
10194 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10195 					insn->dst_reg,
10196 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10197 				return -EACCES;
10198 			}
10199 
10200 			/* check that memory (dst_reg + off) is writeable */
10201 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10202 					       insn->off, BPF_SIZE(insn->code),
10203 					       BPF_WRITE, -1, false);
10204 			if (err)
10205 				return err;
10206 
10207 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10208 			u8 opcode = BPF_OP(insn->code);
10209 
10210 			env->jmps_processed++;
10211 			if (opcode == BPF_CALL) {
10212 				if (BPF_SRC(insn->code) != BPF_K ||
10213 				    insn->off != 0 ||
10214 				    (insn->src_reg != BPF_REG_0 &&
10215 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10216 				    insn->dst_reg != BPF_REG_0 ||
10217 				    class == BPF_JMP32) {
10218 					verbose(env, "BPF_CALL uses reserved fields\n");
10219 					return -EINVAL;
10220 				}
10221 
10222 				if (env->cur_state->active_spin_lock &&
10223 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10224 				     insn->imm != BPF_FUNC_spin_unlock)) {
10225 					verbose(env, "function calls are not allowed while holding a lock\n");
10226 					return -EINVAL;
10227 				}
10228 				if (insn->src_reg == BPF_PSEUDO_CALL)
10229 					err = check_func_call(env, insn, &env->insn_idx);
10230 				else
10231 					err = check_helper_call(env, insn->imm, env->insn_idx);
10232 				if (err)
10233 					return err;
10234 
10235 			} else if (opcode == BPF_JA) {
10236 				if (BPF_SRC(insn->code) != BPF_K ||
10237 				    insn->imm != 0 ||
10238 				    insn->src_reg != BPF_REG_0 ||
10239 				    insn->dst_reg != BPF_REG_0 ||
10240 				    class == BPF_JMP32) {
10241 					verbose(env, "BPF_JA uses reserved fields\n");
10242 					return -EINVAL;
10243 				}
10244 
10245 				env->insn_idx += insn->off + 1;
10246 				continue;
10247 
10248 			} else if (opcode == BPF_EXIT) {
10249 				if (BPF_SRC(insn->code) != BPF_K ||
10250 				    insn->imm != 0 ||
10251 				    insn->src_reg != BPF_REG_0 ||
10252 				    insn->dst_reg != BPF_REG_0 ||
10253 				    class == BPF_JMP32) {
10254 					verbose(env, "BPF_EXIT uses reserved fields\n");
10255 					return -EINVAL;
10256 				}
10257 
10258 				if (env->cur_state->active_spin_lock) {
10259 					verbose(env, "bpf_spin_unlock is missing\n");
10260 					return -EINVAL;
10261 				}
10262 
10263 				if (state->curframe) {
10264 					/* exit from nested function */
10265 					err = prepare_func_exit(env, &env->insn_idx);
10266 					if (err)
10267 						return err;
10268 					do_print_state = true;
10269 					continue;
10270 				}
10271 
10272 				err = check_reference_leak(env);
10273 				if (err)
10274 					return err;
10275 
10276 				err = check_return_code(env);
10277 				if (err)
10278 					return err;
10279 process_bpf_exit:
10280 				update_branch_counts(env, env->cur_state);
10281 				err = pop_stack(env, &prev_insn_idx,
10282 						&env->insn_idx, pop_log);
10283 				if (err < 0) {
10284 					if (err != -ENOENT)
10285 						return err;
10286 					break;
10287 				} else {
10288 					do_print_state = true;
10289 					continue;
10290 				}
10291 			} else {
10292 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10293 				if (err)
10294 					return err;
10295 			}
10296 		} else if (class == BPF_LD) {
10297 			u8 mode = BPF_MODE(insn->code);
10298 
10299 			if (mode == BPF_ABS || mode == BPF_IND) {
10300 				err = check_ld_abs(env, insn);
10301 				if (err)
10302 					return err;
10303 
10304 			} else if (mode == BPF_IMM) {
10305 				err = check_ld_imm(env, insn);
10306 				if (err)
10307 					return err;
10308 
10309 				env->insn_idx++;
10310 				sanitize_mark_insn_seen(env);
10311 			} else {
10312 				verbose(env, "invalid BPF_LD mode\n");
10313 				return -EINVAL;
10314 			}
10315 		} else {
10316 			verbose(env, "unknown insn class %d\n", class);
10317 			return -EINVAL;
10318 		}
10319 
10320 		env->insn_idx++;
10321 	}
10322 
10323 	return 0;
10324 }
10325 
10326 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10327 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10328 			       struct bpf_insn *insn,
10329 			       struct bpf_insn_aux_data *aux)
10330 {
10331 	const struct btf_var_secinfo *vsi;
10332 	const struct btf_type *datasec;
10333 	const struct btf_type *t;
10334 	const char *sym_name;
10335 	bool percpu = false;
10336 	u32 type, id = insn->imm;
10337 	s32 datasec_id;
10338 	u64 addr;
10339 	int i;
10340 
10341 	if (!btf_vmlinux) {
10342 		verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10343 		return -EINVAL;
10344 	}
10345 
10346 	if (insn[1].imm != 0) {
10347 		verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10348 		return -EINVAL;
10349 	}
10350 
10351 	t = btf_type_by_id(btf_vmlinux, id);
10352 	if (!t) {
10353 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10354 		return -ENOENT;
10355 	}
10356 
10357 	if (!btf_type_is_var(t)) {
10358 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10359 			id);
10360 		return -EINVAL;
10361 	}
10362 
10363 	sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10364 	addr = kallsyms_lookup_name(sym_name);
10365 	if (!addr) {
10366 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10367 			sym_name);
10368 		return -ENOENT;
10369 	}
10370 
10371 	datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10372 					   BTF_KIND_DATASEC);
10373 	if (datasec_id > 0) {
10374 		datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10375 		for_each_vsi(i, datasec, vsi) {
10376 			if (vsi->type == id) {
10377 				percpu = true;
10378 				break;
10379 			}
10380 		}
10381 	}
10382 
10383 	insn[0].imm = (u32)addr;
10384 	insn[1].imm = addr >> 32;
10385 
10386 	type = t->type;
10387 	t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10388 	if (percpu) {
10389 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10390 		aux->btf_var.btf_id = type;
10391 	} else if (!btf_type_is_struct(t)) {
10392 		const struct btf_type *ret;
10393 		const char *tname;
10394 		u32 tsize;
10395 
10396 		/* resolve the type size of ksym. */
10397 		ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10398 		if (IS_ERR(ret)) {
10399 			tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10400 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10401 				tname, PTR_ERR(ret));
10402 			return -EINVAL;
10403 		}
10404 		aux->btf_var.reg_type = PTR_TO_MEM;
10405 		aux->btf_var.mem_size = tsize;
10406 	} else {
10407 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10408 		aux->btf_var.btf_id = type;
10409 	}
10410 	return 0;
10411 }
10412 
check_map_prealloc(struct bpf_map * map)10413 static int check_map_prealloc(struct bpf_map *map)
10414 {
10415 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10416 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10417 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10418 		!(map->map_flags & BPF_F_NO_PREALLOC);
10419 }
10420 
is_tracing_prog_type(enum bpf_prog_type type)10421 static bool is_tracing_prog_type(enum bpf_prog_type type)
10422 {
10423 	switch (type) {
10424 	case BPF_PROG_TYPE_KPROBE:
10425 	case BPF_PROG_TYPE_TRACEPOINT:
10426 	case BPF_PROG_TYPE_PERF_EVENT:
10427 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10428 		return true;
10429 	default:
10430 		return false;
10431 	}
10432 }
10433 
is_preallocated_map(struct bpf_map * map)10434 static bool is_preallocated_map(struct bpf_map *map)
10435 {
10436 	if (!check_map_prealloc(map))
10437 		return false;
10438 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10439 		return false;
10440 	return true;
10441 }
10442 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10443 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10444 					struct bpf_map *map,
10445 					struct bpf_prog *prog)
10446 
10447 {
10448 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10449 	/*
10450 	 * Validate that trace type programs use preallocated hash maps.
10451 	 *
10452 	 * For programs attached to PERF events this is mandatory as the
10453 	 * perf NMI can hit any arbitrary code sequence.
10454 	 *
10455 	 * All other trace types using preallocated hash maps are unsafe as
10456 	 * well because tracepoint or kprobes can be inside locked regions
10457 	 * of the memory allocator or at a place where a recursion into the
10458 	 * memory allocator would see inconsistent state.
10459 	 *
10460 	 * On RT enabled kernels run-time allocation of all trace type
10461 	 * programs is strictly prohibited due to lock type constraints. On
10462 	 * !RT kernels it is allowed for backwards compatibility reasons for
10463 	 * now, but warnings are emitted so developers are made aware of
10464 	 * the unsafety and can fix their programs before this is enforced.
10465 	 */
10466 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10467 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10468 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10469 			return -EINVAL;
10470 		}
10471 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10472 			verbose(env, "trace type programs can only use preallocated hash map\n");
10473 			return -EINVAL;
10474 		}
10475 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10476 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10477 	}
10478 
10479 	if ((is_tracing_prog_type(prog_type) ||
10480 	     prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10481 	    map_value_has_spin_lock(map)) {
10482 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10483 		return -EINVAL;
10484 	}
10485 
10486 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10487 	    !bpf_offload_prog_map_match(prog, map)) {
10488 		verbose(env, "offload device mismatch between prog and map\n");
10489 		return -EINVAL;
10490 	}
10491 
10492 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10493 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10494 		return -EINVAL;
10495 	}
10496 
10497 	if (prog->aux->sleepable)
10498 		switch (map->map_type) {
10499 		case BPF_MAP_TYPE_HASH:
10500 		case BPF_MAP_TYPE_LRU_HASH:
10501 		case BPF_MAP_TYPE_ARRAY:
10502 			if (!is_preallocated_map(map)) {
10503 				verbose(env,
10504 					"Sleepable programs can only use preallocated hash maps\n");
10505 				return -EINVAL;
10506 			}
10507 			break;
10508 		default:
10509 			verbose(env,
10510 				"Sleepable programs can only use array and hash maps\n");
10511 			return -EINVAL;
10512 		}
10513 
10514 	return 0;
10515 }
10516 
bpf_map_is_cgroup_storage(struct bpf_map * map)10517 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10518 {
10519 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10520 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10521 }
10522 
10523 /* find and rewrite pseudo imm in ld_imm64 instructions:
10524  *
10525  * 1. if it accesses map FD, replace it with actual map pointer.
