• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx && !ctx->logging_new_name) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
join_running_log_trans(struct btrfs_root * root)193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 		return ret;
199 
200 	mutex_lock(&root->log_mutex);
201 	if (root->log_root) {
202 		ret = 0;
203 		atomic_inc(&root->log_writers);
204 	}
205 	mutex_unlock(&root->log_mutex);
206 	return ret;
207 }
208 
209 /*
210  * This either makes the current running log transaction wait
211  * until you call btrfs_end_log_trans() or it makes any future
212  * log transactions wait until you call btrfs_end_log_trans()
213  */
btrfs_pin_log_trans(struct btrfs_root * root)214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 	atomic_inc(&root->log_writers);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
btrfs_end_log_trans(struct btrfs_root * root)223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
btrfs_write_tree_block(struct extent_buffer * buf)231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0)
509 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 			goto no_copy;
511 		}
512 
513 		if (overwrite_root &&
514 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 			save_old_i_size = 1;
517 			saved_i_size = btrfs_inode_size(path->nodes[0],
518 							dst_item);
519 		}
520 	}
521 
522 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 			   src_ptr, item_size);
524 
525 	if (save_old_i_size) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 	}
530 
531 	/* make sure the generation is filled in */
532 	if (key->type == BTRFS_INODE_ITEM_KEY) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 			btrfs_set_inode_generation(path->nodes[0], dst_item,
537 						   trans->transid);
538 		}
539 	}
540 no_copy:
541 	btrfs_mark_buffer_dirty(path->nodes[0]);
542 	btrfs_release_path(path);
543 	return 0;
544 }
545 
546 /*
547  * simple helper to read an inode off the disk from a given root
548  * This can only be called for subvolume roots and not for the log
549  */
read_one_inode(struct btrfs_root * root,u64 objectid)550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 					     u64 objectid)
552 {
553 	struct inode *inode;
554 
555 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 	if (IS_ERR(inode))
557 		inode = NULL;
558 	return inode;
559 }
560 
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562  * subvolume 'root'.  path is released on entry and should be released
563  * on exit.
564  *
565  * extents in the log tree have not been allocated out of the extent
566  * tree yet.  So, this completes the allocation, taking a reference
567  * as required if the extent already exists or creating a new extent
568  * if it isn't in the extent allocation tree yet.
569  *
570  * The extent is inserted into the file, dropping any existing extents
571  * from the file that overlap the new one.
572  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 				      struct btrfs_root *root,
575 				      struct btrfs_path *path,
576 				      struct extent_buffer *eb, int slot,
577 				      struct btrfs_key *key)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	int found_type;
581 	u64 extent_end;
582 	u64 start = key->offset;
583 	u64 nbytes = 0;
584 	struct btrfs_file_extent_item *item;
585 	struct inode *inode = NULL;
586 	unsigned long size;
587 	int ret = 0;
588 
589 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 	found_type = btrfs_file_extent_type(eb, item);
591 
592 	if (found_type == BTRFS_FILE_EXTENT_REG ||
593 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 		nbytes = btrfs_file_extent_num_bytes(eb, item);
595 		extent_end = start + nbytes;
596 
597 		/*
598 		 * We don't add to the inodes nbytes if we are prealloc or a
599 		 * hole.
600 		 */
601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 			nbytes = 0;
603 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 		size = btrfs_file_extent_ram_bytes(eb, item);
605 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 		extent_end = ALIGN(start + size,
607 				   fs_info->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path,
625 			btrfs_ino(BTRFS_I(inode)), start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 		    btrfs_fs_incompat(fs_info, NO_HOLES))
668 			goto update_inode;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_trace_extent(trans,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			struct btrfs_ref ref = { 0 };
701 			u64 csum_start;
702 			u64 csum_end;
703 			LIST_HEAD(ordered_sums);
704 
705 			/*
706 			 * is this extent already allocated in the extent
707 			 * allocation tree?  If so, just add a reference
708 			 */
709 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 						ins.offset);
711 			if (ret < 0) {
712 				goto out;
713 			} else if (ret == 0) {
714 				btrfs_init_generic_ref(&ref,
715 						BTRFS_ADD_DELAYED_REF,
716 						ins.objectid, ins.offset, 0);
717 				btrfs_init_data_ref(&ref,
718 						root->root_key.objectid,
719 						key->objectid, offset);
720 				ret = btrfs_inc_extent_ref(trans, &ref);
721 				if (ret)
722 					goto out;
723 			} else {
724 				/*
725 				 * insert the extent pointer in the extent
726 				 * allocation tree
727 				 */
728 				ret = btrfs_alloc_logged_file_extent(trans,
729 						root->root_key.objectid,
730 						key->objectid, offset, &ins);
731 				if (ret)
732 					goto out;
733 			}
734 			btrfs_release_path(path);
735 
736 			if (btrfs_file_extent_compression(eb, item)) {
737 				csum_start = ins.objectid;
738 				csum_end = csum_start + ins.offset;
739 			} else {
740 				csum_start = ins.objectid +
741 					btrfs_file_extent_offset(eb, item);
742 				csum_end = csum_start +
743 					btrfs_file_extent_num_bytes(eb, item);
744 			}
745 
746 			ret = btrfs_lookup_csums_range(root->log_root,
747 						csum_start, csum_end - 1,
748 						&ordered_sums, 0);
749 			if (ret)
750 				goto out;
751 			/*
752 			 * Now delete all existing cums in the csum root that
753 			 * cover our range. We do this because we can have an
754 			 * extent that is completely referenced by one file
755 			 * extent item and partially referenced by another
756 			 * file extent item (like after using the clone or
757 			 * extent_same ioctls). In this case if we end up doing
758 			 * the replay of the one that partially references the
759 			 * extent first, and we do not do the csum deletion
760 			 * below, we can get 2 csum items in the csum tree that
761 			 * overlap each other. For example, imagine our log has
762 			 * the two following file extent items:
763 			 *
764 			 * key (257 EXTENT_DATA 409600)
765 			 *     extent data disk byte 12845056 nr 102400
766 			 *     extent data offset 20480 nr 20480 ram 102400
767 			 *
768 			 * key (257 EXTENT_DATA 819200)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 0 nr 102400 ram 102400
771 			 *
772 			 * Where the second one fully references the 100K extent
773 			 * that starts at disk byte 12845056, and the log tree
774 			 * has a single csum item that covers the entire range
775 			 * of the extent:
776 			 *
777 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 			 *
779 			 * After the first file extent item is replayed, the
780 			 * csum tree gets the following csum item:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 			 *
784 			 * Which covers the 20K sub-range starting at offset 20K
785 			 * of our extent. Now when we replay the second file
786 			 * extent item, if we do not delete existing csum items
787 			 * that cover any of its blocks, we end up getting two
788 			 * csum items in our csum tree that overlap each other:
789 			 *
790 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 			 *
793 			 * Which is a problem, because after this anyone trying
794 			 * to lookup up for the checksum of any block of our
795 			 * extent starting at an offset of 40K or higher, will
796 			 * end up looking at the second csum item only, which
797 			 * does not contain the checksum for any block starting
798 			 * at offset 40K or higher of our extent.
799 			 */
800 			while (!list_empty(&ordered_sums)) {
801 				struct btrfs_ordered_sum *sums;
802 				sums = list_entry(ordered_sums.next,
803 						struct btrfs_ordered_sum,
804 						list);
805 				if (!ret)
806 					ret = btrfs_del_csums(trans,
807 							      fs_info->csum_root,
808 							      sums->bytenr,
809 							      sums->len);
810 				if (!ret)
811 					ret = btrfs_csum_file_blocks(trans,
812 						fs_info->csum_root, sums);
813 				list_del(&sums->list);
814 				kfree(sums);
815 			}
816 			if (ret)
817 				goto out;
818 		} else {
819 			btrfs_release_path(path);
820 		}
821 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
822 		/* inline extents are easy, we just overwrite them */
823 		ret = overwrite_item(trans, root, path, eb, slot, key);
824 		if (ret)
825 			goto out;
826 	}
827 
828 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
829 						extent_end - start);
830 	if (ret)
831 		goto out;
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * See if a given name and sequence number found in an inode back reference are
898  * already in a directory and correctly point to this inode.
899  *
900  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
901  * exists.
902  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)903 static noinline int inode_in_dir(struct btrfs_root *root,
904 				 struct btrfs_path *path,
905 				 u64 dirid, u64 objectid, u64 index,
906 				 const char *name, int name_len)
907 {
908 	struct btrfs_dir_item *di;
909 	struct btrfs_key location;
910 	int ret = 0;
911 
912 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 					 index, name, name_len, 0);
914 	if (IS_ERR(di)) {
915 		ret = PTR_ERR(di);
916 		goto out;
917 	} else if (di) {
918 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
919 		if (location.objectid != objectid)
920 			goto out;
921 	} else {
922 		goto out;
923 	}
924 
925 	btrfs_release_path(path);
926 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
927 	if (IS_ERR(di)) {
928 		ret = PTR_ERR(di);
929 		goto out;
930 	} else if (di) {
931 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
932 		if (location.objectid == objectid)
933 			ret = 1;
934 	}
935 out:
936 	btrfs_release_path(path);
937 	return ret;
938 }
939 
940 /*
941  * helper function to check a log tree for a named back reference in
942  * an inode.  This is used to decide if a back reference that is
943  * found in the subvolume conflicts with what we find in the log.
944  *
945  * inode backreferences may have multiple refs in a single item,
946  * during replay we process one reference at a time, and we don't
947  * want to delete valid links to a file from the subvolume if that
948  * link is also in the log.
949  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)950 static noinline int backref_in_log(struct btrfs_root *log,
951 				   struct btrfs_key *key,
952 				   u64 ref_objectid,
953 				   const char *name, int namelen)
954 {
955 	struct btrfs_path *path;
956 	int ret;
957 
958 	path = btrfs_alloc_path();
959 	if (!path)
960 		return -ENOMEM;
961 
962 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 	if (ret < 0) {
964 		goto out;
965 	} else if (ret == 1) {
966 		ret = 0;
967 		goto out;
968 	}
969 
970 	if (key->type == BTRFS_INODE_EXTREF_KEY)
971 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
972 						       path->slots[0],
973 						       ref_objectid,
974 						       name, namelen);
975 	else
976 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
977 						   path->slots[0],
978 						   name, namelen);
979 out:
980 	btrfs_free_path(path);
981 	return ret;
982 }
983 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
985 				  struct btrfs_root *root,
986 				  struct btrfs_path *path,
987 				  struct btrfs_root *log_root,
988 				  struct btrfs_inode *dir,
989 				  struct btrfs_inode *inode,
990 				  u64 inode_objectid, u64 parent_objectid,
991 				  u64 ref_index, char *name, int namelen,
992 				  int *search_done)
993 {
994 	int ret;
995 	char *victim_name;
996 	int victim_name_len;
997 	struct extent_buffer *leaf;
998 	struct btrfs_dir_item *di;
999 	struct btrfs_key search_key;
1000 	struct btrfs_inode_extref *extref;
1001 
1002 again:
1003 	/* Search old style refs */
1004 	search_key.objectid = inode_objectid;
1005 	search_key.type = BTRFS_INODE_REF_KEY;
1006 	search_key.offset = parent_objectid;
1007 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 	if (ret == 0) {
1009 		struct btrfs_inode_ref *victim_ref;
1010 		unsigned long ptr;
1011 		unsigned long ptr_end;
1012 
1013 		leaf = path->nodes[0];
1014 
1015 		/* are we trying to overwrite a back ref for the root directory
1016 		 * if so, just jump out, we're done
1017 		 */
1018 		if (search_key.objectid == search_key.offset)
1019 			return 1;
1020 
1021 		/* check all the names in this back reference to see
1022 		 * if they are in the log.  if so, we allow them to stay
1023 		 * otherwise they must be unlinked as a conflict
1024 		 */
1025 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1027 		while (ptr < ptr_end) {
1028 			victim_ref = (struct btrfs_inode_ref *)ptr;
1029 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 								   victim_ref);
1031 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1032 			if (!victim_name)
1033 				return -ENOMEM;
1034 
1035 			read_extent_buffer(leaf, victim_name,
1036 					   (unsigned long)(victim_ref + 1),
1037 					   victim_name_len);
1038 
1039 			ret = backref_in_log(log_root, &search_key,
1040 					     parent_objectid, victim_name,
1041 					     victim_name_len);
1042 			if (ret < 0) {
1043 				kfree(victim_name);
1044 				return ret;
1045 			} else if (!ret) {
1046 				inc_nlink(&inode->vfs_inode);
1047 				btrfs_release_path(path);
1048 
1049 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1050 						victim_name, victim_name_len);
1051 				kfree(victim_name);
1052 				if (ret)
1053 					return ret;
1054 				ret = btrfs_run_delayed_items(trans);
1055 				if (ret)
1056 					return ret;
1057 				*search_done = 1;
1058 				goto again;
1059 			}
1060 			kfree(victim_name);
1061 
1062 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1063 		}
1064 
1065 		/*
1066 		 * NOTE: we have searched root tree and checked the
1067 		 * corresponding ref, it does not need to check again.
1068 		 */
1069 		*search_done = 1;
1070 	}
1071 	btrfs_release_path(path);
1072 
1073 	/* Same search but for extended refs */
1074 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1075 					   inode_objectid, parent_objectid, 0,
1076 					   0);
1077 	if (IS_ERR(extref)) {
1078 		return PTR_ERR(extref);
1079 	} else if (extref) {
1080 		u32 item_size;
1081 		u32 cur_offset = 0;
1082 		unsigned long base;
1083 		struct inode *victim_parent;
1084 
1085 		leaf = path->nodes[0];
1086 
1087 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1088 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089 
1090 		while (cur_offset < item_size) {
1091 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1092 
1093 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1094 
1095 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1096 				goto next;
1097 
1098 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1099 			if (!victim_name)
1100 				return -ENOMEM;
1101 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1102 					   victim_name_len);
1103 
1104 			search_key.objectid = inode_objectid;
1105 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1106 			search_key.offset = btrfs_extref_hash(parent_objectid,
1107 							      victim_name,
1108 							      victim_name_len);
1109 			ret = backref_in_log(log_root, &search_key,
1110 					     parent_objectid, victim_name,
1111 					     victim_name_len);
1112 			if (ret < 0) {
1113 				kfree(victim_name);
1114 				return ret;
1115 			} else if (!ret) {
1116 				ret = -ENOENT;
1117 				victim_parent = read_one_inode(root,
1118 						parent_objectid);
1119 				if (victim_parent) {
1120 					inc_nlink(&inode->vfs_inode);
1121 					btrfs_release_path(path);
1122 
1123 					ret = btrfs_unlink_inode(trans, root,
1124 							BTRFS_I(victim_parent),
1125 							inode,
1126 							victim_name,
1127 							victim_name_len);
1128 					if (!ret)
1129 						ret = btrfs_run_delayed_items(
1130 								  trans);
1131 				}
1132 				iput(victim_parent);
1133 				kfree(victim_name);
1134 				if (ret)
1135 					return ret;
1136 				*search_done = 1;
1137 				goto again;
1138 			}
1139 			kfree(victim_name);
1140 next:
1141 			cur_offset += victim_name_len + sizeof(*extref);
1142 		}
1143 		*search_done = 1;
1144 	}
1145 	btrfs_release_path(path);
1146 
1147 	/* look for a conflicting sequence number */
1148 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1149 					 ref_index, name, namelen, 0);
1150 	if (IS_ERR(di)) {
1151 		return PTR_ERR(di);
1152 	} else if (di) {
1153 		ret = drop_one_dir_item(trans, root, path, dir, di);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 	btrfs_release_path(path);
1158 
1159 	/* look for a conflicting name */
1160 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1161 				   name, namelen, 0);
1162 	if (IS_ERR(di)) {
1163 		return PTR_ERR(di);
1164 	} else if (di) {
1165 		ret = drop_one_dir_item(trans, root, path, dir, di);
1166 		if (ret)
1167 			return ret;
1168 	}
1169 	btrfs_release_path(path);
1170 
1171 	return 0;
1172 }
1173 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1174 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1175 			     u32 *namelen, char **name, u64 *index,
1176 			     u64 *parent_objectid)
1177 {
1178 	struct btrfs_inode_extref *extref;
1179 
1180 	extref = (struct btrfs_inode_extref *)ref_ptr;
1181 
1182 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1183 	*name = kmalloc(*namelen, GFP_NOFS);
1184 	if (*name == NULL)
1185 		return -ENOMEM;
1186 
1187 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1188 			   *namelen);
1189 
1190 	if (index)
1191 		*index = btrfs_inode_extref_index(eb, extref);
1192 	if (parent_objectid)
1193 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1194 
1195 	return 0;
1196 }
1197 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1198 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1199 			  u32 *namelen, char **name, u64 *index)
1200 {
1201 	struct btrfs_inode_ref *ref;
1202 
1203 	ref = (struct btrfs_inode_ref *)ref_ptr;
1204 
1205 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1206 	*name = kmalloc(*namelen, GFP_NOFS);
1207 	if (*name == NULL)
1208 		return -ENOMEM;
1209 
1210 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1211 
1212 	if (index)
1213 		*index = btrfs_inode_ref_index(eb, ref);
1214 
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Take an inode reference item from the log tree and iterate all names from the
1220  * inode reference item in the subvolume tree with the same key (if it exists).
1221  * For any name that is not in the inode reference item from the log tree, do a
1222  * proper unlink of that name (that is, remove its entry from the inode
1223  * reference item and both dir index keys).
1224  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1225 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1226 				 struct btrfs_root *root,
1227 				 struct btrfs_path *path,
1228 				 struct btrfs_inode *inode,
1229 				 struct extent_buffer *log_eb,
1230 				 int log_slot,
1231 				 struct btrfs_key *key)
1232 {
1233 	int ret;
1234 	unsigned long ref_ptr;
1235 	unsigned long ref_end;
1236 	struct extent_buffer *eb;
1237 
1238 again:
1239 	btrfs_release_path(path);
1240 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1241 	if (ret > 0) {
1242 		ret = 0;
1243 		goto out;
1244 	}
1245 	if (ret < 0)
1246 		goto out;
1247 
1248 	eb = path->nodes[0];
1249 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1250 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1251 	while (ref_ptr < ref_end) {
1252 		char *name = NULL;
1253 		int namelen;
1254 		u64 parent_id;
1255 
1256 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1257 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1258 						NULL, &parent_id);
1259 		} else {
1260 			parent_id = key->offset;
1261 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1262 					     NULL);
1263 		}
1264 		if (ret)
1265 			goto out;
1266 
1267 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1268 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1269 							       parent_id, name,
1270 							       namelen);
1271 		else
1272 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1273 							   name, namelen);
1274 
1275 		if (!ret) {
1276 			struct inode *dir;
1277 
1278 			btrfs_release_path(path);
1279 			dir = read_one_inode(root, parent_id);
1280 			if (!dir) {
1281 				ret = -ENOENT;
1282 				kfree(name);
1283 				goto out;
1284 			}
1285 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1286 						 inode, name, namelen);
1287 			kfree(name);
1288 			iput(dir);
1289 			/*
1290 			 * Whenever we need to check if a name exists or not, we
1291 			 * check the subvolume tree. So after an unlink we must
1292 			 * run delayed items, so that future checks for a name
1293 			 * during log replay see that the name does not exists
1294 			 * anymore.
1295 			 */
1296 			if (!ret)
1297 				ret = btrfs_run_delayed_items(trans);
1298 			if (ret)
1299 				goto out;
1300 			goto again;
1301 		}
1302 
1303 		kfree(name);
1304 		ref_ptr += namelen;
1305 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1306 			ref_ptr += sizeof(struct btrfs_inode_extref);
1307 		else
1308 			ref_ptr += sizeof(struct btrfs_inode_ref);
1309 	}
1310 	ret = 0;
1311  out:
1312 	btrfs_release_path(path);
1313 	return ret;
1314 }
1315 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1316 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1317 				  const u8 ref_type, const char *name,
1318 				  const int namelen)
1319 {
1320 	struct btrfs_key key;
1321 	struct btrfs_path *path;
1322 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1323 	int ret;
1324 
1325 	path = btrfs_alloc_path();
1326 	if (!path)
1327 		return -ENOMEM;
1328 
1329 	key.objectid = btrfs_ino(BTRFS_I(inode));
1330 	key.type = ref_type;
1331 	if (key.type == BTRFS_INODE_REF_KEY)
1332 		key.offset = parent_id;
1333 	else
1334 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1335 
1336 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1337 	if (ret < 0)
1338 		goto out;
1339 	if (ret > 0) {
1340 		ret = 0;
1341 		goto out;
1342 	}
1343 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1344 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1345 				path->slots[0], parent_id, name, namelen);
1346 	else
1347 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1348 						   name, namelen);
1349 
1350 out:
1351 	btrfs_free_path(path);
1352 	return ret;
1353 }
1354 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1355 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1356 		    struct inode *dir, struct inode *inode, const char *name,
1357 		    int namelen, u64 ref_index)
1358 {
1359 	struct btrfs_dir_item *dir_item;
1360 	struct btrfs_key key;
1361 	struct btrfs_path *path;
1362 	struct inode *other_inode = NULL;
1363 	int ret;
1364 
1365 	path = btrfs_alloc_path();
1366 	if (!path)
1367 		return -ENOMEM;
1368 
1369 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1370 					 btrfs_ino(BTRFS_I(dir)),
1371 					 name, namelen, 0);
1372 	if (!dir_item) {
1373 		btrfs_release_path(path);
1374 		goto add_link;
1375 	} else if (IS_ERR(dir_item)) {
1376 		ret = PTR_ERR(dir_item);
1377 		goto out;
1378 	}
1379 
1380 	/*
1381 	 * Our inode's dentry collides with the dentry of another inode which is
1382 	 * in the log but not yet processed since it has a higher inode number.
1383 	 * So delete that other dentry.
1384 	 */
1385 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1386 	btrfs_release_path(path);
1387 	other_inode = read_one_inode(root, key.objectid);
1388 	if (!other_inode) {
1389 		ret = -ENOENT;
1390 		goto out;
1391 	}
1392 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1393 				 name, namelen);
1394 	if (ret)
1395 		goto out;
1396 	/*
1397 	 * If we dropped the link count to 0, bump it so that later the iput()
1398 	 * on the inode will not free it. We will fixup the link count later.
1399 	 */
1400 	if (other_inode->i_nlink == 0)
1401 		inc_nlink(other_inode);
1402 
1403 	ret = btrfs_run_delayed_items(trans);
1404 	if (ret)
1405 		goto out;
1406 add_link:
1407 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1408 			     name, namelen, 0, ref_index);
1409 out:
1410 	iput(other_inode);
1411 	btrfs_free_path(path);
1412 
1413 	return ret;
1414 }
1415 
1416 /*
1417  * replay one inode back reference item found in the log tree.
1418  * eb, slot and key refer to the buffer and key found in the log tree.
1419  * root is the destination we are replaying into, and path is for temp
1420  * use by this function.  (it should be released on return).
