1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/btf_ids.h>
26 #include <net/sock.h>
27
28 /* BTF (BPF Type Format) is the meta data format which describes
29 * the data types of BPF program/map. Hence, it basically focus
30 * on the C programming language which the modern BPF is primary
31 * using.
32 *
33 * ELF Section:
34 * ~~~~~~~~~~~
35 * The BTF data is stored under the ".BTF" ELF section
36 *
37 * struct btf_type:
38 * ~~~~~~~~~~~~~~~
39 * Each 'struct btf_type' object describes a C data type.
40 * Depending on the type it is describing, a 'struct btf_type'
41 * object may be followed by more data. F.e.
42 * To describe an array, 'struct btf_type' is followed by
43 * 'struct btf_array'.
44 *
45 * 'struct btf_type' and any extra data following it are
46 * 4 bytes aligned.
47 *
48 * Type section:
49 * ~~~~~~~~~~~~~
50 * The BTF type section contains a list of 'struct btf_type' objects.
51 * Each one describes a C type. Recall from the above section
52 * that a 'struct btf_type' object could be immediately followed by extra
53 * data in order to desribe some particular C types.
54 *
55 * type_id:
56 * ~~~~~~~
57 * Each btf_type object is identified by a type_id. The type_id
58 * is implicitly implied by the location of the btf_type object in
59 * the BTF type section. The first one has type_id 1. The second
60 * one has type_id 2...etc. Hence, an earlier btf_type has
61 * a smaller type_id.
62 *
63 * A btf_type object may refer to another btf_type object by using
64 * type_id (i.e. the "type" in the "struct btf_type").
65 *
66 * NOTE that we cannot assume any reference-order.
67 * A btf_type object can refer to an earlier btf_type object
68 * but it can also refer to a later btf_type object.
69 *
70 * For example, to describe "const void *". A btf_type
71 * object describing "const" may refer to another btf_type
72 * object describing "void *". This type-reference is done
73 * by specifying type_id:
74 *
75 * [1] CONST (anon) type_id=2
76 * [2] PTR (anon) type_id=0
77 *
78 * The above is the btf_verifier debug log:
79 * - Each line started with "[?]" is a btf_type object
80 * - [?] is the type_id of the btf_type object.
81 * - CONST/PTR is the BTF_KIND_XXX
82 * - "(anon)" is the name of the type. It just
83 * happens that CONST and PTR has no name.
84 * - type_id=XXX is the 'u32 type' in btf_type
85 *
86 * NOTE: "void" has type_id 0
87 *
88 * String section:
89 * ~~~~~~~~~~~~~~
90 * The BTF string section contains the names used by the type section.
91 * Each string is referred by an "offset" from the beginning of the
92 * string section.
93 *
94 * Each string is '\0' terminated.
95 *
96 * The first character in the string section must be '\0'
97 * which is used to mean 'anonymous'. Some btf_type may not
98 * have a name.
99 */
100
101 /* BTF verification:
102 *
103 * To verify BTF data, two passes are needed.
104 *
105 * Pass #1
106 * ~~~~~~~
107 * The first pass is to collect all btf_type objects to
108 * an array: "btf->types".
109 *
110 * Depending on the C type that a btf_type is describing,
111 * a btf_type may be followed by extra data. We don't know
112 * how many btf_type is there, and more importantly we don't
113 * know where each btf_type is located in the type section.
114 *
115 * Without knowing the location of each type_id, most verifications
116 * cannot be done. e.g. an earlier btf_type may refer to a later
117 * btf_type (recall the "const void *" above), so we cannot
118 * check this type-reference in the first pass.
119 *
120 * In the first pass, it still does some verifications (e.g.
121 * checking the name is a valid offset to the string section).
122 *
123 * Pass #2
124 * ~~~~~~~
125 * The main focus is to resolve a btf_type that is referring
126 * to another type.
127 *
128 * We have to ensure the referring type:
129 * 1) does exist in the BTF (i.e. in btf->types[])
130 * 2) does not cause a loop:
131 * struct A {
132 * struct B b;
133 * };
134 *
135 * struct B {
136 * struct A a;
137 * };
138 *
139 * btf_type_needs_resolve() decides if a btf_type needs
140 * to be resolved.
141 *
142 * The needs_resolve type implements the "resolve()" ops which
143 * essentially does a DFS and detects backedge.
144 *
145 * During resolve (or DFS), different C types have different
146 * "RESOLVED" conditions.
147 *
148 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
149 * members because a member is always referring to another
150 * type. A struct's member can be treated as "RESOLVED" if
151 * it is referring to a BTF_KIND_PTR. Otherwise, the
152 * following valid C struct would be rejected:
153 *
154 * struct A {
155 * int m;
156 * struct A *a;
157 * };
158 *
159 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
160 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
161 * detect a pointer loop, e.g.:
162 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
163 * ^ |
164 * +-----------------------------------------+
165 *
166 */
167
168 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
169 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
170 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
171 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
172 #define BITS_ROUNDUP_BYTES(bits) \
173 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
174
175 #define BTF_INFO_MASK 0x8f00ffff
176 #define BTF_INT_MASK 0x0fffffff
177 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
178 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
179
180 /* 16MB for 64k structs and each has 16 members and
181 * a few MB spaces for the string section.
182 * The hard limit is S32_MAX.
183 */
184 #define BTF_MAX_SIZE (16 * 1024 * 1024)
185
186 #define for_each_member_from(i, from, struct_type, member) \
187 for (i = from, member = btf_type_member(struct_type) + from; \
188 i < btf_type_vlen(struct_type); \
189 i++, member++)
190
191 #define for_each_vsi_from(i, from, struct_type, member) \
192 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
193 i < btf_type_vlen(struct_type); \
194 i++, member++)
195
196 DEFINE_IDR(btf_idr);
197 DEFINE_SPINLOCK(btf_idr_lock);
198
199 struct btf {
200 void *data;
201 struct btf_type **types;
202 u32 *resolved_ids;
203 u32 *resolved_sizes;
204 const char *strings;
205 void *nohdr_data;
206 struct btf_header hdr;
207 u32 nr_types;
208 u32 types_size;
209 u32 data_size;
210 refcount_t refcnt;
211 u32 id;
212 struct rcu_head rcu;
213 };
214
215 enum verifier_phase {
216 CHECK_META,
217 CHECK_TYPE,
218 };
219
220 struct resolve_vertex {
221 const struct btf_type *t;
222 u32 type_id;
223 u16 next_member;
224 };
225
226 enum visit_state {
227 NOT_VISITED,
228 VISITED,
229 RESOLVED,
230 };
231
232 enum resolve_mode {
233 RESOLVE_TBD, /* To Be Determined */
234 RESOLVE_PTR, /* Resolving for Pointer */
235 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
236 * or array
237 */
238 };
239
240 #define MAX_RESOLVE_DEPTH 32
241
242 struct btf_sec_info {
243 u32 off;
244 u32 len;
245 };
246
247 struct btf_verifier_env {
248 struct btf *btf;
249 u8 *visit_states;
250 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
251 struct bpf_verifier_log log;
252 u32 log_type_id;
253 u32 top_stack;
254 enum verifier_phase phase;
255 enum resolve_mode resolve_mode;
256 };
257
258 static const char * const btf_kind_str[NR_BTF_KINDS] = {
259 [BTF_KIND_UNKN] = "UNKNOWN",
260 [BTF_KIND_INT] = "INT",
261 [BTF_KIND_PTR] = "PTR",
262 [BTF_KIND_ARRAY] = "ARRAY",
263 [BTF_KIND_STRUCT] = "STRUCT",
264 [BTF_KIND_UNION] = "UNION",
265 [BTF_KIND_ENUM] = "ENUM",
266 [BTF_KIND_FWD] = "FWD",
267 [BTF_KIND_TYPEDEF] = "TYPEDEF",
268 [BTF_KIND_VOLATILE] = "VOLATILE",
269 [BTF_KIND_CONST] = "CONST",
270 [BTF_KIND_RESTRICT] = "RESTRICT",
271 [BTF_KIND_FUNC] = "FUNC",
272 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
273 [BTF_KIND_VAR] = "VAR",
274 [BTF_KIND_DATASEC] = "DATASEC",
275 };
276
btf_type_str(const struct btf_type * t)277 static const char *btf_type_str(const struct btf_type *t)
278 {
279 return btf_kind_str[BTF_INFO_KIND(t->info)];
280 }
281
282 /* Chunk size we use in safe copy of data to be shown. */
283 #define BTF_SHOW_OBJ_SAFE_SIZE 32
284
285 /*
286 * This is the maximum size of a base type value (equivalent to a
287 * 128-bit int); if we are at the end of our safe buffer and have
288 * less than 16 bytes space we can't be assured of being able
289 * to copy the next type safely, so in such cases we will initiate
290 * a new copy.
291 */
292 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
293
294 /* Type name size */
295 #define BTF_SHOW_NAME_SIZE 80
296
297 /*
298 * Common data to all BTF show operations. Private show functions can add
299 * their own data to a structure containing a struct btf_show and consult it
300 * in the show callback. See btf_type_show() below.
301 *
302 * One challenge with showing nested data is we want to skip 0-valued
303 * data, but in order to figure out whether a nested object is all zeros
304 * we need to walk through it. As a result, we need to make two passes
305 * when handling structs, unions and arrays; the first path simply looks
306 * for nonzero data, while the second actually does the display. The first
307 * pass is signalled by show->state.depth_check being set, and if we
308 * encounter a non-zero value we set show->state.depth_to_show to
309 * the depth at which we encountered it. When we have completed the
310 * first pass, we will know if anything needs to be displayed if
311 * depth_to_show > depth. See btf_[struct,array]_show() for the
312 * implementation of this.
313 *
314 * Another problem is we want to ensure the data for display is safe to
315 * access. To support this, the anonymous "struct {} obj" tracks the data
316 * object and our safe copy of it. We copy portions of the data needed
317 * to the object "copy" buffer, but because its size is limited to
318 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
319 * traverse larger objects for display.
320 *
321 * The various data type show functions all start with a call to
322 * btf_show_start_type() which returns a pointer to the safe copy
323 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
324 * raw data itself). btf_show_obj_safe() is responsible for
325 * using copy_from_kernel_nofault() to update the safe data if necessary
326 * as we traverse the object's data. skbuff-like semantics are
327 * used:
328 *
329 * - obj.head points to the start of the toplevel object for display
330 * - obj.size is the size of the toplevel object
331 * - obj.data points to the current point in the original data at
332 * which our safe data starts. obj.data will advance as we copy
333 * portions of the data.
334 *
335 * In most cases a single copy will suffice, but larger data structures
336 * such as "struct task_struct" will require many copies. The logic in
337 * btf_show_obj_safe() handles the logic that determines if a new
338 * copy_from_kernel_nofault() is needed.
339 */
340 struct btf_show {
341 u64 flags;
342 void *target; /* target of show operation (seq file, buffer) */
343 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
344 const struct btf *btf;
345 /* below are used during iteration */
346 struct {
347 u8 depth;
348 u8 depth_to_show;
349 u8 depth_check;
350 u8 array_member:1,
351 array_terminated:1;
352 u16 array_encoding;
353 u32 type_id;
354 int status; /* non-zero for error */
355 const struct btf_type *type;
356 const struct btf_member *member;
357 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
358 } state;
359 struct {
360 u32 size;
361 void *head;
362 void *data;
363 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
364 } obj;
365 };
366
367 struct btf_kind_operations {
368 s32 (*check_meta)(struct btf_verifier_env *env,
369 const struct btf_type *t,
370 u32 meta_left);
371 int (*resolve)(struct btf_verifier_env *env,
372 const struct resolve_vertex *v);
373 int (*check_member)(struct btf_verifier_env *env,
374 const struct btf_type *struct_type,
375 const struct btf_member *member,
376 const struct btf_type *member_type);
377 int (*check_kflag_member)(struct btf_verifier_env *env,
378 const struct btf_type *struct_type,
379 const struct btf_member *member,
380 const struct btf_type *member_type);
381 void (*log_details)(struct btf_verifier_env *env,
382 const struct btf_type *t);
383 void (*show)(const struct btf *btf, const struct btf_type *t,
384 u32 type_id, void *data, u8 bits_offsets,
385 struct btf_show *show);
386 };
387
388 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
389 static struct btf_type btf_void;
390
391 static int btf_resolve(struct btf_verifier_env *env,
392 const struct btf_type *t, u32 type_id);
393
btf_type_is_modifier(const struct btf_type * t)394 static bool btf_type_is_modifier(const struct btf_type *t)
395 {
396 /* Some of them is not strictly a C modifier
397 * but they are grouped into the same bucket
398 * for BTF concern:
399 * A type (t) that refers to another
400 * type through t->type AND its size cannot
401 * be determined without following the t->type.
402 *
403 * ptr does not fall into this bucket
404 * because its size is always sizeof(void *).
405 */
406 switch (BTF_INFO_KIND(t->info)) {
407 case BTF_KIND_TYPEDEF:
408 case BTF_KIND_VOLATILE:
409 case BTF_KIND_CONST:
410 case BTF_KIND_RESTRICT:
411 return true;
412 }
413
414 return false;
415 }
416
btf_type_is_void(const struct btf_type * t)417 bool btf_type_is_void(const struct btf_type *t)
418 {
419 return t == &btf_void;
420 }
421
btf_type_is_fwd(const struct btf_type * t)422 static bool btf_type_is_fwd(const struct btf_type *t)
423 {
424 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
425 }
426
btf_type_nosize(const struct btf_type * t)427 static bool btf_type_nosize(const struct btf_type *t)
428 {
429 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
430 btf_type_is_func(t) || btf_type_is_func_proto(t);
431 }
432
btf_type_nosize_or_null(const struct btf_type * t)433 static bool btf_type_nosize_or_null(const struct btf_type *t)
434 {
435 return !t || btf_type_nosize(t);
436 }
437
__btf_type_is_struct(const struct btf_type * t)438 static bool __btf_type_is_struct(const struct btf_type *t)
439 {
440 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
441 }
442
btf_type_is_array(const struct btf_type * t)443 static bool btf_type_is_array(const struct btf_type *t)
444 {
445 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
446 }
447
btf_type_is_datasec(const struct btf_type * t)448 static bool btf_type_is_datasec(const struct btf_type *t)
449 {
450 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
451 }
452
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)453 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
454 {
455 const struct btf_type *t;
456 const char *tname;
457 u32 i;
458
459 for (i = 1; i <= btf->nr_types; i++) {
460 t = btf->types[i];
461 if (BTF_INFO_KIND(t->info) != kind)
462 continue;
463
464 tname = btf_name_by_offset(btf, t->name_off);
465 if (!strcmp(tname, name))
466 return i;
467 }
468
469 return -ENOENT;
470 }
471
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)472 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
473 u32 id, u32 *res_id)
474 {
475 const struct btf_type *t = btf_type_by_id(btf, id);
476
477 while (btf_type_is_modifier(t)) {
478 id = t->type;
479 t = btf_type_by_id(btf, t->type);
480 }
481
482 if (res_id)
483 *res_id = id;
484
485 return t;
486 }
487
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)488 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
489 u32 id, u32 *res_id)
490 {
491 const struct btf_type *t;
492
493 t = btf_type_skip_modifiers(btf, id, NULL);
494 if (!btf_type_is_ptr(t))
495 return NULL;
496
497 return btf_type_skip_modifiers(btf, t->type, res_id);
498 }
499
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)500 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
501 u32 id, u32 *res_id)
502 {
503 const struct btf_type *ptype;
504
505 ptype = btf_type_resolve_ptr(btf, id, res_id);
506 if (ptype && btf_type_is_func_proto(ptype))
507 return ptype;
508
509 return NULL;
510 }
511
512 /* Types that act only as a source, not sink or intermediate
513 * type when resolving.
514 */
btf_type_is_resolve_source_only(const struct btf_type * t)515 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
516 {
517 return btf_type_is_var(t) ||
518 btf_type_is_datasec(t);
519 }
520
521 /* What types need to be resolved?
522 *
523 * btf_type_is_modifier() is an obvious one.
524 *
525 * btf_type_is_struct() because its member refers to
526 * another type (through member->type).
527 *
528 * btf_type_is_var() because the variable refers to
529 * another type. btf_type_is_datasec() holds multiple
530 * btf_type_is_var() types that need resolving.
531 *
532 * btf_type_is_array() because its element (array->type)
533 * refers to another type. Array can be thought of a
534 * special case of struct while array just has the same
535 * member-type repeated by array->nelems of times.
536 */
btf_type_needs_resolve(const struct btf_type * t)537 static bool btf_type_needs_resolve(const struct btf_type *t)
538 {
539 return btf_type_is_modifier(t) ||
540 btf_type_is_ptr(t) ||
541 btf_type_is_struct(t) ||
542 btf_type_is_array(t) ||
543 btf_type_is_var(t) ||
544 btf_type_is_datasec(t);
545 }
546
547 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)548 static bool btf_type_has_size(const struct btf_type *t)
549 {
550 switch (BTF_INFO_KIND(t->info)) {
551 case BTF_KIND_INT:
552 case BTF_KIND_STRUCT:
553 case BTF_KIND_UNION:
554 case BTF_KIND_ENUM:
555 case BTF_KIND_DATASEC:
556 return true;
557 }
558
559 return false;
560 }
561
btf_int_encoding_str(u8 encoding)562 static const char *btf_int_encoding_str(u8 encoding)
563 {
564 if (encoding == 0)
565 return "(none)";
566 else if (encoding == BTF_INT_SIGNED)
567 return "SIGNED";
568 else if (encoding == BTF_INT_CHAR)
569 return "CHAR";
570 else if (encoding == BTF_INT_BOOL)
571 return "BOOL";
572 else
573 return "UNKN";
574 }
575
btf_type_int(const struct btf_type * t)576 static u32 btf_type_int(const struct btf_type *t)
577 {
578 return *(u32 *)(t + 1);
579 }
580
btf_type_array(const struct btf_type * t)581 static const struct btf_array *btf_type_array(const struct btf_type *t)
582 {
583 return (const struct btf_array *)(t + 1);
584 }
585
btf_type_enum(const struct btf_type * t)586 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
587 {
588 return (const struct btf_enum *)(t + 1);
589 }
590
btf_type_var(const struct btf_type * t)591 static const struct btf_var *btf_type_var(const struct btf_type *t)
592 {
593 return (const struct btf_var *)(t + 1);
594 }
595
btf_type_ops(const struct btf_type * t)596 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
597 {
598 return kind_ops[BTF_INFO_KIND(t->info)];
599 }
600
btf_name_offset_valid(const struct btf * btf,u32 offset)601 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
602 {
603 return BTF_STR_OFFSET_VALID(offset) &&
604 offset < btf->hdr.str_len;
605 }
606
__btf_name_char_ok(char c,bool first)607 static bool __btf_name_char_ok(char c, bool first)
608 {
609 if ((first ? !isalpha(c) :
610 !isalnum(c)) &&
611 c != '_' &&
612 c != '.')
613 return false;
614 return true;
615 }
616
__btf_name_valid(const struct btf * btf,u32 offset)617 static bool __btf_name_valid(const struct btf *btf, u32 offset)
618 {
619 /* offset must be valid */
620 const char *src = &btf->strings[offset];
621 const char *src_limit;
622
623 if (!__btf_name_char_ok(*src, true))
624 return false;
625
626 /* set a limit on identifier length */
627 src_limit = src + KSYM_NAME_LEN;
628 src++;
629 while (*src && src < src_limit) {
630 if (!__btf_name_char_ok(*src, false))
631 return false;
632 src++;
633 }
634
635 return !*src;
636 }
637
btf_name_valid_identifier(const struct btf * btf,u32 offset)638 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
639 {
640 return __btf_name_valid(btf, offset);
641 }
642
btf_name_valid_section(const struct btf * btf,u32 offset)643 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
644 {
645 return __btf_name_valid(btf, offset);
646 }
647
__btf_name_by_offset(const struct btf * btf,u32 offset)648 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
649 {
650 if (!offset)
651 return "(anon)";
652 else if (offset < btf->hdr.str_len)
653 return &btf->strings[offset];
654 else
655 return "(invalid-name-offset)";
656 }
657
btf_name_by_offset(const struct btf * btf,u32 offset)658 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
659 {
660 if (offset < btf->hdr.str_len)
661 return &btf->strings[offset];
662
663 return NULL;
664 }
665
btf_type_by_id(const struct btf * btf,u32 type_id)666 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
667 {
668 if (type_id > btf->nr_types)
669 return NULL;
670
671 return btf->types[type_id];
672 }
673
674 /*
675 * Regular int is not a bit field and it must be either
676 * u8/u16/u32/u64 or __int128.
677 */
btf_type_int_is_regular(const struct btf_type * t)678 static bool btf_type_int_is_regular(const struct btf_type *t)
679 {
680 u8 nr_bits, nr_bytes;
681 u32 int_data;
682
683 int_data = btf_type_int(t);
684 nr_bits = BTF_INT_BITS(int_data);
685 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
686 if (BITS_PER_BYTE_MASKED(nr_bits) ||
687 BTF_INT_OFFSET(int_data) ||
688 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
689 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
690 nr_bytes != (2 * sizeof(u64)))) {
691 return false;
692 }
693
694 return true;
695 }
696
697 /*
698 * Check that given struct member is a regular int with expected
699 * offset and size.
