1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20 #include <trace/hooks/cgroup.h>
21
22 /*
23 * pidlists linger the following amount before being destroyed. The goal
24 * is avoiding frequent destruction in the middle of consecutive read calls
25 * Expiring in the middle is a performance problem not a correctness one.
26 * 1 sec should be enough.
27 */
28 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
29
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35
36 /*
37 * pidlist destructions need to be flushed on cgroup destruction. Use a
38 * separate workqueue as flush domain.
39 */
40 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
41
42 /* protects cgroup_subsys->release_agent_path */
43 static DEFINE_SPINLOCK(release_agent_path_lock);
44
cgroup1_ssid_disabled(int ssid)45 bool cgroup1_ssid_disabled(int ssid)
46 {
47 return cgroup_no_v1_mask & (1 << ssid);
48 }
49
50 /**
51 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
52 * @from: attach to all cgroups of a given task
53 * @tsk: the task to be attached
54 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)55 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
56 {
57 struct cgroup_root *root;
58 int retval = 0;
59
60 mutex_lock(&cgroup_mutex);
61 cpus_read_lock();
62 percpu_down_write(&cgroup_threadgroup_rwsem);
63 for_each_root(root) {
64 struct cgroup *from_cgrp;
65
66 if (root == &cgrp_dfl_root)
67 continue;
68
69 spin_lock_irq(&css_set_lock);
70 from_cgrp = task_cgroup_from_root(from, root);
71 spin_unlock_irq(&css_set_lock);
72
73 retval = cgroup_attach_task(from_cgrp, tsk, false);
74 if (retval)
75 break;
76 }
77 percpu_up_write(&cgroup_threadgroup_rwsem);
78 cpus_read_unlock();
79 mutex_unlock(&cgroup_mutex);
80
81 return retval;
82 }
83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
84
85 /**
86 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
87 * @to: cgroup to which the tasks will be moved
88 * @from: cgroup in which the tasks currently reside
89 *
90 * Locking rules between cgroup_post_fork() and the migration path
91 * guarantee that, if a task is forking while being migrated, the new child
92 * is guaranteed to be either visible in the source cgroup after the
93 * parent's migration is complete or put into the target cgroup. No task
94 * can slip out of migration through forking.
95 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
97 {
98 DEFINE_CGROUP_MGCTX(mgctx);
99 struct cgrp_cset_link *link;
100 struct css_task_iter it;
101 struct task_struct *task;
102 int ret;
103
104 if (cgroup_on_dfl(to))
105 return -EINVAL;
106
107 ret = cgroup_migrate_vet_dst(to);
108 if (ret)
109 return ret;
110
111 mutex_lock(&cgroup_mutex);
112
113 percpu_down_write(&cgroup_threadgroup_rwsem);
114
115 /* all tasks in @from are being moved, all csets are source */
116 spin_lock_irq(&css_set_lock);
117 list_for_each_entry(link, &from->cset_links, cset_link)
118 cgroup_migrate_add_src(link->cset, to, &mgctx);
119 spin_unlock_irq(&css_set_lock);
120
121 ret = cgroup_migrate_prepare_dst(&mgctx);
122 if (ret)
123 goto out_err;
124
125 /*
126 * Migrate tasks one-by-one until @from is empty. This fails iff
127 * ->can_attach() fails.
128 */
129 do {
130 css_task_iter_start(&from->self, 0, &it);
131
132 do {
133 task = css_task_iter_next(&it);
134 } while (task && (task->flags & PF_EXITING));
135
136 if (task)
137 get_task_struct(task);
138 css_task_iter_end(&it);
139
140 if (task) {
141 ret = cgroup_migrate(task, false, &mgctx);
142 if (!ret)
143 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
144 put_task_struct(task);
145 }
146 } while (task && !ret);
147 out_err:
148 cgroup_migrate_finish(&mgctx);
149 percpu_up_write(&cgroup_threadgroup_rwsem);
150 mutex_unlock(&cgroup_mutex);
151 return ret;
152 }
153
154 /*
155 * Stuff for reading the 'tasks'/'procs' files.
156 *
157 * Reading this file can return large amounts of data if a cgroup has
158 * *lots* of attached tasks. So it may need several calls to read(),
159 * but we cannot guarantee that the information we produce is correct
160 * unless we produce it entirely atomically.
161 *
162 */
163
164 /* which pidlist file are we talking about? */
165 enum cgroup_filetype {
166 CGROUP_FILE_PROCS,
167 CGROUP_FILE_TASKS,
168 };
169
170 /*
171 * A pidlist is a list of pids that virtually represents the contents of one
172 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
173 * a pair (one each for procs, tasks) for each pid namespace that's relevant
174 * to the cgroup.
175 */
176 struct cgroup_pidlist {
177 /*
178 * used to find which pidlist is wanted. doesn't change as long as
179 * this particular list stays in the list.
