• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 
10 /*
11  * HOW DO BLOCK RESERVES WORK
12  *
13  *   Think of block_rsv's as buckets for logically grouped metadata
14  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
15  *   how large we want our block rsv to be, ->reserved is how much space is
16  *   currently reserved for this block reserve.
17  *
18  *   ->failfast exists for the truncate case, and is described below.
19  *
20  * NORMAL OPERATION
21  *
22  *   -> Reserve
23  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
24  *
25  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
26  *     accounted for in space_info->bytes_may_use, and then add the bytes to
27  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
28  *
29  *     ->size is an over-estimation of how much we may use for a particular
30  *     operation.
31  *
32  *   -> Use
33  *     Entrance: btrfs_use_block_rsv
34  *
35  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
36  *     to determine the appropriate block_rsv to use, and then verify that
37  *     ->reserved has enough space for our tree block allocation.  Once
38  *     successful we subtract fs_info->nodesize from ->reserved.
39  *
40  *   -> Finish
41  *     Entrance: btrfs_block_rsv_release
42  *
43  *     We are finished with our operation, subtract our individual reservation
44  *     from ->size, and then subtract ->size from ->reserved and free up the
45  *     excess if there is any.
46  *
47  *     There is some logic here to refill the delayed refs rsv or the global rsv
48  *     as needed, otherwise the excess is subtracted from
49  *     space_info->bytes_may_use.
50  *
51  * TYPES OF BLOCK RESERVES
52  *
53  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
54  *   These behave normally, as described above, just within the confines of the
55  *   lifetime of their particular operation (transaction for the whole trans
56  *   handle lifetime, for example).
57  *
58  * BLOCK_RSV_GLOBAL
59  *   It is impossible to properly account for all the space that may be required
60  *   to make our extent tree updates.  This block reserve acts as an overflow
61  *   buffer in case our delayed refs reserve does not reserve enough space to
62  *   update the extent tree.
63  *
64  *   We can steal from this in some cases as well, notably on evict() or
65  *   truncate() in order to help users recover from ENOSPC conditions.
66  *
67  * BLOCK_RSV_DELALLOC
68  *   The individual item sizes are determined by the per-inode size
69  *   calculations, which are described with the delalloc code.  This is pretty
70  *   straightforward, it's just the calculation of ->size encodes a lot of
71  *   different items, and thus it gets used when updating inodes, inserting file
72  *   extents, and inserting checksums.
73  *
74  * BLOCK_RSV_DELREFS
75  *   We keep a running tally of how many delayed refs we have on the system.
76  *   We assume each one of these delayed refs are going to use a full
77  *   reservation.  We use the transaction items and pre-reserve space for every
78  *   operation, and use this reservation to refill any gap between ->size and
79  *   ->reserved that may exist.
80  *
81  *   From there it's straightforward, removing a delayed ref means we remove its
82  *   count from ->size and free up reservations as necessary.  Since this is
83  *   the most dynamic block reserve in the system, we will try to refill this
84  *   block reserve first with any excess returned by any other block reserve.
85  *
86  * BLOCK_RSV_EMPTY
87  *   This is the fallback block reserve to make us try to reserve space if we
88  *   don't have a specific bucket for this allocation.  It is mostly used for
89  *   updating the device tree and such, since that is a separate pool we're
90  *   content to just reserve space from the space_info on demand.
91  *
92  * BLOCK_RSV_TEMP
93  *   This is used by things like truncate and iput.  We will temporarily
94  *   allocate a block reserve, set it to some size, and then truncate bytes
95  *   until we have no space left.  With ->failfast set we'll simply return
96  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
97  *   to make a new reservation.  This is because these operations are
98  *   unbounded, so we want to do as much work as we can, and then back off and
99  *   re-reserve.