700 */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)701 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
702 const struct btf_member *m,
703 u32 expected_offset, u32 expected_size)
704 {
705 const struct btf_type *t;
706 u32 id, int_data;
707 u8 nr_bits;
708
709 id = m->type;
710 t = btf_type_id_size(btf, &id, NULL);
711 if (!t || !btf_type_is_int(t))
712 return false;
713
714 int_data = btf_type_int(t);
715 nr_bits = BTF_INT_BITS(int_data);
716 if (btf_type_kflag(s)) {
717 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
718 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
719
720 /* if kflag set, int should be a regular int and
721 * bit offset should be at byte boundary.
722 */
723 return !bitfield_size &&
724 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
725 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
726 }
727
728 if (BTF_INT_OFFSET(int_data) ||
729 BITS_PER_BYTE_MASKED(m->offset) ||
730 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
731 BITS_PER_BYTE_MASKED(nr_bits) ||
732 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
733 return false;
734
735 return true;
736 }
737
738 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)739 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
740 u32 id)
741 {
742 const struct btf_type *t = btf_type_by_id(btf, id);
743
744 while (btf_type_is_modifier(t) &&
745 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
746 id = t->type;
747 t = btf_type_by_id(btf, t->type);
748 }
749
750 return t;
751 }
752
753 #define BTF_SHOW_MAX_ITER 10
754
755 #define BTF_KIND_BIT(kind) (1ULL << kind)
756
757 /*
758 * Populate show->state.name with type name information.
759 * Format of type name is
760 *
761 * [.member_name = ] (type_name)
762 */
btf_show_name(struct btf_show * show)763 static const char *btf_show_name(struct btf_show *show)
764 {
765 /* BTF_MAX_ITER array suffixes "[]" */
766 const char *array_suffixes = "[][][][][][][][][][]";
767 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
768 /* BTF_MAX_ITER pointer suffixes "*" */
769 const char *ptr_suffixes = "**********";
770 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
771 const char *name = NULL, *prefix = "", *parens = "";
772 const struct btf_member *m = show->state.member;
773 const struct btf_type *t = show->state.type;
774 const struct btf_array *array;
775 u32 id = show->state.type_id;
776 const char *member = NULL;
777 bool show_member = false;
778 u64 kinds = 0;
779 int i;
780
781 show->state.name[0] = '\0';
782
783 /*
784 * Don't show type name if we're showing an array member;
785 * in that case we show the array type so don't need to repeat
786 * ourselves for each member.
787 */
788 if (show->state.array_member)
789 return "";
790
791 /* Retrieve member name, if any. */
792 if (m) {
793 member = btf_name_by_offset(show->btf, m->name_off);
794 show_member = strlen(member) > 0;
795 id = m->type;
796 }
797
798 /*
799 * Start with type_id, as we have resolved the struct btf_type *
800 * via btf_modifier_show() past the parent typedef to the child
801 * struct, int etc it is defined as. In such cases, the type_id
802 * still represents the starting type while the struct btf_type *
803 * in our show->state points at the resolved type of the typedef.
804 */
805 t = btf_type_by_id(show->btf, id);
806 if (!t)
807 return "";
808
809 /*
810 * The goal here is to build up the right number of pointer and
811 * array suffixes while ensuring the type name for a typedef
812 * is represented. Along the way we accumulate a list of
813 * BTF kinds we have encountered, since these will inform later
814 * display; for example, pointer types will not require an
815 * opening "{" for struct, we will just display the pointer value.
816 *
817 * We also want to accumulate the right number of pointer or array
818 * indices in the format string while iterating until we get to
819 * the typedef/pointee/array member target type.
820 *
821 * We start by pointing at the end of pointer and array suffix
822 * strings; as we accumulate pointers and arrays we move the pointer
823 * or array string backwards so it will show the expected number of
824 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
825 * and/or arrays and typedefs are supported as a precaution.
826 *
827 * We also want to get typedef name while proceeding to resolve
828 * type it points to so that we can add parentheses if it is a
829 * "typedef struct" etc.
830 */
831 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
832
833 switch (BTF_INFO_KIND(t->info)) {
834 case BTF_KIND_TYPEDEF:
835 if (!name)
836 name = btf_name_by_offset(show->btf,
837 t->name_off);
838 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
839 id = t->type;
840 break;
841 case BTF_KIND_ARRAY:
842 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
843 parens = "[";
844 if (!t)
845 return "";
846 array = btf_type_array(t);
847 if (array_suffix > array_suffixes)
848 array_suffix -= 2;
849 id = array->type;
850 break;
851 case BTF_KIND_PTR:
852 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
853 if (ptr_suffix > ptr_suffixes)
854 ptr_suffix -= 1;
855 id = t->type;
856 break;
857 default:
858 id = 0;
859 break;
860 }
861 if (!id)
862 break;
863 t = btf_type_skip_qualifiers(show->btf, id);
864 }
865 /* We may not be able to represent this type; bail to be safe */
866 if (i == BTF_SHOW_MAX_ITER)
867 return "";
868
869 if (!name)
870 name = btf_name_by_offset(show->btf, t->name_off);
871
872 switch (BTF_INFO_KIND(t->info)) {
873 case BTF_KIND_STRUCT:
874 case BTF_KIND_UNION:
875 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
876 "struct" : "union";
877 /* if it's an array of struct/union, parens is already set */
878 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
879 parens = "{";
880 break;
881 case BTF_KIND_ENUM:
882 prefix = "enum";
883 break;
884 default:
885 break;
886 }
887
888 /* pointer does not require parens */
889 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
890 parens = "";
891 /* typedef does not require struct/union/enum prefix */
892 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
893 prefix = "";
894
895 if (!name)
896 name = "";
897
898 /* Even if we don't want type name info, we want parentheses etc */
899 if (show->flags & BTF_SHOW_NONAME)
900 snprintf(show->state.name, sizeof(show->state.name), "%s",
901 parens);
902 else
903 snprintf(show->state.name, sizeof(show->state.name),
904 "%s%s%s(%s%s%s%s%s%s)%s",
905 /* first 3 strings comprise ".member = " */
906 show_member ? "." : "",
907 show_member ? member : "",
908 show_member ? " = " : "",
909 /* ...next is our prefix (struct, enum, etc) */
910 prefix,
911 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
912 /* ...this is the type name itself */
913 name,
914 /* ...suffixed by the appropriate '*', '[]' suffixes */
915 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
916 array_suffix, parens);
917
918 return show->state.name;
919 }
920
__btf_show_indent(struct btf_show * show)921 static const char *__btf_show_indent(struct btf_show *show)
922 {
923 const char *indents = " ";
924 const char *indent = &indents[strlen(indents)];
925
926 if ((indent - show->state.depth) >= indents)
927 return indent - show->state.depth;
928 return indents;
929 }
930
btf_show_indent(struct btf_show * show)931 static const char *btf_show_indent(struct btf_show *show)
932 {
933 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
934 }
935
btf_show_newline(struct btf_show * show)936 static const char *btf_show_newline(struct btf_show *show)
937 {
938 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
939 }
940
btf_show_delim(struct btf_show * show)941 static const char *btf_show_delim(struct btf_show *show)
942 {
943 if (show->state.depth == 0)
944 return "";
945
946 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
947 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
948 return "|";
949
950 return ",";
951 }
952
btf_show(struct btf_show * show,const char * fmt,...)953 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
954 {
955 va_list args;
956
957 if (!show->state.depth_check) {
958 va_start(args, fmt);
959 show->showfn(show, fmt, args);
960 va_end(args);
961 }
962 }
963
964 /* Macros are used here as btf_show_type_value[s]() prepends and appends
965 * format specifiers to the format specifier passed in; these do the work of
966 * adding indentation, delimiters etc while the caller simply has to specify
967 * the type value(s) in the format specifier + value(s).
968 */
969 #define btf_show_type_value(show, fmt, value) \
970 do { \
971 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
972 show->state.depth == 0) { \
973 btf_show(show, "%s%s" fmt "%s%s", \
974 btf_show_indent(show), \
975 btf_show_name(show), \
976 value, btf_show_delim(show), \
977 btf_show_newline(show)); \
978 if (show->state.depth > show->state.depth_to_show) \
979 show->state.depth_to_show = show->state.depth; \
980 } \
981 } while (0)
982
983 #define btf_show_type_values(show, fmt, ...) \
984 do { \
985 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
986 btf_show_name(show), \
987 __VA_ARGS__, btf_show_delim(show), \
988 btf_show_newline(show)); \
989 if (show->state.depth > show->state.depth_to_show) \
990 show->state.depth_to_show = show->state.depth; \
991 } while (0)
992
993 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)994 static int btf_show_obj_size_left(struct btf_show *show, void *data)
995 {
996 return show->obj.head + show->obj.size - data;
997 }
998
999 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1000 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1001 {
1002 return data >= show->obj.data &&
1003 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1004 }
1005
1006 /*
1007 * If object pointed to by @data of @size falls within our safe buffer, return
1008 * the equivalent pointer to the same safe data. Assumes
1009 * copy_from_kernel_nofault() has already happened and our safe buffer is
1010 * populated.
1011 */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1012 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1013 {
1014 if (btf_show_obj_is_safe(show, data, size))
1015 return show->obj.safe + (data - show->obj.data);
1016 return NULL;
1017 }
1018
1019 /*
1020 * Return a safe-to-access version of data pointed to by @data.
1021 * We do this by copying the relevant amount of information
1022 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1023 *
1024 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1025 * safe copy is needed.
1026 *
1027 * Otherwise we need to determine if we have the required amount
1028 * of data (determined by the @data pointer and the size of the
1029 * largest base type we can encounter (represented by
1030 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1031 * that we will be able to print some of the current object,
1032 * and if more is needed a copy will be triggered.
1033 * Some objects such as structs will not fit into the buffer;
1034 * in such cases additional copies when we iterate over their
1035 * members may be needed.
1036 *
1037 * btf_show_obj_safe() is used to return a safe buffer for
1038 * btf_show_start_type(); this ensures that as we recurse into
1039 * nested types we always have safe data for the given type.
1040 * This approach is somewhat wasteful; it's possible for example
1041 * that when iterating over a large union we'll end up copying the
1042 * same data repeatedly, but the goal is safety not performance.
1043 * We use stack data as opposed to per-CPU buffers because the
1044 * iteration over a type can take some time, and preemption handling
1045 * would greatly complicate use of the safe buffer.
1046 */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1047 static void *btf_show_obj_safe(struct btf_show *show,
1048 const struct btf_type *t,
1049 void *data)
1050 {
1051 const struct btf_type *rt;
1052 int size_left, size;
1053 void *safe = NULL;
1054
1055 if (show->flags & BTF_SHOW_UNSAFE)
1056 return data;
1057
1058 rt = btf_resolve_size(show->btf, t, &size);
1059 if (IS_ERR(rt)) {
1060 show->state.status = PTR_ERR(rt);
1061 return NULL;
1062 }
1063
1064 /*
1065 * Is this toplevel object? If so, set total object size and
1066 * initialize pointers. Otherwise check if we still fall within
1067 * our safe object data.
1068 */
1069 if (show->state.depth == 0) {
1070 show->obj.size = size;
1071 show->obj.head = data;
1072 } else {
1073 /*
1074 * If the size of the current object is > our remaining
1075 * safe buffer we _may_ need to do a new copy. However
1076 * consider the case of a nested struct; it's size pushes
1077 * us over the safe buffer limit, but showing any individual
1078 * struct members does not. In such cases, we don't need
1079 * to initiate a fresh copy yet; however we definitely need
1080 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1081 * in our buffer, regardless of the current object size.
1082 * The logic here is that as we resolve types we will
1083 * hit a base type at some point, and we need to be sure
1084 * the next chunk of data is safely available to display
1085 * that type info safely. We cannot rely on the size of
1086 * the current object here because it may be much larger
1087 * than our current buffer (e.g. task_struct is 8k).
1088 * All we want to do here is ensure that we can print the
1089 * next basic type, which we can if either
1090 * - the current type size is within the safe buffer; or
1091 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1092 * the safe buffer.
1093 */
1094 safe = __btf_show_obj_safe(show, data,
1095 min(size,
1096 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1097 }
1098
1099 /*
1100 * We need a new copy to our safe object, either because we haven't
1101 * yet copied and are intializing safe data, or because the data
1102 * we want falls outside the boundaries of the safe object.
1103 */
1104 if (!safe) {
1105 size_left = btf_show_obj_size_left(show, data);
1106 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1107 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1108 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1109 data, size_left);
1110 if (!show->state.status) {
1111 show->obj.data = data;
1112 safe = show->obj.safe;
1113 }
1114 }
1115
1116 return safe;
1117 }
1118
1119 /*
1120 * Set the type we are starting to show and return a safe data pointer
1121 * to be used for showing the associated data.
1122 */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1123 static void *btf_show_start_type(struct btf_show *show,
1124 const struct btf_type *t,
1125 u32 type_id, void *data)
1126 {
1127 show->state.type = t;
1128 show->state.type_id = type_id;
1129 show->state.name[0] = '\0';
1130
1131 return btf_show_obj_safe(show, t, data);
1132 }
1133
btf_show_end_type(struct btf_show * show)1134 static void btf_show_end_type(struct btf_show *show)
1135 {
1136 show->state.type = NULL;
1137 show->state.type_id = 0;
1138 show->state.name[0] = '\0';
1139 }
1140
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1141 static void *btf_show_start_aggr_type(struct btf_show *show,
1142 const struct btf_type *t,
1143 u32 type_id, void *data)
1144 {
1145 void *safe_data = btf_show_start_type(show, t, type_id, data);
1146
1147 if (!safe_data)
1148 return safe_data;
1149
1150 btf_show(show, "%s%s%s", btf_show_indent(show),
1151 btf_show_name(show),
1152 btf_show_newline(show));
1153 show->state.depth++;
1154 return safe_data;
1155 }
1156
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1157 static void btf_show_end_aggr_type(struct btf_show *show,
1158 const char *suffix)
1159 {
1160 show->state.depth--;
1161 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1162 btf_show_delim(show), btf_show_newline(show));
1163 btf_show_end_type(show);
1164 }
1165
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1166 static void btf_show_start_member(struct btf_show *show,
1167 const struct btf_member *m)
1168 {
1169 show->state.member = m;
1170 }
1171
btf_show_start_array_member(struct btf_show * show)1172 static void btf_show_start_array_member(struct btf_show *show)
1173 {
1174 show->state.array_member = 1;
1175 btf_show_start_member(show, NULL);
1176 }
1177
btf_show_end_member(struct btf_show * show)1178 static void btf_show_end_member(struct btf_show *show)
1179 {
1180 show->state.member = NULL;
1181 }
1182
btf_show_end_array_member(struct btf_show * show)1183 static void btf_show_end_array_member(struct btf_show *show)
1184 {
1185 show->state.array_member = 0;
1186 btf_show_end_member(show);
1187 }
1188
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1189 static void *btf_show_start_array_type(struct btf_show *show,
1190 const struct btf_type *t,
1191 u32 type_id,
1192 u16 array_encoding,
1193 void *data)
1194 {
1195 show->state.array_encoding = array_encoding;
1196 show->state.array_terminated = 0;
1197 return btf_show_start_aggr_type(show, t, type_id, data);
1198 }
1199
btf_show_end_array_type(struct btf_show * show)1200 static void btf_show_end_array_type(struct btf_show *show)
1201 {
1202 show->state.array_encoding = 0;
1203 show->state.array_terminated = 0;
1204 btf_show_end_aggr_type(show, "]");
1205 }
1206
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1207 static void *btf_show_start_struct_type(struct btf_show *show,
1208 const struct btf_type *t,
1209 u32 type_id,
1210 void *data)
1211 {
1212 return btf_show_start_aggr_type(show, t, type_id, data);
1213 }
1214
btf_show_end_struct_type(struct btf_show * show)1215 static void btf_show_end_struct_type(struct btf_show *show)
1216 {
1217 btf_show_end_aggr_type(show, "}");
1218 }
1219
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1220 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1221 const char *fmt, ...)
1222 {
1223 va_list args;
1224
1225 va_start(args, fmt);
1226 bpf_verifier_vlog(log, fmt, args);
1227 va_end(args);
1228 }
1229
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1230 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1231 const char *fmt, ...)
1232 {
1233 struct bpf_verifier_log *log = &env->log;
1234 va_list args;
1235
1236 if (!bpf_verifier_log_needed(log))
1237 return;
1238
1239 va_start(args, fmt);
1240 bpf_verifier_vlog(log, fmt, args);
1241 va_end(args);
1242 }
1243
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1244 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1245 const struct btf_type *t,
1246 bool log_details,
1247 const char *fmt, ...)
1248 {
1249 struct bpf_verifier_log *log = &env->log;
1250 u8 kind = BTF_INFO_KIND(t->info);
1251 struct btf *btf = env->btf;
1252 va_list args;
1253
1254 if (!bpf_verifier_log_needed(log))
1255 return;
1256
1257 /* btf verifier prints all types it is processing via
1258 * btf_verifier_log_type(..., fmt = NULL).
1259 * Skip those prints for in-kernel BTF verification.
1260 */
1261 if (log->level == BPF_LOG_KERNEL && !fmt)
1262 return;
1263
1264 __btf_verifier_log(log, "[%u] %s %s%s",
1265 env->log_type_id,
1266 btf_kind_str[kind],
1267 __btf_name_by_offset(btf, t->name_off),
1268 log_details ? " " : "");
1269
1270 if (log_details)
1271 btf_type_ops(t)->log_details(env, t);
1272
1273 if (fmt && *fmt) {
1274 __btf_verifier_log(log, " ");
1275 va_start(args, fmt);
1276 bpf_verifier_vlog(log, fmt, args);
1277 va_end(args);
1278 }
1279
1280 __btf_verifier_log(log, "\n");
1281 }
1282
1283 #define btf_verifier_log_type(env, t, ...) \
1284 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1285 #define btf_verifier_log_basic(env, t, ...) \
1286 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1287
1288 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1289 static void btf_verifier_log_member(struct btf_verifier_env *env,
1290 const struct btf_type *struct_type,
1291 const struct btf_member *member,
1292 const char *fmt, ...)
1293 {
1294 struct bpf_verifier_log *log = &env->log;
1295 struct btf *btf = env->btf;
1296 va_list args;
1297
1298 if (!bpf_verifier_log_needed(log))
1299 return;
1300
1301 if (log->level == BPF_LOG_KERNEL && !fmt)
1302 return;
1303 /* The CHECK_META phase already did a btf dump.
1304 *
1305 * If member is logged again, it must hit an error in
1306 * parsing this member. It is useful to print out which
1307 * struct this member belongs to.
1308 */
1309 if (env->phase != CHECK_META)
1310 btf_verifier_log_type(env, struct_type, NULL);
1311
1312 if (btf_type_kflag(struct_type))
1313 __btf_verifier_log(log,
1314 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1315 __btf_name_by_offset(btf, member->name_off),
1316 member->type,
1317 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1318 BTF_MEMBER_BIT_OFFSET(member->offset));
1319 else
1320 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1321 __btf_name_by_offset(btf, member->name_off),
1322 member->type, member->offset);
1323
1324 if (fmt && *fmt) {
1325 __btf_verifier_log(log, " ");
1326 va_start(args, fmt);
1327 bpf_verifier_vlog(log, fmt, args);
1328 va_end(args);
1329 }
1330
1331 __btf_verifier_log(log, "\n");
1332 }
1333
1334 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1335 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1336 const struct btf_type *datasec_type,
1337 const struct btf_var_secinfo *vsi,
1338 const char *fmt, ...)
1339 {
1340 struct bpf_verifier_log *log = &env->log;
1341 va_list args;
1342
1343 if (!bpf_verifier_log_needed(log))
1344 return;
1345 if (log->level == BPF_LOG_KERNEL && !fmt)
1346 return;
1347 if (env->phase != CHECK_META)
1348 btf_verifier_log_type(env, datasec_type, NULL);
1349
1350 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1351 vsi->type, vsi->offset, vsi->size);
1352 if (fmt && *fmt) {
1353 __btf_verifier_log(log, " ");
1354 va_start(args, fmt);
1355 bpf_verifier_vlog(log, fmt, args);
1356 va_end(args);
1357 }
1358
1359 __btf_verifier_log(log, "\n");
1360 }
1361
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1362 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1363 u32 btf_data_size)
1364 {
1365 struct bpf_verifier_log *log = &env->log;
1366 const struct btf *btf = env->btf;
1367 const struct btf_header *hdr;
1368
1369 if (!bpf_verifier_log_needed(log))
1370 return;
1371
1372 if (log->level == BPF_LOG_KERNEL)
1373 return;
1374 hdr = &btf->hdr;
1375 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1376 __btf_verifier_log(log, "version: %u\n", hdr->version);
1377 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1378 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1379 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1380 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1381 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1382 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1383 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1384 }
1385
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1386 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1387 {
1388 struct btf *btf = env->btf;
1389
1390 /* < 2 because +1 for btf_void which is always in btf->types[0].
1391 * btf_void is not accounted in btf->nr_types because btf_void
1392 * does not come from the BTF file.
