1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2014 Fujitsu. All rights reserved.
5 */
6
7 #include <linux/kthread.h>
8 #include <linux/slab.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/freezer.h>
12 #include "async-thread.h"
13 #include "ctree.h"
14
15 enum {
16 WORK_DONE_BIT,
17 WORK_ORDER_DONE_BIT,
18 WORK_HIGH_PRIO_BIT,
19 };
20
21 #define NO_THRESHOLD (-1)
22 #define DFT_THRESHOLD (32)
23
24 struct __btrfs_workqueue {
25 struct workqueue_struct *normal_wq;
26
27 /* File system this workqueue services */
28 struct btrfs_fs_info *fs_info;
29
30 /* List head pointing to ordered work list */
31 struct list_head ordered_list;
32
33 /* Spinlock for ordered_list */
34 spinlock_t list_lock;
35
36 /* Thresholding related variants */
37 atomic_t pending;
38
39 /* Up limit of concurrency workers */
40 int limit_active;
41
42 /* Current number of concurrency workers */
43 int current_active;
44
45 /* Threshold to change current_active */
46 int thresh;
47 unsigned int count;
48 spinlock_t thres_lock;
49 };
50
51 struct btrfs_workqueue {
52 struct __btrfs_workqueue *normal;
53 struct __btrfs_workqueue *high;
54 };
55
btrfs_workqueue_owner(const struct __btrfs_workqueue * wq)56 struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct __btrfs_workqueue *wq)
57 {
58 return wq->fs_info;
59 }
60
btrfs_work_owner(const struct btrfs_work * work)61 struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
62 {
63 return work->wq->fs_info;
64 }
65
btrfs_workqueue_normal_congested(const struct btrfs_workqueue * wq)66 bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
67 {
68 /*
69 * We could compare wq->normal->pending with num_online_cpus()
70 * to support "thresh == NO_THRESHOLD" case, but it requires
71 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
72 * postpone it until someone needs the support of that case.
73 */
74 if (wq->normal->thresh == NO_THRESHOLD)
75 return false;
76
77 return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
78 }
79
80 static struct __btrfs_workqueue *
__btrfs_alloc_workqueue(struct btrfs_fs_info * fs_info,const char * name,unsigned int flags,int limit_active,int thresh)81 __btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
82 unsigned int flags, int limit_active, int thresh)
83 {
84 struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
85
86 if (!ret)
87 return NULL;
88
89 ret->fs_info = fs_info;
90 ret->limit_active = limit_active;
91 atomic_set(&ret->pending, 0);
92 if (thresh == 0)
93 thresh = DFT_THRESHOLD;
94 /* For low threshold, disabling threshold is a better choice */
95 if (thresh < DFT_THRESHOLD) {
96 ret->current_active = limit_active;
97 ret->thresh = NO_THRESHOLD;
98 } else {
99 /*
100 * For threshold-able wq, let its concurrency grow on demand.
101 * Use minimal max_active at alloc time to reduce resource
102 * usage.
103 */
104 ret->current_active = 1;
105 ret->thresh = thresh;
106 }
107
108 if (flags & WQ_HIGHPRI)
109 ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags,
110 ret->current_active, name);
111 else
112 ret->normal_wq = alloc_workqueue("btrfs-%s", flags,
113 ret->current_active, name);
114 if (!ret->normal_wq) {
115 kfree(ret);
116 return NULL;
117 }
118
119 INIT_LIST_HEAD(&ret->ordered_list);
120 spin_lock_init(&ret->list_lock);
121 spin_lock_init(&ret->thres_lock);
122 trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
123 return ret;
124 }
125
126 static inline void
127 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
128
btrfs_alloc_workqueue(struct btrfs_fs_info * fs_info,const char * name,unsigned int flags,int limit_active,int thresh)129 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
130 const char *name,
131 unsigned int flags,
132 int limit_active,
133 int thresh)
134 {
135 struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
136
137 if (!ret)
138 return NULL;
139
140 ret->normal = __btrfs_alloc_workqueue(fs_info, name,
141 flags & ~WQ_HIGHPRI,
142 limit_active, thresh);
143 if (!ret->normal) {
144 kfree(ret);
145 return NULL;
146 }
147
148 if (flags & WQ_HIGHPRI) {
149 ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
150 limit_active, thresh);
151 if (!ret->high) {
152 __btrfs_destroy_workqueue(ret->normal);
153 kfree(ret);
154 return NULL;
155 }
156 }
157 return ret;
158 }
159
160 /*
161 * Hook for threshold which will be called in btrfs_queue_work.
