• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
rdt_last_cmd_clear(void)56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
rdt_last_cmd_puts(const char * s)62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
rdt_last_cmd_printf(const char * fmt,...)68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
closids_supported(void)96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
closid_init(void)101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
closid_alloc(void)117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
closid_free(int closid)129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
closid_allocated(unsigned int closid)141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
rdtgroup_mode_by_closid(int closid)155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
rdtgroup_mode_str(enum rdtgrp_mode mode)180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
rdtgroup_seqfile_show(struct seq_file * m,void * arg)222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
is_cpu_list(struct kernfs_open_file * of)254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
update_cpu_closid_rmid(void * info)300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in(current);
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 /**
511  * rdtgroup_remove - the helper to remove resource group safely
512  * @rdtgrp: resource group to remove
513  *
514  * On resource group creation via a mkdir, an extra kernfs_node reference is
515  * taken to ensure that the rdtgroup structure remains accessible for the
516  * rdtgroup_kn_unlock() calls where it is removed.
517  *
518  * Drop the extra reference here, then free the rdtgroup structure.
519  *
520  * Return: void
521  */
rdtgroup_remove(struct rdtgroup * rdtgrp)522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 	kernfs_put(rdtgrp->kn);
525 	kfree(rdtgrp);
526 }
527 
_update_task_closid_rmid(void * task)528 static void _update_task_closid_rmid(void *task)
529 {
530 	/*
531 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 	 * Otherwise, the MSR is updated when the task is scheduled in.
533 	 */
534 	if (task == current)
535 		resctrl_sched_in(task);
536 }
537 
update_task_closid_rmid(struct task_struct * t)538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 	else
543 		_update_task_closid_rmid(t);
544 }
545 
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 				struct rdtgroup *rdtgrp)
548 {
549 	/* If the task is already in rdtgrp, no need to move the task. */
550 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
551 	     tsk->rmid == rdtgrp->mon.rmid) ||
552 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
553 	     tsk->closid == rdtgrp->mon.parent->closid))
554 		return 0;
555 
556 	/*
557 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
558 	 * updated by them.
559 	 *
560 	 * For ctrl_mon groups, move both closid and rmid.
561 	 * For monitor groups, can move the tasks only from
562 	 * their parent CTRL group.
563 	 */
564 
565 	if (rdtgrp->type == RDTCTRL_GROUP) {
566 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
567 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
568 	} else if (rdtgrp->type == RDTMON_GROUP) {
569 		if (rdtgrp->mon.parent->closid == tsk->closid) {
570 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 		} else {
572 			rdt_last_cmd_puts("Can't move task to different control group\n");
573 			return -EINVAL;
574 		}
575 	}
576 
577 	/*
578 	 * Ensure the task's closid and rmid are written before determining if
579 	 * the task is current that will decide if it will be interrupted.
580 	 * This pairs with the full barrier between the rq->curr update and
581 	 * resctrl_sched_in() during context switch.
582 	 */
583 	smp_mb();
584 
585 	/*
586 	 * By now, the task's closid and rmid are set. If the task is current
587 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
588 	 * group go into effect. If the task is not current, the MSR will be
589 	 * updated when the task is scheduled in.
590 	 */
591 	update_task_closid_rmid(tsk);
592 
593 	return 0;
594 }
595 
is_closid_match(struct task_struct * t,struct rdtgroup * r)596 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
597 {
598 	return (rdt_alloc_capable &&
599 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
600 }
601 
is_rmid_match(struct task_struct * t,struct rdtgroup * r)602 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
603 {
604 	return (rdt_mon_capable &&
605 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
606 }
607 
608 /**
609  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
610  * @r: Resource group
611  *
612  * Return: 1 if tasks have been assigned to @r, 0 otherwise
613  */
rdtgroup_tasks_assigned(struct rdtgroup * r)614 int rdtgroup_tasks_assigned(struct rdtgroup *r)
615 {
616 	struct task_struct *p, *t;
617 	int ret = 0;
618 
619 	lockdep_assert_held(&rdtgroup_mutex);
620 
621 	rcu_read_lock();
622 	for_each_process_thread(p, t) {
623 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 	rcu_read_unlock();
629 
630 	return ret;
631 }
632 
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)633 static int rdtgroup_task_write_permission(struct task_struct *task,
634 					  struct kernfs_open_file *of)
635 {
636 	const struct cred *tcred = get_task_cred(task);
637 	const struct cred *cred = current_cred();
638 	int ret = 0;
639 
640 	/*
641 	 * Even if we're attaching all tasks in the thread group, we only
642 	 * need to check permissions on one of them.
643 	 */
644 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
645 	    !uid_eq(cred->euid, tcred->uid) &&
646 	    !uid_eq(cred->euid, tcred->suid)) {
647 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
648 		ret = -EPERM;
649 	}
650 
651 	put_cred(tcred);
652 	return ret;
653 }
654 
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)655 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
656 			      struct kernfs_open_file *of)
657 {
658 	struct task_struct *tsk;
659 	int ret;
660 
661 	rcu_read_lock();
662 	if (pid) {
663 		tsk = find_task_by_vpid(pid);
664 		if (!tsk) {
665 			rcu_read_unlock();
666 			rdt_last_cmd_printf("No task %d\n", pid);
667 			return -ESRCH;
668 		}
669 	} else {
670 		tsk = current;
671 	}
672 
673 	get_task_struct(tsk);
674 	rcu_read_unlock();
675 
676 	ret = rdtgroup_task_write_permission(tsk, of);
677 	if (!ret)
678 		ret = __rdtgroup_move_task(tsk, rdtgrp);
679 
680 	put_task_struct(tsk);
681 	return ret;
682 }
683 
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)684 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
685 				    char *buf, size_t nbytes, loff_t off)
686 {
687 	struct rdtgroup *rdtgrp;
688 	int ret = 0;
689 	pid_t pid;
690 
691 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
692 		return -EINVAL;
693 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
694 	if (!rdtgrp) {
695 		rdtgroup_kn_unlock(of->kn);
696 		return -ENOENT;
697 	}
698 	rdt_last_cmd_clear();
699 
700 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
701 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
702 		ret = -EINVAL;
703 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
704 		goto unlock;
705 	}
706 
707 	ret = rdtgroup_move_task(pid, rdtgrp, of);
708 
709 unlock:
710 	rdtgroup_kn_unlock(of->kn);
711 
712 	return ret ?: nbytes;
713 }
714 
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)715 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
716 {
717 	struct task_struct *p, *t;
718 	pid_t pid;
719 
720 	rcu_read_lock();
721 	for_each_process_thread(p, t) {
722 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
723 			pid = task_pid_vnr(t);
724 			if (pid)
725 				seq_printf(s, "%d\n", pid);
726 		}
727 	}
728 	rcu_read_unlock();
729 }
730 
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)731 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
732 			       struct seq_file *s, void *v)
733 {
734 	struct rdtgroup *rdtgrp;
735 	int ret = 0;
736 
737 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
738 	if (rdtgrp)
739 		show_rdt_tasks(rdtgrp, s);
740 	else
741 		ret = -ENOENT;
742 	rdtgroup_kn_unlock(of->kn);
743 
744 	return ret;
745 }
746 
747 #ifdef CONFIG_PROC_CPU_RESCTRL
748 
749 /*
750  * A task can only be part of one resctrl control group and of one monitor
751  * group which is associated to that control group.
752  *
753  * 1)   res:
754  *      mon:
755  *
756  *    resctrl is not available.
757  *
758  * 2)   res:/
759  *      mon:
760  *
761  *    Task is part of the root resctrl control group, and it is not associated
762  *    to any monitor group.
763  *
764  * 3)  res:/
765  *     mon:mon0
766  *
767  *    Task is part of the root resctrl control group and monitor group mon0.
768  *
769  * 4)  res:group0
770  *     mon:
771  *
772  *    Task is part of resctrl control group group0, and it is not associated
773  *    to any monitor group.
774  *
775  * 5) res:group0
776  *    mon:mon1
777  *
778  *    Task is part of resctrl control group group0 and monitor group mon1.
779  */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)780 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
781 		      struct pid *pid, struct task_struct *tsk)
782 {
783 	struct rdtgroup *rdtg;
784 	int ret = 0;
785 
786 	mutex_lock(&rdtgroup_mutex);
787 
788 	/* Return empty if resctrl has not been mounted. */
789 	if (!static_branch_unlikely(&rdt_enable_key)) {
790 		seq_puts(s, "res:\nmon:\n");
791 		goto unlock;
792 	}
793 
794 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
795 		struct rdtgroup *crg;
796 
797 		/*
798 		 * Task information is only relevant for shareable
799 		 * and exclusive groups.
800 		 */
801 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
802 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
803 			continue;
804 
805 		if (rdtg->closid != tsk->closid)
806 			continue;
807 
808 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
809 			   rdtg->kn->name);
810 		seq_puts(s, "mon:");
811 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
812 				    mon.crdtgrp_list) {
813 			if (tsk->rmid != crg->mon.rmid)
814 				continue;
815 			seq_printf(s, "%s", crg->kn->name);
816 			break;
817 		}
818 		seq_putc(s, '\n');
819 		goto unlock;
820 	}
821 	/*
822 	 * The above search should succeed. Otherwise return
823 	 * with an error.
824 	 */
825 	ret = -ENOENT;
826 unlock:
827 	mutex_unlock(&rdtgroup_mutex);
828 
829 	return ret;
830 }
831 #endif
832 
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)833 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
834 				    struct seq_file *seq, void *v)
835 {
836 	int len;
837 
838 	mutex_lock(&rdtgroup_mutex);
839 	len = seq_buf_used(&last_cmd_status);
840 	if (len)
841 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
842 	else
843 		seq_puts(seq, "ok\n");
844 	mutex_unlock(&rdtgroup_mutex);
845 	return 0;
846 }
847 
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)848 static int rdt_num_closids_show(struct kernfs_open_file *of,
849 				struct seq_file *seq, void *v)
850 {
851 	struct rdt_resource *r = of->kn->parent->priv;
852 
853 	seq_printf(seq, "%d\n", r->num_closid);
854 	return 0;
855 }
856 
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)857 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
858 			     struct seq_file *seq, void *v)
859 {
860 	struct rdt_resource *r = of->kn->parent->priv;
861 
862 	seq_printf(seq, "%x\n", r->default_ctrl);
863 	return 0;
864 }
865 
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)866 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
867 			     struct seq_file *seq, void *v)
868 {
869 	struct rdt_resource *r = of->kn->parent->priv;
870 
871 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
872 	return 0;
873 }
874 
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)875 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
876 				   struct seq_file *seq, void *v)
877 {
878 	struct rdt_resource *r = of->kn->parent->priv;
879 
880 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
881 	return 0;
882 }
883 
884 /**
885  * rdt_bit_usage_show - Display current usage of resources
886  *
887  * A domain is a shared resource that can now be allocated differently. Here
888  * we display the current regions of the domain as an annotated bitmask.
