• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/nospec.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39 
40 #include <trace/hooks/memory.h>
41 
42 /* Registers */
43 #define BPF_R0	regs[BPF_REG_0]
44 #define BPF_R1	regs[BPF_REG_1]
45 #define BPF_R2	regs[BPF_REG_2]
46 #define BPF_R3	regs[BPF_REG_3]
47 #define BPF_R4	regs[BPF_REG_4]
48 #define BPF_R5	regs[BPF_REG_5]
49 #define BPF_R6	regs[BPF_REG_6]
50 #define BPF_R7	regs[BPF_REG_7]
51 #define BPF_R8	regs[BPF_REG_8]
52 #define BPF_R9	regs[BPF_REG_9]
53 #define BPF_R10	regs[BPF_REG_10]
54 
55 /* Named registers */
56 #define DST	regs[insn->dst_reg]
57 #define SRC	regs[insn->src_reg]
58 #define FP	regs[BPF_REG_FP]
59 #define AX	regs[BPF_REG_AX]
60 #define ARG1	regs[BPF_REG_ARG1]
61 #define CTX	regs[BPF_REG_CTX]
62 #define IMM	insn->imm
63 
64 /* No hurry in this branch
65  *
66  * Exported for the bpf jit load helper.
67  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)68 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
69 {
70 	u8 *ptr = NULL;
71 
72 	if (k >= SKF_NET_OFF) {
73 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
74 	} else if (k >= SKF_LL_OFF) {
75 		if (unlikely(!skb_mac_header_was_set(skb)))
76 			return NULL;
77 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
78 	}
79 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
80 		return ptr;
81 
82 	return NULL;
83 }
84 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)85 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
86 {
87 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
88 	struct bpf_prog_aux *aux;
89 	struct bpf_prog *fp;
90 
91 	size = round_up(size, PAGE_SIZE);
92 	fp = __vmalloc(size, gfp_flags);
93 	if (fp == NULL)
94 		return NULL;
95 
96 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
97 	if (aux == NULL) {
98 		vfree(fp);
99 		return NULL;
100 	}
101 
102 	fp->pages = size / PAGE_SIZE;
103 	fp->aux = aux;
104 	fp->aux->prog = fp;
105 	fp->jit_requested = ebpf_jit_enabled();
106 
107 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
108 	mutex_init(&fp->aux->used_maps_mutex);
109 	mutex_init(&fp->aux->dst_mutex);
110 
111 	return fp;
112 }
113 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)114 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
115 {
116 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
117 	struct bpf_prog *prog;
118 	int cpu;
119 
120 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
121 	if (!prog)
122 		return NULL;
123 
124 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
125 	if (!prog->aux->stats) {
126 		kfree(prog->aux);
127 		vfree(prog);
128 		return NULL;
129 	}
130 
131 	for_each_possible_cpu(cpu) {
132 		struct bpf_prog_stats *pstats;
133 
134 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
135 		u64_stats_init(&pstats->syncp);
136 	}
137 	return prog;
138 }
139 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
140 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)141 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
142 {
143 	if (!prog->aux->nr_linfo || !prog->jit_requested)
144 		return 0;
145 
146 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
147 					 sizeof(*prog->aux->jited_linfo),
148 					 GFP_KERNEL | __GFP_NOWARN);
149 	if (!prog->aux->jited_linfo)
150 		return -ENOMEM;
151 
152 	return 0;
153 }
154 
bpf_prog_free_jited_linfo(struct bpf_prog * prog)155 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
156 {
157 	kfree(prog->aux->jited_linfo);
158 	prog->aux->jited_linfo = NULL;
159 }
160 
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)161 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
162 {
163 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
164 		bpf_prog_free_jited_linfo(prog);
165 }
166 
167 /* The jit engine is responsible to provide an array
168  * for insn_off to the jited_off mapping (insn_to_jit_off).
169  *
170  * The idx to this array is the insn_off.  Hence, the insn_off
171  * here is relative to the prog itself instead of the main prog.
172  * This array has one entry for each xlated bpf insn.
173  *
174  * jited_off is the byte off to the last byte of the jited insn.
175  *
176  * Hence, with
177  * insn_start:
178  *      The first bpf insn off of the prog.  The insn off
179  *      here is relative to the main prog.
180  *      e.g. if prog is a subprog, insn_start > 0
181  * linfo_idx:
182  *      The prog's idx to prog->aux->linfo and jited_linfo
183  *
184  * jited_linfo[linfo_idx] = prog->bpf_func
185  *
186  * For i > linfo_idx,
187  *
188  * jited_linfo[i] = prog->bpf_func +
189  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
190  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)191 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
192 			       const u32 *insn_to_jit_off)
193 {
194 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
195 	const struct bpf_line_info *linfo;
196 	void **jited_linfo;
197 
198 	if (!prog->aux->jited_linfo)
199 		/* Userspace did not provide linfo */
200 		return;
201 
202 	linfo_idx = prog->aux->linfo_idx;
203 	linfo = &prog->aux->linfo[linfo_idx];
204 	insn_start = linfo[0].insn_off;
205 	insn_end = insn_start + prog->len;
206 
207 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
208 	jited_linfo[0] = prog->bpf_func;
209 
210 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
211 
212 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
213 		/* The verifier ensures that linfo[i].insn_off is
214 		 * strictly increasing
215 		 */
216 		jited_linfo[i] = prog->bpf_func +
217 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
218 }
219 
bpf_prog_free_linfo(struct bpf_prog * prog)220 void bpf_prog_free_linfo(struct bpf_prog *prog)
221 {
222 	bpf_prog_free_jited_linfo(prog);
223 	kvfree(prog->aux->linfo);
224 }
225 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)226 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
227 				  gfp_t gfp_extra_flags)
228 {
229 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
230 	struct bpf_prog *fp;
231 	u32 pages, delta;
232 	int ret;
233 
234 	size = round_up(size, PAGE_SIZE);
235 	pages = size / PAGE_SIZE;
236 	if (pages <= fp_old->pages)
237 		return fp_old;
238 
239 	delta = pages - fp_old->pages;
240 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
241 	if (ret)
242 		return NULL;
243 
244 	fp = __vmalloc(size, gfp_flags);
245 	if (fp == NULL) {
246 		__bpf_prog_uncharge(fp_old->aux->user, delta);
247 	} else {
248 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
249 		fp->pages = pages;
250 		fp->aux->prog = fp;
251 
252 		/* We keep fp->aux from fp_old around in the new
253 		 * reallocated structure.
254 		 */
255 		fp_old->aux = NULL;
256 		__bpf_prog_free(fp_old);
257 	}
258 
259 	return fp;
260 }
261 
__bpf_prog_free(struct bpf_prog * fp)262 void __bpf_prog_free(struct bpf_prog *fp)
263 {
264 	if (fp->aux) {
265 		mutex_destroy(&fp->aux->used_maps_mutex);
266 		mutex_destroy(&fp->aux->dst_mutex);
267 		free_percpu(fp->aux->stats);
268 		kfree(fp->aux->poke_tab);
269 		kfree(fp->aux);
270 	}
271 	vfree(fp);
272 }
273 
bpf_prog_calc_tag(struct bpf_prog * fp)274 int bpf_prog_calc_tag(struct bpf_prog *fp)
275 {
276 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
277 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
278 	u32 digest[SHA1_DIGEST_WORDS];
279 	u32 ws[SHA1_WORKSPACE_WORDS];
280 	u32 i, bsize, psize, blocks;
281 	struct bpf_insn *dst;
282 	bool was_ld_map;
283 	u8 *raw, *todo;
284 	__be32 *result;
285 	__be64 *bits;
286 
287 	raw = vmalloc(raw_size);
288 	if (!raw)
289 		return -ENOMEM;
290 
291 	sha1_init(digest);
292 	memset(ws, 0, sizeof(ws));
293 
294 	/* We need to take out the map fd for the digest calculation
295 	 * since they are unstable from user space side.
296 	 */
297 	dst = (void *)raw;
298 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
299 		dst[i] = fp->insnsi[i];
300 		if (!was_ld_map &&
301 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
302 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
303 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
304 			was_ld_map = true;
305 			dst[i].imm = 0;
306 		} else if (was_ld_map &&
307 			   dst[i].code == 0 &&
308 			   dst[i].dst_reg == 0 &&
309 			   dst[i].src_reg == 0 &&
310 			   dst[i].off == 0) {
311 			was_ld_map = false;
312 			dst[i].imm = 0;
313 		} else {
314 			was_ld_map = false;
315 		}
316 	}
317 
318 	psize = bpf_prog_insn_size(fp);
319 	memset(&raw[psize], 0, raw_size - psize);
320 	raw[psize++] = 0x80;
321 
322 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
323 	blocks = bsize / SHA1_BLOCK_SIZE;
324 	todo   = raw;
325 	if (bsize - psize >= sizeof(__be64)) {
326 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
327 	} else {
328 		bits = (__be64 *)(todo + bsize + bits_offset);
329 		blocks++;
330 	}
331 	*bits = cpu_to_be64((psize - 1) << 3);
332 
333 	while (blocks--) {
334 		sha1_transform(digest, todo, ws);
335 		todo += SHA1_BLOCK_SIZE;
336 	}
337 
338 	result = (__force __be32 *)digest;
339 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
340 		result[i] = cpu_to_be32(digest[i]);
341 	memcpy(fp->tag, result, sizeof(fp->tag));
342 
343 	vfree(raw);
344 	return 0;
345 }
346 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)347 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
348 				s32 end_new, s32 curr, const bool probe_pass)
349 {
350 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
351 	s32 delta = end_new - end_old;
352 	s64 imm = insn->imm;
353 
354 	if (curr < pos && curr + imm + 1 >= end_old)
355 		imm += delta;
356 	else if (curr >= end_new && curr + imm + 1 < end_new)
357 		imm -= delta;
358 	if (imm < imm_min || imm > imm_max)
359 		return -ERANGE;
360 	if (!probe_pass)
361 		insn->imm = imm;
362 	return 0;
363 }
364 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)365 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
366 				s32 end_new, s32 curr, const bool probe_pass)
367 {
368 	const s32 off_min = S16_MIN, off_max = S16_MAX;
369 	s32 delta = end_new - end_old;
370 	s32 off = insn->off;
371 
372 	if (curr < pos && curr + off + 1 >= end_old)
373 		off += delta;
374 	else if (curr >= end_new && curr + off + 1 < end_new)
375 		off -= delta;
376 	if (off < off_min || off > off_max)
377 		return -ERANGE;
378 	if (!probe_pass)
379 		insn->off = off;
380 	return 0;
381 }
382 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)383 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
384 			    s32 end_new, const bool probe_pass)
385 {
386 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
387 	struct bpf_insn *insn = prog->insnsi;
388 	int ret = 0;
389 
390 	for (i = 0; i < insn_cnt; i++, insn++) {
391 		u8 code;
392 
393 		/* In the probing pass we still operate on the original,
394 		 * unpatched image in order to check overflows before we
395 		 * do any other adjustments. Therefore skip the patchlet.
