1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <linux/android_vendor.h>
38 #include <linux/android_kabi.h>
39
40 /* task_struct member predeclarations (sorted alphabetically): */
41 struct audit_context;
42 struct backing_dev_info;
43 struct bio_list;
44 struct blk_plug;
45 struct capture_control;
46 struct cfs_rq;
47 struct fs_struct;
48 struct futex_pi_state;
49 struct io_context;
50 struct mempolicy;
51 struct nameidata;
52 struct nsproxy;
53 struct perf_event_context;
54 struct pid_namespace;
55 struct pipe_inode_info;
56 struct rcu_node;
57 struct reclaim_state;
58 struct robust_list_head;
59 struct root_domain;
60 struct rq;
61 struct sched_attr;
62 struct sched_param;
63 struct seq_file;
64 struct sighand_struct;
65 struct signal_struct;
66 struct task_delay_info;
67 struct task_group;
68 struct io_uring_task;
69
70 /*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
80
81 /* Used in tsk->state: */
82 #define TASK_RUNNING 0x0000
83 #define TASK_INTERRUPTIBLE 0x0001
84 #define TASK_UNINTERRUPTIBLE 0x0002
85 #define __TASK_STOPPED 0x0004
86 #define __TASK_TRACED 0x0008
87 /* Used in tsk->exit_state: */
88 #define EXIT_DEAD 0x0010
89 #define EXIT_ZOMBIE 0x0020
90 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91 /* Used in tsk->state again: */
92 #define TASK_PARKED 0x0040
93 #define TASK_DEAD 0x0080
94 #define TASK_WAKEKILL 0x0100
95 #define TASK_WAKING 0x0200
96 #define TASK_NOLOAD 0x0400
97 #define TASK_NEW 0x0800
98 #define TASK_STATE_MAX 0x1000
99
100 /* Convenience macros for the sake of set_current_state: */
101 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107 /* Convenience macros for the sake of wake_up(): */
108 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109
110 /* get_task_state(): */
111 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
115
116 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
122 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
124 /*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128 #define is_special_task_state(state) \
129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130
131 #define __set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
137
138 #define set_current_state(state_value) \
139 do { \
140 WARN_ON_ONCE(is_special_task_state(state_value));\
141 current->task_state_change = _THIS_IP_; \
142 smp_store_mb(current->state, (state_value)); \
143 } while (0)
144
145 #define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
153 } while (0)
154 #else
155 /*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
160 * for (;;) {
161 * set_current_state(TASK_UNINTERRUPTIBLE);
162 * if (CONDITION)
163 * break;
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
170 * CONDITION test and condition change and wakeup are under the same lock) then
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
175 * CONDITION = 1;
176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
177 *
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184 *
185 * However, with slightly different timing the wakeup TASK_RUNNING store can
186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
189 *
190 * Also see the comments of try_to_wake_up().
191 */
192 #define __set_current_state(state_value) \
193 current->state = (state_value)
194
195 #define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198 /*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204 #define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
210 } while (0)
211
212 #endif
213
214 /* Task command name length: */
215 #define TASK_COMM_LEN 16
216
217 extern void scheduler_tick(void);
218
219 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221 extern long schedule_timeout(long timeout);
222 extern long schedule_timeout_interruptible(long timeout);
223 extern long schedule_timeout_killable(long timeout);
224 extern long schedule_timeout_uninterruptible(long timeout);
225 extern long schedule_timeout_idle(long timeout);
226 asmlinkage void schedule(void);
227 extern void schedule_preempt_disabled(void);
228 asmlinkage void preempt_schedule_irq(void);
229
230 extern int __must_check io_schedule_prepare(void);
231 extern void io_schedule_finish(int token);
232 extern long io_schedule_timeout(long timeout);
233 extern void io_schedule(void);
234
235 /**
236 * struct prev_cputime - snapshot of system and user cputime
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
239 * @lock: protects the above two fields
240 *
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
243 */
244 struct prev_cputime {
245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
249 #endif
250 };
251
252 enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
255 /* Task is idle */
256 VTIME_IDLE,
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
263 };
264
265 struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
269 unsigned int cpu;
270 u64 utime;
271 u64 stime;
272 u64 gtime;
273 };
274
275 /*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281 enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285 };
286
287 #ifdef CONFIG_SMP
288 extern struct root_domain def_root_domain;
289 extern struct mutex sched_domains_mutex;
290 #endif
291
292 struct sched_info {
293 #ifdef CONFIG_SCHED_INFO
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
309
310 #endif /* CONFIG_SCHED_INFO */
311 };
312
313 /*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
320 # define SCHED_FIXEDPOINT_SHIFT 10
321 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
322
323 /* Increase resolution of cpu_capacity calculations */
324 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
327 struct load_weight {
328 unsigned long weight;
329 u32 inv_weight;
330 };
331
332 /**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
353 *
354 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
355 * updates. When a task is dequeued, its util_est should not be updated if its
356 * util_avg has not been updated in the meantime.
357 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
358 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
359 * for a task) it is safe to use MSB.
360 */
361 struct util_est {
362 unsigned int enqueued;
363 unsigned int ewma;
364 #define UTIL_EST_WEIGHT_SHIFT 2
365 #define UTIL_AVG_UNCHANGED 0x80000000
366 } __attribute__((__aligned__(sizeof(u64))));
367
368 /*
369 * The load/runnable/util_avg accumulates an infinite geometric series
370 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
371 *
372 * [load_avg definition]
373 *
374 * load_avg = runnable% * scale_load_down(load)
375 *
376 * [runnable_avg definition]
377 *
378 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
379 *
380 * [util_avg definition]
381 *
382 * util_avg = running% * SCHED_CAPACITY_SCALE
383 *
384 * where runnable% is the time ratio that a sched_entity is runnable and
385 * running% the time ratio that a sched_entity is running.
