• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "print-tree.h"
17 #include "compression.h"
18 
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20 				   sizeof(struct btrfs_item) * 2) / \
21 				  size) - 1))
22 
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24 				       PAGE_SIZE))
25 
26 /**
27  * @inode - the inode we want to update the disk_i_size for
28  * @new_i_size - the i_size we want to set to, 0 if we use i_size
29  *
30  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31  * returns as it is perfectly fine with a file that has holes without hole file
32  * extent items.
33  *
34  * However without NO_HOLES we need to only return the area that is contiguous
35  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
36  * to an extent that has a gap in between.
37  *
38  * Finally new_i_size should only be set in the case of truncate where we're not
39  * ready to use i_size_read() as the limiter yet.
40  */
btrfs_inode_safe_disk_i_size_write(struct inode * inode,u64 new_i_size)41 void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size)
42 {
43 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44 	u64 start, end, i_size;
45 	int ret;
46 
47 	i_size = new_i_size ?: i_size_read(inode);
48 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
49 		BTRFS_I(inode)->disk_i_size = i_size;
50 		return;
51 	}
52 
53 	spin_lock(&BTRFS_I(inode)->lock);
54 	ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0,
55 					 &start, &end, EXTENT_DIRTY);
56 	if (!ret && start == 0)
57 		i_size = min(i_size, end + 1);
58 	else
59 		i_size = 0;
60 	BTRFS_I(inode)->disk_i_size = i_size;
61 	spin_unlock(&BTRFS_I(inode)->lock);
62 }
63 
64 /**
65  * @inode - the inode we're modifying
66  * @start - the start file offset of the file extent we've inserted
67  * @len - the logical length of the file extent item
68  *
69  * Call when we are inserting a new file extent where there was none before.
70  * Does not need to call this in the case where we're replacing an existing file
71  * extent, however if not sure it's fine to call this multiple times.
72  *
73  * The start and len must match the file extent item, so thus must be sectorsize
74  * aligned.
75  */
btrfs_inode_set_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)76 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
77 				      u64 len)
78 {
79 	if (len == 0)
80 		return 0;
81 
82 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
83 
84 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
85 		return 0;
86 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
87 			       EXTENT_DIRTY);
88 }
89 
90 /**
91  * @inode - the inode we're modifying
92  * @start - the start file offset of the file extent we've inserted
93  * @len - the logical length of the file extent item
94  *
95  * Called when we drop a file extent, for example when we truncate.  Doesn't
96  * need to be called for cases where we're replacing a file extent, like when
97  * we've COWed a file extent.
98  *
99  * The start and len must match the file extent item, so thus must be sectorsize
100  * aligned.
101  */
btrfs_inode_clear_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
103 					u64 len)
104 {
105 	if (len == 0)
106 		return 0;
107 
108 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
109 	       len == (u64)-1);
110 
111 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
112 		return 0;
113 	return clear_extent_bit(&inode->file_extent_tree, start,
114 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
115 }
116 
max_ordered_sum_bytes(struct btrfs_fs_info * fs_info,u16 csum_size)117 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
118 					u16 csum_size)
119 {
120 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
121 
122 	return ncsums * fs_info->sectorsize;
123 }
124 
btrfs_insert_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 pos,u64 disk_offset,u64 disk_num_bytes,u64 num_bytes,u64 offset,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding)125 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
126 			     struct btrfs_root *root,
127 			     u64 objectid, u64 pos,
128 			     u64 disk_offset, u64 disk_num_bytes,
129 			     u64 num_bytes, u64 offset, u64 ram_bytes,
130 			     u8 compression, u8 encryption, u16 other_encoding)
131 {
132 	int ret = 0;
133 	struct btrfs_file_extent_item *item;
134 	struct btrfs_key file_key;
135 	struct btrfs_path *path;
136 	struct extent_buffer *leaf;
137 
138 	path = btrfs_alloc_path();
139 	if (!path)
140 		return -ENOMEM;
141 	file_key.objectid = objectid;
142 	file_key.offset = pos;
143 	file_key.type = BTRFS_EXTENT_DATA_KEY;
144 
145 	path->leave_spinning = 1;
146 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
147 				      sizeof(*item));
148 	if (ret < 0)
149 		goto out;
150 	BUG_ON(ret); /* Can't happen */
151 	leaf = path->nodes[0];
152 	item = btrfs_item_ptr(leaf, path->slots[0],
153 			      struct btrfs_file_extent_item);
154 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
155 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
