1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18
19 #include "../../lib/kstrtox.h"
20
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22 * inside its own verifier_ops->get_func_proto() callback it should return
23 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24 *
25 * Different map implementations will rely on rcu in map methods
26 * lookup/update/delete, therefore eBPF programs must run under rcu lock
27 * if program is allowed to access maps, so check rcu_read_lock_held in
28 * all three functions.
29 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32 WARN_ON_ONCE(!rcu_read_lock_held());
33 return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 .func = bpf_map_lookup_elem,
38 .gpl_only = false,
39 .pkt_access = true,
40 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
41 .arg1_type = ARG_CONST_MAP_PTR,
42 .arg2_type = ARG_PTR_TO_MAP_KEY,
43 };
44
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 void *, value, u64, flags)
47 {
48 WARN_ON_ONCE(!rcu_read_lock_held());
49 return map->ops->map_update_elem(map, key, value, flags);
50 }
51
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53 .func = bpf_map_update_elem,
54 .gpl_only = false,
55 .pkt_access = true,
56 .ret_type = RET_INTEGER,
57 .arg1_type = ARG_CONST_MAP_PTR,
58 .arg2_type = ARG_PTR_TO_MAP_KEY,
59 .arg3_type = ARG_PTR_TO_MAP_VALUE,
60 .arg4_type = ARG_ANYTHING,
61 };
62
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65 WARN_ON_ONCE(!rcu_read_lock_held());
66 return map->ops->map_delete_elem(map, key);
67 }
68
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 .func = bpf_map_delete_elem,
71 .gpl_only = false,
72 .pkt_access = true,
73 .ret_type = RET_INTEGER,
74 .arg1_type = ARG_CONST_MAP_PTR,
75 .arg2_type = ARG_PTR_TO_MAP_KEY,
76 };
77
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80 return map->ops->map_push_elem(map, value, flags);
81 }
82
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84 .func = bpf_map_push_elem,
85 .gpl_only = false,
86 .pkt_access = true,
87 .ret_type = RET_INTEGER,
88 .arg1_type = ARG_CONST_MAP_PTR,
89 .arg2_type = ARG_PTR_TO_MAP_VALUE,
90 .arg3_type = ARG_ANYTHING,
91 };
92
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95 return map->ops->map_pop_elem(map, value);
96 }
97
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 .func = bpf_map_pop_elem,
100 .gpl_only = false,
101 .ret_type = RET_INTEGER,
102 .arg1_type = ARG_CONST_MAP_PTR,
103 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108 return map->ops->map_peek_elem(map, value);
109 }
110
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 .func = bpf_map_peek_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 .func = bpf_user_rnd_u32,
121 .gpl_only = false,
122 .ret_type = RET_INTEGER,
123 };
124
BPF_CALL_0(bpf_get_smp_processor_id)125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127 return smp_processor_id();
128 }
129
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 .func = bpf_get_smp_processor_id,
132 .gpl_only = false,
133 .ret_type = RET_INTEGER,
134 };
135
BPF_CALL_0(bpf_get_numa_node_id)136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138 return numa_node_id();
139 }
140
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 .func = bpf_get_numa_node_id,
143 .gpl_only = false,
144 .ret_type = RET_INTEGER,
145 };
146
BPF_CALL_0(bpf_ktime_get_ns)147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149 /* NMI safe access to clock monotonic */
150 return ktime_get_mono_fast_ns();
151 }
152
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 .func = bpf_ktime_get_ns,
155 .gpl_only = false,
156 .ret_type = RET_INTEGER,
157 };
158
BPF_CALL_0(bpf_ktime_get_boot_ns)159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161 /* NMI safe access to clock boottime */
162 return ktime_get_boot_fast_ns();
163 }
164
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 .func = bpf_ktime_get_boot_ns,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169 };
170
BPF_CALL_0(bpf_get_current_pid_tgid)171 BPF_CALL_0(bpf_get_current_pid_tgid)
172 {
173 struct task_struct *task = current;
174
175 if (unlikely(!task))
176 return -EINVAL;
177
178 return (u64) task->tgid << 32 | task->pid;
179 }
180
181 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
182 .func = bpf_get_current_pid_tgid,
183 .gpl_only = false,
184 .ret_type = RET_INTEGER,
185 };
186
BPF_CALL_0(bpf_get_current_uid_gid)187 BPF_CALL_0(bpf_get_current_uid_gid)
188 {
189 struct task_struct *task = current;
190 kuid_t uid;
191 kgid_t gid;
192
193 if (unlikely(!task))
194 return -EINVAL;
195
196 current_uid_gid(&uid, &gid);
197 return (u64) from_kgid(&init_user_ns, gid) << 32 |
198 from_kuid(&init_user_ns, uid);
199 }
200
201 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
202 .func = bpf_get_current_uid_gid,
203 .gpl_only = false,
204 .ret_type = RET_INTEGER,
205 };
206
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)207 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
208 {
209 struct task_struct *task = current;
210
211 if (unlikely(!task))
212 goto err_clear;
213
214 strncpy(buf, task->comm, size);
215
216 /* Verifier guarantees that size > 0. For task->comm exceeding
217 * size, guarantee that buf is %NUL-terminated. Unconditionally
218 * done here to save the size test.