386 *
387 * For cfs_rq, they are the aggregated values of all runnable and blocked
388 * sched_entities.
389 *
390 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
391 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
392 * for computing those signals (see update_rq_clock_pelt())
393 *
394 * N.B., the above ratios (runnable% and running%) themselves are in the
395 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
396 * to as large a range as necessary. This is for example reflected by
397 * util_avg's SCHED_CAPACITY_SCALE.
398 *
399 * [Overflow issue]
400 *
401 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
402 * with the highest load (=88761), always runnable on a single cfs_rq,
403 * and should not overflow as the number already hits PID_MAX_LIMIT.
404 *
405 * For all other cases (including 32-bit kernels), struct load_weight's
406 * weight will overflow first before we do, because:
407 *
408 * Max(load_avg) <= Max(load.weight)
409 *
410 * Then it is the load_weight's responsibility to consider overflow
411 * issues.
412 */
413 struct sched_avg {
414 u64 last_update_time;
415 u64 load_sum;
416 u64 runnable_sum;
417 u32 util_sum;
418 u32 period_contrib;
419 unsigned long load_avg;
420 unsigned long runnable_avg;
421 unsigned long util_avg;
422 struct util_est util_est;
423 } ____cacheline_aligned;
424
425 struct sched_statistics {
426 #ifdef CONFIG_SCHEDSTATS
427 u64 wait_start;
428 u64 wait_max;
429 u64 wait_count;
430 u64 wait_sum;
431 u64 iowait_count;
432 u64 iowait_sum;
433
434 u64 sleep_start;
435 u64 sleep_max;
436 s64 sum_sleep_runtime;
437
438 u64 block_start;
439 u64 block_max;
440 u64 exec_max;
441 u64 slice_max;
442
443 u64 nr_migrations_cold;
444 u64 nr_failed_migrations_affine;
445 u64 nr_failed_migrations_running;
446 u64 nr_failed_migrations_hot;
447 u64 nr_forced_migrations;
448
449 u64 nr_wakeups;
450 u64 nr_wakeups_sync;
451 u64 nr_wakeups_migrate;
452 u64 nr_wakeups_local;
453 u64 nr_wakeups_remote;
454 u64 nr_wakeups_affine;
455 u64 nr_wakeups_affine_attempts;
456 u64 nr_wakeups_passive;
457 u64 nr_wakeups_idle;
458 #endif
459 };
460
461 struct sched_entity {
462 /* For load-balancing: */
463 struct load_weight load;
464 struct rb_node run_node;
465 struct list_head group_node;
466 unsigned int on_rq;
467
468 u64 exec_start;
469 u64 sum_exec_runtime;
470 u64 vruntime;
471 u64 prev_sum_exec_runtime;
472
473 u64 nr_migrations;
474
475 struct sched_statistics statistics;
476
477 #ifdef CONFIG_FAIR_GROUP_SCHED
478 int depth;
479 struct sched_entity *parent;
480 /* rq on which this entity is (to be) queued: */
481 struct cfs_rq *cfs_rq;
482 /* rq "owned" by this entity/group: */
483 struct cfs_rq *my_q;
484 /* cached value of my_q->h_nr_running */
485 unsigned long runnable_weight;
486 #endif
487
488 #ifdef CONFIG_SMP
489 /*
490 * Per entity load average tracking.
491 *
492 * Put into separate cache line so it does not
493 * collide with read-mostly values above.
494 */
495 struct sched_avg avg;
496 #endif
497
498 ANDROID_KABI_RESERVE(1);
499 ANDROID_KABI_RESERVE(2);
500 ANDROID_KABI_RESERVE(3);
501 ANDROID_KABI_RESERVE(4);
502 };
503
504 struct sched_rt_entity {
505 struct list_head run_list;
506 unsigned long timeout;
507 unsigned long watchdog_stamp;
508 unsigned int time_slice;
509 unsigned short on_rq;
510 unsigned short on_list;
511
512 struct sched_rt_entity *back;
513 #ifdef CONFIG_RT_GROUP_SCHED
514 struct sched_rt_entity *parent;
515 /* rq on which this entity is (to be) queued: */
516 struct rt_rq *rt_rq;
517 /* rq "owned" by this entity/group: */
518 struct rt_rq *my_q;
519 #endif
520
521 ANDROID_KABI_RESERVE(1);
522 ANDROID_KABI_RESERVE(2);
523 ANDROID_KABI_RESERVE(3);
524 ANDROID_KABI_RESERVE(4);
525 } __randomize_layout;
526
527 struct sched_dl_entity {
528 struct rb_node rb_node;
529
530 /*
531 * Original scheduling parameters. Copied here from sched_attr
532 * during sched_setattr(), they will remain the same until
533 * the next sched_setattr().
534 */
535 u64 dl_runtime; /* Maximum runtime for each instance */
536 u64 dl_deadline; /* Relative deadline of each instance */
537 u64 dl_period; /* Separation of two instances (period) */
538 u64 dl_bw; /* dl_runtime / dl_period */
539 u64 dl_density; /* dl_runtime / dl_deadline */
540
541 /*
542 * Actual scheduling parameters. Initialized with the values above,
543 * they are continuously updated during task execution. Note that
544 * the remaining runtime could be < 0 in case we are in overrun.
545 */
546 s64 runtime; /* Remaining runtime for this instance */
547 u64 deadline; /* Absolute deadline for this instance */
548 unsigned int flags; /* Specifying the scheduler behaviour */
549
550 /*
551 * Some bool flags:
552 *
553 * @dl_throttled tells if we exhausted the runtime. If so, the
554 * task has to wait for a replenishment to be performed at the
555 * next firing of dl_timer.