396 		 */
397 		if (probe_pass && i == pos) {
398 			i = end_new;
399 			insn = prog->insnsi + end_old;
400 		}
401 		code = insn->code;
402 		if ((BPF_CLASS(code) != BPF_JMP &&
403 		     BPF_CLASS(code) != BPF_JMP32) ||
404 		    BPF_OP(code) == BPF_EXIT)
405 			continue;
406 		/* Adjust offset of jmps if we cross patch boundaries. */
407 		if (BPF_OP(code) == BPF_CALL) {
408 			if (insn->src_reg != BPF_PSEUDO_CALL)
409 				continue;
410 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
411 						   end_new, i, probe_pass);
412 		} else {
413 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
414 						   end_new, i, probe_pass);
415 		}
416 		if (ret)
417 			break;
418 	}
419 
420 	return ret;
421 }
422 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)423 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
424 {
425 	struct bpf_line_info *linfo;
426 	u32 i, nr_linfo;
427 
428 	nr_linfo = prog->aux->nr_linfo;
429 	if (!nr_linfo || !delta)
430 		return;
431 
432 	linfo = prog->aux->linfo;
433 
434 	for (i = 0; i < nr_linfo; i++)
435 		if (off < linfo[i].insn_off)
436 			break;
437 
438 	/* Push all off < linfo[i].insn_off by delta */
439 	for (; i < nr_linfo; i++)
440 		linfo[i].insn_off += delta;
441 }
442 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)443 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
444 				       const struct bpf_insn *patch, u32 len)
445 {
446 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
447 	const u32 cnt_max = S16_MAX;
448 	struct bpf_prog *prog_adj;
449 	int err;
450 
451 	/* Since our patchlet doesn't expand the image, we're done. */
452 	if (insn_delta == 0) {
453 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
454 		return prog;
455 	}
456 
457 	insn_adj_cnt = prog->len + insn_delta;
458 
459 	/* Reject anything that would potentially let the insn->off
460 	 * target overflow when we have excessive program expansions.
461 	 * We need to probe here before we do any reallocation where
462 	 * we afterwards may not fail anymore.
463 	 */
464 	if (insn_adj_cnt > cnt_max &&
465 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
466 		return ERR_PTR(err);
467 
468 	/* Several new instructions need to be inserted. Make room
469 	 * for them. Likely, there's no need for a new allocation as
470 	 * last page could have large enough tailroom.
471 	 */
472 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
473 				    GFP_USER);
474 	if (!prog_adj)
475 		return ERR_PTR(-ENOMEM);
476 
477 	prog_adj->len = insn_adj_cnt;
478 
479 	/* Patching happens in 3 steps:
480 	 *
481 	 * 1) Move over tail of insnsi from next instruction onwards,
482 	 *    so we can patch the single target insn with one or more
483 	 *    new ones (patching is always from 1 to n insns, n > 0).
484 	 * 2) Inject new instructions at the target location.
485 	 * 3) Adjust branch offsets if necessary.
486 	 */
487 	insn_rest = insn_adj_cnt - off - len;
488 
489 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
490 		sizeof(*patch) * insn_rest);
491 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
492 
493 	/* We are guaranteed to not fail at this point, otherwise
494 	 * the ship has sailed to reverse to the original state. An
495 	 * overflow cannot happen at this point.
496 	 */
497 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
498 
499 	bpf_adj_linfo(prog_adj, off, insn_delta);
500 
501 	return prog_adj;
502 }
503 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)504 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
505 {
506 	/* Branch offsets can't overflow when program is shrinking, no need
507 	 * to call bpf_adj_branches(..., true) here
508 	 */
509 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
510 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
511 	prog->len -= cnt;
512 
513 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
514 }
515 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)516 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
517 {
518 	int i;
519 
520 	for (i = 0; i < fp->aux->func_cnt; i++)
521 		bpf_prog_kallsyms_del(fp->aux->func[i]);
522 }
523 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)524 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
525 {
526 	bpf_prog_kallsyms_del_subprogs(fp);
527 	bpf_prog_kallsyms_del(fp);
528 }
529 
530 #ifdef CONFIG_BPF_JIT
531 /* All BPF JIT sysctl knobs here. */
532 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
533 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
534 int bpf_jit_harden   __read_mostly;
535 long bpf_jit_limit   __read_mostly;
536 long bpf_jit_limit_max __read_mostly;
537 
538 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)539 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
540 {
541 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
542 	unsigned long addr = (unsigned long)hdr;
543 
544 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
545 
546 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
547 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
548 }
549 
550 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)551 bpf_prog_ksym_set_name(struct bpf_prog *prog)
552 {
553 	char *sym = prog->aux->ksym.name;
554 	const char *end = sym + KSYM_NAME_LEN;
555 	const struct btf_type *type;
556 	const char *func_name;
557 
558 	BUILD_BUG_ON(sizeof("bpf_prog_") +
559 		     sizeof(prog->tag) * 2 +
560 		     /* name has been null terminated.
561 		      * We should need +1 for the '_' preceding
562 		      * the name.  However, the null character
563 		      * is double counted between the name and the
564 		      * sizeof("bpf_prog_") above, so we omit
565 		      * the +1 here.
566 		      */
567 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
568 
569 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
570 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
571 
572 	/* prog->aux->name will be ignored if full btf name is available */
573 	if (prog->aux->func_info_cnt) {
574 		type = btf_type_by_id(prog->aux->btf,
575 				      prog->aux->func_info[prog->aux->func_idx].type_id);
576 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
577 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
578 		return;
579 	}
580 
581 	if (prog->aux->name[0])
582 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
583 	else
584 		*sym = 0;
585 }
586 
bpf_get_ksym_start(struct latch_tree_node * n)587 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
588 {
589 	return container_of(n, struct bpf_ksym, tnode)->start;
590 }
591 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)592 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
593 					  struct latch_tree_node *b)
594 {
595 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
596 }
597 
bpf_tree_comp(void * key,struct latch_tree_node * n)598 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
599 {
600 	unsigned long val = (unsigned long)key;
601 	const struct bpf_ksym *ksym;
602 
603 	ksym = container_of(n, struct bpf_ksym, tnode);
604 
605 	if (val < ksym->start)
606 		return -1;
607 	/* Ensure that we detect return addresses as part of the program, when
608 	 * the final instruction is a call for a program part of the stack
609 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
610 	 */
611 	if (val > ksym->end)
612 		return  1;
613 
614 	return 0;
615 }
616 
617 static const struct latch_tree_ops bpf_tree_ops = {
618 	.less	= bpf_tree_less,
619 	.comp	= bpf_tree_comp,
620 };
621 
622 static DEFINE_SPINLOCK(bpf_lock);
623 static LIST_HEAD(bpf_kallsyms);
624 static struct latch_tree_root bpf_tree __cacheline_aligned;
625 
bpf_ksym_add(struct bpf_ksym * ksym)626 void bpf_ksym_add(struct bpf_ksym *ksym)
627 {
628 	spin_lock_bh(&bpf_lock);
629 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
630 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
631 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
632 	spin_unlock_bh(&bpf_lock);
633 }
634 
__bpf_ksym_del(struct bpf_ksym * ksym)635 static void __bpf_ksym_del(struct bpf_ksym *ksym)
636 {
637 	if (list_empty(&ksym->lnode))
638 		return;
639 
640 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
641 	list_del_rcu(&ksym->lnode);
642 }
643 
bpf_ksym_del(struct bpf_ksym * ksym)644 void bpf_ksym_del(struct bpf_ksym *ksym)
645 {
646 	spin_lock_bh(&bpf_lock);
647 	__bpf_ksym_del(ksym);
648 	spin_unlock_bh(&bpf_lock);
649 }
650 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)651 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
652 {
653 	return fp->jited && !bpf_prog_was_classic(fp);
654 }
655 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)656 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
657 {
658 	return list_empty(&fp->aux->ksym.lnode) ||
659 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
660 }
661 
bpf_prog_kallsyms_add(struct bpf_prog * fp)662 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
663 {
664 	if (!bpf_prog_kallsyms_candidate(fp) ||
665 	    !bpf_capable())
666 		return;
667 
668 	bpf_prog_ksym_set_addr(fp);
669 	bpf_prog_ksym_set_name(fp);
670 	fp->aux->ksym.prog = true;
671 
672 	bpf_ksym_add(&fp->aux->ksym);
673 }
674 
bpf_prog_kallsyms_del(struct bpf_prog * fp)675 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
676 {
677 	if (!bpf_prog_kallsyms_candidate(fp))
678 		return;
679 
680 	bpf_ksym_del(&fp->aux->ksym);
681 }
682 
bpf_ksym_find(unsigned long addr)683 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
684 {
685 	struct latch_tree_node *n;
686 
687 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
688 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
689 }
690 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)691 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
692 				 unsigned long *off, char *sym)
693 {
694 	struct bpf_ksym *ksym;
695 	char *ret = NULL;
696 
697 	rcu_read_lock();
698 	ksym = bpf_ksym_find(addr);
699 	if (ksym) {
700 		unsigned long symbol_start = ksym->start;
701 		unsigned long symbol_end = ksym->end;
702 
703 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
704 
705 		ret = sym;
706 		if (size)
707 			*size = symbol_end - symbol_start;
708 		if (off)
709 			*off  = addr - symbol_start;
710 	}
711 	rcu_read_unlock();
712 
713 	return ret;
714 }
715 
is_bpf_text_address(unsigned long addr)716 bool is_bpf_text_address(unsigned long addr)
717 {
718 	bool ret;
719 
720 	rcu_read_lock();
721 	ret = bpf_ksym_find(addr) != NULL;
722 	rcu_read_unlock();
723 
724 	return ret;
725 }
726 
bpf_prog_ksym_find(unsigned long addr)727 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
728 {
729 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
730 
731 	return ksym && ksym->prog ?