1421  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1422 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1423 				  struct btrfs_root *root,
1424 				  struct btrfs_root *log,
1425 				  struct btrfs_path *path,
1426 				  struct extent_buffer *eb, int slot,
1427 				  struct btrfs_key *key)
1428 {
1429 	struct inode *dir = NULL;
1430 	struct inode *inode = NULL;
1431 	unsigned long ref_ptr;
1432 	unsigned long ref_end;
1433 	char *name = NULL;
1434 	int namelen;
1435 	int ret;
1436 	int search_done = 0;
1437 	int log_ref_ver = 0;
1438 	u64 parent_objectid;
1439 	u64 inode_objectid;
1440 	u64 ref_index = 0;
1441 	int ref_struct_size;
1442 
1443 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1444 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1445 
1446 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1447 		struct btrfs_inode_extref *r;
1448 
1449 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1450 		log_ref_ver = 1;
1451 		r = (struct btrfs_inode_extref *)ref_ptr;
1452 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1453 	} else {
1454 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1455 		parent_objectid = key->offset;
1456 	}
1457 	inode_objectid = key->objectid;
1458 
1459 	/*
1460 	 * it is possible that we didn't log all the parent directories
1461 	 * for a given inode.  If we don't find the dir, just don't
1462 	 * copy the back ref in.  The link count fixup code will take
1463 	 * care of the rest
1464 	 */
1465 	dir = read_one_inode(root, parent_objectid);
1466 	if (!dir) {
1467 		ret = -ENOENT;
1468 		goto out;
1469 	}
1470 
1471 	inode = read_one_inode(root, inode_objectid);
1472 	if (!inode) {
1473 		ret = -EIO;
1474 		goto out;
1475 	}
1476 
1477 	while (ref_ptr < ref_end) {
1478 		if (log_ref_ver) {
1479 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1480 						&ref_index, &parent_objectid);
1481 			/*
1482 			 * parent object can change from one array
1483 			 * item to another.
1484 			 */
1485 			if (!dir)
1486 				dir = read_one_inode(root, parent_objectid);
1487 			if (!dir) {
1488 				ret = -ENOENT;
1489 				goto out;
1490 			}
1491 		} else {
1492 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1493 					     &ref_index);
1494 		}
1495 		if (ret)
1496 			goto out;
1497 
1498 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1499 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1500 				   name, namelen);
1501 		if (ret < 0) {
1502 			goto out;
1503 		} else if (ret == 0) {
1504 			/*
1505 			 * look for a conflicting back reference in the
1506 			 * metadata. if we find one we have to unlink that name
1507 			 * of the file before we add our new link.  Later on, we
1508 			 * overwrite any existing back reference, and we don't
1509 			 * want to create dangling pointers in the directory.
1510 			 */
1511 
1512 			if (!search_done) {
1513 				ret = __add_inode_ref(trans, root, path, log,
1514 						      BTRFS_I(dir),
1515 						      BTRFS_I(inode),
1516 						      inode_objectid,
1517 						      parent_objectid,
1518 						      ref_index, name, namelen,
1519 						      &search_done);
1520 				if (ret) {
1521 					if (ret == 1)
1522 						ret = 0;
1523 					goto out;
1524 				}
1525 			}
1526 
1527 			/*
1528 			 * If a reference item already exists for this inode
1529 			 * with the same parent and name, but different index,
1530 			 * drop it and the corresponding directory index entries
1531 			 * from the parent before adding the new reference item
1532 			 * and dir index entries, otherwise we would fail with
1533 			 * -EEXIST returned from btrfs_add_link() below.
1534 			 */
1535 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1536 						     name, namelen);
1537 			if (ret > 0) {
1538 				ret = btrfs_unlink_inode(trans, root,
1539 							 BTRFS_I(dir),
1540 							 BTRFS_I(inode),
1541 							 name, namelen);
1542 				/*
1543 				 * If we dropped the link count to 0, bump it so
1544 				 * that later the iput() on the inode will not
1545 				 * free it. We will fixup the link count later.
1546 				 */
1547 				if (!ret && inode->i_nlink == 0)
1548 					inc_nlink(inode);
1549 				/*
1550 				 * Whenever we need to check if a name exists or
1551 				 * not, we check the subvolume tree. So after an
1552 				 * unlink we must run delayed items, so that future
1553 				 * checks for a name during log replay see that the
1554 				 * name does not exists anymore.
1555 				 */
1556 				if (!ret)
1557 					ret = btrfs_run_delayed_items(trans);
1558 			}
1559 			if (ret < 0)
1560 				goto out;
1561 
1562 			/* insert our name */
1563 			ret = add_link(trans, root, dir, inode, name, namelen,
1564 				       ref_index);
1565 			if (ret)
1566 				goto out;
1567 
1568 			btrfs_update_inode(trans, root, inode);
1569 		}
1570 		/* Else, ret == 1, we already have a perfect match, we're done. */
1571 
1572 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1573 		kfree(name);
1574 		name = NULL;
1575 		if (log_ref_ver) {
1576 			iput(dir);
1577 			dir = NULL;
1578 		}
1579 	}
1580 
1581 	/*
1582 	 * Before we overwrite the inode reference item in the subvolume tree
1583 	 * with the item from the log tree, we must unlink all names from the
1584 	 * parent directory that are in the subvolume's tree inode reference
1585 	 * item, otherwise we end up with an inconsistent subvolume tree where
1586 	 * dir index entries exist for a name but there is no inode reference
1587 	 * item with the same name.
1588 	 */
1589 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1590 				    key);
1591 	if (ret)
1592 		goto out;
1593 
1594 	/* finally write the back reference in the inode */
1595 	ret = overwrite_item(trans, root, path, eb, slot, key);
1596 out:
1597 	btrfs_release_path(path);
1598 	kfree(name);
1599 	iput(dir);
1600 	iput(inode);
1601 	return ret;
1602 }
1603 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1604 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1605 			      struct btrfs_root *root, u64 ino)
1606 {
1607 	int ret;
1608 
1609 	ret = btrfs_insert_orphan_item(trans, root, ino);
1610 	if (ret == -EEXIST)
1611 		ret = 0;
1612 
1613 	return ret;
1614 }
1615 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1616 static int count_inode_extrefs(struct btrfs_root *root,
1617 		struct btrfs_inode *inode, struct btrfs_path *path)
1618 {
1619 	int ret = 0;
1620 	int name_len;
1621 	unsigned int nlink = 0;
1622 	u32 item_size;
1623 	u32 cur_offset = 0;
1624 	u64 inode_objectid = btrfs_ino(inode);
1625 	u64 offset = 0;
1626 	unsigned long ptr;
1627 	struct btrfs_inode_extref *extref;
1628 	struct extent_buffer *leaf;
1629 
1630 	while (1) {
1631 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1632 					    &extref, &offset);
1633 		if (ret)
1634 			break;
1635 
1636 		leaf = path->nodes[0];
1637 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1638 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1639 		cur_offset = 0;
1640 
1641 		while (cur_offset < item_size) {
1642 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1643 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1644 
1645 			nlink++;
1646 
1647 			cur_offset += name_len + sizeof(*extref);
1648 		}
1649 
1650 		offset++;
1651 		btrfs_release_path(path);
1652 	}
1653 	btrfs_release_path(path);
1654 
1655 	if (ret < 0 && ret != -ENOENT)
1656 		return ret;
1657 	return nlink;
1658 }
1659 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1660 static int count_inode_refs(struct btrfs_root *root,
1661 			struct btrfs_inode *inode, struct btrfs_path *path)
1662 {
1663 	int ret;
1664 	struct btrfs_key key;
1665 	unsigned int nlink = 0;
1666 	unsigned long ptr;
1667 	unsigned long ptr_end;
1668 	int name_len;
1669 	u64 ino = btrfs_ino(inode);
1670 
1671 	key.objectid = ino;
1672 	key.type = BTRFS_INODE_REF_KEY;
1673 	key.offset = (u64)-1;
1674 
1675 	while (1) {
1676 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1677 		if (ret < 0)
1678 			break;
1679 		if (ret > 0) {
1680 			if (path->slots[0] == 0)
1681 				break;
1682 			path->slots[0]--;
1683 		}
1684 process_slot:
1685 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1686 				      path->slots[0]);
1687 		if (key.objectid != ino ||
1688 		    key.type != BTRFS_INODE_REF_KEY)
1689 			break;
1690 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1691 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1692 						   path->slots[0]);
1693 		while (ptr < ptr_end) {
1694 			struct btrfs_inode_ref *ref;
1695 
1696 			ref = (struct btrfs_inode_ref *)ptr;
1697 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1698 							    ref);
1699 			ptr = (unsigned long)(ref + 1) + name_len;
1700 			nlink++;
1701 		}
1702 
1703 		if (key.offset == 0)
1704 			break;
1705 		if (path->slots[0] > 0) {
1706 			path->slots[0]--;
1707 			goto process_slot;
1708 		}
1709 		key.offset--;
1710 		btrfs_release_path(path);
1711 	}
1712 	btrfs_release_path(path);
1713 
1714 	return nlink;
1715 }
1716 
1717 /*
1718  * There are a few corners where the link count of the file can't
1719  * be properly maintained during replay.  So, instead of adding
1720  * lots of complexity to the log code, we just scan the backrefs
1721  * for any file that has been through replay.
1722  *
1723  * The scan will update the link count on the inode to reflect the
1724  * number of back refs found.  If it goes down to zero, the iput
1725  * will free the inode.
1726  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1727 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1728 					   struct btrfs_root *root,
1729 					   struct inode *inode)
1730 {
1731 	struct btrfs_path *path;
1732 	int ret;
1733 	u64 nlink = 0;
1734 	u64 ino = btrfs_ino(BTRFS_I(inode));
1735 
1736 	path = btrfs_alloc_path();
1737 	if (!path)
1738 		return -ENOMEM;
1739 
1740 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1741 	if (ret < 0)
1742 		goto out;
1743 
1744 	nlink = ret;
1745 
1746 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1747 	if (ret < 0)
1748 		goto out;
1749 
1750 	nlink += ret;
1751 
1752 	ret = 0;
1753 
1754 	if (nlink != inode->i_nlink) {
1755 		set_nlink(inode, nlink);
1756 		btrfs_update_inode(trans, root, inode);
1757 	}
1758 	BTRFS_I(inode)->index_cnt = (u64)-1;
1759 
1760 	if (inode->i_nlink == 0) {
1761 		if (S_ISDIR(inode->i_mode)) {
1762 			ret = replay_dir_deletes(trans, root, NULL, path,
1763 						 ino, 1);
1764 			if (ret)
1765 				goto out;
1766 		}
1767 		ret = insert_orphan_item(trans, root, ino);
1768 	}
1769 
1770 out:
1771 	btrfs_free_path(path);
1772 	return ret;
1773 }
1774 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1775 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1776 					    struct btrfs_root *root,
1777 					    struct btrfs_path *path)
1778 {
1779 	int ret;
1780 	struct btrfs_key key;
1781 	struct inode *inode;
1782 
1783 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1784 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1785 	key.offset = (u64)-1;
1786 	while (1) {
1787 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1788 		if (ret < 0)
1789 			break;
1790 
1791 		if (ret == 1) {
1792 			ret = 0;
1793 			if (path->slots[0] == 0)
1794 				break;
1795 			path->slots[0]--;
1796 		}
1797 
1798 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1799 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1800 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1801 			break;
1802 
1803 		ret = btrfs_del_item(trans, root, path);
1804 		if (ret)
1805 			break;
1806 
1807 		btrfs_release_path(path);
1808 		inode = read_one_inode(root, key.offset);
1809 		if (!inode) {
1810 			ret = -EIO;
1811 			break;
1812 		}
1813 
1814 		ret = fixup_inode_link_count(trans, root, inode);
1815 		iput(inode);
1816 		if (ret)
1817 			break;
1818 
1819 		/*
1820 		 * fixup on a directory may create new entries,
1821 		 * make sure we always look for the highset possible
1822 		 * offset
1823 		 */
1824 		key.offset = (u64)-1;
1825 	}
1826 	btrfs_release_path(path);
1827 	return ret;
1828 }
1829 
1830 
1831 /*
1832  * record a given inode in the fixup dir so we can check its link
1833  * count when replay is done.  The link count is incremented here
1834  * so the inode won't go away until we check it
1835  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1836 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1837 				      struct btrfs_root *root,
1838 				      struct btrfs_path *path,
1839 				      u64 objectid)
1840 {
1841 	struct btrfs_key key;
1842 	int ret = 0;
1843 	struct inode *inode;
1844 
1845 	inode = read_one_inode(root, objectid);
1846 	if (!inode)
1847 		return -EIO;
1848 
1849 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1850 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1851 	key.offset = objectid;
1852 
1853 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1854 
1855 	btrfs_release_path(path);
1856 	if (ret == 0) {
1857 		if (!inode->i_nlink)
1858 			set_nlink(inode, 1);
1859 		else
1860 			inc_nlink(inode);
1861 		ret = btrfs_update_inode(trans, root, inode);
1862 	} else if (ret == -EEXIST) {
1863 		ret = 0;
1864 	}
1865 	iput(inode);
1866 
1867 	return ret;
1868 }
1869 
1870 /*
1871  * when replaying the log for a directory, we only insert names
1872  * for inodes that actually exist.  This means an fsync on a directory
1873  * does not implicitly fsync all the new files in it
1874  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1875 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1876 				    struct btrfs_root *root,
1877 				    u64 dirid, u64 index,
1878 				    char *name, int name_len,
1879 				    struct btrfs_key *location)
1880 {
1881 	struct inode *inode;
1882 	struct inode *dir;
1883 	int ret;
1884 
1885 	inode = read_one_inode(root, location->objectid);
1886 	if (!inode)
1887 		return -ENOENT;
1888 
1889 	dir = read_one_inode(root, dirid);
1890 	if (!dir) {
1891 		iput(inode);
1892 		return -EIO;
1893 	}
1894 
1895 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1896 			name_len, 1, index);
1897 
1898 	/* FIXME, put inode into FIXUP list */
1899 
1900 	iput(inode);
1901 	iput(dir);
1902 	return ret;
1903 }
1904 
1905 /*
1906  * take a single entry in a log directory item and replay it into
1907  * the subvolume.
1908  *
1909  * if a conflicting item exists in the subdirectory already,
1910  * the inode it points to is unlinked and put into the link count
1911  * fix up tree.
1912  *
1913  * If a name from the log points to a file or directory that does
1914  * not exist in the FS, it is skipped.  fsyncs on directories
1915  * do not force down inodes inside that directory, just changes to the
1916  * names or unlinks in a directory.
1917  *
1918  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1919  * non-existing inode) and 1 if the name was replayed.
1920  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1921 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1922 				    struct btrfs_root *root,
1923 				    struct btrfs_path *path,
1924 				    struct extent_buffer *eb,
1925 				    struct btrfs_dir_item *di,
1926 				    struct btrfs_key *key)
1927 {
1928 	char *name;
1929 	int name_len;
1930 	struct btrfs_dir_item *dst_di;
1931 	struct btrfs_key found_key;
1932 	struct btrfs_key log_key;
1933 	struct inode *dir;
1934 	u8 log_type;
1935 	bool exists;
1936 	int ret;
1937 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1938 	bool name_added = false;
1939 
1940 	dir = read_one_inode(root, key->objectid);
1941 	if (!dir)
1942 		return -EIO;
1943 
1944 	name_len = btrfs_dir_name_len(eb, di);
1945 	name = kmalloc(name_len, GFP_NOFS);
1946 	if (!name) {
1947 		ret = -ENOMEM;
1948 		goto out;
1949 	}
1950 
1951 	log_type = btrfs_dir_type(eb, di);
1952 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1953 		   name_len);
1954 
1955 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1956 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1957 	btrfs_release_path(path);
1958 	if (ret < 0)
1959 		goto out;
1960 	exists = (ret == 0);
1961 	ret = 0;
1962 
1963 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1964 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1965 				       name, name_len, 1);
1966 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1967 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1968 						     key->objectid,
1969 						     key->offset, name,
1970 						     name_len, 1);
1971 	} else {
1972 		/* Corruption */
1973 		ret = -EINVAL;
1974 		goto out;
1975 	}
1976 
1977 	if (IS_ERR(dst_di)) {
1978 		ret = PTR_ERR(dst_di);
1979 		goto out;
1980 	} else if (!dst_di) {
1981 		/* we need a sequence number to insert, so we only
1982 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1983 		 */
1984 		if (key->type != BTRFS_DIR_INDEX_KEY)
1985 			goto out;
1986 		goto insert;
1987 	}
1988 
1989 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1990 	/* the existing item matches the logged item */
1991 	if (found_key.objectid == log_key.objectid &&
1992 	    found_key.type == log_key.type &&
1993 	    found_key.offset == log_key.offset &&
1994 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1995 		update_size = false;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * don't drop the conflicting directory entry if the inode
2001 	 * for the new entry doesn't exist
2002 	 */
2003 	if (!exists)
2004 		goto out;
2005 
2006 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2007 	if (ret)
2008 		goto out;
2009 
2010 	if (key->type == BTRFS_DIR_INDEX_KEY)
2011 		goto insert;
2012 out:
2013 	btrfs_release_path(path);
2014 	if (!ret && update_size) {
2015 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2016 		ret = btrfs_update_inode(trans, root, dir);
2017 	}
2018 	kfree(name);
2019 	iput(dir);
2020 	if (!ret && name_added)
2021 		ret = 1;
2022 	return ret;
2023 
2024 insert:
2025 	/*
2026 	 * Check if the inode reference exists in the log for the given name,
2027 	 * inode and parent inode
2028 	 */
2029 	found_key.objectid = log_key.objectid;
2030 	found_key.type = BTRFS_INODE_REF_KEY;
2031 	found_key.offset = key->objectid;
2032 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2033 	if (ret < 0) {
2034 	        goto out;
2035 	} else if (ret) {
2036 	        /* The dentry will be added later. */
2037 	        ret = 0;
2038 	        update_size = false;
2039 	        goto out;
2040 	}
2041 
2042 	found_key.objectid = log_key.objectid;
2043 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2044 	found_key.offset = key->objectid;
2045 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2046 			     name_len);
2047 	if (ret < 0) {
2048 		goto out;
2049 	} else if (ret) {
2050 		/* The dentry will be added later. */
2051 		ret = 0;
2052 		update_size = false;
2053 		goto out;
2054 	}
2055 	btrfs_release_path(path);
2056 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2057 			      name, name_len, &log_key);
2058 	if (ret && ret != -ENOENT && ret != -EEXIST)
2059 		goto out;
2060 	if (!ret)
2061 		name_added = true;
2062 	update_size = false;
2063 	ret = 0;
2064 	goto out;
2065 }
2066 
2067 /*
2068  * find all the names in a directory item and reconcile them into
2069  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2070  * one name in a directory item, but the same code gets used for
2071  * both directory index types
2072  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2073 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2074 					struct btrfs_root *root,
2075 					struct btrfs_path *path,
2076 					struct extent_buffer *eb, int slot,
2077 					struct btrfs_key *key)
2078 {
2079 	int ret = 0;
2080 	u32 item_size = btrfs_item_size_nr(eb, slot);
2081 	struct btrfs_dir_item *di;
2082 	int name_len;
2083 	unsigned long ptr;
2084 	unsigned long ptr_end;
2085 	struct btrfs_path *fixup_path = NULL;
2086 
2087 	ptr = btrfs_item_ptr_offset(eb, slot);
2088 	ptr_end = ptr + item_size;
2089 	while (ptr < ptr_end) {
2090 		di = (struct btrfs_dir_item *)ptr;
2091 		name_len = btrfs_dir_name_len(eb, di);
2092 		ret = replay_one_name(trans, root, path, eb, di, key);
2093 		if (ret < 0)
2094 			break;
2095 		ptr = (unsigned long)(di + 1);
2096 		ptr += name_len;
2097 
2098 		/*
2099 		 * If this entry refers to a non-directory (directories can not
2100 		 * have a link count > 1) and it was added in the transaction
2101 		 * that was not committed, make sure we fixup the link count of
2102 		 * the inode it the entry points to. Otherwise something like
2103 		 * the following would result in a directory pointing to an
2104 		 * inode with a wrong link that does not account for this dir
2105 		 * entry:
2106 		 *
2107 		 * mkdir testdir
2108 		 * touch testdir/foo
2109 		 * touch testdir/bar
2110 		 * sync
2111 		 *
2112 		 * ln testdir/bar testdir/bar_link
2113 		 * ln testdir/foo testdir/foo_link
2114 		 * xfs_io -c "fsync" testdir/bar
2115 		 *
2116 		 * <power failure>
2117 		 *
2118 		 * mount fs, log replay happens
2119 		 *
2120 		 * File foo would remain with a link count of 1 when it has two
2121 		 * entries pointing to it in the directory testdir. This would
2122 		 * make it impossible to ever delete the parent directory has
2123 		 * it would result in stale dentries that can never be deleted.
2124 		 */
2125 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2126 			struct btrfs_key di_key;
2127 
2128 			if (!fixup_path) {
2129 				fixup_path = btrfs_alloc_path();
2130 				if (!fixup_path) {
2131 					ret = -ENOMEM;
2132 					break;
2133 				}
2134 			}
2135 
2136 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2137 			ret = link_to_fixup_dir(trans, root, fixup_path,
2138 						di_key.objectid);
2139 			if (ret)
2140 				break;
2141 		}
2142 		ret = 0;
2143 	}
2144 	btrfs_free_path(fixup_path);
2145 	return ret;
2146 }
2147 
2148 /*
2149  * directory replay has two parts.  There are the standard directory
2150  * items in the log copied from the subvolume, and range items
2151  * created in the log while the subvolume was logged.
2152  *
2153  * The range items tell us which parts of the key space the log
2154  * is authoritative for.  During replay, if a key in the subvolume
2155  * directory is in a logged range item, but not actually in the log
2156  * that means it was deleted from the directory before the fsync
2157  * and should be removed.