180 */
181 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
182 /* array of xids */
183 pid_t *list;
184 /* how many elements the above list has */
185 int length;
186 /* each of these stored in a list by its cgroup */
187 struct list_head links;
188 /* pointer to the cgroup we belong to, for list removal purposes */
189 struct cgroup *owner;
190 /* for delayed destruction */
191 struct delayed_work destroy_dwork;
192 };
193
194 /*
195 * Used to destroy all pidlists lingering waiting for destroy timer. None
196 * should be left afterwards.
197 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
199 {
200 struct cgroup_pidlist *l, *tmp_l;
201
202 mutex_lock(&cgrp->pidlist_mutex);
203 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
204 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
205 mutex_unlock(&cgrp->pidlist_mutex);
206
207 flush_workqueue(cgroup_pidlist_destroy_wq);
208 BUG_ON(!list_empty(&cgrp->pidlists));
209 }
210
cgroup_pidlist_destroy_work_fn(struct work_struct * work)211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
212 {
213 struct delayed_work *dwork = to_delayed_work(work);
214 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
215 destroy_dwork);
216 struct cgroup_pidlist *tofree = NULL;
217
218 mutex_lock(&l->owner->pidlist_mutex);
219
220 /*
221 * Destroy iff we didn't get queued again. The state won't change
222 * as destroy_dwork can only be queued while locked.
223 */
224 if (!delayed_work_pending(dwork)) {
225 list_del(&l->links);
226 kvfree(l->list);
227 put_pid_ns(l->key.ns);
228 tofree = l;
229 }
230
231 mutex_unlock(&l->owner->pidlist_mutex);
232 kfree(tofree);
233 }
234
235 /*
236 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
237 * Returns the number of unique elements.
238 */
pidlist_uniq(pid_t * list,int length)239 static int pidlist_uniq(pid_t *list, int length)
240 {
241 int src, dest = 1;
242
243 /*
244 * we presume the 0th element is unique, so i starts at 1. trivial
245 * edge cases first; no work needs to be done for either
246 */
247 if (length == 0 || length == 1)
248 return length;
249 /* src and dest walk down the list; dest counts unique elements */
250 for (src = 1; src < length; src++) {
251 /* find next unique element */
252 while (list[src] == list[src-1]) {
253 src++;
254 if (src == length)
255 goto after;
256 }
257 /* dest always points to where the next unique element goes */
258 list[dest] = list[src];
259 dest++;
260 }
261 after:
262 return dest;
263 }
264
265 /*
266 * The two pid files - task and cgroup.procs - guaranteed that the result
267 * is sorted, which forced this whole pidlist fiasco. As pid order is
268 * different per namespace, each namespace needs differently sorted list,
269 * making it impossible to use, for example, single rbtree of member tasks
270 * sorted by task pointer. As pidlists can be fairly large, allocating one
271 * per open file is dangerous, so cgroup had to implement shared pool of
272 * pidlists keyed by cgroup and namespace.
273 */
cmppid(const void * a,const void * b)274 static int cmppid(const void *a, const void *b)
275 {
276 return *(pid_t *)a - *(pid_t *)b;
277 }
278
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
280 enum cgroup_filetype type)
281 {
282 struct cgroup_pidlist *l;
283 /* don't need task_nsproxy() if we're looking at ourself */
284 struct pid_namespace *ns = task_active_pid_ns(current);
285
286 lockdep_assert_held(&cgrp->pidlist_mutex);
287
288 list_for_each_entry(l, &cgrp->pidlists, links)
289 if (l->key.type == type && l->key.ns == ns)
290 return l;
291 return NULL;
292 }
293
294 /*
295 * find the appropriate pidlist for our purpose (given procs vs tasks)
296 * returns with the lock on that pidlist already held, and takes care
297 * of the use count, or returns NULL with no locks held if we're out of
298 * memory.
299 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
301 enum cgroup_filetype type)
302 {
303 struct cgroup_pidlist *l;
304
305 lockdep_assert_held(&cgrp->pidlist_mutex);
306
307 l = cgroup_pidlist_find(cgrp, type);
308 if (l)
309 return l;
310
311 /* entry not found; create a new one */
312 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
313 if (!l)
314 return l;
315
316 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
317 l->key.type = type;
318 /* don't need task_nsproxy() if we're looking at ourself */
319 l->key.ns = get_pid_ns(task_active_pid_ns(current));
320 l->owner = cgrp;
321 list_add(&l->links, &cgrp->pidlists);
322 return l;
323 }
324
325 /*
326 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
327 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
329 struct cgroup_pidlist **lp)
330 {
331 pid_t *array;
332 int length;
333 int pid, n = 0; /* used for populating the array */
334 struct css_task_iter it;
335 struct task_struct *tsk;
336 struct cgroup_pidlist *l;
337
338 lockdep_assert_held(&cgrp->pidlist_mutex);
339
340 /*
341 * If cgroup gets more users after we read count, we won't have
342 * enough space - tough. This race is indistinguishable to the
343 * caller from the case that the additional cgroup users didn't
344 * show up until sometime later on.