10526  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10527  *
10528  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10529  */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10530 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10531 {
10532 	struct bpf_insn *insn = env->prog->insnsi;
10533 	int insn_cnt = env->prog->len;
10534 	int i, j, err;
10535 
10536 	err = bpf_prog_calc_tag(env->prog);
10537 	if (err)
10538 		return err;
10539 
10540 	for (i = 0; i < insn_cnt; i++, insn++) {
10541 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10542 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10543 			verbose(env, "BPF_LDX uses reserved fields\n");
10544 			return -EINVAL;
10545 		}
10546 
10547 		if (BPF_CLASS(insn->code) == BPF_STX &&
10548 		    ((BPF_MODE(insn->code) != BPF_MEM &&
10549 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10550 			verbose(env, "BPF_STX uses reserved fields\n");
10551 			return -EINVAL;
10552 		}
10553 
10554 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10555 			struct bpf_insn_aux_data *aux;
10556 			struct bpf_map *map;
10557 			struct fd f;
10558 			u64 addr;
10559 
10560 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10561 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10562 			    insn[1].off != 0) {
10563 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10564 				return -EINVAL;
10565 			}
10566 
10567 			if (insn[0].src_reg == 0)
10568 				/* valid generic load 64-bit imm */
10569 				goto next_insn;
10570 
10571 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10572 				aux = &env->insn_aux_data[i];
10573 				err = check_pseudo_btf_id(env, insn, aux);
10574 				if (err)
10575 					return err;
10576 				goto next_insn;
10577 			}
10578 
10579 			/* In final convert_pseudo_ld_imm64() step, this is
10580 			 * converted into regular 64-bit imm load insn.
10581 			 */
10582 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10583 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10584 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10585 			     insn[1].imm != 0)) {
10586 				verbose(env,
10587 					"unrecognized bpf_ld_imm64 insn\n");
10588 				return -EINVAL;
10589 			}
10590 
10591 			f = fdget(insn[0].imm);
10592 			map = __bpf_map_get(f);
10593 			if (IS_ERR(map)) {
10594 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10595 					insn[0].imm);
10596 				return PTR_ERR(map);
10597 			}
10598 
10599 			err = check_map_prog_compatibility(env, map, env->prog);
10600 			if (err) {
10601 				fdput(f);
10602 				return err;
10603 			}
10604 
10605 			aux = &env->insn_aux_data[i];
10606 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10607 				addr = (unsigned long)map;
10608 			} else {
10609 				u32 off = insn[1].imm;
10610 
10611 				if (off >= BPF_MAX_VAR_OFF) {
10612 					verbose(env, "direct value offset of %u is not allowed\n", off);
10613 					fdput(f);
10614 					return -EINVAL;
10615 				}
10616 
10617 				if (!map->ops->map_direct_value_addr) {
10618 					verbose(env, "no direct value access support for this map type\n");
10619 					fdput(f);
10620 					return -EINVAL;
10621 				}
10622 
10623 				err = map->ops->map_direct_value_addr(map, &addr, off);
10624 				if (err) {
10625 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10626 						map->value_size, off);
10627 					fdput(f);
10628 					return err;
10629 				}
10630 
10631 				aux->map_off = off;
10632 				addr += off;
10633 			}
10634 
10635 			insn[0].imm = (u32)addr;
10636 			insn[1].imm = addr >> 32;
10637 
10638 			/* check whether we recorded this map already */
10639 			for (j = 0; j < env->used_map_cnt; j++) {
10640 				if (env->used_maps[j] == map) {
10641 					aux->map_index = j;
10642 					fdput(f);
10643 					goto next_insn;
10644 				}
10645 			}
10646 
10647 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10648 				fdput(f);
10649 				return -E2BIG;
10650 			}
10651 
10652 			/* hold the map. If the program is rejected by verifier,
10653 			 * the map will be released by release_maps() or it
10654 			 * will be used by the valid program until it's unloaded
10655 			 * and all maps are released in free_used_maps()
10656 			 */
10657 			bpf_map_inc(map);
10658 
10659 			aux->map_index = env->used_map_cnt;
10660 			env->used_maps[env->used_map_cnt++] = map;
10661 
10662 			if (bpf_map_is_cgroup_storage(map) &&
10663 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10664 				verbose(env, "only one cgroup storage of each type is allowed\n");
10665 				fdput(f);
10666 				return -EBUSY;
10667 			}
10668 
10669 			fdput(f);
10670 next_insn:
10671 			insn++;
10672 			i++;
10673 			continue;
10674 		}
10675 
10676 		/* Basic sanity check before we invest more work here. */
10677 		if (!bpf_opcode_in_insntable(insn->code)) {
10678 			verbose(env, "unknown opcode %02x\n", insn->code);
10679 			return -EINVAL;
10680 		}
10681 	}
10682 
10683 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10684 	 * 'struct bpf_map *' into a register instead of user map_fd.
10685 	 * These pointers will be used later by verifier to validate map access.
10686 	 */
10687 	return 0;
10688 }
10689 
10690 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10691 static void release_maps(struct bpf_verifier_env *env)
10692 {
10693 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10694 			     env->used_map_cnt);
10695 }
10696 
10697 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10698 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10699 {
10700 	struct bpf_insn *insn = env->prog->insnsi;
10701 	int insn_cnt = env->prog->len;
10702 	int i;
10703 
10704 	for (i = 0; i < insn_cnt; i++, insn++)
10705 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10706 			insn->src_reg = 0;
10707 }
10708 
10709 /* single env->prog->insni[off] instruction was replaced with the range
10710  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10711  * [0, off) and [off, end) to new locations, so the patched range stays zero
10712  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10713 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10714 				 struct bpf_insn_aux_data *new_data,
10715 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
10716 {
10717 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10718 	struct bpf_insn *insn = new_prog->insnsi;
10719 	u32 old_seen = old_data[off].seen;
10720 	u32 prog_len;
10721 	int i;
10722 
10723 	/* aux info at OFF always needs adjustment, no matter fast path
10724 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10725 	 * original insn at old prog.
10726 	 */
10727 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10728 
10729 	if (cnt == 1)
10730 		return;
10731 	prog_len = new_prog->len;
10732 
10733 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10734 	memcpy(new_data + off + cnt - 1, old_data + off,
10735 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10736 	for (i = off; i < off + cnt - 1; i++) {
10737 		/* Expand insni[off]'s seen count to the patched range. */
10738 		new_data[i].seen = old_seen;
10739 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10740 	}
10741 	env->insn_aux_data = new_data;
10742 	vfree(old_data);
10743 }
10744 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10745 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10746 {
10747 	int i;
10748 
10749 	if (len == 1)
10750 		return;
10751 	/* NOTE: fake 'exit' subprog should be updated as well. */
10752 	for (i = 0; i <= env->subprog_cnt; i++) {
10753 		if (env->subprog_info[i].start <= off)
10754 			continue;
10755 		env->subprog_info[i].start += len - 1;
10756 	}
10757 }
10758 
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10759 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10760 {
10761 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10762 	int i, sz = prog->aux->size_poke_tab;
10763 	struct bpf_jit_poke_descriptor *desc;
10764 
10765 	for (i = 0; i < sz; i++) {
10766 		desc = &tab[i];
10767 		if (desc->insn_idx <= off)
10768 			continue;
10769 		desc->insn_idx += len - 1;
10770 	}
10771 }
10772 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10773 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10774 					    const struct bpf_insn *patch, u32 len)
10775 {
10776 	struct bpf_prog *new_prog;
10777 	struct bpf_insn_aux_data *new_data = NULL;
10778 
10779 	if (len > 1) {
10780 		new_data = vzalloc(array_size(env->prog->len + len - 1,
10781 					      sizeof(struct bpf_insn_aux_data)));
10782 		if (!new_data)
10783 			return NULL;
10784 	}
10785 
10786 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10787 	if (IS_ERR(new_prog)) {
10788 		if (PTR_ERR(new_prog) == -ERANGE)
10789 			verbose(env,
10790 				"insn %d cannot be patched due to 16-bit range\n",
10791 				env->insn_aux_data[off].orig_idx);
10792 		vfree(new_data);
10793 		return NULL;
10794 	}
10795 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
10796 	adjust_subprog_starts(env, off, len);
10797 	adjust_poke_descs(new_prog, off, len);
10798 	return new_prog;
10799 }
10800 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10801 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10802 					      u32 off, u32 cnt)
10803 {
10804 	int i, j;
10805 
10806 	/* find first prog starting at or after off (first to remove) */
10807 	for (i = 0; i < env->subprog_cnt; i++)
10808 		if (env->subprog_info[i].start >= off)
10809 			break;
10810 	/* find first prog starting at or after off + cnt (first to stay) */
10811 	for (j = i; j < env->subprog_cnt; j++)
10812 		if (env->subprog_info[j].start >= off + cnt)
10813 			break;
10814 	/* if j doesn't start exactly at off + cnt, we are just removing
10815 	 * the front of previous prog
10816 	 */
10817 	if (env->subprog_info[j].start != off + cnt)
10818 		j--;
10819 
10820 	if (j > i) {
10821 		struct bpf_prog_aux *aux = env->prog->aux;
10822 		int move;
10823 
10824 		/* move fake 'exit' subprog as well */
10825 		move = env->subprog_cnt + 1 - j;
10826 
10827 		memmove(env->subprog_info + i,
10828 			env->subprog_info + j,
10829 			sizeof(*env->subprog_info) * move);
10830 		env->subprog_cnt -= j - i;
10831 
10832 		/* remove func_info */
10833 		if (aux->func_info) {
10834 			move = aux->func_info_cnt - j;
10835 
10836 			memmove(aux->func_info + i,
10837 				aux->func_info + j,
10838 				sizeof(*aux->func_info) * move);
10839 			aux->func_info_cnt -= j - i;
10840 			/* func_info->insn_off is set after all code rewrites,
10841 			 * in adjust_btf_func() - no need to adjust
10842 			 */
10843 		}
10844 	} else {
10845 		/* convert i from "first prog to remove" to "first to adjust" */
10846 		if (env->subprog_info[i].start == off)
10847 			i++;
10848 	}
10849 
10850 	/* update fake 'exit' subprog as well */
10851 	for (; i <= env->subprog_cnt; i++)
10852 		env->subprog_info[i].start -= cnt;
10853 
10854 	return 0;
10855 }
10856 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10857 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10858 				      u32 cnt)
10859 {
10860 	struct bpf_prog *prog = env->prog;
10861 	u32 i, l_off, l_cnt, nr_linfo;
10862 	struct bpf_line_info *linfo;
10863 
10864 	nr_linfo = prog->aux->nr_linfo;
10865 	if (!nr_linfo)
10866 		return 0;
10867 
10868 	linfo = prog->aux->linfo;
10869 
10870 	/* find first line info to remove, count lines to be removed */
10871 	for (i = 0; i < nr_linfo; i++)
10872 		if (linfo[i].insn_off >= off)
10873 			break;
10874 
10875 	l_off = i;
10876 	l_cnt = 0;
10877 	for (; i < nr_linfo; i++)
10878 		if (linfo[i].insn_off < off + cnt)
10879 			l_cnt++;
10880 		else
10881 			break;
10882 
10883 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10884 	 * last removed linfo.  prog is already modified, so prog->len == off
10885 	 * means no live instructions after (tail of the program was removed).