889  * For each domain of this resource its allocation bitmask
890  * is annotated as below to indicate the current usage of the corresponding bit:
891  *   0 - currently unused
892  *   X - currently available for sharing and used by software and hardware
893  *   H - currently used by hardware only but available for software use
894  *   S - currently used and shareable by software only
895  *   E - currently used exclusively by one resource group
896  *   P - currently pseudo-locked by one resource group
897  */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)898 static int rdt_bit_usage_show(struct kernfs_open_file *of,
899 			      struct seq_file *seq, void *v)
900 {
901 	struct rdt_resource *r = of->kn->parent->priv;
902 	/*
903 	 * Use unsigned long even though only 32 bits are used to ensure
904 	 * test_bit() is used safely.
905 	 */
906 	unsigned long sw_shareable = 0, hw_shareable = 0;
907 	unsigned long exclusive = 0, pseudo_locked = 0;
908 	struct rdt_domain *dom;
909 	int i, hwb, swb, excl, psl;
910 	enum rdtgrp_mode mode;
911 	bool sep = false;
912 	u32 *ctrl;
913 
914 	mutex_lock(&rdtgroup_mutex);
915 	hw_shareable = r->cache.shareable_bits;
916 	list_for_each_entry(dom, &r->domains, list) {
917 		if (sep)
918 			seq_putc(seq, ';');
919 		ctrl = dom->ctrl_val;
920 		sw_shareable = 0;
921 		exclusive = 0;
922 		seq_printf(seq, "%d=", dom->id);
923 		for (i = 0; i < closids_supported(); i++, ctrl++) {
924 			if (!closid_allocated(i))
925 				continue;
926 			mode = rdtgroup_mode_by_closid(i);
927 			switch (mode) {
928 			case RDT_MODE_SHAREABLE:
929 				sw_shareable |= *ctrl;
930 				break;
931 			case RDT_MODE_EXCLUSIVE:
932 				exclusive |= *ctrl;
933 				break;
934 			case RDT_MODE_PSEUDO_LOCKSETUP:
935 			/*
936 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
937 			 * here but not included since the CBM
938 			 * associated with this CLOSID in this mode
939 			 * is not initialized and no task or cpu can be
940 			 * assigned this CLOSID.
941 			 */
942 				break;
943 			case RDT_MODE_PSEUDO_LOCKED:
944 			case RDT_NUM_MODES:
945 				WARN(1,
946 				     "invalid mode for closid %d\n", i);
947 				break;
948 			}
949 		}
950 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
951 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
952 			hwb = test_bit(i, &hw_shareable);
953 			swb = test_bit(i, &sw_shareable);
954 			excl = test_bit(i, &exclusive);
955 			psl = test_bit(i, &pseudo_locked);
956 			if (hwb && swb)
957 				seq_putc(seq, 'X');
958 			else if (hwb && !swb)
959 				seq_putc(seq, 'H');
960 			else if (!hwb && swb)
961 				seq_putc(seq, 'S');
962 			else if (excl)
963 				seq_putc(seq, 'E');
964 			else if (psl)
965 				seq_putc(seq, 'P');
966 			else /* Unused bits remain */
967 				seq_putc(seq, '0');
968 		}
969 		sep = true;
970 	}
971 	seq_putc(seq, '\n');
972 	mutex_unlock(&rdtgroup_mutex);
973 	return 0;
974 }
975 
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)976 static int rdt_min_bw_show(struct kernfs_open_file *of,
977 			     struct seq_file *seq, void *v)
978 {
979 	struct rdt_resource *r = of->kn->parent->priv;
980 
981 	seq_printf(seq, "%u\n", r->membw.min_bw);
982 	return 0;
983 }
984 
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)985 static int rdt_num_rmids_show(struct kernfs_open_file *of,
986 			      struct seq_file *seq, void *v)
987 {
988 	struct rdt_resource *r = of->kn->parent->priv;
989 
990 	seq_printf(seq, "%d\n", r->num_rmid);
991 
992 	return 0;
993 }
994 
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)995 static int rdt_mon_features_show(struct kernfs_open_file *of,
996 				 struct seq_file *seq, void *v)
997 {
998 	struct rdt_resource *r = of->kn->parent->priv;
999 	struct mon_evt *mevt;
1000 
1001 	list_for_each_entry(mevt, &r->evt_list, list)
1002 		seq_printf(seq, "%s\n", mevt->name);
1003 
1004 	return 0;
1005 }
1006 
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1007 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1008 			     struct seq_file *seq, void *v)
1009 {
1010 	struct rdt_resource *r = of->kn->parent->priv;
1011 
1012 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1013 	return 0;
1014 }
1015 
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1016 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1017 			     struct seq_file *seq, void *v)
1018 {
1019 	struct rdt_resource *r = of->kn->parent->priv;
1020 
1021 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1022 	return 0;
1023 }
1024 
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1025 static int max_threshold_occ_show(struct kernfs_open_file *of,
1026 				  struct seq_file *seq, void *v)
1027 {
1028 	struct rdt_resource *r = of->kn->parent->priv;
1029 
1030 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1031 
1032 	return 0;
1033 }
1034 
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1035 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1036 					 struct seq_file *seq, void *v)
1037 {
1038 	struct rdt_resource *r = of->kn->parent->priv;
1039 
1040 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1041 		seq_puts(seq, "per-thread\n");
1042 	else
1043 		seq_puts(seq, "max\n");
1044 
1045 	return 0;
1046 }
1047 
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1048 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1049 				       char *buf, size_t nbytes, loff_t off)
1050 {
1051 	struct rdt_resource *r = of->kn->parent->priv;
1052 	unsigned int bytes;
1053 	int ret;
1054 
1055 	ret = kstrtouint(buf, 0, &bytes);
1056 	if (ret)
1057 		return ret;
1058 
1059 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1060 		return -EINVAL;
1061 
1062 	resctrl_cqm_threshold = bytes / r->mon_scale;
1063 
1064 	return nbytes;
1065 }
1066 
1067 /*
1068  * rdtgroup_mode_show - Display mode of this resource group
1069  */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1070 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1071 			      struct seq_file *s, void *v)
1072 {
1073 	struct rdtgroup *rdtgrp;
1074 
1075 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1076 	if (!rdtgrp) {
1077 		rdtgroup_kn_unlock(of->kn);
1078 		return -ENOENT;
1079 	}
1080 
1081 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1082 
1083 	rdtgroup_kn_unlock(of->kn);
1084 	return 0;
1085 }
1086 
1087 /**
1088  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1089  * @r: RDT resource to which RDT domain @d belongs
1090  * @d: Cache instance for which a CDP peer is requested
1091  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1092  *         Used to return the result.
1093  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1094  *         Used to return the result.
1095  *
1096  * RDT resources are managed independently and by extension the RDT domains
1097  * (RDT resource instances) are managed independently also. The Code and
1098  * Data Prioritization (CDP) RDT resources, while managed independently,
1099  * could refer to the same underlying hardware. For example,
1100  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1101  *
1102  * When provided with an RDT resource @r and an instance of that RDT
1103  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1104  * resource and the exact instance that shares the same hardware.
1105  *
1106  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1107  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1108  *         and @d_cdp will point to the peer RDT domain.
1109  */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1110 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1111 			    struct rdt_resource **r_cdp,
1112 			    struct rdt_domain **d_cdp)
1113 {
1114 	struct rdt_resource *_r_cdp = NULL;
1115 	struct rdt_domain *_d_cdp = NULL;
1116 	int ret = 0;
1117 
1118 	switch (r->rid) {
1119 	case RDT_RESOURCE_L3DATA:
1120 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1121 		break;
1122 	case RDT_RESOURCE_L3CODE:
1123 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1124 		break;
1125 	case RDT_RESOURCE_L2DATA:
1126 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1127 		break;
1128 	case RDT_RESOURCE_L2CODE:
1129 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1130 		break;
1131 	default:
1132 		ret = -ENOENT;
1133 		goto out;
1134 	}
1135 
1136 	/*
1137 	 * When a new CPU comes online and CDP is enabled then the new
1138 	 * RDT domains (if any) associated with both CDP RDT resources
1139 	 * are added in the same CPU online routine while the
1140 	 * rdtgroup_mutex is held. It should thus not happen for one
1141 	 * RDT domain to exist and be associated with its RDT CDP
1142 	 * resource but there is no RDT domain associated with the
1143 	 * peer RDT CDP resource. Hence the WARN.
1144 	 */
1145 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1146 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1147 		_r_cdp = NULL;
1148 		_d_cdp = NULL;
1149 		ret = -EINVAL;
1150 	}
1151 
1152 out:
1153 	*r_cdp = _r_cdp;
1154 	*d_cdp = _d_cdp;
1155 
1156 	return ret;
1157 }
1158 
1159 /**
1160  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1161  * @r: Resource to which domain instance @d belongs.
1162  * @d: The domain instance for which @closid is being tested.
1163  * @cbm: Capacity bitmask being tested.
1164  * @closid: Intended closid for @cbm.
1165  * @exclusive: Only check if overlaps with exclusive resource groups
1166  *
1167  * Checks if provided @cbm intended to be used for @closid on domain
1168  * @d overlaps with any other closids or other hardware usage associated
1169  * with this domain. If @exclusive is true then only overlaps with
1170  * resource groups in exclusive mode will be considered. If @exclusive
1171  * is false then overlaps with any resource group or hardware entities
1172  * will be considered.
1173  *
1174  * @cbm is unsigned long, even if only 32 bits are used, to make the
1175  * bitmap functions work correctly.
1176  *
1177  * Return: false if CBM does not overlap, true if it does.
1178  */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1179 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1180 				    unsigned long cbm, int closid, bool exclusive)
1181 {
1182 	enum rdtgrp_mode mode;
1183 	unsigned long ctrl_b;
1184 	u32 *ctrl;
1185 	int i;
1186 
1187 	/* Check for any overlap with regions used by hardware directly */
1188 	if (!exclusive) {
1189 		ctrl_b = r->cache.shareable_bits;
1190 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1191 			return true;
1192 	}
1193 
1194 	/* Check for overlap with other resource groups */
1195 	ctrl = d->ctrl_val;
1196 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1197 		ctrl_b = *ctrl;
1198 		mode = rdtgroup_mode_by_closid(i);
1199 		if (closid_allocated(i) && i != closid &&
1200 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1201 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1202 				if (exclusive) {
1203 					if (mode == RDT_MODE_EXCLUSIVE)
1204 						return true;
1205 					continue;
1206 				}
1207 				return true;
1208 			}
1209 		}
1210 	}
1211 
1212 	return false;
1213 }
1214 
1215 /**
1216  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1217  * @r: Resource to which domain instance @d belongs.