345 */
346 length = cgroup_task_count(cgrp);
347 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
348 if (!array)
349 return -ENOMEM;
350 /* now, populate the array */
351 css_task_iter_start(&cgrp->self, 0, &it);
352 while ((tsk = css_task_iter_next(&it))) {
353 if (unlikely(n == length))
354 break;
355 /* get tgid or pid for procs or tasks file respectively */
356 if (type == CGROUP_FILE_PROCS)
357 pid = task_tgid_vnr(tsk);
358 else
359 pid = task_pid_vnr(tsk);
360 if (pid > 0) /* make sure to only use valid results */
361 array[n++] = pid;
362 }
363 css_task_iter_end(&it);
364 length = n;
365 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */
366 sort(array, length, sizeof(pid_t), cmppid, NULL);
367 length = pidlist_uniq(array, length);
368
369 l = cgroup_pidlist_find_create(cgrp, type);
370 if (!l) {
371 kvfree(array);
372 return -ENOMEM;
373 }
374
375 /* store array, freeing old if necessary */
376 kvfree(l->list);
377 l->list = array;
378 l->length = length;
379 *lp = l;
380 return 0;
381 }
382
383 /*
384 * seq_file methods for the tasks/procs files. The seq_file position is the
385 * next pid to display; the seq_file iterator is a pointer to the pid
386 * in the cgroup->l->list array.
387 */
388
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)389 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
390 {
391 /*
392 * Initially we receive a position value that corresponds to
393 * one more than the last pid shown (or 0 on the first call or
394 * after a seek to the start). Use a binary-search to find the
395 * next pid to display, if any
396 */
397 struct kernfs_open_file *of = s->private;
398 struct cgroup_file_ctx *ctx = of->priv;
399 struct cgroup *cgrp = seq_css(s)->cgroup;
400 struct cgroup_pidlist *l;
401 enum cgroup_filetype type = seq_cft(s)->private;
402 int index = 0, pid = *pos;
403 int *iter, ret;
404
405 mutex_lock(&cgrp->pidlist_mutex);
406
407 /*
408 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
409 * start() after open. If the matching pidlist is around, we can use
410 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
411 * directly. It could already have been destroyed.
412 */
413 if (ctx->procs1.pidlist)
414 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
415
416 /*
417 * Either this is the first start() after open or the matching
418 * pidlist has been destroyed inbetween. Create a new one.
419 */
420 if (!ctx->procs1.pidlist) {
421 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
422 if (ret)
423 return ERR_PTR(ret);
424 }
425 l = ctx->procs1.pidlist;
426
427 if (pid) {
428 int end = l->length;
429
430 while (index < end) {
431 int mid = (index + end) / 2;
432 if (l->list[mid] == pid) {
433 index = mid;
434 break;
435 } else if (l->list[mid] <= pid)
436 index = mid + 1;
437 else
438 end = mid;
439 }
440 }
441 /* If we're off the end of the array, we're done */
442 if (index >= l->length)
443 return NULL;
444 /* Update the abstract position to be the actual pid that we found */
445 iter = l->list + index;
446 *pos = *iter;
447 return iter;
448 }
449
cgroup_pidlist_stop(struct seq_file * s,void * v)450 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
451 {
452 struct kernfs_open_file *of = s->private;
453 struct cgroup_file_ctx *ctx = of->priv;
454 struct cgroup_pidlist *l = ctx->procs1.pidlist;
455
456 if (l)
457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
458 CGROUP_PIDLIST_DESTROY_DELAY);
459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
460 }
461
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
463 {
464 struct kernfs_open_file *of = s->private;
465 struct cgroup_file_ctx *ctx = of->priv;
466 struct cgroup_pidlist *l = ctx->procs1.pidlist;
467 pid_t *p = v;
468 pid_t *end = l->list + l->length;
469 /*
470 * Advance to the next pid in the array. If this goes off the
471 * end, we're done
472 */
473 p++;
474 if (p >= end) {
475 (*pos)++;
476 return NULL;
477 } else {
478 *pos = *p;
479 return p;
480 }
481 }
482
cgroup_pidlist_show(struct seq_file * s,void * v)483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 seq_printf(s, "%d\n", *(int *)v);
486
487 return 0;
488 }
489
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off,
492 bool threadgroup)
493 {
494 struct cgroup *cgrp;
495 struct task_struct *task;
496 const struct cred *cred, *tcred;
497 ssize_t ret;
498 bool locked;
499
500 cgrp = cgroup_kn_lock_live(of->kn, false);
501 if (!cgrp)
502 return -ENODEV;
503
504 task = cgroup_procs_write_start(buf, threadgroup, &locked, cgrp);
505 ret = PTR_ERR_OR_ZERO(task);
506 if (ret)
507 goto out_unlock;
508
509 /*
510 * Even if we're attaching all tasks in the thread group, we only need
511 * to check permissions on one of them. Check permissions using the
512 * credentials from file open to protect against inherited fd attacks.