2158  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2159 static noinline int find_dir_range(struct btrfs_root *root,
2160 				   struct btrfs_path *path,
2161 				   u64 dirid, int key_type,
2162 				   u64 *start_ret, u64 *end_ret)
2163 {
2164 	struct btrfs_key key;
2165 	u64 found_end;
2166 	struct btrfs_dir_log_item *item;
2167 	int ret;
2168 	int nritems;
2169 
2170 	if (*start_ret == (u64)-1)
2171 		return 1;
2172 
2173 	key.objectid = dirid;
2174 	key.type = key_type;
2175 	key.offset = *start_ret;
2176 
2177 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2178 	if (ret < 0)
2179 		goto out;
2180 	if (ret > 0) {
2181 		if (path->slots[0] == 0)
2182 			goto out;
2183 		path->slots[0]--;
2184 	}
2185 	if (ret != 0)
2186 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2187 
2188 	if (key.type != key_type || key.objectid != dirid) {
2189 		ret = 1;
2190 		goto next;
2191 	}
2192 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2193 			      struct btrfs_dir_log_item);
2194 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2195 
2196 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2197 		ret = 0;
2198 		*start_ret = key.offset;
2199 		*end_ret = found_end;
2200 		goto out;
2201 	}
2202 	ret = 1;
2203 next:
2204 	/* check the next slot in the tree to see if it is a valid item */
2205 	nritems = btrfs_header_nritems(path->nodes[0]);
2206 	path->slots[0]++;
2207 	if (path->slots[0] >= nritems) {
2208 		ret = btrfs_next_leaf(root, path);
2209 		if (ret)
2210 			goto out;
2211 	}
2212 
2213 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2214 
2215 	if (key.type != key_type || key.objectid != dirid) {
2216 		ret = 1;
2217 		goto out;
2218 	}
2219 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2220 			      struct btrfs_dir_log_item);
2221 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2222 	*start_ret = key.offset;
2223 	*end_ret = found_end;
2224 	ret = 0;
2225 out:
2226 	btrfs_release_path(path);
2227 	return ret;
2228 }
2229 
2230 /*
2231  * this looks for a given directory item in the log.  If the directory
2232  * item is not in the log, the item is removed and the inode it points
2233  * to is unlinked
2234  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2235 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2236 				      struct btrfs_root *root,
2237 				      struct btrfs_root *log,
2238 				      struct btrfs_path *path,
2239 				      struct btrfs_path *log_path,
2240 				      struct inode *dir,
2241 				      struct btrfs_key *dir_key)
2242 {
2243 	int ret;
2244 	struct extent_buffer *eb;
2245 	int slot;
2246 	u32 item_size;
2247 	struct btrfs_dir_item *di;
2248 	struct btrfs_dir_item *log_di;
2249 	int name_len;
2250 	unsigned long ptr;
2251 	unsigned long ptr_end;
2252 	char *name;
2253 	struct inode *inode;
2254 	struct btrfs_key location;
2255 
2256 again:
2257 	eb = path->nodes[0];
2258 	slot = path->slots[0];
2259 	item_size = btrfs_item_size_nr(eb, slot);
2260 	ptr = btrfs_item_ptr_offset(eb, slot);
2261 	ptr_end = ptr + item_size;
2262 	while (ptr < ptr_end) {
2263 		di = (struct btrfs_dir_item *)ptr;
2264 		name_len = btrfs_dir_name_len(eb, di);
2265 		name = kmalloc(name_len, GFP_NOFS);
2266 		if (!name) {
2267 			ret = -ENOMEM;
2268 			goto out;
2269 		}
2270 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2271 				  name_len);
2272 		log_di = NULL;
2273 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2274 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2275 						       dir_key->objectid,
2276 						       name, name_len, 0);
2277 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2278 			log_di = btrfs_lookup_dir_index_item(trans, log,
2279 						     log_path,
2280 						     dir_key->objectid,
2281 						     dir_key->offset,
2282 						     name, name_len, 0);
2283 		}
2284 		if (!log_di) {
2285 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2286 			btrfs_release_path(path);
2287 			btrfs_release_path(log_path);
2288 			inode = read_one_inode(root, location.objectid);
2289 			if (!inode) {
2290 				kfree(name);
2291 				return -EIO;
2292 			}
2293 
2294 			ret = link_to_fixup_dir(trans, root,
2295 						path, location.objectid);
2296 			if (ret) {
2297 				kfree(name);
2298 				iput(inode);
2299 				goto out;
2300 			}
2301 
2302 			inc_nlink(inode);
2303 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2304 					BTRFS_I(inode), name, name_len);
2305 			if (!ret)
2306 				ret = btrfs_run_delayed_items(trans);
2307 			kfree(name);
2308 			iput(inode);
2309 			if (ret)
2310 				goto out;
2311 
2312 			/* there might still be more names under this key
2313 			 * check and repeat if required
2314 			 */
2315 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2316 						0, 0);
2317 			if (ret == 0)
2318 				goto again;
2319 			ret = 0;
2320 			goto out;
2321 		} else if (IS_ERR(log_di)) {
2322 			kfree(name);
2323 			return PTR_ERR(log_di);
2324 		}
2325 		btrfs_release_path(log_path);
2326 		kfree(name);
2327 
2328 		ptr = (unsigned long)(di + 1);
2329 		ptr += name_len;
2330 	}
2331 	ret = 0;
2332 out:
2333 	btrfs_release_path(path);
2334 	btrfs_release_path(log_path);
2335 	return ret;
2336 }
2337 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2338 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2339 			      struct btrfs_root *root,
2340 			      struct btrfs_root *log,
2341 			      struct btrfs_path *path,
2342 			      const u64 ino)
2343 {
2344 	struct btrfs_key search_key;
2345 	struct btrfs_path *log_path;
2346 	int i;
2347 	int nritems;
2348 	int ret;
2349 
2350 	log_path = btrfs_alloc_path();
2351 	if (!log_path)
2352 		return -ENOMEM;
2353 
2354 	search_key.objectid = ino;
2355 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2356 	search_key.offset = 0;
2357 again:
2358 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2359 	if (ret < 0)
2360 		goto out;
2361 process_leaf:
2362 	nritems = btrfs_header_nritems(path->nodes[0]);
2363 	for (i = path->slots[0]; i < nritems; i++) {
2364 		struct btrfs_key key;
2365 		struct btrfs_dir_item *di;
2366 		struct btrfs_dir_item *log_di;
2367 		u32 total_size;
2368 		u32 cur;
2369 
2370 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2371 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2372 			ret = 0;
2373 			goto out;
2374 		}
2375 
2376 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2377 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2378 		cur = 0;
2379 		while (cur < total_size) {
2380 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2381 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2382 			u32 this_len = sizeof(*di) + name_len + data_len;
2383 			char *name;
2384 
2385 			name = kmalloc(name_len, GFP_NOFS);
2386 			if (!name) {
2387 				ret = -ENOMEM;
2388 				goto out;
2389 			}
2390 			read_extent_buffer(path->nodes[0], name,
2391 					   (unsigned long)(di + 1), name_len);
2392 
2393 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2394 						    name, name_len, 0);
2395 			btrfs_release_path(log_path);
2396 			if (!log_di) {
2397 				/* Doesn't exist in log tree, so delete it. */
2398 				btrfs_release_path(path);
2399 				di = btrfs_lookup_xattr(trans, root, path, ino,
2400 							name, name_len, -1);
2401 				kfree(name);
2402 				if (IS_ERR(di)) {
2403 					ret = PTR_ERR(di);
2404 					goto out;
2405 				}
2406 				ASSERT(di);
2407 				ret = btrfs_delete_one_dir_name(trans, root,
2408 								path, di);
2409 				if (ret)
2410 					goto out;
2411 				btrfs_release_path(path);
2412 				search_key = key;
2413 				goto again;
2414 			}
2415 			kfree(name);
2416 			if (IS_ERR(log_di)) {
2417 				ret = PTR_ERR(log_di);
2418 				goto out;
2419 			}
2420 			cur += this_len;
2421 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2422 		}
2423 	}
2424 	ret = btrfs_next_leaf(root, path);
2425 	if (ret > 0)
2426 		ret = 0;
2427 	else if (ret == 0)
2428 		goto process_leaf;
2429 out:
2430 	btrfs_free_path(log_path);
2431 	btrfs_release_path(path);
2432 	return ret;
2433 }
2434 
2435 
2436 /*
2437  * deletion replay happens before we copy any new directory items
2438  * out of the log or out of backreferences from inodes.  It
2439  * scans the log to find ranges of keys that log is authoritative for,
2440  * and then scans the directory to find items in those ranges that are
2441  * not present in the log.
2442  *
2443  * Anything we don't find in the log is unlinked and removed from the
2444  * directory.
2445  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2446 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2447 				       struct btrfs_root *root,
2448 				       struct btrfs_root *log,
2449 				       struct btrfs_path *path,
2450 				       u64 dirid, int del_all)
2451 {
2452 	u64 range_start;
2453 	u64 range_end;
2454 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2455 	int ret = 0;
2456 	struct btrfs_key dir_key;
2457 	struct btrfs_key found_key;
2458 	struct btrfs_path *log_path;
2459 	struct inode *dir;
2460 
2461 	dir_key.objectid = dirid;
2462 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2463 	log_path = btrfs_alloc_path();
2464 	if (!log_path)
2465 		return -ENOMEM;
2466 
2467 	dir = read_one_inode(root, dirid);
2468 	/* it isn't an error if the inode isn't there, that can happen
2469 	 * because we replay the deletes before we copy in the inode item
2470 	 * from the log
2471 	 */
2472 	if (!dir) {
2473 		btrfs_free_path(log_path);
2474 		return 0;
2475 	}
2476 again:
2477 	range_start = 0;
2478 	range_end = 0;
2479 	while (1) {
2480 		if (del_all)
2481 			range_end = (u64)-1;
2482 		else {
2483 			ret = find_dir_range(log, path, dirid, key_type,
2484 					     &range_start, &range_end);
2485 			if (ret < 0)
2486 				goto out;
2487 			else if (ret > 0)
2488 				break;
2489 		}
2490 
2491 		dir_key.offset = range_start;
2492 		while (1) {
2493 			int nritems;
2494 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2495 						0, 0);
2496 			if (ret < 0)
2497 				goto out;
2498 
2499 			nritems = btrfs_header_nritems(path->nodes[0]);
2500 			if (path->slots[0] >= nritems) {
2501 				ret = btrfs_next_leaf(root, path);
2502 				if (ret == 1)
2503 					break;
2504 				else if (ret < 0)
2505 					goto out;
2506 			}
2507 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2508 					      path->slots[0]);
2509 			if (found_key.objectid != dirid ||
2510 			    found_key.type != dir_key.type)
2511 				goto next_type;
2512 
2513 			if (found_key.offset > range_end)
2514 				break;
2515 
2516 			ret = check_item_in_log(trans, root, log, path,
2517 						log_path, dir,
2518 						&found_key);
2519 			if (ret)
2520 				goto out;
2521 			if (found_key.offset == (u64)-1)
2522 				break;
2523 			dir_key.offset = found_key.offset + 1;
2524 		}
2525 		btrfs_release_path(path);
2526 		if (range_end == (u64)-1)
2527 			break;
2528 		range_start = range_end + 1;
2529 	}
2530 
2531 next_type:
2532 	ret = 0;
2533 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2534 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2535 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2536 		btrfs_release_path(path);
2537 		goto again;
2538 	}
2539 out:
2540 	btrfs_release_path(path);
2541 	btrfs_free_path(log_path);
2542 	iput(dir);
2543 	return ret;
2544 }
2545 
2546 /*
2547  * the process_func used to replay items from the log tree.  This
2548  * gets called in two different stages.  The first stage just looks
2549  * for inodes and makes sure they are all copied into the subvolume.
2550  *
2551  * The second stage copies all the other item types from the log into
2552  * the subvolume.  The two stage approach is slower, but gets rid of
2553  * lots of complexity around inodes referencing other inodes that exist
2554  * only in the log (references come from either directory items or inode
2555  * back refs).
2556  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2557 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2558 			     struct walk_control *wc, u64 gen, int level)
2559 {
2560 	int nritems;
2561 	struct btrfs_path *path;
2562 	struct btrfs_root *root = wc->replay_dest;
2563 	struct btrfs_key key;
2564 	int i;
2565 	int ret;
2566 
2567 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2568 	if (ret)
2569 		return ret;
2570 
2571 	level = btrfs_header_level(eb);
2572 
2573 	if (level != 0)
2574 		return 0;
2575 
2576 	path = btrfs_alloc_path();
2577 	if (!path)
2578 		return -ENOMEM;
2579 
2580 	nritems = btrfs_header_nritems(eb);
2581 	for (i = 0; i < nritems; i++) {
2582 		btrfs_item_key_to_cpu(eb, &key, i);
2583 
2584 		/* inode keys are done during the first stage */
2585 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2586 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2587 			struct btrfs_inode_item *inode_item;
2588 			u32 mode;
2589 
2590 			inode_item = btrfs_item_ptr(eb, i,
2591 					    struct btrfs_inode_item);
2592 			/*
2593 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2594 			 * and never got linked before the fsync, skip it, as
2595 			 * replaying it is pointless since it would be deleted
2596 			 * later. We skip logging tmpfiles, but it's always
2597 			 * possible we are replaying a log created with a kernel
2598 			 * that used to log tmpfiles.
2599 			 */
2600 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2601 				wc->ignore_cur_inode = true;
2602 				continue;
2603 			} else {
2604 				wc->ignore_cur_inode = false;
2605 			}
2606 			ret = replay_xattr_deletes(wc->trans, root, log,
2607 						   path, key.objectid);
2608 			if (ret)
2609 				break;
2610 			mode = btrfs_inode_mode(eb, inode_item);
2611 			if (S_ISDIR(mode)) {
2612 				ret = replay_dir_deletes(wc->trans,
2613 					 root, log, path, key.objectid, 0);
2614 				if (ret)
2615 					break;
2616 			}
2617 			ret = overwrite_item(wc->trans, root, path,
2618 					     eb, i, &key);
2619 			if (ret)
2620 				break;
2621 
2622 			/*
2623 			 * Before replaying extents, truncate the inode to its
2624 			 * size. We need to do it now and not after log replay
2625 			 * because before an fsync we can have prealloc extents
2626 			 * added beyond the inode's i_size. If we did it after,
2627 			 * through orphan cleanup for example, we would drop
2628 			 * those prealloc extents just after replaying them.
2629 			 */
2630 			if (S_ISREG(mode)) {
2631 				struct inode *inode;
2632 				u64 from;
2633 
2634 				inode = read_one_inode(root, key.objectid);
2635 				if (!inode) {
2636 					ret = -EIO;
2637 					break;
2638 				}
2639 				from = ALIGN(i_size_read(inode),
2640 					     root->fs_info->sectorsize);
2641 				ret = btrfs_drop_extents(wc->trans, root, inode,
2642 							 from, (u64)-1, 1);
2643 				if (!ret) {
2644 					/* Update the inode's nbytes. */
2645 					ret = btrfs_update_inode(wc->trans,
2646 								 root, inode);
2647 				}
2648 				iput(inode);
2649 				if (ret)
2650 					break;
2651 			}
2652 
2653 			ret = link_to_fixup_dir(wc->trans, root,
2654 						path, key.objectid);
2655 			if (ret)
2656 				break;
2657 		}
2658 
2659 		if (wc->ignore_cur_inode)
2660 			continue;
2661 
2662 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2663 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2664 			ret = replay_one_dir_item(wc->trans, root, path,
2665 						  eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		}
2669 
2670 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2671 			continue;
2672 
2673 		/* these keys are simply copied */
2674 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2675 			ret = overwrite_item(wc->trans, root, path,
2676 					     eb, i, &key);
2677 			if (ret)
2678 				break;
2679 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2680 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2681 			ret = add_inode_ref(wc->trans, root, log, path,
2682 					    eb, i, &key);
2683 			if (ret && ret != -ENOENT)
2684 				break;
2685 			ret = 0;
2686 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2687 			ret = replay_one_extent(wc->trans, root, path,
2688 						eb, i, &key);
2689 			if (ret)
2690 				break;
2691 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2692 			ret = replay_one_dir_item(wc->trans, root, path,
2693 						  eb, i, &key);
2694 			if (ret)
2695 				break;
2696 		}
2697 	}
2698 	btrfs_free_path(path);
2699 	return ret;
2700 }
2701 
2702 /*
2703  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2704  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2705 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2706 {
2707 	struct btrfs_block_group *cache;
2708 
2709 	cache = btrfs_lookup_block_group(fs_info, start);
2710 	if (!cache) {
2711 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2712 		return;
2713 	}
2714 
2715 	spin_lock(&cache->space_info->lock);
2716 	spin_lock(&cache->lock);
2717 	cache->reserved -= fs_info->nodesize;
2718 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2719 	spin_unlock(&cache->lock);
2720 	spin_unlock(&cache->space_info->lock);
2721 
2722 	btrfs_put_block_group(cache);
2723 }
2724 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2725 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2726 				   struct btrfs_root *root,
2727 				   struct btrfs_path *path, int *level,
2728 				   struct walk_control *wc)
2729 {
2730 	struct btrfs_fs_info *fs_info = root->fs_info;
2731 	u64 bytenr;
2732 	u64 ptr_gen;
2733 	struct extent_buffer *next;
2734 	struct extent_buffer *cur;
2735 	u32 blocksize;
2736 	int ret = 0;
2737 
2738 	while (*level > 0) {
2739 		struct btrfs_key first_key;
2740 
2741 		cur = path->nodes[*level];
2742 
2743 		WARN_ON(btrfs_header_level(cur) != *level);
2744 
2745 		if (path->slots[*level] >=
2746 		    btrfs_header_nritems(cur))
2747 			break;
2748 
2749 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2750 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2751 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2752 		blocksize = fs_info->nodesize;
2753 
2754 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2755 		if (IS_ERR(next))
2756 			return PTR_ERR(next);
2757 
2758 		if (*level == 1) {
2759 			ret = wc->process_func(root, next, wc, ptr_gen,
2760 					       *level - 1);
2761 			if (ret) {
2762 				free_extent_buffer(next);
2763 				return ret;
2764 			}
2765 
2766 			path->slots[*level]++;
2767 			if (wc->free) {
2768 				ret = btrfs_read_buffer(next, ptr_gen,
2769 							*level - 1, &first_key);
2770 				if (ret) {
2771 					free_extent_buffer(next);
2772 					return ret;
2773 				}
2774 
2775 				if (trans) {
2776 					btrfs_tree_lock(next);
2777 					btrfs_set_lock_blocking_write(next);
2778 					btrfs_clean_tree_block(next);
2779 					btrfs_wait_tree_block_writeback(next);
2780 					btrfs_tree_unlock(next);
2781 					ret = btrfs_pin_reserved_extent(trans,
2782 							bytenr, blocksize);
2783 					if (ret) {
2784 						free_extent_buffer(next);
2785 						return ret;
2786 					}
2787 				} else {
2788 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2789 						clear_extent_buffer_dirty(next);
2790 					unaccount_log_buffer(fs_info, bytenr);
2791 				}
2792 			}
2793 			free_extent_buffer(next);
2794 			continue;
2795 		}
2796 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2797 		if (ret) {
2798 			free_extent_buffer(next);
2799 			return ret;
2800 		}
2801 
2802 		if (path->nodes[*level-1])
2803 			free_extent_buffer(path->nodes[*level-1]);
2804 		path->nodes[*level-1] = next;
2805 		*level = btrfs_header_level(next);
2806 		path->slots[*level] = 0;
2807 		cond_resched();
2808 	}
2809 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2810 
2811 	cond_resched();
2812 	return 0;
2813 }
2814 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2815 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2816 				 struct btrfs_root *root,
2817 				 struct btrfs_path *path, int *level,
2818 				 struct walk_control *wc)
2819 {
2820 	struct btrfs_fs_info *fs_info = root->fs_info;
2821 	int i;
2822 	int slot;
2823 	int ret;
2824 
2825 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2826 		slot = path->slots[i];
2827 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2828 			path->slots[i]++;
2829 			*level = i;
2830 			WARN_ON(*level == 0);
2831 			return 0;
2832 		} else {
2833 			ret = wc->process_func(root, path->nodes[*level], wc,
2834 				 btrfs_header_generation(path->nodes[*level]),
2835 				 *level);
2836 			if (ret)
2837 				return ret;
2838 
2839 			if (wc->free) {
2840 				struct extent_buffer *next;
2841 
2842 				next = path->nodes[*level];
2843 
2844 				if (trans) {
2845 					btrfs_tree_lock(next);
2846 					btrfs_set_lock_blocking_write(next);
2847 					btrfs_clean_tree_block(next);
2848 					btrfs_wait_tree_block_writeback(next);
2849 					btrfs_tree_unlock(next);
2850 					ret = btrfs_pin_reserved_extent(trans,
2851 						     path->nodes[*level]->start,
2852 						     path->nodes[*level]->len);
2853 					if (ret)
2854 						return ret;
2855 				} else {
2856 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2857 						clear_extent_buffer_dirty(next);
2858 
2859 					unaccount_log_buffer(fs_info,
2860 						path->nodes[*level]->start);
2861 				}
2862 			}
2863 			free_extent_buffer(path->nodes[*level]);
2864 			path->nodes[*level] = NULL;
2865 			*level = i + 1;
2866 		}
2867 	}
2868 	return 1;
2869 }
2870 
2871 /*
2872  * drop the reference count on the tree rooted at 'snap'.  This traverses
2873  * the tree freeing any blocks that have a ref count of zero after being
2874  * decremented.
2875  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2876 static int walk_log_tree(struct btrfs_trans_handle *trans,
2877 			 struct btrfs_root *log, struct walk_control *wc)
2878 {
2879 	struct btrfs_fs_info *fs_info = log->fs_info;
2880 	int ret = 0;
2881 	int wret;
2882 	int level;
2883 	struct btrfs_path *path;
2884 	int orig_level;
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path)
2888 		return -ENOMEM;
2889 
2890 	level = btrfs_header_level(log->node);
2891 	orig_level = level;
2892 	path->nodes[level] = log->node;
2893 	atomic_inc(&log->node->refs);
2894 	path->slots[level] = 0;
2895 
2896 	while (1) {
2897 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2898 		if (wret > 0)
2899 			break;
2900 		if (wret < 0) {
2901 			ret = wret;
2902 			goto out;
2903 		}
2904 
2905 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2906 		if (wret > 0)
2907 			break;
2908 		if (wret < 0) {
2909 			ret = wret;
2910 			goto out;
2911 		}
2912 	}
2913 
2914 	/* was the root node processed? if not, catch it here */
2915 	if (path->nodes[orig_level]) {
2916 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2917 			 btrfs_header_generation(path->nodes[orig_level]),
2918 			 orig_level);
2919 		if (ret)
2920 			goto out;
2921 		if (wc->free) {
2922 			struct extent_buffer *next;
2923 
2924 			next = path->nodes[orig_level];
2925 
2926 			if (trans) {
2927 				btrfs_tree_lock(next);
2928 				btrfs_set_lock_blocking_write(next);
2929 				btrfs_clean_tree_block(next);
2930 				btrfs_wait_tree_block_writeback(next);
2931 				btrfs_tree_unlock(next);
2932 				ret = btrfs_pin_reserved_extent(trans,
2933 						next->start, next->len);
2934 				if (ret)
2935 					goto out;
2936 			} else {
2937 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2938 					clear_extent_buffer_dirty(next);
2939 				unaccount_log_buffer(fs_info, next->start);
2940 			}
2941 		}
2942 	}
2943 
2944 out:
2945 	btrfs_free_path(path);
2946 	return ret;
2947 }
2948 
2949 /*
2950  * helper function to update the item for a given subvolumes log root
2951  * in the tree of log roots
2952  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2953 static int update_log_root(struct btrfs_trans_handle *trans,
2954 			   struct btrfs_root *log,
2955 			   struct btrfs_root_item *root_item)
2956 {
2957 	struct btrfs_fs_info *fs_info = log->fs_info;
2958 	int ret;
2959 
2960 	if (log->log_transid == 1) {
2961 		/* insert root item on the first sync */
2962 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2963 				&log->root_key, root_item);
2964 	} else {
2965 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2966 				&log->root_key, root_item);
2967 	}
2968 	return ret;
2969 }
2970 
wait_log_commit(struct btrfs_root * root,int transid)2971 static void wait_log_commit(struct btrfs_root *root, int transid)
2972 {
2973 	DEFINE_WAIT(wait);
2974 	int index = transid % 2;
2975 
2976 	/*
2977 	 * we only allow two pending log transactions at a time,
2978 	 * so we know that if ours is more than 2 older than the
2979 	 * current transaction, we're done
2980 	 */
2981 	for (;;) {
2982 		prepare_to_wait(&root->log_commit_wait[index],
2983 				&wait, TASK_UNINTERRUPTIBLE);
2984 
2985 		if (!(root->log_transid_committed < transid &&
2986 		      atomic_read(&root->log_commit[index])))
2987 			break;
2988 
2989 		mutex_unlock(&root->log_mutex);
2990 		schedule();
2991 		mutex_lock(&root->log_mutex);
2992 	}
2993 	finish_wait(&root->log_commit_wait[index], &wait);
2994 }
2995 
wait_for_writer(struct btrfs_root * root)2996 static void wait_for_writer(struct btrfs_root *root)
2997 {
2998 	DEFINE_WAIT(wait);
2999 
3000 	for (;;) {
3001 		prepare_to_wait(&root->log_writer_wait, &wait,
3002 				TASK_UNINTERRUPTIBLE);
3003 		if (!atomic_read(&root->log_writers))
3004 			break;
3005 
3006 		mutex_unlock(&root->log_mutex);
3007 		schedule();
3008 		mutex_lock(&root->log_mutex);
3009 	}
3010 	finish_wait(&root->log_writer_wait, &wait);
3011 }
3012 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3013 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3014 					struct btrfs_log_ctx *ctx)
3015 {
3016 	if (!ctx)
3017 		return;
3018 
3019 	mutex_lock(&root->log_mutex);
3020 	list_del_init(&ctx->list);
3021 	mutex_unlock(&root->log_mutex);
3022 }
3023 
3024 /*
3025  * Invoked in log mutex context, or be sure there is no other task which
3026  * can access the list.