556 *
557 * @dl_yielded tells if task gave up the CPU before consuming
558 * all its available runtime during the last job.
559 *
560 * @dl_non_contending tells if the task is inactive while still
561 * contributing to the active utilization. In other words, it
562 * indicates if the inactive timer has been armed and its handler
563 * has not been executed yet. This flag is useful to avoid race
564 * conditions between the inactive timer handler and the wakeup
565 * code.
566 *
567 * @dl_overrun tells if the task asked to be informed about runtime
568 * overruns.
569 */
570 unsigned int dl_throttled : 1;
571 unsigned int dl_yielded : 1;
572 unsigned int dl_non_contending : 1;
573 unsigned int dl_overrun : 1;
574
575 /*
576 * Bandwidth enforcement timer. Each -deadline task has its
577 * own bandwidth to be enforced, thus we need one timer per task.
578 */
579 struct hrtimer dl_timer;
580
581 /*
582 * Inactive timer, responsible for decreasing the active utilization
583 * at the "0-lag time". When a -deadline task blocks, it contributes
584 * to GRUB's active utilization until the "0-lag time", hence a
585 * timer is needed to decrease the active utilization at the correct
586 * time.
587 */
588 struct hrtimer inactive_timer;
589
590 #ifdef CONFIG_RT_MUTEXES
591 /*
592 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
593 * pi_se points to the donor, otherwise points to the dl_se it belongs
594 * to (the original one/itself).
595 */
596 struct sched_dl_entity *pi_se;
597 #endif
598 };
599
600 #ifdef CONFIG_UCLAMP_TASK
601 /* Number of utilization clamp buckets (shorter alias) */
602 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
603
604 /*
605 * Utilization clamp for a scheduling entity
606 * @value: clamp value "assigned" to a se
607 * @bucket_id: bucket index corresponding to the "assigned" value
608 * @active: the se is currently refcounted in a rq's bucket
609 * @user_defined: the requested clamp value comes from user-space
610 *
611 * The bucket_id is the index of the clamp bucket matching the clamp value
612 * which is pre-computed and stored to avoid expensive integer divisions from
613 * the fast path.
614 *
615 * The active bit is set whenever a task has got an "effective" value assigned,
616 * which can be different from the clamp value "requested" from user-space.
617 * This allows to know a task is refcounted in the rq's bucket corresponding
618 * to the "effective" bucket_id.
619 *
620 * The user_defined bit is set whenever a task has got a task-specific clamp
621 * value requested from userspace, i.e. the system defaults apply to this task
622 * just as a restriction. This allows to relax default clamps when a less
623 * restrictive task-specific value has been requested, thus allowing to
624 * implement a "nice" semantic. For example, a task running with a 20%
625 * default boost can still drop its own boosting to 0%.
626 */
627 struct uclamp_se {
628 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
629 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
630 unsigned int active : 1;
631 unsigned int user_defined : 1;
632 };
633 #endif /* CONFIG_UCLAMP_TASK */
634
635 union rcu_special {
636 struct {
637 u8 blocked;
638 u8 need_qs;
639 u8 exp_hint; /* Hint for performance. */
640 u8 need_mb; /* Readers need smp_mb(). */
641 } b; /* Bits. */
642 u32 s; /* Set of bits. */
643 };
644
645 enum perf_event_task_context {
646 perf_invalid_context = -1,
647 perf_hw_context = 0,
648 perf_sw_context,
649 perf_nr_task_contexts,
650 };
651
652 struct wake_q_node {
653 struct wake_q_node *next;
654 };
655
656 struct task_struct {
657 #ifdef CONFIG_THREAD_INFO_IN_TASK
658 /*
659 * For reasons of header soup (see current_thread_info()), this
660 * must be the first element of task_struct.
661 */
662 struct thread_info thread_info;
663 #endif
664 /* -1 unrunnable, 0 runnable, >0 stopped: */
665 volatile long state;
666
667 /*
668 * This begins the randomizable portion of task_struct. Only
669 * scheduling-critical items should be added above here.
670 */
671 randomized_struct_fields_start
672
673 void *stack;
674 refcount_t usage;
675 /* Per task flags (PF_*), defined further below: */
676 unsigned int flags;
677 unsigned int ptrace;
678
679 #ifdef CONFIG_SMP
680 int on_cpu;
681 struct __call_single_node wake_entry;
682 #ifdef CONFIG_THREAD_INFO_IN_TASK
683 /* Current CPU: */
684 unsigned int cpu;
685 #endif
686 unsigned int wakee_flips;
687 unsigned long wakee_flip_decay_ts;
688 struct task_struct *last_wakee;
689
690 /*
691 * recent_used_cpu is initially set as the last CPU used by a task
692 * that wakes affine another task. Waker/wakee relationships can
693 * push tasks around a CPU where each wakeup moves to the next one.
694 * Tracking a recently used CPU allows a quick search for a recently
695 * used CPU that may be idle.
696 */
697 int recent_used_cpu;
698 int wake_cpu;
699 #endif
700 int on_rq;
701
702 int prio;
703 int static_prio;
704 int normal_prio;
705 unsigned int rt_priority;
706
707 const struct sched_class *sched_class;
708 struct sched_entity se;
709 struct sched_rt_entity rt;
710 #ifdef CONFIG_CGROUP_SCHED
711 struct task_group *sched_task_group;
712 #endif
713 struct sched_dl_entity dl;
714
715 #ifdef CONFIG_UCLAMP_TASK
716 /*
717 * Clamp values requested for a scheduling entity.
718 * Must be updated with task_rq_lock() held.