10886 	 */
10887 	if (prog->len != off && l_cnt &&
10888 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10889 		l_cnt--;
10890 		linfo[--i].insn_off = off + cnt;
10891 	}
10892 
10893 	/* remove the line info which refer to the removed instructions */
10894 	if (l_cnt) {
10895 		memmove(linfo + l_off, linfo + i,
10896 			sizeof(*linfo) * (nr_linfo - i));
10897 
10898 		prog->aux->nr_linfo -= l_cnt;
10899 		nr_linfo = prog->aux->nr_linfo;
10900 	}
10901 
10902 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10903 	for (i = l_off; i < nr_linfo; i++)
10904 		linfo[i].insn_off -= cnt;
10905 
10906 	/* fix up all subprogs (incl. 'exit') which start >= off */
10907 	for (i = 0; i <= env->subprog_cnt; i++)
10908 		if (env->subprog_info[i].linfo_idx > l_off) {
10909 			/* program may have started in the removed region but
10910 			 * may not be fully removed
10911 			 */
10912 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10913 				env->subprog_info[i].linfo_idx -= l_cnt;
10914 			else
10915 				env->subprog_info[i].linfo_idx = l_off;
10916 		}
10917 
10918 	return 0;
10919 }
10920 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10921 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10922 {
10923 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10924 	unsigned int orig_prog_len = env->prog->len;
10925 	int err;
10926 
10927 	if (bpf_prog_is_dev_bound(env->prog->aux))
10928 		bpf_prog_offload_remove_insns(env, off, cnt);
10929 
10930 	err = bpf_remove_insns(env->prog, off, cnt);
10931 	if (err)
10932 		return err;
10933 
10934 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10935 	if (err)
10936 		return err;
10937 
10938 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10939 	if (err)
10940 		return err;
10941 
10942 	memmove(aux_data + off,	aux_data + off + cnt,
10943 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10944 
10945 	return 0;
10946 }
10947 
10948 /* The verifier does more data flow analysis than llvm and will not
10949  * explore branches that are dead at run time. Malicious programs can
10950  * have dead code too. Therefore replace all dead at-run-time code
10951  * with 'ja -1'.
10952  *
10953  * Just nops are not optimal, e.g. if they would sit at the end of the
10954  * program and through another bug we would manage to jump there, then
10955  * we'd execute beyond program memory otherwise. Returning exception
10956  * code also wouldn't work since we can have subprogs where the dead
10957  * code could be located.
10958  */
sanitize_dead_code(struct bpf_verifier_env * env)10959 static void sanitize_dead_code(struct bpf_verifier_env *env)
10960 {
10961 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10962 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10963 	struct bpf_insn *insn = env->prog->insnsi;
10964 	const int insn_cnt = env->prog->len;
10965 	int i;
10966 
10967 	for (i = 0; i < insn_cnt; i++) {
10968 		if (aux_data[i].seen)
10969 			continue;
10970 		memcpy(insn + i, &trap, sizeof(trap));
10971 		aux_data[i].zext_dst = false;
10972 	}
10973 }
10974 
insn_is_cond_jump(u8 code)10975 static bool insn_is_cond_jump(u8 code)
10976 {
10977 	u8 op;
10978 
10979 	if (BPF_CLASS(code) == BPF_JMP32)
10980 		return true;
10981 
10982 	if (BPF_CLASS(code) != BPF_JMP)
10983 		return false;
10984 
10985 	op = BPF_OP(code);
10986 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10987 }
10988 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)10989 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10990 {
10991 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10992 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10993 	struct bpf_insn *insn = env->prog->insnsi;
10994 	const int insn_cnt = env->prog->len;
10995 	int i;
10996 
10997 	for (i = 0; i < insn_cnt; i++, insn++) {
10998 		if (!insn_is_cond_jump(insn->code))
10999 			continue;
11000 
11001 		if (!aux_data[i + 1].seen)
11002 			ja.off = insn->off;
11003 		else if (!aux_data[i + 1 + insn->off].seen)
11004 			ja.off = 0;
11005 		else
11006 			continue;
11007 
11008 		if (bpf_prog_is_dev_bound(env->prog->aux))
11009 			bpf_prog_offload_replace_insn(env, i, &ja);
11010 
11011 		memcpy(insn, &ja, sizeof(ja));
11012 	}
11013 }
11014 
opt_remove_dead_code(struct bpf_verifier_env * env)11015 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11016 {
11017 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11018 	int insn_cnt = env->prog->len;
11019 	int i, err;
11020 
11021 	for (i = 0; i < insn_cnt; i++) {
11022 		int j;
11023 
11024 		j = 0;
11025 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11026 			j++;
11027 		if (!j)
11028 			continue;
11029 
11030 		err = verifier_remove_insns(env, i, j);
11031 		if (err)
11032 			return err;
11033 		insn_cnt = env->prog->len;
11034 	}
11035 
11036 	return 0;
11037 }
11038 
opt_remove_nops(struct bpf_verifier_env * env)11039 static int opt_remove_nops(struct bpf_verifier_env *env)
11040 {
11041 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11042 	struct bpf_insn *insn = env->prog->insnsi;
11043 	int insn_cnt = env->prog->len;
11044 	int i, err;
11045 
11046 	for (i = 0; i < insn_cnt; i++) {
11047 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11048 			continue;
11049 
11050 		err = verifier_remove_insns(env, i, 1);
11051 		if (err)
11052 			return err;
11053 		insn_cnt--;
11054 		i--;
11055 	}
11056 
11057 	return 0;
11058 }
11059 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)11060 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11061 					 const union bpf_attr *attr)
11062 {
11063 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11064 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11065 	int i, patch_len, delta = 0, len = env->prog->len;
11066 	struct bpf_insn *insns = env->prog->insnsi;
11067 	struct bpf_prog *new_prog;
11068 	bool rnd_hi32;
11069 
11070 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11071 	zext_patch[1] = BPF_ZEXT_REG(0);
11072 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11073 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11074 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11075 	for (i = 0; i < len; i++) {
11076 		int adj_idx = i + delta;
11077 		struct bpf_insn insn;
11078 
11079 		insn = insns[adj_idx];
11080 		if (!aux[adj_idx].zext_dst) {
11081 			u8 code, class;
11082 			u32 imm_rnd;
11083 
11084 			if (!rnd_hi32)
11085 				continue;
11086 
11087 			code = insn.code;
11088 			class = BPF_CLASS(code);
11089 			if (insn_no_def(&insn))
11090 				continue;
11091 
11092 			/* NOTE: arg "reg" (the fourth one) is only used for
11093 			 *       BPF_STX which has been ruled out in above
11094 			 *       check, it is safe to pass NULL here.
11095 			 */
11096 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
11097 				if (class == BPF_LD &&
11098 				    BPF_MODE(code) == BPF_IMM)
11099 					i++;
11100 				continue;
11101 			}
11102 
11103 			/* ctx load could be transformed into wider load. */
11104 			if (class == BPF_LDX &&
11105 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11106 				continue;
11107 
11108 			imm_rnd = get_random_int();
11109 			rnd_hi32_patch[0] = insn;
11110 			rnd_hi32_patch[1].imm = imm_rnd;
11111 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
11112 			patch = rnd_hi32_patch;
11113 			patch_len = 4;
11114 			goto apply_patch_buffer;
11115 		}
11116 
11117 		if (!bpf_jit_needs_zext())
11118 			continue;
11119 
11120 		zext_patch[0] = insn;
11121 		zext_patch[1].dst_reg = insn.dst_reg;
11122 		zext_patch[1].src_reg = insn.dst_reg;
11123 		patch = zext_patch;
11124 		patch_len = 2;
11125 apply_patch_buffer:
11126 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11127 		if (!new_prog)
11128 			return -ENOMEM;
11129 		env->prog = new_prog;
11130 		insns = new_prog->insnsi;
11131 		aux = env->insn_aux_data;
11132 		delta += patch_len - 1;
11133 	}
11134 
11135 	return 0;
11136 }
11137 
11138 /* convert load instructions that access fields of a context type into a
11139  * sequence of instructions that access fields of the underlying structure:
11140  *     struct __sk_buff    -> struct sk_buff
11141  *     struct bpf_sock_ops -> struct sock
11142  */
convert_ctx_accesses(struct bpf_verifier_env * env)11143 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11144 {
11145 	const struct bpf_verifier_ops *ops = env->ops;
11146 	int i, cnt, size, ctx_field_size, delta = 0;
11147 	const int insn_cnt = env->prog->len;
11148 	struct bpf_insn insn_buf[16], *insn;
11149 	u32 target_size, size_default, off;
11150 	struct bpf_prog *new_prog;
11151 	enum bpf_access_type type;
11152 	bool is_narrower_load;
11153 
11154 	if (ops->gen_prologue || env->seen_direct_write) {
11155 		if (!ops->gen_prologue) {
11156 			verbose(env, "bpf verifier is misconfigured\n");
11157 			return -EINVAL;
11158 		}
11159 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11160 					env->prog);
11161 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11162 			verbose(env, "bpf verifier is misconfigured\n");
11163 			return -EINVAL;
11164 		} else if (cnt) {
11165 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11166 			if (!new_prog)
11167 				return -ENOMEM;
11168 
11169 			env->prog = new_prog;
11170 			delta += cnt - 1;
11171 		}
11172 	}
11173 
11174 	if (bpf_prog_is_dev_bound(env->prog->aux))
11175 		return 0;
11176 
11177 	insn = env->prog->insnsi + delta;
11178 
11179 	for (i = 0; i < insn_cnt; i++, insn++) {
11180 		bpf_convert_ctx_access_t convert_ctx_access;
11181 		bool ctx_access;
11182 
11183 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11184 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11185 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11186 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11187 			type = BPF_READ;
11188 			ctx_access = true;
11189 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11190 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11191 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11192 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11193 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11194 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11195 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11196 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11197 			type = BPF_WRITE;
11198 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11199 		} else {
11200 			continue;
11201 		}
11202 
11203 		if (type == BPF_WRITE &&
11204 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
11205 			struct bpf_insn patch[] = {
11206 				*insn,
11207 				BPF_ST_NOSPEC(),
11208 			};
11209 
11210 			cnt = ARRAY_SIZE(patch);
11211 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11212 			if (!new_prog)
11213 				return -ENOMEM;
11214 
11215 			delta    += cnt - 1;
11216 			env->prog = new_prog;
11217 			insn      = new_prog->insnsi + i + delta;
11218 			continue;
11219 		}
11220 
11221 		if (!ctx_access)
11222 			continue;
11223 
11224 		switch (env->insn_aux_data[i + delta].ptr_type) {
11225 		case PTR_TO_CTX:
11226 			if (!ops->convert_ctx_access)
11227 				continue;
11228 			convert_ctx_access = ops->convert_ctx_access;
11229 			break;
11230 		case PTR_TO_SOCKET:
11231 		case PTR_TO_SOCK_COMMON:
11232 			convert_ctx_access = bpf_sock_convert_ctx_access;
11233 			break;
11234 		case PTR_TO_TCP_SOCK:
11235 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11236 			break;
11237 		case PTR_TO_XDP_SOCK:
11238 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11239 			break;
11240 		case PTR_TO_BTF_ID:
11241 			if (type == BPF_READ) {
11242 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11243 					BPF_SIZE((insn)->code);
11244 				env->prog->aux->num_exentries++;
11245 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11246 				verbose(env, "Writes through BTF pointers are not allowed\n");
11247 				return -EINVAL;
11248 			}
11249 			continue;
11250 		default:
11251 			continue;
11252 		}
11253 
11254 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11255 		size = BPF_LDST_BYTES(insn);
11256 
11257 		/* If the read access is a narrower load of the field,
11258 		 * convert to a 4/8-byte load, to minimum program type specific
11259 		 * convert_ctx_access changes. If conversion is successful,
11260 		 * we will apply proper mask to the result.