162 * This hook WILL be called in IRQ handler context,
163 * so workqueue_set_max_active MUST NOT be called in this hook
164 */
thresh_queue_hook(struct __btrfs_workqueue * wq)165 static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
166 {
167 if (wq->thresh == NO_THRESHOLD)
168 return;
169 atomic_inc(&wq->pending);
170 }
171
172 /*
173 * Hook for threshold which will be called before executing the work,
174 * This hook is called in kthread content.
175 * So workqueue_set_max_active is called here.
176 */
thresh_exec_hook(struct __btrfs_workqueue * wq)177 static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
178 {
179 int new_current_active;
180 long pending;
181 int need_change = 0;
182
183 if (wq->thresh == NO_THRESHOLD)
184 return;
185
186 atomic_dec(&wq->pending);
187 spin_lock(&wq->thres_lock);
188 /*
189 * Use wq->count to limit the calling frequency of
190 * workqueue_set_max_active.
191 */
192 wq->count++;
193 wq->count %= (wq->thresh / 4);
194 if (!wq->count)
195 goto out;
196 new_current_active = wq->current_active;
197
198 /*
199 * pending may be changed later, but it's OK since we really
200 * don't need it so accurate to calculate new_max_active.
201 */
202 pending = atomic_read(&wq->pending);
203 if (pending > wq->thresh)
204 new_current_active++;
205 if (pending < wq->thresh / 2)
206 new_current_active--;
207 new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
208 if (new_current_active != wq->current_active) {
209 need_change = 1;
210 wq->current_active = new_current_active;
211 }
212 out:
213 spin_unlock(&wq->thres_lock);
214
215 if (need_change) {
216 workqueue_set_max_active(wq->normal_wq, wq->current_active);
217 }
218 }
219
run_ordered_work(struct __btrfs_workqueue * wq,struct btrfs_work * self)220 static void run_ordered_work(struct __btrfs_workqueue *wq,
221 struct btrfs_work *self)
222 {
223 struct list_head *list = &wq->ordered_list;
224 struct btrfs_work *work;
225 spinlock_t *lock = &wq->list_lock;
226 unsigned long flags;
227 bool free_self = false;
228
229 while (1) {
230 spin_lock_irqsave(lock, flags);
231 if (list_empty(list))
232 break;
233 work = list_entry(list->next, struct btrfs_work,
234 ordered_list);
235 if (!test_bit(WORK_DONE_BIT, &work->flags))
236 break;
237 /*
238 * Orders all subsequent loads after reading WORK_DONE_BIT,
239 * paired with the smp_mb__before_atomic in btrfs_work_helper
240 * this guarantees that the ordered function will see all
241 * updates from ordinary work function.
242 */
243 smp_rmb();
244
245 /*
246 * we are going to call the ordered done function, but
247 * we leave the work item on the list as a barrier so
248 * that later work items that are done don't have their
249 * functions called before this one returns
250 */
251 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
252 break;
253 trace_btrfs_ordered_sched(work);
254 spin_unlock_irqrestore(lock, flags);
255 work->ordered_func(work);
256
257 /* now take the lock again and drop our item from the list */
258 spin_lock_irqsave(lock, flags);
259 list_del(&work->ordered_list);
260 spin_unlock_irqrestore(lock, flags);
261
262 if (work == self) {
263 /*
264 * This is the work item that the worker is currently
265 * executing.
266 *
267 * The kernel workqueue code guarantees non-reentrancy
268 * of work items. I.e., if a work item with the same
269 * address and work function is queued twice, the second
270 * execution is blocked until the first one finishes. A
271 * work item may be freed and recycled with the same
272 * work function; the workqueue code assumes that the
273 * original work item cannot depend on the recycled work
274 * item in that case (see find_worker_executing_work()).
275 *
276 * Note that different types of Btrfs work can depend on
277 * each other, and one type of work on one Btrfs
278 * filesystem may even depend on the same type of work
279 * on another Btrfs filesystem via, e.g., a loop device.
280 * Therefore, we must not allow the current work item to
281 * be recycled until we are really done, otherwise we
282 * break the above assumption and can deadlock.
283 */
284 free_self = true;
285 } else {
286 /*
287 * We don't want to call the ordered free functions with
288 * the lock held.