3027  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3028 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3029 					     int index, int error)
3030 {
3031 	struct btrfs_log_ctx *ctx;
3032 	struct btrfs_log_ctx *safe;
3033 
3034 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3035 		list_del_init(&ctx->list);
3036 		ctx->log_ret = error;
3037 	}
3038 
3039 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3040 }
3041 
3042 /*
3043  * btrfs_sync_log does sends a given tree log down to the disk and
3044  * updates the super blocks to record it.  When this call is done,
3045  * you know that any inodes previously logged are safely on disk only
3046  * if it returns 0.
3047  *
3048  * Any other return value means you need to call btrfs_commit_transaction.
3049  * Some of the edge cases for fsyncing directories that have had unlinks
3050  * or renames done in the past mean that sometimes the only safe
3051  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3052  * that has happened.
3053  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3054 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3055 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3056 {
3057 	int index1;
3058 	int index2;
3059 	int mark;
3060 	int ret;
3061 	struct btrfs_fs_info *fs_info = root->fs_info;
3062 	struct btrfs_root *log = root->log_root;
3063 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3064 	struct btrfs_root_item new_root_item;
3065 	int log_transid = 0;
3066 	struct btrfs_log_ctx root_log_ctx;
3067 	struct blk_plug plug;
3068 
3069 	mutex_lock(&root->log_mutex);
3070 	log_transid = ctx->log_transid;
3071 	if (root->log_transid_committed >= log_transid) {
3072 		mutex_unlock(&root->log_mutex);
3073 		return ctx->log_ret;
3074 	}
3075 
3076 	index1 = log_transid % 2;
3077 	if (atomic_read(&root->log_commit[index1])) {
3078 		wait_log_commit(root, log_transid);
3079 		mutex_unlock(&root->log_mutex);
3080 		return ctx->log_ret;
3081 	}
3082 	ASSERT(log_transid == root->log_transid);
3083 	atomic_set(&root->log_commit[index1], 1);
3084 
3085 	/* wait for previous tree log sync to complete */
3086 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3087 		wait_log_commit(root, log_transid - 1);
3088 
3089 	while (1) {
3090 		int batch = atomic_read(&root->log_batch);
3091 		/* when we're on an ssd, just kick the log commit out */
3092 		if (!btrfs_test_opt(fs_info, SSD) &&
3093 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3094 			mutex_unlock(&root->log_mutex);
3095 			schedule_timeout_uninterruptible(1);
3096 			mutex_lock(&root->log_mutex);
3097 		}
3098 		wait_for_writer(root);
3099 		if (batch == atomic_read(&root->log_batch))
3100 			break;
3101 	}
3102 
3103 	/* bail out if we need to do a full commit */
3104 	if (btrfs_need_log_full_commit(trans)) {
3105 		ret = -EAGAIN;
3106 		mutex_unlock(&root->log_mutex);
3107 		goto out;
3108 	}
3109 
3110 	if (log_transid % 2 == 0)
3111 		mark = EXTENT_DIRTY;
3112 	else
3113 		mark = EXTENT_NEW;
3114 
3115 	/* we start IO on  all the marked extents here, but we don't actually
3116 	 * wait for them until later.
3117 	 */
3118 	blk_start_plug(&plug);
3119 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3120 	if (ret) {
3121 		blk_finish_plug(&plug);
3122 		btrfs_abort_transaction(trans, ret);
3123 		btrfs_set_log_full_commit(trans);
3124 		mutex_unlock(&root->log_mutex);
3125 		goto out;
3126 	}
3127 
3128 	/*
3129 	 * We _must_ update under the root->log_mutex in order to make sure we
3130 	 * have a consistent view of the log root we are trying to commit at
3131 	 * this moment.
3132 	 *
3133 	 * We _must_ copy this into a local copy, because we are not holding the
3134 	 * log_root_tree->log_mutex yet.  This is important because when we
3135 	 * commit the log_root_tree we must have a consistent view of the
3136 	 * log_root_tree when we update the super block to point at the
3137 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3138 	 * with the commit and possibly point at the new block which we may not
3139 	 * have written out.
3140 	 */
3141 	btrfs_set_root_node(&log->root_item, log->node);
3142 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3143 
3144 	root->log_transid++;
3145 	log->log_transid = root->log_transid;
3146 	root->log_start_pid = 0;
3147 	/*
3148 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3149 	 * in their headers. new modifications of the log will be written to
3150 	 * new positions. so it's safe to allow log writers to go in.
3151 	 */
3152 	mutex_unlock(&root->log_mutex);
3153 
3154 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3155 
3156 	mutex_lock(&log_root_tree->log_mutex);
3157 
3158 	index2 = log_root_tree->log_transid % 2;
3159 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3160 	root_log_ctx.log_transid = log_root_tree->log_transid;
3161 
3162 	/*
3163 	 * Now we are safe to update the log_root_tree because we're under the
3164 	 * log_mutex, and we're a current writer so we're holding the commit
3165 	 * open until we drop the log_mutex.
3166 	 */
3167 	ret = update_log_root(trans, log, &new_root_item);
3168 	if (ret) {
3169 		if (!list_empty(&root_log_ctx.list))
3170 			list_del_init(&root_log_ctx.list);
3171 
3172 		blk_finish_plug(&plug);
3173 		btrfs_set_log_full_commit(trans);
3174 
3175 		if (ret != -ENOSPC) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			mutex_unlock(&log_root_tree->log_mutex);
3178 			goto out;
3179 		}
3180 		btrfs_wait_tree_log_extents(log, mark);
3181 		mutex_unlock(&log_root_tree->log_mutex);
3182 		ret = -EAGAIN;
3183 		goto out;
3184 	}
3185 
3186 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3187 		blk_finish_plug(&plug);
3188 		list_del_init(&root_log_ctx.list);
3189 		mutex_unlock(&log_root_tree->log_mutex);
3190 		ret = root_log_ctx.log_ret;
3191 		goto out;
3192 	}
3193 
3194 	index2 = root_log_ctx.log_transid % 2;
3195 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3196 		blk_finish_plug(&plug);
3197 		ret = btrfs_wait_tree_log_extents(log, mark);
3198 		wait_log_commit(log_root_tree,
3199 				root_log_ctx.log_transid);
3200 		mutex_unlock(&log_root_tree->log_mutex);
3201 		if (!ret)
3202 			ret = root_log_ctx.log_ret;
3203 		goto out;
3204 	}
3205 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3206 	atomic_set(&log_root_tree->log_commit[index2], 1);
3207 
3208 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3209 		wait_log_commit(log_root_tree,
3210 				root_log_ctx.log_transid - 1);
3211 	}
3212 
3213 	/*
3214 	 * now that we've moved on to the tree of log tree roots,
3215 	 * check the full commit flag again
3216 	 */
3217 	if (btrfs_need_log_full_commit(trans)) {
3218 		blk_finish_plug(&plug);
3219 		btrfs_wait_tree_log_extents(log, mark);
3220 		mutex_unlock(&log_root_tree->log_mutex);
3221 		ret = -EAGAIN;
3222 		goto out_wake_log_root;
3223 	}
3224 
3225 	ret = btrfs_write_marked_extents(fs_info,
3226 					 &log_root_tree->dirty_log_pages,
3227 					 EXTENT_DIRTY | EXTENT_NEW);
3228 	blk_finish_plug(&plug);
3229 	if (ret) {
3230 		btrfs_set_log_full_commit(trans);
3231 		btrfs_abort_transaction(trans, ret);
3232 		mutex_unlock(&log_root_tree->log_mutex);
3233 		goto out_wake_log_root;
3234 	}
3235 	ret = btrfs_wait_tree_log_extents(log, mark);
3236 	if (!ret)
3237 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3238 						  EXTENT_NEW | EXTENT_DIRTY);
3239 	if (ret) {
3240 		btrfs_set_log_full_commit(trans);
3241 		mutex_unlock(&log_root_tree->log_mutex);
3242 		goto out_wake_log_root;
3243 	}
3244 
3245 	btrfs_set_super_log_root(fs_info->super_for_commit,
3246 				 log_root_tree->node->start);
3247 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3248 				       btrfs_header_level(log_root_tree->node));
3249 
3250 	log_root_tree->log_transid++;
3251 	mutex_unlock(&log_root_tree->log_mutex);
3252 
3253 	/*
3254 	 * Nobody else is going to jump in and write the ctree
3255 	 * super here because the log_commit atomic below is protecting
3256 	 * us.  We must be called with a transaction handle pinning
3257 	 * the running transaction open, so a full commit can't hop
3258 	 * in and cause problems either.
3259 	 */
3260 	ret = write_all_supers(fs_info, 1);
3261 	if (ret) {
3262 		btrfs_set_log_full_commit(trans);
3263 		btrfs_abort_transaction(trans, ret);
3264 		goto out_wake_log_root;
3265 	}
3266 
3267 	mutex_lock(&root->log_mutex);
3268 	if (root->last_log_commit < log_transid)
3269 		root->last_log_commit = log_transid;
3270 	mutex_unlock(&root->log_mutex);
3271 
3272 out_wake_log_root:
3273 	mutex_lock(&log_root_tree->log_mutex);
3274 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3275 
3276 	log_root_tree->log_transid_committed++;
3277 	atomic_set(&log_root_tree->log_commit[index2], 0);
3278 	mutex_unlock(&log_root_tree->log_mutex);
3279 
3280 	/*
3281 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3282 	 * all the updates above are seen by the woken threads. It might not be
3283 	 * necessary, but proving that seems to be hard.
3284 	 */
3285 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3286 out:
3287 	mutex_lock(&root->log_mutex);
3288 	btrfs_remove_all_log_ctxs(root, index1, ret);
3289 	root->log_transid_committed++;
3290 	atomic_set(&root->log_commit[index1], 0);
3291 	mutex_unlock(&root->log_mutex);
3292 
3293 	/*
3294 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3295 	 * all the updates above are seen by the woken threads. It might not be
3296 	 * necessary, but proving that seems to be hard.
3297 	 */
3298 	cond_wake_up(&root->log_commit_wait[index1]);
3299 	return ret;
3300 }
3301 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3302 static void free_log_tree(struct btrfs_trans_handle *trans,
3303 			  struct btrfs_root *log)
3304 {
3305 	int ret;
3306 	struct walk_control wc = {
3307 		.free = 1,
3308 		.process_func = process_one_buffer
3309 	};
3310 
3311 	ret = walk_log_tree(trans, log, &wc);
3312 	if (ret) {
3313 		if (trans)
3314 			btrfs_abort_transaction(trans, ret);
3315 		else
3316 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3317 	}
3318 
3319 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3320 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3321 	extent_io_tree_release(&log->log_csum_range);
3322 	btrfs_put_root(log);
3323 }
3324 
3325 /*
3326  * free all the extents used by the tree log.  This should be called
3327  * at commit time of the full transaction
3328  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3329 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3330 {
3331 	if (root->log_root) {
3332 		free_log_tree(trans, root->log_root);
3333 		root->log_root = NULL;
3334 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3335 	}
3336 	return 0;
3337 }
3338 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3339 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3340 			     struct btrfs_fs_info *fs_info)
3341 {
3342 	if (fs_info->log_root_tree) {
3343 		free_log_tree(trans, fs_info->log_root_tree);
3344 		fs_info->log_root_tree = NULL;
3345 	}
3346 	return 0;
3347 }
3348 
3349 /*
3350  * Check if an inode was logged in the current transaction. We can't always rely
3351  * on an inode's logged_trans value, because it's an in-memory only field and
3352  * therefore not persisted. This means that its value is lost if the inode gets
3353  * evicted and loaded again from disk (in which case it has a value of 0, and
3354  * certainly it is smaller then any possible transaction ID), when that happens
3355  * the full_sync flag is set in the inode's runtime flags, so on that case we
3356  * assume eviction happened and ignore the logged_trans value, assuming the
3357  * worst case, that the inode was logged before in the current transaction.
3358  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3359 static bool inode_logged(struct btrfs_trans_handle *trans,
3360 			 struct btrfs_inode *inode)
3361 {
3362 	if (inode->logged_trans == trans->transid)
3363 		return true;
3364 
3365 	if (inode->last_trans == trans->transid &&
3366 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3367 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3368 		return true;
3369 
3370 	return false;
3371 }
3372 
3373 /*
3374  * If both a file and directory are logged, and unlinks or renames are
3375  * mixed in, we have a few interesting corners:
3376  *
3377  * create file X in dir Y
3378  * link file X to X.link in dir Y
3379  * fsync file X
3380  * unlink file X but leave X.link
3381  * fsync dir Y
3382  *
3383  * After a crash we would expect only X.link to exist.  But file X
3384  * didn't get fsync'd again so the log has back refs for X and X.link.
3385  *
3386  * We solve this by removing directory entries and inode backrefs from the
3387  * log when a file that was logged in the current transaction is
3388  * unlinked.  Any later fsync will include the updated log entries, and
3389  * we'll be able to reconstruct the proper directory items from backrefs.
3390  *
3391  * This optimizations allows us to avoid relogging the entire inode
3392  * or the entire directory.
3393  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3394 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3395 				 struct btrfs_root *root,
3396 				 const char *name, int name_len,
3397 				 struct btrfs_inode *dir, u64 index)
3398 {
3399 	struct btrfs_root *log;
3400 	struct btrfs_dir_item *di;
3401 	struct btrfs_path *path;
3402 	int ret;
3403 	int err = 0;
3404 	int bytes_del = 0;
3405 	u64 dir_ino = btrfs_ino(dir);
3406 
3407 	if (!inode_logged(trans, dir))
3408 		return 0;
3409 
3410 	ret = join_running_log_trans(root);
3411 	if (ret)
3412 		return 0;
3413 
3414 	mutex_lock(&dir->log_mutex);
3415 
3416 	log = root->log_root;
3417 	path = btrfs_alloc_path();
3418 	if (!path) {
3419 		err = -ENOMEM;
3420 		goto out_unlock;
3421 	}
3422 
3423 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3424 				   name, name_len, -1);
3425 	if (IS_ERR(di)) {
3426 		err = PTR_ERR(di);
3427 		goto fail;
3428 	}
3429 	if (di) {
3430 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3431 		bytes_del += name_len;
3432 		if (ret) {
3433 			err = ret;
3434 			goto fail;
3435 		}
3436 	}
3437 	btrfs_release_path(path);
3438 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3439 					 index, name, name_len, -1);
3440 	if (IS_ERR(di)) {
3441 		err = PTR_ERR(di);
3442 		goto fail;
3443 	}
3444 	if (di) {
3445 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3446 		bytes_del += name_len;
3447 		if (ret) {
3448 			err = ret;
3449 			goto fail;
3450 		}
3451 	}
3452 
3453 	/* update the directory size in the log to reflect the names
3454 	 * we have removed
3455 	 */
3456 	if (bytes_del) {
3457 		struct btrfs_key key;
3458 
3459 		key.objectid = dir_ino;
3460 		key.offset = 0;
3461 		key.type = BTRFS_INODE_ITEM_KEY;
3462 		btrfs_release_path(path);
3463 
3464 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3465 		if (ret < 0) {
3466 			err = ret;
3467 			goto fail;
3468 		}
3469 		if (ret == 0) {
3470 			struct btrfs_inode_item *item;
3471 			u64 i_size;
3472 
3473 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3474 					      struct btrfs_inode_item);
3475 			i_size = btrfs_inode_size(path->nodes[0], item);
3476 			if (i_size > bytes_del)
3477 				i_size -= bytes_del;
3478 			else
3479 				i_size = 0;
3480 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3481 			btrfs_mark_buffer_dirty(path->nodes[0]);
3482 		} else
3483 			ret = 0;
3484 		btrfs_release_path(path);
3485 	}
3486 fail:
3487 	btrfs_free_path(path);
3488 out_unlock:
3489 	mutex_unlock(&dir->log_mutex);
3490 	if (err == -ENOSPC) {
3491 		btrfs_set_log_full_commit(trans);
3492 		err = 0;
3493 	} else if (err < 0) {
3494 		btrfs_abort_transaction(trans, err);
3495 	}
3496 
3497 	btrfs_end_log_trans(root);
3498 
3499 	return err;
3500 }
3501 
3502 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3503 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3504 			       struct btrfs_root *root,
3505 			       const char *name, int name_len,
3506 			       struct btrfs_inode *inode, u64 dirid)
3507 {
3508 	struct btrfs_root *log;
3509 	u64 index;
3510 	int ret;
3511 
3512 	if (!inode_logged(trans, inode))
3513 		return 0;
3514 
3515 	ret = join_running_log_trans(root);
3516 	if (ret)
3517 		return 0;
3518 	log = root->log_root;
3519 	mutex_lock(&inode->log_mutex);
3520 
3521 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3522 				  dirid, &index);
3523 	mutex_unlock(&inode->log_mutex);
3524 	if (ret == -ENOSPC) {
3525 		btrfs_set_log_full_commit(trans);
3526 		ret = 0;
3527 	} else if (ret < 0 && ret != -ENOENT)
3528 		btrfs_abort_transaction(trans, ret);
3529 	btrfs_end_log_trans(root);
3530 
3531 	return ret;
3532 }
3533 
3534 /*
3535  * creates a range item in the log for 'dirid'.  first_offset and
3536  * last_offset tell us which parts of the key space the log should
3537  * be considered authoritative for.
3538  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3539 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3540 				       struct btrfs_root *log,
3541 				       struct btrfs_path *path,
3542 				       int key_type, u64 dirid,
3543 				       u64 first_offset, u64 last_offset)
3544 {
3545 	int ret;
3546 	struct btrfs_key key;
3547 	struct btrfs_dir_log_item *item;
3548 
3549 	key.objectid = dirid;
3550 	key.offset = first_offset;
3551 	if (key_type == BTRFS_DIR_ITEM_KEY)
3552 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3553 	else
3554 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3555 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3556 	if (ret)
3557 		return ret;
3558 
3559 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 			      struct btrfs_dir_log_item);
3561 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3562 	btrfs_mark_buffer_dirty(path->nodes[0]);
3563 	btrfs_release_path(path);
3564 	return 0;
3565 }
3566 
3567 /*
3568  * log all the items included in the current transaction for a given
3569  * directory.  This also creates the range items in the log tree required
3570  * to replay anything deleted before the fsync
3571  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3572 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3573 			  struct btrfs_root *root, struct btrfs_inode *inode,
3574 			  struct btrfs_path *path,
3575 			  struct btrfs_path *dst_path, int key_type,
3576 			  struct btrfs_log_ctx *ctx,
3577 			  u64 min_offset, u64 *last_offset_ret)
3578 {
3579 	struct btrfs_key min_key;
3580 	struct btrfs_root *log = root->log_root;
3581 	struct extent_buffer *src;
3582 	int err = 0;
3583 	int ret;
3584 	int i;
3585 	int nritems;
3586 	u64 first_offset = min_offset;
3587 	u64 last_offset = (u64)-1;
3588 	u64 ino = btrfs_ino(inode);
3589 
3590 	log = root->log_root;
3591 
3592 	min_key.objectid = ino;
3593 	min_key.type = key_type;
3594 	min_key.offset = min_offset;
3595 
3596 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3597 
3598 	/*
3599 	 * we didn't find anything from this transaction, see if there
3600 	 * is anything at all
3601 	 */
3602 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3603 		min_key.objectid = ino;
3604 		min_key.type = key_type;
3605 		min_key.offset = (u64)-1;
3606 		btrfs_release_path(path);
3607 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3608 		if (ret < 0) {
3609 			btrfs_release_path(path);
3610 			return ret;
3611 		}
3612 		ret = btrfs_previous_item(root, path, ino, key_type);
3613 
3614 		/* if ret == 0 there are items for this type,
3615 		 * create a range to tell us the last key of this type.
3616 		 * otherwise, there are no items in this directory after
3617 		 * *min_offset, and we create a range to indicate that.
3618 		 */
3619 		if (ret == 0) {
3620 			struct btrfs_key tmp;
3621 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3622 					      path->slots[0]);
3623 			if (key_type == tmp.type)
3624 				first_offset = max(min_offset, tmp.offset) + 1;
3625 		}
3626 		goto done;
3627 	}
3628 
3629 	/* go backward to find any previous key */
3630 	ret = btrfs_previous_item(root, path, ino, key_type);
3631 	if (ret == 0) {
3632 		struct btrfs_key tmp;
3633 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3634 		if (key_type == tmp.type) {
3635 			first_offset = tmp.offset;
3636 			ret = overwrite_item(trans, log, dst_path,
3637 					     path->nodes[0], path->slots[0],
3638 					     &tmp);
3639 			if (ret) {
3640 				err = ret;
3641 				goto done;
3642 			}
3643 		}
3644 	}
3645 	btrfs_release_path(path);
3646 
3647 	/*
3648 	 * Find the first key from this transaction again.  See the note for
3649 	 * log_new_dir_dentries, if we're logging a directory recursively we
3650 	 * won't be holding its i_mutex, which means we can modify the directory
3651 	 * while we're logging it.  If we remove an entry between our first
3652 	 * search and this search we'll not find the key again and can just
3653 	 * bail.