732 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
733 	       NULL;
734 }
735 
search_bpf_extables(unsigned long addr)736 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
737 {
738 	const struct exception_table_entry *e = NULL;
739 	struct bpf_prog *prog;
740 
741 	rcu_read_lock();
742 	prog = bpf_prog_ksym_find(addr);
743 	if (!prog)
744 		goto out;
745 	if (!prog->aux->num_exentries)
746 		goto out;
747 
748 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
749 out:
750 	rcu_read_unlock();
751 	return e;
752 }
753 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)754 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
755 		    char *sym)
756 {
757 	struct bpf_ksym *ksym;
758 	unsigned int it = 0;
759 	int ret = -ERANGE;
760 
761 	if (!bpf_jit_kallsyms_enabled())
762 		return ret;
763 
764 	rcu_read_lock();
765 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
766 		if (it++ != symnum)
767 			continue;
768 
769 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
770 
771 		*value = ksym->start;
772 		*type  = BPF_SYM_ELF_TYPE;
773 
774 		ret = 0;
775 		break;
776 	}
777 	rcu_read_unlock();
778 
779 	return ret;
780 }
781 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)782 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
783 				struct bpf_jit_poke_descriptor *poke)
784 {
785 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
786 	static const u32 poke_tab_max = 1024;
787 	u32 slot = prog->aux->size_poke_tab;
788 	u32 size = slot + 1;
789 
790 	if (size > poke_tab_max)
791 		return -ENOSPC;
792 	if (poke->tailcall_target || poke->tailcall_target_stable ||
793 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
794 		return -EINVAL;
795 
796 	switch (poke->reason) {
797 	case BPF_POKE_REASON_TAIL_CALL:
798 		if (!poke->tail_call.map)
799 			return -EINVAL;
800 		break;
801 	default:
802 		return -EINVAL;
803 	}
804 
805 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
806 	if (!tab)
807 		return -ENOMEM;
808 
809 	memcpy(&tab[slot], poke, sizeof(*poke));
810 	prog->aux->size_poke_tab = size;
811 	prog->aux->poke_tab = tab;
812 
813 	return slot;
814 }
815 
816 static atomic_long_t bpf_jit_current;
817 
818 /* Can be overridden by an arch's JIT compiler if it has a custom,
819  * dedicated BPF backend memory area, or if neither of the two
820  * below apply.
821  */
bpf_jit_alloc_exec_limit(void)822 u64 __weak bpf_jit_alloc_exec_limit(void)
823 {
824 #if defined(MODULES_VADDR)
825 	return MODULES_END - MODULES_VADDR;
826 #else
827 	return VMALLOC_END - VMALLOC_START;
828 #endif
829 }
830 
bpf_jit_charge_init(void)831 static int __init bpf_jit_charge_init(void)
832 {
833 	/* Only used as heuristic here to derive limit. */
834 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
835 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
836 					    PAGE_SIZE), LONG_MAX);
837 	return 0;
838 }
839 pure_initcall(bpf_jit_charge_init);
840 
bpf_jit_charge_modmem(u32 pages)841 int bpf_jit_charge_modmem(u32 pages)
842 {
843 	if (atomic_long_add_return(pages, &bpf_jit_current) >
844 	    (bpf_jit_limit >> PAGE_SHIFT)) {
845 		if (!bpf_capable()) {
846 			atomic_long_sub(pages, &bpf_jit_current);
847 			return -EPERM;
848 		}
849 	}
850 
851 	return 0;
852 }
853 
bpf_jit_uncharge_modmem(u32 pages)854 void bpf_jit_uncharge_modmem(u32 pages)
855 {
856 	atomic_long_sub(pages, &bpf_jit_current);
857 }
858 
bpf_jit_alloc_exec(unsigned long size)859 void *__weak bpf_jit_alloc_exec(unsigned long size)
860 {
861 	return module_alloc(size);
862 }
863 
bpf_jit_free_exec(void * addr)864 void __weak bpf_jit_free_exec(void *addr)
865 {
866 	module_memfree(addr);
867 }
868 
869 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)870 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
871 		     unsigned int alignment,
872 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
873 {
874 	struct bpf_binary_header *hdr;
875 	u32 size, hole, start, pages;
876 
877 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
878 		     alignment > BPF_IMAGE_ALIGNMENT);
879 
880 	/* Most of BPF filters are really small, but if some of them
881 	 * fill a page, allow at least 128 extra bytes to insert a
882 	 * random section of illegal instructions.
883 	 */
884 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
885 	pages = size / PAGE_SIZE;
886 
887 	if (bpf_jit_charge_modmem(pages))
888 		return NULL;
889 	hdr = bpf_jit_alloc_exec(size);
890 	if (!hdr) {
891 		bpf_jit_uncharge_modmem(pages);
892 		return NULL;
893 	}
894 
895 	/* Fill space with illegal/arch-dep instructions. */
896 	bpf_fill_ill_insns(hdr, size);
897 
898 	hdr->pages = pages;
899 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
900 		     PAGE_SIZE - sizeof(*hdr));
901 	start = (get_random_int() % hole) & ~(alignment - 1);
902 
903 	/* Leave a random number of instructions before BPF code. */
904 	*image_ptr = &hdr->image[start];
905 
906 	return hdr;
907 }
908 
bpf_jit_binary_free(struct bpf_binary_header * hdr)909 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
910 {
911 	u32 pages = hdr->pages;
912 
913 	trace_android_vh_set_memory_rw((unsigned long)hdr, pages);
914 	trace_android_vh_set_memory_nx((unsigned long)hdr, pages);
915 	bpf_jit_free_exec(hdr);
916 	bpf_jit_uncharge_modmem(pages);
917 }
918 
919 /* This symbol is only overridden by archs that have different
920  * requirements than the usual eBPF JITs, f.e. when they only
921  * implement cBPF JIT, do not set images read-only, etc.
922  */
bpf_jit_free(struct bpf_prog * fp)923 void __weak bpf_jit_free(struct bpf_prog *fp)
924 {
925 	if (fp->jited) {
926 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
927 
928 		bpf_jit_binary_free(hdr);
929 
930 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
931 	}
932 
933 	bpf_prog_unlock_free(fp);
934 }
935 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)936 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
937 			  const struct bpf_insn *insn, bool extra_pass,
938 			  u64 *func_addr, bool *func_addr_fixed)
939 {
940 	s16 off = insn->off;
941 	s32 imm = insn->imm;
942 	u8 *addr;
943 
944 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
945 	if (!*func_addr_fixed) {
946 		/* Place-holder address till the last pass has collected
947 		 * all addresses for JITed subprograms in which case we
948 		 * can pick them up from prog->aux.
949 		 */
950 		if (!extra_pass)
951 			addr = NULL;
952 		else if (prog->aux->func &&
953 			 off >= 0 && off < prog->aux->func_cnt)
954 			addr = (u8 *)prog->aux->func[off]->bpf_func;
955 		else
956 			return -EINVAL;
957 	} else {
958 		/* Address of a BPF helper call. Since part of the core
959 		 * kernel, it's always at a fixed location. __bpf_call_base
960 		 * and the helper with imm relative to it are both in core
961 		 * kernel.
962 		 */
963 		addr = (u8 *)__bpf_call_base + imm;
964 	}
965 
966 	*func_addr = (unsigned long)addr;
967 	return 0;
968 }
969 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)970 static int bpf_jit_blind_insn(const struct bpf_insn *from,
971 			      const struct bpf_insn *aux,
972 			      struct bpf_insn *to_buff,
973 			      bool emit_zext)
974 {
975 	struct bpf_insn *to = to_buff;
976 	u32 imm_rnd = get_random_int();
977 	s16 off;
978 
979 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
980 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
981 
982 	/* Constraints on AX register:
983 	 *
984 	 * AX register is inaccessible from user space. It is mapped in
985 	 * all JITs, and used here for constant blinding rewrites. It is
986 	 * typically "stateless" meaning its contents are only valid within
987 	 * the executed instruction, but not across several instructions.