156 	btrfs_set_file_extent_offset(leaf, item, offset);
157 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
158 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
159 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
160 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
161 	btrfs_set_file_extent_compression(leaf, item, compression);
162 	btrfs_set_file_extent_encryption(leaf, item, encryption);
163 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
164 
165 	btrfs_mark_buffer_dirty(leaf);
166 out:
167 	btrfs_free_path(path);
168 	return ret;
169 }
170 
171 static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,int cow)172 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
173 		  struct btrfs_root *root,
174 		  struct btrfs_path *path,
175 		  u64 bytenr, int cow)
176 {
177 	struct btrfs_fs_info *fs_info = root->fs_info;
178 	int ret;
179 	struct btrfs_key file_key;
180 	struct btrfs_key found_key;
181 	struct btrfs_csum_item *item;
182 	struct extent_buffer *leaf;
183 	u64 csum_offset = 0;
184 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
185 	int csums_in_item;
186 
187 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
188 	file_key.offset = bytenr;
189 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
190 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
191 	if (ret < 0)
192 		goto fail;
193 	leaf = path->nodes[0];
194 	if (ret > 0) {
195 		ret = 1;
196 		if (path->slots[0] == 0)
197 			goto fail;
198 		path->slots[0]--;
199 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
200 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
201 			goto fail;
202 
203 		csum_offset = (bytenr - found_key.offset) >>
204 				fs_info->sb->s_blocksize_bits;
205 		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
206 		csums_in_item /= csum_size;
207 
208 		if (csum_offset == csums_in_item) {
209 			ret = -EFBIG;
210 			goto fail;
211 		} else if (csum_offset > csums_in_item) {
212 			goto fail;
213 		}
214 	}
215 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
216 	item = (struct btrfs_csum_item *)((unsigned char *)item +
217 					  csum_offset * csum_size);
218 	return item;
219 fail:
220 	if (ret > 0)
221 		ret = -ENOENT;
222 	return ERR_PTR(ret);
223 }
224 
btrfs_lookup_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,int mod)225 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
226 			     struct btrfs_root *root,
227 			     struct btrfs_path *path, u64 objectid,
228 			     u64 offset, int mod)
229 {
230 	int ret;
231 	struct btrfs_key file_key;
232 	int ins_len = mod < 0 ? -1 : 0;
233 	int cow = mod != 0;
234 
235 	file_key.objectid = objectid;
236 	file_key.offset = offset;
237 	file_key.type = BTRFS_EXTENT_DATA_KEY;
238 	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
239 	return ret;
240 }
241 
242 /**
243  * btrfs_lookup_bio_sums - Look up checksums for a bio.
244  * @inode: inode that the bio is for.
245  * @bio: bio to look up.
246  * @offset: Unless (u64)-1, look up checksums for this offset in the file.
247  *          If (u64)-1, use the page offsets from the bio instead.
248  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
249  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
250  *       NULL, the checksum buffer is allocated and returned in
251  *       btrfs_io_bio(bio)->csum instead.
252  *
253  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
254  */
btrfs_lookup_bio_sums(struct inode * inode,struct bio * bio,u64 offset,u8 * dst)255 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
256 				   u64 offset, u8 *dst)
257 {
258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
259 	struct bio_vec bvec;
260 	struct bvec_iter iter;
261 	struct btrfs_csum_item *item = NULL;
262 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
263 	struct btrfs_path *path;
264 	const bool page_offsets = (offset == (u64)-1);
265 	u8 *csum;
266 	u64 item_start_offset = 0;
267 	u64 item_last_offset = 0;
268 	u64 disk_bytenr;
269 	u64 page_bytes_left;
270 	u32 diff;
271 	int nblocks;
272 	int count = 0;
273 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return BLK_STS_RESOURCE;
278 
279 	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
280 	if (!dst) {
281 		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
282 
283 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
284 			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
285 							GFP_NOFS);
286 			if (!btrfs_bio->csum) {
287 				btrfs_free_path(path);
288 				return BLK_STS_RESOURCE;
289 			}
290 		} else {
291 			btrfs_bio->csum = btrfs_bio->csum_inline;
292 		}
293 		csum = btrfs_bio->csum;
294 	} else {
295 		csum = dst;
296 	}
297 
298 	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
299 		path->reada = READA_FORWARD;
300 
301 	/*
302 	 * the free space stuff is only read when it hasn't been
303 	 * updated in the current transaction.  So, we can safely
304 	 * read from the commit root and sidestep a nasty deadlock
305 	 * between reading the free space cache and updating the csum tree.