1218  * @d: The domain instance for which @closid is being tested.
1219  * @cbm: Capacity bitmask being tested.
1220  * @closid: Intended closid for @cbm.
1221  * @exclusive: Only check if overlaps with exclusive resource groups
1222  *
1223  * Resources that can be allocated using a CBM can use the CBM to control
1224  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1225  * for overlap. Overlap test is not limited to the specific resource for
1226  * which the CBM is intended though - when dealing with CDP resources that
1227  * share the underlying hardware the overlap check should be performed on
1228  * the CDP resource sharing the hardware also.
1229  *
1230  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1231  * overlap test.
1232  *
1233  * Return: true if CBM overlap detected, false if there is no overlap
1234  */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1235 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1236 			   unsigned long cbm, int closid, bool exclusive)
1237 {
1238 	struct rdt_resource *r_cdp;
1239 	struct rdt_domain *d_cdp;
1240 
1241 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1242 		return true;
1243 
1244 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1245 		return false;
1246 
1247 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1248 }
1249 
1250 /**
1251  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1252  *
1253  * An exclusive resource group implies that there should be no sharing of
1254  * its allocated resources. At the time this group is considered to be
1255  * exclusive this test can determine if its current schemata supports this
1256  * setting by testing for overlap with all other resource groups.
1257  *
1258  * Return: true if resource group can be exclusive, false if there is overlap
1259  * with allocations of other resource groups and thus this resource group
1260  * cannot be exclusive.
1261  */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1262 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1263 {
1264 	int closid = rdtgrp->closid;
1265 	struct rdt_resource *r;
1266 	bool has_cache = false;
1267 	struct rdt_domain *d;
1268 
1269 	for_each_alloc_enabled_rdt_resource(r) {
1270 		if (r->rid == RDT_RESOURCE_MBA)
1271 			continue;
1272 		has_cache = true;
1273 		list_for_each_entry(d, &r->domains, list) {
1274 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1275 						  rdtgrp->closid, false)) {
1276 				rdt_last_cmd_puts("Schemata overlaps\n");
1277 				return false;
1278 			}
1279 		}
1280 	}
1281 
1282 	if (!has_cache) {
1283 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1284 		return false;
1285 	}
1286 
1287 	return true;
1288 }
1289 
1290 /**
1291  * rdtgroup_mode_write - Modify the resource group's mode
1292  *
1293  */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1294 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1295 				   char *buf, size_t nbytes, loff_t off)
1296 {
1297 	struct rdtgroup *rdtgrp;
1298 	enum rdtgrp_mode mode;
1299 	int ret = 0;
1300 
1301 	/* Valid input requires a trailing newline */
1302 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1303 		return -EINVAL;
1304 	buf[nbytes - 1] = '\0';
1305 
1306 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1307 	if (!rdtgrp) {
1308 		rdtgroup_kn_unlock(of->kn);
1309 		return -ENOENT;
1310 	}
1311 
1312 	rdt_last_cmd_clear();
1313 
1314 	mode = rdtgrp->mode;
1315 
1316 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1317 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1318 	    (!strcmp(buf, "pseudo-locksetup") &&
1319 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1320 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1321 		goto out;
1322 
1323 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1324 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1325 		ret = -EINVAL;
1326 		goto out;
1327 	}
1328 
1329 	if (!strcmp(buf, "shareable")) {
1330 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1331 			ret = rdtgroup_locksetup_exit(rdtgrp);
1332 			if (ret)
1333 				goto out;
1334 		}
1335 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1336 	} else if (!strcmp(buf, "exclusive")) {
1337 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1338 			ret = -EINVAL;
1339 			goto out;
1340 		}
1341 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1342 			ret = rdtgroup_locksetup_exit(rdtgrp);
1343 			if (ret)
1344 				goto out;
1345 		}
1346 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1347 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1348 		ret = rdtgroup_locksetup_enter(rdtgrp);
1349 		if (ret)
1350 			goto out;
1351 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1352 	} else {
1353 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1354 		ret = -EINVAL;
1355 	}
1356 
1357 out:
1358 	rdtgroup_kn_unlock(of->kn);
1359 	return ret ?: nbytes;
1360 }
1361 
1362 /**
1363  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1364  * @r: RDT resource to which @d belongs.
1365  * @d: RDT domain instance.
1366  * @cbm: bitmask for which the size should be computed.
1367  *
1368  * The bitmask provided associated with the RDT domain instance @d will be
1369  * translated into how many bytes it represents. The size in bytes is
1370  * computed by first dividing the total cache size by the CBM length to
1371  * determine how many bytes each bit in the bitmask represents. The result
1372  * is multiplied with the number of bits set in the bitmask.
1373  *
1374  * @cbm is unsigned long, even if only 32 bits are used to make the
1375  * bitmap functions work correctly.
1376  */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1377 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1378 				  struct rdt_domain *d, unsigned long cbm)
1379 {
1380 	struct cpu_cacheinfo *ci;
1381 	unsigned int size = 0;
1382 	int num_b, i;
1383 
1384 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1385 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1386 	for (i = 0; i < ci->num_leaves; i++) {
1387 		if (ci->info_list[i].level == r->cache_level) {
1388 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1389 			break;
1390 		}
1391 	}
1392 
1393 	return size;
1394 }
1395 
1396 /**
1397  * rdtgroup_size_show - Display size in bytes of allocated regions
1398  *
1399  * The "size" file mirrors the layout of the "schemata" file, printing the
1400  * size in bytes of each region instead of the capacity bitmask.
1401  *
1402  */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1403 static int rdtgroup_size_show(struct kernfs_open_file *of,
1404 			      struct seq_file *s, void *v)
1405 {
1406 	struct rdtgroup *rdtgrp;
1407 	struct rdt_resource *r;
1408 	struct rdt_domain *d;
1409 	unsigned int size;
1410 	int ret = 0;
1411 	bool sep;
1412 	u32 ctrl;
1413 
1414 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1415 	if (!rdtgrp) {
1416 		rdtgroup_kn_unlock(of->kn);
1417 		return -ENOENT;
1418 	}
1419 
1420 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1421 		if (!rdtgrp->plr->d) {
1422 			rdt_last_cmd_clear();
1423 			rdt_last_cmd_puts("Cache domain offline\n");
1424 			ret = -ENODEV;
1425 		} else {
1426 			seq_printf(s, "%*s:", max_name_width,
1427 				   rdtgrp->plr->r->name);
1428 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1429 						    rdtgrp->plr->d,
1430 						    rdtgrp->plr->cbm);
1431 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1432 		}
1433 		goto out;
1434 	}
1435 
1436 	for_each_alloc_enabled_rdt_resource(r) {
1437 		sep = false;
1438 		seq_printf(s, "%*s:", max_name_width, r->name);
1439 		list_for_each_entry(d, &r->domains, list) {
1440 			if (sep)
1441 				seq_putc(s, ';');
1442 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1443 				size = 0;
1444 			} else {
1445 				ctrl = (!is_mba_sc(r) ?
1446 						d->ctrl_val[rdtgrp->closid] :
1447 						d->mbps_val[rdtgrp->closid]);
1448 				if (r->rid == RDT_RESOURCE_MBA)
1449 					size = ctrl;
1450 				else
1451 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1452 			}
1453 			seq_printf(s, "%d=%u", d->id, size);
1454 			sep = true;
1455 		}
1456 		seq_putc(s, '\n');
1457 	}
1458 
1459 out:
1460 	rdtgroup_kn_unlock(of->kn);
1461 
1462 	return ret;
1463 }
1464 
1465 /* rdtgroup information files for one cache resource. */
1466 static struct rftype res_common_files[] = {
1467 	{
1468 		.name		= "last_cmd_status",
1469 		.mode		= 0444,
1470 		.kf_ops		= &rdtgroup_kf_single_ops,
1471 		.seq_show	= rdt_last_cmd_status_show,
1472 		.fflags		= RF_TOP_INFO,
1473 	},
1474 	{
1475 		.name		= "num_closids",
1476 		.mode		= 0444,
1477 		.kf_ops		= &rdtgroup_kf_single_ops,
1478 		.seq_show	= rdt_num_closids_show,
1479 		.fflags		= RF_CTRL_INFO,
1480 	},
1481 	{
1482 		.name		= "mon_features",
1483 		.mode		= 0444,
1484 		.kf_ops		= &rdtgroup_kf_single_ops,
1485 		.seq_show	= rdt_mon_features_show,
1486 		.fflags		= RF_MON_INFO,
1487 	},
1488 	{
1489 		.name		= "num_rmids",
1490 		.mode		= 0444,
1491 		.kf_ops		= &rdtgroup_kf_single_ops,
1492 		.seq_show	= rdt_num_rmids_show,
1493 		.fflags		= RF_MON_INFO,
1494 	},
1495 	{
1496 		.name		= "cbm_mask",
1497 		.mode		= 0444,
1498 		.kf_ops		= &rdtgroup_kf_single_ops,
1499 		.seq_show	= rdt_default_ctrl_show,
1500 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1501 	},
1502 	{
1503 		.name		= "min_cbm_bits",
1504 		.mode		= 0444,
1505 		.kf_ops		= &rdtgroup_kf_single_ops,
1506 		.seq_show	= rdt_min_cbm_bits_show,
1507 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1508 	},
1509 	{
1510 		.name		= "shareable_bits",
1511 		.mode		= 0444,
1512 		.kf_ops		= &rdtgroup_kf_single_ops,
1513 		.seq_show	= rdt_shareable_bits_show,
1514 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1515 	},
1516 	{
1517 		.name		= "bit_usage",
1518 		.mode		= 0444,
1519 		.kf_ops		= &rdtgroup_kf_single_ops,
1520 		.seq_show	= rdt_bit_usage_show,
1521 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1522 	},
1523 	{
1524 		.name		= "min_bandwidth",
1525 		.mode		= 0444,
1526 		.kf_ops		= &rdtgroup_kf_single_ops,
1527 		.seq_show	= rdt_min_bw_show,
1528 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1529 	},
1530 	{
1531 		.name		= "bandwidth_gran",
1532 		.mode		= 0444,
1533 		.kf_ops		= &rdtgroup_kf_single_ops,
1534 		.seq_show	= rdt_bw_gran_show,
1535 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1536 	},
1537 	{
1538 		.name		= "delay_linear",
1539 		.mode		= 0444,
1540 		.kf_ops		= &rdtgroup_kf_single_ops,
1541 		.seq_show	= rdt_delay_linear_show,
1542 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1543 	},
1544 	/*
1545 	 * Platform specific which (if any) capabilities are provided by
1546 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1547 	 * discovery.