100  */
101 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)102 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
103 				    struct btrfs_block_rsv *block_rsv,
104 				    struct btrfs_block_rsv *dest, u64 num_bytes,
105 				    u64 *qgroup_to_release_ret)
106 {
107 	struct btrfs_space_info *space_info = block_rsv->space_info;
108 	u64 qgroup_to_release = 0;
109 	u64 ret;
110 
111 	spin_lock(&block_rsv->lock);
112 	if (num_bytes == (u64)-1) {
113 		num_bytes = block_rsv->size;
114 		qgroup_to_release = block_rsv->qgroup_rsv_size;
115 	}
116 	block_rsv->size -= num_bytes;
117 	if (block_rsv->reserved >= block_rsv->size) {
118 		num_bytes = block_rsv->reserved - block_rsv->size;
119 		block_rsv->reserved = block_rsv->size;
120 		block_rsv->full = 1;
121 	} else {
122 		num_bytes = 0;
123 	}
124 	if (qgroup_to_release_ret &&
125 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
126 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
127 				    block_rsv->qgroup_rsv_size;
128 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
129 	} else {
130 		qgroup_to_release = 0;
131 	}
132 	spin_unlock(&block_rsv->lock);
133 
134 	ret = num_bytes;
135 	if (num_bytes > 0) {
136 		if (dest) {
137 			spin_lock(&dest->lock);
138 			if (!dest->full) {
139 				u64 bytes_to_add;
140 
141 				bytes_to_add = dest->size - dest->reserved;
142 				bytes_to_add = min(num_bytes, bytes_to_add);
143 				dest->reserved += bytes_to_add;
144 				if (dest->reserved >= dest->size)
145 					dest->full = 1;
146 				num_bytes -= bytes_to_add;
147 			}
148 			spin_unlock(&dest->lock);
149 		}
150 		if (num_bytes)
151 			btrfs_space_info_free_bytes_may_use(fs_info,
152 							    space_info,
153 							    num_bytes);
154 	}
155 	if (qgroup_to_release_ret)
156 		*qgroup_to_release_ret = qgroup_to_release;
157 	return ret;
158 }
159 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,bool update_size)160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161 			    struct btrfs_block_rsv *dst, u64 num_bytes,
162 			    bool update_size)
163 {
164 	int ret;
165 
166 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167 	if (ret)
168 		return ret;
169 
170 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171 	return 0;
172 }
173 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
175 {
176 	memset(rsv, 0, sizeof(*rsv));
177 	spin_lock_init(&rsv->lock);
178 	rsv->type = type;
179 }
180 
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,unsigned short type)181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182 				   struct btrfs_block_rsv *rsv,
183 				   unsigned short type)
184 {
185 	btrfs_init_block_rsv(rsv, type);
186 	rsv->space_info = btrfs_find_space_info(fs_info,
187 					    BTRFS_BLOCK_GROUP_METADATA);
188 }
189 
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191 					      unsigned short type)
192 {
193 	struct btrfs_block_rsv *block_rsv;
194 
195 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196 	if (!block_rsv)
197 		return NULL;
198 
199 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200 	return block_rsv;
201 }
202 
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204 			  struct btrfs_block_rsv *rsv)
205 {
206 	if (!rsv)
207 		return;
208 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209 	kfree(rsv);
210 }
211 
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)212 int btrfs_block_rsv_add(struct btrfs_root *root,
213 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214 			enum btrfs_reserve_flush_enum flush)
215 {
216 	int ret;
217 
218 	if (num_bytes == 0)
219 		return 0;
220 
221 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
222 	if (!ret)
223 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224 
225 	return ret;
226 }
227 
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
229 {
230 	u64 num_bytes = 0;
231 	int ret = -ENOSPC;
232 
233 	if (!block_rsv)
234 		return 0;
235 
236 	spin_lock(&block_rsv->lock);
237 	num_bytes = div_factor(block_rsv->size, min_factor);
238 	if (block_rsv->reserved >= num_bytes)
239 		ret = 0;
240 	spin_unlock(&block_rsv->lock);
241 
242 	return ret;
243 }
244 
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)245 int btrfs_block_rsv_refill(struct btrfs_root *root,
246 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
247 			   enum btrfs_reserve_flush_enum flush)
248 {
249 	u64 num_bytes = 0;
250 	int ret = -ENOSPC;
251 
252 	if (!block_rsv)
253 		return 0;
254 
255 	spin_lock(&block_rsv->lock);
256 	num_bytes = min_reserved;
257 	if (block_rsv->reserved >= num_bytes)
258 		ret = 0;
259 	else
260 		num_bytes -= block_rsv->reserved;
261 	spin_unlock(&block_rsv->lock);
262 
263 	if (!ret)
264 		return 0;
265 
266 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
267 	if (!ret) {
268 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
269 		return 0;
270 	}
271 
272 	return ret;
273 }
274 
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,u64 * qgroup_to_release)275 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
276 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
277 			    u64 *qgroup_to_release)
278 {
279 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
280 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
281 	struct btrfs_block_rsv *target = NULL;
282 
283 	/*
284 	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
285 	 * into the delayed rsv if it is not full.