719 */
720 struct uclamp_se uclamp_req[UCLAMP_CNT];
721 /*
722 * Effective clamp values used for a scheduling entity.
723 * Must be updated with task_rq_lock() held.
724 */
725 struct uclamp_se uclamp[UCLAMP_CNT];
726 #endif
727
728 #ifdef CONFIG_HOTPLUG_CPU
729 struct list_head percpu_kthread_node;
730 #endif
731
732 #ifdef CONFIG_PREEMPT_NOTIFIERS
733 /* List of struct preempt_notifier: */
734 struct hlist_head preempt_notifiers;
735 #endif
736
737 #ifdef CONFIG_BLK_DEV_IO_TRACE
738 unsigned int btrace_seq;
739 #endif
740
741 unsigned int policy;
742 int nr_cpus_allowed;
743 const cpumask_t *cpus_ptr;
744 cpumask_t cpus_mask;
745
746 #ifdef CONFIG_PREEMPT_RCU
747 int rcu_read_lock_nesting;
748 union rcu_special rcu_read_unlock_special;
749 struct list_head rcu_node_entry;
750 struct rcu_node *rcu_blocked_node;
751 #endif /* #ifdef CONFIG_PREEMPT_RCU */
752
753 #ifdef CONFIG_TASKS_RCU
754 unsigned long rcu_tasks_nvcsw;
755 u8 rcu_tasks_holdout;
756 u8 rcu_tasks_idx;
757 int rcu_tasks_idle_cpu;
758 struct list_head rcu_tasks_holdout_list;
759 #endif /* #ifdef CONFIG_TASKS_RCU */
760
761 #ifdef CONFIG_TASKS_TRACE_RCU
762 int trc_reader_nesting;
763 int trc_ipi_to_cpu;
764 union rcu_special trc_reader_special;
765 bool trc_reader_checked;
766 struct list_head trc_holdout_list;
767 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
768
769 struct sched_info sched_info;
770
771 struct list_head tasks;
772 #ifdef CONFIG_SMP
773 struct plist_node pushable_tasks;
774 struct rb_node pushable_dl_tasks;
775 #endif
776
777 struct mm_struct *mm;
778 struct mm_struct *active_mm;
779
780 /* Per-thread vma caching: */
781 struct vmacache vmacache;
782
783 #ifdef SPLIT_RSS_COUNTING
784 struct task_rss_stat rss_stat;
785 #endif
786 int exit_state;
787 int exit_code;
788 int exit_signal;
789 /* The signal sent when the parent dies: */
790 int pdeath_signal;
791 /* JOBCTL_*, siglock protected: */
792 unsigned long jobctl;
793
794 /* Used for emulating ABI behavior of previous Linux versions: */
795 unsigned int personality;
796
797 /* Scheduler bits, serialized by scheduler locks: */
798 unsigned sched_reset_on_fork:1;
799 unsigned sched_contributes_to_load:1;
800 unsigned sched_migrated:1;
801 #ifdef CONFIG_PSI
802 unsigned sched_psi_wake_requeue:1;
803 #endif
804
805 /* Force alignment to the next boundary: */
806 unsigned :0;
807
808 /* Unserialized, strictly 'current' */
809
810 /*
811 * This field must not be in the scheduler word above due to wakelist
812 * queueing no longer being serialized by p->on_cpu. However:
813 *
814 * p->XXX = X; ttwu()
815 * schedule() if (p->on_rq && ..) // false
816 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
817 * deactivate_task() ttwu_queue_wakelist())
818 * p->on_rq = 0; p->sched_remote_wakeup = Y;
819 *
820 * guarantees all stores of 'current' are visible before
821 * ->sched_remote_wakeup gets used, so it can be in this word.
822 */
823 unsigned sched_remote_wakeup:1;
824
825 /* Bit to tell LSMs we're in execve(): */
826 unsigned in_execve:1;
827 unsigned in_iowait:1;
828 #ifndef TIF_RESTORE_SIGMASK
829 unsigned restore_sigmask:1;
830 #endif
831 #ifdef CONFIG_MEMCG
832 unsigned in_user_fault:1;
833 #endif
834 #ifdef CONFIG_COMPAT_BRK
835 unsigned brk_randomized:1;
836 #endif
837 #ifdef CONFIG_CGROUPS
838 /* disallow userland-initiated cgroup migration */
839 unsigned no_cgroup_migration:1;
840 /* task is frozen/stopped (used by the cgroup freezer) */
841 unsigned frozen:1;
842 #endif
843 #ifdef CONFIG_BLK_CGROUP
844 unsigned use_memdelay:1;
845 #endif
846 #ifdef CONFIG_PSI
847 /* Stalled due to lack of memory */
848 unsigned in_memstall:1;
849 #endif
850
851 unsigned long atomic_flags; /* Flags requiring atomic access. */
852
853 struct restart_block restart_block;
854
855 pid_t pid;
856 pid_t tgid;
857
858 #ifdef CONFIG_STACKPROTECTOR
859 /* Canary value for the -fstack-protector GCC feature: */
860 unsigned long stack_canary;
861 #endif
862 /*
863 * Pointers to the (original) parent process, youngest child, younger sibling,
864 * older sibling, respectively. (p->father can be replaced with
865 * p->real_parent->pid)
866 */
867
868 /* Real parent process: */
869 struct task_struct __rcu *real_parent;
870
871 /* Recipient of SIGCHLD, wait4() reports: */
872 struct task_struct __rcu *parent;
873
874 /*
875 * Children/sibling form the list of natural children:
876 */
877 struct list_head children;
878 struct list_head sibling;
879 struct task_struct *group_leader;
880
881 /*
882 * 'ptraced' is the list of tasks this task is using ptrace() on.