1548 	 */
1549 	{
1550 		.name		= "thread_throttle_mode",
1551 		.mode		= 0444,
1552 		.kf_ops		= &rdtgroup_kf_single_ops,
1553 		.seq_show	= rdt_thread_throttle_mode_show,
1554 	},
1555 	{
1556 		.name		= "max_threshold_occupancy",
1557 		.mode		= 0644,
1558 		.kf_ops		= &rdtgroup_kf_single_ops,
1559 		.write		= max_threshold_occ_write,
1560 		.seq_show	= max_threshold_occ_show,
1561 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1562 	},
1563 	{
1564 		.name		= "cpus",
1565 		.mode		= 0644,
1566 		.kf_ops		= &rdtgroup_kf_single_ops,
1567 		.write		= rdtgroup_cpus_write,
1568 		.seq_show	= rdtgroup_cpus_show,
1569 		.fflags		= RFTYPE_BASE,
1570 	},
1571 	{
1572 		.name		= "cpus_list",
1573 		.mode		= 0644,
1574 		.kf_ops		= &rdtgroup_kf_single_ops,
1575 		.write		= rdtgroup_cpus_write,
1576 		.seq_show	= rdtgroup_cpus_show,
1577 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1578 		.fflags		= RFTYPE_BASE,
1579 	},
1580 	{
1581 		.name		= "tasks",
1582 		.mode		= 0644,
1583 		.kf_ops		= &rdtgroup_kf_single_ops,
1584 		.write		= rdtgroup_tasks_write,
1585 		.seq_show	= rdtgroup_tasks_show,
1586 		.fflags		= RFTYPE_BASE,
1587 	},
1588 	{
1589 		.name		= "schemata",
1590 		.mode		= 0644,
1591 		.kf_ops		= &rdtgroup_kf_single_ops,
1592 		.write		= rdtgroup_schemata_write,
1593 		.seq_show	= rdtgroup_schemata_show,
1594 		.fflags		= RF_CTRL_BASE,
1595 	},
1596 	{
1597 		.name		= "mode",
1598 		.mode		= 0644,
1599 		.kf_ops		= &rdtgroup_kf_single_ops,
1600 		.write		= rdtgroup_mode_write,
1601 		.seq_show	= rdtgroup_mode_show,
1602 		.fflags		= RF_CTRL_BASE,
1603 	},
1604 	{
1605 		.name		= "size",
1606 		.mode		= 0444,
1607 		.kf_ops		= &rdtgroup_kf_single_ops,
1608 		.seq_show	= rdtgroup_size_show,
1609 		.fflags		= RF_CTRL_BASE,
1610 	},
1611 
1612 };
1613 
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1614 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1615 {
1616 	struct rftype *rfts, *rft;
1617 	int ret, len;
1618 
1619 	rfts = res_common_files;
1620 	len = ARRAY_SIZE(res_common_files);
1621 
1622 	lockdep_assert_held(&rdtgroup_mutex);
1623 
1624 	for (rft = rfts; rft < rfts + len; rft++) {
1625 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1626 			ret = rdtgroup_add_file(kn, rft);
1627 			if (ret)
1628 				goto error;
1629 		}
1630 	}
1631 
1632 	return 0;
1633 error:
1634 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1635 	while (--rft >= rfts) {
1636 		if ((fflags & rft->fflags) == rft->fflags)
1637 			kernfs_remove_by_name(kn, rft->name);
1638 	}
1639 	return ret;
1640 }
1641 
rdtgroup_get_rftype_by_name(const char * name)1642 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1643 {
1644 	struct rftype *rfts, *rft;
1645 	int len;
1646 
1647 	rfts = res_common_files;
1648 	len = ARRAY_SIZE(res_common_files);
1649 
1650 	for (rft = rfts; rft < rfts + len; rft++) {
1651 		if (!strcmp(rft->name, name))
1652 			return rft;
1653 	}
1654 
1655 	return NULL;
1656 }
1657 
thread_throttle_mode_init(void)1658 void __init thread_throttle_mode_init(void)
1659 {
1660 	struct rftype *rft;
1661 
1662 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1663 	if (!rft)
1664 		return;
1665 
1666 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1667 }
1668 
1669 /**
1670  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1671  * @r: The resource group with which the file is associated.
1672  * @name: Name of the file
1673  *
1674  * The permissions of named resctrl file, directory, or link are modified
1675  * to not allow read, write, or execute by any user.
1676  *
1677  * WARNING: This function is intended to communicate to the user that the
1678  * resctrl file has been locked down - that it is not relevant to the
1679  * particular state the system finds itself in. It should not be relied
1680  * on to protect from user access because after the file's permissions
1681  * are restricted the user can still change the permissions using chmod
1682  * from the command line.
1683  *
1684  * Return: 0 on success, <0 on failure.
1685  */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1686 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1687 {
1688 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1689 	struct kernfs_node *kn;
1690 	int ret = 0;
1691 
1692 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1693 	if (!kn)
1694 		return -ENOENT;
1695 
1696 	switch (kernfs_type(kn)) {
1697 	case KERNFS_DIR:
1698 		iattr.ia_mode = S_IFDIR;
1699 		break;
1700 	case KERNFS_FILE:
1701 		iattr.ia_mode = S_IFREG;
1702 		break;
1703 	case KERNFS_LINK:
1704 		iattr.ia_mode = S_IFLNK;
1705 		break;
1706 	}
1707 
1708 	ret = kernfs_setattr(kn, &iattr);
1709 	kernfs_put(kn);
1710 	return ret;
1711 }
1712 
1713 /**
1714  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1715  * @r: The resource group with which the file is associated.
1716  * @name: Name of the file
1717  * @mask: Mask of permissions that should be restored
1718  *
1719  * Restore the permissions of the named file. If @name is a directory the
1720  * permissions of its parent will be used.
1721  *
1722  * Return: 0 on success, <0 on failure.
1723  */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1724 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1725 			     umode_t mask)
1726 {
1727 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1728 	struct kernfs_node *kn, *parent;
1729 	struct rftype *rfts, *rft;
1730 	int ret, len;
1731 
1732 	rfts = res_common_files;
1733 	len = ARRAY_SIZE(res_common_files);
1734 
1735 	for (rft = rfts; rft < rfts + len; rft++) {
1736 		if (!strcmp(rft->name, name))
1737 			iattr.ia_mode = rft->mode & mask;
1738 	}
1739 
1740 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1741 	if (!kn)
1742 		return -ENOENT;
1743 
1744 	switch (kernfs_type(kn)) {
1745 	case KERNFS_DIR:
1746 		parent = kernfs_get_parent(kn);
1747 		if (parent) {
1748 			iattr.ia_mode |= parent->mode;
1749 			kernfs_put(parent);
1750 		}
1751 		iattr.ia_mode |= S_IFDIR;
1752 		break;
1753 	case KERNFS_FILE:
1754 		iattr.ia_mode |= S_IFREG;
1755 		break;
1756 	case KERNFS_LINK:
1757 		iattr.ia_mode |= S_IFLNK;
1758 		break;
1759 	}
1760 
1761 	ret = kernfs_setattr(kn, &iattr);
1762 	kernfs_put(kn);
1763 	return ret;
1764 }
1765 
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1766 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1767 				      unsigned long fflags)
1768 {
1769 	struct kernfs_node *kn_subdir;
1770 	int ret;
1771 
1772 	kn_subdir = kernfs_create_dir(kn_info, name,
1773 				      kn_info->mode, r);
1774 	if (IS_ERR(kn_subdir))
1775 		return PTR_ERR(kn_subdir);
1776 
1777 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1778 	if (ret)
1779 		return ret;
1780 
1781 	ret = rdtgroup_add_files(kn_subdir, fflags);
1782 	if (!ret)
1783 		kernfs_activate(kn_subdir);
1784 
1785 	return ret;
1786 }
1787 
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1788 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1789 {
1790 	struct rdt_resource *r;
1791 	unsigned long fflags;
1792 	char name[32];
1793 	int ret;
1794 
1795 	/* create the directory */
1796 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1797 	if (IS_ERR(kn_info))
1798 		return PTR_ERR(kn_info);
1799 
1800 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1801 	if (ret)
1802 		goto out_destroy;
1803 
1804 	for_each_alloc_enabled_rdt_resource(r) {
1805 		fflags =  r->fflags | RF_CTRL_INFO;
1806 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1807 		if (ret)
1808 			goto out_destroy;
1809 	}
1810 
1811 	for_each_mon_enabled_rdt_resource(r) {
1812 		fflags =  r->fflags | RF_MON_INFO;
1813 		sprintf(name, "%s_MON", r->name);
1814 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1815 		if (ret)
1816 			goto out_destroy;
1817 	}
1818 
1819 	ret = rdtgroup_kn_set_ugid(kn_info);
1820 	if (ret)
1821 		goto out_destroy;
1822 
1823 	kernfs_activate(kn_info);
1824 
1825 	return 0;
1826 
1827 out_destroy:
1828 	kernfs_remove(kn_info);
1829 	return ret;
1830 }
1831 
1832 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1833 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1834 		    char *name, struct kernfs_node **dest_kn)
1835 {
1836 	struct kernfs_node *kn;
1837 	int ret;
1838 
1839 	/* create the directory */
1840 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1841 	if (IS_ERR(kn))
1842 		return PTR_ERR(kn);
1843 
1844 	if (dest_kn)
1845 		*dest_kn = kn;
1846 
1847 	ret = rdtgroup_kn_set_ugid(kn);
1848 	if (ret)
1849 		goto out_destroy;
1850 
1851 	kernfs_activate(kn);
1852 
1853 	return 0;
1854 
1855 out_destroy:
1856 	kernfs_remove(kn);
1857 	return ret;
1858 }
1859 
l3_qos_cfg_update(void * arg)1860 static void l3_qos_cfg_update(void *arg)
1861 {
1862 	bool *enable = arg;
1863 
1864 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1865 }
1866 
l2_qos_cfg_update(void * arg)1867 static void l2_qos_cfg_update(void *arg)
1868 {
1869 	bool *enable = arg;
1870 
1871 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1872 }
1873 
is_mba_linear(void)1874 static inline bool is_mba_linear(void)
1875 {
1876 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1877 }
1878 
set_cache_qos_cfg(int level,bool enable)1879 static int set_cache_qos_cfg(int level, bool enable)
1880 {
1881 	void (*update)(void *arg);
1882 	struct rdt_resource *r_l;
1883 	cpumask_var_t cpu_mask;
1884 	struct rdt_domain *d;
1885 	int cpu;
1886 
1887 	if (level == RDT_RESOURCE_L3)
1888 		update = l3_qos_cfg_update;
1889 	else if (level == RDT_RESOURCE_L2)
1890 		update = l2_qos_cfg_update;
1891 	else
1892 		return -EINVAL;
1893 
1894 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1895 		return -ENOMEM;
1896 
1897 	r_l = &rdt_resources_all[level];
1898 	list_for_each_entry(d, &r_l->domains, list) {
1899 		if (r_l->cache.arch_has_per_cpu_cfg)
1900 			/* Pick all the CPUs in the domain instance */
1901 			for_each_cpu(cpu, &d->cpu_mask)
1902 				cpumask_set_cpu(cpu, cpu_mask);
1903 		else
1904 			/* Pick one CPU from each domain instance to update MSR */
1905 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1906 	}
1907 	cpu = get_cpu();
1908 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1909 	if (cpumask_test_cpu(cpu, cpu_mask))
1910 		update(&enable);
1911 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1912 	smp_call_function_many(cpu_mask, update, &enable, 1);
1913 	put_cpu();
1914 
1915 	free_cpumask_var(cpu_mask);
1916 
1917 	return 0;
1918 }
1919 
1920 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1921 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1922 {
1923 	if (!r->alloc_capable)
1924 		return;
1925 
1926 	if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1927 		l2_qos_cfg_update(&r->alloc_enabled);
1928 
1929 	if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1930 		l3_qos_cfg_update(&r->alloc_enabled);
1931 }
1932 
1933 /*
1934  * Enable or disable the MBA software controller
1935  * which helps user specify bandwidth in MBps.