3654 	 */
3655 search:
3656 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3657 	if (ret != 0)
3658 		goto done;
3659 
3660 	/*
3661 	 * we have a block from this transaction, log every item in it
3662 	 * from our directory
3663 	 */
3664 	while (1) {
3665 		struct btrfs_key tmp;
3666 		src = path->nodes[0];
3667 		nritems = btrfs_header_nritems(src);
3668 		for (i = path->slots[0]; i < nritems; i++) {
3669 			struct btrfs_dir_item *di;
3670 
3671 			btrfs_item_key_to_cpu(src, &min_key, i);
3672 
3673 			if (min_key.objectid != ino || min_key.type != key_type)
3674 				goto done;
3675 
3676 			if (need_resched()) {
3677 				btrfs_release_path(path);
3678 				cond_resched();
3679 				goto search;
3680 			}
3681 
3682 			ret = overwrite_item(trans, log, dst_path, src, i,
3683 					     &min_key);
3684 			if (ret) {
3685 				err = ret;
3686 				goto done;
3687 			}
3688 
3689 			/*
3690 			 * We must make sure that when we log a directory entry,
3691 			 * the corresponding inode, after log replay, has a
3692 			 * matching link count. For example:
3693 			 *
3694 			 * touch foo
3695 			 * mkdir mydir
3696 			 * sync
3697 			 * ln foo mydir/bar
3698 			 * xfs_io -c "fsync" mydir
3699 			 * <crash>
3700 			 * <mount fs and log replay>
3701 			 *
3702 			 * Would result in a fsync log that when replayed, our
3703 			 * file inode would have a link count of 1, but we get
3704 			 * two directory entries pointing to the same inode.
3705 			 * After removing one of the names, it would not be
3706 			 * possible to remove the other name, which resulted
3707 			 * always in stale file handle errors, and would not
3708 			 * be possible to rmdir the parent directory, since
3709 			 * its i_size could never decrement to the value
3710 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3711 			 */
3712 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3713 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3714 			if (ctx &&
3715 			    (btrfs_dir_transid(src, di) == trans->transid ||
3716 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3717 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3718 				ctx->log_new_dentries = true;
3719 		}
3720 		path->slots[0] = nritems;
3721 
3722 		/*
3723 		 * look ahead to the next item and see if it is also
3724 		 * from this directory and from this transaction
3725 		 */
3726 		ret = btrfs_next_leaf(root, path);
3727 		if (ret) {
3728 			if (ret == 1)
3729 				last_offset = (u64)-1;
3730 			else
3731 				err = ret;
3732 			goto done;
3733 		}
3734 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3735 		if (tmp.objectid != ino || tmp.type != key_type) {
3736 			last_offset = (u64)-1;
3737 			goto done;
3738 		}
3739 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3740 			ret = overwrite_item(trans, log, dst_path,
3741 					     path->nodes[0], path->slots[0],
3742 					     &tmp);
3743 			if (ret)
3744 				err = ret;
3745 			else
3746 				last_offset = tmp.offset;
3747 			goto done;
3748 		}
3749 	}
3750 done:
3751 	btrfs_release_path(path);
3752 	btrfs_release_path(dst_path);
3753 
3754 	if (err == 0) {
3755 		*last_offset_ret = last_offset;
3756 		/*
3757 		 * insert the log range keys to indicate where the log
3758 		 * is valid
3759 		 */
3760 		ret = insert_dir_log_key(trans, log, path, key_type,
3761 					 ino, first_offset, last_offset);
3762 		if (ret)
3763 			err = ret;
3764 	}
3765 	return err;
3766 }
3767 
3768 /*
3769  * logging directories is very similar to logging inodes, We find all the items
3770  * from the current transaction and write them to the log.
3771  *
3772  * The recovery code scans the directory in the subvolume, and if it finds a
3773  * key in the range logged that is not present in the log tree, then it means
3774  * that dir entry was unlinked during the transaction.
3775  *
3776  * In order for that scan to work, we must include one key smaller than
3777  * the smallest logged by this transaction and one key larger than the largest
3778  * key logged by this transaction.
3779  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3780 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3781 			  struct btrfs_root *root, struct btrfs_inode *inode,
3782 			  struct btrfs_path *path,
3783 			  struct btrfs_path *dst_path,
3784 			  struct btrfs_log_ctx *ctx)
3785 {
3786 	u64 min_key;
3787 	u64 max_key;
3788 	int ret;
3789 	int key_type = BTRFS_DIR_ITEM_KEY;
3790 
3791 again:
3792 	min_key = 0;
3793 	max_key = 0;
3794 	while (1) {
3795 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3796 				ctx, min_key, &max_key);
3797 		if (ret)
3798 			return ret;
3799 		if (max_key == (u64)-1)
3800 			break;
3801 		min_key = max_key + 1;
3802 	}
3803 
3804 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3805 		key_type = BTRFS_DIR_INDEX_KEY;
3806 		goto again;
3807 	}
3808 	return 0;
3809 }
3810 
3811 /*
3812  * a helper function to drop items from the log before we relog an
3813  * inode.  max_key_type indicates the highest item type to remove.
3814  * This cannot be run for file data extents because it does not
3815  * free the extents they point to.
3816  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3817 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3818 				  struct btrfs_root *log,
3819 				  struct btrfs_path *path,
3820 				  u64 objectid, int max_key_type)
3821 {
3822 	int ret;
3823 	struct btrfs_key key;
3824 	struct btrfs_key found_key;
3825 	int start_slot;
3826 
3827 	key.objectid = objectid;
3828 	key.type = max_key_type;
3829 	key.offset = (u64)-1;
3830 
3831 	while (1) {
3832 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3833 		BUG_ON(ret == 0); /* Logic error */
3834 		if (ret < 0)
3835 			break;
3836 
3837 		if (path->slots[0] == 0)
3838 			break;
3839 
3840 		path->slots[0]--;
3841 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3842 				      path->slots[0]);
3843 
3844 		if (found_key.objectid != objectid)
3845 			break;
3846 
3847 		found_key.offset = 0;
3848 		found_key.type = 0;
3849 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3850 		if (ret < 0)
3851 			break;
3852 
3853 		ret = btrfs_del_items(trans, log, path, start_slot,
3854 				      path->slots[0] - start_slot + 1);
3855 		/*
3856 		 * If start slot isn't 0 then we don't need to re-search, we've
3857 		 * found the last guy with the objectid in this tree.
3858 		 */
3859 		if (ret || start_slot != 0)
3860 			break;
3861 		btrfs_release_path(path);
3862 	}
3863 	btrfs_release_path(path);
3864 	if (ret > 0)
3865 		ret = 0;
3866 	return ret;
3867 }
3868 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3869 static void fill_inode_item(struct btrfs_trans_handle *trans,
3870 			    struct extent_buffer *leaf,
3871 			    struct btrfs_inode_item *item,
3872 			    struct inode *inode, int log_inode_only,
3873 			    u64 logged_isize)
3874 {
3875 	struct btrfs_map_token token;
3876 
3877 	btrfs_init_map_token(&token, leaf);
3878 
3879 	if (log_inode_only) {
3880 		/* set the generation to zero so the recover code
3881 		 * can tell the difference between an logging
3882 		 * just to say 'this inode exists' and a logging
3883 		 * to say 'update this inode with these values'
3884 		 */
3885 		btrfs_set_token_inode_generation(&token, item, 0);
3886 		btrfs_set_token_inode_size(&token, item, logged_isize);
3887 	} else {
3888 		btrfs_set_token_inode_generation(&token, item,
3889 						 BTRFS_I(inode)->generation);
3890 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3891 	}
3892 
3893 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3894 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3895 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3896 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3897 
3898 	btrfs_set_token_timespec_sec(&token, &item->atime,
3899 				     inode->i_atime.tv_sec);
3900 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3901 				      inode->i_atime.tv_nsec);
3902 
3903 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3904 				     inode->i_mtime.tv_sec);
3905 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3906 				      inode->i_mtime.tv_nsec);
3907 
3908 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3909 				     inode->i_ctime.tv_sec);
3910 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3911 				      inode->i_ctime.tv_nsec);
3912 
3913 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3914 
3915 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3916 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3917 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3918 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3919 	btrfs_set_token_inode_block_group(&token, item, 0);
3920 }
3921 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3922 static int log_inode_item(struct btrfs_trans_handle *trans,
3923 			  struct btrfs_root *log, struct btrfs_path *path,
3924 			  struct btrfs_inode *inode)
3925 {
3926 	struct btrfs_inode_item *inode_item;
3927 	int ret;
3928 
3929 	ret = btrfs_insert_empty_item(trans, log, path,
3930 				      &inode->location, sizeof(*inode_item));
3931 	if (ret && ret != -EEXIST)
3932 		return ret;
3933 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3934 				    struct btrfs_inode_item);
3935 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3936 			0, 0);
3937 	btrfs_release_path(path);
3938 	return 0;
3939 }
3940 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3941 static int log_csums(struct btrfs_trans_handle *trans,
3942 		     struct btrfs_inode *inode,
3943 		     struct btrfs_root *log_root,
3944 		     struct btrfs_ordered_sum *sums)
3945 {
3946 	const u64 lock_end = sums->bytenr + sums->len - 1;
3947 	struct extent_state *cached_state = NULL;
3948 	int ret;
3949 
3950 	/*
3951 	 * If this inode was not used for reflink operations in the current
3952 	 * transaction with new extents, then do the fast path, no need to
3953 	 * worry about logging checksum items with overlapping ranges.
3954 	 */
3955 	if (inode->last_reflink_trans < trans->transid)
3956 		return btrfs_csum_file_blocks(trans, log_root, sums);
3957 
3958 	/*
3959 	 * Serialize logging for checksums. This is to avoid racing with the
3960 	 * same checksum being logged by another task that is logging another
3961 	 * file which happens to refer to the same extent as well. Such races
3962 	 * can leave checksum items in the log with overlapping ranges.
3963 	 */
3964 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3965 			       lock_end, &cached_state);
3966 	if (ret)
3967 		return ret;
3968 	/*
3969 	 * Due to extent cloning, we might have logged a csum item that covers a
3970 	 * subrange of a cloned extent, and later we can end up logging a csum
3971 	 * item for a larger subrange of the same extent or the entire range.
3972 	 * This would leave csum items in the log tree that cover the same range
3973 	 * and break the searches for checksums in the log tree, resulting in
3974 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3975 	 * trim and adjust) any existing csum items in the log for this range.
3976 	 */
3977 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3978 	if (!ret)
3979 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3980 
3981 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3982 			     &cached_state);
3983 
3984 	return ret;
3985 }
3986 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3987 static noinline int copy_items(struct btrfs_trans_handle *trans,
3988 			       struct btrfs_inode *inode,
3989 			       struct btrfs_path *dst_path,
3990 			       struct btrfs_path *src_path,
3991 			       int start_slot, int nr, int inode_only,
3992 			       u64 logged_isize)
3993 {
3994 	struct btrfs_fs_info *fs_info = trans->fs_info;
3995 	unsigned long src_offset;
3996 	unsigned long dst_offset;
3997 	struct btrfs_root *log = inode->root->log_root;
3998 	struct btrfs_file_extent_item *extent;
3999 	struct btrfs_inode_item *inode_item;
4000 	struct extent_buffer *src = src_path->nodes[0];
4001 	int ret;
4002 	struct btrfs_key *ins_keys;
4003 	u32 *ins_sizes;
4004 	char *ins_data;
4005 	int i;
4006 	struct list_head ordered_sums;
4007 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4008 
4009 	INIT_LIST_HEAD(&ordered_sums);
4010 
4011 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4012 			   nr * sizeof(u32), GFP_NOFS);
4013 	if (!ins_data)
4014 		return -ENOMEM;
4015 
4016 	ins_sizes = (u32 *)ins_data;
4017 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4018 
4019 	for (i = 0; i < nr; i++) {
4020 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4021 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4022 	}
4023 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4024 				       ins_keys, ins_sizes, nr);
4025 	if (ret) {
4026 		kfree(ins_data);
4027 		return ret;
4028 	}
4029 
4030 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4031 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4032 						   dst_path->slots[0]);
4033 
4034 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4035 
4036 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4037 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4038 						    dst_path->slots[0],
4039 						    struct btrfs_inode_item);
4040 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4041 					&inode->vfs_inode,
4042 					inode_only == LOG_INODE_EXISTS,
4043 					logged_isize);
4044 		} else {
4045 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4046 					   src_offset, ins_sizes[i]);
4047 		}
4048 
4049 		/* take a reference on file data extents so that truncates
4050 		 * or deletes of this inode don't have to relog the inode
4051 		 * again
4052 		 */
4053 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4054 		    !skip_csum) {
4055 			int found_type;
4056 			extent = btrfs_item_ptr(src, start_slot + i,
4057 						struct btrfs_file_extent_item);
4058 
4059 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4060 				continue;
4061 
4062 			found_type = btrfs_file_extent_type(src, extent);
4063 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4064 				u64 ds, dl, cs, cl;
4065 				ds = btrfs_file_extent_disk_bytenr(src,
4066 								extent);
4067 				/* ds == 0 is a hole */
4068 				if (ds == 0)
4069 					continue;
4070 
4071 				dl = btrfs_file_extent_disk_num_bytes(src,
4072 								extent);
4073 				cs = btrfs_file_extent_offset(src, extent);
4074 				cl = btrfs_file_extent_num_bytes(src,
4075 								extent);
4076 				if (btrfs_file_extent_compression(src,
4077 								  extent)) {
4078 					cs = 0;
4079 					cl = dl;
4080 				}
4081 
4082 				ret = btrfs_lookup_csums_range(
4083 						fs_info->csum_root,
4084 						ds + cs, ds + cs + cl - 1,
4085 						&ordered_sums, 0);
4086 				if (ret)
4087 					break;
4088 			}
4089 		}
4090 	}
4091 
4092 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4093 	btrfs_release_path(dst_path);
4094 	kfree(ins_data);
4095 
4096 	/*
4097 	 * we have to do this after the loop above to avoid changing the
4098 	 * log tree while trying to change the log tree.
4099 	 */
4100 	while (!list_empty(&ordered_sums)) {
4101 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4102 						   struct btrfs_ordered_sum,
4103 						   list);
4104 		if (!ret)
4105 			ret = log_csums(trans, inode, log, sums);
4106 		list_del(&sums->list);
4107 		kfree(sums);
4108 	}
4109 
4110 	return ret;
4111 }
4112 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4113 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4114 {
4115 	struct extent_map *em1, *em2;
4116 
4117 	em1 = list_entry(a, struct extent_map, list);
4118 	em2 = list_entry(b, struct extent_map, list);
4119 
4120 	if (em1->start < em2->start)
4121 		return -1;
4122 	else if (em1->start > em2->start)
4123 		return 1;
4124 	return 0;
4125 }
4126 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4127 static int log_extent_csums(struct btrfs_trans_handle *trans,
4128 			    struct btrfs_inode *inode,
4129 			    struct btrfs_root *log_root,
4130 			    const struct extent_map *em,
4131 			    struct btrfs_log_ctx *ctx)
4132 {
4133 	struct btrfs_ordered_extent *ordered;
4134 	u64 csum_offset;
4135 	u64 csum_len;
4136 	u64 mod_start = em->mod_start;
4137 	u64 mod_len = em->mod_len;
4138 	LIST_HEAD(ordered_sums);
4139 	int ret = 0;
4140 
4141 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4142 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4143 	    em->block_start == EXTENT_MAP_HOLE)
4144 		return 0;
4145 
4146 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4147 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4148 		const u64 mod_end = mod_start + mod_len;
4149 		struct btrfs_ordered_sum *sums;
4150 
4151 		if (mod_len == 0)
4152 			break;
4153 
4154 		if (ordered_end <= mod_start)
4155 			continue;
4156 		if (mod_end <= ordered->file_offset)
4157 			break;
4158 
4159 		/*
4160 		 * We are going to copy all the csums on this ordered extent, so
4161 		 * go ahead and adjust mod_start and mod_len in case this ordered
4162 		 * extent has already been logged.
4163 		 */
4164 		if (ordered->file_offset > mod_start) {
4165 			if (ordered_end >= mod_end)
4166 				mod_len = ordered->file_offset - mod_start;
4167 			/*
4168 			 * If we have this case
4169 			 *
4170 			 * |--------- logged extent ---------|
4171 			 *       |----- ordered extent ----|
4172 			 *
4173 			 * Just don't mess with mod_start and mod_len, we'll
4174 			 * just end up logging more csums than we need and it
4175 			 * will be ok.
4176 			 */
4177 		} else {
4178 			if (ordered_end < mod_end) {
4179 				mod_len = mod_end - ordered_end;
4180 				mod_start = ordered_end;
4181 			} else {
4182 				mod_len = 0;
4183 			}
4184 		}
4185 
4186 		/*
4187 		 * To keep us from looping for the above case of an ordered
4188 		 * extent that falls inside of the logged extent.
4189 		 */
4190 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4191 			continue;
4192 
4193 		list_for_each_entry(sums, &ordered->list, list) {
4194 			ret = log_csums(trans, inode, log_root, sums);
4195 			if (ret)
4196 				return ret;
4197 		}
4198 	}
4199 
4200 	/* We're done, found all csums in the ordered extents. */
4201 	if (mod_len == 0)
4202 		return 0;
4203 
4204 	/* If we're compressed we have to save the entire range of csums. */
4205 	if (em->compress_type) {
4206 		csum_offset = 0;
4207 		csum_len = max(em->block_len, em->orig_block_len);
4208 	} else {
4209 		csum_offset = mod_start - em->start;
4210 		csum_len = mod_len;
4211 	}
4212 
4213 	/* block start is already adjusted for the file extent offset. */
4214 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4215 				       em->block_start + csum_offset,
4216 				       em->block_start + csum_offset +
4217 				       csum_len - 1, &ordered_sums, 0);
4218 	if (ret)
4219 		return ret;
4220 
4221 	while (!list_empty(&ordered_sums)) {
4222 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4223 						   struct btrfs_ordered_sum,
4224 						   list);
4225 		if (!ret)
4226 			ret = log_csums(trans, inode, log_root, sums);
4227 		list_del(&sums->list);
4228 		kfree(sums);
4229 	}
4230 
4231 	return ret;
4232 }
4233 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4234 static int log_one_extent(struct btrfs_trans_handle *trans,
4235 			  struct btrfs_inode *inode, struct btrfs_root *root,
4236 			  const struct extent_map *em,
4237 			  struct btrfs_path *path,
4238 			  struct btrfs_log_ctx *ctx)
4239 {
4240 	struct btrfs_root *log = root->log_root;
4241 	struct btrfs_file_extent_item *fi;
4242 	struct extent_buffer *leaf;
4243 	struct btrfs_map_token token;
4244 	struct btrfs_key key;
4245 	u64 extent_offset = em->start - em->orig_start;
4246 	u64 block_len;
4247 	int ret;
4248 	int extent_inserted = 0;
4249 
4250 	ret = log_extent_csums(trans, inode, log, em, ctx);
4251 	if (ret)
4252 		return ret;
4253 
4254 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4255 				   em->start + em->len, NULL, 0, 1,
4256 				   sizeof(*fi), &extent_inserted);
4257 	if (ret)
4258 		return ret;
4259 
4260 	if (!extent_inserted) {
4261 		key.objectid = btrfs_ino(inode);
4262 		key.type = BTRFS_EXTENT_DATA_KEY;
4263 		key.offset = em->start;
4264 
4265 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4266 					      sizeof(*fi));
4267 		if (ret)
4268 			return ret;
4269 	}
4270 	leaf = path->nodes[0];
4271 	btrfs_init_map_token(&token, leaf);
4272 	fi = btrfs_item_ptr(leaf, path->slots[0],
4273 			    struct btrfs_file_extent_item);
4274 
4275 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4276 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4277 		btrfs_set_token_file_extent_type(&token, fi,
4278 						 BTRFS_FILE_EXTENT_PREALLOC);
4279 	else
4280 		btrfs_set_token_file_extent_type(&token, fi,
4281 						 BTRFS_FILE_EXTENT_REG);
4282 
4283 	block_len = max(em->block_len, em->orig_block_len);
4284 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4285 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4286 							em->block_start);
4287 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4288 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4289 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4290 							em->block_start -
4291 							extent_offset);
4292 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4293 	} else {
4294 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4295 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4296 	}
4297 
4298 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4299 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4300 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4301 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4302 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4303 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4304 	btrfs_mark_buffer_dirty(leaf);
4305 
4306 	btrfs_release_path(path);
4307 
4308 	return ret;
4309 }
4310 
4311 /*
4312  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4313  * lose them after doing a full/fast fsync and replaying the log. We scan the
4314  * subvolume's root instead of iterating the inode's extent map tree because
4315  * otherwise we can log incorrect extent items based on extent map conversion.
4316  * That can happen due to the fact that extent maps are merged when they
4317  * are not in the extent map tree's list of modified extents.
4318  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4319 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4320 				      struct btrfs_inode *inode,
4321 				      struct btrfs_path *path)
4322 {
4323 	struct btrfs_root *root = inode->root;
4324 	struct btrfs_key key;
4325 	const u64 i_size = i_size_read(&inode->vfs_inode);
4326 	const u64 ino = btrfs_ino(inode);
4327 	struct btrfs_path *dst_path = NULL;
4328 	bool dropped_extents = false;
4329 	u64 truncate_offset = i_size;
4330 	struct extent_buffer *leaf;
4331 	int slot;
4332 	int ins_nr = 0;
4333 	int start_slot = 0;
4334 	int ret;
4335 
4336 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4337 		return 0;
4338 
4339 	key.objectid = ino;
4340 	key.type = BTRFS_EXTENT_DATA_KEY;
4341 	key.offset = i_size;
4342 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4343 	if (ret < 0)
4344 		goto out;
4345 
4346 	/*
4347 	 * We must check if there is a prealloc extent that starts before the
4348 	 * i_size and crosses the i_size boundary. This is to ensure later we
4349 	 * truncate down to the end of that extent and not to the i_size, as
4350 	 * otherwise we end up losing part of the prealloc extent after a log
4351 	 * replay and with an implicit hole if there is another prealloc extent
4352 	 * that starts at an offset beyond i_size.
4353 	 */
4354 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4355 	if (ret < 0)
4356 		goto out;
4357 
4358 	if (ret == 0) {
4359 		struct btrfs_file_extent_item *ei;
4360 
4361 		leaf = path->nodes[0];
4362 		slot = path->slots[0];
4363 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4364 
4365 		if (btrfs_file_extent_type(leaf, ei) ==
4366 		    BTRFS_FILE_EXTENT_PREALLOC) {
4367 			u64 extent_end;
4368 
4369 			btrfs_item_key_to_cpu(leaf, &key, slot);
4370 			extent_end = key.offset +
4371 				btrfs_file_extent_num_bytes(leaf, ei);
4372 
4373 			if (extent_end > i_size)
4374 				truncate_offset = extent_end;
4375 		}
4376 	} else {
4377 		ret = 0;
4378 	}
4379 
4380 	while (true) {
4381 		leaf = path->nodes[0];
4382 		slot = path->slots[0];
4383 
4384 		if (slot >= btrfs_header_nritems(leaf)) {
4385 			if (ins_nr > 0) {
4386 				ret = copy_items(trans, inode, dst_path, path,
4387 						 start_slot, ins_nr, 1, 0);
4388 				if (ret < 0)
4389 					goto out;
4390 				ins_nr = 0;
4391 			}
4392 			ret = btrfs_next_leaf(root, path);
4393 			if (ret < 0)
4394 				goto out;
4395 			if (ret > 0) {
4396 				ret = 0;
4397 				break;
4398 			}
4399 			continue;
4400 		}
4401 
4402 		btrfs_item_key_to_cpu(leaf, &key, slot);
4403 		if (key.objectid > ino)
4404 			break;
4405 		if (WARN_ON_ONCE(key.objectid < ino) ||
4406 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4407 		    key.offset < i_size) {
4408 			path->slots[0]++;
4409 			continue;
4410 		}
4411 		if (!dropped_extents) {
4412 			/*
4413 			 * Avoid logging extent items logged in past fsync calls
4414 			 * and leading to duplicate keys in the log tree.