289 */
290 work->ordered_free(work);
291 /* NB: work must not be dereferenced past this point. */
292 trace_btrfs_all_work_done(wq->fs_info, work);
293 }
294 }
295 spin_unlock_irqrestore(lock, flags);
296
297 if (free_self) {
298 self->ordered_free(self);
299 /* NB: self must not be dereferenced past this point. */
300 trace_btrfs_all_work_done(wq->fs_info, self);
301 }
302 }
303
btrfs_work_helper(struct work_struct * normal_work)304 static void btrfs_work_helper(struct work_struct *normal_work)
305 {
306 struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
307 normal_work);
308 struct __btrfs_workqueue *wq;
309 int need_order = 0;
310
311 /*
312 * We should not touch things inside work in the following cases:
313 * 1) after work->func() if it has no ordered_free
314 * Since the struct is freed in work->func().
315 * 2) after setting WORK_DONE_BIT
316 * The work may be freed in other threads almost instantly.
317 * So we save the needed things here.
318 */
319 if (work->ordered_func)
320 need_order = 1;
321 wq = work->wq;
322
323 trace_btrfs_work_sched(work);
324 thresh_exec_hook(wq);
325 work->func(work);
326 if (need_order) {
327 /*
328 * Ensures all memory accesses done in the work function are
329 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
330 * which is going to executed the ordered work sees them.
331 * Pairs with the smp_rmb in run_ordered_work.
332 */
333 smp_mb__before_atomic();
334 set_bit(WORK_DONE_BIT, &work->flags);
335 run_ordered_work(wq, work);
336 } else {
337 /* NB: work must not be dereferenced past this point. */
338 trace_btrfs_all_work_done(wq->fs_info, work);
339 }
340 }
341
btrfs_init_work(struct btrfs_work * work,btrfs_func_t func,btrfs_func_t ordered_func,btrfs_func_t ordered_free)342 void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
343 btrfs_func_t ordered_func, btrfs_func_t ordered_free)
344 {
345 work->func = func;
346 work->ordered_func = ordered_func;
347 work->ordered_free = ordered_free;
348 INIT_WORK(&work->normal_work, btrfs_work_helper);
349 INIT_LIST_HEAD(&work->ordered_list);
350 work->flags = 0;
351 }
352
__btrfs_queue_work(struct __btrfs_workqueue * wq,struct btrfs_work * work)353 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
354 struct btrfs_work *work)
355 {
356 unsigned long flags;
357
358 work->wq = wq;
359 thresh_queue_hook(wq);
360 if (work->ordered_func) {
361 spin_lock_irqsave(&wq->list_lock, flags);
362 list_add_tail(&work->ordered_list, &wq->ordered_list);
363 spin_unlock_irqrestore(&wq->list_lock, flags);
364 }
365 trace_btrfs_work_queued(work);
366 queue_work(wq->normal_wq, &work->normal_work);
367 }
368
btrfs_queue_work(struct btrfs_workqueue * wq,struct btrfs_work * work)369 void btrfs_queue_work(struct btrfs_workqueue *wq,
370 struct btrfs_work *work)
371 {
372 struct __btrfs_workqueue *dest_wq;
373
374 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
375 dest_wq = wq->high;
376 else
377 dest_wq = wq->normal;
378 __btrfs_queue_work(dest_wq, work);
379 }
380
381 static inline void
__btrfs_destroy_workqueue(struct __btrfs_workqueue * wq)382 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
383 {
384 destroy_workqueue(wq->normal_wq);
385 trace_btrfs_workqueue_destroy(wq);
386 kfree(wq);
387 }
388
btrfs_destroy_workqueue(struct btrfs_workqueue * wq)389 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
390 {
391 if (!wq)
392 return;
393 if (wq->high)
394 __btrfs_destroy_workqueue(wq->high);
395 __btrfs_destroy_workqueue(wq->normal);
396 kfree(wq);
397 }
398
btrfs_workqueue_set_max(struct btrfs_workqueue * wq,int limit_active)399 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
400 {
401 if (!wq)
402 return;
403 wq->normal->limit_active = limit_active;
404 if (wq->high)
405 wq->high->limit_active = limit_active;
406 }
407
btrfs_set_work_high_priority(struct btrfs_work * work)408 void btrfs_set_work_high_priority(struct btrfs_work *work)
409 {
410 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
411 }
412
btrfs_flush_workqueue(struct btrfs_workqueue * wq)413 void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
414 {
415 if (wq->high)
416 flush_workqueue(wq->high->normal_wq);
417
418 flush_workqueue(wq->normal->normal_wq);
419 }
420