988 	 * There are a few exceptions however which are further detailed
989 	 * below.
990 	 *
991 	 * Constant blinding is only used by JITs, not in the interpreter.
992 	 * The interpreter uses AX in some occasions as a local temporary
993 	 * register e.g. in DIV or MOD instructions.
994 	 *
995 	 * In restricted circumstances, the verifier can also use the AX
996 	 * register for rewrites as long as they do not interfere with
997 	 * the above cases!
998 	 */
999 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1000 		goto out;
1001 
1002 	if (from->imm == 0 &&
1003 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1004 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1005 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1006 		goto out;
1007 	}
1008 
1009 	switch (from->code) {
1010 	case BPF_ALU | BPF_ADD | BPF_K:
1011 	case BPF_ALU | BPF_SUB | BPF_K:
1012 	case BPF_ALU | BPF_AND | BPF_K:
1013 	case BPF_ALU | BPF_OR  | BPF_K:
1014 	case BPF_ALU | BPF_XOR | BPF_K:
1015 	case BPF_ALU | BPF_MUL | BPF_K:
1016 	case BPF_ALU | BPF_MOV | BPF_K:
1017 	case BPF_ALU | BPF_DIV | BPF_K:
1018 	case BPF_ALU | BPF_MOD | BPF_K:
1019 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1020 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1021 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1022 		break;
1023 
1024 	case BPF_ALU64 | BPF_ADD | BPF_K:
1025 	case BPF_ALU64 | BPF_SUB | BPF_K:
1026 	case BPF_ALU64 | BPF_AND | BPF_K:
1027 	case BPF_ALU64 | BPF_OR  | BPF_K:
1028 	case BPF_ALU64 | BPF_XOR | BPF_K:
1029 	case BPF_ALU64 | BPF_MUL | BPF_K:
1030 	case BPF_ALU64 | BPF_MOV | BPF_K:
1031 	case BPF_ALU64 | BPF_DIV | BPF_K:
1032 	case BPF_ALU64 | BPF_MOD | BPF_K:
1033 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1036 		break;
1037 
1038 	case BPF_JMP | BPF_JEQ  | BPF_K:
1039 	case BPF_JMP | BPF_JNE  | BPF_K:
1040 	case BPF_JMP | BPF_JGT  | BPF_K:
1041 	case BPF_JMP | BPF_JLT  | BPF_K:
1042 	case BPF_JMP | BPF_JGE  | BPF_K:
1043 	case BPF_JMP | BPF_JLE  | BPF_K:
1044 	case BPF_JMP | BPF_JSGT | BPF_K:
1045 	case BPF_JMP | BPF_JSLT | BPF_K:
1046 	case BPF_JMP | BPF_JSGE | BPF_K:
1047 	case BPF_JMP | BPF_JSLE | BPF_K:
1048 	case BPF_JMP | BPF_JSET | BPF_K:
1049 		/* Accommodate for extra offset in case of a backjump. */
1050 		off = from->off;
1051 		if (off < 0)
1052 			off -= 2;
1053 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1054 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1055 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1056 		break;
1057 
1058 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1059 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1060 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1061 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1062 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1063 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1064 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1065 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1066 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1067 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1068 	case BPF_JMP32 | BPF_JSET | BPF_K:
1069 		/* Accommodate for extra offset in case of a backjump. */
1070 		off = from->off;
1071 		if (off < 0)
1072 			off -= 2;
1073 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1074 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1075 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1076 				      off);
1077 		break;
1078 
1079 	case BPF_LD | BPF_IMM | BPF_DW:
1080 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1081 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1083 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1084 		break;
1085 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1086 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1087 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1088 		if (emit_zext)
1089 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1090 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1091 		break;
1092 
1093 	case BPF_ST | BPF_MEM | BPF_DW:
1094 	case BPF_ST | BPF_MEM | BPF_W:
1095 	case BPF_ST | BPF_MEM | BPF_H:
1096 	case BPF_ST | BPF_MEM | BPF_B:
1097 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1098 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1099 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1100 		break;
1101 	}
1102 out:
1103 	return to - to_buff;
1104 }
1105 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1106 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1107 					      gfp_t gfp_extra_flags)
1108 {
1109 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1110 	struct bpf_prog *fp;
1111 
1112 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1113 	if (fp != NULL) {
1114 		/* aux->prog still points to the fp_other one, so
1115 		 * when promoting the clone to the real program,
1116 		 * this still needs to be adapted.
1117 		 */
1118 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1119 	}
1120 
1121 	return fp;
1122 }
1123 
bpf_prog_clone_free(struct bpf_prog * fp)1124 static void bpf_prog_clone_free(struct bpf_prog *fp)
1125 {
1126 	/* aux was stolen by the other clone, so we cannot free
1127 	 * it from this path! It will be freed eventually by the
1128 	 * other program on release.
1129 	 *
1130 	 * At this point, we don't need a deferred release since
1131 	 * clone is guaranteed to not be locked.
1132 	 */
1133 	fp->aux = NULL;
1134 	__bpf_prog_free(fp);
1135 }
1136 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1137 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1138 {
1139 	/* We have to repoint aux->prog to self, as we don't
1140 	 * know whether fp here is the clone or the original.
1141 	 */
1142 	fp->aux->prog = fp;
1143 	bpf_prog_clone_free(fp_other);
1144 }
1145 
bpf_jit_blind_constants(struct bpf_prog * prog)1146 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1147 {
1148 	struct bpf_insn insn_buff[16], aux[2];
1149 	struct bpf_prog *clone, *tmp;
1150 	int insn_delta, insn_cnt;
1151 	struct bpf_insn *insn;
1152 	int i, rewritten;
1153 
1154 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1155 		return prog;
1156 
1157 	clone = bpf_prog_clone_create(prog, GFP_USER);
1158 	if (!clone)
1159 		return ERR_PTR(-ENOMEM);
1160 
1161 	insn_cnt = clone->len;
1162 	insn = clone->insnsi;
1163 
1164 	for (i = 0; i < insn_cnt; i++, insn++) {
1165 		/* We temporarily need to hold the original ld64 insn
1166 		 * so that we can still access the first part in the
1167 		 * second blinding run.
1168 		 */
1169 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1170 		    insn[1].code == 0)
1171 			memcpy(aux, insn, sizeof(aux));
1172 
1173 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1174 						clone->aux->verifier_zext);
1175 		if (!rewritten)
1176 			continue;
1177 
1178 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1179 		if (IS_ERR(tmp)) {
1180 			/* Patching may have repointed aux->prog during
1181 			 * realloc from the original one, so we need to
1182 			 * fix it up here on error.
1183 			 */
1184 			bpf_jit_prog_release_other(prog, clone);
1185 			return tmp;
1186 		}
1187 
1188 		clone = tmp;
1189 		insn_delta = rewritten - 1;
1190 
1191 		/* Walk new program and skip insns we just inserted. */
1192 		insn = clone->insnsi + i + insn_delta;
1193 		insn_cnt += insn_delta;
1194 		i        += insn_delta;
1195 	}
1196 
1197 	clone->blinded = 1;
1198 	return clone;
1199 }
1200 #endif /* CONFIG_BPF_JIT */
1201 
1202 /* Base function for offset calculation. Needs to go into .text section,
1203  * therefore keeping it non-static as well; will also be used by JITs
1204  * anyway later on, so do not let the compiler omit it. This also needs
1205  * to go into kallsyms for correlation from e.g. bpftool, so naming
1206  * must not change.