1936  * MBA software controller is supported only if
1937  * MBM is supported and MBA is in linear scale.
1938  */
set_mba_sc(bool mba_sc)1939 static int set_mba_sc(bool mba_sc)
1940 {
1941 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1942 	struct rdt_domain *d;
1943 
1944 	if (!is_mbm_enabled() || !is_mba_linear() ||
1945 	    mba_sc == is_mba_sc(r))
1946 		return -EINVAL;
1947 
1948 	r->membw.mba_sc = mba_sc;
1949 	list_for_each_entry(d, &r->domains, list)
1950 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1951 
1952 	return 0;
1953 }
1954 
cdp_enable(int level,int data_type,int code_type)1955 static int cdp_enable(int level, int data_type, int code_type)
1956 {
1957 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1958 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1959 	struct rdt_resource *r_l = &rdt_resources_all[level];
1960 	int ret;
1961 
1962 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1963 	    !r_lcode->alloc_capable)
1964 		return -EINVAL;
1965 
1966 	ret = set_cache_qos_cfg(level, true);
1967 	if (!ret) {
1968 		r_l->alloc_enabled = false;
1969 		r_ldata->alloc_enabled = true;
1970 		r_lcode->alloc_enabled = true;
1971 	}
1972 	return ret;
1973 }
1974 
cdpl3_enable(void)1975 static int cdpl3_enable(void)
1976 {
1977 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1978 			  RDT_RESOURCE_L3CODE);
1979 }
1980 
cdpl2_enable(void)1981 static int cdpl2_enable(void)
1982 {
1983 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1984 			  RDT_RESOURCE_L2CODE);
1985 }
1986 
cdp_disable(int level,int data_type,int code_type)1987 static void cdp_disable(int level, int data_type, int code_type)
1988 {
1989 	struct rdt_resource *r = &rdt_resources_all[level];
1990 
1991 	r->alloc_enabled = r->alloc_capable;
1992 
1993 	if (rdt_resources_all[data_type].alloc_enabled) {
1994 		rdt_resources_all[data_type].alloc_enabled = false;
1995 		rdt_resources_all[code_type].alloc_enabled = false;
1996 		set_cache_qos_cfg(level, false);
1997 	}
1998 }
1999 
cdpl3_disable(void)2000 static void cdpl3_disable(void)
2001 {
2002 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
2003 }
2004 
cdpl2_disable(void)2005 static void cdpl2_disable(void)
2006 {
2007 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
2008 }
2009 
cdp_disable_all(void)2010 static void cdp_disable_all(void)
2011 {
2012 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2013 		cdpl3_disable();
2014 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2015 		cdpl2_disable();
2016 }
2017 
2018 /*
2019  * We don't allow rdtgroup directories to be created anywhere
2020  * except the root directory. Thus when looking for the rdtgroup
2021  * structure for a kernfs node we are either looking at a directory,
2022  * in which case the rdtgroup structure is pointed at by the "priv"
2023  * field, otherwise we have a file, and need only look to the parent
2024  * to find the rdtgroup.
2025  */
kernfs_to_rdtgroup(struct kernfs_node * kn)2026 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2027 {
2028 	if (kernfs_type(kn) == KERNFS_DIR) {
2029 		/*
2030 		 * All the resource directories use "kn->priv"
2031 		 * to point to the "struct rdtgroup" for the
2032 		 * resource. "info" and its subdirectories don't
2033 		 * have rdtgroup structures, so return NULL here.
2034 		 */
2035 		if (kn == kn_info || kn->parent == kn_info)
2036 			return NULL;
2037 		else
2038 			return kn->priv;
2039 	} else {
2040 		return kn->parent->priv;
2041 	}
2042 }
2043 
rdtgroup_kn_lock_live(struct kernfs_node * kn)2044 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2045 {
2046 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2047 
2048 	if (!rdtgrp)
2049 		return NULL;
2050 
2051 	atomic_inc(&rdtgrp->waitcount);
2052 	kernfs_break_active_protection(kn);
2053 
2054 	mutex_lock(&rdtgroup_mutex);
2055 
2056 	/* Was this group deleted while we waited? */
2057 	if (rdtgrp->flags & RDT_DELETED)
2058 		return NULL;
2059 
2060 	return rdtgrp;
2061 }
2062 
rdtgroup_kn_unlock(struct kernfs_node * kn)2063 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2064 {
2065 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2066 
2067 	if (!rdtgrp)
2068 		return;
2069 
2070 	mutex_unlock(&rdtgroup_mutex);
2071 
2072 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2073 	    (rdtgrp->flags & RDT_DELETED)) {
2074 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2075 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2076 			rdtgroup_pseudo_lock_remove(rdtgrp);
2077 		kernfs_unbreak_active_protection(kn);
2078 		rdtgroup_remove(rdtgrp);
2079 	} else {
2080 		kernfs_unbreak_active_protection(kn);
2081 	}
2082 }
2083 
2084 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2085 			     struct rdtgroup *prgrp,
2086 			     struct kernfs_node **mon_data_kn);
2087 
rdt_enable_ctx(struct rdt_fs_context * ctx)2088 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2089 {
2090 	int ret = 0;
2091 
2092 	if (ctx->enable_cdpl2)
2093 		ret = cdpl2_enable();
2094 
2095 	if (!ret && ctx->enable_cdpl3)
2096 		ret = cdpl3_enable();
2097 
2098 	if (!ret && ctx->enable_mba_mbps)
2099 		ret = set_mba_sc(true);
2100 
2101 	return ret;
2102 }
2103 
rdt_get_tree(struct fs_context * fc)2104 static int rdt_get_tree(struct fs_context *fc)
2105 {
2106 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2107 	struct rdt_domain *dom;
2108 	struct rdt_resource *r;
2109 	int ret;
2110 
2111 	cpus_read_lock();
2112 	mutex_lock(&rdtgroup_mutex);
2113 	/*
2114 	 * resctrl file system can only be mounted once.
2115 	 */
2116 	if (static_branch_unlikely(&rdt_enable_key)) {
2117 		ret = -EBUSY;
2118 		goto out;
2119 	}
2120 
2121 	ret = rdt_enable_ctx(ctx);
2122 	if (ret < 0)
2123 		goto out_cdp;
2124 
2125 	closid_init();
2126 
2127 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2128 	if (ret < 0)
2129 		goto out_mba;
2130 
2131 	if (rdt_mon_capable) {
2132 		ret = mongroup_create_dir(rdtgroup_default.kn,
2133 					  &rdtgroup_default, "mon_groups",
2134 					  &kn_mongrp);
2135 		if (ret < 0)
2136 			goto out_info;
2137 
2138 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2139 					&rdtgroup_default, &kn_mondata);
2140 		if (ret < 0)
2141 			goto out_mongrp;
2142 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2143 	}
2144 
2145 	ret = rdt_pseudo_lock_init();
2146 	if (ret)
2147 		goto out_mondata;
2148 
2149 	ret = kernfs_get_tree(fc);
2150 	if (ret < 0)
2151 		goto out_psl;
2152 
2153 	if (rdt_alloc_capable)
2154 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2155 	if (rdt_mon_capable)
2156 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2157 
2158 	if (rdt_alloc_capable || rdt_mon_capable)
2159 		static_branch_enable_cpuslocked(&rdt_enable_key);
2160 
2161 	if (is_mbm_enabled()) {
2162 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2163 		list_for_each_entry(dom, &r->domains, list)
2164 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2165 	}
2166 
2167 	goto out;
2168 
2169 out_psl:
2170 	rdt_pseudo_lock_release();
2171 out_mondata:
2172 	if (rdt_mon_capable)
2173 		kernfs_remove(kn_mondata);
2174 out_mongrp:
2175 	if (rdt_mon_capable)
2176 		kernfs_remove(kn_mongrp);
2177 out_info:
2178 	kernfs_remove(kn_info);
2179 out_mba:
2180 	if (ctx->enable_mba_mbps)
2181 		set_mba_sc(false);
2182 out_cdp:
2183 	cdp_disable_all();
2184 out:
2185 	rdt_last_cmd_clear();
2186 	mutex_unlock(&rdtgroup_mutex);
2187 	cpus_read_unlock();
2188 	return ret;
2189 }
2190 
2191 enum rdt_param {
2192 	Opt_cdp,
2193 	Opt_cdpl2,
2194 	Opt_mba_mbps,
2195 	nr__rdt_params
2196 };
2197 
2198 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2199 	fsparam_flag("cdp",		Opt_cdp),
2200 	fsparam_flag("cdpl2",		Opt_cdpl2),
2201 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2202 	{}
2203 };
2204 
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2205 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2206 {
2207 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2208 	struct fs_parse_result result;
2209 	int opt;
2210 
2211 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2212 	if (opt < 0)
2213 		return opt;
2214 
2215 	switch (opt) {
2216 	case Opt_cdp:
2217 		ctx->enable_cdpl3 = true;
2218 		return 0;
2219 	case Opt_cdpl2:
2220 		ctx->enable_cdpl2 = true;
2221 		return 0;
2222 	case Opt_mba_mbps:
2223 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2224 			return -EINVAL;
2225 		ctx->enable_mba_mbps = true;
2226 		return 0;
2227 	}
2228 
2229 	return -EINVAL;
2230 }
2231 
rdt_fs_context_free(struct fs_context * fc)2232 static void rdt_fs_context_free(struct fs_context *fc)
2233 {
2234 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2235 
2236 	kernfs_free_fs_context(fc);
2237 	kfree(ctx);
2238 }
2239 
2240 static const struct fs_context_operations rdt_fs_context_ops = {
2241 	.free		= rdt_fs_context_free,
2242 	.parse_param	= rdt_parse_param,
2243 	.get_tree	= rdt_get_tree,
2244 };
2245 
rdt_init_fs_context(struct fs_context * fc)2246 static int rdt_init_fs_context(struct fs_context *fc)
2247 {
2248 	struct rdt_fs_context *ctx;
2249 
2250 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2251 	if (!ctx)
2252 		return -ENOMEM;
2253 
2254 	ctx->kfc.root = rdt_root;
2255 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2256 	fc->fs_private = &ctx->kfc;
2257 	fc->ops = &rdt_fs_context_ops;
2258 	put_user_ns(fc->user_ns);
2259 	fc->user_ns = get_user_ns(&init_user_ns);
2260 	fc->global = true;
2261 	return 0;
2262 }
2263 
reset_all_ctrls(struct rdt_resource * r)2264 static int reset_all_ctrls(struct rdt_resource *r)
2265 {
2266 	struct msr_param msr_param;
2267 	cpumask_var_t cpu_mask;
2268 	struct rdt_domain *d;
2269 	int i, cpu;
2270 
2271 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2272 		return -ENOMEM;
2273 
2274 	msr_param.res = r;
2275 	msr_param.low = 0;
2276 	msr_param.high = r->num_closid;
2277 
2278 	/*
2279 	 * Disable resource control for this resource by setting all
2280 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2281 	 * from each domain to update the MSRs below.