513 */
514 cred = of->file->f_cred;
515 tcred = get_task_cred(task);
516 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
517 !uid_eq(cred->euid, tcred->uid) &&
518 !uid_eq(cred->euid, tcred->suid) &&
519 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
520 ret = -EACCES;
521 put_cred(tcred);
522 if (ret)
523 goto out_finish;
524
525 ret = cgroup_attach_task(cgrp, task, threadgroup);
526 trace_android_vh_cgroup_set_task(ret, task);
527
528 out_finish:
529 cgroup_procs_write_finish(task, locked);
530 out_unlock:
531 cgroup_kn_unlock(of->kn);
532
533 return ret ?: nbytes;
534 }
535
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)536 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
537 char *buf, size_t nbytes, loff_t off)
538 {
539 return __cgroup1_procs_write(of, buf, nbytes, off, true);
540 }
541
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)542 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
543 char *buf, size_t nbytes, loff_t off)
544 {
545 return __cgroup1_procs_write(of, buf, nbytes, off, false);
546 }
547
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)548 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
549 char *buf, size_t nbytes, loff_t off)
550 {
551 struct cgroup *cgrp;
552 struct cgroup_file_ctx *ctx;
553
554 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
555
556 /*
557 * Release agent gets called with all capabilities,
558 * require capabilities to set release agent.
559 */
560 ctx = of->priv;
561 if ((ctx->ns->user_ns != &init_user_ns) ||
562 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
563 return -EPERM;
564
565 cgrp = cgroup_kn_lock_live(of->kn, false);
566 if (!cgrp)
567 return -ENODEV;
568 spin_lock(&release_agent_path_lock);
569 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
570 sizeof(cgrp->root->release_agent_path));
571 spin_unlock(&release_agent_path_lock);
572 cgroup_kn_unlock(of->kn);
573 return nbytes;
574 }
575
cgroup_release_agent_show(struct seq_file * seq,void * v)576 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
577 {
578 struct cgroup *cgrp = seq_css(seq)->cgroup;
579
580 spin_lock(&release_agent_path_lock);
581 seq_puts(seq, cgrp->root->release_agent_path);
582 spin_unlock(&release_agent_path_lock);
583 seq_putc(seq, '\n');
584 return 0;
585 }
586
cgroup_sane_behavior_show(struct seq_file * seq,void * v)587 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
588 {
589 seq_puts(seq, "0\n");
590 return 0;
591 }
592
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)593 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
594 struct cftype *cft)
595 {
596 return notify_on_release(css->cgroup);
597 }
598
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)599 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
600 struct cftype *cft, u64 val)
601 {
602 if (val)
603 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
604 else
605 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
606 return 0;
607 }
608
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)609 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
610 struct cftype *cft)
611 {
612 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
613 }
614
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)615 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
616 struct cftype *cft, u64 val)
617 {
618 if (val)
619 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
620 else
621 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
622 return 0;
623 }
624
625 /* cgroup core interface files for the legacy hierarchies */
626 struct cftype cgroup1_base_files[] = {
627 {
628 .name = "cgroup.procs",
629 .seq_start = cgroup_pidlist_start,
630 .seq_next = cgroup_pidlist_next,
631 .seq_stop = cgroup_pidlist_stop,
632 .seq_show = cgroup_pidlist_show,
633 .private = CGROUP_FILE_PROCS,
634 .write = cgroup1_procs_write,
635 },
636 {
637 .name = "cgroup.clone_children",
638 .read_u64 = cgroup_clone_children_read,
639 .write_u64 = cgroup_clone_children_write,
640 },
641 {
642 .name = "cgroup.sane_behavior",
643 .flags = CFTYPE_ONLY_ON_ROOT,
644 .seq_show = cgroup_sane_behavior_show,
645 },
646 {
647 .name = "tasks",
648 .seq_start = cgroup_pidlist_start,
649 .seq_next = cgroup_pidlist_next,
650 .seq_stop = cgroup_pidlist_stop,
651 .seq_show = cgroup_pidlist_show,
652 .private = CGROUP_FILE_TASKS,
653 .write = cgroup1_tasks_write,
654 },
655 {
656 .name = "notify_on_release",
657 .read_u64 = cgroup_read_notify_on_release,
658 .write_u64 = cgroup_write_notify_on_release,
659 },
660 {
661 .name = "release_agent",
662 .flags = CFTYPE_ONLY_ON_ROOT,
663 .seq_show = cgroup_release_agent_show,
664 .write = cgroup_release_agent_write,
665 .max_write_len = PATH_MAX - 1,
666 },
667 { } /* terminate */
668 };
669
670 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)671 int proc_cgroupstats_show(struct seq_file *m, void *v)
672 {
673 struct cgroup_subsys *ss;
674 int i;
675
676 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
677 /*
678 * ideally we don't want subsystems moving around while we do this.