4415 			 */
4416 			do {
4417 				ret = btrfs_truncate_inode_items(trans,
4418 							 root->log_root,
4419 							 &inode->vfs_inode,
4420 							 truncate_offset,
4421 							 BTRFS_EXTENT_DATA_KEY);
4422 			} while (ret == -EAGAIN);
4423 			if (ret)
4424 				goto out;
4425 			dropped_extents = true;
4426 		}
4427 		if (ins_nr == 0)
4428 			start_slot = slot;
4429 		ins_nr++;
4430 		path->slots[0]++;
4431 		if (!dst_path) {
4432 			dst_path = btrfs_alloc_path();
4433 			if (!dst_path) {
4434 				ret = -ENOMEM;
4435 				goto out;
4436 			}
4437 		}
4438 	}
4439 	if (ins_nr > 0)
4440 		ret = copy_items(trans, inode, dst_path, path,
4441 				 start_slot, ins_nr, 1, 0);
4442 out:
4443 	btrfs_release_path(path);
4444 	btrfs_free_path(dst_path);
4445 	return ret;
4446 }
4447 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4448 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4449 				     struct btrfs_root *root,
4450 				     struct btrfs_inode *inode,
4451 				     struct btrfs_path *path,
4452 				     struct btrfs_log_ctx *ctx)
4453 {
4454 	struct btrfs_ordered_extent *ordered;
4455 	struct btrfs_ordered_extent *tmp;
4456 	struct extent_map *em, *n;
4457 	struct list_head extents;
4458 	struct extent_map_tree *tree = &inode->extent_tree;
4459 	u64 test_gen;
4460 	int ret = 0;
4461 	int num = 0;
4462 
4463 	INIT_LIST_HEAD(&extents);
4464 
4465 	write_lock(&tree->lock);
4466 	test_gen = root->fs_info->last_trans_committed;
4467 
4468 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4469 		list_del_init(&em->list);
4470 		/*
4471 		 * Just an arbitrary number, this can be really CPU intensive
4472 		 * once we start getting a lot of extents, and really once we
4473 		 * have a bunch of extents we just want to commit since it will
4474 		 * be faster.
4475 		 */
4476 		if (++num > 32768) {
4477 			list_del_init(&tree->modified_extents);
4478 			ret = -EFBIG;
4479 			goto process;
4480 		}
4481 
4482 		if (em->generation <= test_gen)
4483 			continue;
4484 
4485 		/* We log prealloc extents beyond eof later. */
4486 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4487 		    em->start >= i_size_read(&inode->vfs_inode))
4488 			continue;
4489 
4490 		/* Need a ref to keep it from getting evicted from cache */
4491 		refcount_inc(&em->refs);
4492 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4493 		list_add_tail(&em->list, &extents);
4494 		num++;
4495 	}
4496 
4497 	list_sort(NULL, &extents, extent_cmp);
4498 process:
4499 	while (!list_empty(&extents)) {
4500 		em = list_entry(extents.next, struct extent_map, list);
4501 
4502 		list_del_init(&em->list);
4503 
4504 		/*
4505 		 * If we had an error we just need to delete everybody from our
4506 		 * private list.
4507 		 */
4508 		if (ret) {
4509 			clear_em_logging(tree, em);
4510 			free_extent_map(em);
4511 			continue;
4512 		}
4513 
4514 		write_unlock(&tree->lock);
4515 
4516 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4517 		write_lock(&tree->lock);
4518 		clear_em_logging(tree, em);
4519 		free_extent_map(em);
4520 	}
4521 	WARN_ON(!list_empty(&extents));
4522 	write_unlock(&tree->lock);
4523 
4524 	btrfs_release_path(path);
4525 	if (!ret)
4526 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4527 	if (ret)
4528 		return ret;
4529 
4530 	/*
4531 	 * We have logged all extents successfully, now make sure the commit of
4532 	 * the current transaction waits for the ordered extents to complete
4533 	 * before it commits and wipes out the log trees, otherwise we would
4534 	 * lose data if an ordered extents completes after the transaction
4535 	 * commits and a power failure happens after the transaction commit.
4536 	 */
4537 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4538 		list_del_init(&ordered->log_list);
4539 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4540 
4541 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4542 			spin_lock_irq(&inode->ordered_tree.lock);
4543 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4544 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4545 				atomic_inc(&trans->transaction->pending_ordered);
4546 			}
4547 			spin_unlock_irq(&inode->ordered_tree.lock);
4548 		}
4549 		btrfs_put_ordered_extent(ordered);
4550 	}
4551 
4552 	return 0;
4553 }
4554 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4555 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4556 			     struct btrfs_path *path, u64 *size_ret)
4557 {
4558 	struct btrfs_key key;
4559 	int ret;
4560 
4561 	key.objectid = btrfs_ino(inode);
4562 	key.type = BTRFS_INODE_ITEM_KEY;
4563 	key.offset = 0;
4564 
4565 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4566 	if (ret < 0) {
4567 		return ret;
4568 	} else if (ret > 0) {
4569 		*size_ret = 0;
4570 	} else {
4571 		struct btrfs_inode_item *item;
4572 
4573 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4574 				      struct btrfs_inode_item);
4575 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4576 		/*
4577 		 * If the in-memory inode's i_size is smaller then the inode
4578 		 * size stored in the btree, return the inode's i_size, so
4579 		 * that we get a correct inode size after replaying the log
4580 		 * when before a power failure we had a shrinking truncate
4581 		 * followed by addition of a new name (rename / new hard link).
4582 		 * Otherwise return the inode size from the btree, to avoid
4583 		 * data loss when replaying a log due to previously doing a
4584 		 * write that expands the inode's size and logging a new name
4585 		 * immediately after.
4586 		 */
4587 		if (*size_ret > inode->vfs_inode.i_size)
4588 			*size_ret = inode->vfs_inode.i_size;
4589 	}
4590 
4591 	btrfs_release_path(path);
4592 	return 0;
4593 }
4594 
4595 /*
4596  * At the moment we always log all xattrs. This is to figure out at log replay
4597  * time which xattrs must have their deletion replayed. If a xattr is missing
4598  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4599  * because if a xattr is deleted, the inode is fsynced and a power failure
4600  * happens, causing the log to be replayed the next time the fs is mounted,
4601  * we want the xattr to not exist anymore (same behaviour as other filesystems
4602  * with a journal, ext3/4, xfs, f2fs, etc).
4603  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4604 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4605 				struct btrfs_root *root,
4606 				struct btrfs_inode *inode,
4607 				struct btrfs_path *path,
4608 				struct btrfs_path *dst_path)
4609 {
4610 	int ret;
4611 	struct btrfs_key key;
4612 	const u64 ino = btrfs_ino(inode);
4613 	int ins_nr = 0;
4614 	int start_slot = 0;
4615 	bool found_xattrs = false;
4616 
4617 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4618 		return 0;
4619 
4620 	key.objectid = ino;
4621 	key.type = BTRFS_XATTR_ITEM_KEY;
4622 	key.offset = 0;
4623 
4624 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4625 	if (ret < 0)
4626 		return ret;
4627 
4628 	while (true) {
4629 		int slot = path->slots[0];
4630 		struct extent_buffer *leaf = path->nodes[0];
4631 		int nritems = btrfs_header_nritems(leaf);
4632 
4633 		if (slot >= nritems) {
4634 			if (ins_nr > 0) {
4635 				ret = copy_items(trans, inode, dst_path, path,
4636 						 start_slot, ins_nr, 1, 0);
4637 				if (ret < 0)
4638 					return ret;
4639 				ins_nr = 0;
4640 			}
4641 			ret = btrfs_next_leaf(root, path);
4642 			if (ret < 0)
4643 				return ret;
4644 			else if (ret > 0)
4645 				break;
4646 			continue;
4647 		}
4648 
4649 		btrfs_item_key_to_cpu(leaf, &key, slot);
4650 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4651 			break;
4652 
4653 		if (ins_nr == 0)
4654 			start_slot = slot;
4655 		ins_nr++;
4656 		path->slots[0]++;
4657 		found_xattrs = true;
4658 		cond_resched();
4659 	}
4660 	if (ins_nr > 0) {
4661 		ret = copy_items(trans, inode, dst_path, path,
4662 				 start_slot, ins_nr, 1, 0);
4663 		if (ret < 0)
4664 			return ret;
4665 	}
4666 
4667 	if (!found_xattrs)
4668 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4669 
4670 	return 0;
4671 }
4672 
4673 /*
4674  * When using the NO_HOLES feature if we punched a hole that causes the
4675  * deletion of entire leafs or all the extent items of the first leaf (the one
4676  * that contains the inode item and references) we may end up not processing
4677  * any extents, because there are no leafs with a generation matching the
4678  * current transaction that have extent items for our inode. So we need to find
4679  * if any holes exist and then log them. We also need to log holes after any
4680  * truncate operation that changes the inode's size.
4681  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4682 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4683 			   struct btrfs_root *root,
4684 			   struct btrfs_inode *inode,
4685 			   struct btrfs_path *path)
4686 {
4687 	struct btrfs_fs_info *fs_info = root->fs_info;
4688 	struct btrfs_key key;
4689 	const u64 ino = btrfs_ino(inode);
4690 	const u64 i_size = i_size_read(&inode->vfs_inode);
4691 	u64 prev_extent_end = 0;
4692 	int ret;
4693 
4694 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4695 		return 0;
4696 
4697 	key.objectid = ino;
4698 	key.type = BTRFS_EXTENT_DATA_KEY;
4699 	key.offset = 0;
4700 
4701 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4702 	if (ret < 0)
4703 		return ret;
4704 
4705 	while (true) {
4706 		struct extent_buffer *leaf = path->nodes[0];
4707 
4708 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4709 			ret = btrfs_next_leaf(root, path);
4710 			if (ret < 0)
4711 				return ret;
4712 			if (ret > 0) {
4713 				ret = 0;
4714 				break;
4715 			}
4716 			leaf = path->nodes[0];
4717 		}
4718 
4719 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4720 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4721 			break;
4722 
4723 		/* We have a hole, log it. */
4724 		if (prev_extent_end < key.offset) {
4725 			const u64 hole_len = key.offset - prev_extent_end;
4726 
4727 			/*
4728 			 * Release the path to avoid deadlocks with other code
4729 			 * paths that search the root while holding locks on
4730 			 * leafs from the log root.
4731 			 */
4732 			btrfs_release_path(path);
4733 			ret = btrfs_insert_file_extent(trans, root->log_root,
4734 						       ino, prev_extent_end, 0,
4735 						       0, hole_len, 0, hole_len,
4736 						       0, 0, 0);
4737 			if (ret < 0)
4738 				return ret;
4739 
4740 			/*
4741 			 * Search for the same key again in the root. Since it's
4742 			 * an extent item and we are holding the inode lock, the
4743 			 * key must still exist. If it doesn't just emit warning
4744 			 * and return an error to fall back to a transaction
4745 			 * commit.
4746 			 */
4747 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4748 			if (ret < 0)
4749 				return ret;
4750 			if (WARN_ON(ret > 0))
4751 				return -ENOENT;
4752 			leaf = path->nodes[0];
4753 		}
4754 
4755 		prev_extent_end = btrfs_file_extent_end(path);
4756 		path->slots[0]++;
4757 		cond_resched();
4758 	}
4759 
4760 	if (prev_extent_end < i_size) {
4761 		u64 hole_len;
4762 
4763 		btrfs_release_path(path);
4764 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4765 		ret = btrfs_insert_file_extent(trans, root->log_root,
4766 					       ino, prev_extent_end, 0, 0,
4767 					       hole_len, 0, hole_len,
4768 					       0, 0, 0);
4769 		if (ret < 0)
4770 			return ret;
4771 	}
4772 
4773 	return 0;
4774 }
4775 
4776 /*
4777  * When we are logging a new inode X, check if it doesn't have a reference that
4778  * matches the reference from some other inode Y created in a past transaction
4779  * and that was renamed in the current transaction. If we don't do this, then at
4780  * log replay time we can lose inode Y (and all its files if it's a directory):
4781  *
4782  * mkdir /mnt/x
4783  * echo "hello world" > /mnt/x/foobar
4784  * sync
4785  * mv /mnt/x /mnt/y
4786  * mkdir /mnt/x                 # or touch /mnt/x
4787  * xfs_io -c fsync /mnt/x
4788  * <power fail>
4789  * mount fs, trigger log replay
4790  *
4791  * After the log replay procedure, we would lose the first directory and all its
4792  * files (file foobar).
4793  * For the case where inode Y is not a directory we simply end up losing it:
4794  *
4795  * echo "123" > /mnt/foo
4796  * sync
4797  * mv /mnt/foo /mnt/bar
4798  * echo "abc" > /mnt/foo
4799  * xfs_io -c fsync /mnt/foo
4800  * <power fail>
4801  *
4802  * We also need this for cases where a snapshot entry is replaced by some other
4803  * entry (file or directory) otherwise we end up with an unreplayable log due to
4804  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4805  * if it were a regular entry:
4806  *
4807  * mkdir /mnt/x
4808  * btrfs subvolume snapshot /mnt /mnt/x/snap
4809  * btrfs subvolume delete /mnt/x/snap
4810  * rmdir /mnt/x
4811  * mkdir /mnt/x
4812  * fsync /mnt/x or fsync some new file inside it
4813  * <power fail>
4814  *
4815  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4816  * the same transaction.
4817  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4818 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4819 					 const int slot,
4820 					 const struct btrfs_key *key,
4821 					 struct btrfs_inode *inode,
4822 					 u64 *other_ino, u64 *other_parent)
4823 {
4824 	int ret;
4825 	struct btrfs_path *search_path;
4826 	char *name = NULL;
4827 	u32 name_len = 0;
4828 	u32 item_size = btrfs_item_size_nr(eb, slot);
4829 	u32 cur_offset = 0;
4830 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4831 
4832 	search_path = btrfs_alloc_path();
4833 	if (!search_path)
4834 		return -ENOMEM;
4835 	search_path->search_commit_root = 1;
4836 	search_path->skip_locking = 1;
4837 
4838 	while (cur_offset < item_size) {
4839 		u64 parent;
4840 		u32 this_name_len;
4841 		u32 this_len;
4842 		unsigned long name_ptr;
4843 		struct btrfs_dir_item *di;
4844 
4845 		if (key->type == BTRFS_INODE_REF_KEY) {
4846 			struct btrfs_inode_ref *iref;
4847 
4848 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4849 			parent = key->offset;
4850 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4851 			name_ptr = (unsigned long)(iref + 1);
4852 			this_len = sizeof(*iref) + this_name_len;
4853 		} else {
4854 			struct btrfs_inode_extref *extref;
4855 
4856 			extref = (struct btrfs_inode_extref *)(ptr +
4857 							       cur_offset);
4858 			parent = btrfs_inode_extref_parent(eb, extref);
4859 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4860 			name_ptr = (unsigned long)&extref->name;
4861 			this_len = sizeof(*extref) + this_name_len;
4862 		}
4863 
4864 		if (this_name_len > name_len) {
4865 			char *new_name;
4866 
4867 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4868 			if (!new_name) {
4869 				ret = -ENOMEM;
4870 				goto out;
4871 			}
4872 			name_len = this_name_len;
4873 			name = new_name;
4874 		}
4875 
4876 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4877 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4878 				parent, name, this_name_len, 0);
4879 		if (di && !IS_ERR(di)) {
4880 			struct btrfs_key di_key;
4881 
4882 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4883 						  di, &di_key);
4884 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4885 				if (di_key.objectid != key->objectid) {
4886 					ret = 1;
4887 					*other_ino = di_key.objectid;
4888 					*other_parent = parent;
4889 				} else {
4890 					ret = 0;
4891 				}
4892 			} else {
4893 				ret = -EAGAIN;
4894 			}
4895 			goto out;
4896 		} else if (IS_ERR(di)) {
4897 			ret = PTR_ERR(di);
4898 			goto out;
4899 		}
4900 		btrfs_release_path(search_path);
4901 
4902 		cur_offset += this_len;
4903 	}
4904 	ret = 0;
4905 out:
4906 	btrfs_free_path(search_path);
4907 	kfree(name);
4908 	return ret;
4909 }
4910 
4911 struct btrfs_ino_list {
4912 	u64 ino;
4913 	u64 parent;
4914 	struct list_head list;
4915 };
4916 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4917 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4918 				  struct btrfs_root *root,
4919 				  struct btrfs_path *path,
4920 				  struct btrfs_log_ctx *ctx,
4921 				  u64 ino, u64 parent)
4922 {
4923 	struct btrfs_ino_list *ino_elem;
4924 	LIST_HEAD(inode_list);
4925 	int ret = 0;
4926 
4927 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4928 	if (!ino_elem)
4929 		return -ENOMEM;
4930 	ino_elem->ino = ino;
4931 	ino_elem->parent = parent;
4932 	list_add_tail(&ino_elem->list, &inode_list);
4933 
4934 	while (!list_empty(&inode_list)) {
4935 		struct btrfs_fs_info *fs_info = root->fs_info;
4936 		struct btrfs_key key;
4937 		struct inode *inode;
4938 
4939 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4940 					    list);
4941 		ino = ino_elem->ino;
4942 		parent = ino_elem->parent;
4943 		list_del(&ino_elem->list);
4944 		kfree(ino_elem);
4945 		if (ret)
4946 			continue;
4947 
4948 		btrfs_release_path(path);
4949 
4950 		inode = btrfs_iget(fs_info->sb, ino, root);
4951 		/*
4952 		 * If the other inode that had a conflicting dir entry was
4953 		 * deleted in the current transaction, we need to log its parent
4954 		 * directory.
4955 		 */
4956 		if (IS_ERR(inode)) {
4957 			ret = PTR_ERR(inode);
4958 			if (ret == -ENOENT) {
4959 				inode = btrfs_iget(fs_info->sb, parent, root);
4960 				if (IS_ERR(inode)) {
4961 					ret = PTR_ERR(inode);
4962 				} else {
4963 					ret = btrfs_log_inode(trans, root,
4964 						      BTRFS_I(inode),
4965 						      LOG_OTHER_INODE_ALL,
4966 						      ctx);
4967 					btrfs_add_delayed_iput(inode);
4968 				}
4969 			}
4970 			continue;
4971 		}
4972 		/*
4973 		 * If the inode was already logged skip it - otherwise we can
4974 		 * hit an infinite loop. Example:
4975 		 *
4976 		 * From the commit root (previous transaction) we have the
4977 		 * following inodes:
4978 		 *
4979 		 * inode 257 a directory
4980 		 * inode 258 with references "zz" and "zz_link" on inode 257
4981 		 * inode 259 with reference "a" on inode 257
4982 		 *
4983 		 * And in the current (uncommitted) transaction we have:
4984 		 *
4985 		 * inode 257 a directory, unchanged
4986 		 * inode 258 with references "a" and "a2" on inode 257
4987 		 * inode 259 with reference "zz_link" on inode 257
4988 		 * inode 261 with reference "zz" on inode 257
4989 		 *
4990 		 * When logging inode 261 the following infinite loop could
4991 		 * happen if we don't skip already logged inodes:
4992 		 *
4993 		 * - we detect inode 258 as a conflicting inode, with inode 261
4994 		 *   on reference "zz", and log it;
4995 		 *
4996 		 * - we detect inode 259 as a conflicting inode, with inode 258
4997 		 *   on reference "a", and log it;
4998 		 *
4999 		 * - we detect inode 258 as a conflicting inode, with inode 259
5000 		 *   on reference "zz_link", and log it - again! After this we
5001 		 *   repeat the above steps forever.
5002 		 */
5003 		spin_lock(&BTRFS_I(inode)->lock);
5004 		/*
5005 		 * Check the inode's logged_trans only instead of
5006 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5007 		 * the inode is not updated when we only log that it exists and
5008 		 * it has the full sync bit set (see btrfs_log_inode()).
5009 		 */
5010 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5011 			spin_unlock(&BTRFS_I(inode)->lock);
5012 			btrfs_add_delayed_iput(inode);
5013 			continue;
5014 		}
5015 		spin_unlock(&BTRFS_I(inode)->lock);
5016 		/*
5017 		 * We are safe logging the other inode without acquiring its
5018 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5019 		 * are safe against concurrent renames of the other inode as
5020 		 * well because during a rename we pin the log and update the
5021 		 * log with the new name before we unpin it.
5022 		 */
5023 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5024 				      LOG_OTHER_INODE, ctx);
5025 		if (ret) {
5026 			btrfs_add_delayed_iput(inode);
5027 			continue;
5028 		}
5029 
5030 		key.objectid = ino;
5031 		key.type = BTRFS_INODE_REF_KEY;
5032 		key.offset = 0;
5033 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5034 		if (ret < 0) {
5035 			btrfs_add_delayed_iput(inode);
5036 			continue;
5037 		}
5038 
5039 		while (true) {
5040 			struct extent_buffer *leaf = path->nodes[0];
5041 			int slot = path->slots[0];
5042 			u64 other_ino = 0;
5043 			u64 other_parent = 0;
5044 
5045 			if (slot >= btrfs_header_nritems(leaf)) {
5046 				ret = btrfs_next_leaf(root, path);
5047 				if (ret < 0) {
5048 					break;
5049 				} else if (ret > 0) {
5050 					ret = 0;
5051 					break;
5052 				}
5053 				continue;
5054 			}
5055 
5056 			btrfs_item_key_to_cpu(leaf, &key, slot);
5057 			if (key.objectid != ino ||
5058 			    (key.type != BTRFS_INODE_REF_KEY &&
5059 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5060 				ret = 0;
5061 				break;
5062 			}
5063 
5064 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5065 					BTRFS_I(inode), &other_ino,
5066 					&other_parent);
5067 			if (ret < 0)
5068 				break;
5069 			if (ret > 0) {
5070 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5071 				if (!ino_elem) {
5072 					ret = -ENOMEM;
5073 					break;
5074 				}
5075 				ino_elem->ino = other_ino;
5076 				ino_elem->parent = other_parent;
5077 				list_add_tail(&ino_elem->list, &inode_list);
5078 				ret = 0;
5079 			}
5080 			path->slots[0]++;
5081 		}
5082 		btrfs_add_delayed_iput(inode);
5083 	}
5084 
5085 	return ret;
5086 }
5087 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5088 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5089 				   struct btrfs_inode *inode,
5090 				   struct btrfs_key *min_key,
5091 				   const struct btrfs_key *max_key,
5092 				   struct btrfs_path *path,
5093 				   struct btrfs_path *dst_path,
5094 				   const u64 logged_isize,
5095 				   const bool recursive_logging,
5096 				   const int inode_only,
5097 				   struct btrfs_log_ctx *ctx,
5098 				   bool *need_log_inode_item)
5099 {
5100 	const u64 i_size = i_size_read(&inode->vfs_inode);
5101 	struct btrfs_root *root = inode->root;
5102 	int ins_start_slot = 0;
5103 	int ins_nr = 0;
5104 	int ret;
5105 
5106 	while (1) {
5107 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5108 		if (ret < 0)
5109 			return ret;
5110 		if (ret > 0) {
5111 			ret = 0;
5112 			break;
5113 		}
5114 again:
5115 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5116 		if (min_key->objectid != max_key->objectid)
5117 			break;
5118 		if (min_key->type > max_key->type)
5119 			break;
5120 
5121 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5122 			*need_log_inode_item = false;
5123 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5124 			   min_key->offset >= i_size) {
5125 			/*
5126 			 * Extents at and beyond eof are logged with
5127 			 * btrfs_log_prealloc_extents().