306 	 */
307 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
308 		path->search_commit_root = 1;
309 		path->skip_locking = 1;
310 	}
311 
312 	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
313 
314 	bio_for_each_segment(bvec, bio, iter) {
315 		page_bytes_left = bvec.bv_len;
316 		if (count)
317 			goto next;
318 
319 		if (page_offsets)
320 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
321 		count = btrfs_find_ordered_sum(BTRFS_I(inode), offset,
322 					       disk_bytenr, csum, nblocks);
323 		if (count)
324 			goto found;
325 
326 		if (!item || disk_bytenr < item_start_offset ||
327 		    disk_bytenr >= item_last_offset) {
328 			struct btrfs_key found_key;
329 			u32 item_size;
330 
331 			if (item)
332 				btrfs_release_path(path);
333 			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
334 						 path, disk_bytenr, 0);
335 			if (IS_ERR(item)) {
336 				count = 1;
337 				memset(csum, 0, csum_size);
338 				if (BTRFS_I(inode)->root->root_key.objectid ==
339 				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
340 					set_extent_bits(io_tree, offset,
341 						offset + fs_info->sectorsize - 1,
342 						EXTENT_NODATASUM);
343 				} else {
344 					btrfs_info_rl(fs_info,
345 						   "no csum found for inode %llu start %llu",
346 					       btrfs_ino(BTRFS_I(inode)), offset);
347 				}
348 				item = NULL;
349 				btrfs_release_path(path);
350 				goto found;
351 			}
352 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
353 					      path->slots[0]);
354 
355 			item_start_offset = found_key.offset;
356 			item_size = btrfs_item_size_nr(path->nodes[0],
357 						       path->slots[0]);
358 			item_last_offset = item_start_offset +
359 				(item_size / csum_size) *
360 				fs_info->sectorsize;
361 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
362 					      struct btrfs_csum_item);
363 		}
364 		/*
365 		 * this byte range must be able to fit inside
366 		 * a single leaf so it will also fit inside a u32
367 		 */
368 		diff = disk_bytenr - item_start_offset;
369 		diff = diff / fs_info->sectorsize;
370 		diff = diff * csum_size;
371 		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
372 					    inode->i_sb->s_blocksize_bits);
373 		read_extent_buffer(path->nodes[0], csum,
374 				   ((unsigned long)item) + diff,
375 				   csum_size * count);
376 found:
377 		csum += count * csum_size;
378 		nblocks -= count;
379 next:
380 		while (count > 0) {
381 			count--;
382 			disk_bytenr += fs_info->sectorsize;
383 			offset += fs_info->sectorsize;
384 			page_bytes_left -= fs_info->sectorsize;
385 			if (!page_bytes_left)
386 				break; /* move to next bio */
387 		}
388 	}
389 
390 	WARN_ON_ONCE(count);
391 	btrfs_free_path(path);
392 	return BLK_STS_OK;
393 }
394 
btrfs_lookup_csums_range(struct btrfs_root * root,u64 start,u64 end,struct list_head * list,int search_commit)395 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
396 			     struct list_head *list, int search_commit)
397 {
398 	struct btrfs_fs_info *fs_info = root->fs_info;
399 	struct btrfs_key key;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_ordered_sum *sums;
403 	struct btrfs_csum_item *item;
404 	LIST_HEAD(tmplist);
405 	unsigned long offset;
406 	int ret;
407 	size_t size;
408 	u64 csum_end;
409 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
410 
411 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
412 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
413 
414 	path = btrfs_alloc_path();
415 	if (!path)
416 		return -ENOMEM;
417 
418 	if (search_commit) {
419 		path->skip_locking = 1;
420 		path->reada = READA_FORWARD;
421 		path->search_commit_root = 1;
422 	}
423 
424 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
425 	key.offset = start;
426 	key.type = BTRFS_EXTENT_CSUM_KEY;
427 
428 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
429 	if (ret < 0)
430 		goto fail;
431 	if (ret > 0 && path->slots[0] > 0) {
432 		leaf = path->nodes[0];
433 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
434 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
435 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