11261 		 */
11262 		is_narrower_load = size < ctx_field_size;
11263 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11264 		off = insn->off;
11265 		if (is_narrower_load) {
11266 			u8 size_code;
11267 
11268 			if (type == BPF_WRITE) {
11269 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11270 				return -EINVAL;
11271 			}
11272 
11273 			size_code = BPF_H;
11274 			if (ctx_field_size == 4)
11275 				size_code = BPF_W;
11276 			else if (ctx_field_size == 8)
11277 				size_code = BPF_DW;
11278 
11279 			insn->off = off & ~(size_default - 1);
11280 			insn->code = BPF_LDX | BPF_MEM | size_code;
11281 		}
11282 
11283 		target_size = 0;
11284 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11285 					 &target_size);
11286 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11287 		    (ctx_field_size && !target_size)) {
11288 			verbose(env, "bpf verifier is misconfigured\n");
11289 			return -EINVAL;
11290 		}
11291 
11292 		if (is_narrower_load && size < target_size) {
11293 			u8 shift = bpf_ctx_narrow_access_offset(
11294 				off, size, size_default) * 8;
11295 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11296 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11297 				return -EINVAL;
11298 			}
11299 			if (ctx_field_size <= 4) {
11300 				if (shift)
11301 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11302 									insn->dst_reg,
11303 									shift);
11304 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11305 								(1 << size * 8) - 1);
11306 			} else {
11307 				if (shift)
11308 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11309 									insn->dst_reg,
11310 									shift);
11311 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11312 								(1ULL << size * 8) - 1);
11313 			}
11314 		}
11315 
11316 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11317 		if (!new_prog)
11318 			return -ENOMEM;
11319 
11320 		delta += cnt - 1;
11321 
11322 		/* keep walking new program and skip insns we just inserted */
11323 		env->prog = new_prog;
11324 		insn      = new_prog->insnsi + i + delta;
11325 	}
11326 
11327 	return 0;
11328 }
11329 
jit_subprogs(struct bpf_verifier_env * env)11330 static int jit_subprogs(struct bpf_verifier_env *env)
11331 {
11332 	struct bpf_prog *prog = env->prog, **func, *tmp;
11333 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11334 	struct bpf_map *map_ptr;
11335 	struct bpf_insn *insn;
11336 	void *old_bpf_func;
11337 	int err, num_exentries;
11338 
11339 	if (env->subprog_cnt <= 1)
11340 		return 0;
11341 
11342 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11343 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11344 		    insn->src_reg != BPF_PSEUDO_CALL)
11345 			continue;
11346 		/* Upon error here we cannot fall back to interpreter but
11347 		 * need a hard reject of the program. Thus -EFAULT is
11348 		 * propagated in any case.
11349 		 */
11350 		subprog = find_subprog(env, i + insn->imm + 1);
11351 		if (subprog < 0) {
11352 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11353 				  i + insn->imm + 1);
11354 			return -EFAULT;
11355 		}
11356 		/* temporarily remember subprog id inside insn instead of
11357 		 * aux_data, since next loop will split up all insns into funcs
11358 		 */
11359 		insn->off = subprog;
11360 		/* remember original imm in case JIT fails and fallback
11361 		 * to interpreter will be needed
11362 		 */
11363 		env->insn_aux_data[i].call_imm = insn->imm;
11364 		/* point imm to __bpf_call_base+1 from JITs point of view */
11365 		insn->imm = 1;
11366 	}
11367 
11368 	err = bpf_prog_alloc_jited_linfo(prog);
11369 	if (err)
11370 		goto out_undo_insn;
11371 
11372 	err = -ENOMEM;
11373 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11374 	if (!func)
11375 		goto out_undo_insn;
11376 
11377 	for (i = 0; i < env->subprog_cnt; i++) {
11378 		subprog_start = subprog_end;
11379 		subprog_end = env->subprog_info[i + 1].start;
11380 
11381 		len = subprog_end - subprog_start;
11382 		/* BPF_PROG_RUN doesn't call subprogs directly,
11383 		 * hence main prog stats include the runtime of subprogs.
11384 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11385 		 * func[i]->aux->stats will never be accessed and stays NULL
11386 		 */
11387 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11388 		if (!func[i])
11389 			goto out_free;
11390 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11391 		       len * sizeof(struct bpf_insn));
11392 		func[i]->type = prog->type;
11393 		func[i]->len = len;
11394 		if (bpf_prog_calc_tag(func[i]))
11395 			goto out_free;
11396 		func[i]->is_func = 1;
11397 		func[i]->aux->func_idx = i;
11398 		/* the btf and func_info will be freed only at prog->aux */
11399 		func[i]->aux->btf = prog->aux->btf;
11400 		func[i]->aux->func_info = prog->aux->func_info;
11401 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
11402 
11403 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11404 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11405 			int ret;
11406 
11407 			if (!(insn_idx >= subprog_start &&
11408 			      insn_idx <= subprog_end))
11409 				continue;
11410 
11411 			ret = bpf_jit_add_poke_descriptor(func[i],
11412 							  &prog->aux->poke_tab[j]);
11413 			if (ret < 0) {
11414 				verbose(env, "adding tail call poke descriptor failed\n");
11415 				goto out_free;
11416 			}
11417 
11418 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11419 
11420 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11421 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11422 			if (ret < 0) {
11423 				verbose(env, "tracking tail call prog failed\n");
11424 				goto out_free;
11425 			}
11426 		}
11427 
11428 		func[i]->aux->name[0] = 'F';
11429 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11430 		func[i]->jit_requested = 1;
11431 		func[i]->aux->linfo = prog->aux->linfo;
11432 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11433 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11434 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11435 		num_exentries = 0;
11436 		insn = func[i]->insnsi;
11437 		for (j = 0; j < func[i]->len; j++, insn++) {
11438 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11439 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11440 				num_exentries++;
11441 		}
11442 		func[i]->aux->num_exentries = num_exentries;
11443 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11444 		func[i] = bpf_int_jit_compile(func[i]);
11445 		if (!func[i]->jited) {
11446 			err = -ENOTSUPP;
11447 			goto out_free;
11448 		}
11449 		cond_resched();
11450 	}
11451 
11452 	/* Untrack main program's aux structs so that during map_poke_run()
11453 	 * we will not stumble upon the unfilled poke descriptors; each
11454 	 * of the main program's poke descs got distributed across subprogs
11455 	 * and got tracked onto map, so we are sure that none of them will
11456 	 * be missed after the operation below
11457 	 */
11458 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11459 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11460 
11461 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11462 	}
11463 
11464 	/* at this point all bpf functions were successfully JITed
11465 	 * now populate all bpf_calls with correct addresses and
11466 	 * run last pass of JIT
11467 	 */
11468 	for (i = 0; i < env->subprog_cnt; i++) {
11469 		insn = func[i]->insnsi;
11470 		for (j = 0; j < func[i]->len; j++, insn++) {
11471 			if (insn->code != (BPF_JMP | BPF_CALL) ||
11472 			    insn->src_reg != BPF_PSEUDO_CALL)
11473 				continue;
11474 			subprog = insn->off;
11475 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11476 				    __bpf_call_base;
11477 		}
11478 
11479 		/* we use the aux data to keep a list of the start addresses
11480 		 * of the JITed images for each function in the program
11481 		 *
11482 		 * for some architectures, such as powerpc64, the imm field
11483 		 * might not be large enough to hold the offset of the start
11484 		 * address of the callee's JITed image from __bpf_call_base
11485 		 *
11486 		 * in such cases, we can lookup the start address of a callee
11487 		 * by using its subprog id, available from the off field of
11488 		 * the call instruction, as an index for this list
11489 		 */
11490 		func[i]->aux->func = func;
11491 		func[i]->aux->func_cnt = env->subprog_cnt;
11492 	}
11493 	for (i = 0; i < env->subprog_cnt; i++) {
11494 		old_bpf_func = func[i]->bpf_func;
11495 		tmp = bpf_int_jit_compile(func[i]);
11496 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11497 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11498 			err = -ENOTSUPP;
11499 			goto out_free;
11500 		}
11501 		cond_resched();
11502 	}
11503 
11504 	/* finally lock prog and jit images for all functions and
11505 	 * populate kallsysm
11506 	 */
11507 	for (i = 0; i < env->subprog_cnt; i++) {
11508 		bpf_prog_lock_ro(func[i]);
11509 		bpf_prog_kallsyms_add(func[i]);
11510 	}
11511 
11512 	/* Last step: make now unused interpreter insns from main
11513 	 * prog consistent for later dump requests, so they can
11514 	 * later look the same as if they were interpreted only.