1207  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1208 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1209 {
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(__bpf_call_base);
1213 
1214 /* All UAPI available opcodes. */
1215 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1216 	/* 32 bit ALU operations. */		\
1217 	/*   Register based. */			\
1218 	INSN_3(ALU, ADD,  X),			\
1219 	INSN_3(ALU, SUB,  X),			\
1220 	INSN_3(ALU, AND,  X),			\
1221 	INSN_3(ALU, OR,   X),			\
1222 	INSN_3(ALU, LSH,  X),			\
1223 	INSN_3(ALU, RSH,  X),			\
1224 	INSN_3(ALU, XOR,  X),			\
1225 	INSN_3(ALU, MUL,  X),			\
1226 	INSN_3(ALU, MOV,  X),			\
1227 	INSN_3(ALU, ARSH, X),			\
1228 	INSN_3(ALU, DIV,  X),			\
1229 	INSN_3(ALU, MOD,  X),			\
1230 	INSN_2(ALU, NEG),			\
1231 	INSN_3(ALU, END, TO_BE),		\
1232 	INSN_3(ALU, END, TO_LE),		\
1233 	/*   Immediate based. */		\
1234 	INSN_3(ALU, ADD,  K),			\
1235 	INSN_3(ALU, SUB,  K),			\
1236 	INSN_3(ALU, AND,  K),			\
1237 	INSN_3(ALU, OR,   K),			\
1238 	INSN_3(ALU, LSH,  K),			\
1239 	INSN_3(ALU, RSH,  K),			\
1240 	INSN_3(ALU, XOR,  K),			\
1241 	INSN_3(ALU, MUL,  K),			\
1242 	INSN_3(ALU, MOV,  K),			\
1243 	INSN_3(ALU, ARSH, K),			\
1244 	INSN_3(ALU, DIV,  K),			\
1245 	INSN_3(ALU, MOD,  K),			\
1246 	/* 64 bit ALU operations. */		\
1247 	/*   Register based. */			\
1248 	INSN_3(ALU64, ADD,  X),			\
1249 	INSN_3(ALU64, SUB,  X),			\
1250 	INSN_3(ALU64, AND,  X),			\
1251 	INSN_3(ALU64, OR,   X),			\
1252 	INSN_3(ALU64, LSH,  X),			\
1253 	INSN_3(ALU64, RSH,  X),			\
1254 	INSN_3(ALU64, XOR,  X),			\
1255 	INSN_3(ALU64, MUL,  X),			\
1256 	INSN_3(ALU64, MOV,  X),			\
1257 	INSN_3(ALU64, ARSH, X),			\
1258 	INSN_3(ALU64, DIV,  X),			\
1259 	INSN_3(ALU64, MOD,  X),			\
1260 	INSN_2(ALU64, NEG),			\
1261 	/*   Immediate based. */		\
1262 	INSN_3(ALU64, ADD,  K),			\
1263 	INSN_3(ALU64, SUB,  K),			\
1264 	INSN_3(ALU64, AND,  K),			\
1265 	INSN_3(ALU64, OR,   K),			\
1266 	INSN_3(ALU64, LSH,  K),			\
1267 	INSN_3(ALU64, RSH,  K),			\
1268 	INSN_3(ALU64, XOR,  K),			\
1269 	INSN_3(ALU64, MUL,  K),			\
1270 	INSN_3(ALU64, MOV,  K),			\
1271 	INSN_3(ALU64, ARSH, K),			\
1272 	INSN_3(ALU64, DIV,  K),			\
1273 	INSN_3(ALU64, MOD,  K),			\
1274 	/* Call instruction. */			\
1275 	INSN_2(JMP, CALL),			\
1276 	/* Exit instruction. */			\
1277 	INSN_2(JMP, EXIT),			\
1278 	/* 32-bit Jump instructions. */		\
1279 	/*   Register based. */			\
1280 	INSN_3(JMP32, JEQ,  X),			\
1281 	INSN_3(JMP32, JNE,  X),			\
1282 	INSN_3(JMP32, JGT,  X),			\
1283 	INSN_3(JMP32, JLT,  X),			\
1284 	INSN_3(JMP32, JGE,  X),			\
1285 	INSN_3(JMP32, JLE,  X),			\
1286 	INSN_3(JMP32, JSGT, X),			\
1287 	INSN_3(JMP32, JSLT, X),			\
1288 	INSN_3(JMP32, JSGE, X),			\
1289 	INSN_3(JMP32, JSLE, X),			\
1290 	INSN_3(JMP32, JSET, X),			\
1291 	/*   Immediate based. */		\
1292 	INSN_3(JMP32, JEQ,  K),			\
1293 	INSN_3(JMP32, JNE,  K),			\
1294 	INSN_3(JMP32, JGT,  K),			\
1295 	INSN_3(JMP32, JLT,  K),			\
1296 	INSN_3(JMP32, JGE,  K),			\
1297 	INSN_3(JMP32, JLE,  K),			\
1298 	INSN_3(JMP32, JSGT, K),			\
1299 	INSN_3(JMP32, JSLT, K),			\
1300 	INSN_3(JMP32, JSGE, K),			\
1301 	INSN_3(JMP32, JSLE, K),			\
1302 	INSN_3(JMP32, JSET, K),			\
1303 	/* Jump instructions. */		\
1304 	/*   Register based. */			\
1305 	INSN_3(JMP, JEQ,  X),			\
1306 	INSN_3(JMP, JNE,  X),			\
1307 	INSN_3(JMP, JGT,  X),			\
1308 	INSN_3(JMP, JLT,  X),			\
1309 	INSN_3(JMP, JGE,  X),			\
1310 	INSN_3(JMP, JLE,  X),			\
1311 	INSN_3(JMP, JSGT, X),			\
1312 	INSN_3(JMP, JSLT, X),			\
1313 	INSN_3(JMP, JSGE, X),			\
1314 	INSN_3(JMP, JSLE, X),			\
1315 	INSN_3(JMP, JSET, X),			\
1316 	/*   Immediate based. */		\
1317 	INSN_3(JMP, JEQ,  K),			\
1318 	INSN_3(JMP, JNE,  K),			\
1319 	INSN_3(JMP, JGT,  K),			\
1320 	INSN_3(JMP, JLT,  K),			\
1321 	INSN_3(JMP, JGE,  K),			\
1322 	INSN_3(JMP, JLE,  K),			\
1323 	INSN_3(JMP, JSGT, K),			\
1324 	INSN_3(JMP, JSLT, K),			\
1325 	INSN_3(JMP, JSGE, K),			\
1326 	INSN_3(JMP, JSLE, K),			\
1327 	INSN_3(JMP, JSET, K),			\
1328 	INSN_2(JMP, JA),			\
1329 	/* Store instructions. */		\
1330 	/*   Register based. */			\
1331 	INSN_3(STX, MEM,  B),			\
1332 	INSN_3(STX, MEM,  H),			\
1333 	INSN_3(STX, MEM,  W),			\
1334 	INSN_3(STX, MEM,  DW),			\
1335 	INSN_3(STX, XADD, W),			\
1336 	INSN_3(STX, XADD, DW),			\
1337 	/*   Immediate based. */		\
1338 	INSN_3(ST, MEM, B),			\
1339 	INSN_3(ST, MEM, H),			\
1340 	INSN_3(ST, MEM, W),			\
1341 	INSN_3(ST, MEM, DW),			\
1342 	/* Load instructions. */		\
1343 	/*   Register based. */			\
1344 	INSN_3(LDX, MEM, B),			\
1345 	INSN_3(LDX, MEM, H),			\
1346 	INSN_3(LDX, MEM, W),			\
1347 	INSN_3(LDX, MEM, DW),			\
1348 	/*   Immediate based. */		\
1349 	INSN_3(LD, IMM, DW)
1350 
bpf_opcode_in_insntable(u8 code)1351 bool bpf_opcode_in_insntable(u8 code)
1352 {
1353 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1354 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1355 	static const bool public_insntable[256] = {
1356 		[0 ... 255] = false,
1357 		/* Now overwrite non-defaults ... */
1358 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1359 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1360 		[BPF_LD | BPF_ABS | BPF_B] = true,
1361 		[BPF_LD | BPF_ABS | BPF_H] = true,
1362 		[BPF_LD | BPF_ABS | BPF_W] = true,
1363 		[BPF_LD | BPF_IND | BPF_B] = true,
1364 		[BPF_LD | BPF_IND | BPF_H] = true,
1365 		[BPF_LD | BPF_IND | BPF_W] = true,
1366 	};
1367 #undef BPF_INSN_3_TBL
1368 #undef BPF_INSN_2_TBL
1369 	return public_insntable[code];
1370 }
1371 
1372 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1373 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1374 {
1375 	memset(dst, 0, size);
1376 	return -EFAULT;
1377 }
1378 
1379 /**
1380  *	__bpf_prog_run - run eBPF program on a given context
1381  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1382  *	@insn: is the array of eBPF instructions
1383  *	@stack: is the eBPF storage stack
1384  *
1385  * Decode and execute eBPF instructions.