436 			offset = (start - key.offset) >>
437 				 fs_info->sb->s_blocksize_bits;
438 			if (offset * csum_size <
439 			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
440 				path->slots[0]--;
441 		}
442 	}
443 
444 	while (start <= end) {
445 		leaf = path->nodes[0];
446 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
447 			ret = btrfs_next_leaf(root, path);
448 			if (ret < 0)
449 				goto fail;
450 			if (ret > 0)
451 				break;
452 			leaf = path->nodes[0];
453 		}
454 
455 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
457 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
458 		    key.offset > end)
459 			break;
460 
461 		if (key.offset > start)
462 			start = key.offset;
463 
464 		size = btrfs_item_size_nr(leaf, path->slots[0]);
465 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
466 		if (csum_end <= start) {
467 			path->slots[0]++;
468 			continue;
469 		}
470 
471 		csum_end = min(csum_end, end + 1);
472 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
473 				      struct btrfs_csum_item);
474 		while (start < csum_end) {
475 			size = min_t(size_t, csum_end - start,
476 				     max_ordered_sum_bytes(fs_info, csum_size));
477 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
478 				       GFP_NOFS);
479 			if (!sums) {
480 				ret = -ENOMEM;
481 				goto fail;
482 			}
483 
484 			sums->bytenr = start;
485 			sums->len = (int)size;
486 
487 			offset = (start - key.offset) >>
488 				fs_info->sb->s_blocksize_bits;
489 			offset *= csum_size;
490 			size >>= fs_info->sb->s_blocksize_bits;
491 
492 			read_extent_buffer(path->nodes[0],
493 					   sums->sums,
494 					   ((unsigned long)item) + offset,
495 					   csum_size * size);
496 
497 			start += fs_info->sectorsize * size;
498 			list_add_tail(&sums->list, &tmplist);
499 		}
500 		path->slots[0]++;
501 	}
502 	ret = 0;
503 fail:
504 	while (ret < 0 && !list_empty(&tmplist)) {
505 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
506 		list_del(&sums->list);
507 		kfree(sums);
508 	}
509 	list_splice_tail(&tmplist, list);
510 
511 	btrfs_free_path(path);
512 	return ret;
513 }
514 
515 /*
516  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
517  * @inode:	 Owner of the data inside the bio
518  * @bio:	 Contains the data to be checksummed
519  * @file_start:  offset in file this bio begins to describe
520  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
521  *		 contiguous and they begin at @file_start in the file. False/0
522  *		 means this bio can contains potentially discontigous bio vecs
523  *		 so the logical offset of each should be calculated separately.
524  */
btrfs_csum_one_bio(struct btrfs_inode * inode,struct bio * bio,u64 file_start,int contig)525 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
526 		       u64 file_start, int contig)
527 {
528 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
529 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
530 	struct btrfs_ordered_sum *sums;
531 	struct btrfs_ordered_extent *ordered = NULL;
532 	char *data;
533 	struct bvec_iter iter;
534 	struct bio_vec bvec;
535 	int index;
536 	int nr_sectors;
537 	unsigned long total_bytes = 0;
538 	unsigned long this_sum_bytes = 0;
539 	int i;
540 	u64 offset;
541 	unsigned nofs_flag;
542 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
543 
544 	nofs_flag = memalloc_nofs_save();
545 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
546 		       GFP_KERNEL);
547 	memalloc_nofs_restore(nofs_flag);
548 
549 	if (!sums)
550 		return BLK_STS_RESOURCE;
551 
552 	sums->len = bio->bi_iter.bi_size;
553 	INIT_LIST_HEAD(&sums->list);
554 
555 	if (contig)
556 		offset = file_start;
557 	else
558 		offset = 0; /* shut up gcc */
559 
560 	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
561 	index = 0;
562 
563 	shash->tfm = fs_info->csum_shash;
564 
565 	bio_for_each_segment(bvec, bio, iter) {
566 		if (!contig)
567 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
568 
569 		if (!ordered) {
570 			ordered = btrfs_lookup_ordered_extent(inode, offset);
571 			/*
572 			 * The bio range is not covered by any ordered extent,
573 			 * must be a code logic error.