883 *
884 * This includes both natural children and PTRACE_ATTACH targets.
885 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
886 */
887 struct list_head ptraced;
888 struct list_head ptrace_entry;
889
890 /* PID/PID hash table linkage. */
891 struct pid *thread_pid;
892 struct hlist_node pid_links[PIDTYPE_MAX];
893 struct list_head thread_group;
894 struct list_head thread_node;
895
896 struct completion *vfork_done;
897
898 /* CLONE_CHILD_SETTID: */
899 int __user *set_child_tid;
900
901 /* CLONE_CHILD_CLEARTID: */
902 int __user *clear_child_tid;
903
904 u64 utime;
905 u64 stime;
906 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
907 u64 utimescaled;
908 u64 stimescaled;
909 #endif
910 u64 gtime;
911 #ifdef CONFIG_CPU_FREQ_TIMES
912 u64 *time_in_state;
913 unsigned int max_state;
914 #endif
915 struct prev_cputime prev_cputime;
916 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
917 struct vtime vtime;
918 #endif
919
920 #ifdef CONFIG_NO_HZ_FULL
921 atomic_t tick_dep_mask;
922 #endif
923 /* Context switch counts: */
924 unsigned long nvcsw;
925 unsigned long nivcsw;
926
927 /* Monotonic time in nsecs: */
928 u64 start_time;
929
930 /* Boot based time in nsecs: */
931 u64 start_boottime;
932
933 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
934 unsigned long min_flt;
935 unsigned long maj_flt;
936
937 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
938 struct posix_cputimers posix_cputimers;
939
940 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
941 struct posix_cputimers_work posix_cputimers_work;
942 #endif
943
944 /* Process credentials: */
945
946 /* Tracer's credentials at attach: */
947 const struct cred __rcu *ptracer_cred;
948
949 /* Objective and real subjective task credentials (COW): */
950 const struct cred __rcu *real_cred;
951
952 /* Effective (overridable) subjective task credentials (COW): */
953 const struct cred __rcu *cred;
954
955 #ifdef CONFIG_KEYS
956 /* Cached requested key. */
957 struct key *cached_requested_key;
958 #endif
959
960 /*
961 * executable name, excluding path.
962 *
963 * - normally initialized setup_new_exec()
964 * - access it with [gs]et_task_comm()
965 * - lock it with task_lock()
966 */
967 char comm[TASK_COMM_LEN];
968
969 struct nameidata *nameidata;
970
971 #ifdef CONFIG_SYSVIPC
972 struct sysv_sem sysvsem;
973 struct sysv_shm sysvshm;
974 #endif
975 #ifdef CONFIG_DETECT_HUNG_TASK
976 unsigned long last_switch_count;
977 unsigned long last_switch_time;
978 #endif
979 /* Filesystem information: */
980 struct fs_struct *fs;
981
982 /* Open file information: */
983 struct files_struct *files;
984
985 #ifdef CONFIG_IO_URING
986 struct io_uring_task *io_uring;
987 #endif
988
989 /* Namespaces: */
990 struct nsproxy *nsproxy;
991
992 /* Signal handlers: */
993 struct signal_struct *signal;
994 struct sighand_struct __rcu *sighand;
995 sigset_t blocked;
996 sigset_t real_blocked;
997 /* Restored if set_restore_sigmask() was used: */
998 sigset_t saved_sigmask;
999 struct sigpending pending;
1000 unsigned long sas_ss_sp;
1001 size_t sas_ss_size;
1002 unsigned int sas_ss_flags;
1003
1004 struct callback_head *task_works;
1005
1006 #ifdef CONFIG_AUDIT
1007 #ifdef CONFIG_AUDITSYSCALL
1008 struct audit_context *audit_context;
1009 #endif
1010 kuid_t loginuid;
1011 unsigned int sessionid;
1012 #endif
1013 struct seccomp seccomp;
1014
1015 /* Thread group tracking: */
1016 u64 parent_exec_id;
1017 u64 self_exec_id;
1018
1019 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1020 spinlock_t alloc_lock;
1021
1022 /* Protection of the PI data structures: */
1023 raw_spinlock_t pi_lock;
1024
1025 struct wake_q_node wake_q;
1026 int wake_q_count;
1027
1028 #ifdef CONFIG_RT_MUTEXES
1029 /* PI waiters blocked on a rt_mutex held by this task: */
1030 struct rb_root_cached pi_waiters;
1031 /* Updated under owner's pi_lock and rq lock */
1032 struct task_struct *pi_top_task;
1033 /* Deadlock detection and priority inheritance handling: */
1034 struct rt_mutex_waiter *pi_blocked_on;
1035 #endif
1036
1037 #ifdef CONFIG_DEBUG_MUTEXES
1038 /* Mutex deadlock detection: */
1039 struct mutex_waiter *blocked_on;
1040 #endif
1041
1042 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1043 int non_block_count;
1044 #endif
1045
1046 #ifdef CONFIG_TRACE_IRQFLAGS
1047 struct irqtrace_events irqtrace;
1048 unsigned int hardirq_threaded;
1049 u64 hardirq_chain_key;
1050 int softirqs_enabled;
1051 int softirq_context;
1052 int irq_config;
1053 #endif
1054
1055 #ifdef CONFIG_LOCKDEP
1056 # define MAX_LOCK_DEPTH 48UL
1057 u64 curr_chain_key;
1058 int lockdep_depth;
1059 unsigned int lockdep_recursion;
1060 struct held_lock held_locks[MAX_LOCK_DEPTH];
1061 #endif
1062
1063 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1064 unsigned int in_ubsan;
1065 #endif
1066
1067 /* Journalling filesystem info: */
1068 void *journal_info;
1069
1070 /* Stacked block device info: */
1071 struct bio_list *bio_list;
1072
1073 #ifdef CONFIG_BLOCK
1074 /* Stack plugging: */
1075 struct blk_plug *plug;
1076 #endif
1077
1078 /* VM state: */
1079 struct reclaim_state *reclaim_state;
1080