679 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
680 * subsys/hierarchy state.
681 */
682 mutex_lock(&cgroup_mutex);
683
684 for_each_subsys(ss, i)
685 seq_printf(m, "%s\t%d\t%d\t%d\n",
686 ss->legacy_name, ss->root->hierarchy_id,
687 atomic_read(&ss->root->nr_cgrps),
688 cgroup_ssid_enabled(i));
689
690 mutex_unlock(&cgroup_mutex);
691 return 0;
692 }
693
694 /**
695 * cgroupstats_build - build and fill cgroupstats
696 * @stats: cgroupstats to fill information into
697 * @dentry: A dentry entry belonging to the cgroup for which stats have
698 * been requested.
699 *
700 * Build and fill cgroupstats so that taskstats can export it to user
701 * space.
702 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)703 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
704 {
705 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
706 struct cgroup *cgrp;
707 struct css_task_iter it;
708 struct task_struct *tsk;
709
710 /* it should be kernfs_node belonging to cgroupfs and is a directory */
711 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
712 kernfs_type(kn) != KERNFS_DIR)
713 return -EINVAL;
714
715 mutex_lock(&cgroup_mutex);
716
717 /*
718 * We aren't being called from kernfs and there's no guarantee on
719 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
720 * @kn->priv is RCU safe. Let's do the RCU dancing.
721 */
722 rcu_read_lock();
723 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
724 if (!cgrp || cgroup_is_dead(cgrp)) {
725 rcu_read_unlock();
726 mutex_unlock(&cgroup_mutex);
727 return -ENOENT;
728 }
729 rcu_read_unlock();
730
731 css_task_iter_start(&cgrp->self, 0, &it);
732 while ((tsk = css_task_iter_next(&it))) {
733 switch (tsk->state) {
734 case TASK_RUNNING:
735 stats->nr_running++;
736 break;
737 case TASK_INTERRUPTIBLE:
738 stats->nr_sleeping++;
739 break;
740 case TASK_UNINTERRUPTIBLE:
741 stats->nr_uninterruptible++;
742 break;
743 case TASK_STOPPED:
744 stats->nr_stopped++;
745 break;
746 default:
747 if (delayacct_is_task_waiting_on_io(tsk))
748 stats->nr_io_wait++;
749 break;
750 }
751 }
752 css_task_iter_end(&it);
753
754 mutex_unlock(&cgroup_mutex);
755 return 0;
756 }
757
cgroup1_check_for_release(struct cgroup * cgrp)758 void cgroup1_check_for_release(struct cgroup *cgrp)
759 {
760 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
761 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
762 schedule_work(&cgrp->release_agent_work);
763 }
764
765 /*
766 * Notify userspace when a cgroup is released, by running the
767 * configured release agent with the name of the cgroup (path
768 * relative to the root of cgroup file system) as the argument.
769 *
770 * Most likely, this user command will try to rmdir this cgroup.
771 *
772 * This races with the possibility that some other task will be
773 * attached to this cgroup before it is removed, or that some other
774 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
775 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
776 * unused, and this cgroup will be reprieved from its death sentence,
777 * to continue to serve a useful existence. Next time it's released,
778 * we will get notified again, if it still has 'notify_on_release' set.
779 *
780 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
781 * means only wait until the task is successfully execve()'d. The
782 * separate release agent task is forked by call_usermodehelper(),
783 * then control in this thread returns here, without waiting for the
784 * release agent task. We don't bother to wait because the caller of
785 * this routine has no use for the exit status of the release agent
786 * task, so no sense holding our caller up for that.
787 */
cgroup1_release_agent(struct work_struct * work)788 void cgroup1_release_agent(struct work_struct *work)
789 {
790 struct cgroup *cgrp =
791 container_of(work, struct cgroup, release_agent_work);
792 char *pathbuf, *agentbuf;
793 char *argv[3], *envp[3];
794 int ret;
795
796 /* snoop agent path and exit early if empty */
797 if (!cgrp->root->release_agent_path[0])
798 return;
799
800 /* prepare argument buffers */
801 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
802 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
803 if (!pathbuf || !agentbuf)
804 goto out_free;
805
806 spin_lock(&release_agent_path_lock);
807 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
808 spin_unlock(&release_agent_path_lock);
809 if (!agentbuf[0])
810 goto out_free;
811
812 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
813 if (ret < 0 || ret >= PATH_MAX)
814 goto out_free;
815
816 argv[0] = agentbuf;
817 argv[1] = pathbuf;
818 argv[2] = NULL;
819
820 /* minimal command environment */
821 envp[0] = "HOME=/";
822 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
823 envp[2] = NULL;
824
825 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
826 out_free:
827 kfree(agentbuf);
828 kfree(pathbuf);
829 }
830
831 /*
832 * cgroup_rename - Only allow simple rename of directories in place.