219 */
220 buf[size - 1] = 0;
221 return 0;
222 err_clear:
223 memset(buf, 0, size);
224 return -EINVAL;
225 }
226
227 const struct bpf_func_proto bpf_get_current_comm_proto = {
228 .func = bpf_get_current_comm,
229 .gpl_only = false,
230 .ret_type = RET_INTEGER,
231 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
232 .arg2_type = ARG_CONST_SIZE,
233 };
234
235 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
236
__bpf_spin_lock(struct bpf_spin_lock * lock)237 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
238 {
239 arch_spinlock_t *l = (void *)lock;
240 union {
241 __u32 val;
242 arch_spinlock_t lock;
243 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
244
245 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
246 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
247 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
248 arch_spin_lock(l);
249 }
250
__bpf_spin_unlock(struct bpf_spin_lock * lock)251 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
252 {
253 arch_spinlock_t *l = (void *)lock;
254
255 arch_spin_unlock(l);
256 }
257
258 #else
259
__bpf_spin_lock(struct bpf_spin_lock * lock)260 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
261 {
262 atomic_t *l = (void *)lock;
263
264 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
265 do {
266 atomic_cond_read_relaxed(l, !VAL);
267 } while (atomic_xchg(l, 1));
268 }
269
__bpf_spin_unlock(struct bpf_spin_lock * lock)270 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
271 {
272 atomic_t *l = (void *)lock;
273
274 atomic_set_release(l, 0);
275 }
276
277 #endif
278
279 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
280
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)281 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
282 {
283 unsigned long flags;
284
285 local_irq_save(flags);
286 __bpf_spin_lock(lock);
287 __this_cpu_write(irqsave_flags, flags);
288 return 0;
289 }
290
291 const struct bpf_func_proto bpf_spin_lock_proto = {
292 .func = bpf_spin_lock,
293 .gpl_only = false,
294 .ret_type = RET_VOID,
295 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
296 };
297
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)298 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
299 {
300 unsigned long flags;
301
302 flags = __this_cpu_read(irqsave_flags);
303 __bpf_spin_unlock(lock);
304 local_irq_restore(flags);
305 return 0;
306 }
307
308 const struct bpf_func_proto bpf_spin_unlock_proto = {
309 .func = bpf_spin_unlock,
310 .gpl_only = false,
311 .ret_type = RET_VOID,
312 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
313 };
314
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)315 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
316 bool lock_src)
317 {
318 struct bpf_spin_lock *lock;
319
320 if (lock_src)
321 lock = src + map->spin_lock_off;
322 else
323 lock = dst + map->spin_lock_off;
324 preempt_disable();
325 ____bpf_spin_lock(lock);
326 copy_map_value(map, dst, src);
327 ____bpf_spin_unlock(lock);
328 preempt_enable();
329 }
330
BPF_CALL_0(bpf_jiffies64)331 BPF_CALL_0(bpf_jiffies64)
332 {
333 return get_jiffies_64();
334 }
335
336 const struct bpf_func_proto bpf_jiffies64_proto = {
337 .func = bpf_jiffies64,
338 .gpl_only = false,
339 .ret_type = RET_INTEGER,
340 };
341
342 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)343 BPF_CALL_0(bpf_get_current_cgroup_id)
344 {
345 struct cgroup *cgrp = task_dfl_cgroup(current);
346
347 return cgroup_id(cgrp);
348 }
349
350 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
351 .func = bpf_get_current_cgroup_id,
352 .gpl_only = false,
353 .ret_type = RET_INTEGER,
354 };
355
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)356 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