1386  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1387 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1388 {
1389 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1390 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1391 	static const void * const jumptable[256] __annotate_jump_table = {
1392 		[0 ... 255] = &&default_label,
1393 		/* Now overwrite non-defaults ... */
1394 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1395 		/* Non-UAPI available opcodes. */
1396 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1397 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1398 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1399 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1400 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1401 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1402 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1403 	};
1404 #undef BPF_INSN_3_LBL
1405 #undef BPF_INSN_2_LBL
1406 	u32 tail_call_cnt = 0;
1407 
1408 #define CONT	 ({ insn++; goto select_insn; })
1409 #define CONT_JMP ({ insn++; goto select_insn; })
1410 
1411 select_insn:
1412 	goto *jumptable[insn->code];
1413 
1414 	/* Explicitly mask the register-based shift amounts with 63 or 31
1415 	 * to avoid undefined behavior. Normally this won't affect the
1416 	 * generated code, for example, in case of native 64 bit archs such
1417 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1418 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1419 	 * the BPF shift operations to machine instructions which produce
1420 	 * implementation-defined results in such a case; the resulting
1421 	 * contents of the register may be arbitrary, but program behaviour
1422 	 * as a whole remains defined. In other words, in case of JIT backends,
1423 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1424 	 */
1425 	/* ALU (shifts) */
1426 #define SHT(OPCODE, OP)					\
1427 	ALU64_##OPCODE##_X:				\
1428 		DST = DST OP (SRC & 63);		\
1429 		CONT;					\
1430 	ALU_##OPCODE##_X:				\
1431 		DST = (u32) DST OP ((u32) SRC & 31);	\
1432 		CONT;					\
1433 	ALU64_##OPCODE##_K:				\
1434 		DST = DST OP IMM;			\
1435 		CONT;					\
1436 	ALU_##OPCODE##_K:				\
1437 		DST = (u32) DST OP (u32) IMM;		\
1438 		CONT;
1439 	/* ALU (rest) */
1440 #define ALU(OPCODE, OP)					\
1441 	ALU64_##OPCODE##_X:				\
1442 		DST = DST OP SRC;			\
1443 		CONT;					\
1444 	ALU_##OPCODE##_X:				\
1445 		DST = (u32) DST OP (u32) SRC;		\
1446 		CONT;					\
1447 	ALU64_##OPCODE##_K:				\
1448 		DST = DST OP IMM;			\
1449 		CONT;					\
1450 	ALU_##OPCODE##_K:				\
1451 		DST = (u32) DST OP (u32) IMM;		\
1452 		CONT;
1453 	ALU(ADD,  +)
1454 	ALU(SUB,  -)
1455 	ALU(AND,  &)
1456 	ALU(OR,   |)
1457 	ALU(XOR,  ^)
1458 	ALU(MUL,  *)
1459 	SHT(LSH, <<)
1460 	SHT(RSH, >>)
1461 #undef SHT
1462 #undef ALU
1463 	ALU_NEG:
1464 		DST = (u32) -DST;
1465 		CONT;
1466 	ALU64_NEG:
1467 		DST = -DST;
1468 		CONT;
1469 	ALU_MOV_X:
1470 		DST = (u32) SRC;
1471 		CONT;
1472 	ALU_MOV_K:
1473 		DST = (u32) IMM;
1474 		CONT;
1475 	ALU64_MOV_X:
1476 		DST = SRC;
1477 		CONT;
1478 	ALU64_MOV_K:
1479 		DST = IMM;
1480 		CONT;
1481 	LD_IMM_DW:
1482 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1483 		insn++;
1484 		CONT;
1485 	ALU_ARSH_X:
1486 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1487 		CONT;
1488 	ALU_ARSH_K:
1489 		DST = (u64) (u32) (((s32) DST) >> IMM);
1490 		CONT;
1491 	ALU64_ARSH_X:
1492 		(*(s64 *) &DST) >>= (SRC & 63);
1493 		CONT;
1494 	ALU64_ARSH_K:
1495 		(*(s64 *) &DST) >>= IMM;
1496 		CONT;
1497 	ALU64_MOD_X:
1498 		div64_u64_rem(DST, SRC, &AX);
1499 		DST = AX;
1500 		CONT;
1501 	ALU_MOD_X:
1502 		AX = (u32) DST;
1503 		DST = do_div(AX, (u32) SRC);
1504 		CONT;
1505 	ALU64_MOD_K:
1506 		div64_u64_rem(DST, IMM, &AX);
1507 		DST = AX;
1508 		CONT;
1509 	ALU_MOD_K:
1510 		AX = (u32) DST;
1511 		DST = do_div(AX, (u32) IMM);
1512 		CONT;
1513 	ALU64_DIV_X:
1514 		DST = div64_u64(DST, SRC);
1515 		CONT;
1516 	ALU_DIV_X:
1517 		AX = (u32) DST;
1518 		do_div(AX, (u32) SRC);
1519 		DST = (u32) AX;
1520 		CONT;
1521 	ALU64_DIV_K:
1522 		DST = div64_u64(DST, IMM);
1523 		CONT;
1524 	ALU_DIV_K:
1525 		AX = (u32) DST;
1526 		do_div(AX, (u32) IMM);
1527 		DST = (u32) AX;
1528 		CONT;
1529 	ALU_END_TO_BE:
1530 		switch (IMM) {
1531 		case 16:
1532 			DST = (__force u16) cpu_to_be16(DST);
1533 			break;
1534 		case 32:
1535 			DST = (__force u32) cpu_to_be32(DST);
1536 			break;
1537 		case 64:
1538 			DST = (__force u64) cpu_to_be64(DST);
1539 			break;
1540 		}
1541 		CONT;
1542 	ALU_END_TO_LE:
1543 		switch (IMM) {
1544 		case 16:
1545 			DST = (__force u16) cpu_to_le16(DST);
1546 			break;
1547 		case 32:
1548 			DST = (__force u32) cpu_to_le32(DST);
1549 			break;
1550 		case 64:
1551 			DST = (__force u64) cpu_to_le64(DST);
1552 			break;
1553 		}
1554 		CONT;
1555 
1556 	/* CALL */
1557 	JMP_CALL:
1558 		/* Function call scratches BPF_R1-BPF_R5 registers,
1559 		 * preserves BPF_R6-BPF_R9, and stores return value
1560 		 * into BPF_R0.
1561 		 */
1562 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1563 						       BPF_R4, BPF_R5);
1564 		CONT;
1565 
1566 	JMP_CALL_ARGS:
1567 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1568 							    BPF_R3, BPF_R4,
1569 							    BPF_R5,
1570 							    insn + insn->off + 1);
1571 		CONT;
1572 
1573 	JMP_TAIL_CALL: {
1574 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1575 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1576 		struct bpf_prog *prog;
1577 		u32 index = BPF_R3;
1578 
1579 		if (unlikely(index >= array->map.max_entries))
1580 			goto out;
1581 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1582 			goto out;
1583 
1584 		tail_call_cnt++;
1585 
1586 		prog = READ_ONCE(array->ptrs[index]);
1587 		if (!prog)
1588 			goto out;
1589 
1590 		/* ARG1 at this point is guaranteed to point to CTX from
1591 		 * the verifier side due to the fact that the tail call is
1592 		 * handled like a helper, that is, bpf_tail_call_proto,
1593 		 * where arg1_type is ARG_PTR_TO_CTX.
1594 		 */
1595 		insn = prog->insnsi;
1596 		goto select_insn;
1597 out:
1598 		CONT;
1599 	}
1600 	JMP_JA:
1601 		insn += insn->off;
1602 		CONT;
1603 	JMP_EXIT:
1604 		return BPF_R0;
1605 	/* JMP */
1606 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1607 	JMP_##OPCODE##_X:					\
1608 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1609 			insn += insn->off;			\
1610 			CONT_JMP;				\
1611 		}						\
1612 		CONT;						\
1613 	JMP32_##OPCODE##_X:					\
1614 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1615 			insn += insn->off;			\
1616 			CONT_JMP;				\
1617 		}						\
1618 		CONT;						\
1619 	JMP_##OPCODE##_K:					\
1620 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1621 			insn += insn->off;			\
1622 			CONT_JMP;				\
1623 		}						\
1624 		CONT;						\
1625 	JMP32_##OPCODE##_K:					\
1626 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1627 			insn += insn->off;			\
1628 			CONT_JMP;				\
1629 		}						\
1630 		CONT;
1631 	COND_JMP(u, JEQ, ==)
1632 	COND_JMP(u, JNE, !=)
1633 	COND_JMP(u, JGT, >)
1634 	COND_JMP(u, JLT, <)
1635 	COND_JMP(u, JGE, >=)
1636 	COND_JMP(u, JLE, <=)
1637 	COND_JMP(u, JSET, &)
1638 	COND_JMP(s, JSGT, >)
1639 	COND_JMP(s, JSLT, <)
1640 	COND_JMP(s, JSGE, >=)
1641 	COND_JMP(s, JSLE, <=)
1642 #undef COND_JMP
1643 	/* ST, STX and LDX*/
1644 	ST_NOSPEC:
1645 		/* Speculation barrier for mitigating Speculative Store Bypass.
1646 		 * In case of arm64, we rely on the firmware mitigation as
1647 		 * controlled via the ssbd kernel parameter. Whenever the
1648 		 * mitigation is enabled, it works for all of the kernel code
1649 		 * with no need to provide any additional instructions here.
1650 		 * In case of x86, we use 'lfence' insn for mitigation. We
1651 		 * reuse preexisting logic from Spectre v1 mitigation that
1652 		 * happens to produce the required code on x86 for v4 as well.
1653 		 */
1654 		barrier_nospec();
1655 		CONT;
1656 #define LDST(SIZEOP, SIZE)						\
1657 	STX_MEM_##SIZEOP:						\
1658 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1659 		CONT;							\
1660 	ST_MEM_##SIZEOP:						\
1661 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1662 		CONT;							\
1663 	LDX_MEM_##SIZEOP:						\
1664 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1665 		CONT;							\
1666 	LDX_PROBE_MEM_##SIZEOP:						\
1667 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1668 				      (const void *)(long) (SRC + insn->off));	\
1669 		DST = *((SIZE *)&DST);					\
1670 		CONT;
1671 
1672 	LDST(B,   u8)
1673 	LDST(H,  u16)
1674 	LDST(W,  u32)
1675 	LDST(DW, u64)
1676 #undef LDST
1677 
1678 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1679 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1680 			   (DST + insn->off));
1681 		CONT;
1682 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1683 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1684 			     (DST + insn->off));
1685 		CONT;
1686 
1687 	default_label:
1688 		/* If we ever reach this, we have a bug somewhere. Die hard here
1689 		 * instead of just returning 0; we could be somewhere in a subprog,
1690 		 * so execution could continue otherwise which we do /not/ want.