833 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)834 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
835 const char *new_name_str)
836 {
837 struct cgroup *cgrp = kn->priv;
838 int ret;
839
840 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
841 if (strchr(new_name_str, '\n'))
842 return -EINVAL;
843
844 if (kernfs_type(kn) != KERNFS_DIR)
845 return -ENOTDIR;
846 if (kn->parent != new_parent)
847 return -EIO;
848
849 /*
850 * We're gonna grab cgroup_mutex which nests outside kernfs
851 * active_ref. kernfs_rename() doesn't require active_ref
852 * protection. Break them before grabbing cgroup_mutex.
853 */
854 kernfs_break_active_protection(new_parent);
855 kernfs_break_active_protection(kn);
856
857 mutex_lock(&cgroup_mutex);
858
859 ret = kernfs_rename(kn, new_parent, new_name_str);
860 if (!ret)
861 TRACE_CGROUP_PATH(rename, cgrp);
862
863 mutex_unlock(&cgroup_mutex);
864
865 kernfs_unbreak_active_protection(kn);
866 kernfs_unbreak_active_protection(new_parent);
867 return ret;
868 }
869
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)870 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
871 {
872 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
873 struct cgroup_subsys *ss;
874 int ssid;
875
876 for_each_subsys(ss, ssid)
877 if (root->subsys_mask & (1 << ssid))
878 seq_show_option(seq, ss->legacy_name, NULL);
879 if (root->flags & CGRP_ROOT_NOPREFIX)
880 seq_puts(seq, ",noprefix");
881 if (root->flags & CGRP_ROOT_XATTR)
882 seq_puts(seq, ",xattr");
883 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
884 seq_puts(seq, ",cpuset_v2_mode");
885
886 spin_lock(&release_agent_path_lock);
887 if (strlen(root->release_agent_path))
888 seq_show_option(seq, "release_agent",
889 root->release_agent_path);
890 spin_unlock(&release_agent_path_lock);
891
892 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
893 seq_puts(seq, ",clone_children");
894 if (strlen(root->name))
895 seq_show_option(seq, "name", root->name);
896 return 0;
897 }
898
899 enum cgroup1_param {
900 Opt_all,
901 Opt_clone_children,
902 Opt_cpuset_v2_mode,
903 Opt_name,
904 Opt_none,
905 Opt_noprefix,
906 Opt_release_agent,
907 Opt_xattr,
908 };
909
910 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
911 fsparam_flag ("all", Opt_all),
912 fsparam_flag ("clone_children", Opt_clone_children),
913 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
914 fsparam_string("name", Opt_name),
915 fsparam_flag ("none", Opt_none),
916 fsparam_flag ("noprefix", Opt_noprefix),
917 fsparam_string("release_agent", Opt_release_agent),
918 fsparam_flag ("xattr", Opt_xattr),
919 {}
920 };
921
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)922 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
923 {
924 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
925 struct cgroup_subsys *ss;
926 struct fs_parse_result result;
927 int opt, i;
928
929 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
930 if (opt == -ENOPARAM) {
931 if (strcmp(param->key, "source") == 0) {
932 if (param->type != fs_value_is_string)
933 return invalf(fc, "Non-string source");
934 if (fc->source)
935 return invalf(fc, "Multiple sources not supported");
936 fc->source = param->string;
937 param->string = NULL;
938 return 0;
939 }
940 for_each_subsys(ss, i) {
941 if (strcmp(param->key, ss->legacy_name))
942 continue;
943 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
944 return invalfc(fc, "Disabled controller '%s'",
945 param->key);
946 ctx->subsys_mask |= (1 << i);
947 return 0;
948 }
949 return invalfc(fc, "Unknown subsys name '%s'", param->key);
950 }
951 if (opt < 0)
952 return opt;
953
954 switch (opt) {
955 case Opt_none:
956 /* Explicitly have no subsystems */
957 ctx->none = true;
958 break;
959 case Opt_all:
960 ctx->all_ss = true;
961 break;
962 case Opt_noprefix:
963 ctx->flags |= CGRP_ROOT_NOPREFIX;
964 break;
965 case Opt_clone_children:
966 ctx->cpuset_clone_children = true;
967 break;
968 case Opt_cpuset_v2_mode:
969 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
970 break;
971 case Opt_xattr:
972 ctx->flags |= CGRP_ROOT_XATTR;
973 break;
974 case Opt_release_agent:
975 /* Specifying two release agents is forbidden */
976 if (ctx->release_agent)
977 return invalfc(fc, "release_agent respecified");
978 /*
979 * Release agent gets called with all capabilities,
980 * require capabilities to set release agent.