286 	 */
287 	if (block_rsv == delayed_rsv)
288 		target = global_rsv;
289 	else if (block_rsv != global_rsv && !delayed_rsv->full)
290 		target = delayed_rsv;
291 
292 	if (target && block_rsv->space_info != target->space_info)
293 		target = NULL;
294 
295 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
296 				       qgroup_to_release);
297 }
298 
btrfs_block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)299 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
300 {
301 	int ret = -ENOSPC;
302 
303 	spin_lock(&block_rsv->lock);
304 	if (block_rsv->reserved >= num_bytes) {
305 		block_rsv->reserved -= num_bytes;
306 		if (block_rsv->reserved < block_rsv->size)
307 			block_rsv->full = 0;
308 		ret = 0;
309 	}
310 	spin_unlock(&block_rsv->lock);
311 	return ret;
312 }
313 
btrfs_block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,bool update_size)314 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
315 			       u64 num_bytes, bool update_size)
316 {
317 	spin_lock(&block_rsv->lock);
318 	block_rsv->reserved += num_bytes;
319 	if (update_size)
320 		block_rsv->size += num_bytes;
321 	else if (block_rsv->reserved >= block_rsv->size)
322 		block_rsv->full = 1;
323 	spin_unlock(&block_rsv->lock);
324 }
325 
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)326 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
327 			     struct btrfs_block_rsv *dest, u64 num_bytes,
328 			     int min_factor)
329 {
330 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
331 	u64 min_bytes;
332 
333 	if (global_rsv->space_info != dest->space_info)
334 		return -ENOSPC;
335 
336 	spin_lock(&global_rsv->lock);
337 	min_bytes = div_factor(global_rsv->size, min_factor);
338 	if (global_rsv->reserved < min_bytes + num_bytes) {
339 		spin_unlock(&global_rsv->lock);
340 		return -ENOSPC;
341 	}
342 	global_rsv->reserved -= num_bytes;
343 	if (global_rsv->reserved < global_rsv->size)
344 		global_rsv->full = 0;
345 	spin_unlock(&global_rsv->lock);
346 
347 	btrfs_block_rsv_add_bytes(dest, num_bytes, true);
348 	return 0;
349 }
350 
btrfs_update_global_block_rsv(struct btrfs_fs_info * fs_info)351 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
352 {
353 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
354 	struct btrfs_space_info *sinfo = block_rsv->space_info;
355 	u64 num_bytes;
356 	unsigned min_items;
357 
358 	/*
359 	 * The global block rsv is based on the size of the extent tree, the
360 	 * checksum tree and the root tree.  If the fs is empty we want to set
361 	 * it to a minimal amount for safety.
362 	 */
363 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
364 		btrfs_root_used(&fs_info->csum_root->root_item) +
365 		btrfs_root_used(&fs_info->tree_root->root_item);
366 
367 	/*
368 	 * We at a minimum are going to modify the csum root, the tree root, and
369 	 * the extent root.
370 	 */
371 	min_items = 3;
372 
373 	/*
374 	 * But we also want to reserve enough space so we can do the fallback
375 	 * global reserve for an unlink, which is an additional 5 items (see the
376 	 * comment in __unlink_start_trans for what we're modifying.)
377 	 *
378 	 * But we also need space for the delayed ref updates from the unlink,
379 	 * so its 10, 5 for the actual operation, and 5 for the delayed ref
380 	 * updates.