1691 		 *
1692 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1693 		 */
1694 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1695 		BUG_ON(1);
1696 		return 0;
1697 }
1698 
1699 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1700 #define DEFINE_BPF_PROG_RUN(stack_size) \
1701 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1702 { \
1703 	u64 stack[stack_size / sizeof(u64)]; \
1704 	u64 regs[MAX_BPF_EXT_REG]; \
1705 \
1706 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1707 	ARG1 = (u64) (unsigned long) ctx; \
1708 	return ___bpf_prog_run(regs, insn, stack); \
1709 }
1710 
1711 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1712 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1713 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1714 				      const struct bpf_insn *insn) \
1715 { \
1716 	u64 stack[stack_size / sizeof(u64)]; \
1717 	u64 regs[MAX_BPF_EXT_REG]; \
1718 \
1719 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1720 	BPF_R1 = r1; \
1721 	BPF_R2 = r2; \
1722 	BPF_R3 = r3; \
1723 	BPF_R4 = r4; \
1724 	BPF_R5 = r5; \
1725 	return ___bpf_prog_run(regs, insn, stack); \
1726 }
1727 
1728 #define EVAL1(FN, X) FN(X)
1729 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1730 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1731 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1732 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1733 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1734 
1735 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1736 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1737 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1738 
1739 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1740 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1741 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1742 
1743 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1744 
1745 static unsigned int (*interpreters[])(const void *ctx,
1746 				      const struct bpf_insn *insn) = {
1747 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1748 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1749 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1750 };
1751 #undef PROG_NAME_LIST
1752 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1753 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1754 				  const struct bpf_insn *insn) = {
1755 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1756 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1757 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1758 };
1759 #undef PROG_NAME_LIST
1760 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1761 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1762 {
1763 	stack_depth = max_t(u32, stack_depth, 1);
1764 	insn->off = (s16) insn->imm;
1765 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1766 		__bpf_call_base_args;
1767 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1768 }
1769 
1770 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1771 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1772 					 const struct bpf_insn *insn)
1773 {
1774 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1775 	 * is not working properly, so warn about it!
1776 	 */
1777 	WARN_ON_ONCE(1);
1778 	return 0;
1779 }
1780 #endif
1781 
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1782 bool bpf_prog_array_compatible(struct bpf_array *array,
1783 			       const struct bpf_prog *fp)
1784 {
1785 	bool ret;
1786 
1787 	if (fp->kprobe_override)
1788 		return false;
1789 
1790 	spin_lock(&array->aux->owner.lock);
1791 
1792 	if (!array->aux->owner.type) {
1793 		/* There's no owner yet where we could check for
1794 		 * compatibility.
1795 		 */
1796 		array->aux->owner.type  = fp->type;
1797 		array->aux->owner.jited = fp->jited;
1798 		ret = true;
1799 	} else {
1800 		ret = array->aux->owner.type  == fp->type &&
1801 		      array->aux->owner.jited == fp->jited;
1802 	}
1803 	spin_unlock(&array->aux->owner.lock);
1804 	return ret;
1805 }
1806 
bpf_check_tail_call(const struct bpf_prog * fp)1807 static int bpf_check_tail_call(const struct bpf_prog *fp)
1808 {
1809 	struct bpf_prog_aux *aux = fp->aux;
1810 	int i, ret = 0;
1811 
1812 	mutex_lock(&aux->used_maps_mutex);
1813 	for (i = 0; i < aux->used_map_cnt; i++) {
1814 		struct bpf_map *map = aux->used_maps[i];
1815 		struct bpf_array *array;
1816 
1817 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1818 			continue;
1819 
1820 		array = container_of(map, struct bpf_array, map);
1821 		if (!bpf_prog_array_compatible(array, fp)) {
1822 			ret = -EINVAL;
1823 			goto out;
1824 		}
1825 	}
1826 
1827 out:
1828 	mutex_unlock(&aux->used_maps_mutex);
1829 	return ret;
1830 }
1831 
bpf_prog_select_func(struct bpf_prog * fp)1832 static void bpf_prog_select_func(struct bpf_prog *fp)
1833 {
1834 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1835 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1836 
1837 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1838 #else
1839 	fp->bpf_func = __bpf_prog_ret0_warn;
1840 #endif
1841 }
1842 
1843 /**
1844  *	bpf_prog_select_runtime - select exec runtime for BPF program
1845  *	@fp: bpf_prog populated with internal BPF program
1846  *	@err: pointer to error variable
1847  *
1848  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1849  * The BPF program will be executed via BPF_PROG_RUN() macro.
1850  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1851 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1852 {
1853 	/* In case of BPF to BPF calls, verifier did all the prep
1854 	 * work with regards to JITing, etc.
1855 	 */
1856 	if (fp->bpf_func)
1857 		goto finalize;
1858 
1859 	bpf_prog_select_func(fp);
1860 
1861 	/* eBPF JITs can rewrite the program in case constant
1862 	 * blinding is active. However, in case of error during
1863 	 * blinding, bpf_int_jit_compile() must always return a
1864 	 * valid program, which in this case would simply not
1865 	 * be JITed, but falls back to the interpreter.
1866 	 */
1867 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1868 		*err = bpf_prog_alloc_jited_linfo(fp);
1869 		if (*err)
1870 			return fp;
1871 
1872 		fp = bpf_int_jit_compile(fp);
1873 		if (!fp->jited) {
1874 			bpf_prog_free_jited_linfo(fp);
1875 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1876 			*err = -ENOTSUPP;
1877 			return fp;
1878 #endif
1879 		} else {
1880 			bpf_prog_free_unused_jited_linfo(fp);
1881 		}
1882 	} else {
1883 		*err = bpf_prog_offload_compile(fp);
1884 		if (*err)
1885 			return fp;
1886 	}
1887 
1888 finalize:
1889 	bpf_prog_lock_ro(fp);
1890 
1891 	/* The tail call compatibility check can only be done at
1892 	 * this late stage as we need to determine, if we deal
1893 	 * with JITed or non JITed program concatenations and not
1894 	 * all eBPF JITs might immediately support all features.
1895 	 */
1896 	*err = bpf_check_tail_call(fp);
1897 
1898 	return fp;
1899 }
1900 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1901 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1902 static unsigned int __bpf_prog_ret1(const void *ctx,
1903 				    const struct bpf_insn *insn)
1904 {
1905 	return 1;
1906 }
1907 
1908 static struct bpf_prog_dummy {
1909 	struct bpf_prog prog;
1910 } dummy_bpf_prog = {
1911 	.prog = {
1912 		.bpf_func = __bpf_prog_ret1,
1913 	},
1914 };
1915 
1916 /* to avoid allocating empty bpf_prog_array for cgroups that
1917  * don't have bpf program attached use one global 'empty_prog_array'
1918  * It will not be modified the caller of bpf_prog_array_alloc()
1919  * (since caller requested prog_cnt == 0)
1920  * that pointer should be 'freed' by bpf_prog_array_free()
1921  */
1922 static struct {
1923 	struct bpf_prog_array hdr;
1924 	struct bpf_prog *null_prog;
1925 } empty_prog_array = {
1926 	.null_prog = NULL,
1927 };
1928 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1929 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1930 {
1931 	if (prog_cnt)
1932 		return kzalloc(sizeof(struct bpf_prog_array) +
1933 			       sizeof(struct bpf_prog_array_item) *
1934 			       (prog_cnt + 1),
1935 			       flags);
1936 
1937 	return &empty_prog_array.hdr;
1938 }
1939 
bpf_prog_array_free(struct bpf_prog_array * progs)1940 void bpf_prog_array_free(struct bpf_prog_array *progs)
1941 {
1942 	if (!progs || progs == &empty_prog_array.hdr)
1943 		return;
1944 	kfree_rcu(progs, rcu);
1945 }
1946 
bpf_prog_array_length(struct bpf_prog_array * array)1947 int bpf_prog_array_length(struct bpf_prog_array *array)
1948 {
1949 	struct bpf_prog_array_item *item;
1950 	u32 cnt = 0;
1951 
1952 	for (item = array->items; item->prog; item++)
1953 		if (item->prog != &dummy_bpf_prog.prog)
1954 			cnt++;
1955 	return cnt;
1956 }
1957 
bpf_prog_array_is_empty(struct bpf_prog_array * array)1958 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1959 {
1960 	struct bpf_prog_array_item *item;
1961 
1962 	for (item = array->items; item->prog; item++)
1963 		if (item->prog != &dummy_bpf_prog.prog)
1964 			return false;
1965 	return true;
1966 }
1967 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1968 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1969 				     u32 *prog_ids,
1970 				     u32 request_cnt)
1971 {
1972 	struct bpf_prog_array_item *item;
1973 	int i = 0;
1974 
1975 	for (item = array->items; item->prog; item++) {
1976 		if (item->prog == &dummy_bpf_prog.prog)
1977 			continue;
1978 		prog_ids[i] = item->prog->aux->id;
1979 		if (++i == request_cnt) {
1980 			item++;
1981 			break;
1982 		}
1983 	}
1984 
1985 	return !!(item->prog);
1986 }
1987 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1988 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1989 				__u32 __user *prog_ids, u32 cnt)
1990 {
1991 	unsigned long err = 0;
1992 	bool nospc;
1993 	u32 *ids;
1994 
1995 	/* users of this function are doing:
1996 	 * cnt = bpf_prog_array_length();
1997 	 * if (cnt > 0)
1998 	 *     bpf_prog_array_copy_to_user(..., cnt);
1999 	 * so below kcalloc doesn't need extra cnt > 0 check.
2000 	 */
2001 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2002 	if (!ids)
2003 		return -ENOMEM;
2004 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2005 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2006 	kfree(ids);
2007 	if (err)
2008 		return -EFAULT;
2009 	if (nospc)
2010 		return -ENOSPC;
2011 	return 0;
2012 }
2013 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2014 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2015 				struct bpf_prog *old_prog)
2016 {
2017 	struct bpf_prog_array_item *item;
2018 
2019 	for (item = array->items; item->prog; item++)
2020 		if (item->prog == old_prog) {
2021 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2022 			break;
2023 		}
2024 }
2025 
2026 /**
2027  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2028  *                                   index into the program array with
2029  *                                   a dummy no-op program.
2030  * @array: a bpf_prog_array
2031  * @index: the index of the program to replace
2032  *
2033  * Skips over dummy programs, by not counting them, when calculating
2034  * the position of the program to replace.