11515 	 */
11516 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11517 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11518 		    insn->src_reg != BPF_PSEUDO_CALL)
11519 			continue;
11520 		insn->off = env->insn_aux_data[i].call_imm;
11521 		subprog = find_subprog(env, i + insn->off + 1);
11522 		insn->imm = subprog;
11523 	}
11524 
11525 	prog->jited = 1;
11526 	prog->bpf_func = func[0]->bpf_func;
11527 	prog->aux->func = func;
11528 	prog->aux->func_cnt = env->subprog_cnt;
11529 	bpf_prog_free_unused_jited_linfo(prog);
11530 	return 0;
11531 out_free:
11532 	for (i = 0; i < env->subprog_cnt; i++) {
11533 		if (!func[i])
11534 			continue;
11535 
11536 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11537 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11538 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11539 		}
11540 		bpf_jit_free(func[i]);
11541 	}
11542 	kfree(func);
11543 out_undo_insn:
11544 	/* cleanup main prog to be interpreted */
11545 	prog->jit_requested = 0;
11546 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11547 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11548 		    insn->src_reg != BPF_PSEUDO_CALL)
11549 			continue;
11550 		insn->off = 0;
11551 		insn->imm = env->insn_aux_data[i].call_imm;
11552 	}
11553 	bpf_prog_free_jited_linfo(prog);
11554 	return err;
11555 }
11556 
fixup_call_args(struct bpf_verifier_env * env)11557 static int fixup_call_args(struct bpf_verifier_env *env)
11558 {
11559 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11560 	struct bpf_prog *prog = env->prog;
11561 	struct bpf_insn *insn = prog->insnsi;
11562 	int i, depth;
11563 #endif
11564 	int err = 0;
11565 
11566 	if (env->prog->jit_requested &&
11567 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11568 		err = jit_subprogs(env);
11569 		if (err == 0)
11570 			return 0;
11571 		if (err == -EFAULT)
11572 			return err;
11573 	}
11574 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11575 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11576 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11577 		 * have to be rejected, since interpreter doesn't support them yet.
11578 		 */
11579 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11580 		return -EINVAL;
11581 	}
11582 	for (i = 0; i < prog->len; i++, insn++) {
11583 		if (insn->code != (BPF_JMP | BPF_CALL) ||
11584 		    insn->src_reg != BPF_PSEUDO_CALL)
11585 			continue;
11586 		depth = get_callee_stack_depth(env, insn, i);
11587 		if (depth < 0)
11588 			return depth;
11589 		bpf_patch_call_args(insn, depth);
11590 	}
11591 	err = 0;
11592 #endif
11593 	return err;
11594 }
11595 
11596 /* fixup insn->imm field of bpf_call instructions
11597  * and inline eligible helpers as explicit sequence of BPF instructions
11598  *
11599  * this function is called after eBPF program passed verification
11600  */
fixup_bpf_calls(struct bpf_verifier_env * env)11601 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11602 {
11603 	struct bpf_prog *prog = env->prog;
11604 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11605 	struct bpf_insn *insn = prog->insnsi;
11606 	const struct bpf_func_proto *fn;
11607 	const int insn_cnt = prog->len;
11608 	const struct bpf_map_ops *ops;
11609 	struct bpf_insn_aux_data *aux;
11610 	struct bpf_insn insn_buf[16];
11611 	struct bpf_prog *new_prog;
11612 	struct bpf_map *map_ptr;
11613 	int i, ret, cnt, delta = 0;
11614 
11615 	for (i = 0; i < insn_cnt; i++, insn++) {
11616 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11617 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11618 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11619 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11620 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11621 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11622 			struct bpf_insn *patchlet;
11623 			struct bpf_insn chk_and_div[] = {
11624 				/* [R,W]x div 0 -> 0 */
11625 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11626 					     BPF_JNE | BPF_K, insn->src_reg,
11627 					     0, 2, 0),
11628 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11629 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11630 				*insn,
11631 			};
11632 			struct bpf_insn chk_and_mod[] = {
11633 				/* [R,W]x mod 0 -> [R,W]x */
11634 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11635 					     BPF_JEQ | BPF_K, insn->src_reg,
11636 					     0, 1 + (is64 ? 0 : 1), 0),
11637 				*insn,
11638 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11639 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11640 			};
11641 
11642 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11643 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11644 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11645 
11646 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11647 			if (!new_prog)
11648 				return -ENOMEM;
11649 
11650 			delta    += cnt - 1;
11651 			env->prog = prog = new_prog;
11652 			insn      = new_prog->insnsi + i + delta;
11653 			continue;
11654 		}
11655 
11656 		if (BPF_CLASS(insn->code) == BPF_LD &&
11657 		    (BPF_MODE(insn->code) == BPF_ABS ||
11658 		     BPF_MODE(insn->code) == BPF_IND)) {
11659 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11660 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11661 				verbose(env, "bpf verifier is misconfigured\n");
11662 				return -EINVAL;
11663 			}
11664 
11665 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11666 			if (!new_prog)
11667 				return -ENOMEM;
11668 
11669 			delta    += cnt - 1;
11670 			env->prog = prog = new_prog;
11671 			insn      = new_prog->insnsi + i + delta;
11672 			continue;
11673 		}
11674 
11675 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11676 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11677 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11678 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11679 			struct bpf_insn insn_buf[16];
11680 			struct bpf_insn *patch = &insn_buf[0];
11681 			bool issrc, isneg, isimm;
11682 			u32 off_reg;
11683 
11684 			aux = &env->insn_aux_data[i + delta];
11685 			if (!aux->alu_state ||
11686 			    aux->alu_state == BPF_ALU_NON_POINTER)
11687 				continue;
11688 
11689 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11690 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11691 				BPF_ALU_SANITIZE_SRC;
11692 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11693 
11694 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11695 			if (isimm) {
11696 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11697 			} else {
11698 				if (isneg)
11699 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11700 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11701 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11702 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11703 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11704 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11705 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11706 			}
11707 			if (!issrc)
11708 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11709 			insn->src_reg = BPF_REG_AX;
11710 			if (isneg)
11711 				insn->code = insn->code == code_add ?
11712 					     code_sub : code_add;
11713 			*patch++ = *insn;
11714 			if (issrc && isneg && !isimm)
11715 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11716 			cnt = patch - insn_buf;
11717 
11718 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11719 			if (!new_prog)
11720 				return -ENOMEM;
11721 
11722 			delta    += cnt - 1;
11723 			env->prog = prog = new_prog;
11724 			insn      = new_prog->insnsi + i + delta;
11725 			continue;
11726 		}
11727 
11728 		if (insn->code != (BPF_JMP | BPF_CALL))
11729 			continue;
11730 		if (insn->src_reg == BPF_PSEUDO_CALL)
11731 			continue;
11732 
11733 		if (insn->imm == BPF_FUNC_get_route_realm)
11734 			prog->dst_needed = 1;
11735 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11736 			bpf_user_rnd_init_once();
11737 		if (insn->imm == BPF_FUNC_override_return)
11738 			prog->kprobe_override = 1;
11739 		if (insn->imm == BPF_FUNC_tail_call) {
11740 			/* If we tail call into other programs, we
11741 			 * cannot make any assumptions since they can
11742 			 * be replaced dynamically during runtime in
11743 			 * the program array.
11744 			 */
11745 			prog->cb_access = 1;
11746 			if (!allow_tail_call_in_subprogs(env))
11747 				prog->aux->stack_depth = MAX_BPF_STACK;
11748 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11749 
11750 			/* mark bpf_tail_call as different opcode to avoid
11751 			 * conditional branch in the interpeter for every normal
11752 			 * call and to prevent accidental JITing by JIT compiler
11753 			 * that doesn't support bpf_tail_call yet
11754 			 */
11755 			insn->imm = 0;
11756 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11757 
11758 			aux = &env->insn_aux_data[i + delta];
11759 			if (env->bpf_capable && !expect_blinding &&
11760 			    prog->jit_requested &&
11761 			    !bpf_map_key_poisoned(aux) &&
11762 			    !bpf_map_ptr_poisoned(aux) &&
11763 			    !bpf_map_ptr_unpriv(aux)) {
11764 				struct bpf_jit_poke_descriptor desc = {
11765 					.reason = BPF_POKE_REASON_TAIL_CALL,
11766 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11767 					.tail_call.key = bpf_map_key_immediate(aux),
11768 					.insn_idx = i + delta,
11769 				};
11770 
11771 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11772 				if (ret < 0) {
11773 					verbose(env, "adding tail call poke descriptor failed\n");
11774 					return ret;
11775 				}
11776 
11777 				insn->imm = ret + 1;
11778 				continue;
11779 			}
11780 
11781 			if (!bpf_map_ptr_unpriv(aux))
11782 				continue;
11783 
11784 			/* instead of changing every JIT dealing with tail_call
11785 			 * emit two extra insns:
11786 			 * if (index >= max_entries) goto out;
11787 			 * index &= array->index_mask;
11788 			 * to avoid out-of-bounds cpu speculation
11789 			 */
11790 			if (bpf_map_ptr_poisoned(aux)) {
11791 				verbose(env, "tail_call abusing map_ptr\n");
11792 				return -EINVAL;
11793 			}
11794 
11795 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11796 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11797 						  map_ptr->max_entries, 2);
11798 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11799 						    container_of(map_ptr,
11800 								 struct bpf_array,
11801 								 map)->index_mask);
11802 			insn_buf[2] = *insn;
11803 			cnt = 3;
11804 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11805 			if (!new_prog)
11806 				return -ENOMEM;
11807 
11808 			delta    += cnt - 1;
11809 			env->prog = prog = new_prog;
11810 			insn      = new_prog->insnsi + i + delta;
11811 			continue;
11812 		}
11813 
11814 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11815 		 * and other inlining handlers are currently limited to 64 bit
11816 		 * only.