381 	 */
382 	min_items += 10;
383 
384 	num_bytes = max_t(u64, num_bytes,
385 			  btrfs_calc_insert_metadata_size(fs_info, min_items));
386 
387 	spin_lock(&sinfo->lock);
388 	spin_lock(&block_rsv->lock);
389 
390 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
391 
392 	if (block_rsv->reserved < block_rsv->size) {
393 		num_bytes = block_rsv->size - block_rsv->reserved;
394 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
395 						      num_bytes);
396 		block_rsv->reserved = block_rsv->size;
397 	} else if (block_rsv->reserved > block_rsv->size) {
398 		num_bytes = block_rsv->reserved - block_rsv->size;
399 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
400 						      -num_bytes);
401 		block_rsv->reserved = block_rsv->size;
402 		btrfs_try_granting_tickets(fs_info, sinfo);
403 	}
404 
405 	if (block_rsv->reserved == block_rsv->size)
406 		block_rsv->full = 1;
407 	else
408 		block_rsv->full = 0;
409 
410 	if (block_rsv->size >= sinfo->total_bytes)
411 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
412 	spin_unlock(&block_rsv->lock);
413 	spin_unlock(&sinfo->lock);
414 }
415 
btrfs_init_global_block_rsv(struct btrfs_fs_info * fs_info)416 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
417 {
418 	struct btrfs_space_info *space_info;
419 
420 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
421 	fs_info->chunk_block_rsv.space_info = space_info;
422 
423 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
424 	fs_info->global_block_rsv.space_info = space_info;
425 	fs_info->trans_block_rsv.space_info = space_info;
426 	fs_info->empty_block_rsv.space_info = space_info;
427 	fs_info->delayed_block_rsv.space_info = space_info;
428 	fs_info->delayed_refs_rsv.space_info = space_info;
429 
430 	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
431 	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
432 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
433 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
434 	if (fs_info->quota_root)
435 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
436 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
437 
438 	btrfs_update_global_block_rsv(fs_info);
439 }
440 
btrfs_release_global_block_rsv(struct btrfs_fs_info * fs_info)441 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
442 {
443 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
444 				NULL);
445 	WARN_ON(fs_info->trans_block_rsv.size > 0);
446 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
447 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
448 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
449 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
450 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
451 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
452 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
453 }
454 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)455 static struct btrfs_block_rsv *get_block_rsv(
456 					const struct btrfs_trans_handle *trans,
457 					const struct btrfs_root *root)
458 {
459 	struct btrfs_fs_info *fs_info = root->fs_info;
460 	struct btrfs_block_rsv *block_rsv = NULL;
461 
462 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
463 	    (root == fs_info->csum_root && trans->adding_csums) ||
464 	    (root == fs_info->uuid_root))
465 		block_rsv = trans->block_rsv;
466 
467 	if (!block_rsv)
468 		block_rsv = root->block_rsv;
469 
470 	if (!block_rsv)
471 		block_rsv = &fs_info->empty_block_rsv;
472 
473 	return block_rsv;
474 }
475 
btrfs_use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)476 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
477 					    struct btrfs_root *root,
478 					    u32 blocksize)
479 {
480 	struct btrfs_fs_info *fs_info = root->fs_info;
481 	struct btrfs_block_rsv *block_rsv;
482 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
483 	int ret;
484 	bool global_updated = false;
485 
486 	block_rsv = get_block_rsv(trans, root);
487 
488 	if (unlikely(block_rsv->size == 0))
489 		goto try_reserve;
490 again:
491 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
492 	if (!ret)
493 		return block_rsv;
494 
495 	if (block_rsv->failfast)
496 		return ERR_PTR(ret);
497 
498 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
499 		global_updated = true;
500 		btrfs_update_global_block_rsv(fs_info);
501 		goto again;
502 	}
503 
504 	/*
505 	 * The global reserve still exists to save us from ourselves, so don't
506 	 * warn_on if we are short on our delayed refs reserve.
507 	 */
508 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
509 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
510 		static DEFINE_RATELIMIT_STATE(_rs,
511 				DEFAULT_RATELIMIT_INTERVAL * 10,
512 				/*DEFAULT_RATELIMIT_BURST*/ 1);
513 		if (__ratelimit(&_rs))
514 			WARN(1, KERN_DEBUG
515 				"BTRFS: block rsv %d returned %d\n",
516 				block_rsv->type, ret);
517 	}
518 try_reserve:
519 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize,
520 					   BTRFS_RESERVE_NO_FLUSH);
521 	if (!ret)
522 		return block_rsv;
523 	/*
524 	 * If we couldn't reserve metadata bytes try and use some from
525 	 * the global reserve if its space type is the same as the global
526 	 * reservation.
527 	 */
528 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
529 	    block_rsv->space_info == global_rsv->space_info) {
530 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
531 		if (!ret)
532 			return global_rsv;
533 	}
534 	return ERR_PTR(ret);
535 }
536