1081 struct backing_dev_info *backing_dev_info;
1082
1083 struct io_context *io_context;
1084
1085 #ifdef CONFIG_COMPACTION
1086 struct capture_control *capture_control;
1087 #endif
1088 /* Ptrace state: */
1089 unsigned long ptrace_message;
1090 kernel_siginfo_t *last_siginfo;
1091
1092 struct task_io_accounting ioac;
1093 #ifdef CONFIG_PSI
1094 /* Pressure stall state */
1095 unsigned int psi_flags;
1096 #endif
1097 #ifdef CONFIG_TASK_XACCT
1098 /* Accumulated RSS usage: */
1099 u64 acct_rss_mem1;
1100 /* Accumulated virtual memory usage: */
1101 u64 acct_vm_mem1;
1102 /* stime + utime since last update: */
1103 u64 acct_timexpd;
1104 #endif
1105 #ifdef CONFIG_CPUSETS
1106 /* Protected by ->alloc_lock: */
1107 nodemask_t mems_allowed;
1108 /* Seqence number to catch updates: */
1109 seqcount_spinlock_t mems_allowed_seq;
1110 int cpuset_mem_spread_rotor;
1111 int cpuset_slab_spread_rotor;
1112 #endif
1113 #ifdef CONFIG_CGROUPS
1114 /* Control Group info protected by css_set_lock: */
1115 struct css_set __rcu *cgroups;
1116 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1117 struct list_head cg_list;
1118 #endif
1119 #ifdef CONFIG_X86_CPU_RESCTRL
1120 u32 closid;
1121 u32 rmid;
1122 #endif
1123 #ifdef CONFIG_FUTEX
1124 struct robust_list_head __user *robust_list;
1125 #ifdef CONFIG_COMPAT
1126 struct compat_robust_list_head __user *compat_robust_list;
1127 #endif
1128 struct list_head pi_state_list;
1129 struct futex_pi_state *pi_state_cache;
1130 struct mutex futex_exit_mutex;
1131 unsigned int futex_state;
1132 #endif
1133 #ifdef CONFIG_PERF_EVENTS
1134 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1135 struct mutex perf_event_mutex;
1136 struct list_head perf_event_list;
1137 #endif
1138 #ifdef CONFIG_DEBUG_PREEMPT
1139 unsigned long preempt_disable_ip;
1140 #endif
1141 #ifdef CONFIG_NUMA
1142 /* Protected by alloc_lock: */
1143 struct mempolicy *mempolicy;
1144 short il_prev;
1145 short pref_node_fork;
1146 #endif
1147 #ifdef CONFIG_NUMA_BALANCING
1148 int numa_scan_seq;
1149 unsigned int numa_scan_period;
1150 unsigned int numa_scan_period_max;
1151 int numa_preferred_nid;
1152 unsigned long numa_migrate_retry;
1153 /* Migration stamp: */
1154 u64 node_stamp;
1155 u64 last_task_numa_placement;
1156 u64 last_sum_exec_runtime;
1157 struct callback_head numa_work;
1158
1159 /*
1160 * This pointer is only modified for current in syscall and
1161 * pagefault context (and for tasks being destroyed), so it can be read
1162 * from any of the following contexts:
1163 * - RCU read-side critical section
1164 * - current->numa_group from everywhere
1165 * - task's runqueue locked, task not running
1166 */
1167 struct numa_group __rcu *numa_group;
1168
1169 /*
1170 * numa_faults is an array split into four regions:
1171 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1172 * in this precise order.
1173 *
1174 * faults_memory: Exponential decaying average of faults on a per-node
1175 * basis. Scheduling placement decisions are made based on these
1176 * counts. The values remain static for the duration of a PTE scan.
1177 * faults_cpu: Track the nodes the process was running on when a NUMA
1178 * hinting fault was incurred.
1179 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1180 * during the current scan window. When the scan completes, the counts
1181 * in faults_memory and faults_cpu decay and these values are copied.
1182 */
1183 unsigned long *numa_faults;
1184 unsigned long total_numa_faults;
1185
1186 /*
1187 * numa_faults_locality tracks if faults recorded during the last
1188 * scan window were remote/local or failed to migrate. The task scan
1189 * period is adapted based on the locality of the faults with different
1190 * weights depending on whether they were shared or private faults
1191 */
1192 unsigned long numa_faults_locality[3];
1193
1194 unsigned long numa_pages_migrated;
1195 #endif /* CONFIG_NUMA_BALANCING */
1196
1197 #ifdef CONFIG_RSEQ
1198 struct rseq __user *rseq;
1199 u32 rseq_sig;
1200 /*
1201 * RmW on rseq_event_mask must be performed atomically
1202 * with respect to preemption.
1203 */
1204 unsigned long rseq_event_mask;
1205 #endif
1206
1207 struct tlbflush_unmap_batch tlb_ubc;
1208
1209 union {
1210 refcount_t rcu_users;
1211 struct rcu_head rcu;
1212 };
1213
1214 /* Cache last used pipe for splice(): */
1215 struct pipe_inode_info *splice_pipe;
1216
1217 struct page_frag task_frag;
1218
1219 #ifdef CONFIG_TASK_DELAY_ACCT
1220 struct task_delay_info *delays;
1221 #endif
1222
1223 #ifdef CONFIG_FAULT_INJECTION
1224 int make_it_fail;
1225 unsigned int fail_nth;
1226 #endif
1227 /*
1228 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1229 * balance_dirty_pages() for a dirty throttling pause:
1230 */
1231 int nr_dirtied;
1232 int nr_dirtied_pause;
1233 /* Start of a write-and-pause period: */
1234 unsigned long dirty_paused_when;
1235
1236 #ifdef CONFIG_LATENCYTOP
1237 int latency_record_count;
1238 struct latency_record latency_record[LT_SAVECOUNT];
1239 #endif
1240 /*
1241 * Time slack values; these are used to round up poll() and
1242 * select() etc timeout values. These are in nanoseconds.