357 {
358 struct cgroup *cgrp = task_dfl_cgroup(current);
359 struct cgroup *ancestor;
360
361 ancestor = cgroup_ancestor(cgrp, ancestor_level);
362 if (!ancestor)
363 return 0;
364 return cgroup_id(ancestor);
365 }
366
367 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
368 .func = bpf_get_current_ancestor_cgroup_id,
369 .gpl_only = false,
370 .ret_type = RET_INTEGER,
371 .arg1_type = ARG_ANYTHING,
372 };
373
374 #ifdef CONFIG_CGROUP_BPF
375 DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
376 bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
377
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)378 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
379 {
380 /* flags argument is not used now,
381 * but provides an ability to extend the API.
382 * verifier checks that its value is correct.
383 */
384 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
385 struct bpf_cgroup_storage *storage = NULL;
386 void *ptr;
387 int i;
388
389 for (i = BPF_CGROUP_STORAGE_NEST_MAX - 1; i >= 0; i--) {
390 if (likely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
391 continue;
392
393 storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
394 break;
395 }
396
397 if (stype == BPF_CGROUP_STORAGE_SHARED)
398 ptr = &READ_ONCE(storage->buf)->data[0];
399 else
400 ptr = this_cpu_ptr(storage->percpu_buf);
401
402 return (unsigned long)ptr;
403 }
404
405 const struct bpf_func_proto bpf_get_local_storage_proto = {
406 .func = bpf_get_local_storage,
407 .gpl_only = false,
408 .ret_type = RET_PTR_TO_MAP_VALUE,
409 .arg1_type = ARG_CONST_MAP_PTR,
410 .arg2_type = ARG_ANYTHING,
411 };
412 #endif
413
414 #define BPF_STRTOX_BASE_MASK 0x1F
415
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)416 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
417 unsigned long long *res, bool *is_negative)
418 {
419 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
420 const char *cur_buf = buf;
421 size_t cur_len = buf_len;
422 unsigned int consumed;
423 size_t val_len;
424 char str[64];
425
426 if (!buf || !buf_len || !res || !is_negative)
427 return -EINVAL;
428
429 if (base != 0 && base != 8 && base != 10 && base != 16)
430 return -EINVAL;
431
432 if (flags & ~BPF_STRTOX_BASE_MASK)
433 return -EINVAL;
434
435 while (cur_buf < buf + buf_len && isspace(*cur_buf))
436 ++cur_buf;
437
438 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
439 if (*is_negative)
440 ++cur_buf;
441
442 consumed = cur_buf - buf;
443 cur_len -= consumed;
444 if (!cur_len)
445 return -EINVAL;
446
447 cur_len = min(cur_len, sizeof(str) - 1);
448 memcpy(str, cur_buf, cur_len);
449 str[cur_len] = '\0';
450 cur_buf = str;
451
452 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
453 val_len = _parse_integer(cur_buf, base, res);
454
455 if (val_len & KSTRTOX_OVERFLOW)
456 return -ERANGE;
457
458 if (val_len == 0)
459 return -EINVAL;
460
461 cur_buf += val_len;
462 consumed += cur_buf - str;
463
464 return consumed;
465 }
466
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)467 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
468 long long *res)
469 {
470 unsigned long long _res;
471 bool is_negative;
472 int err;
473
474 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
475 if (err < 0)
476 return err;
477 if (is_negative) {
478 if ((long long)-_res > 0)
479 return -ERANGE;
480 *res = -_res;
481 } else {
482 if ((long long)_res < 0)
483 return -ERANGE;
484 *res = _res;
485 }
486 return err;
487 }
488
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)489 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
490 long *, res)
491 {
492 long long _res;
493 int err;
494
495 err = __bpf_strtoll(buf, buf_len, flags, &_res);
496 if (err < 0)
497 return err;
498 if (_res != (long)_res)