574 			 */
575 			if (unlikely(!ordered)) {
576 				WARN(1, KERN_WARNING
577 			"no ordered extent for root %llu ino %llu offset %llu\n",
578 				     inode->root->root_key.objectid,
579 				     btrfs_ino(inode), offset);
580 				kvfree(sums);
581 				return BLK_STS_IOERR;
582 			}
583 		}
584 
585 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
586 						 bvec.bv_len + fs_info->sectorsize
587 						 - 1);
588 
589 		for (i = 0; i < nr_sectors; i++) {
590 			if (offset >= ordered->file_offset + ordered->num_bytes ||
591 			    offset < ordered->file_offset) {
592 				unsigned long bytes_left;
593 
594 				sums->len = this_sum_bytes;
595 				this_sum_bytes = 0;
596 				btrfs_add_ordered_sum(ordered, sums);
597 				btrfs_put_ordered_extent(ordered);
598 
599 				bytes_left = bio->bi_iter.bi_size - total_bytes;
600 
601 				nofs_flag = memalloc_nofs_save();
602 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
603 						      bytes_left), GFP_KERNEL);
604 				memalloc_nofs_restore(nofs_flag);
605 				if (!sums)
606 					return BLK_STS_RESOURCE;
607 
608 				sums->len = bytes_left;
609 				ordered = btrfs_lookup_ordered_extent(inode,
610 								offset);
611 				ASSERT(ordered); /* Logic error */
612 				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
613 					+ total_bytes;
614 				index = 0;
615 			}
616 
617 			data = kmap_atomic(bvec.bv_page);
618 			crypto_shash_digest(shash, data + bvec.bv_offset
619 					    + (i * fs_info->sectorsize),
620 					    fs_info->sectorsize,
621 					    sums->sums + index);
622 			kunmap_atomic(data);
623 			index += csum_size;
624 			offset += fs_info->sectorsize;
625 			this_sum_bytes += fs_info->sectorsize;
626 			total_bytes += fs_info->sectorsize;
627 		}
628 
629 	}
630 	this_sum_bytes = 0;
631 	btrfs_add_ordered_sum(ordered, sums);
632 	btrfs_put_ordered_extent(ordered);
633 	return 0;
634 }
635 
636 /*
637  * helper function for csum removal, this expects the
638  * key to describe the csum pointed to by the path, and it expects
639  * the csum to overlap the range [bytenr, len]
640  *
641  * The csum should not be entirely contained in the range and the
642  * range should not be entirely contained in the csum.
643  *
644  * This calls btrfs_truncate_item with the correct args based on the
645  * overlap, and fixes up the key as required.
646  */
truncate_one_csum(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,u64 bytenr,u64 len)647 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
648 				       struct btrfs_path *path,
649 				       struct btrfs_key *key,
650 				       u64 bytenr, u64 len)
651 {
652 	struct extent_buffer *leaf;
653 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
654 	u64 csum_end;
655 	u64 end_byte = bytenr + len;
656 	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
657 
658 	leaf = path->nodes[0];
659 	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
660 	csum_end <<= fs_info->sb->s_blocksize_bits;
661 	csum_end += key->offset;
662 
663 	if (key->offset < bytenr && csum_end <= end_byte) {
664 		/*
665 		 *         [ bytenr - len ]
666 		 *         [   ]
667 		 *   [csum     ]
668 		 *   A simple truncate off the end of the item
669 		 */
670 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
671 		new_size *= csum_size;
672 		btrfs_truncate_item(path, new_size, 1);
673 	} else if (key->offset >= bytenr && csum_end > end_byte &&
674 		   end_byte > key->offset) {
675 		/*
676 		 *         [ bytenr - len ]
677 		 *                 [ ]
678 		 *                 [csum     ]
679 		 * we need to truncate from the beginning of the csum
680 		 */
681 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
682 		new_size *= csum_size;
683 
684 		btrfs_truncate_item(path, new_size, 0);
685 
686 		key->offset = end_byte;
687 		btrfs_set_item_key_safe(fs_info, path, key);
688 	} else {
689 		BUG();
690 	}
691 }
692 
693 /*
694  * deletes the csum items from the csum tree for a given
695  * range of bytes.