981 */
982 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
983 return invalfc(fc, "Setting release_agent not allowed");
984 ctx->release_agent = param->string;
985 param->string = NULL;
986 break;
987 case Opt_name:
988 /* blocked by boot param? */
989 if (cgroup_no_v1_named)
990 return -ENOENT;
991 /* Can't specify an empty name */
992 if (!param->size)
993 return invalfc(fc, "Empty name");
994 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
995 return invalfc(fc, "Name too long");
996 /* Must match [\w.-]+ */
997 for (i = 0; i < param->size; i++) {
998 char c = param->string[i];
999 if (isalnum(c))
1000 continue;
1001 if ((c == '.') || (c == '-') || (c == '_'))
1002 continue;
1003 return invalfc(fc, "Invalid name");
1004 }
1005 /* Specifying two names is forbidden */
1006 if (ctx->name)
1007 return invalfc(fc, "name respecified");
1008 ctx->name = param->string;
1009 param->string = NULL;
1010 break;
1011 }
1012 return 0;
1013 }
1014
check_cgroupfs_options(struct fs_context * fc)1015 static int check_cgroupfs_options(struct fs_context *fc)
1016 {
1017 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1018 u16 mask = U16_MAX;
1019 u16 enabled = 0;
1020 struct cgroup_subsys *ss;
1021 int i;
1022
1023 #ifdef CONFIG_CPUSETS
1024 mask = ~((u16)1 << cpuset_cgrp_id);
1025 #endif
1026 for_each_subsys(ss, i)
1027 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1028 enabled |= 1 << i;
1029
1030 ctx->subsys_mask &= enabled;
1031
1032 /*
1033 * In absense of 'none', 'name=' or subsystem name options,
1034 * let's default to 'all'.
1035 */
1036 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1037 ctx->all_ss = true;
1038
1039 if (ctx->all_ss) {
1040 /* Mutually exclusive option 'all' + subsystem name */
1041 if (ctx->subsys_mask)
1042 return invalfc(fc, "subsys name conflicts with all");
1043 /* 'all' => select all the subsystems */
1044 ctx->subsys_mask = enabled;
1045 }
1046
1047 /*
1048 * We either have to specify by name or by subsystems. (So all
1049 * empty hierarchies must have a name).
1050 */
1051 if (!ctx->subsys_mask && !ctx->name)
1052 return invalfc(fc, "Need name or subsystem set");
1053
1054 /*
1055 * Option noprefix was introduced just for backward compatibility
1056 * with the old cpuset, so we allow noprefix only if mounting just
1057 * the cpuset subsystem.
1058 */
1059 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1060 return invalfc(fc, "noprefix used incorrectly");
1061
1062 /* Can't specify "none" and some subsystems */
1063 if (ctx->subsys_mask && ctx->none)
1064 return invalfc(fc, "none used incorrectly");
1065
1066 return 0;
1067 }
1068
cgroup1_reconfigure(struct fs_context * fc)1069 int cgroup1_reconfigure(struct fs_context *fc)
1070 {
1071 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1072 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1073 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1074 int ret = 0;
1075 u16 added_mask, removed_mask;
1076
1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1078
1079 /* See what subsystems are wanted */
1080 ret = check_cgroupfs_options(fc);
1081 if (ret)
1082 goto out_unlock;
1083
1084 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1085 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1086 task_tgid_nr(current), current->comm);
1087
1088 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1089 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1090
1091 /* Don't allow flags or name to change at remount */
1092 if ((ctx->flags ^ root->flags) ||
1093 (ctx->name && strcmp(ctx->name, root->name))) {
1094 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1095 ctx->flags, ctx->name ?: "", root->flags, root->name);
1096 ret = -EINVAL;
1097 goto out_unlock;
1098 }
1099
1100 /* remounting is not allowed for populated hierarchies */
1101 if (!list_empty(&root->cgrp.self.children)) {
1102 ret = -EBUSY;
1103 goto out_unlock;
1104 }
1105
1106 ret = rebind_subsystems(root, added_mask);
1107 if (ret)
1108 goto out_unlock;
1109
1110 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1111
1112 if (ctx->release_agent) {
1113 spin_lock(&release_agent_path_lock);
1114 strcpy(root->release_agent_path, ctx->release_agent);
1115 spin_unlock(&release_agent_path_lock);
1116 }
1117
1118 trace_cgroup_remount(root);
1119
1120 out_unlock:
1121 mutex_unlock(&cgroup_mutex);
1122 return ret;
1123 }
1124
1125 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1126 .rename = cgroup1_rename,
1127 .show_options = cgroup1_show_options,
1128 .mkdir = cgroup_mkdir,
1129 .rmdir = cgroup_rmdir,
1130 .show_path = cgroup_show_path,
1131 };
1132
1133 /*
1134 * The guts of cgroup1 mount - find or create cgroup_root to use.
1135 * Called with cgroup_mutex held; returns 0 on success, -E... on
1136 * error and positive - in case when the candidate is busy dying.
1137 * On success it stashes a reference to cgroup_root into given
1138 * cgroup_fs_context; that reference is *NOT* counting towards the
1139 * cgroup_root refcount.