1393 */
1394 if (btf->types_size - btf->nr_types < 2) {
1395 /* Expand 'types' array */
1396
1397 struct btf_type **new_types;
1398 u32 expand_by, new_size;
1399
1400 if (btf->types_size == BTF_MAX_TYPE) {
1401 btf_verifier_log(env, "Exceeded max num of types");
1402 return -E2BIG;
1403 }
1404
1405 expand_by = max_t(u32, btf->types_size >> 2, 16);
1406 new_size = min_t(u32, BTF_MAX_TYPE,
1407 btf->types_size + expand_by);
1408
1409 new_types = kvcalloc(new_size, sizeof(*new_types),
1410 GFP_KERNEL | __GFP_NOWARN);
1411 if (!new_types)
1412 return -ENOMEM;
1413
1414 if (btf->nr_types == 0)
1415 new_types[0] = &btf_void;
1416 else
1417 memcpy(new_types, btf->types,
1418 sizeof(*btf->types) * (btf->nr_types + 1));
1419
1420 kvfree(btf->types);
1421 btf->types = new_types;
1422 btf->types_size = new_size;
1423 }
1424
1425 btf->types[++(btf->nr_types)] = t;
1426
1427 return 0;
1428 }
1429
btf_alloc_id(struct btf * btf)1430 static int btf_alloc_id(struct btf *btf)
1431 {
1432 int id;
1433
1434 idr_preload(GFP_KERNEL);
1435 spin_lock_bh(&btf_idr_lock);
1436 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1437 if (id > 0)
1438 btf->id = id;
1439 spin_unlock_bh(&btf_idr_lock);
1440 idr_preload_end();
1441
1442 if (WARN_ON_ONCE(!id))
1443 return -ENOSPC;
1444
1445 return id > 0 ? 0 : id;
1446 }
1447
btf_free_id(struct btf * btf)1448 static void btf_free_id(struct btf *btf)
1449 {
1450 unsigned long flags;
1451
1452 /*
1453 * In map-in-map, calling map_delete_elem() on outer
1454 * map will call bpf_map_put on the inner map.
1455 * It will then eventually call btf_free_id()
1456 * on the inner map. Some of the map_delete_elem()
1457 * implementation may have irq disabled, so
1458 * we need to use the _irqsave() version instead
1459 * of the _bh() version.
1460 */
1461 spin_lock_irqsave(&btf_idr_lock, flags);
1462 idr_remove(&btf_idr, btf->id);
1463 spin_unlock_irqrestore(&btf_idr_lock, flags);
1464 }
1465
btf_free(struct btf * btf)1466 static void btf_free(struct btf *btf)
1467 {
1468 kvfree(btf->types);
1469 kvfree(btf->resolved_sizes);
1470 kvfree(btf->resolved_ids);
1471 kvfree(btf->data);
1472 kfree(btf);
1473 }
1474
btf_free_rcu(struct rcu_head * rcu)1475 static void btf_free_rcu(struct rcu_head *rcu)
1476 {
1477 struct btf *btf = container_of(rcu, struct btf, rcu);
1478
1479 btf_free(btf);
1480 }
1481
btf_put(struct btf * btf)1482 void btf_put(struct btf *btf)
1483 {
1484 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1485 btf_free_id(btf);
1486 call_rcu(&btf->rcu, btf_free_rcu);
1487 }
1488 }
1489
env_resolve_init(struct btf_verifier_env * env)1490 static int env_resolve_init(struct btf_verifier_env *env)
1491 {
1492 struct btf *btf = env->btf;
1493 u32 nr_types = btf->nr_types;
1494 u32 *resolved_sizes = NULL;
1495 u32 *resolved_ids = NULL;
1496 u8 *visit_states = NULL;
1497
1498 /* +1 for btf_void */
1499 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
1500 GFP_KERNEL | __GFP_NOWARN);
1501 if (!resolved_sizes)
1502 goto nomem;
1503
1504 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
1505 GFP_KERNEL | __GFP_NOWARN);
1506 if (!resolved_ids)
1507 goto nomem;
1508
1509 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
1510 GFP_KERNEL | __GFP_NOWARN);
1511 if (!visit_states)
1512 goto nomem;
1513
1514 btf->resolved_sizes = resolved_sizes;
1515 btf->resolved_ids = resolved_ids;
1516 env->visit_states = visit_states;
1517
1518 return 0;
1519
1520 nomem:
1521 kvfree(resolved_sizes);
1522 kvfree(resolved_ids);
1523 kvfree(visit_states);
1524 return -ENOMEM;
1525 }
1526
btf_verifier_env_free(struct btf_verifier_env * env)1527 static void btf_verifier_env_free(struct btf_verifier_env *env)
1528 {
1529 kvfree(env->visit_states);
1530 kfree(env);
1531 }
1532
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1533 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1534 const struct btf_type *next_type)
1535 {
1536 switch (env->resolve_mode) {
1537 case RESOLVE_TBD:
1538 /* int, enum or void is a sink */
1539 return !btf_type_needs_resolve(next_type);
1540 case RESOLVE_PTR:
1541 /* int, enum, void, struct, array, func or func_proto is a sink
1542 * for ptr
1543 */
1544 return !btf_type_is_modifier(next_type) &&
1545 !btf_type_is_ptr(next_type);
1546 case RESOLVE_STRUCT_OR_ARRAY:
1547 /* int, enum, void, ptr, func or func_proto is a sink
1548 * for struct and array
1549 */
1550 return !btf_type_is_modifier(next_type) &&
1551 !btf_type_is_array(next_type) &&
1552 !btf_type_is_struct(next_type);
1553 default:
1554 BUG();
1555 }
1556 }
1557
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1558 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1559 u32 type_id)
1560 {
1561 return env->visit_states[type_id] == RESOLVED;
1562 }
1563
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1564 static int env_stack_push(struct btf_verifier_env *env,
1565 const struct btf_type *t, u32 type_id)
1566 {
1567 struct resolve_vertex *v;
1568
1569 if (env->top_stack == MAX_RESOLVE_DEPTH)
1570 return -E2BIG;
1571
1572 if (env->visit_states[type_id] != NOT_VISITED)
1573 return -EEXIST;
1574
1575 env->visit_states[type_id] = VISITED;
1576
1577 v = &env->stack[env->top_stack++];
1578 v->t = t;
1579 v->type_id = type_id;
1580 v->next_member = 0;
1581
1582 if (env->resolve_mode == RESOLVE_TBD) {
1583 if (btf_type_is_ptr(t))
1584 env->resolve_mode = RESOLVE_PTR;
1585 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1586 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1587 }
1588
1589 return 0;
1590 }
1591
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1592 static void env_stack_set_next_member(struct btf_verifier_env *env,
1593 u16 next_member)
1594 {
1595 env->stack[env->top_stack - 1].next_member = next_member;
1596 }
1597
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1598 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1599 u32 resolved_type_id,
1600 u32 resolved_size)
1601 {
1602 u32 type_id = env->stack[--(env->top_stack)].type_id;
1603 struct btf *btf = env->btf;
1604
1605 btf->resolved_sizes[type_id] = resolved_size;
1606 btf->resolved_ids[type_id] = resolved_type_id;
1607 env->visit_states[type_id] = RESOLVED;
1608 }
1609
env_stack_peak(struct btf_verifier_env * env)1610 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1611 {
1612 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1613 }
1614
1615 /* Resolve the size of a passed-in "type"
1616 *
1617 * type: is an array (e.g. u32 array[x][y])
1618 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1619 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1620 * corresponds to the return type.
1621 * *elem_type: u32
1622 * *elem_id: id of u32
1623 * *total_nelems: (x * y). Hence, individual elem size is
1624 * (*type_size / *total_nelems)
1625 * *type_id: id of type if it's changed within the function, 0 if not
1626 *
1627 * type: is not an array (e.g. const struct X)
1628 * return type: type "struct X"
1629 * *type_size: sizeof(struct X)
1630 * *elem_type: same as return type ("struct X")
1631 * *elem_id: 0
1632 * *total_nelems: 1
1633 * *type_id: id of type if it's changed within the function, 0 if not
1634 */
1635 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1636 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1637 u32 *type_size, const struct btf_type **elem_type,
1638 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1639 {
1640 const struct btf_type *array_type = NULL;
1641 const struct btf_array *array = NULL;
1642 u32 i, size, nelems = 1, id = 0;
1643
1644 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1645 switch (BTF_INFO_KIND(type->info)) {
1646 /* type->size can be used */
1647 case BTF_KIND_INT:
1648 case BTF_KIND_STRUCT:
1649 case BTF_KIND_UNION:
1650 case BTF_KIND_ENUM:
1651 size = type->size;
1652 goto resolved;
1653
1654 case BTF_KIND_PTR:
1655 size = sizeof(void *);
1656 goto resolved;
1657
1658 /* Modifiers */
1659 case BTF_KIND_TYPEDEF:
1660 case BTF_KIND_VOLATILE:
1661 case BTF_KIND_CONST:
1662 case BTF_KIND_RESTRICT:
1663 id = type->type;
1664 type = btf_type_by_id(btf, type->type);
1665 break;
1666
1667 case BTF_KIND_ARRAY:
1668 if (!array_type)
1669 array_type = type;
1670 array = btf_type_array(type);
1671 if (nelems && array->nelems > U32_MAX / nelems)
1672 return ERR_PTR(-EINVAL);
1673 nelems *= array->nelems;
1674 type = btf_type_by_id(btf, array->type);
1675 break;
1676
1677 /* type without size */
1678 default:
1679 return ERR_PTR(-EINVAL);
1680 }
1681 }
1682
1683 return ERR_PTR(-EINVAL);
1684
1685 resolved:
1686 if (nelems && size > U32_MAX / nelems)
1687 return ERR_PTR(-EINVAL);
1688
1689 *type_size = nelems * size;
1690 if (total_nelems)
1691 *total_nelems = nelems;
1692 if (elem_type)
1693 *elem_type = type;
1694 if (elem_id)
1695 *elem_id = array ? array->type : 0;
1696 if (type_id && id)
1697 *type_id = id;
1698
1699 return array_type ? : type;
1700 }
1701
1702 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)1703 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1704 u32 *type_size)
1705 {
1706 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1707 }
1708
1709 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)1710 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1711 u32 *type_id)
1712 {
1713 *type_id = btf->resolved_ids[*type_id];
1714 return btf_type_by_id(btf, *type_id);
1715 }
1716
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)1717 const struct btf_type *btf_type_id_size(const struct btf *btf,
1718 u32 *type_id, u32 *ret_size)
1719 {
1720 const struct btf_type *size_type;
1721 u32 size_type_id = *type_id;
1722 u32 size = 0;
1723
1724 size_type = btf_type_by_id(btf, size_type_id);
1725 if (btf_type_nosize_or_null(size_type))
1726 return NULL;
1727
1728 if (btf_type_has_size(size_type)) {
1729 size = size_type->size;
1730 } else if (btf_type_is_array(size_type)) {
1731 size = btf->resolved_sizes[size_type_id];
1732 } else if (btf_type_is_ptr(size_type)) {
1733 size = sizeof(void *);
1734 } else {
1735 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1736 !btf_type_is_var(size_type)))
1737 return NULL;
1738
1739 size_type_id = btf->resolved_ids[size_type_id];
1740 size_type = btf_type_by_id(btf, size_type_id);
1741 if (btf_type_nosize_or_null(size_type))
1742 return NULL;
1743 else if (btf_type_has_size(size_type))
1744 size = size_type->size;
1745 else if (btf_type_is_array(size_type))
1746 size = btf->resolved_sizes[size_type_id];
1747 else if (btf_type_is_ptr(size_type))
1748 size = sizeof(void *);
1749 else
1750 return NULL;
1751 }
1752
1753 *type_id = size_type_id;
1754 if (ret_size)
1755 *ret_size = size;
1756
1757 return size_type;
1758 }
1759
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1760 static int btf_df_check_member(struct btf_verifier_env *env,
1761 const struct btf_type *struct_type,
1762 const struct btf_member *member,
1763 const struct btf_type *member_type)
1764 {
1765 btf_verifier_log_basic(env, struct_type,
1766 "Unsupported check_member");
1767 return -EINVAL;
1768 }
1769
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1770 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1771 const struct btf_type *struct_type,
1772 const struct btf_member *member,
1773 const struct btf_type *member_type)
1774 {
1775 btf_verifier_log_basic(env, struct_type,
1776 "Unsupported check_kflag_member");
1777 return -EINVAL;
1778 }
1779
1780 /* Used for ptr, array and struct/union type members.
1781 * int, enum and modifier types have their specific callback functions.
1782 */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1783 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1784 const struct btf_type *struct_type,
1785 const struct btf_member *member,
1786 const struct btf_type *member_type)
1787 {
1788 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1789 btf_verifier_log_member(env, struct_type, member,
1790 "Invalid member bitfield_size");
1791 return -EINVAL;
1792 }
1793
1794 /* bitfield size is 0, so member->offset represents bit offset only.
1795 * It is safe to call non kflag check_member variants.
1796 */
1797 return btf_type_ops(member_type)->check_member(env, struct_type,
1798 member,
1799 member_type);
1800 }
1801
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)1802 static int btf_df_resolve(struct btf_verifier_env *env,
1803 const struct resolve_vertex *v)
1804 {
1805 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1806 return -EINVAL;
1807 }
1808
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)1809 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1810 u32 type_id, void *data, u8 bits_offsets,
1811 struct btf_show *show)
1812 {
1813 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1814 }
1815
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1816 static int btf_int_check_member(struct btf_verifier_env *env,
1817 const struct btf_type *struct_type,
1818 const struct btf_member *member,
1819 const struct btf_type *member_type)
1820 {
1821 u32 int_data = btf_type_int(member_type);
1822 u32 struct_bits_off = member->offset;
1823 u32 struct_size = struct_type->size;
1824 u32 nr_copy_bits;
1825 u32 bytes_offset;
1826
1827 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1828 btf_verifier_log_member(env, struct_type, member,
1829 "bits_offset exceeds U32_MAX");
1830 return -EINVAL;
1831 }
1832
1833 struct_bits_off += BTF_INT_OFFSET(int_data);
1834 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1835 nr_copy_bits = BTF_INT_BITS(int_data) +
1836 BITS_PER_BYTE_MASKED(struct_bits_off);
1837
1838 if (nr_copy_bits > BITS_PER_U128) {
1839 btf_verifier_log_member(env, struct_type, member,
1840 "nr_copy_bits exceeds 128");
1841 return -EINVAL;
1842 }
1843
1844 if (struct_size < bytes_offset ||
1845 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1846 btf_verifier_log_member(env, struct_type, member,
1847 "Member exceeds struct_size");
1848 return -EINVAL;
1849 }
1850
1851 return 0;
1852 }
1853
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1854 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1855 const struct btf_type *struct_type,
1856 const struct btf_member *member,
1857 const struct btf_type *member_type)
1858 {
1859 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1860 u32 int_data = btf_type_int(member_type);
1861 u32 struct_size = struct_type->size;
1862 u32 nr_copy_bits;
1863
1864 /* a regular int type is required for the kflag int member */
1865 if (!btf_type_int_is_regular(member_type)) {
1866 btf_verifier_log_member(env, struct_type, member,
1867 "Invalid member base type");
1868 return -EINVAL;
1869 }
1870
1871 /* check sanity of bitfield size */
1872 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1873 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1874 nr_int_data_bits = BTF_INT_BITS(int_data);
1875 if (!nr_bits) {
1876 /* Not a bitfield member, member offset must be at byte
1877 * boundary.
1878 */
1879 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1880 btf_verifier_log_member(env, struct_type, member,
1881 "Invalid member offset");
1882 return -EINVAL;
1883 }
1884
1885 nr_bits = nr_int_data_bits;
1886 } else if (nr_bits > nr_int_data_bits) {
1887 btf_verifier_log_member(env, struct_type, member,
1888 "Invalid member bitfield_size");
1889 return -EINVAL;
1890 }
1891
1892 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1893 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1894 if (nr_copy_bits > BITS_PER_U128) {
1895 btf_verifier_log_member(env, struct_type, member,
1896 "nr_copy_bits exceeds 128");
1897 return -EINVAL;
1898 }
1899
1900 if (struct_size < bytes_offset ||
1901 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1902 btf_verifier_log_member(env, struct_type, member,
1903 "Member exceeds struct_size");
1904 return -EINVAL;
1905 }
1906
1907 return 0;
1908 }
1909
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)1910 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1911 const struct btf_type *t,
1912 u32 meta_left)
1913 {
1914 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1915 u16 encoding;
1916
1917 if (meta_left < meta_needed) {
1918 btf_verifier_log_basic(env, t,
1919 "meta_left:%u meta_needed:%u",
1920 meta_left, meta_needed);
1921 return -EINVAL;
1922 }
1923
1924 if (btf_type_vlen(t)) {
1925 btf_verifier_log_type(env, t, "vlen != 0");
1926 return -EINVAL;
1927 }
1928
1929 if (btf_type_kflag(t)) {
1930 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1931 return -EINVAL;
1932 }
1933
1934 int_data = btf_type_int(t);
1935 if (int_data & ~BTF_INT_MASK) {
1936 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1937 int_data);
1938 return -EINVAL;
1939 }
1940
1941 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1942
1943 if (nr_bits > BITS_PER_U128) {
1944 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1945 BITS_PER_U128);
1946 return -EINVAL;
1947 }
1948
1949 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1950 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1951 return -EINVAL;
1952 }
1953
1954 /*
1955 * Only one of the encoding bits is allowed and it
1956 * should be sufficient for the pretty print purpose (i.e. decoding).
1957 * Multiple bits can be allowed later if it is found
1958 * to be insufficient.
1959 */
1960 encoding = BTF_INT_ENCODING(int_data);
1961 if (encoding &&
1962 encoding != BTF_INT_SIGNED &&
1963 encoding != BTF_INT_CHAR &&
1964 encoding != BTF_INT_BOOL) {
1965 btf_verifier_log_type(env, t, "Unsupported encoding");
1966 return -ENOTSUPP;
1967 }
1968
1969 btf_verifier_log_type(env, t, NULL);
1970
1971 return meta_needed;
1972 }
1973
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)1974 static void btf_int_log(struct btf_verifier_env *env,
1975 const struct btf_type *t)
1976 {
1977 int int_data = btf_type_int(t);
1978
1979 btf_verifier_log(env,
1980 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1981 t->size, BTF_INT_OFFSET(int_data),
1982 BTF_INT_BITS(int_data),
1983 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1984 }
1985
btf_int128_print(struct btf_show * show,void * data)1986 static void btf_int128_print(struct btf_show *show, void *data)
1987 {
1988 /* data points to a __int128 number.
1989 * Suppose
1990 * int128_num = *(__int128 *)data;
1991 * The below formulas shows what upper_num and lower_num represents:
1992 * upper_num = int128_num >> 64;
1993 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1994 */
1995 u64 upper_num, lower_num;
1996
1997 #ifdef __BIG_ENDIAN_BITFIELD
1998 upper_num = *(u64 *)data;
1999 lower_num = *(u64 *)(data + 8);
2000 #else
2001 upper_num = *(u64 *)(data + 8);
2002 lower_num = *(u64 *)data;
2003 #endif
2004 if (upper_num == 0)
2005 btf_show_type_value(show, "0x%llx", lower_num);
2006 else
2007 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2008 lower_num);
2009 }
2010
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2011 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2012 u16 right_shift_bits)
2013 {
2014 u64 upper_num, lower_num;
2015
2016 #ifdef __BIG_ENDIAN_BITFIELD
2017 upper_num = print_num[0];
2018 lower_num = print_num[1];
2019 #else
2020 upper_num = print_num[1];
2021 lower_num = print_num[0];
2022 #endif
2023
2024 /* shake out un-needed bits by shift/or operations */
2025 if (left_shift_bits >= 64) {
2026 upper_num = lower_num << (left_shift_bits - 64);
2027 lower_num = 0;
2028 } else {
2029 upper_num = (upper_num << left_shift_bits) |
2030 (lower_num >> (64 - left_shift_bits));
2031 lower_num = lower_num << left_shift_bits;
2032 }
2033
2034 if (right_shift_bits >= 64) {
2035 lower_num = upper_num >> (right_shift_bits - 64);
2036 upper_num = 0;
2037 } else {
2038 lower_num = (lower_num >> right_shift_bits) |
2039 (upper_num << (64 - right_shift_bits));
2040 upper_num = upper_num >> right_shift_bits;
2041 }
2042
2043 #ifdef __BIG_ENDIAN_BITFIELD
2044 print_num[0] = upper_num;
2045 print_num[1] = lower_num;
2046 #else
2047 print_num[0] = lower_num;
2048 print_num[1] = upper_num;
2049 #endif
2050 }
2051
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2052 static void btf_bitfield_show(void *data, u8 bits_offset,
2053 u8 nr_bits, struct btf_show *show)
2054 {
2055 u16 left_shift_bits, right_shift_bits;
2056 u8 nr_copy_bytes;
2057 u8 nr_copy_bits;
2058 u64 print_num[2] = {};
2059
2060 nr_copy_bits = nr_bits + bits_offset;
2061 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2062
2063 memcpy(print_num, data, nr_copy_bytes);
2064
2065 #ifdef __BIG_ENDIAN_BITFIELD
2066 left_shift_bits = bits_offset;
2067 #else
2068 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2069 #endif
2070 right_shift_bits = BITS_PER_U128 - nr_bits;
2071
2072 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2073 btf_int128_print(show, print_num);
2074 }
2075
2076
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2077 static void btf_int_bits_show(const struct btf *btf,
2078 const struct btf_type *t,
2079 void *data, u8 bits_offset,
2080 struct btf_show *show)
2081 {
2082 u32 int_data = btf_type_int(t);
2083 u8 nr_bits = BTF_INT_BITS(int_data);
2084 u8 total_bits_offset;
2085
2086 /*
2087 * bits_offset is at most 7.