696  */
btrfs_del_csums(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 len)697 int btrfs_del_csums(struct btrfs_trans_handle *trans,
698 		    struct btrfs_root *root, u64 bytenr, u64 len)
699 {
700 	struct btrfs_fs_info *fs_info = trans->fs_info;
701 	struct btrfs_path *path;
702 	struct btrfs_key key;
703 	u64 end_byte = bytenr + len;
704 	u64 csum_end;
705 	struct extent_buffer *leaf;
706 	int ret = 0;
707 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
708 	int blocksize_bits = fs_info->sb->s_blocksize_bits;
709 
710 	ASSERT(root == fs_info->csum_root ||
711 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
712 
713 	path = btrfs_alloc_path();
714 	if (!path)
715 		return -ENOMEM;
716 
717 	while (1) {
718 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
719 		key.offset = end_byte - 1;
720 		key.type = BTRFS_EXTENT_CSUM_KEY;
721 
722 		path->leave_spinning = 1;
723 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
724 		if (ret > 0) {
725 			ret = 0;
726 			if (path->slots[0] == 0)
727 				break;
728 			path->slots[0]--;
729 		} else if (ret < 0) {
730 			break;
731 		}
732 
733 		leaf = path->nodes[0];
734 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
735 
736 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
737 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
738 			break;
739 		}
740 
741 		if (key.offset >= end_byte)
742 			break;
743 
744 		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
745 		csum_end <<= blocksize_bits;
746 		csum_end += key.offset;
747 
748 		/* this csum ends before we start, we're done */
749 		if (csum_end <= bytenr)
750 			break;
751 
752 		/* delete the entire item, it is inside our range */
753 		if (key.offset >= bytenr && csum_end <= end_byte) {
754 			int del_nr = 1;
755 
756 			/*
757 			 * Check how many csum items preceding this one in this
758 			 * leaf correspond to our range and then delete them all
759 			 * at once.
760 			 */
761 			if (key.offset > bytenr && path->slots[0] > 0) {
762 				int slot = path->slots[0] - 1;
763 
764 				while (slot >= 0) {
765 					struct btrfs_key pk;
766 
767 					btrfs_item_key_to_cpu(leaf, &pk, slot);
768 					if (pk.offset < bytenr ||
769 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
770 					    pk.objectid !=
771 					    BTRFS_EXTENT_CSUM_OBJECTID)
772 						break;
773 					path->slots[0] = slot;
774 					del_nr++;
775 					key.offset = pk.offset;
776 					slot--;
777 				}
778 			}
779 			ret = btrfs_del_items(trans, root, path,
780 					      path->slots[0], del_nr);
781 			if (ret)
782 				break;
783 			if (key.offset == bytenr)
784 				break;
785 		} else if (key.offset < bytenr && csum_end > end_byte) {
786 			unsigned long offset;
787 			unsigned long shift_len;
788 			unsigned long item_offset;
789 			/*
790 			 *        [ bytenr - len ]
791 			 *     [csum                ]
792 			 *
793 			 * Our bytes are in the middle of the csum,
794 			 * we need to split this item and insert a new one.
795 			 *
796 			 * But we can't drop the path because the
797 			 * csum could change, get removed, extended etc.
798 			 *
799 			 * The trick here is the max size of a csum item leaves
800 			 * enough room in the tree block for a single
801 			 * item header.  So, we split the item in place,
802 			 * adding a new header pointing to the existing
803 			 * bytes.  Then we loop around again and we have
804 			 * a nicely formed csum item that we can neatly
805 			 * truncate.
806 			 */
807 			offset = (bytenr - key.offset) >> blocksize_bits;
808 			offset *= csum_size;
809 
810 			shift_len = (len >> blocksize_bits) * csum_size;
811 
812 			item_offset = btrfs_item_ptr_offset(leaf,
813 							    path->slots[0]);
814 
815 			memzero_extent_buffer(leaf, item_offset + offset,
816 					     shift_len);
817 			key.offset = bytenr;
818 
819 			/*
820 			 * btrfs_split_item returns -EAGAIN when the
821 			 * item changed size or key
822 			 */
823 			ret = btrfs_split_item(trans, root, path, &key, offset);
824 			if (ret && ret != -EAGAIN) {
825 				btrfs_abort_transaction(trans, ret);
826 				break;
827 			}
828 			ret = 0;
829 
830 			key.offset = end_byte - 1;
831 		} else {
832 			truncate_one_csum(fs_info, path, &key, bytenr, len);
833 			if (key.offset < bytenr)
834 				break;
835 		}
836 		btrfs_release_path(path);
837 	}
838 	btrfs_free_path(path);
839 	return ret;
840 }
841 
btrfs_csum_file_blocks(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_ordered_sum * sums)842 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
843 			   struct btrfs_root *root,
844 			   struct btrfs_ordered_sum *sums)
845 {
846 	struct btrfs_fs_info *fs_info = root->fs_info;
847 	struct btrfs_key file_key;
848 	struct btrfs_key found_key;
849 	struct btrfs_path *path;
850 	struct btrfs_csum_item *item;