499 return -ERANGE;
500 *res = _res;
501 return err;
502 }
503
504 const struct bpf_func_proto bpf_strtol_proto = {
505 .func = bpf_strtol,
506 .gpl_only = false,
507 .ret_type = RET_INTEGER,
508 .arg1_type = ARG_PTR_TO_MEM,
509 .arg2_type = ARG_CONST_SIZE,
510 .arg3_type = ARG_ANYTHING,
511 .arg4_type = ARG_PTR_TO_LONG,
512 };
513
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)514 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
515 unsigned long *, res)
516 {
517 unsigned long long _res;
518 bool is_negative;
519 int err;
520
521 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
522 if (err < 0)
523 return err;
524 if (is_negative)
525 return -EINVAL;
526 if (_res != (unsigned long)_res)
527 return -ERANGE;
528 *res = _res;
529 return err;
530 }
531
532 const struct bpf_func_proto bpf_strtoul_proto = {
533 .func = bpf_strtoul,
534 .gpl_only = false,
535 .ret_type = RET_INTEGER,
536 .arg1_type = ARG_PTR_TO_MEM,
537 .arg2_type = ARG_CONST_SIZE,
538 .arg3_type = ARG_ANYTHING,
539 .arg4_type = ARG_PTR_TO_LONG,
540 };
541 #endif
542
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)543 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
544 struct bpf_pidns_info *, nsdata, u32, size)
545 {
546 struct task_struct *task = current;
547 struct pid_namespace *pidns;
548 int err = -EINVAL;
549
550 if (unlikely(size != sizeof(struct bpf_pidns_info)))
551 goto clear;
552
553 if (unlikely((u64)(dev_t)dev != dev))
554 goto clear;
555
556 if (unlikely(!task))
557 goto clear;
558
559 pidns = task_active_pid_ns(task);
560 if (unlikely(!pidns)) {
561 err = -ENOENT;
562 goto clear;
563 }
564
565 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
566 goto clear;
567
568 nsdata->pid = task_pid_nr_ns(task, pidns);
569 nsdata->tgid = task_tgid_nr_ns(task, pidns);
570 return 0;
571 clear:
572 memset((void *)nsdata, 0, (size_t) size);
573 return err;
574 }
575
576 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
577 .func = bpf_get_ns_current_pid_tgid,
578 .gpl_only = false,
579 .ret_type = RET_INTEGER,
580 .arg1_type = ARG_ANYTHING,
581 .arg2_type = ARG_ANYTHING,
582 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
583 .arg4_type = ARG_CONST_SIZE,
584 };
585
586 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
587 .func = bpf_get_raw_cpu_id,
588 .gpl_only = false,
589 .ret_type = RET_INTEGER,
590 };
591
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)592 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
593 u64, flags, void *, data, u64, size)
594 {
595 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
596 return -EINVAL;
597
598 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
599 }
600
601 const struct bpf_func_proto bpf_event_output_data_proto = {
602 .func = bpf_event_output_data,
603 .gpl_only = true,
604 .ret_type = RET_INTEGER,
605 .arg1_type = ARG_PTR_TO_CTX,
606 .arg2_type = ARG_CONST_MAP_PTR,
607 .arg3_type = ARG_ANYTHING,
608 .arg4_type = ARG_PTR_TO_MEM,
609 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
610 };
611
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)612 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
613 const void __user *, user_ptr)
614 {
615 int ret = copy_from_user(dst, user_ptr, size);
616
617 if (unlikely(ret)) {
618 memset(dst, 0, size);
619 ret = -EFAULT;
620 }
621
622 return ret;
623 }
624
625 const struct bpf_func_proto bpf_copy_from_user_proto = {
626 .func = bpf_copy_from_user,
627 .gpl_only = false,
628 .ret_type = RET_INTEGER,
629 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
630 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
631 .arg3_type = ARG_ANYTHING,
632 };
633
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)634 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