2088 * BTF_INT_OFFSET() cannot exceed 128 bits.
2089 */
2090 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2091 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2092 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2093 btf_bitfield_show(data, bits_offset, nr_bits, show);
2094 }
2095
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2096 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2097 u32 type_id, void *data, u8 bits_offset,
2098 struct btf_show *show)
2099 {
2100 u32 int_data = btf_type_int(t);
2101 u8 encoding = BTF_INT_ENCODING(int_data);
2102 bool sign = encoding & BTF_INT_SIGNED;
2103 u8 nr_bits = BTF_INT_BITS(int_data);
2104 void *safe_data;
2105
2106 safe_data = btf_show_start_type(show, t, type_id, data);
2107 if (!safe_data)
2108 return;
2109
2110 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2111 BITS_PER_BYTE_MASKED(nr_bits)) {
2112 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2113 goto out;
2114 }
2115
2116 switch (nr_bits) {
2117 case 128:
2118 btf_int128_print(show, safe_data);
2119 break;
2120 case 64:
2121 if (sign)
2122 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2123 else
2124 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2125 break;
2126 case 32:
2127 if (sign)
2128 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2129 else
2130 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2131 break;
2132 case 16:
2133 if (sign)
2134 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2135 else
2136 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2137 break;
2138 case 8:
2139 if (show->state.array_encoding == BTF_INT_CHAR) {
2140 /* check for null terminator */
2141 if (show->state.array_terminated)
2142 break;
2143 if (*(char *)data == '\0') {
2144 show->state.array_terminated = 1;
2145 break;
2146 }
2147 if (isprint(*(char *)data)) {
2148 btf_show_type_value(show, "'%c'",
2149 *(char *)safe_data);
2150 break;
2151 }
2152 }
2153 if (sign)
2154 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2155 else
2156 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2157 break;
2158 default:
2159 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2160 break;
2161 }
2162 out:
2163 btf_show_end_type(show);
2164 }
2165
2166 static const struct btf_kind_operations int_ops = {
2167 .check_meta = btf_int_check_meta,
2168 .resolve = btf_df_resolve,
2169 .check_member = btf_int_check_member,
2170 .check_kflag_member = btf_int_check_kflag_member,
2171 .log_details = btf_int_log,
2172 .show = btf_int_show,
2173 };
2174
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2175 static int btf_modifier_check_member(struct btf_verifier_env *env,
2176 const struct btf_type *struct_type,
2177 const struct btf_member *member,
2178 const struct btf_type *member_type)
2179 {
2180 const struct btf_type *resolved_type;
2181 u32 resolved_type_id = member->type;
2182 struct btf_member resolved_member;
2183 struct btf *btf = env->btf;
2184
2185 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2186 if (!resolved_type) {
2187 btf_verifier_log_member(env, struct_type, member,
2188 "Invalid member");
2189 return -EINVAL;
2190 }
2191
2192 resolved_member = *member;
2193 resolved_member.type = resolved_type_id;
2194
2195 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2196 &resolved_member,
2197 resolved_type);
2198 }
2199
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2200 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2201 const struct btf_type *struct_type,
2202 const struct btf_member *member,
2203 const struct btf_type *member_type)
2204 {
2205 const struct btf_type *resolved_type;
2206 u32 resolved_type_id = member->type;
2207 struct btf_member resolved_member;
2208 struct btf *btf = env->btf;
2209
2210 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2211 if (!resolved_type) {
2212 btf_verifier_log_member(env, struct_type, member,
2213 "Invalid member");
2214 return -EINVAL;
2215 }
2216
2217 resolved_member = *member;
2218 resolved_member.type = resolved_type_id;
2219
2220 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2221 &resolved_member,
2222 resolved_type);
2223 }
2224
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2225 static int btf_ptr_check_member(struct btf_verifier_env *env,
2226 const struct btf_type *struct_type,
2227 const struct btf_member *member,
2228 const struct btf_type *member_type)
2229 {
2230 u32 struct_size, struct_bits_off, bytes_offset;
2231
2232 struct_size = struct_type->size;
2233 struct_bits_off = member->offset;
2234 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2235
2236 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2237 btf_verifier_log_member(env, struct_type, member,
2238 "Member is not byte aligned");
2239 return -EINVAL;
2240 }
2241
2242 if (struct_size - bytes_offset < sizeof(void *)) {
2243 btf_verifier_log_member(env, struct_type, member,
2244 "Member exceeds struct_size");
2245 return -EINVAL;
2246 }
2247
2248 return 0;
2249 }
2250
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2251 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2252 const struct btf_type *t,
2253 u32 meta_left)
2254 {
2255 if (btf_type_vlen(t)) {
2256 btf_verifier_log_type(env, t, "vlen != 0");
2257 return -EINVAL;
2258 }
2259
2260 if (btf_type_kflag(t)) {
2261 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2262 return -EINVAL;
2263 }
2264
2265 if (!BTF_TYPE_ID_VALID(t->type)) {
2266 btf_verifier_log_type(env, t, "Invalid type_id");
2267 return -EINVAL;
2268 }
2269
2270 /* typedef type must have a valid name, and other ref types,
2271 * volatile, const, restrict, should have a null name.
2272 */
2273 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2274 if (!t->name_off ||
2275 !btf_name_valid_identifier(env->btf, t->name_off)) {
2276 btf_verifier_log_type(env, t, "Invalid name");
2277 return -EINVAL;
2278 }
2279 } else {
2280 if (t->name_off) {
2281 btf_verifier_log_type(env, t, "Invalid name");
2282 return -EINVAL;
2283 }
2284 }
2285
2286 btf_verifier_log_type(env, t, NULL);
2287
2288 return 0;
2289 }
2290
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2291 static int btf_modifier_resolve(struct btf_verifier_env *env,
2292 const struct resolve_vertex *v)
2293 {
2294 const struct btf_type *t = v->t;
2295 const struct btf_type *next_type;
2296 u32 next_type_id = t->type;
2297 struct btf *btf = env->btf;
2298
2299 next_type = btf_type_by_id(btf, next_type_id);
2300 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2301 btf_verifier_log_type(env, v->t, "Invalid type_id");
2302 return -EINVAL;
2303 }
2304
2305 if (!env_type_is_resolve_sink(env, next_type) &&
2306 !env_type_is_resolved(env, next_type_id))
2307 return env_stack_push(env, next_type, next_type_id);
2308
2309 /* Figure out the resolved next_type_id with size.
2310 * They will be stored in the current modifier's
2311 * resolved_ids and resolved_sizes such that it can
2312 * save us a few type-following when we use it later (e.g. in
2313 * pretty print).
2314 */
2315 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2316 if (env_type_is_resolved(env, next_type_id))
2317 next_type = btf_type_id_resolve(btf, &next_type_id);
2318
2319 /* "typedef void new_void", "const void"...etc */
2320 if (!btf_type_is_void(next_type) &&
2321 !btf_type_is_fwd(next_type) &&
2322 !btf_type_is_func_proto(next_type)) {
2323 btf_verifier_log_type(env, v->t, "Invalid type_id");
2324 return -EINVAL;
2325 }
2326 }
2327
2328 env_stack_pop_resolved(env, next_type_id, 0);
2329
2330 return 0;
2331 }
2332
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2333 static int btf_var_resolve(struct btf_verifier_env *env,
2334 const struct resolve_vertex *v)
2335 {
2336 const struct btf_type *next_type;
2337 const struct btf_type *t = v->t;
2338 u32 next_type_id = t->type;
2339 struct btf *btf = env->btf;
2340
2341 next_type = btf_type_by_id(btf, next_type_id);
2342 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2343 btf_verifier_log_type(env, v->t, "Invalid type_id");
2344 return -EINVAL;
2345 }
2346
2347 if (!env_type_is_resolve_sink(env, next_type) &&
2348 !env_type_is_resolved(env, next_type_id))
2349 return env_stack_push(env, next_type, next_type_id);
2350
2351 if (btf_type_is_modifier(next_type)) {
2352 const struct btf_type *resolved_type;
2353 u32 resolved_type_id;
2354
2355 resolved_type_id = next_type_id;
2356 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2357
2358 if (btf_type_is_ptr(resolved_type) &&
2359 !env_type_is_resolve_sink(env, resolved_type) &&
2360 !env_type_is_resolved(env, resolved_type_id))
2361 return env_stack_push(env, resolved_type,
2362 resolved_type_id);
2363 }
2364
2365 /* We must resolve to something concrete at this point, no
2366 * forward types or similar that would resolve to size of
2367 * zero is allowed.
2368 */
2369 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2370 btf_verifier_log_type(env, v->t, "Invalid type_id");
2371 return -EINVAL;
2372 }
2373
2374 env_stack_pop_resolved(env, next_type_id, 0);
2375
2376 return 0;
2377 }
2378
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2379 static int btf_ptr_resolve(struct btf_verifier_env *env,
2380 const struct resolve_vertex *v)
2381 {
2382 const struct btf_type *next_type;
2383 const struct btf_type *t = v->t;
2384 u32 next_type_id = t->type;
2385 struct btf *btf = env->btf;
2386
2387 next_type = btf_type_by_id(btf, next_type_id);
2388 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2389 btf_verifier_log_type(env, v->t, "Invalid type_id");
2390 return -EINVAL;
2391 }
2392
2393 if (!env_type_is_resolve_sink(env, next_type) &&
2394 !env_type_is_resolved(env, next_type_id))
2395 return env_stack_push(env, next_type, next_type_id);
2396
2397 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2398 * the modifier may have stopped resolving when it was resolved
2399 * to a ptr (last-resolved-ptr).
2400 *
2401 * We now need to continue from the last-resolved-ptr to
2402 * ensure the last-resolved-ptr will not referring back to
2403 * the currenct ptr (t).
2404 */
2405 if (btf_type_is_modifier(next_type)) {
2406 const struct btf_type *resolved_type;
2407 u32 resolved_type_id;
2408
2409 resolved_type_id = next_type_id;
2410 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2411
2412 if (btf_type_is_ptr(resolved_type) &&
2413 !env_type_is_resolve_sink(env, resolved_type) &&
2414 !env_type_is_resolved(env, resolved_type_id))
2415 return env_stack_push(env, resolved_type,
2416 resolved_type_id);
2417 }
2418
2419 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2420 if (env_type_is_resolved(env, next_type_id))
2421 next_type = btf_type_id_resolve(btf, &next_type_id);
2422
2423 if (!btf_type_is_void(next_type) &&
2424 !btf_type_is_fwd(next_type) &&
2425 !btf_type_is_func_proto(next_type)) {
2426 btf_verifier_log_type(env, v->t, "Invalid type_id");
2427 return -EINVAL;
2428 }
2429 }
2430
2431 env_stack_pop_resolved(env, next_type_id, 0);
2432
2433 return 0;
2434 }
2435
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2436 static void btf_modifier_show(const struct btf *btf,
2437 const struct btf_type *t,
2438 u32 type_id, void *data,
2439 u8 bits_offset, struct btf_show *show)
2440 {
2441 if (btf->resolved_ids)
2442 t = btf_type_id_resolve(btf, &type_id);
2443 else
2444 t = btf_type_skip_modifiers(btf, type_id, NULL);
2445
2446 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2447 }
2448
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2449 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2450 u32 type_id, void *data, u8 bits_offset,
2451 struct btf_show *show)
2452 {
2453 t = btf_type_id_resolve(btf, &type_id);
2454
2455 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2456 }
2457
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2458 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2459 u32 type_id, void *data, u8 bits_offset,
2460 struct btf_show *show)
2461 {
2462 void *safe_data;
2463
2464 safe_data = btf_show_start_type(show, t, type_id, data);
2465 if (!safe_data)
2466 return;
2467
2468 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2469 if (show->flags & BTF_SHOW_PTR_RAW)
2470 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2471 else
2472 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2473 btf_show_end_type(show);
2474 }
2475
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2476 static void btf_ref_type_log(struct btf_verifier_env *env,
2477 const struct btf_type *t)
2478 {
2479 btf_verifier_log(env, "type_id=%u", t->type);
2480 }
2481
2482 static struct btf_kind_operations modifier_ops = {
2483 .check_meta = btf_ref_type_check_meta,
2484 .resolve = btf_modifier_resolve,
2485 .check_member = btf_modifier_check_member,
2486 .check_kflag_member = btf_modifier_check_kflag_member,
2487 .log_details = btf_ref_type_log,
2488 .show = btf_modifier_show,
2489 };
2490
2491 static struct btf_kind_operations ptr_ops = {
2492 .check_meta = btf_ref_type_check_meta,
2493 .resolve = btf_ptr_resolve,
2494 .check_member = btf_ptr_check_member,
2495 .check_kflag_member = btf_generic_check_kflag_member,
2496 .log_details = btf_ref_type_log,
2497 .show = btf_ptr_show,
2498 };
2499
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2500 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2501 const struct btf_type *t,
2502 u32 meta_left)
2503 {
2504 if (btf_type_vlen(t)) {
2505 btf_verifier_log_type(env, t, "vlen != 0");
2506 return -EINVAL;
2507 }
2508
2509 if (t->type) {
2510 btf_verifier_log_type(env, t, "type != 0");
2511 return -EINVAL;
2512 }
2513
2514 /* fwd type must have a valid name */
2515 if (!t->name_off ||
2516 !btf_name_valid_identifier(env->btf, t->name_off)) {
2517 btf_verifier_log_type(env, t, "Invalid name");
2518 return -EINVAL;
2519 }
2520
2521 btf_verifier_log_type(env, t, NULL);
2522
2523 return 0;
2524 }
2525
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2526 static void btf_fwd_type_log(struct btf_verifier_env *env,
2527 const struct btf_type *t)
2528 {
2529 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2530 }
2531
2532 static struct btf_kind_operations fwd_ops = {
2533 .check_meta = btf_fwd_check_meta,
2534 .resolve = btf_df_resolve,
2535 .check_member = btf_df_check_member,
2536 .check_kflag_member = btf_df_check_kflag_member,
2537 .log_details = btf_fwd_type_log,
2538 .show = btf_df_show,
2539 };
2540
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2541 static int btf_array_check_member(struct btf_verifier_env *env,
2542 const struct btf_type *struct_type,
2543 const struct btf_member *member,
2544 const struct btf_type *member_type)
2545 {
2546 u32 struct_bits_off = member->offset;
2547 u32 struct_size, bytes_offset;
2548 u32 array_type_id, array_size;
2549 struct btf *btf = env->btf;
2550
2551 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2552 btf_verifier_log_member(env, struct_type, member,
2553 "Member is not byte aligned");
2554 return -EINVAL;
2555 }
2556
2557 array_type_id = member->type;
2558 btf_type_id_size(btf, &array_type_id, &array_size);
2559 struct_size = struct_type->size;
2560 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2561 if (struct_size - bytes_offset < array_size) {
2562 btf_verifier_log_member(env, struct_type, member,
2563 "Member exceeds struct_size");
2564 return -EINVAL;
2565 }
2566
2567 return 0;
2568 }
2569
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2570 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2571 const struct btf_type *t,
2572 u32 meta_left)
2573 {
2574 const struct btf_array *array = btf_type_array(t);
2575 u32 meta_needed = sizeof(*array);
2576
2577 if (meta_left < meta_needed) {
2578 btf_verifier_log_basic(env, t,
2579 "meta_left:%u meta_needed:%u",
2580 meta_left, meta_needed);
2581 return -EINVAL;
2582 }
2583
2584 /* array type should not have a name */
2585 if (t->name_off) {
2586 btf_verifier_log_type(env, t, "Invalid name");
2587 return -EINVAL;
2588 }
2589
2590 if (btf_type_vlen(t)) {
2591 btf_verifier_log_type(env, t, "vlen != 0");
2592 return -EINVAL;
2593 }
2594
2595 if (btf_type_kflag(t)) {
2596 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2597 return -EINVAL;
2598 }
2599
2600 if (t->size) {
2601 btf_verifier_log_type(env, t, "size != 0");
2602 return -EINVAL;
2603 }
2604
2605 /* Array elem type and index type cannot be in type void,
2606 * so !array->type and !array->index_type are not allowed.
2607 */
2608 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2609 btf_verifier_log_type(env, t, "Invalid elem");
2610 return -EINVAL;
2611 }
2612
2613 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2614 btf_verifier_log_type(env, t, "Invalid index");
2615 return -EINVAL;
2616 }
2617
2618 btf_verifier_log_type(env, t, NULL);
2619
2620 return meta_needed;
2621 }
2622
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2623 static int btf_array_resolve(struct btf_verifier_env *env,
2624 const struct resolve_vertex *v)
2625 {
2626 const struct btf_array *array = btf_type_array(v->t);
2627 const struct btf_type *elem_type, *index_type;
2628 u32 elem_type_id, index_type_id;
2629 struct btf *btf = env->btf;
2630 u32 elem_size;
2631
2632 /* Check array->index_type */
2633 index_type_id = array->index_type;
2634 index_type = btf_type_by_id(btf, index_type_id);
2635 if (btf_type_nosize_or_null(index_type) ||
2636 btf_type_is_resolve_source_only(index_type)) {
2637 btf_verifier_log_type(env, v->t, "Invalid index");
2638 return -EINVAL;
2639 }
2640
2641 if (!env_type_is_resolve_sink(env, index_type) &&
2642 !env_type_is_resolved(env, index_type_id))
2643 return env_stack_push(env, index_type, index_type_id);
2644
2645 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2646 if (!index_type || !btf_type_is_int(index_type) ||
2647 !btf_type_int_is_regular(index_type)) {
2648 btf_verifier_log_type(env, v->t, "Invalid index");
2649 return -EINVAL;
2650 }
2651
2652 /* Check array->type */
2653 elem_type_id = array->type;
2654 elem_type = btf_type_by_id(btf, elem_type_id);
2655 if (btf_type_nosize_or_null(elem_type) ||
2656 btf_type_is_resolve_source_only(elem_type)) {
2657 btf_verifier_log_type(env, v->t,
2658 "Invalid elem");
2659 return -EINVAL;
2660 }
2661
2662 if (!env_type_is_resolve_sink(env, elem_type) &&
2663 !env_type_is_resolved(env, elem_type_id))
2664 return env_stack_push(env, elem_type, elem_type_id);
2665
2666 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2667 if (!elem_type) {
2668 btf_verifier_log_type(env, v->t, "Invalid elem");
2669 return -EINVAL;
2670 }
2671
2672 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2673 btf_verifier_log_type(env, v->t, "Invalid array of int");
2674 return -EINVAL;
2675 }
2676
2677 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2678 btf_verifier_log_type(env, v->t,
2679 "Array size overflows U32_MAX");
2680 return -EINVAL;
2681 }
2682
2683 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2684
2685 return 0;
2686 }
2687
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)2688 static void btf_array_log(struct btf_verifier_env *env,
2689 const struct btf_type *t)
2690 {
2691 const struct btf_array *array = btf_type_array(t);
2692
2693 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2694 array->type, array->index_type, array->nelems);
2695 }
2696
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2697 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2698 u32 type_id, void *data, u8 bits_offset,
2699 struct btf_show *show)
2700 {
2701 const struct btf_array *array = btf_type_array(t);
2702 const struct btf_kind_operations *elem_ops;
2703 const struct btf_type *elem_type;
2704 u32 i, elem_size = 0, elem_type_id;
2705 u16 encoding = 0;
2706
2707 elem_type_id = array->type;
2708 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2709 if (elem_type && btf_type_has_size(elem_type))
2710 elem_size = elem_type->size;
2711
2712 if (elem_type && btf_type_is_int(elem_type)) {
2713 u32 int_type = btf_type_int(elem_type);
2714
2715 encoding = BTF_INT_ENCODING(int_type);
2716
2717 /*
2718 * BTF_INT_CHAR encoding never seems to be set for
2719 * char arrays, so if size is 1 and element is
2720 * printable as a char, we'll do that.
2721 */
2722 if (elem_size == 1)
2723 encoding = BTF_INT_CHAR;
2724 }
2725
2726 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2727 return;
2728
2729 if (!elem_type)
2730 goto out;
2731 elem_ops = btf_type_ops(elem_type);
2732
2733 for (i = 0; i < array->nelems; i++) {
2734
2735 btf_show_start_array_member(show);
2736
2737 elem_ops->show(btf, elem_type, elem_type_id, data,
2738 bits_offset, show);
2739 data += elem_size;
2740
2741 btf_show_end_array_member(show);
2742
2743 if (show->state.array_terminated)
2744 break;
2745 }
2746 out:
2747 btf_show_end_array_type(show);
2748 }
2749
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2750 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2751 u32 type_id, void *data, u8 bits_offset,
2752 struct btf_show *show)
2753 {
2754 const struct btf_member *m = show->state.member;
2755
2756 /*
2757 * First check if any members would be shown (are non-zero).
2758 * See comments above "struct btf_show" definition for more
2759 * details on how this works at a high-level.
2760 */
2761 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2762 if (!show->state.depth_check) {
2763 show->state.depth_check = show->state.depth + 1;
2764 show->state.depth_to_show = 0;
2765 }
2766 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2767 show->state.member = m;
2768
2769 if (show->state.depth_check != show->state.depth + 1)
2770 return;
2771 show->state.depth_check = 0;
2772
2773 if (show->state.depth_to_show <= show->state.depth)
2774 return;
2775 /*
2776 * Reaching here indicates we have recursed and found
2777 * non-zero array member(s).