2035  *
2036  * Return:
2037  * * 0		- Success
2038  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2039  * * -ENOENT	- Index out of range
2040  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2041 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2042 {
2043 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2044 }
2045 
2046 /**
2047  * bpf_prog_array_update_at() - Updates the program at the given index
2048  *                              into the program array.
2049  * @array: a bpf_prog_array
2050  * @index: the index of the program to update
2051  * @prog: the program to insert into the array
2052  *
2053  * Skips over dummy programs, by not counting them, when calculating
2054  * the position of the program to update.
2055  *
2056  * Return:
2057  * * 0		- Success
2058  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2059  * * -ENOENT	- Index out of range
2060  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2061 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2062 			     struct bpf_prog *prog)
2063 {
2064 	struct bpf_prog_array_item *item;
2065 
2066 	if (unlikely(index < 0))
2067 		return -EINVAL;
2068 
2069 	for (item = array->items; item->prog; item++) {
2070 		if (item->prog == &dummy_bpf_prog.prog)
2071 			continue;
2072 		if (!index) {
2073 			WRITE_ONCE(item->prog, prog);
2074 			return 0;
2075 		}
2076 		index--;
2077 	}
2078 	return -ENOENT;
2079 }
2080 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2081 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2082 			struct bpf_prog *exclude_prog,
2083 			struct bpf_prog *include_prog,
2084 			struct bpf_prog_array **new_array)
2085 {
2086 	int new_prog_cnt, carry_prog_cnt = 0;
2087 	struct bpf_prog_array_item *existing;
2088 	struct bpf_prog_array *array;
2089 	bool found_exclude = false;
2090 	int new_prog_idx = 0;
2091 
2092 	/* Figure out how many existing progs we need to carry over to
2093 	 * the new array.
2094 	 */
2095 	if (old_array) {
2096 		existing = old_array->items;
2097 		for (; existing->prog; existing++) {
2098 			if (existing->prog == exclude_prog) {
2099 				found_exclude = true;
2100 				continue;
2101 			}
2102 			if (existing->prog != &dummy_bpf_prog.prog)
2103 				carry_prog_cnt++;
2104 			if (existing->prog == include_prog)
2105 				return -EEXIST;
2106 		}
2107 	}
2108 
2109 	if (exclude_prog && !found_exclude)
2110 		return -ENOENT;
2111 
2112 	/* How many progs (not NULL) will be in the new array? */
2113 	new_prog_cnt = carry_prog_cnt;
2114 	if (include_prog)
2115 		new_prog_cnt += 1;
2116 
2117 	/* Do we have any prog (not NULL) in the new array? */
2118 	if (!new_prog_cnt) {
2119 		*new_array = NULL;
2120 		return 0;
2121 	}
2122 
2123 	/* +1 as the end of prog_array is marked with NULL */
2124 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2125 	if (!array)
2126 		return -ENOMEM;
2127 
2128 	/* Fill in the new prog array */
2129 	if (carry_prog_cnt) {
2130 		existing = old_array->items;
2131 		for (; existing->prog; existing++)
2132 			if (existing->prog != exclude_prog &&
2133 			    existing->prog != &dummy_bpf_prog.prog) {
2134 				array->items[new_prog_idx++].prog =
2135 					existing->prog;
2136 			}
2137 	}
2138 	if (include_prog)
2139 		array->items[new_prog_idx++].prog = include_prog;
2140 	array->items[new_prog_idx].prog = NULL;
2141 	*new_array = array;
2142 	return 0;
2143 }
2144 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2145 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2146 			     u32 *prog_ids, u32 request_cnt,
2147 			     u32 *prog_cnt)
2148 {
2149 	u32 cnt = 0;
2150 
2151 	if (array)
2152 		cnt = bpf_prog_array_length(array);
2153 
2154 	*prog_cnt = cnt;
2155 
2156 	/* return early if user requested only program count or nothing to copy */
2157 	if (!request_cnt || !cnt)
2158 		return 0;
2159 
2160 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2161 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2162 								     : 0;
2163 }
2164 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2165 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2166 			  struct bpf_map **used_maps, u32 len)
2167 {
2168 	struct bpf_map *map;
2169 	u32 i;
2170 
2171 	for (i = 0; i < len; i++) {
2172 		map = used_maps[i];
2173 		if (map->ops->map_poke_untrack)
2174 			map->ops->map_poke_untrack(map, aux);
2175 		bpf_map_put(map);
2176 	}
2177 }
2178 
bpf_free_used_maps(struct bpf_prog_aux * aux)2179 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2180 {
2181 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2182 	kfree(aux->used_maps);
2183 }
2184 
bpf_prog_free_deferred(struct work_struct * work)2185 static void bpf_prog_free_deferred(struct work_struct *work)
2186 {
2187 	struct bpf_prog_aux *aux;
2188 	int i;
2189 
2190 	aux = container_of(work, struct bpf_prog_aux, work);
2191 	bpf_free_used_maps(aux);
2192 	if (bpf_prog_is_dev_bound(aux))
2193 		bpf_prog_offload_destroy(aux->prog);
2194 #ifdef CONFIG_PERF_EVENTS
2195 	if (aux->prog->has_callchain_buf)
2196 		put_callchain_buffers();
2197 #endif
2198 	if (aux->dst_trampoline)
2199 		bpf_trampoline_put(aux->dst_trampoline);
2200 	for (i = 0; i < aux->func_cnt; i++)
2201 		bpf_jit_free(aux->func[i]);
2202 	if (aux->func_cnt) {
2203 		kfree(aux->func);
2204 		bpf_prog_unlock_free(aux->prog);
2205 	} else {
2206 		bpf_jit_free(aux->prog);
2207 	}
2208 }
2209 
2210 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2211 void bpf_prog_free(struct bpf_prog *fp)
2212 {
2213 	struct bpf_prog_aux *aux = fp->aux;
2214 
2215 	if (aux->dst_prog)
2216 		bpf_prog_put(aux->dst_prog);
2217 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2218 	schedule_work(&aux->work);
2219 }
2220 EXPORT_SYMBOL_GPL(bpf_prog_free);
2221 
2222 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2223 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2224 
bpf_user_rnd_init_once(void)2225 void bpf_user_rnd_init_once(void)
2226 {
2227 	prandom_init_once(&bpf_user_rnd_state);
2228 }
2229 
BPF_CALL_0(bpf_user_rnd_u32)2230 BPF_CALL_0(bpf_user_rnd_u32)
2231 {
2232 	/* Should someone ever have the rather unwise idea to use some
2233 	 * of the registers passed into this function, then note that
2234 	 * this function is called from native eBPF and classic-to-eBPF
2235 	 * transformations. Register assignments from both sides are
2236 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2237 	 */
2238 	struct rnd_state *state;
2239 	u32 res;
2240 
2241 	state = &get_cpu_var(bpf_user_rnd_state);
2242 	res = prandom_u32_state(state);
2243 	put_cpu_var(bpf_user_rnd_state);
2244 
2245 	return res;
2246 }
2247 
BPF_CALL_0(bpf_get_raw_cpu_id)2248 BPF_CALL_0(bpf_get_raw_cpu_id)
2249 {
2250 	return raw_smp_processor_id();
2251 }
2252 
2253 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2254 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2255 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2257 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2258 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2259 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2260 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2261 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2262 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2263 
2264 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2265 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2266 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2267 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2268 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2269 
2270 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2271 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2272 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2273 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2274 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2275 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2276 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2277 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2278 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2279 
bpf_get_trace_printk_proto(void)2280 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2281 {
2282 	return NULL;
2283 }
2284 
2285 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2286 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2287 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2288 {
2289 	return -ENOTSUPP;
2290 }
2291 EXPORT_SYMBOL_GPL(bpf_event_output);
2292 
2293 /* Always built-in helper functions. */
2294 const struct bpf_func_proto bpf_tail_call_proto = {
2295 	.func		= NULL,
2296 	.gpl_only	= false,
2297 	.ret_type	= RET_VOID,
2298 	.arg1_type	= ARG_PTR_TO_CTX,
2299 	.arg2_type	= ARG_CONST_MAP_PTR,
2300 	.arg3_type	= ARG_ANYTHING,
2301 };
2302 
2303 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2304  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2305  * eBPF and implicitly also cBPF can get JITed!
2306  */
bpf_int_jit_compile(struct bpf_prog * prog)2307 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2308 {
2309 	return prog;
2310 }
2311 
2312 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2313  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2314  */
bpf_jit_compile(struct bpf_prog * prog)2315 void __weak bpf_jit_compile(struct bpf_prog *prog)
2316 {
2317 }
2318 
bpf_helper_changes_pkt_data(void * func)2319 bool __weak bpf_helper_changes_pkt_data(void *func)
2320 {
2321 	return false;
2322 }
2323 
2324 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2325  * analysis code and wants explicit zero extension inserted by verifier.
2326  * Otherwise, return FALSE.
2327  */
bpf_jit_needs_zext(void)2328 bool __weak bpf_jit_needs_zext(void)
2329 {
2330 	return false;
2331 }
2332 
2333 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2334  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2335  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2336 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2337 			 int len)
2338 {
2339 	return -EFAULT;
2340 }
2341 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2342 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2343 			      void *addr1, void *addr2)
2344 {
2345 	return -ENOTSUPP;
2346 }
2347 
2348 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2349 EXPORT_SYMBOL(bpf_stats_enabled_key);
2350 
2351 /* All definitions of tracepoints related to BPF. */
2352 #undef TRACE_INCLUDE_PATH
2353 #define CREATE_TRACE_POINTS
2354 #include <linux/bpf_trace.h>
2355 
2356 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2357 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2358