1140 */
cgroup1_root_to_use(struct fs_context * fc)1141 static int cgroup1_root_to_use(struct fs_context *fc)
1142 {
1143 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1144 struct cgroup_root *root;
1145 struct cgroup_subsys *ss;
1146 int i, ret;
1147
1148 /* First find the desired set of subsystems */
1149 ret = check_cgroupfs_options(fc);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Destruction of cgroup root is asynchronous, so subsystems may
1155 * still be dying after the previous unmount. Let's drain the
1156 * dying subsystems. We just need to ensure that the ones
1157 * unmounted previously finish dying and don't care about new ones
1158 * starting. Testing ref liveliness is good enough.
1159 */
1160 for_each_subsys(ss, i) {
1161 if (!(ctx->subsys_mask & (1 << i)) ||
1162 ss->root == &cgrp_dfl_root)
1163 continue;
1164
1165 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1166 return 1; /* restart */
1167 cgroup_put(&ss->root->cgrp);
1168 }
1169
1170 for_each_root(root) {
1171 bool name_match = false;
1172
1173 if (root == &cgrp_dfl_root)
1174 continue;
1175
1176 /*
1177 * If we asked for a name then it must match. Also, if
1178 * name matches but sybsys_mask doesn't, we should fail.
1179 * Remember whether name matched.
1180 */
1181 if (ctx->name) {
1182 if (strcmp(ctx->name, root->name))
1183 continue;
1184 name_match = true;
1185 }
1186
1187 /*
1188 * If we asked for subsystems (or explicitly for no
1189 * subsystems) then they must match.
1190 */
1191 if ((ctx->subsys_mask || ctx->none) &&
1192 (ctx->subsys_mask != root->subsys_mask)) {
1193 if (!name_match)
1194 continue;
1195 return -EBUSY;
1196 }
1197
1198 if (root->flags ^ ctx->flags)
1199 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1200
1201 ctx->root = root;
1202 return 0;
1203 }
1204
1205 /*
1206 * No such thing, create a new one. name= matching without subsys
1207 * specification is allowed for already existing hierarchies but we
1208 * can't create new one without subsys specification.
1209 */
1210 if (!ctx->subsys_mask && !ctx->none)
1211 return invalfc(fc, "No subsys list or none specified");
1212
1213 /* Hierarchies may only be created in the initial cgroup namespace. */
1214 if (ctx->ns != &init_cgroup_ns)
1215 return -EPERM;
1216
1217 root = kzalloc(sizeof(*root), GFP_KERNEL);
1218 if (!root)
1219 return -ENOMEM;
1220
1221 ctx->root = root;
1222 init_cgroup_root(ctx);
1223
1224 ret = cgroup_setup_root(root, ctx->subsys_mask);
1225 if (ret)
1226 cgroup_free_root(root);
1227 return ret;
1228 }
1229
cgroup1_get_tree(struct fs_context * fc)1230 int cgroup1_get_tree(struct fs_context *fc)
1231 {
1232 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1233 int ret;
1234
1235 /* Check if the caller has permission to mount. */
1236 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1237 return -EPERM;
1238
1239 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1240
1241 ret = cgroup1_root_to_use(fc);
1242 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1243 ret = 1; /* restart */
1244
1245 mutex_unlock(&cgroup_mutex);
1246
1247 if (!ret)
1248 ret = cgroup_do_get_tree(fc);
1249
1250 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1251 fc_drop_locked(fc);
1252 ret = 1;
1253 }
1254
1255 if (unlikely(ret > 0)) {
1256 msleep(10);
1257 return restart_syscall();
1258 }
1259 return ret;
1260 }
1261
cgroup1_wq_init(void)1262 static int __init cgroup1_wq_init(void)
1263 {
1264 /*
1265 * Used to destroy pidlists and separate to serve as flush domain.
1266 * Cap @max_active to 1 too.
1267 */
1268 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1269 0, 1);
1270 BUG_ON(!cgroup_pidlist_destroy_wq);
1271 return 0;
1272 }
1273 core_initcall(cgroup1_wq_init);
1274
cgroup_no_v1(char * str)1275 static int __init cgroup_no_v1(char *str)
1276 {
1277 struct cgroup_subsys *ss;
1278 char *token;
1279 int i;
1280
1281 while ((token = strsep(&str, ",")) != NULL) {
1282 if (!*token)
1283 continue;
1284
1285 if (!strcmp(token, "all")) {
1286 cgroup_no_v1_mask = U16_MAX;
1287 continue;
1288 }
1289
1290 if (!strcmp(token, "named")) {
1291 cgroup_no_v1_named = true;
1292 continue;
1293 }
1294
1295 for_each_subsys(ss, i) {
1296 if (strcmp(token, ss->name) &&
1297 strcmp(token, ss->legacy_name))
1298 continue;
1299
1300 cgroup_no_v1_mask |= 1 << i;
1301 }
1302 }
1303 return 1;
1304 }
1305 __setup("cgroup_no_v1=", cgroup_no_v1);
1306