1243 */
1244 u64 timer_slack_ns;
1245 u64 default_timer_slack_ns;
1246
1247 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1248 unsigned int kasan_depth;
1249 #endif
1250
1251 #ifdef CONFIG_KCSAN
1252 struct kcsan_ctx kcsan_ctx;
1253 #ifdef CONFIG_TRACE_IRQFLAGS
1254 struct irqtrace_events kcsan_save_irqtrace;
1255 #endif
1256 #endif
1257
1258 #if IS_ENABLED(CONFIG_KUNIT)
1259 struct kunit *kunit_test;
1260 #endif
1261
1262 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1263 /* Index of current stored address in ret_stack: */
1264 int curr_ret_stack;
1265 int curr_ret_depth;
1266
1267 /* Stack of return addresses for return function tracing: */
1268 struct ftrace_ret_stack *ret_stack;
1269
1270 /* Timestamp for last schedule: */
1271 unsigned long long ftrace_timestamp;
1272
1273 /*
1274 * Number of functions that haven't been traced
1275 * because of depth overrun:
1276 */
1277 atomic_t trace_overrun;
1278
1279 /* Pause tracing: */
1280 atomic_t tracing_graph_pause;
1281 #endif
1282
1283 #ifdef CONFIG_TRACING
1284 /* State flags for use by tracers: */
1285 unsigned long trace;
1286
1287 /* Bitmask and counter of trace recursion: */
1288 unsigned long trace_recursion;
1289 #endif /* CONFIG_TRACING */
1290
1291 #ifdef CONFIG_KCOV
1292 /* See kernel/kcov.c for more details. */
1293
1294 /* Coverage collection mode enabled for this task (0 if disabled): */
1295 unsigned int kcov_mode;
1296
1297 /* Size of the kcov_area: */
1298 unsigned int kcov_size;
1299
1300 /* Buffer for coverage collection: */
1301 void *kcov_area;
1302
1303 /* KCOV descriptor wired with this task or NULL: */
1304 struct kcov *kcov;
1305
1306 /* KCOV common handle for remote coverage collection: */
1307 u64 kcov_handle;
1308
1309 /* KCOV sequence number: */
1310 int kcov_sequence;
1311
1312 /* Collect coverage from softirq context: */
1313 unsigned int kcov_softirq;
1314 #endif
1315
1316 #ifdef CONFIG_MEMCG
1317 struct mem_cgroup *memcg_in_oom;
1318 gfp_t memcg_oom_gfp_mask;
1319 int memcg_oom_order;
1320
1321 /* Number of pages to reclaim on returning to userland: */
1322 unsigned int memcg_nr_pages_over_high;
1323
1324 /* Used by memcontrol for targeted memcg charge: */
1325 struct mem_cgroup *active_memcg;
1326 #endif
1327
1328 #ifdef CONFIG_BLK_CGROUP
1329 struct request_queue *throttle_queue;
1330 #endif
1331
1332 #ifdef CONFIG_UPROBES
1333 struct uprobe_task *utask;
1334 #endif
1335 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1336 unsigned int sequential_io;
1337 unsigned int sequential_io_avg;
1338 #endif
1339 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1340 unsigned long task_state_change;
1341 #endif
1342 int pagefault_disabled;
1343 #ifdef CONFIG_MMU
1344 struct task_struct *oom_reaper_list;
1345 #endif
1346 #ifdef CONFIG_VMAP_STACK
1347 struct vm_struct *stack_vm_area;
1348 #endif
1349 #ifdef CONFIG_THREAD_INFO_IN_TASK
1350 /* A live task holds one reference: */
1351 refcount_t stack_refcount;
1352 #endif
1353 #ifdef CONFIG_LIVEPATCH
1354 int patch_state;
1355 #endif
1356 #ifdef CONFIG_SECURITY
1357 /* Used by LSM modules for access restriction: */
1358 void *security;
1359 #endif
1360
1361 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1362 unsigned long lowest_stack;
1363 unsigned long prev_lowest_stack;
1364 #endif
1365
1366 #ifdef CONFIG_X86_MCE
1367 void __user *mce_vaddr;
1368 __u64 mce_kflags;
1369 u64 mce_addr;
1370 __u64 mce_ripv : 1,
1371 mce_whole_page : 1,
1372 __mce_reserved : 62;
1373 struct callback_head mce_kill_me;
1374 int mce_count;
1375 #endif
1376 ANDROID_VENDOR_DATA_ARRAY(1, 64);
1377 ANDROID_OEM_DATA_ARRAY(1, 32);
1378
1379 /* PF_IO_WORKER */
1380 ANDROID_KABI_USE(1, void *pf_io_worker);
1381
1382 ANDROID_KABI_RESERVE(2);
1383 ANDROID_KABI_RESERVE(3);
1384 ANDROID_KABI_RESERVE(4);
1385 ANDROID_KABI_RESERVE(5);
1386 ANDROID_KABI_RESERVE(6);
1387 ANDROID_KABI_RESERVE(7);
1388 ANDROID_KABI_RESERVE(8);
1389
1390 /*
1391 * New fields for task_struct should be added above here, so that
1392 * they are included in the randomized portion of task_struct.