2778 */
2779 }
2780 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2781 }
2782
2783 static struct btf_kind_operations array_ops = {
2784 .check_meta = btf_array_check_meta,
2785 .resolve = btf_array_resolve,
2786 .check_member = btf_array_check_member,
2787 .check_kflag_member = btf_generic_check_kflag_member,
2788 .log_details = btf_array_log,
2789 .show = btf_array_show,
2790 };
2791
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2792 static int btf_struct_check_member(struct btf_verifier_env *env,
2793 const struct btf_type *struct_type,
2794 const struct btf_member *member,
2795 const struct btf_type *member_type)
2796 {
2797 u32 struct_bits_off = member->offset;
2798 u32 struct_size, bytes_offset;
2799
2800 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2801 btf_verifier_log_member(env, struct_type, member,
2802 "Member is not byte aligned");
2803 return -EINVAL;
2804 }
2805
2806 struct_size = struct_type->size;
2807 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2808 if (struct_size - bytes_offset < member_type->size) {
2809 btf_verifier_log_member(env, struct_type, member,
2810 "Member exceeds struct_size");
2811 return -EINVAL;
2812 }
2813
2814 return 0;
2815 }
2816
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2817 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2818 const struct btf_type *t,
2819 u32 meta_left)
2820 {
2821 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2822 const struct btf_member *member;
2823 u32 meta_needed, last_offset;
2824 struct btf *btf = env->btf;
2825 u32 struct_size = t->size;
2826 u32 offset;
2827 u16 i;
2828
2829 meta_needed = btf_type_vlen(t) * sizeof(*member);
2830 if (meta_left < meta_needed) {
2831 btf_verifier_log_basic(env, t,
2832 "meta_left:%u meta_needed:%u",
2833 meta_left, meta_needed);
2834 return -EINVAL;
2835 }
2836
2837 /* struct type either no name or a valid one */
2838 if (t->name_off &&
2839 !btf_name_valid_identifier(env->btf, t->name_off)) {
2840 btf_verifier_log_type(env, t, "Invalid name");
2841 return -EINVAL;
2842 }
2843
2844 btf_verifier_log_type(env, t, NULL);
2845
2846 last_offset = 0;
2847 for_each_member(i, t, member) {
2848 if (!btf_name_offset_valid(btf, member->name_off)) {
2849 btf_verifier_log_member(env, t, member,
2850 "Invalid member name_offset:%u",
2851 member->name_off);
2852 return -EINVAL;
2853 }
2854
2855 /* struct member either no name or a valid one */
2856 if (member->name_off &&
2857 !btf_name_valid_identifier(btf, member->name_off)) {
2858 btf_verifier_log_member(env, t, member, "Invalid name");
2859 return -EINVAL;
2860 }
2861 /* A member cannot be in type void */
2862 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2863 btf_verifier_log_member(env, t, member,
2864 "Invalid type_id");
2865 return -EINVAL;
2866 }
2867
2868 offset = btf_member_bit_offset(t, member);
2869 if (is_union && offset) {
2870 btf_verifier_log_member(env, t, member,
2871 "Invalid member bits_offset");
2872 return -EINVAL;
2873 }
2874
2875 /*
2876 * ">" instead of ">=" because the last member could be
2877 * "char a[0];"
2878 */
2879 if (last_offset > offset) {
2880 btf_verifier_log_member(env, t, member,
2881 "Invalid member bits_offset");
2882 return -EINVAL;
2883 }
2884
2885 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2886 btf_verifier_log_member(env, t, member,
2887 "Member bits_offset exceeds its struct size");
2888 return -EINVAL;
2889 }
2890
2891 btf_verifier_log_member(env, t, member, NULL);
2892 last_offset = offset;
2893 }
2894
2895 return meta_needed;
2896 }
2897
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2898 static int btf_struct_resolve(struct btf_verifier_env *env,
2899 const struct resolve_vertex *v)
2900 {
2901 const struct btf_member *member;
2902 int err;
2903 u16 i;
2904
2905 /* Before continue resolving the next_member,
2906 * ensure the last member is indeed resolved to a
2907 * type with size info.
2908 */
2909 if (v->next_member) {
2910 const struct btf_type *last_member_type;
2911 const struct btf_member *last_member;
2912 u32 last_member_type_id;
2913
2914 last_member = btf_type_member(v->t) + v->next_member - 1;
2915 last_member_type_id = last_member->type;
2916 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2917 last_member_type_id)))
2918 return -EINVAL;
2919
2920 last_member_type = btf_type_by_id(env->btf,
2921 last_member_type_id);
2922 if (btf_type_kflag(v->t))
2923 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2924 last_member,
2925 last_member_type);
2926 else
2927 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2928 last_member,
2929 last_member_type);
2930 if (err)
2931 return err;
2932 }
2933
2934 for_each_member_from(i, v->next_member, v->t, member) {
2935 u32 member_type_id = member->type;
2936 const struct btf_type *member_type = btf_type_by_id(env->btf,
2937 member_type_id);
2938
2939 if (btf_type_nosize_or_null(member_type) ||
2940 btf_type_is_resolve_source_only(member_type)) {
2941 btf_verifier_log_member(env, v->t, member,
2942 "Invalid member");
2943 return -EINVAL;
2944 }
2945
2946 if (!env_type_is_resolve_sink(env, member_type) &&
2947 !env_type_is_resolved(env, member_type_id)) {
2948 env_stack_set_next_member(env, i + 1);
2949 return env_stack_push(env, member_type, member_type_id);
2950 }
2951
2952 if (btf_type_kflag(v->t))
2953 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2954 member,
2955 member_type);
2956 else
2957 err = btf_type_ops(member_type)->check_member(env, v->t,
2958 member,
2959 member_type);
2960 if (err)
2961 return err;
2962 }
2963
2964 env_stack_pop_resolved(env, 0, 0);
2965
2966 return 0;
2967 }
2968
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)2969 static void btf_struct_log(struct btf_verifier_env *env,
2970 const struct btf_type *t)
2971 {
2972 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2973 }
2974
2975 /* find 'struct bpf_spin_lock' in map value.
2976 * return >= 0 offset if found
2977 * and < 0 in case of error
2978 */
btf_find_spin_lock(const struct btf * btf,const struct btf_type * t)2979 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2980 {
2981 const struct btf_member *member;
2982 u32 i, off = -ENOENT;
2983
2984 if (!__btf_type_is_struct(t))
2985 return -EINVAL;
2986
2987 for_each_member(i, t, member) {
2988 const struct btf_type *member_type = btf_type_by_id(btf,
2989 member->type);
2990 if (!__btf_type_is_struct(member_type))
2991 continue;
2992 if (member_type->size != sizeof(struct bpf_spin_lock))
2993 continue;
2994 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2995 "bpf_spin_lock"))
2996 continue;
2997 if (off != -ENOENT)
2998 /* only one 'struct bpf_spin_lock' is allowed */
2999 return -E2BIG;
3000 off = btf_member_bit_offset(t, member);
3001 if (off % 8)
3002 /* valid C code cannot generate such BTF */
3003 return -EINVAL;
3004 off /= 8;
3005 if (off % __alignof__(struct bpf_spin_lock))
3006 /* valid struct bpf_spin_lock will be 4 byte aligned */
3007 return -EINVAL;
3008 }
3009 return off;
3010 }
3011
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3012 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3013 u32 type_id, void *data, u8 bits_offset,
3014 struct btf_show *show)
3015 {
3016 const struct btf_member *member;
3017 void *safe_data;
3018 u32 i;
3019
3020 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3021 if (!safe_data)
3022 return;
3023
3024 for_each_member(i, t, member) {
3025 const struct btf_type *member_type = btf_type_by_id(btf,
3026 member->type);
3027 const struct btf_kind_operations *ops;
3028 u32 member_offset, bitfield_size;
3029 u32 bytes_offset;
3030 u8 bits8_offset;
3031
3032 btf_show_start_member(show, member);
3033
3034 member_offset = btf_member_bit_offset(t, member);
3035 bitfield_size = btf_member_bitfield_size(t, member);
3036 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3037 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3038 if (bitfield_size) {
3039 safe_data = btf_show_start_type(show, member_type,
3040 member->type,
3041 data + bytes_offset);
3042 if (safe_data)
3043 btf_bitfield_show(safe_data,
3044 bits8_offset,
3045 bitfield_size, show);
3046 btf_show_end_type(show);
3047 } else {
3048 ops = btf_type_ops(member_type);
3049 ops->show(btf, member_type, member->type,
3050 data + bytes_offset, bits8_offset, show);
3051 }
3052
3053 btf_show_end_member(show);
3054 }
3055
3056 btf_show_end_struct_type(show);
3057 }
3058
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3059 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3060 u32 type_id, void *data, u8 bits_offset,
3061 struct btf_show *show)
3062 {
3063 const struct btf_member *m = show->state.member;
3064
3065 /*
3066 * First check if any members would be shown (are non-zero).
3067 * See comments above "struct btf_show" definition for more
3068 * details on how this works at a high-level.
3069 */
3070 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3071 if (!show->state.depth_check) {
3072 show->state.depth_check = show->state.depth + 1;
3073 show->state.depth_to_show = 0;
3074 }
3075 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3076 /* Restore saved member data here */
3077 show->state.member = m;
3078 if (show->state.depth_check != show->state.depth + 1)
3079 return;
3080 show->state.depth_check = 0;
3081
3082 if (show->state.depth_to_show <= show->state.depth)
3083 return;
3084 /*
3085 * Reaching here indicates we have recursed and found
3086 * non-zero child values.
3087 */
3088 }
3089
3090 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3091 }
3092
3093 static struct btf_kind_operations struct_ops = {
3094 .check_meta = btf_struct_check_meta,
3095 .resolve = btf_struct_resolve,
3096 .check_member = btf_struct_check_member,
3097 .check_kflag_member = btf_generic_check_kflag_member,
3098 .log_details = btf_struct_log,
3099 .show = btf_struct_show,
3100 };
3101
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3102 static int btf_enum_check_member(struct btf_verifier_env *env,
3103 const struct btf_type *struct_type,
3104 const struct btf_member *member,
3105 const struct btf_type *member_type)
3106 {
3107 u32 struct_bits_off = member->offset;
3108 u32 struct_size, bytes_offset;
3109
3110 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3111 btf_verifier_log_member(env, struct_type, member,
3112 "Member is not byte aligned");
3113 return -EINVAL;
3114 }
3115
3116 struct_size = struct_type->size;
3117 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3118 if (struct_size - bytes_offset < member_type->size) {
3119 btf_verifier_log_member(env, struct_type, member,
3120 "Member exceeds struct_size");
3121 return -EINVAL;
3122 }
3123
3124 return 0;
3125 }
3126
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3127 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3128 const struct btf_type *struct_type,
3129 const struct btf_member *member,
3130 const struct btf_type *member_type)
3131 {
3132 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3133 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3134
3135 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3136 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3137 if (!nr_bits) {
3138 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3139 btf_verifier_log_member(env, struct_type, member,
3140 "Member is not byte aligned");
3141 return -EINVAL;
3142 }
3143
3144 nr_bits = int_bitsize;
3145 } else if (nr_bits > int_bitsize) {
3146 btf_verifier_log_member(env, struct_type, member,
3147 "Invalid member bitfield_size");
3148 return -EINVAL;
3149 }
3150
3151 struct_size = struct_type->size;
3152 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3153 if (struct_size < bytes_end) {
3154 btf_verifier_log_member(env, struct_type, member,
3155 "Member exceeds struct_size");
3156 return -EINVAL;
3157 }
3158
3159 return 0;
3160 }
3161
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3162 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3163 const struct btf_type *t,
3164 u32 meta_left)
3165 {
3166 const struct btf_enum *enums = btf_type_enum(t);
3167 struct btf *btf = env->btf;
3168 u16 i, nr_enums;
3169 u32 meta_needed;
3170
3171 nr_enums = btf_type_vlen(t);
3172 meta_needed = nr_enums * sizeof(*enums);
3173
3174 if (meta_left < meta_needed) {
3175 btf_verifier_log_basic(env, t,
3176 "meta_left:%u meta_needed:%u",
3177 meta_left, meta_needed);
3178 return -EINVAL;
3179 }
3180
3181 if (btf_type_kflag(t)) {
3182 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3183 return -EINVAL;
3184 }
3185
3186 if (t->size > 8 || !is_power_of_2(t->size)) {
3187 btf_verifier_log_type(env, t, "Unexpected size");
3188 return -EINVAL;
3189 }
3190
3191 /* enum type either no name or a valid one */
3192 if (t->name_off &&
3193 !btf_name_valid_identifier(env->btf, t->name_off)) {
3194 btf_verifier_log_type(env, t, "Invalid name");
3195 return -EINVAL;
3196 }
3197
3198 btf_verifier_log_type(env, t, NULL);
3199
3200 for (i = 0; i < nr_enums; i++) {
3201 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3202 btf_verifier_log(env, "\tInvalid name_offset:%u",
3203 enums[i].name_off);
3204 return -EINVAL;
3205 }
3206
3207 /* enum member must have a valid name */
3208 if (!enums[i].name_off ||
3209 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3210 btf_verifier_log_type(env, t, "Invalid name");
3211 return -EINVAL;
3212 }
3213
3214 if (env->log.level == BPF_LOG_KERNEL)
3215 continue;
3216 btf_verifier_log(env, "\t%s val=%d\n",
3217 __btf_name_by_offset(btf, enums[i].name_off),
3218 enums[i].val);
3219 }
3220
3221 return meta_needed;
3222 }
3223
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)3224 static void btf_enum_log(struct btf_verifier_env *env,
3225 const struct btf_type *t)
3226 {
3227 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3228 }
3229
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3230 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3231 u32 type_id, void *data, u8 bits_offset,
3232 struct btf_show *show)
3233 {
3234 const struct btf_enum *enums = btf_type_enum(t);
3235 u32 i, nr_enums = btf_type_vlen(t);
3236 void *safe_data;
3237 int v;
3238
3239 safe_data = btf_show_start_type(show, t, type_id, data);
3240 if (!safe_data)
3241 return;
3242
3243 v = *(int *)safe_data;
3244
3245 for (i = 0; i < nr_enums; i++) {
3246 if (v != enums[i].val)
3247 continue;
3248
3249 btf_show_type_value(show, "%s",
3250 __btf_name_by_offset(btf,
3251 enums[i].name_off));
3252
3253 btf_show_end_type(show);
3254 return;
3255 }
3256
3257 btf_show_type_value(show, "%d", v);
3258 btf_show_end_type(show);
3259 }
3260
3261 static struct btf_kind_operations enum_ops = {
3262 .check_meta = btf_enum_check_meta,
3263 .resolve = btf_df_resolve,
3264 .check_member = btf_enum_check_member,
3265 .check_kflag_member = btf_enum_check_kflag_member,
3266 .log_details = btf_enum_log,
3267 .show = btf_enum_show,
3268 };
3269
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3270 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3271 const struct btf_type *t,
3272 u32 meta_left)
3273 {
3274 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3275
3276 if (meta_left < meta_needed) {
3277 btf_verifier_log_basic(env, t,
3278 "meta_left:%u meta_needed:%u",
3279 meta_left, meta_needed);
3280 return -EINVAL;
3281 }
3282
3283 if (t->name_off) {
3284 btf_verifier_log_type(env, t, "Invalid name");
3285 return -EINVAL;
3286 }
3287
3288 if (btf_type_kflag(t)) {
3289 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3290 return -EINVAL;
3291 }
3292
3293 btf_verifier_log_type(env, t, NULL);
3294
3295 return meta_needed;
3296 }
3297
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)3298 static void btf_func_proto_log(struct btf_verifier_env *env,
3299 const struct btf_type *t)
3300 {
3301 const struct btf_param *args = (const struct btf_param *)(t + 1);
3302 u16 nr_args = btf_type_vlen(t), i;
3303
3304 btf_verifier_log(env, "return=%u args=(", t->type);
3305 if (!nr_args) {
3306 btf_verifier_log(env, "void");
3307 goto done;
3308 }
3309
3310 if (nr_args == 1 && !args[0].type) {
3311 /* Only one vararg */
3312 btf_verifier_log(env, "vararg");
3313 goto done;
3314 }
3315
3316 btf_verifier_log(env, "%u %s", args[0].type,
3317 __btf_name_by_offset(env->btf,
3318 args[0].name_off));
3319 for (i = 1; i < nr_args - 1; i++)
3320 btf_verifier_log(env, ", %u %s", args[i].type,
3321 __btf_name_by_offset(env->btf,
3322 args[i].name_off));
3323
3324 if (nr_args > 1) {
3325 const struct btf_param *last_arg = &args[nr_args - 1];
3326
3327 if (last_arg->type)
3328 btf_verifier_log(env, ", %u %s", last_arg->type,
3329 __btf_name_by_offset(env->btf,
3330 last_arg->name_off));
3331 else
3332 btf_verifier_log(env, ", vararg");
3333 }
3334
3335 done:
3336 btf_verifier_log(env, ")");
3337 }
3338
3339 static struct btf_kind_operations func_proto_ops = {
3340 .check_meta = btf_func_proto_check_meta,
3341 .resolve = btf_df_resolve,
3342 /*
3343 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3344 * a struct's member.
3345 *
3346 * It should be a funciton pointer instead.
3347 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3348 *
3349 * Hence, there is no btf_func_check_member().