11817 		 */
11818 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11819 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11820 		     insn->imm == BPF_FUNC_map_update_elem ||
11821 		     insn->imm == BPF_FUNC_map_delete_elem ||
11822 		     insn->imm == BPF_FUNC_map_push_elem   ||
11823 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11824 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11825 			aux = &env->insn_aux_data[i + delta];
11826 			if (bpf_map_ptr_poisoned(aux))
11827 				goto patch_call_imm;
11828 
11829 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11830 			ops = map_ptr->ops;
11831 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11832 			    ops->map_gen_lookup) {
11833 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11834 				if (cnt == -EOPNOTSUPP)
11835 					goto patch_map_ops_generic;
11836 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11837 					verbose(env, "bpf verifier is misconfigured\n");
11838 					return -EINVAL;
11839 				}
11840 
11841 				new_prog = bpf_patch_insn_data(env, i + delta,
11842 							       insn_buf, cnt);
11843 				if (!new_prog)
11844 					return -ENOMEM;
11845 
11846 				delta    += cnt - 1;
11847 				env->prog = prog = new_prog;
11848 				insn      = new_prog->insnsi + i + delta;
11849 				continue;
11850 			}
11851 
11852 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11853 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11854 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11855 				     (int (*)(struct bpf_map *map, void *key))NULL));
11856 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11857 				     (int (*)(struct bpf_map *map, void *key, void *value,
11858 					      u64 flags))NULL));
11859 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11860 				     (int (*)(struct bpf_map *map, void *value,
11861 					      u64 flags))NULL));
11862 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11863 				     (int (*)(struct bpf_map *map, void *value))NULL));
11864 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11865 				     (int (*)(struct bpf_map *map, void *value))NULL));
11866 patch_map_ops_generic:
11867 			switch (insn->imm) {
11868 			case BPF_FUNC_map_lookup_elem:
11869 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11870 					    __bpf_call_base;
11871 				continue;
11872 			case BPF_FUNC_map_update_elem:
11873 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11874 					    __bpf_call_base;
11875 				continue;
11876 			case BPF_FUNC_map_delete_elem:
11877 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11878 					    __bpf_call_base;
11879 				continue;
11880 			case BPF_FUNC_map_push_elem:
11881 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11882 					    __bpf_call_base;
11883 				continue;
11884 			case BPF_FUNC_map_pop_elem:
11885 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11886 					    __bpf_call_base;
11887 				continue;
11888 			case BPF_FUNC_map_peek_elem:
11889 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11890 					    __bpf_call_base;
11891 				continue;
11892 			}
11893 
11894 			goto patch_call_imm;
11895 		}
11896 
11897 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11898 		    insn->imm == BPF_FUNC_jiffies64) {
11899 			struct bpf_insn ld_jiffies_addr[2] = {
11900 				BPF_LD_IMM64(BPF_REG_0,
11901 					     (unsigned long)&jiffies),
11902 			};
11903 
11904 			insn_buf[0] = ld_jiffies_addr[0];
11905 			insn_buf[1] = ld_jiffies_addr[1];
11906 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11907 						  BPF_REG_0, 0);
11908 			cnt = 3;
11909 
11910 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11911 						       cnt);
11912 			if (!new_prog)
11913 				return -ENOMEM;
11914 
11915 			delta    += cnt - 1;
11916 			env->prog = prog = new_prog;
11917 			insn      = new_prog->insnsi + i + delta;
11918 			continue;
11919 		}
11920 
11921 patch_call_imm:
11922 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11923 		/* all functions that have prototype and verifier allowed
11924 		 * programs to call them, must be real in-kernel functions
11925 		 */
11926 		if (!fn->func) {
11927 			verbose(env,
11928 				"kernel subsystem misconfigured func %s#%d\n",
11929 				func_id_name(insn->imm), insn->imm);
11930 			return -EFAULT;
11931 		}
11932 		insn->imm = fn->func - __bpf_call_base;
11933 	}
11934 
11935 	/* Since poke tab is now finalized, publish aux to tracker. */
11936 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11937 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11938 		if (!map_ptr->ops->map_poke_track ||
11939 		    !map_ptr->ops->map_poke_untrack ||
11940 		    !map_ptr->ops->map_poke_run) {
11941 			verbose(env, "bpf verifier is misconfigured\n");
11942 			return -EINVAL;
11943 		}
11944 
11945 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11946 		if (ret < 0) {
11947 			verbose(env, "tracking tail call prog failed\n");
11948 			return ret;
11949 		}
11950 	}
11951 
11952 	return 0;
11953 }
11954 
free_states(struct bpf_verifier_env * env)11955 static void free_states(struct bpf_verifier_env *env)
11956 {
11957 	struct bpf_verifier_state_list *sl, *sln;
11958 	int i;
11959 
11960 	sl = env->free_list;
11961 	while (sl) {
11962 		sln = sl->next;
11963 		free_verifier_state(&sl->state, false);
11964 		kfree(sl);
11965 		sl = sln;
11966 	}
11967 	env->free_list = NULL;
11968 
11969 	if (!env->explored_states)
11970 		return;
11971 
11972 	for (i = 0; i < state_htab_size(env); i++) {
11973 		sl = env->explored_states[i];
11974 
11975 		while (sl) {
11976 			sln = sl->next;
11977 			free_verifier_state(&sl->state, false);
11978 			kfree(sl);
11979 			sl = sln;
11980 		}
11981 		env->explored_states[i] = NULL;
11982 	}
11983 }
11984 
do_check_common(struct bpf_verifier_env * env,int subprog)11985 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11986 {
11987 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11988 	struct bpf_verifier_state *state;
11989 	struct bpf_reg_state *regs;
11990 	int ret, i;
11991 
11992 	env->prev_linfo = NULL;
11993 	env->pass_cnt++;
11994 
11995 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11996 	if (!state)
11997 		return -ENOMEM;
11998 	state->curframe = 0;
11999 	state->speculative = false;
12000 	state->branches = 1;
12001 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12002 	if (!state->frame[0]) {
12003 		kfree(state);
12004 		return -ENOMEM;
12005 	}
12006 	env->cur_state = state;
12007 	init_func_state(env, state->frame[0],
12008 			BPF_MAIN_FUNC /* callsite */,
12009 			0 /* frameno */,
12010 			subprog);
12011 
12012 	state->first_insn_idx = env->subprog_info[subprog].start;
12013 	state->last_insn_idx = -1;
12014 
12015 	regs = state->frame[state->curframe]->regs;
12016 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12017 		ret = btf_prepare_func_args(env, subprog, regs);
12018 		if (ret)
12019 			goto out;
12020 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12021 			if (regs[i].type == PTR_TO_CTX)
12022 				mark_reg_known_zero(env, regs, i);
12023 			else if (regs[i].type == SCALAR_VALUE)
12024 				mark_reg_unknown(env, regs, i);
12025 		}
12026 	} else {
12027 		/* 1st arg to a function */
12028 		regs[BPF_REG_1].type = PTR_TO_CTX;
12029 		mark_reg_known_zero(env, regs, BPF_REG_1);
12030 		ret = btf_check_func_arg_match(env, subprog, regs);
12031 		if (ret == -EFAULT)
12032 			/* unlikely verifier bug. abort.
12033 			 * ret == 0 and ret < 0 are sadly acceptable for
12034 			 * main() function due to backward compatibility.
12035 			 * Like socket filter program may be written as:
12036 			 * int bpf_prog(struct pt_regs *ctx)
12037 			 * and never dereference that ctx in the program.
12038 			 * 'struct pt_regs' is a type mismatch for socket
12039 			 * filter that should be using 'struct __sk_buff'.
12040 			 */
12041 			goto out;
12042 	}
12043 
12044 	ret = do_check(env);
12045 out:
12046 	/* check for NULL is necessary, since cur_state can be freed inside
12047 	 * do_check() under memory pressure.
12048 	 */
12049 	if (env->cur_state) {
12050 		free_verifier_state(env->cur_state, true);
12051 		env->cur_state = NULL;
12052 	}
12053 	while (!pop_stack(env, NULL, NULL, false));
12054 	if (!ret && pop_log)
12055 		bpf_vlog_reset(&env->log, 0);
12056 	free_states(env);
12057 	return ret;
12058 }
12059 
12060 /* Verify all global functions in a BPF program one by one based on their BTF.
12061  * All global functions must pass verification. Otherwise the whole program is rejected.
12062  * Consider:
12063  * int bar(int);
12064  * int foo(int f)
12065  * {
12066  *    return bar(f);
12067  * }
12068  * int bar(int b)
12069  * {
12070  *    ...
12071  * }
12072  * foo() will be verified first for R1=any_scalar_value. During verification it
12073  * will be assumed that bar() already verified successfully and call to bar()
12074  * from foo() will be checked for type match only. Later bar() will be verified
12075  * independently to check that it's safe for R1=any_scalar_value.