2282 	 */
2283 	list_for_each_entry(d, &r->domains, list) {
2284 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2285 
2286 		for (i = 0; i < r->num_closid; i++)
2287 			d->ctrl_val[i] = r->default_ctrl;
2288 	}
2289 	cpu = get_cpu();
2290 	/* Update CBM on this cpu if it's in cpu_mask. */
2291 	if (cpumask_test_cpu(cpu, cpu_mask))
2292 		rdt_ctrl_update(&msr_param);
2293 	/* Update CBM on all other cpus in cpu_mask. */
2294 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2295 	put_cpu();
2296 
2297 	free_cpumask_var(cpu_mask);
2298 
2299 	return 0;
2300 }
2301 
2302 /*
2303  * Move tasks from one to the other group. If @from is NULL, then all tasks
2304  * in the systems are moved unconditionally (used for teardown).
2305  *
2306  * If @mask is not NULL the cpus on which moved tasks are running are set
2307  * in that mask so the update smp function call is restricted to affected
2308  * cpus.
2309  */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2310 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2311 				 struct cpumask *mask)
2312 {
2313 	struct task_struct *p, *t;
2314 
2315 	read_lock(&tasklist_lock);
2316 	for_each_process_thread(p, t) {
2317 		if (!from || is_closid_match(t, from) ||
2318 		    is_rmid_match(t, from)) {
2319 			WRITE_ONCE(t->closid, to->closid);
2320 			WRITE_ONCE(t->rmid, to->mon.rmid);
2321 
2322 			/*
2323 			 * Order the closid/rmid stores above before the loads
2324 			 * in task_curr(). This pairs with the full barrier
2325 			 * between the rq->curr update and resctrl_sched_in()
2326 			 * during context switch.
2327 			 */
2328 			smp_mb();
2329 
2330 			/*
2331 			 * If the task is on a CPU, set the CPU in the mask.
2332 			 * The detection is inaccurate as tasks might move or
2333 			 * schedule before the smp function call takes place.
2334 			 * In such a case the function call is pointless, but
2335 			 * there is no other side effect.
2336 			 */
2337 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2338 				cpumask_set_cpu(task_cpu(t), mask);
2339 		}
2340 	}
2341 	read_unlock(&tasklist_lock);
2342 }
2343 
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2344 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2345 {
2346 	struct rdtgroup *sentry, *stmp;
2347 	struct list_head *head;
2348 
2349 	head = &rdtgrp->mon.crdtgrp_list;
2350 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2351 		free_rmid(sentry->mon.rmid);
2352 		list_del(&sentry->mon.crdtgrp_list);
2353 
2354 		if (atomic_read(&sentry->waitcount) != 0)
2355 			sentry->flags = RDT_DELETED;
2356 		else
2357 			rdtgroup_remove(sentry);
2358 	}
2359 }
2360 
2361 /*
2362  * Forcibly remove all of subdirectories under root.
2363  */
rmdir_all_sub(void)2364 static void rmdir_all_sub(void)
2365 {
2366 	struct rdtgroup *rdtgrp, *tmp;
2367 
2368 	/* Move all tasks to the default resource group */
2369 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2370 
2371 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2372 		/* Free any child rmids */
2373 		free_all_child_rdtgrp(rdtgrp);
2374 
2375 		/* Remove each rdtgroup other than root */
2376 		if (rdtgrp == &rdtgroup_default)
2377 			continue;
2378 
2379 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2380 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2381 			rdtgroup_pseudo_lock_remove(rdtgrp);
2382 
2383 		/*
2384 		 * Give any CPUs back to the default group. We cannot copy
2385 		 * cpu_online_mask because a CPU might have executed the
2386 		 * offline callback already, but is still marked online.
2387 		 */
2388 		cpumask_or(&rdtgroup_default.cpu_mask,
2389 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2390 
2391 		free_rmid(rdtgrp->mon.rmid);
2392 
2393 		kernfs_remove(rdtgrp->kn);
2394 		list_del(&rdtgrp->rdtgroup_list);
2395 
2396 		if (atomic_read(&rdtgrp->waitcount) != 0)
2397 			rdtgrp->flags = RDT_DELETED;
2398 		else
2399 			rdtgroup_remove(rdtgrp);
2400 	}
2401 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2402 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2403 
2404 	kernfs_remove(kn_info);
2405 	kernfs_remove(kn_mongrp);
2406 	kernfs_remove(kn_mondata);
2407 }
2408 
rdt_kill_sb(struct super_block * sb)2409 static void rdt_kill_sb(struct super_block *sb)
2410 {
2411 	struct rdt_resource *r;
2412 
2413 	cpus_read_lock();
2414 	mutex_lock(&rdtgroup_mutex);
2415 
2416 	set_mba_sc(false);
2417 
2418 	/*Put everything back to default values. */
2419 	for_each_alloc_enabled_rdt_resource(r)
2420 		reset_all_ctrls(r);
2421 	cdp_disable_all();
2422 	rmdir_all_sub();
2423 	rdt_pseudo_lock_release();
2424 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2425 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2426 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2427 	static_branch_disable_cpuslocked(&rdt_enable_key);
2428 	kernfs_kill_sb(sb);
2429 	mutex_unlock(&rdtgroup_mutex);
2430 	cpus_read_unlock();
2431 }
2432 
2433 static struct file_system_type rdt_fs_type = {
2434 	.name			= "resctrl",
2435 	.init_fs_context	= rdt_init_fs_context,
2436 	.parameters		= rdt_fs_parameters,
2437 	.kill_sb		= rdt_kill_sb,
2438 };
2439 
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2440 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2441 		       void *priv)
2442 {
2443 	struct kernfs_node *kn;
2444 	int ret = 0;
2445 
2446 	kn = __kernfs_create_file(parent_kn, name, 0444,
2447 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2448 				  &kf_mondata_ops, priv, NULL, NULL);
2449 	if (IS_ERR(kn))
2450 		return PTR_ERR(kn);
2451 
2452 	ret = rdtgroup_kn_set_ugid(kn);
2453 	if (ret) {
2454 		kernfs_remove(kn);
2455 		return ret;
2456 	}
2457 
2458 	return ret;
2459 }
2460 
2461 /*
2462  * Remove all subdirectories of mon_data of ctrl_mon groups
2463  * and monitor groups with given domain id.
2464  */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2465 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2466 {
2467 	struct rdtgroup *prgrp, *crgrp;
2468 	char name[32];
2469 
2470 	if (!r->mon_enabled)
2471 		return;
2472 
2473 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2474 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2475 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2476 
2477 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2478 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2479 	}
2480 }
2481 
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2482 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2483 				struct rdt_domain *d,
2484 				struct rdt_resource *r, struct rdtgroup *prgrp)
2485 {
2486 	union mon_data_bits priv;
2487 	struct kernfs_node *kn;
2488 	struct mon_evt *mevt;
2489 	struct rmid_read rr;
2490 	char name[32];
2491 	int ret;
2492 
2493 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2494 	/* create the directory */
2495 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2496 	if (IS_ERR(kn))
2497 		return PTR_ERR(kn);
2498 
2499 	ret = rdtgroup_kn_set_ugid(kn);
2500 	if (ret)
2501 		goto out_destroy;
2502 
2503 	if (WARN_ON(list_empty(&r->evt_list))) {
2504 		ret = -EPERM;
2505 		goto out_destroy;
2506 	}
2507 
2508 	priv.u.rid = r->rid;
2509 	priv.u.domid = d->id;
2510 	list_for_each_entry(mevt, &r->evt_list, list) {
2511 		priv.u.evtid = mevt->evtid;
2512 		ret = mon_addfile(kn, mevt->name, priv.priv);
2513 		if (ret)
2514 			goto out_destroy;
2515 
2516 		if (is_mbm_event(mevt->evtid))
2517 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2518 	}
2519 	kernfs_activate(kn);
2520 	return 0;
2521 
2522 out_destroy:
2523 	kernfs_remove(kn);
2524 	return ret;
2525 }
2526 
2527 /*
2528  * Add all subdirectories of mon_data for "ctrl_mon" groups
2529  * and "monitor" groups with given domain id.
2530  */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2531 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2532 				    struct rdt_domain *d)
2533 {
2534 	struct kernfs_node *parent_kn;
2535 	struct rdtgroup *prgrp, *crgrp;
2536 	struct list_head *head;
2537 
2538 	if (!r->mon_enabled)
2539 		return;
2540 
2541 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2542 		parent_kn = prgrp->mon.mon_data_kn;
2543 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2544 
2545 		head = &prgrp->mon.crdtgrp_list;
2546 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2547 			parent_kn = crgrp->mon.mon_data_kn;
2548 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2549 		}
2550 	}
2551 }
2552 
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2553 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2554 				       struct rdt_resource *r,
2555 				       struct rdtgroup *prgrp)
2556 {
2557 	struct rdt_domain *dom;
2558 	int ret;
2559 
2560 	list_for_each_entry(dom, &r->domains, list) {
2561 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2562 		if (ret)
2563 			return ret;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 /*
2570  * This creates a directory mon_data which contains the monitored data.