3350 */
3351 .check_member = btf_df_check_member,
3352 .check_kflag_member = btf_df_check_kflag_member,
3353 .log_details = btf_func_proto_log,
3354 .show = btf_df_show,
3355 };
3356
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3357 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3358 const struct btf_type *t,
3359 u32 meta_left)
3360 {
3361 if (!t->name_off ||
3362 !btf_name_valid_identifier(env->btf, t->name_off)) {
3363 btf_verifier_log_type(env, t, "Invalid name");
3364 return -EINVAL;
3365 }
3366
3367 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3368 btf_verifier_log_type(env, t, "Invalid func linkage");
3369 return -EINVAL;
3370 }
3371
3372 if (btf_type_kflag(t)) {
3373 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3374 return -EINVAL;
3375 }
3376
3377 btf_verifier_log_type(env, t, NULL);
3378
3379 return 0;
3380 }
3381
3382 static struct btf_kind_operations func_ops = {
3383 .check_meta = btf_func_check_meta,
3384 .resolve = btf_df_resolve,
3385 .check_member = btf_df_check_member,
3386 .check_kflag_member = btf_df_check_kflag_member,
3387 .log_details = btf_ref_type_log,
3388 .show = btf_df_show,
3389 };
3390
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3391 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3392 const struct btf_type *t,
3393 u32 meta_left)
3394 {
3395 const struct btf_var *var;
3396 u32 meta_needed = sizeof(*var);
3397
3398 if (meta_left < meta_needed) {
3399 btf_verifier_log_basic(env, t,
3400 "meta_left:%u meta_needed:%u",
3401 meta_left, meta_needed);
3402 return -EINVAL;
3403 }
3404
3405 if (btf_type_vlen(t)) {
3406 btf_verifier_log_type(env, t, "vlen != 0");
3407 return -EINVAL;
3408 }
3409
3410 if (btf_type_kflag(t)) {
3411 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3412 return -EINVAL;
3413 }
3414
3415 if (!t->name_off ||
3416 !__btf_name_valid(env->btf, t->name_off)) {
3417 btf_verifier_log_type(env, t, "Invalid name");
3418 return -EINVAL;
3419 }
3420
3421 /* A var cannot be in type void */
3422 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3423 btf_verifier_log_type(env, t, "Invalid type_id");
3424 return -EINVAL;
3425 }
3426
3427 var = btf_type_var(t);
3428 if (var->linkage != BTF_VAR_STATIC &&
3429 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3430 btf_verifier_log_type(env, t, "Linkage not supported");
3431 return -EINVAL;
3432 }
3433
3434 btf_verifier_log_type(env, t, NULL);
3435
3436 return meta_needed;
3437 }
3438
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)3439 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3440 {
3441 const struct btf_var *var = btf_type_var(t);
3442
3443 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3444 }
3445
3446 static const struct btf_kind_operations var_ops = {
3447 .check_meta = btf_var_check_meta,
3448 .resolve = btf_var_resolve,
3449 .check_member = btf_df_check_member,
3450 .check_kflag_member = btf_df_check_kflag_member,
3451 .log_details = btf_var_log,
3452 .show = btf_var_show,
3453 };
3454
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3455 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3456 const struct btf_type *t,
3457 u32 meta_left)
3458 {
3459 const struct btf_var_secinfo *vsi;
3460 u64 last_vsi_end_off = 0, sum = 0;
3461 u32 i, meta_needed;
3462
3463 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3464 if (meta_left < meta_needed) {
3465 btf_verifier_log_basic(env, t,
3466 "meta_left:%u meta_needed:%u",
3467 meta_left, meta_needed);
3468 return -EINVAL;
3469 }
3470
3471 if (!btf_type_vlen(t)) {
3472 btf_verifier_log_type(env, t, "vlen == 0");
3473 return -EINVAL;
3474 }
3475
3476 if (!t->size) {
3477 btf_verifier_log_type(env, t, "size == 0");
3478 return -EINVAL;
3479 }
3480
3481 if (btf_type_kflag(t)) {
3482 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3483 return -EINVAL;
3484 }
3485
3486 if (!t->name_off ||
3487 !btf_name_valid_section(env->btf, t->name_off)) {
3488 btf_verifier_log_type(env, t, "Invalid name");
3489 return -EINVAL;
3490 }
3491
3492 btf_verifier_log_type(env, t, NULL);
3493
3494 for_each_vsi(i, t, vsi) {
3495 /* A var cannot be in type void */
3496 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3497 btf_verifier_log_vsi(env, t, vsi,
3498 "Invalid type_id");
3499 return -EINVAL;
3500 }
3501
3502 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3503 btf_verifier_log_vsi(env, t, vsi,
3504 "Invalid offset");
3505 return -EINVAL;
3506 }
3507
3508 if (!vsi->size || vsi->size > t->size) {
3509 btf_verifier_log_vsi(env, t, vsi,
3510 "Invalid size");
3511 return -EINVAL;
3512 }
3513
3514 last_vsi_end_off = vsi->offset + vsi->size;
3515 if (last_vsi_end_off > t->size) {
3516 btf_verifier_log_vsi(env, t, vsi,
3517 "Invalid offset+size");
3518 return -EINVAL;
3519 }
3520
3521 btf_verifier_log_vsi(env, t, vsi, NULL);
3522 sum += vsi->size;
3523 }
3524
3525 if (t->size < sum) {
3526 btf_verifier_log_type(env, t, "Invalid btf_info size");
3527 return -EINVAL;
3528 }
3529
3530 return meta_needed;
3531 }
3532
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3533 static int btf_datasec_resolve(struct btf_verifier_env *env,
3534 const struct resolve_vertex *v)
3535 {
3536 const struct btf_var_secinfo *vsi;
3537 struct btf *btf = env->btf;
3538 u16 i;
3539
3540 env->resolve_mode = RESOLVE_TBD;
3541 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3542 u32 var_type_id = vsi->type, type_id, type_size = 0;
3543 const struct btf_type *var_type = btf_type_by_id(env->btf,
3544 var_type_id);
3545 if (!var_type || !btf_type_is_var(var_type)) {
3546 btf_verifier_log_vsi(env, v->t, vsi,
3547 "Not a VAR kind member");
3548 return -EINVAL;
3549 }
3550
3551 if (!env_type_is_resolve_sink(env, var_type) &&
3552 !env_type_is_resolved(env, var_type_id)) {
3553 env_stack_set_next_member(env, i + 1);
3554 return env_stack_push(env, var_type, var_type_id);
3555 }
3556
3557 type_id = var_type->type;
3558 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3559 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3560 return -EINVAL;
3561 }
3562
3563 if (vsi->size < type_size) {
3564 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3565 return -EINVAL;
3566 }
3567 }
3568
3569 env_stack_pop_resolved(env, 0, 0);
3570 return 0;
3571 }
3572
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)3573 static void btf_datasec_log(struct btf_verifier_env *env,
3574 const struct btf_type *t)
3575 {
3576 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3577 }
3578
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3579 static void btf_datasec_show(const struct btf *btf,
3580 const struct btf_type *t, u32 type_id,
3581 void *data, u8 bits_offset,
3582 struct btf_show *show)
3583 {
3584 const struct btf_var_secinfo *vsi;
3585 const struct btf_type *var;
3586 u32 i;
3587
3588 if (!btf_show_start_type(show, t, type_id, data))
3589 return;
3590
3591 btf_show_type_value(show, "section (\"%s\") = {",
3592 __btf_name_by_offset(btf, t->name_off));
3593 for_each_vsi(i, t, vsi) {
3594 var = btf_type_by_id(btf, vsi->type);
3595 if (i)
3596 btf_show(show, ",");
3597 btf_type_ops(var)->show(btf, var, vsi->type,
3598 data + vsi->offset, bits_offset, show);
3599 }
3600 btf_show_end_type(show);
3601 }
3602
3603 static const struct btf_kind_operations datasec_ops = {
3604 .check_meta = btf_datasec_check_meta,
3605 .resolve = btf_datasec_resolve,
3606 .check_member = btf_df_check_member,
3607 .check_kflag_member = btf_df_check_kflag_member,
3608 .log_details = btf_datasec_log,
3609 .show = btf_datasec_show,
3610 };
3611
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)3612 static int btf_func_proto_check(struct btf_verifier_env *env,
3613 const struct btf_type *t)
3614 {
3615 const struct btf_type *ret_type;
3616 const struct btf_param *args;
3617 const struct btf *btf;
3618 u16 nr_args, i;
3619 int err;
3620
3621 btf = env->btf;
3622 args = (const struct btf_param *)(t + 1);
3623 nr_args = btf_type_vlen(t);
3624
3625 /* Check func return type which could be "void" (t->type == 0) */
3626 if (t->type) {
3627 u32 ret_type_id = t->type;
3628
3629 ret_type = btf_type_by_id(btf, ret_type_id);
3630 if (!ret_type) {
3631 btf_verifier_log_type(env, t, "Invalid return type");
3632 return -EINVAL;
3633 }
3634
3635 if (btf_type_needs_resolve(ret_type) &&
3636 !env_type_is_resolved(env, ret_type_id)) {
3637 err = btf_resolve(env, ret_type, ret_type_id);
3638 if (err)
3639 return err;
3640 }
3641
3642 /* Ensure the return type is a type that has a size */
3643 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3644 btf_verifier_log_type(env, t, "Invalid return type");
3645 return -EINVAL;
3646 }
3647 }
3648
3649 if (!nr_args)
3650 return 0;
3651
3652 /* Last func arg type_id could be 0 if it is a vararg */
3653 if (!args[nr_args - 1].type) {
3654 if (args[nr_args - 1].name_off) {
3655 btf_verifier_log_type(env, t, "Invalid arg#%u",
3656 nr_args);
3657 return -EINVAL;
3658 }
3659 nr_args--;
3660 }
3661
3662 err = 0;
3663 for (i = 0; i < nr_args; i++) {
3664 const struct btf_type *arg_type;
3665 u32 arg_type_id;
3666
3667 arg_type_id = args[i].type;
3668 arg_type = btf_type_by_id(btf, arg_type_id);
3669 if (!arg_type) {
3670 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3671 err = -EINVAL;
3672 break;
3673 }
3674
3675 if (btf_type_is_resolve_source_only(arg_type)) {
3676 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3677 return -EINVAL;
3678 }
3679
3680 if (args[i].name_off &&
3681 (!btf_name_offset_valid(btf, args[i].name_off) ||
3682 !btf_name_valid_identifier(btf, args[i].name_off))) {
3683 btf_verifier_log_type(env, t,
3684 "Invalid arg#%u", i + 1);
3685 err = -EINVAL;
3686 break;
3687 }
3688
3689 if (btf_type_needs_resolve(arg_type) &&
3690 !env_type_is_resolved(env, arg_type_id)) {
3691 err = btf_resolve(env, arg_type, arg_type_id);
3692 if (err)
3693 break;
3694 }
3695
3696 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3697 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3698 err = -EINVAL;
3699 break;
3700 }
3701 }
3702
3703 return err;
3704 }
3705
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)3706 static int btf_func_check(struct btf_verifier_env *env,
3707 const struct btf_type *t)
3708 {
3709 const struct btf_type *proto_type;
3710 const struct btf_param *args;
3711 const struct btf *btf;
3712 u16 nr_args, i;
3713
3714 btf = env->btf;
3715 proto_type = btf_type_by_id(btf, t->type);
3716
3717 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3718 btf_verifier_log_type(env, t, "Invalid type_id");
3719 return -EINVAL;
3720 }
3721
3722 args = (const struct btf_param *)(proto_type + 1);
3723 nr_args = btf_type_vlen(proto_type);
3724 for (i = 0; i < nr_args; i++) {
3725 if (!args[i].name_off && args[i].type) {
3726 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3727 return -EINVAL;
3728 }
3729 }
3730
3731 return 0;
3732 }
3733
3734 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3735 [BTF_KIND_INT] = &int_ops,
3736 [BTF_KIND_PTR] = &ptr_ops,
3737 [BTF_KIND_ARRAY] = &array_ops,
3738 [BTF_KIND_STRUCT] = &struct_ops,
3739 [BTF_KIND_UNION] = &struct_ops,
3740 [BTF_KIND_ENUM] = &enum_ops,
3741 [BTF_KIND_FWD] = &fwd_ops,
3742 [BTF_KIND_TYPEDEF] = &modifier_ops,
3743 [BTF_KIND_VOLATILE] = &modifier_ops,
3744 [BTF_KIND_CONST] = &modifier_ops,
3745 [BTF_KIND_RESTRICT] = &modifier_ops,
3746 [BTF_KIND_FUNC] = &func_ops,
3747 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3748 [BTF_KIND_VAR] = &var_ops,
3749 [BTF_KIND_DATASEC] = &datasec_ops,
3750 };
3751
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3752 static s32 btf_check_meta(struct btf_verifier_env *env,
3753 const struct btf_type *t,
3754 u32 meta_left)
3755 {
3756 u32 saved_meta_left = meta_left;
3757 s32 var_meta_size;
3758
3759 if (meta_left < sizeof(*t)) {
3760 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3761 env->log_type_id, meta_left, sizeof(*t));
3762 return -EINVAL;
3763 }
3764 meta_left -= sizeof(*t);
3765
3766 if (t->info & ~BTF_INFO_MASK) {
3767 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3768 env->log_type_id, t->info);
3769 return -EINVAL;
3770 }
3771
3772 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3773 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3774 btf_verifier_log(env, "[%u] Invalid kind:%u",
3775 env->log_type_id, BTF_INFO_KIND(t->info));
3776 return -EINVAL;
3777 }
3778
3779 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3780 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3781 env->log_type_id, t->name_off);
3782 return -EINVAL;
3783 }
3784
3785 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3786 if (var_meta_size < 0)
3787 return var_meta_size;
3788
3789 meta_left -= var_meta_size;
3790
3791 return saved_meta_left - meta_left;
3792 }
3793
btf_check_all_metas(struct btf_verifier_env * env)3794 static int btf_check_all_metas(struct btf_verifier_env *env)
3795 {
3796 struct btf *btf = env->btf;
3797 struct btf_header *hdr;
3798 void *cur, *end;
3799
3800 hdr = &btf->hdr;
3801 cur = btf->nohdr_data + hdr->type_off;
3802 end = cur + hdr->type_len;
3803
3804 env->log_type_id = 1;
3805 while (cur < end) {
3806 struct btf_type *t = cur;
3807 s32 meta_size;
3808
3809 meta_size = btf_check_meta(env, t, end - cur);
3810 if (meta_size < 0)
3811 return meta_size;
3812
3813 btf_add_type(env, t);
3814 cur += meta_size;
3815 env->log_type_id++;
3816 }
3817
3818 return 0;
3819 }
3820
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)3821 static bool btf_resolve_valid(struct btf_verifier_env *env,
3822 const struct btf_type *t,
3823 u32 type_id)
3824 {
3825 struct btf *btf = env->btf;
3826
3827 if (!env_type_is_resolved(env, type_id))
3828 return false;
3829
3830 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3831 return !btf->resolved_ids[type_id] &&
3832 !btf->resolved_sizes[type_id];
3833
3834 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3835 btf_type_is_var(t)) {
3836 t = btf_type_id_resolve(btf, &type_id);
3837 return t &&
3838 !btf_type_is_modifier(t) &&
3839 !btf_type_is_var(t) &&
3840 !btf_type_is_datasec(t);
3841 }
3842
3843 if (btf_type_is_array(t)) {
3844 const struct btf_array *array = btf_type_array(t);
3845 const struct btf_type *elem_type;
3846 u32 elem_type_id = array->type;
3847 u32 elem_size;
3848
3849 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3850 return elem_type && !btf_type_is_modifier(elem_type) &&
3851 (array->nelems * elem_size ==
3852 btf->resolved_sizes[type_id]);
3853 }
3854
3855 return false;
3856 }
3857
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)3858 static int btf_resolve(struct btf_verifier_env *env,
3859 const struct btf_type *t, u32 type_id)
3860 {
3861 u32 save_log_type_id = env->log_type_id;
3862 const struct resolve_vertex *v;
3863 int err = 0;
3864
3865 env->resolve_mode = RESOLVE_TBD;
3866 env_stack_push(env, t, type_id);
3867 while (!err && (v = env_stack_peak(env))) {
3868 env->log_type_id = v->type_id;
3869 err = btf_type_ops(v->t)->resolve(env, v);
3870 }
3871
3872 env->log_type_id = type_id;
3873 if (err == -E2BIG) {
3874 btf_verifier_log_type(env, t,
3875 "Exceeded max resolving depth:%u",
3876 MAX_RESOLVE_DEPTH);
3877 } else if (err == -EEXIST) {
3878 btf_verifier_log_type(env, t, "Loop detected");
3879 }
3880
3881 /* Final sanity check */
3882 if (!err && !btf_resolve_valid(env, t, type_id)) {
3883 btf_verifier_log_type(env, t, "Invalid resolve state");
3884 err = -EINVAL;
3885 }
3886
3887 env->log_type_id = save_log_type_id;
3888 return err;
3889 }
3890
btf_check_all_types(struct btf_verifier_env * env)3891 static int btf_check_all_types(struct btf_verifier_env *env)
3892 {
3893 struct btf *btf = env->btf;
3894 u32 type_id;
3895 int err;
3896
3897 err = env_resolve_init(env);
3898 if (err)
3899 return err;
3900
3901 env->phase++;
3902 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3903 const struct btf_type *t = btf_type_by_id(btf, type_id);
3904
3905 env->log_type_id = type_id;
3906 if (btf_type_needs_resolve(t) &&
3907 !env_type_is_resolved(env, type_id)) {
3908 err = btf_resolve(env, t, type_id);
3909 if (err)
3910 return err;
3911 }
3912
3913 if (btf_type_is_func_proto(t)) {
3914 err = btf_func_proto_check(env, t);
3915 if (err)
3916 return err;
3917 }
3918
3919 if (btf_type_is_func(t)) {
3920 err = btf_func_check(env, t);
3921 if (err)
3922 return err;
3923 }
3924 }
3925
3926 return 0;
3927 }
3928
btf_parse_type_sec(struct btf_verifier_env * env)3929 static int btf_parse_type_sec(struct btf_verifier_env *env)
3930 {
3931 const struct btf_header *hdr = &env->btf->hdr;
3932 int err;
3933
3934 /* Type section must align to 4 bytes */
3935 if (hdr->type_off & (sizeof(u32) - 1)) {
3936 btf_verifier_log(env, "Unaligned type_off");
3937 return -EINVAL;
3938 }
3939
3940 if (!hdr->type_len) {
3941 btf_verifier_log(env, "No type found");
3942 return -EINVAL;
3943 }
3944
3945 err = btf_check_all_metas(env);
3946 if (err)
3947 return err;
3948
3949 return btf_check_all_types(env);
3950 }
3951
btf_parse_str_sec(struct btf_verifier_env * env)3952 static int btf_parse_str_sec(struct btf_verifier_env *env)
3953 {
3954 const struct btf_header *hdr;
3955 struct btf *btf = env->btf;
3956 const char *start, *end;
3957
3958 hdr = &btf->hdr;
3959 start = btf->nohdr_data + hdr->str_off;
3960 end = start + hdr->str_len;
3961
3962 if (end != btf->data + btf->data_size) {
3963 btf_verifier_log(env, "String section is not at the end");
3964 return -EINVAL;
3965 }
3966
3967 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3968 start[0] || end[-1]) {
3969 btf_verifier_log(env, "Invalid string section");
3970 return -EINVAL;
3971 }
3972
3973 btf->strings = start;
3974
3975 return 0;
3976 }
3977
3978 static const size_t btf_sec_info_offset[] = {
3979 offsetof(struct btf_header, type_off),
3980 offsetof(struct btf_header, str_off),
3981 };
3982
btf_sec_info_cmp(const void * a,const void * b)3983 static int btf_sec_info_cmp(const void *a, const void *b)
3984 {
3985 const struct btf_sec_info *x = a;
3986 const struct btf_sec_info *y = b;
3987
3988 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3989 }
3990
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)3991 static int btf_check_sec_info(struct btf_verifier_env *env,
3992 u32 btf_data_size)
3993 {
3994 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3995 u32 total, expected_total, i;
3996 const struct btf_header *hdr;
3997 const struct btf *btf;
3998
3999 btf = env->btf;
4000 hdr = &btf->hdr;
4001
4002 /* Populate the secs from hdr */
4003 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4004 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4005 btf_sec_info_offset[i]);
4006
4007 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4008 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4009
4010 /* Check for gaps and overlap among sections */
4011 total = 0;
4012 expected_total = btf_data_size - hdr->hdr_len;
4013 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4014 if (expected_total < secs[i].off) {
4015 btf_verifier_log(env, "Invalid section offset");
4016 return -EINVAL;
4017 }
4018 if (total < secs[i].off) {
4019 /* gap */
4020 btf_verifier_log(env, "Unsupported section found");
4021 return -EINVAL;
4022 }
4023 if (total > secs[i].off) {
4024 btf_verifier_log(env, "Section overlap found");
4025 return -EINVAL;
4026 }
4027 if (expected_total - total < secs[i].len) {
4028 btf_verifier_log(env,
4029 "Total section length too long");
4030 return -EINVAL;
4031 }
4032 total += secs[i].len;
4033 }
4034
4035 /* There is data other than hdr and known sections */
4036 if (expected_total != total) {
4037 btf_verifier_log(env, "Unsupported section found");
4038 return -EINVAL;
4039 }
4040
4041 return 0;
4042 }
4043
btf_parse_hdr(struct btf_verifier_env * env)4044 static int btf_parse_hdr(struct btf_verifier_env *env)
4045 {
4046 u32 hdr_len, hdr_copy, btf_data_size;
4047 const struct btf_header *hdr;
4048 struct btf *btf;
4049 int err;
4050
4051 btf = env->btf;
4052 btf_data_size = btf->data_size;
4053
4054 if (btf_data_size <
4055 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4056 btf_verifier_log(env, "hdr_len not found");
4057 return -EINVAL;
4058 }
4059
4060 hdr = btf->data;
4061 hdr_len = hdr->hdr_len;
4062 if (btf_data_size < hdr_len) {
4063 btf_verifier_log(env, "btf_header not found");
4064 return -EINVAL;
4065 }
4066
4067 /* Ensure the unsupported header fields are zero */
4068 if (hdr_len > sizeof(btf->hdr)) {
4069 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4070 u8 *end = btf->data + hdr_len;
4071
4072 for (; expected_zero < end; expected_zero++) {
4073 if (*expected_zero) {
4074 btf_verifier_log(env, "Unsupported btf_header");
4075 return -E2BIG;
4076 }
4077 }
4078 }
4079
4080 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4081 memcpy(&btf->hdr, btf->data, hdr_copy);
4082
4083 hdr = &btf->hdr;
4084
4085 btf_verifier_log_hdr(env, btf_data_size);
4086
4087 if (hdr->magic != BTF_MAGIC) {
4088 btf_verifier_log(env, "Invalid magic");
4089 return -EINVAL;
4090 }
4091
4092 if (hdr->version != BTF_VERSION) {
4093 btf_verifier_log(env, "Unsupported version");
4094 return -ENOTSUPP;
4095 }
4096
4097 if (hdr->flags) {
4098 btf_verifier_log(env, "Unsupported flags");
4099 return -ENOTSUPP;
4100 }
4101
4102 if (btf_data_size == hdr->hdr_len) {
4103 btf_verifier_log(env, "No data");
4104 return -EINVAL;
4105 }
4106
4107 err = btf_check_sec_info(env, btf_data_size);
4108 if (err)
4109 return err;
4110
4111 return 0;
4112 }
4113
btf_parse(void __user * btf_data,u32 btf_data_size,u32 log_level,char __user * log_ubuf,u32 log_size)4114 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4115 u32 log_level, char __user *log_ubuf, u32 log_size)
4116 {
4117 struct btf_verifier_env *env = NULL;
4118 struct bpf_verifier_log *log;
4119 struct btf *btf = NULL;
4120 u8 *data;
4121 int err;
4122
4123 if (btf_data_size > BTF_MAX_SIZE)
4124 return ERR_PTR(-E2BIG);
4125
4126 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4127 if (!env)
4128 return ERR_PTR(-ENOMEM);
4129
4130 log = &env->log;
4131 if (log_level || log_ubuf || log_size) {
4132 /* user requested verbose verifier output
4133 * and supplied buffer to store the verification trace
4134 */
4135 log->level = log_level;
4136 log->ubuf = log_ubuf;
4137 log->len_total = log_size;
4138
4139 /* log attributes have to be sane */
4140 if (!bpf_verifier_log_attr_valid(log)) {
4141 err = -EINVAL;
4142 goto errout;
4143 }
4144 }
4145
4146 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4147 if (!btf) {
4148 err = -ENOMEM;
4149 goto errout;
4150 }
4151 env->btf = btf;
4152
4153 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4154 if (!data) {
4155 err = -ENOMEM;
4156 goto errout;
4157 }
4158
4159 btf->data = data;
4160 btf->data_size = btf_data_size;
4161
4162 if (copy_from_user(data, btf_data, btf_data_size)) {
4163 err = -EFAULT;
4164 goto errout;
4165 }
4166
4167 err = btf_parse_hdr(env);
4168 if (err)
4169 goto errout;
4170
4171 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4172
4173 err = btf_parse_str_sec(env);
4174 if (err)
4175 goto errout;
4176
4177 err = btf_parse_type_sec(env);
4178 if (err)
4179 goto errout;
4180
4181 if (log->level && bpf_verifier_log_full(log)) {
4182 err = -ENOSPC;
4183 goto errout;
4184 }
4185
4186 btf_verifier_env_free(env);
4187 refcount_set(&btf->refcnt, 1);
4188 return btf;
4189
4190 errout:
4191 btf_verifier_env_free(env);
4192 if (btf)
4193 btf_free(btf);
4194 return ERR_PTR(err);
4195 }
4196
4197 extern char __weak __start_BTF[];
4198 extern char __weak __stop_BTF[];
4199 extern struct btf *btf_vmlinux;
4200
4201 #define BPF_MAP_TYPE(_id, _ops)
4202 #define BPF_LINK_TYPE(_id, _name)
4203 static union {
4204 struct bpf_ctx_convert {
4205 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4206 prog_ctx_type _id##_prog; \
4207 kern_ctx_type _id##_kern;
4208 #include <linux/bpf_types.h>
4209 #undef BPF_PROG_TYPE
4210 } *__t;
4211 /* 't' is written once under lock. Read many times. */
4212 const struct btf_type *t;
4213 } bpf_ctx_convert;
4214 enum {
4215 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4216 __ctx_convert##_id,
4217 #include <linux/bpf_types.h>
4218 #undef BPF_PROG_TYPE
4219 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4220 };
4221 static u8 bpf_ctx_convert_map[] = {
4222 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4223 [_id] = __ctx_convert##_id,
4224 #include <linux/bpf_types.h>
4225 #undef BPF_PROG_TYPE
4226 0, /* avoid empty array */
4227 };
4228 #undef BPF_MAP_TYPE
4229 #undef BPF_LINK_TYPE
4230
4231 static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4232 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4233 const struct btf_type *t, enum bpf_prog_type prog_type,
4234 int arg)
4235 {
4236 const struct btf_type *conv_struct;
4237 const struct btf_type *ctx_struct;
4238 const struct btf_member *ctx_type;
4239 const char *tname, *ctx_tname;
4240
4241 conv_struct = bpf_ctx_convert.t;
4242 if (!conv_struct) {
4243 bpf_log(log, "btf_vmlinux is malformed\n");
4244 return NULL;
4245 }
4246 t = btf_type_by_id(btf, t->type);
4247 while (btf_type_is_modifier(t))
4248 t = btf_type_by_id(btf, t->type);
4249 if (!btf_type_is_struct(t)) {
4250 /* Only pointer to struct is supported for now.