5128 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5129 			 * and no keys greater than that, so bail out.
5130 			 */
5131 			break;
5132 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5133 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5134 			   inode->generation == trans->transid &&
5135 			   !recursive_logging) {
5136 			u64 other_ino = 0;
5137 			u64 other_parent = 0;
5138 
5139 			ret = btrfs_check_ref_name_override(path->nodes[0],
5140 					path->slots[0], min_key, inode,
5141 					&other_ino, &other_parent);
5142 			if (ret < 0) {
5143 				return ret;
5144 			} else if (ret > 0 && ctx &&
5145 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5146 				if (ins_nr > 0) {
5147 					ins_nr++;
5148 				} else {
5149 					ins_nr = 1;
5150 					ins_start_slot = path->slots[0];
5151 				}
5152 				ret = copy_items(trans, inode, dst_path, path,
5153 						 ins_start_slot, ins_nr,
5154 						 inode_only, logged_isize);
5155 				if (ret < 0)
5156 					return ret;
5157 				ins_nr = 0;
5158 
5159 				ret = log_conflicting_inodes(trans, root, path,
5160 						ctx, other_ino, other_parent);
5161 				if (ret)
5162 					return ret;
5163 				btrfs_release_path(path);
5164 				goto next_key;
5165 			}
5166 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5167 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5168 			if (ins_nr == 0)
5169 				goto next_slot;
5170 			ret = copy_items(trans, inode, dst_path, path,
5171 					 ins_start_slot,
5172 					 ins_nr, inode_only, logged_isize);
5173 			if (ret < 0)
5174 				return ret;
5175 			ins_nr = 0;
5176 			goto next_slot;
5177 		}
5178 
5179 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5180 			ins_nr++;
5181 			goto next_slot;
5182 		} else if (!ins_nr) {
5183 			ins_start_slot = path->slots[0];
5184 			ins_nr = 1;
5185 			goto next_slot;
5186 		}
5187 
5188 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5189 				 ins_nr, inode_only, logged_isize);
5190 		if (ret < 0)
5191 			return ret;
5192 		ins_nr = 1;
5193 		ins_start_slot = path->slots[0];
5194 next_slot:
5195 		path->slots[0]++;
5196 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5197 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5198 					      path->slots[0]);
5199 			goto again;
5200 		}
5201 		if (ins_nr) {
5202 			ret = copy_items(trans, inode, dst_path, path,
5203 					 ins_start_slot, ins_nr, inode_only,
5204 					 logged_isize);
5205 			if (ret < 0)
5206 				return ret;
5207 			ins_nr = 0;
5208 		}
5209 		btrfs_release_path(path);
5210 next_key:
5211 		if (min_key->offset < (u64)-1) {
5212 			min_key->offset++;
5213 		} else if (min_key->type < max_key->type) {
5214 			min_key->type++;
5215 			min_key->offset = 0;
5216 		} else {
5217 			break;
5218 		}
5219 	}
5220 	if (ins_nr) {
5221 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5222 				 ins_nr, inode_only, logged_isize);
5223 		if (ret)
5224 			return ret;
5225 	}
5226 
5227 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5228 		/*
5229 		 * Release the path because otherwise we might attempt to double
5230 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5231 		 */
5232 		btrfs_release_path(path);
5233 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5234 	}
5235 
5236 	return ret;
5237 }
5238 
5239 /* log a single inode in the tree log.
5240  * At least one parent directory for this inode must exist in the tree
5241  * or be logged already.
5242  *
5243  * Any items from this inode changed by the current transaction are copied
5244  * to the log tree.  An extra reference is taken on any extents in this
5245  * file, allowing us to avoid a whole pile of corner cases around logging
5246  * blocks that have been removed from the tree.
5247  *
5248  * See LOG_INODE_ALL and related defines for a description of what inode_only
5249  * does.
5250  *
5251  * This handles both files and directories.
5252  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)5253 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5254 			   struct btrfs_root *root, struct btrfs_inode *inode,
5255 			   int inode_only,
5256 			   struct btrfs_log_ctx *ctx)
5257 {
5258 	struct btrfs_path *path;
5259 	struct btrfs_path *dst_path;
5260 	struct btrfs_key min_key;
5261 	struct btrfs_key max_key;
5262 	struct btrfs_root *log = root->log_root;
5263 	int err = 0;
5264 	int ret = 0;
5265 	bool fast_search = false;
5266 	u64 ino = btrfs_ino(inode);
5267 	struct extent_map_tree *em_tree = &inode->extent_tree;
5268 	u64 logged_isize = 0;
5269 	bool need_log_inode_item = true;
5270 	bool xattrs_logged = false;
5271 	bool recursive_logging = false;
5272 
5273 	path = btrfs_alloc_path();
5274 	if (!path)
5275 		return -ENOMEM;
5276 	dst_path = btrfs_alloc_path();
5277 	if (!dst_path) {
5278 		btrfs_free_path(path);
5279 		return -ENOMEM;
5280 	}
5281 
5282 	min_key.objectid = ino;
5283 	min_key.type = BTRFS_INODE_ITEM_KEY;
5284 	min_key.offset = 0;
5285 
5286 	max_key.objectid = ino;
5287 
5288 
5289 	/* today the code can only do partial logging of directories */
5290 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5291 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5292 		       &inode->runtime_flags) &&
5293 	     inode_only >= LOG_INODE_EXISTS))
5294 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5295 	else
5296 		max_key.type = (u8)-1;
5297 	max_key.offset = (u64)-1;
5298 
5299 	/*
5300 	 * Only run delayed items if we are a directory. We want to make sure
5301 	 * all directory indexes hit the fs/subvolume tree so we can find them
5302 	 * and figure out which index ranges have to be logged.
5303 	 *
5304 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5305 	 * as we want to make sure an up to date version is in the subvolume
5306 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5307 	 * it to the log tree. For a non full sync, we always log the inode item
5308 	 * based on the in-memory struct btrfs_inode which is always up to date.
5309 	 */
5310 	if (S_ISDIR(inode->vfs_inode.i_mode))
5311 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5312 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5313 		ret = btrfs_commit_inode_delayed_inode(inode);
5314 
5315 	if (ret) {
5316 		btrfs_free_path(path);
5317 		btrfs_free_path(dst_path);
5318 		return ret;
5319 	}
5320 
5321 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5322 		recursive_logging = true;
5323 		if (inode_only == LOG_OTHER_INODE)
5324 			inode_only = LOG_INODE_EXISTS;
5325 		else
5326 			inode_only = LOG_INODE_ALL;
5327 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5328 	} else {
5329 		mutex_lock(&inode->log_mutex);
5330 	}
5331 
5332 	/*
5333 	 * For symlinks, we must always log their content, which is stored in an
5334 	 * inline extent, otherwise we could end up with an empty symlink after
5335 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5336 	 * one attempts to create an empty symlink).
5337 	 * We don't need to worry about flushing delalloc, because when we create
5338 	 * the inline extent when the symlink is created (we never have delalloc
5339 	 * for symlinks).
5340 	 */
5341 	if (S_ISLNK(inode->vfs_inode.i_mode))
5342 		inode_only = LOG_INODE_ALL;
5343 
5344 	/*
5345 	 * a brute force approach to making sure we get the most uptodate
5346 	 * copies of everything.
5347 	 */
5348 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5349 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5350 
5351 		if (inode_only == LOG_INODE_EXISTS)
5352 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5353 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5354 	} else {
5355 		if (inode_only == LOG_INODE_EXISTS) {
5356 			/*
5357 			 * Make sure the new inode item we write to the log has
5358 			 * the same isize as the current one (if it exists).
5359 			 * This is necessary to prevent data loss after log
5360 			 * replay, and also to prevent doing a wrong expanding
5361 			 * truncate - for e.g. create file, write 4K into offset
5362 			 * 0, fsync, write 4K into offset 4096, add hard link,
5363 			 * fsync some other file (to sync log), power fail - if
5364 			 * we use the inode's current i_size, after log replay
5365 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5366 			 * (zeroes), as if an expanding truncate happened,
5367 			 * instead of getting a file of 4Kb only.
5368 			 */
5369 			err = logged_inode_size(log, inode, path, &logged_isize);
5370 			if (err)
5371 				goto out_unlock;
5372 		}
5373 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5374 			     &inode->runtime_flags)) {
5375 			if (inode_only == LOG_INODE_EXISTS) {
5376 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5377 				ret = drop_objectid_items(trans, log, path, ino,
5378 							  max_key.type);
5379 			} else {
5380 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5381 					  &inode->runtime_flags);
5382 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5383 					  &inode->runtime_flags);
5384 				while(1) {
5385 					ret = btrfs_truncate_inode_items(trans,
5386 						log, &inode->vfs_inode, 0, 0);
5387 					if (ret != -EAGAIN)
5388 						break;
5389 				}
5390 			}
5391 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5392 					      &inode->runtime_flags) ||
5393 			   inode_only == LOG_INODE_EXISTS) {
5394 			if (inode_only == LOG_INODE_ALL)
5395 				fast_search = true;
5396 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5397 			ret = drop_objectid_items(trans, log, path, ino,
5398 						  max_key.type);
5399 		} else {
5400 			if (inode_only == LOG_INODE_ALL)
5401 				fast_search = true;
5402 			goto log_extents;
5403 		}
5404 
5405 	}
5406 	if (ret) {
5407 		err = ret;
5408 		goto out_unlock;
5409 	}
5410 
5411 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5412 				      path, dst_path, logged_isize,
5413 				      recursive_logging, inode_only, ctx,
5414 				      &need_log_inode_item);
5415 	if (err)
5416 		goto out_unlock;
5417 
5418 	btrfs_release_path(path);
5419 	btrfs_release_path(dst_path);
5420 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5421 	if (err)
5422 		goto out_unlock;
5423 	xattrs_logged = true;
5424 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5425 		btrfs_release_path(path);
5426 		btrfs_release_path(dst_path);
5427 		err = btrfs_log_holes(trans, root, inode, path);
5428 		if (err)
5429 			goto out_unlock;
5430 	}
5431 log_extents:
5432 	btrfs_release_path(path);
5433 	btrfs_release_path(dst_path);
5434 	if (need_log_inode_item) {
5435 		err = log_inode_item(trans, log, dst_path, inode);
5436 		if (!err && !xattrs_logged) {
5437 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5438 						   dst_path);
5439 			btrfs_release_path(path);
5440 		}
5441 		if (err)
5442 			goto out_unlock;
5443 	}
5444 	if (fast_search) {
5445 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5446 						ctx);
5447 		if (ret) {
5448 			err = ret;
5449 			goto out_unlock;
5450 		}
5451 	} else if (inode_only == LOG_INODE_ALL) {
5452 		struct extent_map *em, *n;
5453 
5454 		write_lock(&em_tree->lock);
5455 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5456 			list_del_init(&em->list);
5457 		write_unlock(&em_tree->lock);
5458 	}
5459 
5460 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5461 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5462 					ctx);
5463 		if (ret) {
5464 			err = ret;
5465 			goto out_unlock;
5466 		}
5467 	}
5468 
5469 	/*
5470 	 * If we are logging that an ancestor inode exists as part of logging a
5471 	 * new name from a link or rename operation, don't mark the inode as
5472 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5473 	 * the fsync considers the inode in the log and doesn't sync the log,
5474 	 * resulting in the ancestor missing after a power failure unless the
5475 	 * log was synced as part of an fsync against any other unrelated inode.
5476 	 * So keep it simple for this case and just don't flag the ancestors as
5477 	 * logged.
5478 	 */
5479 	if (!ctx ||
5480 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5481 	      &inode->vfs_inode != ctx->inode)) {
5482 		spin_lock(&inode->lock);
5483 		inode->logged_trans = trans->transid;
5484 		/*
5485 		 * Don't update last_log_commit if we logged that an inode exists
5486 		 * after it was loaded to memory (full_sync bit set).
5487 		 * This is to prevent data loss when we do a write to the inode,
5488 		 * then the inode gets evicted after all delalloc was flushed,
5489 		 * then we log it exists (due to a rename for example) and then
5490 		 * fsync it. This last fsync would do nothing (not logging the
5491 		 * extents previously written).
5492 		 */
5493 		if (inode_only != LOG_INODE_EXISTS ||
5494 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5495 			inode->last_log_commit = inode->last_sub_trans;
5496 		spin_unlock(&inode->lock);
5497 	}
5498 out_unlock:
5499 	mutex_unlock(&inode->log_mutex);
5500 
5501 	btrfs_free_path(path);
5502 	btrfs_free_path(dst_path);
5503 	return err;
5504 }
5505 
5506 /*
5507  * Check if we must fallback to a transaction commit when logging an inode.
5508  * This must be called after logging the inode and is used only in the context
5509  * when fsyncing an inode requires the need to log some other inode - in which
5510  * case we can't lock the i_mutex of each other inode we need to log as that
5511  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5512  * log inodes up or down in the hierarchy) or rename operations for example. So
5513  * we take the log_mutex of the inode after we have logged it and then check for
5514  * its last_unlink_trans value - this is safe because any task setting
5515  * last_unlink_trans must take the log_mutex and it must do this before it does
5516  * the actual unlink operation, so if we do this check before a concurrent task
5517  * sets last_unlink_trans it means we've logged a consistent version/state of
5518  * all the inode items, otherwise we are not sure and must do a transaction
5519  * commit (the concurrent task might have only updated last_unlink_trans before
5520  * we logged the inode or it might have also done the unlink).
5521  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5522 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5523 					  struct btrfs_inode *inode)
5524 {
5525 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5526 	bool ret = false;
5527 
5528 	mutex_lock(&inode->log_mutex);
5529 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5530 		/*
5531 		 * Make sure any commits to the log are forced to be full
5532 		 * commits.
5533 		 */
5534 		btrfs_set_log_full_commit(trans);
5535 		ret = true;
5536 	}
5537 	mutex_unlock(&inode->log_mutex);
5538 
5539 	return ret;
5540 }
5541 
5542 /*
5543  * follow the dentry parent pointers up the chain and see if any
5544  * of the directories in it require a full commit before they can
5545  * be logged.  Returns zero if nothing special needs to be done or 1 if
5546  * a full commit is required.
5547  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5548 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5549 					       struct btrfs_inode *inode,
5550 					       struct dentry *parent,
5551 					       struct super_block *sb,
5552 					       u64 last_committed)
5553 {
5554 	int ret = 0;
5555 	struct dentry *old_parent = NULL;
5556 
5557 	/*
5558 	 * for regular files, if its inode is already on disk, we don't
5559 	 * have to worry about the parents at all.  This is because
5560 	 * we can use the last_unlink_trans field to record renames
5561 	 * and other fun in this file.
5562 	 */
5563 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5564 	    inode->generation <= last_committed &&
5565 	    inode->last_unlink_trans <= last_committed)
5566 		goto out;
5567 
5568 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5569 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5570 			goto out;
5571 		inode = BTRFS_I(d_inode(parent));
5572 	}
5573 
5574 	while (1) {
5575 		if (btrfs_must_commit_transaction(trans, inode)) {
5576 			ret = 1;
5577 			break;
5578 		}
5579 
5580 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5581 			break;
5582 
5583 		if (IS_ROOT(parent)) {
5584 			inode = BTRFS_I(d_inode(parent));
5585 			if (btrfs_must_commit_transaction(trans, inode))
5586 				ret = 1;
5587 			break;
5588 		}
5589 
5590 		parent = dget_parent(parent);
5591 		dput(old_parent);
5592 		old_parent = parent;
5593 		inode = BTRFS_I(d_inode(parent));
5594 
5595 	}
5596 	dput(old_parent);
5597 out:
5598 	return ret;
5599 }
5600 
5601 struct btrfs_dir_list {
5602 	u64 ino;
5603 	struct list_head list;
5604 };
5605 
5606 /*
5607  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5608  * details about the why it is needed.
5609  * This is a recursive operation - if an existing dentry corresponds to a
5610  * directory, that directory's new entries are logged too (same behaviour as
5611  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5612  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5613  * complains about the following circular lock dependency / possible deadlock:
5614  *
5615  *        CPU0                                        CPU1
5616  *        ----                                        ----
5617  * lock(&type->i_mutex_dir_key#3/2);
5618  *                                            lock(sb_internal#2);
5619  *                                            lock(&type->i_mutex_dir_key#3/2);
5620  * lock(&sb->s_type->i_mutex_key#14);
5621  *
5622  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5623  * sb_start_intwrite() in btrfs_start_transaction().
5624  * Not locking i_mutex of the inodes is still safe because:
5625  *
5626  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5627  *    that while logging the inode new references (names) are added or removed
5628  *    from the inode, leaving the logged inode item with a link count that does
5629  *    not match the number of logged inode reference items. This is fine because
5630  *    at log replay time we compute the real number of links and correct the
5631  *    link count in the inode item (see replay_one_buffer() and
5632  *    link_to_fixup_dir());
5633  *
5634  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5635  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5636  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5637  *    has a size that doesn't match the sum of the lengths of all the logged
5638  *    names. This does not result in a problem because if a dir_item key is
5639  *    logged but its matching dir_index key is not logged, at log replay time we
5640  *    don't use it to replay the respective name (see replay_one_name()). On the
5641  *    other hand if only the dir_index key ends up being logged, the respective
5642  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5643  *    keys created (see replay_one_name()).
5644  *    The directory's inode item with a wrong i_size is not a problem as well,
5645  *    since we don't use it at log replay time to set the i_size in the inode
5646  *    item of the fs/subvol tree (see overwrite_item()).
5647  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5648 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5649 				struct btrfs_root *root,
5650 				struct btrfs_inode *start_inode,
5651 				struct btrfs_log_ctx *ctx)
5652 {
5653 	struct btrfs_fs_info *fs_info = root->fs_info;
5654 	struct btrfs_root *log = root->log_root;
5655 	struct btrfs_path *path;
5656 	LIST_HEAD(dir_list);
5657 	struct btrfs_dir_list *dir_elem;
5658 	int ret = 0;
5659 
5660 	path = btrfs_alloc_path();
5661 	if (!path)
5662 		return -ENOMEM;
5663 
5664 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5665 	if (!dir_elem) {
5666 		btrfs_free_path(path);
5667 		return -ENOMEM;
5668 	}
5669 	dir_elem->ino = btrfs_ino(start_inode);
5670 	list_add_tail(&dir_elem->list, &dir_list);
5671 
5672 	while (!list_empty(&dir_list)) {
5673 		struct extent_buffer *leaf;
5674 		struct btrfs_key min_key;
5675 		int nritems;
5676 		int i;
5677 
5678 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5679 					    list);
5680 		if (ret)
5681 			goto next_dir_inode;
5682 
5683 		min_key.objectid = dir_elem->ino;
5684 		min_key.type = BTRFS_DIR_ITEM_KEY;
5685 		min_key.offset = 0;
5686 again:
5687 		btrfs_release_path(path);
5688 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5689 		if (ret < 0) {
5690 			goto next_dir_inode;
5691 		} else if (ret > 0) {
5692 			ret = 0;
5693 			goto next_dir_inode;
5694 		}
5695 
5696 process_leaf:
5697 		leaf = path->nodes[0];
5698 		nritems = btrfs_header_nritems(leaf);
5699 		for (i = path->slots[0]; i < nritems; i++) {
5700 			struct btrfs_dir_item *di;
5701 			struct btrfs_key di_key;
5702 			struct inode *di_inode;
5703 			struct btrfs_dir_list *new_dir_elem;
5704 			int log_mode = LOG_INODE_EXISTS;
5705 			int type;
5706 
5707 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5708 			if (min_key.objectid != dir_elem->ino ||
5709 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5710 				goto next_dir_inode;
5711 
5712 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5713 			type = btrfs_dir_type(leaf, di);
5714 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5715 			    type != BTRFS_FT_DIR)
5716 				continue;
5717 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5718 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5719 				continue;
5720 
5721 			btrfs_release_path(path);
5722 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5723 			if (IS_ERR(di_inode)) {
5724 				ret = PTR_ERR(di_inode);
5725 				goto next_dir_inode;
5726 			}
5727 
5728 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5729 				btrfs_add_delayed_iput(di_inode);
5730 				break;
5731 			}
5732 
5733 			ctx->log_new_dentries = false;
5734 			if (type == BTRFS_FT_DIR)
5735 				log_mode = LOG_INODE_ALL;
5736 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5737 					      log_mode, ctx);
5738 			if (!ret &&
5739 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5740 				ret = 1;
5741 			btrfs_add_delayed_iput(di_inode);
5742 			if (ret)
5743 				goto next_dir_inode;
5744 			if (ctx->log_new_dentries) {
5745 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5746 						       GFP_NOFS);
5747 				if (!new_dir_elem) {
5748 					ret = -ENOMEM;
5749 					goto next_dir_inode;
5750 				}
5751 				new_dir_elem->ino = di_key.objectid;
5752 				list_add_tail(&new_dir_elem->list, &dir_list);
5753 			}
5754 			break;
5755 		}
5756 		if (i == nritems) {
5757 			ret = btrfs_next_leaf(log, path);
5758 			if (ret < 0) {
5759 				goto next_dir_inode;
5760 			} else if (ret > 0) {
5761 				ret = 0;
5762 				goto next_dir_inode;
5763 			}
5764 			goto process_leaf;
5765 		}
5766 		if (min_key.offset < (u64)-1) {
5767 			min_key.offset++;
5768 			goto again;
5769 		}
5770 next_dir_inode:
5771 		list_del(&dir_elem->list);
5772 		kfree(dir_elem);
5773 	}
5774 
5775 	btrfs_free_path(path);
5776 	return ret;
5777 }
5778 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5779 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5780 				 struct btrfs_inode *inode,
5781 				 struct btrfs_log_ctx *ctx)
5782 {
5783 	struct btrfs_fs_info *fs_info = trans->fs_info;
5784 	int ret;
5785 	struct btrfs_path *path;
5786 	struct btrfs_key key;
5787 	struct btrfs_root *root = inode->root;
5788 	const u64 ino = btrfs_ino(inode);
5789 
5790 	path = btrfs_alloc_path();
5791 	if (!path)
5792 		return -ENOMEM;
5793 	path->skip_locking = 1;
5794 	path->search_commit_root = 1;
5795 
5796 	key.objectid = ino;
5797 	key.type = BTRFS_INODE_REF_KEY;
5798 	key.offset = 0;
5799 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5800 	if (ret < 0)
5801 		goto out;
5802 
5803 	while (true) {
5804 		struct extent_buffer *leaf = path->nodes[0];
5805 		int slot = path->slots[0];
5806 		u32 cur_offset = 0;
5807 		u32 item_size;
5808 		unsigned long ptr;
5809 
5810 		if (slot >= btrfs_header_nritems(leaf)) {
5811 			ret = btrfs_next_leaf(root, path);
5812 			if (ret < 0)
5813 				goto out;
5814 			else if (ret > 0)
5815 				break;
5816 			continue;
5817 		}
5818 
5819 		btrfs_item_key_to_cpu(leaf, &key, slot);
5820 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5821 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5822 			break;
5823 
5824 		item_size = btrfs_item_size_nr(leaf, slot);
5825 		ptr = btrfs_item_ptr_offset(leaf, slot);
5826 		while (cur_offset < item_size) {
5827 			struct btrfs_key inode_key;
5828 			struct inode *dir_inode;
5829 
5830 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5831 			inode_key.offset = 0;
5832 
5833 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5834 				struct btrfs_inode_extref *extref;
5835 
5836 				extref = (struct btrfs_inode_extref *)
5837 					(ptr + cur_offset);
5838 				inode_key.objectid = btrfs_inode_extref_parent(
5839 					leaf, extref);
5840 				cur_offset += sizeof(*extref);
5841 				cur_offset += btrfs_inode_extref_name_len(leaf,
5842 					extref);
5843 			} else {
5844 				inode_key.objectid = key.offset;
5845 				cur_offset = item_size;
5846 			}
5847 
5848 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5849 					       root);
5850 			/*
5851 			 * If the parent inode was deleted, return an error to
5852 			 * fallback to a transaction commit. This is to prevent
5853 			 * getting an inode that was moved from one parent A to
5854 			 * a parent B, got its former parent A deleted and then
5855 			 * it got fsync'ed, from existing at both parents after
5856 			 * a log replay (and the old parent still existing).