2571  *
2572  * mon_data has one directory for each domain whic are named
2573  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2574  * with L3 domain looks as below:
2575  * ./mon_data:
2576  * mon_L3_00
2577  * mon_L3_01
2578  * mon_L3_02
2579  * ...
2580  *
2581  * Each domain directory has one file per event:
2582  * ./mon_L3_00/:
2583  * llc_occupancy
2584  *
2585  */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2586 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2587 			     struct rdtgroup *prgrp,
2588 			     struct kernfs_node **dest_kn)
2589 {
2590 	struct rdt_resource *r;
2591 	struct kernfs_node *kn;
2592 	int ret;
2593 
2594 	/*
2595 	 * Create the mon_data directory first.
2596 	 */
2597 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2598 	if (ret)
2599 		return ret;
2600 
2601 	if (dest_kn)
2602 		*dest_kn = kn;
2603 
2604 	/*
2605 	 * Create the subdirectories for each domain. Note that all events
2606 	 * in a domain like L3 are grouped into a resource whose domain is L3
2607 	 */
2608 	for_each_mon_enabled_rdt_resource(r) {
2609 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2610 		if (ret)
2611 			goto out_destroy;
2612 	}
2613 
2614 	return 0;
2615 
2616 out_destroy:
2617 	kernfs_remove(kn);
2618 	return ret;
2619 }
2620 
2621 /**
2622  * cbm_ensure_valid - Enforce validity on provided CBM
2623  * @_val:	Candidate CBM
2624  * @r:		RDT resource to which the CBM belongs
2625  *
2626  * The provided CBM represents all cache portions available for use. This
2627  * may be represented by a bitmap that does not consist of contiguous ones
2628  * and thus be an invalid CBM.
2629  * Here the provided CBM is forced to be a valid CBM by only considering
2630  * the first set of contiguous bits as valid and clearing all bits.
2631  * The intention here is to provide a valid default CBM with which a new
2632  * resource group is initialized. The user can follow this with a
2633  * modification to the CBM if the default does not satisfy the
2634  * requirements.
2635  */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2636 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2637 {
2638 	unsigned int cbm_len = r->cache.cbm_len;
2639 	unsigned long first_bit, zero_bit;
2640 	unsigned long val = _val;
2641 
2642 	if (!val)
2643 		return 0;
2644 
2645 	first_bit = find_first_bit(&val, cbm_len);
2646 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2647 
2648 	/* Clear any remaining bits to ensure contiguous region */
2649 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2650 	return (u32)val;
2651 }
2652 
2653 /*
2654  * Initialize cache resources per RDT domain
2655  *
2656  * Set the RDT domain up to start off with all usable allocations. That is,
2657  * all shareable and unused bits. All-zero CBM is invalid.
2658  */
__init_one_rdt_domain(struct rdt_domain * d,struct rdt_resource * r,u32 closid)2659 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2660 				 u32 closid)
2661 {
2662 	struct rdt_resource *r_cdp = NULL;
2663 	struct rdt_domain *d_cdp = NULL;
2664 	u32 used_b = 0, unused_b = 0;
2665 	unsigned long tmp_cbm;
2666 	enum rdtgrp_mode mode;
2667 	u32 peer_ctl, *ctrl;
2668 	int i;
2669 
2670 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2671 	d->have_new_ctrl = false;
2672 	d->new_ctrl = r->cache.shareable_bits;
2673 	used_b = r->cache.shareable_bits;
2674 	ctrl = d->ctrl_val;
2675 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2676 		if (closid_allocated(i) && i != closid) {
2677 			mode = rdtgroup_mode_by_closid(i);
2678 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2679 				/*
2680 				 * ctrl values for locksetup aren't relevant
2681 				 * until the schemata is written, and the mode
2682 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2683 				 */
2684 				continue;
2685 			/*
2686 			 * If CDP is active include peer domain's
2687 			 * usage to ensure there is no overlap
2688 			 * with an exclusive group.
2689 			 */
2690 			if (d_cdp)
2691 				peer_ctl = d_cdp->ctrl_val[i];
2692 			else
2693 				peer_ctl = 0;
2694 			used_b |= *ctrl | peer_ctl;
2695 			if (mode == RDT_MODE_SHAREABLE)
2696 				d->new_ctrl |= *ctrl | peer_ctl;
2697 		}
2698 	}
2699 	if (d->plr && d->plr->cbm > 0)
2700 		used_b |= d->plr->cbm;
2701 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2702 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2703 	d->new_ctrl |= unused_b;
2704 	/*
2705 	 * Force the initial CBM to be valid, user can
2706 	 * modify the CBM based on system availability.
2707 	 */
2708 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2709 	/*
2710 	 * Assign the u32 CBM to an unsigned long to ensure that
2711 	 * bitmap_weight() does not access out-of-bound memory.
2712 	 */
2713 	tmp_cbm = d->new_ctrl;
2714 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2715 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2716 		return -ENOSPC;
2717 	}
2718 	d->have_new_ctrl = true;
2719 
2720 	return 0;
2721 }
2722 
2723 /*
2724  * Initialize cache resources with default values.
2725  *
2726  * A new RDT group is being created on an allocation capable (CAT)
2727  * supporting system. Set this group up to start off with all usable
2728  * allocations.
2729  *
2730  * If there are no more shareable bits available on any domain then
2731  * the entire allocation will fail.
2732  */
rdtgroup_init_cat(struct rdt_resource * r,u32 closid)2733 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2734 {
2735 	struct rdt_domain *d;
2736 	int ret;
2737 
2738 	list_for_each_entry(d, &r->domains, list) {
2739 		ret = __init_one_rdt_domain(d, r, closid);
2740 		if (ret < 0)
2741 			return ret;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r)2748 static void rdtgroup_init_mba(struct rdt_resource *r)
2749 {
2750 	struct rdt_domain *d;
2751 
2752 	list_for_each_entry(d, &r->domains, list) {
2753 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2754 		d->have_new_ctrl = true;
2755 	}
2756 }
2757 
2758 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2759 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2760 {
2761 	struct rdt_resource *r;
2762 	int ret;
2763 
2764 	for_each_alloc_enabled_rdt_resource(r) {
2765 		if (r->rid == RDT_RESOURCE_MBA) {
2766 			rdtgroup_init_mba(r);
2767 		} else {
2768 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2769 			if (ret < 0)
2770 				return ret;
2771 		}
2772 
2773 		ret = update_domains(r, rdtgrp->closid);
2774 		if (ret < 0) {
2775 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2776 			return ret;
2777 		}
2778 
2779 	}
2780 
2781 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2782 
2783 	return 0;
2784 }
2785 
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2786 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2787 			     const char *name, umode_t mode,
2788 			     enum rdt_group_type rtype, struct rdtgroup **r)
2789 {
2790 	struct rdtgroup *prdtgrp, *rdtgrp;
2791 	struct kernfs_node *kn;
2792 	uint files = 0;
2793 	int ret;
2794 
2795 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2796 	if (!prdtgrp) {
2797 		ret = -ENODEV;
2798 		goto out_unlock;
2799 	}
2800 
2801 	if (rtype == RDTMON_GROUP &&
2802 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2803 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2804 		ret = -EINVAL;
2805 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2806 		goto out_unlock;
2807 	}
2808 
2809 	/* allocate the rdtgroup. */
2810 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2811 	if (!rdtgrp) {
2812 		ret = -ENOSPC;
2813 		rdt_last_cmd_puts("Kernel out of memory\n");
2814 		goto out_unlock;
2815 	}
2816 	*r = rdtgrp;
2817 	rdtgrp->mon.parent = prdtgrp;
2818 	rdtgrp->type = rtype;
2819 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2820 
2821 	/* kernfs creates the directory for rdtgrp */
2822 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2823 	if (IS_ERR(kn)) {
2824 		ret = PTR_ERR(kn);
2825 		rdt_last_cmd_puts("kernfs create error\n");
2826 		goto out_free_rgrp;
2827 	}
2828 	rdtgrp->kn = kn;
2829 
2830 	/*
2831 	 * kernfs_remove() will drop the reference count on "kn" which
2832 	 * will free it. But we still need it to stick around for the
2833 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2834 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2835 	 */
2836 	kernfs_get(kn);
2837 
2838 	ret = rdtgroup_kn_set_ugid(kn);
2839 	if (ret) {
2840 		rdt_last_cmd_puts("kernfs perm error\n");
2841 		goto out_destroy;
2842 	}
2843 
2844 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2845 	ret = rdtgroup_add_files(kn, files);
2846 	if (ret) {
2847 		rdt_last_cmd_puts("kernfs fill error\n");
2848 		goto out_destroy;
2849 	}
2850 
2851 	if (rdt_mon_capable) {
2852 		ret = alloc_rmid();
2853 		if (ret < 0) {
2854 			rdt_last_cmd_puts("Out of RMIDs\n");
2855 			goto out_destroy;
2856 		}
2857 		rdtgrp->mon.rmid = ret;
2858 
2859 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2860 		if (ret) {
2861 			rdt_last_cmd_puts("kernfs subdir error\n");
2862 			goto out_idfree;
2863 		}
2864 	}
2865 	kernfs_activate(kn);
2866 
2867 	/*
2868 	 * The caller unlocks the parent_kn upon success.
2869 	 */
2870 	return 0;
2871 
2872 out_idfree:
2873 	free_rmid(rdtgrp->mon.rmid);
2874 out_destroy:
2875 	kernfs_put(rdtgrp->kn);
2876 	kernfs_remove(rdtgrp->kn);
2877 out_free_rgrp:
2878 	kfree(rdtgrp);
2879 out_unlock:
2880 	rdtgroup_kn_unlock(parent_kn);
2881 	return ret;
2882 }
2883 
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2884 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2885 {
2886 	kernfs_remove(rgrp->kn);
2887 	free_rmid(rgrp->mon.rmid);
2888 	rdtgroup_remove(rgrp);
2889 }
2890 
2891 /*
2892  * Create a monitor group under "mon_groups" directory of a control
2893  * and monitor group(ctrl_mon). This is a resource group
2894  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2895  */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2896 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2897 			      const char *name, umode_t mode)
2898 {
2899 	struct rdtgroup *rdtgrp, *prgrp;
2900 	int ret;
2901 
2902 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2903 	if (ret)
2904 		return ret;
2905 
2906 	prgrp = rdtgrp->mon.parent;
2907 	rdtgrp->closid = prgrp->closid;
2908 
2909 	/*
2910 	 * Add the rdtgrp to the list of rdtgrps the parent
2911 	 * ctrl_mon group has to track.