635 {
636 if (cpu >= nr_cpu_ids)
637 return (unsigned long)NULL;
638
639 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
640 }
641
642 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
643 .func = bpf_per_cpu_ptr,
644 .gpl_only = false,
645 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
646 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
647 .arg2_type = ARG_ANYTHING,
648 };
649
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)650 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
651 {
652 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
653 }
654
655 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
656 .func = bpf_this_cpu_ptr,
657 .gpl_only = false,
658 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
659 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
660 };
661
662 const struct bpf_func_proto bpf_get_current_task_proto __weak;
663 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
664 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
665 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
666 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
667
668 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)669 bpf_base_func_proto(enum bpf_func_id func_id)
670 {
671 switch (func_id) {
672 case BPF_FUNC_map_lookup_elem:
673 return &bpf_map_lookup_elem_proto;
674 case BPF_FUNC_map_update_elem:
675 return &bpf_map_update_elem_proto;
676 case BPF_FUNC_map_delete_elem:
677 return &bpf_map_delete_elem_proto;
678 case BPF_FUNC_map_push_elem:
679 return &bpf_map_push_elem_proto;
680 case BPF_FUNC_map_pop_elem:
681 return &bpf_map_pop_elem_proto;
682 case BPF_FUNC_map_peek_elem:
683 return &bpf_map_peek_elem_proto;
684 case BPF_FUNC_get_prandom_u32:
685 return &bpf_get_prandom_u32_proto;
686 case BPF_FUNC_get_smp_processor_id:
687 return &bpf_get_raw_smp_processor_id_proto;
688 case BPF_FUNC_get_numa_node_id:
689 return &bpf_get_numa_node_id_proto;
690 case BPF_FUNC_tail_call:
691 return &bpf_tail_call_proto;
692 case BPF_FUNC_ktime_get_ns:
693 return &bpf_ktime_get_ns_proto;
694 case BPF_FUNC_ktime_get_boot_ns:
695 return &bpf_ktime_get_boot_ns_proto;
696 case BPF_FUNC_ringbuf_output:
697 return &bpf_ringbuf_output_proto;
698 case BPF_FUNC_ringbuf_reserve:
699 return &bpf_ringbuf_reserve_proto;
700 case BPF_FUNC_ringbuf_submit:
701 return &bpf_ringbuf_submit_proto;
702 case BPF_FUNC_ringbuf_discard:
703 return &bpf_ringbuf_discard_proto;
704 case BPF_FUNC_ringbuf_query:
705 return &bpf_ringbuf_query_proto;
706 default:
707 break;
708 }
709
710 if (!bpf_capable())
711 return NULL;
712
713 switch (func_id) {
714 case BPF_FUNC_spin_lock:
715 return &bpf_spin_lock_proto;
716 case BPF_FUNC_spin_unlock:
717 return &bpf_spin_unlock_proto;
718 case BPF_FUNC_jiffies64:
719 return &bpf_jiffies64_proto;
720 case BPF_FUNC_per_cpu_ptr:
721 return &bpf_per_cpu_ptr_proto;
722 case BPF_FUNC_this_cpu_ptr:
723 return &bpf_this_cpu_ptr_proto;
724 default:
725 break;
726 }
727
728 if (!perfmon_capable())
729 return NULL;
730
731 switch (func_id) {
732 case BPF_FUNC_trace_printk:
733 return bpf_get_trace_printk_proto();
734 case BPF_FUNC_get_current_task:
735 return &bpf_get_current_task_proto;
736 case BPF_FUNC_probe_read_user:
737 return &bpf_probe_read_user_proto;
738 case BPF_FUNC_probe_read_kernel:
739 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
740 NULL : &bpf_probe_read_kernel_proto;
741 case BPF_FUNC_probe_read_user_str:
742 return &bpf_probe_read_user_str_proto;
743 case BPF_FUNC_probe_read_kernel_str:
744 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
745 NULL : &bpf_probe_read_kernel_str_proto;
746 case BPF_FUNC_snprintf_btf:
747 return &bpf_snprintf_btf_proto;
748 default:
749 return NULL;
750 }
751 }
752