12076  */
do_check_subprogs(struct bpf_verifier_env * env)12077 static int do_check_subprogs(struct bpf_verifier_env *env)
12078 {
12079 	struct bpf_prog_aux *aux = env->prog->aux;
12080 	int i, ret;
12081 
12082 	if (!aux->func_info)
12083 		return 0;
12084 
12085 	for (i = 1; i < env->subprog_cnt; i++) {
12086 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12087 			continue;
12088 		env->insn_idx = env->subprog_info[i].start;
12089 		WARN_ON_ONCE(env->insn_idx == 0);
12090 		ret = do_check_common(env, i);
12091 		if (ret) {
12092 			return ret;
12093 		} else if (env->log.level & BPF_LOG_LEVEL) {
12094 			verbose(env,
12095 				"Func#%d is safe for any args that match its prototype\n",
12096 				i);
12097 		}
12098 	}
12099 	return 0;
12100 }
12101 
do_check_main(struct bpf_verifier_env * env)12102 static int do_check_main(struct bpf_verifier_env *env)
12103 {
12104 	int ret;
12105 
12106 	env->insn_idx = 0;
12107 	ret = do_check_common(env, 0);
12108 	if (!ret)
12109 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12110 	return ret;
12111 }
12112 
12113 
print_verification_stats(struct bpf_verifier_env * env)12114 static void print_verification_stats(struct bpf_verifier_env *env)
12115 {
12116 	int i;
12117 
12118 	if (env->log.level & BPF_LOG_STATS) {
12119 		verbose(env, "verification time %lld usec\n",
12120 			div_u64(env->verification_time, 1000));
12121 		verbose(env, "stack depth ");
12122 		for (i = 0; i < env->subprog_cnt; i++) {
12123 			u32 depth = env->subprog_info[i].stack_depth;
12124 
12125 			verbose(env, "%d", depth);
12126 			if (i + 1 < env->subprog_cnt)
12127 				verbose(env, "+");
12128 		}
12129 		verbose(env, "\n");
12130 	}
12131 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12132 		"total_states %d peak_states %d mark_read %d\n",
12133 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12134 		env->max_states_per_insn, env->total_states,
12135 		env->peak_states, env->longest_mark_read_walk);
12136 }
12137 
check_struct_ops_btf_id(struct bpf_verifier_env * env)12138 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12139 {
12140 	const struct btf_type *t, *func_proto;
12141 	const struct bpf_struct_ops *st_ops;
12142 	const struct btf_member *member;
12143 	struct bpf_prog *prog = env->prog;
12144 	u32 btf_id, member_idx;
12145 	const char *mname;
12146 
12147 	if (!prog->gpl_compatible) {
12148 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12149 		return -EINVAL;
12150 	}
12151 
12152 	btf_id = prog->aux->attach_btf_id;
12153 	st_ops = bpf_struct_ops_find(btf_id);
12154 	if (!st_ops) {
12155 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12156 			btf_id);
12157 		return -ENOTSUPP;
12158 	}
12159 
12160 	t = st_ops->type;
12161 	member_idx = prog->expected_attach_type;
12162 	if (member_idx >= btf_type_vlen(t)) {
12163 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12164 			member_idx, st_ops->name);
12165 		return -EINVAL;
12166 	}
12167 
12168 	member = &btf_type_member(t)[member_idx];
12169 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12170 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12171 					       NULL);
12172 	if (!func_proto) {
12173 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12174 			mname, member_idx, st_ops->name);
12175 		return -EINVAL;
12176 	}
12177 
12178 	if (st_ops->check_member) {
12179 		int err = st_ops->check_member(t, member);
12180 
12181 		if (err) {
12182 			verbose(env, "attach to unsupported member %s of struct %s\n",
12183 				mname, st_ops->name);
12184 			return err;
12185 		}
12186 	}
12187 
12188 	prog->aux->attach_func_proto = func_proto;
12189 	prog->aux->attach_func_name = mname;
12190 	env->ops = st_ops->verifier_ops;
12191 
12192 	return 0;
12193 }
12194 #define SECURITY_PREFIX "security_"
12195 
check_attach_modify_return(unsigned long addr,const char * func_name)12196 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12197 {
12198 	if (within_error_injection_list(addr) ||
12199 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12200 		return 0;
12201 
12202 	return -EINVAL;
12203 }
12204 
12205 /* non exhaustive list of sleepable bpf_lsm_*() functions */
12206 BTF_SET_START(btf_sleepable_lsm_hooks)
12207 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12208 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12209 #else
12210 BTF_ID_UNUSED
12211 #endif
12212 BTF_SET_END(btf_sleepable_lsm_hooks)
12213 
12214 static int check_sleepable_lsm_hook(u32 btf_id)
12215 {
12216 	return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12217 }
12218 
12219 /* list of non-sleepable functions that are otherwise on
12220  * ALLOW_ERROR_INJECTION list
12221  */
12222 BTF_SET_START(btf_non_sleepable_error_inject)
12223 /* Three functions below can be called from sleepable and non-sleepable context.
12224  * Assume non-sleepable from bpf safety point of view.
12225  */
BTF_ID(func,__add_to_page_cache_locked)12226 BTF_ID(func, __add_to_page_cache_locked)
12227 BTF_ID(func, should_fail_alloc_page)
12228 BTF_ID(func, should_failslab)
12229 BTF_SET_END(btf_non_sleepable_error_inject)
12230 
12231 static int check_non_sleepable_error_inject(u32 btf_id)
12232 {
12233 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12234 }
12235 
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12236 int bpf_check_attach_target(struct bpf_verifier_log *log,
12237 			    const struct bpf_prog *prog,
12238 			    const struct bpf_prog *tgt_prog,
12239 			    u32 btf_id,
12240 			    struct bpf_attach_target_info *tgt_info)
12241 {
12242 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12243 	const char prefix[] = "btf_trace_";
12244 	int ret = 0, subprog = -1, i;
12245 	const struct btf_type *t;
12246 	bool conservative = true;
12247 	const char *tname;
12248 	struct btf *btf;
12249 	long addr = 0;
12250 
12251 	if (!btf_id) {
12252 		bpf_log(log, "Tracing programs must provide btf_id\n");
12253 		return -EINVAL;
12254 	}
12255 	btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12256 	if (!btf) {
12257 		bpf_log(log,
12258 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12259 		return -EINVAL;
12260 	}
12261 	t = btf_type_by_id(btf, btf_id);
12262 	if (!t) {
12263 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12264 		return -EINVAL;
12265 	}
12266 	tname = btf_name_by_offset(btf, t->name_off);
12267 	if (!tname) {
12268 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12269 		return -EINVAL;
12270 	}
12271 	if (tgt_prog) {
12272 		struct bpf_prog_aux *aux = tgt_prog->aux;
12273 
12274 		for (i = 0; i < aux->func_info_cnt; i++)
12275 			if (aux->func_info[i].type_id == btf_id) {
12276 				subprog = i;
12277 				break;
12278 			}
12279 		if (subprog == -1) {
12280 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12281 			return -EINVAL;
12282 		}
12283 		conservative = aux->func_info_aux[subprog].unreliable;
12284 		if (prog_extension) {
12285 			if (conservative) {
12286 				bpf_log(log,
12287 					"Cannot replace static functions\n");
12288 				return -EINVAL;
12289 			}
12290 			if (!prog->jit_requested) {
12291 				bpf_log(log,
12292 					"Extension programs should be JITed\n");
12293 				return -EINVAL;
12294 			}
12295 		}
12296 		if (!tgt_prog->jited) {
12297 			bpf_log(log, "Can attach to only JITed progs\n");
12298 			return -EINVAL;
12299 		}
12300 		if (tgt_prog->type == prog->type) {
12301 			/* Cannot fentry/fexit another fentry/fexit program.
12302 			 * Cannot attach program extension to another extension.
12303 			 * It's ok to attach fentry/fexit to extension program.
12304 			 */
12305 			bpf_log(log, "Cannot recursively attach\n");
12306 			return -EINVAL;
12307 		}
12308 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12309 		    prog_extension &&
12310 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12311 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12312 			/* Program extensions can extend all program types
12313 			 * except fentry/fexit. The reason is the following.
12314 			 * The fentry/fexit programs are used for performance
12315 			 * analysis, stats and can be attached to any program
12316 			 * type except themselves. When extension program is
12317 			 * replacing XDP function it is necessary to allow
12318 			 * performance analysis of all functions. Both original
12319 			 * XDP program and its program extension. Hence
12320 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12321 			 * allowed. If extending of fentry/fexit was allowed it
12322 			 * would be possible to create long call chain
12323 			 * fentry->extension->fentry->extension beyond
12324 			 * reasonable stack size. Hence extending fentry is not
12325 			 * allowed.
12326 			 */
12327 			bpf_log(log, "Cannot extend fentry/fexit\n");
12328 			return -EINVAL;
12329 		}
12330 	} else {
12331 		if (prog_extension) {
12332 			bpf_log(log, "Cannot replace kernel functions\n");
12333 			return -EINVAL;
12334 		}
12335 	}
12336 
12337 	switch (prog->expected_attach_type) {
12338 	case BPF_TRACE_RAW_TP:
12339 		if (tgt_prog) {
12340 			bpf_log(log,
12341 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12342 			return -EINVAL;
12343 		}
12344 		if (!btf_type_is_typedef(t)) {
12345 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12346 				btf_id);
12347 			return -EINVAL;
12348 		}
12349 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12350 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12351 				btf_id, tname);
12352 			return -EINVAL;
12353 		}
12354 		tname += sizeof(prefix) - 1;
12355 		t = btf_type_by_id(btf, t->type);
12356 		if (!btf_type_is_ptr(t))
12357 			/* should never happen in valid vmlinux build */
12358 			return -EINVAL;
12359 		t = btf_type_by_id(btf, t->type);
12360 		if (!btf_type_is_func_proto(t))
12361 			/* should never happen in valid vmlinux build */
12362 			return -EINVAL;
12363 
12364 		break;
12365 	case BPF_TRACE_ITER:
12366 		if (!btf_type_is_func(t)) {
12367 			bpf_log(log, "attach_btf_id %u is not a function\n",
12368 				btf_id);
12369 			return -EINVAL;
12370 		}
12371 		t = btf_type_by_id(btf, t->type);
12372 		if (!btf_type_is_func_proto(t))
12373 			return -EINVAL;
12374 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12375 		if (ret)
12376 			return ret;
12377 		break;
12378 	default:
12379 		if (!prog_extension)
12380 			return -EINVAL;
12381 		fallthrough;
12382 	case BPF_MODIFY_RETURN:
12383 	case BPF_LSM_MAC:
12384 	case BPF_TRACE_FENTRY:
12385 	case BPF_TRACE_FEXIT:
12386 		if (!btf_type_is_func(t)) {
12387 			bpf_log(log, "attach_btf_id %u is not a function\n",
12388 				btf_id);
12389 			return -EINVAL;
12390 		}
12391 		if (prog_extension &&
12392 		    btf_check_type_match(log, prog, btf, t))
12393 			return -EINVAL;
12394 		t = btf_type_by_id(btf, t->type);
12395 		if (!btf_type_is_func_proto(t))
12396 			return -EINVAL;
12397 
12398 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12399 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12400 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12401 			return -EINVAL;
12402 
12403 		if (tgt_prog && conservative)
12404 			t = NULL;
12405 
12406 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12407 		if (ret < 0)
12408 			return ret;
12409 
12410 		if (tgt_prog) {
12411 			if (subprog == 0)
12412 				addr = (long) tgt_prog->bpf_func;
12413 			else
12414 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12415 		} else {
12416 			addr = kallsyms_lookup_name(tname);
12417 			if (!addr) {
12418 				bpf_log(log,
12419 					"The address of function %s cannot be found\n",
12420 					tname);
12421 				return -ENOENT;
12422 			}
12423 		}
12424 
12425 		if (prog->aux->sleepable) {
12426 			ret = -EINVAL;
12427 			switch (prog->type) {
12428 			case BPF_PROG_TYPE_TRACING:
12429 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12430 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12431 				 */
12432 				if (!check_non_sleepable_error_inject(btf_id) &&
12433 				    within_error_injection_list(addr))
12434 					ret = 0;
12435 				break;
12436 			case BPF_PROG_TYPE_LSM:
12437 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12438 				 * Only some of them are sleepable.