2912 	 */
2913 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2914 
2915 	rdtgroup_kn_unlock(parent_kn);
2916 	return ret;
2917 }
2918 
2919 /*
2920  * These are rdtgroups created under the root directory. Can be used
2921  * to allocate and monitor resources.
2922  */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)2923 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2924 				   const char *name, umode_t mode)
2925 {
2926 	struct rdtgroup *rdtgrp;
2927 	struct kernfs_node *kn;
2928 	u32 closid;
2929 	int ret;
2930 
2931 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2932 	if (ret)
2933 		return ret;
2934 
2935 	kn = rdtgrp->kn;
2936 	ret = closid_alloc();
2937 	if (ret < 0) {
2938 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2939 		goto out_common_fail;
2940 	}
2941 	closid = ret;
2942 	ret = 0;
2943 
2944 	rdtgrp->closid = closid;
2945 	ret = rdtgroup_init_alloc(rdtgrp);
2946 	if (ret < 0)
2947 		goto out_id_free;
2948 
2949 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2950 
2951 	if (rdt_mon_capable) {
2952 		/*
2953 		 * Create an empty mon_groups directory to hold the subset
2954 		 * of tasks and cpus to monitor.
2955 		 */
2956 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2957 		if (ret) {
2958 			rdt_last_cmd_puts("kernfs subdir error\n");
2959 			goto out_del_list;
2960 		}
2961 	}
2962 
2963 	goto out_unlock;
2964 
2965 out_del_list:
2966 	list_del(&rdtgrp->rdtgroup_list);
2967 out_id_free:
2968 	closid_free(closid);
2969 out_common_fail:
2970 	mkdir_rdt_prepare_clean(rdtgrp);
2971 out_unlock:
2972 	rdtgroup_kn_unlock(parent_kn);
2973 	return ret;
2974 }
2975 
2976 /*
2977  * We allow creating mon groups only with in a directory called "mon_groups"
2978  * which is present in every ctrl_mon group. Check if this is a valid
2979  * "mon_groups" directory.
2980  *
2981  * 1. The directory should be named "mon_groups".
2982  * 2. The mon group itself should "not" be named "mon_groups".
2983  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2984  *   as parent.
2985  */
is_mon_groups(struct kernfs_node * kn,const char * name)2986 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2987 {
2988 	return (!strcmp(kn->name, "mon_groups") &&
2989 		strcmp(name, "mon_groups"));
2990 }
2991 
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2992 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2993 			  umode_t mode)
2994 {
2995 	/* Do not accept '\n' to avoid unparsable situation. */
2996 	if (strchr(name, '\n'))
2997 		return -EINVAL;
2998 
2999 	/*
3000 	 * If the parent directory is the root directory and RDT
3001 	 * allocation is supported, add a control and monitoring
3002 	 * subdirectory
3003 	 */
3004 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3005 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3006 
3007 	/*
3008 	 * If RDT monitoring is supported and the parent directory is a valid
3009 	 * "mon_groups" directory, add a monitoring subdirectory.
3010 	 */
3011 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3012 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3013 
3014 	return -EPERM;
3015 }
3016 
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3017 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3018 			      cpumask_var_t tmpmask)
3019 {
3020 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3021 	int cpu;
3022 
3023 	/* Give any tasks back to the parent group */
3024 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3025 
3026 	/* Update per cpu rmid of the moved CPUs first */
3027 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3028 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3029 	/*
3030 	 * Update the MSR on moved CPUs and CPUs which have moved
3031 	 * task running on them.
3032 	 */
3033 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3034 	update_closid_rmid(tmpmask, NULL);
3035 
3036 	rdtgrp->flags = RDT_DELETED;
3037 	free_rmid(rdtgrp->mon.rmid);
3038 
3039 	/*
3040 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3041 	 */
3042 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3043 	list_del(&rdtgrp->mon.crdtgrp_list);
3044 
3045 	kernfs_remove(rdtgrp->kn);
3046 
3047 	return 0;
3048 }
3049 
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)3050 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3051 				struct rdtgroup *rdtgrp)
3052 {
3053 	rdtgrp->flags = RDT_DELETED;
3054 	list_del(&rdtgrp->rdtgroup_list);
3055 
3056 	kernfs_remove(rdtgrp->kn);
3057 	return 0;
3058 }
3059 
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3060 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3061 			       cpumask_var_t tmpmask)
3062 {
3063 	int cpu;
3064 
3065 	/* Give any tasks back to the default group */
3066 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3067 
3068 	/* Give any CPUs back to the default group */
3069 	cpumask_or(&rdtgroup_default.cpu_mask,
3070 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3071 
3072 	/* Update per cpu closid and rmid of the moved CPUs first */
3073 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3074 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3075 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3076 	}
3077 
3078 	/*
3079 	 * Update the MSR on moved CPUs and CPUs which have moved
3080 	 * task running on them.
3081 	 */
3082 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3083 	update_closid_rmid(tmpmask, NULL);
3084 
3085 	closid_free(rdtgrp->closid);
3086 	free_rmid(rdtgrp->mon.rmid);
3087 
3088 	rdtgroup_ctrl_remove(kn, rdtgrp);
3089 
3090 	/*
3091 	 * Free all the child monitor group rmids.
3092 	 */
3093 	free_all_child_rdtgrp(rdtgrp);
3094 
3095 	return 0;
3096 }
3097 
rdtgroup_rmdir(struct kernfs_node * kn)3098 static int rdtgroup_rmdir(struct kernfs_node *kn)
3099 {
3100 	struct kernfs_node *parent_kn = kn->parent;
3101 	struct rdtgroup *rdtgrp;
3102 	cpumask_var_t tmpmask;
3103 	int ret = 0;
3104 
3105 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3106 		return -ENOMEM;
3107 
3108 	rdtgrp = rdtgroup_kn_lock_live(kn);
3109 	if (!rdtgrp) {
3110 		ret = -EPERM;
3111 		goto out;
3112 	}
3113 
3114 	/*
3115 	 * If the rdtgroup is a ctrl_mon group and parent directory
3116 	 * is the root directory, remove the ctrl_mon group.
3117 	 *
3118 	 * If the rdtgroup is a mon group and parent directory
3119 	 * is a valid "mon_groups" directory, remove the mon group.
3120 	 */
3121 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3122 	    rdtgrp != &rdtgroup_default) {
3123 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3124 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3125 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3126 		} else {
3127 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3128 		}
3129 	} else if (rdtgrp->type == RDTMON_GROUP &&
3130 		 is_mon_groups(parent_kn, kn->name)) {
3131 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3132 	} else {
3133 		ret = -EPERM;
3134 	}
3135 
3136 out:
3137 	rdtgroup_kn_unlock(kn);
3138 	free_cpumask_var(tmpmask);
3139 	return ret;
3140 }
3141 
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3142 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3143 {
3144 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3145 		seq_puts(seq, ",cdp");
3146 
3147 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3148 		seq_puts(seq, ",cdpl2");
3149 
3150 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3151 		seq_puts(seq, ",mba_MBps");
3152 
3153 	return 0;
3154 }
3155 
3156 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3157 	.mkdir		= rdtgroup_mkdir,
3158 	.rmdir		= rdtgroup_rmdir,
3159 	.show_options	= rdtgroup_show_options,
3160 };
3161 
rdtgroup_setup_root(void)3162 static int __init rdtgroup_setup_root(void)
3163 {
3164 	int ret;
3165 
3166 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3167 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3168 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3169 				      &rdtgroup_default);
3170 	if (IS_ERR(rdt_root))
3171 		return PTR_ERR(rdt_root);
3172 
3173 	mutex_lock(&rdtgroup_mutex);
3174 
3175 	rdtgroup_default.closid = 0;
3176 	rdtgroup_default.mon.rmid = 0;
3177 	rdtgroup_default.type = RDTCTRL_GROUP;
3178 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3179 
3180 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3181 
3182 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3183 	if (ret) {
3184 		kernfs_destroy_root(rdt_root);
3185 		goto out;
3186 	}
3187 
3188 	rdtgroup_default.kn = rdt_root->kn;
3189 	kernfs_activate(rdtgroup_default.kn);
3190 
3191 out:
3192 	mutex_unlock(&rdtgroup_mutex);
3193 
3194 	return ret;
3195 }
3196 
3197 /*
3198  * rdtgroup_init - rdtgroup initialization
3199  *
3200  * Setup resctrl file system including set up root, create mount point,
3201  * register rdtgroup filesystem, and initialize files under root directory.
3202  *
3203  * Return: 0 on success or -errno
3204  */
rdtgroup_init(void)3205 int __init rdtgroup_init(void)
3206 {
3207 	int ret = 0;
3208 
3209 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3210 		     sizeof(last_cmd_status_buf));
3211 
3212 	ret = rdtgroup_setup_root();
3213 	if (ret)
3214 		return ret;
3215 
3216 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3217 	if (ret)
3218 		goto cleanup_root;
3219 
3220 	ret = register_filesystem(&rdt_fs_type);
3221 	if (ret)
3222 		goto cleanup_mountpoint;
3223 
3224 	/*
3225 	 * Adding the resctrl debugfs directory here may not be ideal since
3226 	 * it would let the resctrl debugfs directory appear on the debugfs
3227 	 * filesystem before the resctrl filesystem is mounted.
3228 	 * It may also be ok since that would enable debugging of RDT before
3229 	 * resctrl is mounted.
3230 	 * The reason why the debugfs directory is created here and not in
3231 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3232 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3233 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3234 	 * interactions (eg. SyS_getdents) have the lock ordering:
3235 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3236 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3237 	 * is taken, thus creating dependency:
3238 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3239 	 * issues considering the other two lock dependencies.
3240 	 * By creating the debugfs directory here we avoid a dependency
3241 	 * that may cause deadlock (even though file operations cannot
3242 	 * occur until the filesystem is mounted, but I do not know how to
3243 	 * tell lockdep that).
3244 	 */
3245 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3246 
3247 	return 0;
3248 
3249 cleanup_mountpoint:
3250 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3251 cleanup_root:
3252 	kernfs_destroy_root(rdt_root);
3253 
3254 	return ret;
3255 }
3256 
rdtgroup_exit(void)3257 void __exit rdtgroup_exit(void)
3258 {
3259 	debugfs_remove_recursive(debugfs_resctrl);
3260 	unregister_filesystem(&rdt_fs_type);
3261 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3262 	kernfs_destroy_root(rdt_root);
3263 }
3264