5857 			 * Example:
5858 			 *
5859 			 * mkdir /mnt/A
5860 			 * mkdir /mnt/B
5861 			 * touch /mnt/B/bar
5862 			 * sync
5863 			 * mv /mnt/B/bar /mnt/A/bar
5864 			 * mv -T /mnt/A /mnt/B
5865 			 * fsync /mnt/B/bar
5866 			 * <power fail>
5867 			 *
5868 			 * If we ignore the old parent B which got deleted,
5869 			 * after a log replay we would have file bar linked
5870 			 * at both parents and the old parent B would still
5871 			 * exist.
5872 			 */
5873 			if (IS_ERR(dir_inode)) {
5874 				ret = PTR_ERR(dir_inode);
5875 				goto out;
5876 			}
5877 
5878 			if (ctx)
5879 				ctx->log_new_dentries = false;
5880 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5881 					      LOG_INODE_ALL, ctx);
5882 			if (!ret &&
5883 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5884 				ret = 1;
5885 			if (!ret && ctx && ctx->log_new_dentries)
5886 				ret = log_new_dir_dentries(trans, root,
5887 						   BTRFS_I(dir_inode), ctx);
5888 			btrfs_add_delayed_iput(dir_inode);
5889 			if (ret)
5890 				goto out;
5891 		}
5892 		path->slots[0]++;
5893 	}
5894 	ret = 0;
5895 out:
5896 	btrfs_free_path(path);
5897 	return ret;
5898 }
5899 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5900 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5901 			     struct btrfs_root *root,
5902 			     struct btrfs_path *path,
5903 			     struct btrfs_log_ctx *ctx)
5904 {
5905 	struct btrfs_key found_key;
5906 
5907 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5908 
5909 	while (true) {
5910 		struct btrfs_fs_info *fs_info = root->fs_info;
5911 		const u64 last_committed = fs_info->last_trans_committed;
5912 		struct extent_buffer *leaf = path->nodes[0];
5913 		int slot = path->slots[0];
5914 		struct btrfs_key search_key;
5915 		struct inode *inode;
5916 		u64 ino;
5917 		int ret = 0;
5918 
5919 		btrfs_release_path(path);
5920 
5921 		ino = found_key.offset;
5922 
5923 		search_key.objectid = found_key.offset;
5924 		search_key.type = BTRFS_INODE_ITEM_KEY;
5925 		search_key.offset = 0;
5926 		inode = btrfs_iget(fs_info->sb, ino, root);
5927 		if (IS_ERR(inode))
5928 			return PTR_ERR(inode);
5929 
5930 		if (BTRFS_I(inode)->generation > last_committed)
5931 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5932 					      LOG_INODE_EXISTS, ctx);
5933 		btrfs_add_delayed_iput(inode);
5934 		if (ret)
5935 			return ret;
5936 
5937 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5938 			break;
5939 
5940 		search_key.type = BTRFS_INODE_REF_KEY;
5941 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5942 		if (ret < 0)
5943 			return ret;
5944 
5945 		leaf = path->nodes[0];
5946 		slot = path->slots[0];
5947 		if (slot >= btrfs_header_nritems(leaf)) {
5948 			ret = btrfs_next_leaf(root, path);
5949 			if (ret < 0)
5950 				return ret;
5951 			else if (ret > 0)
5952 				return -ENOENT;
5953 			leaf = path->nodes[0];
5954 			slot = path->slots[0];
5955 		}
5956 
5957 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5958 		if (found_key.objectid != search_key.objectid ||
5959 		    found_key.type != BTRFS_INODE_REF_KEY)
5960 			return -ENOENT;
5961 	}
5962 	return 0;
5963 }
5964 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5965 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5966 				  struct btrfs_inode *inode,
5967 				  struct dentry *parent,
5968 				  struct btrfs_log_ctx *ctx)
5969 {
5970 	struct btrfs_root *root = inode->root;
5971 	struct btrfs_fs_info *fs_info = root->fs_info;
5972 	struct dentry *old_parent = NULL;
5973 	struct super_block *sb = inode->vfs_inode.i_sb;
5974 	int ret = 0;
5975 
5976 	while (true) {
5977 		if (!parent || d_really_is_negative(parent) ||
5978 		    sb != parent->d_sb)
5979 			break;
5980 
5981 		inode = BTRFS_I(d_inode(parent));
5982 		if (root != inode->root)
5983 			break;
5984 
5985 		if (inode->generation > fs_info->last_trans_committed) {
5986 			ret = btrfs_log_inode(trans, root, inode,
5987 					      LOG_INODE_EXISTS, ctx);
5988 			if (ret)
5989 				break;
5990 		}
5991 		if (IS_ROOT(parent))
5992 			break;
5993 
5994 		parent = dget_parent(parent);
5995 		dput(old_parent);
5996 		old_parent = parent;
5997 	}
5998 	dput(old_parent);
5999 
6000 	return ret;
6001 }
6002 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6003 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6004 				 struct btrfs_inode *inode,
6005 				 struct dentry *parent,
6006 				 struct btrfs_log_ctx *ctx)
6007 {
6008 	struct btrfs_root *root = inode->root;
6009 	const u64 ino = btrfs_ino(inode);
6010 	struct btrfs_path *path;
6011 	struct btrfs_key search_key;
6012 	int ret;
6013 
6014 	/*
6015 	 * For a single hard link case, go through a fast path that does not
6016 	 * need to iterate the fs/subvolume tree.
6017 	 */
6018 	if (inode->vfs_inode.i_nlink < 2)
6019 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6020 
6021 	path = btrfs_alloc_path();
6022 	if (!path)
6023 		return -ENOMEM;
6024 
6025 	search_key.objectid = ino;
6026 	search_key.type = BTRFS_INODE_REF_KEY;
6027 	search_key.offset = 0;
6028 again:
6029 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6030 	if (ret < 0)
6031 		goto out;
6032 	if (ret == 0)
6033 		path->slots[0]++;
6034 
6035 	while (true) {
6036 		struct extent_buffer *leaf = path->nodes[0];
6037 		int slot = path->slots[0];
6038 		struct btrfs_key found_key;
6039 
6040 		if (slot >= btrfs_header_nritems(leaf)) {
6041 			ret = btrfs_next_leaf(root, path);
6042 			if (ret < 0)
6043 				goto out;
6044 			else if (ret > 0)
6045 				break;
6046 			continue;
6047 		}
6048 
6049 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6050 		if (found_key.objectid != ino ||
6051 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6052 			break;
6053 
6054 		/*
6055 		 * Don't deal with extended references because they are rare
6056 		 * cases and too complex to deal with (we would need to keep
6057 		 * track of which subitem we are processing for each item in
6058 		 * this loop, etc). So just return some error to fallback to
6059 		 * a transaction commit.
6060 		 */
6061 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6062 			ret = -EMLINK;
6063 			goto out;
6064 		}
6065 
6066 		/*
6067 		 * Logging ancestors needs to do more searches on the fs/subvol
6068 		 * tree, so it releases the path as needed to avoid deadlocks.
6069 		 * Keep track of the last inode ref key and resume from that key
6070 		 * after logging all new ancestors for the current hard link.
6071 		 */
6072 		memcpy(&search_key, &found_key, sizeof(search_key));
6073 
6074 		ret = log_new_ancestors(trans, root, path, ctx);
6075 		if (ret)
6076 			goto out;
6077 		btrfs_release_path(path);
6078 		goto again;
6079 	}
6080 	ret = 0;
6081 out:
6082 	btrfs_free_path(path);
6083 	return ret;
6084 }
6085 
6086 /*
6087  * helper function around btrfs_log_inode to make sure newly created
6088  * parent directories also end up in the log.  A minimal inode and backref
6089  * only logging is done of any parent directories that are older than
6090  * the last committed transaction
6091  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6092 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6093 				  struct btrfs_inode *inode,
6094 				  struct dentry *parent,
6095 				  int inode_only,
6096 				  struct btrfs_log_ctx *ctx)
6097 {
6098 	struct btrfs_root *root = inode->root;
6099 	struct btrfs_fs_info *fs_info = root->fs_info;
6100 	struct super_block *sb;
6101 	int ret = 0;
6102 	u64 last_committed = fs_info->last_trans_committed;
6103 	bool log_dentries = false;
6104 
6105 	sb = inode->vfs_inode.i_sb;
6106 
6107 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6108 		ret = 1;
6109 		goto end_no_trans;
6110 	}
6111 
6112 	/*
6113 	 * The prev transaction commit doesn't complete, we need do
6114 	 * full commit by ourselves.
6115 	 */
6116 	if (fs_info->last_trans_log_full_commit >
6117 	    fs_info->last_trans_committed) {
6118 		ret = 1;
6119 		goto end_no_trans;
6120 	}
6121 
6122 	if (btrfs_root_refs(&root->root_item) == 0) {
6123 		ret = 1;
6124 		goto end_no_trans;
6125 	}
6126 
6127 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6128 			last_committed);
6129 	if (ret)
6130 		goto end_no_trans;
6131 
6132 	/*
6133 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6134 	 * (since logging them is pointless, a link count of 0 means they
6135 	 * will never be accessible).
6136 	 */
6137 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6138 	     list_empty(&ctx->ordered_extents)) ||
6139 	    inode->vfs_inode.i_nlink == 0) {
6140 		ret = BTRFS_NO_LOG_SYNC;
6141 		goto end_no_trans;
6142 	}
6143 
6144 	ret = start_log_trans(trans, root, ctx);
6145 	if (ret)
6146 		goto end_no_trans;
6147 
6148 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6149 	if (ret)
6150 		goto end_trans;
6151 
6152 	/*
6153 	 * for regular files, if its inode is already on disk, we don't
6154 	 * have to worry about the parents at all.  This is because
6155 	 * we can use the last_unlink_trans field to record renames
6156 	 * and other fun in this file.
6157 	 */
6158 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6159 	    inode->generation <= last_committed &&
6160 	    inode->last_unlink_trans <= last_committed) {
6161 		ret = 0;
6162 		goto end_trans;
6163 	}
6164 
6165 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6166 		log_dentries = true;
6167 
6168 	/*
6169 	 * On unlink we must make sure all our current and old parent directory
6170 	 * inodes are fully logged. This is to prevent leaving dangling
6171 	 * directory index entries in directories that were our parents but are
6172 	 * not anymore. Not doing this results in old parent directory being
6173 	 * impossible to delete after log replay (rmdir will always fail with
6174 	 * error -ENOTEMPTY).
6175 	 *
6176 	 * Example 1:
6177 	 *
6178 	 * mkdir testdir
6179 	 * touch testdir/foo
6180 	 * ln testdir/foo testdir/bar
6181 	 * sync
6182 	 * unlink testdir/bar
6183 	 * xfs_io -c fsync testdir/foo
6184 	 * <power failure>
6185 	 * mount fs, triggers log replay
6186 	 *
6187 	 * If we don't log the parent directory (testdir), after log replay the
6188 	 * directory still has an entry pointing to the file inode using the bar
6189 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6190 	 * the file inode has a link count of 1.
6191 	 *
6192 	 * Example 2:
6193 	 *
6194 	 * mkdir testdir
6195 	 * touch foo
6196 	 * ln foo testdir/foo2
6197 	 * ln foo testdir/foo3
6198 	 * sync
6199 	 * unlink testdir/foo3
6200 	 * xfs_io -c fsync foo
6201 	 * <power failure>
6202 	 * mount fs, triggers log replay
6203 	 *
6204 	 * Similar as the first example, after log replay the parent directory
6205 	 * testdir still has an entry pointing to the inode file with name foo3
6206 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6207 	 * and has a link count of 2.
6208 	 */
6209 	if (inode->last_unlink_trans > last_committed) {
6210 		ret = btrfs_log_all_parents(trans, inode, ctx);
6211 		if (ret)
6212 			goto end_trans;
6213 	}
6214 
6215 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6216 	if (ret)
6217 		goto end_trans;
6218 
6219 	if (log_dentries)
6220 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6221 	else
6222 		ret = 0;
6223 end_trans:
6224 	if (ret < 0) {
6225 		btrfs_set_log_full_commit(trans);
6226 		ret = 1;
6227 	}
6228 
6229 	if (ret)
6230 		btrfs_remove_log_ctx(root, ctx);
6231 	btrfs_end_log_trans(root);
6232 end_no_trans:
6233 	return ret;
6234 }
6235 
6236 /*
6237  * it is not safe to log dentry if the chunk root has added new
6238  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6239  * If this returns 1, you must commit the transaction to safely get your
6240  * data on disk.
6241  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)6242 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6243 			  struct dentry *dentry,
6244 			  struct btrfs_log_ctx *ctx)
6245 {
6246 	struct dentry *parent = dget_parent(dentry);
6247 	int ret;
6248 
6249 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6250 				     LOG_INODE_ALL, ctx);
6251 	dput(parent);
6252 
6253 	return ret;
6254 }
6255 
6256 /*
6257  * should be called during mount to recover any replay any log trees
6258  * from the FS
6259  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6260 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6261 {
6262 	int ret;
6263 	struct btrfs_path *path;
6264 	struct btrfs_trans_handle *trans;
6265 	struct btrfs_key key;
6266 	struct btrfs_key found_key;
6267 	struct btrfs_root *log;
6268 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6269 	struct walk_control wc = {
6270 		.process_func = process_one_buffer,
6271 		.stage = LOG_WALK_PIN_ONLY,
6272 	};
6273 
6274 	path = btrfs_alloc_path();
6275 	if (!path)
6276 		return -ENOMEM;
6277 
6278 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 
6280 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6281 	if (IS_ERR(trans)) {
6282 		ret = PTR_ERR(trans);
6283 		goto error;
6284 	}
6285 
6286 	wc.trans = trans;
6287 	wc.pin = 1;
6288 
6289 	ret = walk_log_tree(trans, log_root_tree, &wc);
6290 	if (ret) {
6291 		btrfs_handle_fs_error(fs_info, ret,
6292 			"Failed to pin buffers while recovering log root tree.");
6293 		goto error;
6294 	}
6295 
6296 again:
6297 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6298 	key.offset = (u64)-1;
6299 	key.type = BTRFS_ROOT_ITEM_KEY;
6300 
6301 	while (1) {
6302 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6303 
6304 		if (ret < 0) {
6305 			btrfs_handle_fs_error(fs_info, ret,
6306 				    "Couldn't find tree log root.");
6307 			goto error;
6308 		}
6309 		if (ret > 0) {
6310 			if (path->slots[0] == 0)
6311 				break;
6312 			path->slots[0]--;
6313 		}
6314 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6315 				      path->slots[0]);
6316 		btrfs_release_path(path);
6317 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6318 			break;
6319 
6320 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6321 		if (IS_ERR(log)) {
6322 			ret = PTR_ERR(log);
6323 			btrfs_handle_fs_error(fs_info, ret,
6324 				    "Couldn't read tree log root.");
6325 			goto error;
6326 		}
6327 
6328 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6329 						   true);
6330 		if (IS_ERR(wc.replay_dest)) {
6331 			ret = PTR_ERR(wc.replay_dest);
6332 
6333 			/*
6334 			 * We didn't find the subvol, likely because it was
6335 			 * deleted.  This is ok, simply skip this log and go to
6336 			 * the next one.
6337 			 *
6338 			 * We need to exclude the root because we can't have
6339 			 * other log replays overwriting this log as we'll read
6340 			 * it back in a few more times.  This will keep our
6341 			 * block from being modified, and we'll just bail for
6342 			 * each subsequent pass.
6343 			 */
6344 			if (ret == -ENOENT)
6345 				ret = btrfs_pin_extent_for_log_replay(trans,
6346 							log->node->start,
6347 							log->node->len);
6348 			btrfs_put_root(log);
6349 
6350 			if (!ret)
6351 				goto next;
6352 			btrfs_handle_fs_error(fs_info, ret,
6353 				"Couldn't read target root for tree log recovery.");
6354 			goto error;
6355 		}
6356 
6357 		wc.replay_dest->log_root = log;
6358 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6359 		ret = walk_log_tree(trans, log, &wc);
6360 
6361 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363 						      path);
6364 		}
6365 
6366 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367 			struct btrfs_root *root = wc.replay_dest;
6368 
6369 			btrfs_release_path(path);
6370 
6371 			/*
6372 			 * We have just replayed everything, and the highest
6373 			 * objectid of fs roots probably has changed in case
6374 			 * some inode_item's got replayed.
6375 			 *
6376 			 * root->objectid_mutex is not acquired as log replay
6377 			 * could only happen during mount.
6378 			 */
6379 			ret = btrfs_find_highest_objectid(root,
6380 						  &root->highest_objectid);
6381 		}
6382 
6383 		wc.replay_dest->log_root = NULL;
6384 		btrfs_put_root(wc.replay_dest);
6385 		btrfs_put_root(log);
6386 
6387 		if (ret)
6388 			goto error;
6389 next:
6390 		if (found_key.offset == 0)
6391 			break;
6392 		key.offset = found_key.offset - 1;
6393 	}
6394 	btrfs_release_path(path);
6395 
6396 	/* step one is to pin it all, step two is to replay just inodes */
6397 	if (wc.pin) {
6398 		wc.pin = 0;
6399 		wc.process_func = replay_one_buffer;
6400 		wc.stage = LOG_WALK_REPLAY_INODES;
6401 		goto again;
6402 	}
6403 	/* step three is to replay everything */
6404 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6405 		wc.stage++;
6406 		goto again;
6407 	}
6408 
6409 	btrfs_free_path(path);
6410 
6411 	/* step 4: commit the transaction, which also unpins the blocks */
6412 	ret = btrfs_commit_transaction(trans);
6413 	if (ret)
6414 		return ret;
6415 
6416 	log_root_tree->log_root = NULL;
6417 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6418 	btrfs_put_root(log_root_tree);
6419 
6420 	return 0;
6421 error:
6422 	if (wc.trans)
6423 		btrfs_end_transaction(wc.trans);
6424 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6425 	btrfs_free_path(path);
6426 	return ret;
6427 }
6428 
6429 /*
6430  * there are some corner cases where we want to force a full
6431  * commit instead of allowing a directory to be logged.
6432  *
6433  * They revolve around files there were unlinked from the directory, and
6434  * this function updates the parent directory so that a full commit is
6435  * properly done if it is fsync'd later after the unlinks are done.
6436  *
6437  * Must be called before the unlink operations (updates to the subvolume tree,
6438  * inodes, etc) are done.
6439  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6440 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6441 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6442 			     int for_rename)
6443 {
6444 	/*
6445 	 * when we're logging a file, if it hasn't been renamed
6446 	 * or unlinked, and its inode is fully committed on disk,
6447 	 * we don't have to worry about walking up the directory chain
6448 	 * to log its parents.
6449 	 *
6450 	 * So, we use the last_unlink_trans field to put this transid
6451 	 * into the file.  When the file is logged we check it and
6452 	 * don't log the parents if the file is fully on disk.
6453 	 */
6454 	mutex_lock(&inode->log_mutex);
6455 	inode->last_unlink_trans = trans->transid;
6456 	mutex_unlock(&inode->log_mutex);
6457 
6458 	/*
6459 	 * if this directory was already logged any new
6460 	 * names for this file/dir will get recorded
6461 	 */
6462 	if (dir->logged_trans == trans->transid)
6463 		return;
6464 
6465 	/*
6466 	 * if the inode we're about to unlink was logged,
6467 	 * the log will be properly updated for any new names
6468 	 */
6469 	if (inode->logged_trans == trans->transid)
6470 		return;
6471 
6472 	/*
6473 	 * when renaming files across directories, if the directory
6474 	 * there we're unlinking from gets fsync'd later on, there's
6475 	 * no way to find the destination directory later and fsync it
6476 	 * properly.  So, we have to be conservative and force commits
6477 	 * so the new name gets discovered.
6478 	 */
6479 	if (for_rename)
6480 		goto record;
6481 
6482 	/* we can safely do the unlink without any special recording */
6483 	return;
6484 
6485 record:
6486 	mutex_lock(&dir->log_mutex);
6487 	dir->last_unlink_trans = trans->transid;
6488 	mutex_unlock(&dir->log_mutex);
6489 }
6490 
6491 /*
6492  * Make sure that if someone attempts to fsync the parent directory of a deleted
6493  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6494  * that after replaying the log tree of the parent directory's root we will not
6495  * see the snapshot anymore and at log replay time we will not see any log tree
6496  * corresponding to the deleted snapshot's root, which could lead to replaying
6497  * it after replaying the log tree of the parent directory (which would replay
6498  * the snapshot delete operation).
6499  *
6500  * Must be called before the actual snapshot destroy operation (updates to the
6501  * parent root and tree of tree roots trees, etc) are done.
6502  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6503 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6504 				   struct btrfs_inode *dir)
6505 {
6506 	mutex_lock(&dir->log_mutex);
6507 	dir->last_unlink_trans = trans->transid;
6508 	mutex_unlock(&dir->log_mutex);
6509 }
6510 
6511 /*
6512  * Call this after adding a new name for a file and it will properly
6513  * update the log to reflect the new name.
6514  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent)6515 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6516 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6517 			struct dentry *parent)
6518 {
6519 	struct btrfs_log_ctx ctx;
6520 
6521 	/*
6522 	 * this will force the logging code to walk the dentry chain
6523 	 * up for the file
6524 	 */
6525 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6526 		inode->last_unlink_trans = trans->transid;
6527 
6528 	/*
6529 	 * if this inode hasn't been logged and directory we're renaming it
6530 	 * from hasn't been logged, we don't need to log it
6531 	 */
6532 	if (!inode_logged(trans, inode) &&
6533 	    (!old_dir || !inode_logged(trans, old_dir)))
6534 		return;
6535 
6536 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6537 	ctx.logging_new_name = true;
6538 	/*
6539 	 * We don't care about the return value. If we fail to log the new name
6540 	 * then we know the next attempt to sync the log will fallback to a full
6541 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6542 	 * we don't need to worry about getting a log committed that has an
6543 	 * inconsistent state after a rename operation.
6544 	 */
6545 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6546 }
6547 
6548