851 	struct btrfs_csum_item *item_end;
852 	struct extent_buffer *leaf = NULL;
853 	u64 next_offset;
854 	u64 total_bytes = 0;
855 	u64 csum_offset;
856 	u64 bytenr;
857 	u32 nritems;
858 	u32 ins_size;
859 	int index = 0;
860 	int found_next;
861 	int ret;
862 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return -ENOMEM;
867 again:
868 	next_offset = (u64)-1;
869 	found_next = 0;
870 	bytenr = sums->bytenr + total_bytes;
871 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
872 	file_key.offset = bytenr;
873 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
874 
875 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
876 	if (!IS_ERR(item)) {
877 		ret = 0;
878 		leaf = path->nodes[0];
879 		item_end = btrfs_item_ptr(leaf, path->slots[0],
880 					  struct btrfs_csum_item);
881 		item_end = (struct btrfs_csum_item *)((char *)item_end +
882 			   btrfs_item_size_nr(leaf, path->slots[0]));
883 		goto found;
884 	}
885 	ret = PTR_ERR(item);
886 	if (ret != -EFBIG && ret != -ENOENT)
887 		goto out;
888 
889 	if (ret == -EFBIG) {
890 		u32 item_size;
891 		/* we found one, but it isn't big enough yet */
892 		leaf = path->nodes[0];
893 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
894 		if ((item_size / csum_size) >=
895 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
896 			/* already at max size, make a new one */
897 			goto insert;
898 		}
899 	} else {
900 		int slot = path->slots[0] + 1;
901 		/* we didn't find a csum item, insert one */
902 		nritems = btrfs_header_nritems(path->nodes[0]);
903 		if (!nritems || (path->slots[0] >= nritems - 1)) {
904 			ret = btrfs_next_leaf(root, path);
905 			if (ret < 0) {
906 				goto out;
907 			} else if (ret > 0) {
908 				found_next = 1;
909 				goto insert;
910 			}
911 			slot = path->slots[0];
912 		}
913 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
914 		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
915 		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
916 			found_next = 1;
917 			goto insert;
918 		}
919 		next_offset = found_key.offset;
920 		found_next = 1;
921 		goto insert;
922 	}
923 
924 	/*
925 	 * At this point, we know the tree has a checksum item that ends at an
926 	 * offset matching the start of the checksum range we want to insert.
927 	 * We try to extend that item as much as possible and then add as many
928 	 * checksums to it as they fit.
929 	 *
930 	 * First check if the leaf has enough free space for at least one
931 	 * checksum. If it has go directly to the item extension code, otherwise
932 	 * release the path and do a search for insertion before the extension.
933 	 */
934 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
935 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
936 		csum_offset = (bytenr - found_key.offset) >>
937 			fs_info->sb->s_blocksize_bits;
938 		goto extend_csum;
939 	}
940 
941 	btrfs_release_path(path);
942 	ret = btrfs_search_slot(trans, root, &file_key, path,
943 				csum_size, 1);
944 	if (ret < 0)
945 		goto out;
946 
947 	if (ret > 0) {
948 		if (path->slots[0] == 0)
949 			goto insert;
950 		path->slots[0]--;
951 	}
952 
953 	leaf = path->nodes[0];
954 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
955 	csum_offset = (bytenr - found_key.offset) >>
956 			fs_info->sb->s_blocksize_bits;
957 
958 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
959 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
960 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
961 		goto insert;
962 	}
963 
964 extend_csum:
965 	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
966 	    csum_size) {
967 		int extend_nr;
968 		u64 tmp;
969 		u32 diff;
970 
971 		tmp = sums->len - total_bytes;
972 		tmp >>= fs_info->sb->s_blocksize_bits;
973 		WARN_ON(tmp < 1);
974 
975 		extend_nr = max_t(int, 1, (int)tmp);
976 		diff = (csum_offset + extend_nr) * csum_size;
977 		diff = min(diff,
978 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
979 
980 		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
981 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
982 		diff /= csum_size;
983 		diff *= csum_size;
984 
985 		btrfs_extend_item(path, diff);
986 		ret = 0;
987 		goto csum;
988 	}
989 
990 insert:
991 	btrfs_release_path(path);
992 	csum_offset = 0;
993 	if (found_next) {
994 		u64 tmp;
995 
996 		tmp = sums->len - total_bytes;
997 		tmp >>= fs_info->sb->s_blocksize_bits;
998 		tmp = min(tmp, (next_offset - file_key.offset) >>
999 					 fs_info->sb->s_blocksize_bits);
1000 
1001 		tmp = max_t(u64, 1, tmp);
1002 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1003 		ins_size = csum_size * tmp;
1004 	} else {
1005 		ins_size = csum_size;
1006 	}
1007 	path->leave_spinning = 1;
1008 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1009 				      ins_size);