4251 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4252 * is not supported yet.
4253 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4254 */
4255 if (log->level & BPF_LOG_LEVEL)
4256 bpf_log(log, "arg#%d type is not a struct\n", arg);
4257 return NULL;
4258 }
4259 tname = btf_name_by_offset(btf, t->name_off);
4260 if (!tname) {
4261 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4262 return NULL;
4263 }
4264 /* prog_type is valid bpf program type. No need for bounds check. */
4265 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4266 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4267 * Like 'struct __sk_buff'
4268 */
4269 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4270 if (!ctx_struct)
4271 /* should not happen */
4272 return NULL;
4273 again:
4274 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4275 if (!ctx_tname) {
4276 /* should not happen */
4277 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4278 return NULL;
4279 }
4280 /* only compare that prog's ctx type name is the same as
4281 * kernel expects. No need to compare field by field.
4282 * It's ok for bpf prog to do:
4283 * struct __sk_buff {};
4284 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4285 * { // no fields of skb are ever used }
4286 */
4287 if (strcmp(ctx_tname, tname)) {
4288 /* bpf_user_pt_regs_t is a typedef, so resolve it to
4289 * underlying struct and check name again
4290 */
4291 if (!btf_type_is_modifier(ctx_struct))
4292 return NULL;
4293 while (btf_type_is_modifier(ctx_struct))
4294 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
4295 goto again;
4296 }
4297 return ctx_type;
4298 }
4299
4300 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4301 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4302 #define BPF_LINK_TYPE(_id, _name)
4303 #define BPF_MAP_TYPE(_id, _ops) \
4304 [_id] = &_ops,
4305 #include <linux/bpf_types.h>
4306 #undef BPF_PROG_TYPE
4307 #undef BPF_LINK_TYPE
4308 #undef BPF_MAP_TYPE
4309 };
4310
btf_vmlinux_map_ids_init(const struct btf * btf,struct bpf_verifier_log * log)4311 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4312 struct bpf_verifier_log *log)
4313 {
4314 const struct bpf_map_ops *ops;
4315 int i, btf_id;
4316
4317 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4318 ops = btf_vmlinux_map_ops[i];
4319 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4320 continue;
4321 if (!ops->map_btf_name || !ops->map_btf_id) {
4322 bpf_log(log, "map type %d is misconfigured\n", i);
4323 return -EINVAL;
4324 }
4325 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4326 BTF_KIND_STRUCT);
4327 if (btf_id < 0)
4328 return btf_id;
4329 *ops->map_btf_id = btf_id;
4330 }
4331
4332 return 0;
4333 }
4334
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)4335 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4336 struct btf *btf,
4337 const struct btf_type *t,
4338 enum bpf_prog_type prog_type,
4339 int arg)
4340 {
4341 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4342
4343 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4344 if (!prog_ctx_type)
4345 return -ENOENT;
4346 kern_ctx_type = prog_ctx_type + 1;
4347 return kern_ctx_type->type;
4348 }
4349
4350 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)4351 BTF_ID(struct, bpf_ctx_convert)
4352
4353 struct btf *btf_parse_vmlinux(void)
4354 {
4355 struct btf_verifier_env *env = NULL;
4356 struct bpf_verifier_log *log;
4357 struct btf *btf = NULL;
4358 int err;
4359
4360 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4361 if (!env)
4362 return ERR_PTR(-ENOMEM);
4363
4364 log = &env->log;
4365 log->level = BPF_LOG_KERNEL;
4366
4367 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4368 if (!btf) {
4369 err = -ENOMEM;
4370 goto errout;
4371 }
4372 env->btf = btf;
4373
4374 btf->data = __start_BTF;
4375 btf->data_size = __stop_BTF - __start_BTF;
4376
4377 err = btf_parse_hdr(env);
4378 if (err)
4379 goto errout;
4380
4381 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4382
4383 err = btf_parse_str_sec(env);
4384 if (err)
4385 goto errout;
4386
4387 err = btf_check_all_metas(env);
4388 if (err)
4389 goto errout;
4390
4391 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4392 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4393
4394 /* find bpf map structs for map_ptr access checking */
4395 err = btf_vmlinux_map_ids_init(btf, log);
4396 if (err < 0)
4397 goto errout;
4398
4399 bpf_struct_ops_init(btf, log);
4400
4401 btf_verifier_env_free(env);
4402 refcount_set(&btf->refcnt, 1);
4403 return btf;
4404
4405 errout:
4406 btf_verifier_env_free(env);
4407 if (btf) {
4408 kvfree(btf->types);
4409 kfree(btf);
4410 }
4411 return ERR_PTR(err);
4412 }
4413
bpf_prog_get_target_btf(const struct bpf_prog * prog)4414 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4415 {
4416 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4417
4418 if (tgt_prog) {
4419 return tgt_prog->aux->btf;
4420 } else {
4421 return btf_vmlinux;
4422 }
4423 }
4424
is_string_ptr(struct btf * btf,const struct btf_type * t)4425 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4426 {
4427 /* t comes in already as a pointer */
4428 t = btf_type_by_id(btf, t->type);
4429
4430 /* allow const */
4431 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4432 t = btf_type_by_id(btf, t->type);
4433
4434 /* char, signed char, unsigned char */
4435 return btf_type_is_int(t) && t->size == 1;
4436 }
4437
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)4438 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4439 const struct bpf_prog *prog,
4440 struct bpf_insn_access_aux *info)
4441 {
4442 const struct btf_type *t = prog->aux->attach_func_proto;
4443 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4444 struct btf *btf = bpf_prog_get_target_btf(prog);
4445 const char *tname = prog->aux->attach_func_name;
4446 struct bpf_verifier_log *log = info->log;
4447 const struct btf_param *args;
4448 u32 nr_args, arg;
4449 int i, ret;
4450
4451 if (off % 8) {
4452 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4453 tname, off);
4454 return false;
4455 }
4456 arg = off / 8;
4457 args = (const struct btf_param *)(t + 1);
4458 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4459 nr_args = t ? btf_type_vlen(t) : 5;
4460 if (prog->aux->attach_btf_trace) {
4461 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4462 args++;
4463 nr_args--;
4464 }
4465
4466 if (arg > nr_args) {
4467 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4468 tname, arg + 1);
4469 return false;
4470 }
4471
4472 if (arg == nr_args) {
4473 switch (prog->expected_attach_type) {
4474 case BPF_LSM_MAC:
4475 case BPF_TRACE_FEXIT:
4476 /* When LSM programs are attached to void LSM hooks
4477 * they use FEXIT trampolines and when attached to
4478 * int LSM hooks, they use MODIFY_RETURN trampolines.
4479 *
4480 * While the LSM programs are BPF_MODIFY_RETURN-like
4481 * the check:
4482 *
4483 * if (ret_type != 'int')
4484 * return -EINVAL;
4485 *
4486 * is _not_ done here. This is still safe as LSM hooks
4487 * have only void and int return types.
4488 */
4489 if (!t)
4490 return true;
4491 t = btf_type_by_id(btf, t->type);
4492 break;
4493 case BPF_MODIFY_RETURN:
4494 /* For now the BPF_MODIFY_RETURN can only be attached to
4495 * functions that return an int.
4496 */
4497 if (!t)
4498 return false;
4499
4500 t = btf_type_skip_modifiers(btf, t->type, NULL);
4501 if (!btf_type_is_small_int(t)) {
4502 bpf_log(log,
4503 "ret type %s not allowed for fmod_ret\n",
4504 btf_kind_str[BTF_INFO_KIND(t->info)]);
4505 return false;
4506 }
4507 break;
4508 default:
4509 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4510 tname, arg + 1);
4511 return false;
4512 }
4513 } else {
4514 if (!t)
4515 /* Default prog with 5 args */
4516 return true;
4517 t = btf_type_by_id(btf, args[arg].type);
4518 }
4519
4520 /* skip modifiers */
4521 while (btf_type_is_modifier(t))
4522 t = btf_type_by_id(btf, t->type);
4523 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4524 /* accessing a scalar */
4525 return true;
4526 if (!btf_type_is_ptr(t)) {
4527 bpf_log(log,
4528 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4529 tname, arg,
4530 __btf_name_by_offset(btf, t->name_off),
4531 btf_kind_str[BTF_INFO_KIND(t->info)]);
4532 return false;
4533 }
4534
4535 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4536 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4537 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4538
4539 if (ctx_arg_info->offset == off &&
4540 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4541 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4542 info->reg_type = ctx_arg_info->reg_type;
4543 return true;
4544 }
4545 }
4546
4547 if (t->type == 0)
4548 /* This is a pointer to void.
4549 * It is the same as scalar from the verifier safety pov.
4550 * No further pointer walking is allowed.
4551 */
4552 return true;
4553
4554 if (is_string_ptr(btf, t))
4555 return true;
4556
4557 /* this is a pointer to another type */
4558 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4559 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4560
4561 if (ctx_arg_info->offset == off) {
4562 info->reg_type = ctx_arg_info->reg_type;
4563 info->btf_id = ctx_arg_info->btf_id;
4564 return true;
4565 }
4566 }
4567
4568 info->reg_type = PTR_TO_BTF_ID;
4569 if (tgt_prog) {
4570 enum bpf_prog_type tgt_type;
4571
4572 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4573 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4574 else
4575 tgt_type = tgt_prog->type;
4576
4577 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4578 if (ret > 0) {
4579 info->btf_id = ret;
4580 return true;
4581 } else {
4582 return false;
4583 }
4584 }
4585
4586 info->btf_id = t->type;
4587 t = btf_type_by_id(btf, t->type);
4588 /* skip modifiers */
4589 while (btf_type_is_modifier(t)) {
4590 info->btf_id = t->type;
4591 t = btf_type_by_id(btf, t->type);
4592 }
4593 if (!btf_type_is_struct(t)) {
4594 bpf_log(log,
4595 "func '%s' arg%d type %s is not a struct\n",
4596 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4597 return false;
4598 }
4599 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4600 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4601 __btf_name_by_offset(btf, t->name_off));
4602 return true;
4603 }
4604
4605 enum bpf_struct_walk_result {
4606 /* < 0 error */
4607 WALK_SCALAR = 0,
4608 WALK_PTR,
4609 WALK_STRUCT,
4610 };
4611
btf_struct_walk(struct bpf_verifier_log * log,const struct btf_type * t,int off,int size,u32 * next_btf_id)4612 static int btf_struct_walk(struct bpf_verifier_log *log,
4613 const struct btf_type *t, int off, int size,
4614 u32 *next_btf_id)
4615 {
4616 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4617 const struct btf_type *mtype, *elem_type = NULL;
4618 const struct btf_member *member;
4619 const char *tname, *mname;
4620 u32 vlen, elem_id, mid;
4621
4622 again:
4623 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4624 if (!btf_type_is_struct(t)) {
4625 bpf_log(log, "Type '%s' is not a struct\n", tname);
4626 return -EINVAL;
4627 }
4628
4629 vlen = btf_type_vlen(t);
4630 if (off + size > t->size) {
4631 /* If the last element is a variable size array, we may
4632 * need to relax the rule.
4633 */
4634 struct btf_array *array_elem;
4635
4636 if (vlen == 0)
4637 goto error;
4638
4639 member = btf_type_member(t) + vlen - 1;
4640 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
4641 NULL);
4642 if (!btf_type_is_array(mtype))
4643 goto error;
4644
4645 array_elem = (struct btf_array *)(mtype + 1);
4646 if (array_elem->nelems != 0)
4647 goto error;
4648
4649 moff = btf_member_bit_offset(t, member) / 8;
4650 if (off < moff)
4651 goto error;
4652
4653 /* Only allow structure for now, can be relaxed for
4654 * other types later.
4655 */
4656 t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
4657 NULL);
4658 if (!btf_type_is_struct(t))
4659 goto error;
4660
4661 off = (off - moff) % t->size;
4662 goto again;
4663
4664 error:
4665 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4666 tname, off, size);
4667 return -EACCES;
4668 }
4669
4670 for_each_member(i, t, member) {
4671 /* offset of the field in bytes */
4672 moff = btf_member_bit_offset(t, member) / 8;
4673 if (off + size <= moff)
4674 /* won't find anything, field is already too far */
4675 break;
4676
4677 if (btf_member_bitfield_size(t, member)) {
4678 u32 end_bit = btf_member_bit_offset(t, member) +
4679 btf_member_bitfield_size(t, member);
4680
4681 /* off <= moff instead of off == moff because clang
4682 * does not generate a BTF member for anonymous
4683 * bitfield like the ":16" here:
4684 * struct {
4685 * int :16;
4686 * int x:8;
4687 * };
4688 */
4689 if (off <= moff &&
4690 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4691 return WALK_SCALAR;
4692
4693 /* off may be accessing a following member
4694 *
4695 * or
4696 *
4697 * Doing partial access at either end of this
4698 * bitfield. Continue on this case also to
4699 * treat it as not accessing this bitfield
4700 * and eventually error out as field not
4701 * found to keep it simple.
4702 * It could be relaxed if there was a legit
4703 * partial access case later.
4704 */
4705 continue;
4706 }
4707
4708 /* In case of "off" is pointing to holes of a struct */
4709 if (off < moff)
4710 break;
4711
4712 /* type of the field */
4713 mid = member->type;
4714 mtype = btf_type_by_id(btf_vmlinux, member->type);
4715 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
4716
4717 mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
4718 &elem_type, &elem_id, &total_nelems,
4719 &mid);
4720 if (IS_ERR(mtype)) {
4721 bpf_log(log, "field %s doesn't have size\n", mname);
4722 return -EFAULT;
4723 }
4724
4725 mtrue_end = moff + msize;
4726 if (off >= mtrue_end)
4727 /* no overlap with member, keep iterating */
4728 continue;
4729
4730 if (btf_type_is_array(mtype)) {
4731 u32 elem_idx;
4732
4733 /* __btf_resolve_size() above helps to
4734 * linearize a multi-dimensional array.
4735 *
4736 * The logic here is treating an array
4737 * in a struct as the following way:
4738 *
4739 * struct outer {
4740 * struct inner array[2][2];
4741 * };
4742 *
4743 * looks like:
4744 *
4745 * struct outer {
4746 * struct inner array_elem0;
4747 * struct inner array_elem1;
4748 * struct inner array_elem2;
4749 * struct inner array_elem3;
4750 * };
4751 *
4752 * When accessing outer->array[1][0], it moves
4753 * moff to "array_elem2", set mtype to
4754 * "struct inner", and msize also becomes
4755 * sizeof(struct inner). Then most of the
4756 * remaining logic will fall through without
4757 * caring the current member is an array or
4758 * not.
4759 *
4760 * Unlike mtype/msize/moff, mtrue_end does not
4761 * change. The naming difference ("_true") tells
4762 * that it is not always corresponding to
4763 * the current mtype/msize/moff.
4764 * It is the true end of the current
4765 * member (i.e. array in this case). That
4766 * will allow an int array to be accessed like
4767 * a scratch space,
4768 * i.e. allow access beyond the size of
4769 * the array's element as long as it is
4770 * within the mtrue_end boundary.
4771 */
4772
4773 /* skip empty array */
4774 if (moff == mtrue_end)
4775 continue;
4776
4777 msize /= total_nelems;
4778 elem_idx = (off - moff) / msize;
4779 moff += elem_idx * msize;
4780 mtype = elem_type;
4781 mid = elem_id;
4782 }
4783
4784 /* the 'off' we're looking for is either equal to start
4785 * of this field or inside of this struct
4786 */
4787 if (btf_type_is_struct(mtype)) {
4788 /* our field must be inside that union or struct */
4789 t = mtype;
4790
4791 /* return if the offset matches the member offset */
4792 if (off == moff) {
4793 *next_btf_id = mid;
4794 return WALK_STRUCT;
4795 }
4796
4797 /* adjust offset we're looking for */
4798 off -= moff;
4799 goto again;
4800 }
4801
4802 if (btf_type_is_ptr(mtype)) {
4803 const struct btf_type *stype;
4804 u32 id;
4805
4806 if (msize != size || off != moff) {
4807 bpf_log(log,
4808 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4809 mname, moff, tname, off, size);
4810 return -EACCES;
4811 }
4812 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4813 if (btf_type_is_struct(stype)) {
4814 *next_btf_id = id;
4815 return WALK_PTR;
4816 }
4817 }
4818
4819 /* Allow more flexible access within an int as long as
4820 * it is within mtrue_end.
4821 * Since mtrue_end could be the end of an array,
4822 * that also allows using an array of int as a scratch
4823 * space. e.g. skb->cb[].
4824 */
4825 if (off + size > mtrue_end) {
4826 bpf_log(log,
4827 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4828 mname, mtrue_end, tname, off, size);
4829 return -EACCES;
4830 }
4831
4832 return WALK_SCALAR;
4833 }
4834 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4835 return -EINVAL;
4836 }
4837
btf_struct_access(struct bpf_verifier_log * log,const struct btf_type * t,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id)4838 int btf_struct_access(struct bpf_verifier_log *log,
4839 const struct btf_type *t, int off, int size,
4840 enum bpf_access_type atype __maybe_unused,
4841 u32 *next_btf_id)
4842 {
4843 int err;
4844 u32 id;
4845
4846 do {
4847 err = btf_struct_walk(log, t, off, size, &id);
4848
4849 switch (err) {
4850 case WALK_PTR:
4851 /* If we found the pointer or scalar on t+off,
4852 * we're done.
4853 */
4854 *next_btf_id = id;
4855 return PTR_TO_BTF_ID;
4856 case WALK_SCALAR:
4857 return SCALAR_VALUE;
4858 case WALK_STRUCT:
4859 /* We found nested struct, so continue the search
4860 * by diving in it. At this point the offset is
4861 * aligned with the new type, so set it to 0.
4862 */
4863 t = btf_type_by_id(btf_vmlinux, id);
4864 off = 0;
4865 break;
4866 default:
4867 /* It's either error or unknown return value..
4868 * scream and leave.
4869 */
4870 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
4871 return -EINVAL;
4872 return err;
4873 }
4874 } while (t);
4875
4876 return -EINVAL;
4877 }
4878
btf_struct_ids_match(struct bpf_verifier_log * log,int off,u32 id,u32 need_type_id)4879 bool btf_struct_ids_match(struct bpf_verifier_log *log,
4880 int off, u32 id, u32 need_type_id)
4881 {
4882 const struct btf_type *type;
4883 int err;
4884
4885 /* Are we already done? */
4886 if (need_type_id == id && off == 0)
4887 return true;
4888
4889 again:
4890 type = btf_type_by_id(btf_vmlinux, id);
4891 if (!type)
4892 return false;
4893 err = btf_struct_walk(log, type, off, 1, &id);
4894 if (err != WALK_STRUCT)
4895 return false;
4896
4897 /* We found nested struct object. If it matches
4898 * the requested ID, we're done. Otherwise let's
4899 * continue the search with offset 0 in the new
4900 * type.