12439 				 */
12440 				if (check_sleepable_lsm_hook(btf_id))
12441 					ret = 0;
12442 				break;
12443 			default:
12444 				break;
12445 			}
12446 			if (ret) {
12447 				bpf_log(log, "%s is not sleepable\n", tname);
12448 				return ret;
12449 			}
12450 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12451 			if (tgt_prog) {
12452 				bpf_log(log, "can't modify return codes of BPF programs\n");
12453 				return -EINVAL;
12454 			}
12455 			ret = check_attach_modify_return(addr, tname);
12456 			if (ret) {
12457 				bpf_log(log, "%s() is not modifiable\n", tname);
12458 				return ret;
12459 			}
12460 		}
12461 
12462 		break;
12463 	}
12464 	tgt_info->tgt_addr = addr;
12465 	tgt_info->tgt_name = tname;
12466 	tgt_info->tgt_type = t;
12467 	return 0;
12468 }
12469 
check_attach_btf_id(struct bpf_verifier_env * env)12470 static int check_attach_btf_id(struct bpf_verifier_env *env)
12471 {
12472 	struct bpf_prog *prog = env->prog;
12473 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12474 	struct bpf_attach_target_info tgt_info = {};
12475 	u32 btf_id = prog->aux->attach_btf_id;
12476 	struct bpf_trampoline *tr;
12477 	int ret;
12478 	u64 key;
12479 
12480 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12481 	    prog->type != BPF_PROG_TYPE_LSM) {
12482 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12483 		return -EINVAL;
12484 	}
12485 
12486 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12487 		return check_struct_ops_btf_id(env);
12488 
12489 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12490 	    prog->type != BPF_PROG_TYPE_LSM &&
12491 	    prog->type != BPF_PROG_TYPE_EXT)
12492 		return 0;
12493 
12494 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12495 	if (ret)
12496 		return ret;
12497 
12498 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12499 		/* to make freplace equivalent to their targets, they need to
12500 		 * inherit env->ops and expected_attach_type for the rest of the
12501 		 * verification
12502 		 */
12503 		env->ops = bpf_verifier_ops[tgt_prog->type];
12504 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12505 	}
12506 
12507 	/* store info about the attachment target that will be used later */
12508 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12509 	prog->aux->attach_func_name = tgt_info.tgt_name;
12510 
12511 	if (tgt_prog) {
12512 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12513 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12514 	}
12515 
12516 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12517 		prog->aux->attach_btf_trace = true;
12518 		return 0;
12519 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12520 		if (!bpf_iter_prog_supported(prog))
12521 			return -EINVAL;
12522 		return 0;
12523 	}
12524 
12525 	if (prog->type == BPF_PROG_TYPE_LSM) {
12526 		ret = bpf_lsm_verify_prog(&env->log, prog);
12527 		if (ret < 0)
12528 			return ret;
12529 	}
12530 
12531 	key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12532 	tr = bpf_trampoline_get(key, &tgt_info);
12533 	if (!tr)
12534 		return -ENOMEM;
12535 
12536 	prog->aux->dst_trampoline = tr;
12537 	return 0;
12538 }
12539 
bpf_get_btf_vmlinux(void)12540 struct btf *bpf_get_btf_vmlinux(void)
12541 {
12542 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12543 		mutex_lock(&bpf_verifier_lock);
12544 		if (!btf_vmlinux)
12545 			btf_vmlinux = btf_parse_vmlinux();
12546 		mutex_unlock(&bpf_verifier_lock);
12547 	}
12548 	return btf_vmlinux;
12549 }
12550 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12551 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12552 	      union bpf_attr __user *uattr)
12553 {
12554 	u64 start_time = ktime_get_ns();
12555 	struct bpf_verifier_env *env;
12556 	struct bpf_verifier_log *log;
12557 	int i, len, ret = -EINVAL;
12558 	bool is_priv;
12559 
12560 	/* no program is valid */
12561 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12562 		return -EINVAL;
12563 
12564 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12565 	 * allocate/free it every time bpf_check() is called
12566 	 */
12567 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12568 	if (!env)
12569 		return -ENOMEM;
12570 	log = &env->log;
12571 
12572 	len = (*prog)->len;
12573 	env->insn_aux_data =
12574 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12575 	ret = -ENOMEM;
12576 	if (!env->insn_aux_data)
12577 		goto err_free_env;
12578 	for (i = 0; i < len; i++)
12579 		env->insn_aux_data[i].orig_idx = i;
12580 	env->prog = *prog;
12581 	env->ops = bpf_verifier_ops[env->prog->type];
12582 	is_priv = bpf_capable();
12583 
12584 	bpf_get_btf_vmlinux();
12585 
12586 	/* grab the mutex to protect few globals used by verifier */
12587 	if (!is_priv)
12588 		mutex_lock(&bpf_verifier_lock);
12589 
12590 	if (attr->log_level || attr->log_buf || attr->log_size) {
12591 		/* user requested verbose verifier output
12592 		 * and supplied buffer to store the verification trace
12593 		 */
12594 		log->level = attr->log_level;
12595 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12596 		log->len_total = attr->log_size;
12597 
12598 		/* log attributes have to be sane */
12599 		if (!bpf_verifier_log_attr_valid(log)) {
12600 			ret = -EINVAL;
12601 			goto err_unlock;
12602 		}
12603 	}
12604 
12605 	if (IS_ERR(btf_vmlinux)) {
12606 		/* Either gcc or pahole or kernel are broken. */
12607 		verbose(env, "in-kernel BTF is malformed\n");
12608 		ret = PTR_ERR(btf_vmlinux);
12609 		goto skip_full_check;
12610 	}
12611 
12612 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12613 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12614 		env->strict_alignment = true;
12615 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12616 		env->strict_alignment = false;
12617 
12618 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12619 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12620 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12621 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12622 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12623 	env->bpf_capable = bpf_capable();
12624 
12625 	if (is_priv)
12626 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12627 
12628 	env->explored_states = kvcalloc(state_htab_size(env),
12629 				       sizeof(struct bpf_verifier_state_list *),
12630 				       GFP_USER);
12631 	ret = -ENOMEM;
12632 	if (!env->explored_states)
12633 		goto skip_full_check;
12634 
12635 	ret = check_subprogs(env);
12636 	if (ret < 0)
12637 		goto skip_full_check;
12638 
12639 	ret = check_btf_info(env, attr, uattr);
12640 	if (ret < 0)
12641 		goto skip_full_check;
12642 
12643 	ret = check_attach_btf_id(env);
12644 	if (ret)
12645 		goto skip_full_check;
12646 
12647 	ret = resolve_pseudo_ldimm64(env);
12648 	if (ret < 0)
12649 		goto skip_full_check;
12650 
12651 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12652 		ret = bpf_prog_offload_verifier_prep(env->prog);
12653 		if (ret)
12654 			goto skip_full_check;
12655 	}
12656 
12657 	ret = check_cfg(env);
12658 	if (ret < 0)
12659 		goto skip_full_check;
12660 
12661 	ret = do_check_subprogs(env);
12662 	ret = ret ?: do_check_main(env);
12663 
12664 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12665 		ret = bpf_prog_offload_finalize(env);
12666 
12667 skip_full_check:
12668 	kvfree(env->explored_states);
12669 
12670 	if (ret == 0)
12671 		ret = check_max_stack_depth(env);
12672 
12673 	/* instruction rewrites happen after this point */
12674 	if (is_priv) {
12675 		if (ret == 0)
12676 			opt_hard_wire_dead_code_branches(env);
12677 		if (ret == 0)
12678 			ret = opt_remove_dead_code(env);
12679 		if (ret == 0)
12680 			ret = opt_remove_nops(env);
12681 	} else {
12682 		if (ret == 0)
12683 			sanitize_dead_code(env);
12684 	}
12685 
12686 	if (ret == 0)
12687 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12688 		ret = convert_ctx_accesses(env);
12689 
12690 	if (ret == 0)
12691 		ret = fixup_bpf_calls(env);
12692 
12693 	/* do 32-bit optimization after insn patching has done so those patched
12694 	 * insns could be handled correctly.
12695 	 */
12696 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12697 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12698 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12699 								     : false;
12700 	}
12701 
12702 	if (ret == 0)
12703 		ret = fixup_call_args(env);
12704 
12705 	env->verification_time = ktime_get_ns() - start_time;
12706 	print_verification_stats(env);
12707 
12708 	if (log->level && bpf_verifier_log_full(log))
12709 		ret = -ENOSPC;
12710 	if (log->level && !log->ubuf) {
12711 		ret = -EFAULT;
12712 		goto err_release_maps;
12713 	}
12714 
12715 	if (ret == 0 && env->used_map_cnt) {
12716 		/* if program passed verifier, update used_maps in bpf_prog_info */
12717 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12718 							  sizeof(env->used_maps[0]),
12719 							  GFP_KERNEL);
12720 
12721 		if (!env->prog->aux->used_maps) {
12722 			ret = -ENOMEM;
12723 			goto err_release_maps;
12724 		}
12725 
12726 		memcpy(env->prog->aux->used_maps, env->used_maps,
12727 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12728 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12729 
12730 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12731 		 * bpf_ld_imm64 instructions
12732 		 */
12733 		convert_pseudo_ld_imm64(env);
12734 	}
12735 
12736 	if (ret == 0)
12737 		adjust_btf_func(env);
12738 
12739 err_release_maps:
12740 	if (!env->prog->aux->used_maps)
12741 		/* if we didn't copy map pointers into bpf_prog_info, release
12742 		 * them now. Otherwise free_used_maps() will release them.
12743 		 */
12744 		release_maps(env);
12745 
12746 	/* extension progs temporarily inherit the attach_type of their targets
12747 	   for verification purposes, so set it back to zero before returning
12748 	 */
12749 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12750 		env->prog->expected_attach_type = 0;
12751 
12752 	*prog = env->prog;
12753 err_unlock:
12754 	if (!is_priv)
12755 		mutex_unlock(&bpf_verifier_lock);
12756 	vfree(env->insn_aux_data);
12757 err_free_env:
12758 	kfree(env);
12759 	return ret;
12760 }
12761