1010 	path->leave_spinning = 0;
1011 	if (ret < 0)
1012 		goto out;
1013 	if (WARN_ON(ret != 0))
1014 		goto out;
1015 	leaf = path->nodes[0];
1016 csum:
1017 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1018 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1019 				      btrfs_item_size_nr(leaf, path->slots[0]));
1020 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1021 					  csum_offset * csum_size);
1022 found:
1023 	ins_size = (u32)(sums->len - total_bytes) >>
1024 		   fs_info->sb->s_blocksize_bits;
1025 	ins_size *= csum_size;
1026 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1027 			      ins_size);
1028 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1029 			    ins_size);
1030 
1031 	index += ins_size;
1032 	ins_size /= csum_size;
1033 	total_bytes += ins_size * fs_info->sectorsize;
1034 
1035 	btrfs_mark_buffer_dirty(path->nodes[0]);
1036 	if (total_bytes < sums->len) {
1037 		btrfs_release_path(path);
1038 		cond_resched();
1039 		goto again;
1040 	}
1041 out:
1042 	btrfs_free_path(path);
1043 	return ret;
1044 }
1045 
btrfs_extent_item_to_extent_map(struct btrfs_inode * inode,const struct btrfs_path * path,struct btrfs_file_extent_item * fi,const bool new_inline,struct extent_map * em)1046 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1047 				     const struct btrfs_path *path,
1048 				     struct btrfs_file_extent_item *fi,
1049 				     const bool new_inline,
1050 				     struct extent_map *em)
1051 {
1052 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1053 	struct btrfs_root *root = inode->root;
1054 	struct extent_buffer *leaf = path->nodes[0];
1055 	const int slot = path->slots[0];
1056 	struct btrfs_key key;
1057 	u64 extent_start, extent_end;
1058 	u64 bytenr;
1059 	u8 type = btrfs_file_extent_type(leaf, fi);
1060 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1061 
1062 	btrfs_item_key_to_cpu(leaf, &key, slot);
1063 	extent_start = key.offset;
1064 	extent_end = btrfs_file_extent_end(path);
1065 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1066 	if (type == BTRFS_FILE_EXTENT_REG ||
1067 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1068 		em->start = extent_start;
1069 		em->len = extent_end - extent_start;
1070 		em->orig_start = extent_start -
1071 			btrfs_file_extent_offset(leaf, fi);
1072 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1073 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1074 		if (bytenr == 0) {
1075 			em->block_start = EXTENT_MAP_HOLE;
1076 			return;
1077 		}
1078 		if (compress_type != BTRFS_COMPRESS_NONE) {
1079 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1080 			em->compress_type = compress_type;
1081 			em->block_start = bytenr;
1082 			em->block_len = em->orig_block_len;
1083 		} else {
1084 			bytenr += btrfs_file_extent_offset(leaf, fi);
1085 			em->block_start = bytenr;
1086 			em->block_len = em->len;
1087 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1088 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1089 		}
1090 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1091 		em->block_start = EXTENT_MAP_INLINE;
1092 		em->start = extent_start;
1093 		em->len = extent_end - extent_start;
1094 		/*
1095 		 * Initialize orig_start and block_len with the same values
1096 		 * as in inode.c:btrfs_get_extent().
1097 		 */
1098 		em->orig_start = EXTENT_MAP_HOLE;
1099 		em->block_len = (u64)-1;
1100 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1101 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1102 			em->compress_type = compress_type;
1103 		}
1104 	} else {
1105 		btrfs_err(fs_info,
1106 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1107 			  "root %llu", type, btrfs_ino(inode), extent_start,
1108 			  root->root_key.objectid);
1109 	}
1110 }
1111 
1112 /*
1113  * Returns the end offset (non inclusive) of the file extent item the given path
1114  * points to. If it points to an inline extent, the returned offset is rounded
1115  * up to the sector size.
1116  */
btrfs_file_extent_end(const struct btrfs_path * path)1117 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1118 {
1119 	const struct extent_buffer *leaf = path->nodes[0];
1120 	const int slot = path->slots[0];
1121 	struct btrfs_file_extent_item *fi;
1122 	struct btrfs_key key;
1123 	u64 end;
1124 
1125 	btrfs_item_key_to_cpu(leaf, &key, slot);
1126 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1127 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1128 
1129 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1130 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1131 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1132 	} else {
1133 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134 	}
1135 
1136 	return end;
1137 }
1138