4901 */
4902 if (need_type_id != id) {
4903 off = 0;
4904 goto again;
4905 }
4906
4907 return true;
4908 }
4909
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** bad_type)4910 static int __get_type_size(struct btf *btf, u32 btf_id,
4911 const struct btf_type **bad_type)
4912 {
4913 const struct btf_type *t;
4914
4915 if (!btf_id)
4916 /* void */
4917 return 0;
4918 t = btf_type_by_id(btf, btf_id);
4919 while (t && btf_type_is_modifier(t))
4920 t = btf_type_by_id(btf, t->type);
4921 if (!t) {
4922 *bad_type = btf->types[0];
4923 return -EINVAL;
4924 }
4925 if (btf_type_is_ptr(t))
4926 /* kernel size of pointer. Not BPF's size of pointer*/
4927 return sizeof(void *);
4928 if (btf_type_is_int(t) || btf_type_is_enum(t))
4929 return t->size;
4930 *bad_type = t;
4931 return -EINVAL;
4932 }
4933
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)4934 int btf_distill_func_proto(struct bpf_verifier_log *log,
4935 struct btf *btf,
4936 const struct btf_type *func,
4937 const char *tname,
4938 struct btf_func_model *m)
4939 {
4940 const struct btf_param *args;
4941 const struct btf_type *t;
4942 u32 i, nargs;
4943 int ret;
4944
4945 if (!func) {
4946 /* BTF function prototype doesn't match the verifier types.
4947 * Fall back to 5 u64 args.
4948 */
4949 for (i = 0; i < 5; i++)
4950 m->arg_size[i] = 8;
4951 m->ret_size = 8;
4952 m->nr_args = 5;
4953 return 0;
4954 }
4955 args = (const struct btf_param *)(func + 1);
4956 nargs = btf_type_vlen(func);
4957 if (nargs >= MAX_BPF_FUNC_ARGS) {
4958 bpf_log(log,
4959 "The function %s has %d arguments. Too many.\n",
4960 tname, nargs);
4961 return -EINVAL;
4962 }
4963 ret = __get_type_size(btf, func->type, &t);
4964 if (ret < 0) {
4965 bpf_log(log,
4966 "The function %s return type %s is unsupported.\n",
4967 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4968 return -EINVAL;
4969 }
4970 m->ret_size = ret;
4971
4972 for (i = 0; i < nargs; i++) {
4973 if (i == nargs - 1 && args[i].type == 0) {
4974 bpf_log(log,
4975 "The function %s with variable args is unsupported.\n",
4976 tname);
4977 return -EINVAL;
4978 }
4979 ret = __get_type_size(btf, args[i].type, &t);
4980 if (ret < 0) {
4981 bpf_log(log,
4982 "The function %s arg%d type %s is unsupported.\n",
4983 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4984 return -EINVAL;
4985 }
4986 if (ret == 0) {
4987 bpf_log(log,
4988 "The function %s has malformed void argument.\n",
4989 tname);
4990 return -EINVAL;
4991 }
4992 m->arg_size[i] = ret;
4993 }
4994 m->nr_args = nargs;
4995 return 0;
4996 }
4997
4998 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4999 * t1 points to BTF_KIND_FUNC in btf1
5000 * t2 points to BTF_KIND_FUNC in btf2
5001 * Returns:
5002 * EINVAL - function prototype mismatch
5003 * EFAULT - verifier bug
5004 * 0 - 99% match. The last 1% is validated by the verifier.
5005 */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)5006 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5007 struct btf *btf1, const struct btf_type *t1,
5008 struct btf *btf2, const struct btf_type *t2)
5009 {
5010 const struct btf_param *args1, *args2;
5011 const char *fn1, *fn2, *s1, *s2;
5012 u32 nargs1, nargs2, i;
5013
5014 fn1 = btf_name_by_offset(btf1, t1->name_off);
5015 fn2 = btf_name_by_offset(btf2, t2->name_off);
5016
5017 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5018 bpf_log(log, "%s() is not a global function\n", fn1);
5019 return -EINVAL;
5020 }
5021 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5022 bpf_log(log, "%s() is not a global function\n", fn2);
5023 return -EINVAL;
5024 }
5025
5026 t1 = btf_type_by_id(btf1, t1->type);
5027 if (!t1 || !btf_type_is_func_proto(t1))
5028 return -EFAULT;
5029 t2 = btf_type_by_id(btf2, t2->type);
5030 if (!t2 || !btf_type_is_func_proto(t2))
5031 return -EFAULT;
5032
5033 args1 = (const struct btf_param *)(t1 + 1);
5034 nargs1 = btf_type_vlen(t1);
5035 args2 = (const struct btf_param *)(t2 + 1);
5036 nargs2 = btf_type_vlen(t2);
5037
5038 if (nargs1 != nargs2) {
5039 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5040 fn1, nargs1, fn2, nargs2);
5041 return -EINVAL;
5042 }
5043
5044 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5045 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5046 if (t1->info != t2->info) {
5047 bpf_log(log,
5048 "Return type %s of %s() doesn't match type %s of %s()\n",
5049 btf_type_str(t1), fn1,
5050 btf_type_str(t2), fn2);
5051 return -EINVAL;
5052 }
5053
5054 for (i = 0; i < nargs1; i++) {
5055 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5056 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5057
5058 if (t1->info != t2->info) {
5059 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5060 i, fn1, btf_type_str(t1),
5061 fn2, btf_type_str(t2));
5062 return -EINVAL;
5063 }
5064 if (btf_type_has_size(t1) && t1->size != t2->size) {
5065 bpf_log(log,
5066 "arg%d in %s() has size %d while %s() has %d\n",
5067 i, fn1, t1->size,
5068 fn2, t2->size);
5069 return -EINVAL;
5070 }
5071
5072 /* global functions are validated with scalars and pointers
5073 * to context only. And only global functions can be replaced.
5074 * Hence type check only those types.
5075 */
5076 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5077 continue;
5078 if (!btf_type_is_ptr(t1)) {
5079 bpf_log(log,
5080 "arg%d in %s() has unrecognized type\n",
5081 i, fn1);
5082 return -EINVAL;
5083 }
5084 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5085 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5086 if (!btf_type_is_struct(t1)) {
5087 bpf_log(log,
5088 "arg%d in %s() is not a pointer to context\n",
5089 i, fn1);
5090 return -EINVAL;
5091 }
5092 if (!btf_type_is_struct(t2)) {
5093 bpf_log(log,
5094 "arg%d in %s() is not a pointer to context\n",
5095 i, fn2);
5096 return -EINVAL;
5097 }
5098 /* This is an optional check to make program writing easier.
5099 * Compare names of structs and report an error to the user.
5100 * btf_prepare_func_args() already checked that t2 struct
5101 * is a context type. btf_prepare_func_args() will check
5102 * later that t1 struct is a context type as well.
5103 */
5104 s1 = btf_name_by_offset(btf1, t1->name_off);
5105 s2 = btf_name_by_offset(btf2, t2->name_off);
5106 if (strcmp(s1, s2)) {
5107 bpf_log(log,
5108 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5109 i, fn1, s1, fn2, s2);
5110 return -EINVAL;
5111 }
5112 }
5113 return 0;
5114 }
5115
5116 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)5117 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5118 struct btf *btf2, const struct btf_type *t2)
5119 {
5120 struct btf *btf1 = prog->aux->btf;
5121 const struct btf_type *t1;
5122 u32 btf_id = 0;
5123
5124 if (!prog->aux->func_info) {
5125 bpf_log(log, "Program extension requires BTF\n");
5126 return -EINVAL;
5127 }
5128
5129 btf_id = prog->aux->func_info[0].type_id;
5130 if (!btf_id)
5131 return -EFAULT;
5132
5133 t1 = btf_type_by_id(btf1, btf_id);
5134 if (!t1 || !btf_type_is_func(t1))
5135 return -EFAULT;
5136
5137 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5138 }
5139
5140 /* Compare BTF of a function with given bpf_reg_state.
5141 * Returns:
5142 * EFAULT - there is a verifier bug. Abort verification.
5143 * EINVAL - there is a type mismatch or BTF is not available.
5144 * 0 - BTF matches with what bpf_reg_state expects.
5145 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5146 */
btf_check_func_arg_match(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * reg)5147 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5148 struct bpf_reg_state *reg)
5149 {
5150 struct bpf_verifier_log *log = &env->log;
5151 struct bpf_prog *prog = env->prog;
5152 struct btf *btf = prog->aux->btf;
5153 const struct btf_param *args;
5154 const struct btf_type *t;
5155 u32 i, nargs, btf_id;
5156 const char *tname;
5157
5158 if (!prog->aux->func_info)
5159 return -EINVAL;
5160
5161 btf_id = prog->aux->func_info[subprog].type_id;
5162 if (!btf_id)
5163 return -EFAULT;
5164
5165 if (prog->aux->func_info_aux[subprog].unreliable)
5166 return -EINVAL;
5167
5168 t = btf_type_by_id(btf, btf_id);
5169 if (!t || !btf_type_is_func(t)) {
5170 /* These checks were already done by the verifier while loading
5171 * struct bpf_func_info
5172 */
5173 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5174 subprog);
5175 return -EFAULT;
5176 }
5177 tname = btf_name_by_offset(btf, t->name_off);
5178
5179 t = btf_type_by_id(btf, t->type);
5180 if (!t || !btf_type_is_func_proto(t)) {
5181 bpf_log(log, "Invalid BTF of func %s\n", tname);
5182 return -EFAULT;
5183 }
5184 args = (const struct btf_param *)(t + 1);
5185 nargs = btf_type_vlen(t);
5186 if (nargs > 5) {
5187 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5188 goto out;
5189 }
5190 /* check that BTF function arguments match actual types that the
5191 * verifier sees.
5192 */
5193 for (i = 0; i < nargs; i++) {
5194 t = btf_type_by_id(btf, args[i].type);
5195 while (btf_type_is_modifier(t))
5196 t = btf_type_by_id(btf, t->type);
5197 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5198 if (reg[i + 1].type == SCALAR_VALUE)
5199 continue;
5200 bpf_log(log, "R%d is not a scalar\n", i + 1);
5201 goto out;
5202 }
5203 if (btf_type_is_ptr(t)) {
5204 if (reg[i + 1].type == SCALAR_VALUE) {
5205 bpf_log(log, "R%d is not a pointer\n", i + 1);
5206 goto out;
5207 }
5208 /* If function expects ctx type in BTF check that caller
5209 * is passing PTR_TO_CTX.
5210 */
5211 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5212 if (reg[i + 1].type != PTR_TO_CTX) {
5213 bpf_log(log,
5214 "arg#%d expected pointer to ctx, but got %s\n",
5215 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5216 goto out;
5217 }
5218 if (check_ctx_reg(env, ®[i + 1], i + 1))
5219 goto out;
5220 continue;
5221 }
5222 }
5223 bpf_log(log, "Unrecognized arg#%d type %s\n",
5224 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5225 goto out;
5226 }
5227 return 0;
5228 out:
5229 /* Compiler optimizations can remove arguments from static functions
5230 * or mismatched type can be passed into a global function.
5231 * In such cases mark the function as unreliable from BTF point of view.
5232 */
5233 prog->aux->func_info_aux[subprog].unreliable = true;
5234 return -EINVAL;
5235 }
5236
5237 /* Convert BTF of a function into bpf_reg_state if possible
5238 * Returns:
5239 * EFAULT - there is a verifier bug. Abort verification.
5240 * EINVAL - cannot convert BTF.
5241 * 0 - Successfully converted BTF into bpf_reg_state
5242 * (either PTR_TO_CTX or SCALAR_VALUE).
5243 */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * reg)5244 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5245 struct bpf_reg_state *reg)
5246 {
5247 struct bpf_verifier_log *log = &env->log;
5248 struct bpf_prog *prog = env->prog;
5249 enum bpf_prog_type prog_type = prog->type;
5250 struct btf *btf = prog->aux->btf;
5251 const struct btf_param *args;
5252 const struct btf_type *t;
5253 u32 i, nargs, btf_id;
5254 const char *tname;
5255
5256 if (!prog->aux->func_info ||
5257 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5258 bpf_log(log, "Verifier bug\n");
5259 return -EFAULT;
5260 }
5261
5262 btf_id = prog->aux->func_info[subprog].type_id;
5263 if (!btf_id) {
5264 bpf_log(log, "Global functions need valid BTF\n");
5265 return -EFAULT;
5266 }
5267
5268 t = btf_type_by_id(btf, btf_id);
5269 if (!t || !btf_type_is_func(t)) {
5270 /* These checks were already done by the verifier while loading
5271 * struct bpf_func_info
5272 */
5273 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5274 subprog);
5275 return -EFAULT;
5276 }
5277 tname = btf_name_by_offset(btf, t->name_off);
5278
5279 if (log->level & BPF_LOG_LEVEL)
5280 bpf_log(log, "Validating %s() func#%d...\n",
5281 tname, subprog);
5282
5283 if (prog->aux->func_info_aux[subprog].unreliable) {
5284 bpf_log(log, "Verifier bug in function %s()\n", tname);
5285 return -EFAULT;
5286 }
5287 if (prog_type == BPF_PROG_TYPE_EXT)
5288 prog_type = prog->aux->dst_prog->type;
5289
5290 t = btf_type_by_id(btf, t->type);
5291 if (!t || !btf_type_is_func_proto(t)) {
5292 bpf_log(log, "Invalid type of function %s()\n", tname);
5293 return -EFAULT;
5294 }
5295 args = (const struct btf_param *)(t + 1);
5296 nargs = btf_type_vlen(t);
5297 if (nargs > 5) {
5298 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5299 tname, nargs);
5300 return -EINVAL;
5301 }
5302 /* check that function returns int */
5303 t = btf_type_by_id(btf, t->type);
5304 while (btf_type_is_modifier(t))
5305 t = btf_type_by_id(btf, t->type);
5306 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5307 bpf_log(log,
5308 "Global function %s() doesn't return scalar. Only those are supported.\n",
5309 tname);
5310 return -EINVAL;
5311 }
5312 /* Convert BTF function arguments into verifier types.
5313 * Only PTR_TO_CTX and SCALAR are supported atm.
5314 */
5315 for (i = 0; i < nargs; i++) {
5316 t = btf_type_by_id(btf, args[i].type);
5317 while (btf_type_is_modifier(t))
5318 t = btf_type_by_id(btf, t->type);
5319 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5320 reg[i + 1].type = SCALAR_VALUE;
5321 continue;
5322 }
5323 if (btf_type_is_ptr(t) &&
5324 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5325 reg[i + 1].type = PTR_TO_CTX;
5326 continue;
5327 }
5328 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5329 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5330 return -EINVAL;
5331 }
5332 return 0;
5333 }
5334
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)5335 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5336 struct btf_show *show)
5337 {
5338 const struct btf_type *t = btf_type_by_id(btf, type_id);
5339
5340 show->btf = btf;
5341 memset(&show->state, 0, sizeof(show->state));
5342 memset(&show->obj, 0, sizeof(show->obj));
5343
5344 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5345 }
5346
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)5347 static void btf_seq_show(struct btf_show *show, const char *fmt,
5348 va_list args)
5349 {
5350 seq_vprintf((struct seq_file *)show->target, fmt, args);
5351 }
5352
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)5353 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5354 void *obj, struct seq_file *m, u64 flags)
5355 {
5356 struct btf_show sseq;
5357
5358 sseq.target = m;
5359 sseq.showfn = btf_seq_show;
5360 sseq.flags = flags;
5361
5362 btf_type_show(btf, type_id, obj, &sseq);
5363
5364 return sseq.state.status;
5365 }
5366
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)5367 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5368 struct seq_file *m)
5369 {
5370 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5371 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5372 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5373 }
5374
5375 struct btf_show_snprintf {
5376 struct btf_show show;
5377 int len_left; /* space left in string */
5378 int len; /* length we would have written */
5379 };
5380
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)5381 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5382 va_list args)
5383 {
5384 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5385 int len;
5386
5387 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5388
5389 if (len < 0) {
5390 ssnprintf->len_left = 0;
5391 ssnprintf->len = len;
5392 } else if (len > ssnprintf->len_left) {
5393 /* no space, drive on to get length we would have written */
5394 ssnprintf->len_left = 0;
5395 ssnprintf->len += len;
5396 } else {
5397 ssnprintf->len_left -= len;
5398 ssnprintf->len += len;
5399 show->target += len;
5400 }
5401 }
5402
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)5403 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5404 char *buf, int len, u64 flags)
5405 {
5406 struct btf_show_snprintf ssnprintf;
5407
5408 ssnprintf.show.target = buf;
5409 ssnprintf.show.flags = flags;
5410 ssnprintf.show.showfn = btf_snprintf_show;
5411 ssnprintf.len_left = len;
5412 ssnprintf.len = 0;
5413
5414 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5415
5416 /* If we encontered an error, return it. */
5417 if (ssnprintf.show.state.status)
5418 return ssnprintf.show.state.status;
5419
5420 /* Otherwise return length we would have written */
5421 return ssnprintf.len;
5422 }
5423
5424 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)5425 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5426 {
5427 const struct btf *btf = filp->private_data;
5428
5429 seq_printf(m, "btf_id:\t%u\n", btf->id);
5430 }
5431 #endif
5432
btf_release(struct inode * inode,struct file * filp)5433 static int btf_release(struct inode *inode, struct file *filp)
5434 {
5435 btf_put(filp->private_data);
5436 return 0;
5437 }
5438
5439 const struct file_operations btf_fops = {
5440 #ifdef CONFIG_PROC_FS
5441 .show_fdinfo = bpf_btf_show_fdinfo,
5442 #endif
5443 .release = btf_release,
5444 };
5445
__btf_new_fd(struct btf * btf)5446 static int __btf_new_fd(struct btf *btf)
5447 {
5448 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5449 }
5450
btf_new_fd(const union bpf_attr * attr)5451 int btf_new_fd(const union bpf_attr *attr)
5452 {
5453 struct btf *btf;
5454 int ret;
5455
5456 btf = btf_parse(u64_to_user_ptr(attr->btf),
5457 attr->btf_size, attr->btf_log_level,
5458 u64_to_user_ptr(attr->btf_log_buf),
5459 attr->btf_log_size);
5460 if (IS_ERR(btf))
5461 return PTR_ERR(btf);
5462
5463 ret = btf_alloc_id(btf);
5464 if (ret) {
5465 btf_free(btf);
5466 return ret;
5467 }
5468
5469 /*
5470 * The BTF ID is published to the userspace.
5471 * All BTF free must go through call_rcu() from
5472 * now on (i.e. free by calling btf_put()).
5473 */
5474
5475 ret = __btf_new_fd(btf);
5476 if (ret < 0)
5477 btf_put(btf);
5478
5479 return ret;
5480 }
5481
btf_get_by_fd(int fd)5482 struct btf *btf_get_by_fd(int fd)
5483 {
5484 struct btf *btf;
5485 struct fd f;
5486
5487 f = fdget(fd);
5488
5489 if (!f.file)
5490 return ERR_PTR(-EBADF);
5491
5492 if (f.file->f_op != &btf_fops) {
5493 fdput(f);
5494 return ERR_PTR(-EINVAL);
5495 }
5496
5497 btf = f.file->private_data;
5498 refcount_inc(&btf->refcnt);
5499 fdput(f);
5500
5501 return btf;
5502 }
5503
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)5504 int btf_get_info_by_fd(const struct btf *btf,
5505 const union bpf_attr *attr,
5506 union bpf_attr __user *uattr)
5507 {
5508 struct bpf_btf_info __user *uinfo;
5509 struct bpf_btf_info info;
5510 u32 info_copy, btf_copy;
5511 void __user *ubtf;
5512 u32 uinfo_len;
5513
5514 uinfo = u64_to_user_ptr(attr->info.info);
5515 uinfo_len = attr->info.info_len;
5516
5517 info_copy = min_t(u32, uinfo_len, sizeof(info));
5518 memset(&info, 0, sizeof(info));
5519 if (copy_from_user(&info, uinfo, info_copy))
5520 return -EFAULT;
5521
5522 info.id = btf->id;
5523 ubtf = u64_to_user_ptr(info.btf);
5524 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5525 if (copy_to_user(ubtf, btf->data, btf_copy))
5526 return -EFAULT;
5527 info.btf_size = btf->data_size;
5528
5529 if (copy_to_user(uinfo, &info, info_copy) ||
5530 put_user(info_copy, &uattr->info.info_len))
5531 return -EFAULT;
5532
5533 return 0;
5534 }
5535
btf_get_fd_by_id(u32 id)5536 int btf_get_fd_by_id(u32 id)
5537 {
5538 struct btf *btf;
5539 int fd;
5540
5541 rcu_read_lock();
5542 btf = idr_find(&btf_idr, id);
5543 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5544 btf = ERR_PTR(-ENOENT);
5545 rcu_read_unlock();
5546
5547 if (IS_ERR(btf))
5548 return PTR_ERR(btf);
5549
5550 fd = __btf_new_fd(btf);
5551 if (fd < 0)
5552 btf_put(btf);
5553
5554 return fd;
5555 }
5556
btf_id(const struct btf * btf)5557 u32 btf_id(const struct btf *btf)
5558 {
5559 return btf->id;
5560 }
5561
btf_id_cmp_func(const void * a,const void * b)5562 static int btf_id_cmp_func(const void *a, const void *b)
5563 {
5564 const int *pa = a, *pb = b;
5565
5566 return *pa - *pb;
5567 }
5568
btf_id_set_contains(const struct btf_id_set * set,u32 id)5569 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5570 {
5571 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5572 }
5573