1393 */
1394 randomized_struct_fields_end
1395
1396 /* CPU-specific state of this task: */
1397 struct thread_struct thread;
1398
1399 /*
1400 * WARNING: on x86, 'thread_struct' contains a variable-sized
1401 * structure. It *MUST* be at the end of 'task_struct'.
1402 *
1403 * Do not put anything below here!
1404 */
1405 };
1406
task_pid(struct task_struct * task)1407 static inline struct pid *task_pid(struct task_struct *task)
1408 {
1409 return task->thread_pid;
1410 }
1411
1412 /*
1413 * the helpers to get the task's different pids as they are seen
1414 * from various namespaces
1415 *
1416 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1417 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1418 * current.
1419 * task_xid_nr_ns() : id seen from the ns specified;
1420 *
1421 * see also pid_nr() etc in include/linux/pid.h
1422 */
1423 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1424
task_pid_nr(struct task_struct * tsk)1425 static inline pid_t task_pid_nr(struct task_struct *tsk)
1426 {
1427 return tsk->pid;
1428 }
1429
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1430 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1431 {
1432 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1433 }
1434
task_pid_vnr(struct task_struct * tsk)1435 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1436 {
1437 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1438 }
1439
1440
task_tgid_nr(struct task_struct * tsk)1441 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1442 {
1443 return tsk->tgid;
1444 }
1445
1446 /**
1447 * pid_alive - check that a task structure is not stale
1448 * @p: Task structure to be checked.
1449 *
1450 * Test if a process is not yet dead (at most zombie state)
1451 * If pid_alive fails, then pointers within the task structure
1452 * can be stale and must not be dereferenced.
1453 *
1454 * Return: 1 if the process is alive. 0 otherwise.
1455 */
pid_alive(const struct task_struct * p)1456 static inline int pid_alive(const struct task_struct *p)
1457 {
1458 return p->thread_pid != NULL;
1459 }
1460
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1461 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1462 {
1463 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1464 }
1465
task_pgrp_vnr(struct task_struct * tsk)1466 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1467 {
1468 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1469 }
1470
1471
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1472 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1473 {
1474 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1475 }
1476
task_session_vnr(struct task_struct * tsk)1477 static inline pid_t task_session_vnr(struct task_struct *tsk)
1478 {
1479 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1480 }
1481
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1482 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1483 {
1484 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1485 }
1486
task_tgid_vnr(struct task_struct * tsk)1487 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1488 {
1489 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1490 }
1491
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1492 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1493 {
1494 pid_t pid = 0;
1495
1496 rcu_read_lock();
1497 if (pid_alive(tsk))
1498 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1499 rcu_read_unlock();
1500
1501 return pid;
1502 }
1503
task_ppid_nr(const struct task_struct * tsk)1504 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1505 {
1506 return task_ppid_nr_ns(tsk, &init_pid_ns);
1507 }
1508
1509 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1510 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1511 {
1512 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1513 }
1514
1515 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1516 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1517
task_state_index(struct task_struct * tsk)1518 static inline unsigned int task_state_index(struct task_struct *tsk)
1519 {
1520 unsigned int tsk_state = READ_ONCE(tsk->state);
1521 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1522
1523 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1524
1525 if (tsk_state == TASK_IDLE)
1526 state = TASK_REPORT_IDLE;
1527
1528 return fls(state);
1529 }
1530
task_index_to_char(unsigned int state)1531 static inline char task_index_to_char(unsigned int state)
1532 {
1533 static const char state_char[] = "RSDTtXZPI";
1534
1535 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1536
1537 return state_char[state];
1538 }
1539
task_state_to_char(struct task_struct * tsk)1540 static inline char task_state_to_char(struct task_struct *tsk)
1541 {
1542 return task_index_to_char(task_state_index(tsk));
1543 }
1544
1545 /**
1546 * is_global_init - check if a task structure is init. Since init
1547 * is free to have sub-threads we need to check tgid.
1548 * @tsk: Task structure to be checked.
1549 *
1550 * Check if a task structure is the first user space task the kernel created.
1551 *
1552 * Return: 1 if the task structure is init. 0 otherwise.
1553 */
is_global_init(struct task_struct * tsk)1554 static inline int is_global_init(struct task_struct *tsk)
1555 {
1556 return task_tgid_nr(tsk) == 1;
1557 }
1558
1559 extern struct pid *cad_pid;
1560
1561 /*
1562 * Per process flags
1563 */
1564 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1565 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1566 #define PF_EXITING 0x00000004 /* Getting shut down */
1567 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1568 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1569 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1570 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1571 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1572 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1573 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1574 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1575 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1576 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1577 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1578 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1579 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1580 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1581 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1582 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1583 * I am cleaning dirty pages from some other bdi. */
1584 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1585 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1586 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1587 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1588 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1589 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1590 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1591 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1592
1593 /*
1594 * Only the _current_ task can read/write to tsk->flags, but other
1595 * tasks can access tsk->flags in readonly mode for example
1596 * with tsk_used_math (like during threaded core dumping).
1597 * There is however an exception to this rule during ptrace
1598 * or during fork: the ptracer task is allowed to write to the
1599 * child->flags of its traced child (same goes for fork, the parent
1600 * can write to the child->flags), because we're guaranteed the
1601 * child is not running and in turn not changing child->flags
1602 * at the same time the parent does it.
1603 */
1604 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1605 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1606 #define clear_used_math() clear_stopped_child_used_math(current)
1607 #define set_used_math() set_stopped_child_used_math(current)
1608
1609 #define conditional_stopped_child_used_math(condition, child) \
1610 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1611
1612 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1613
1614 #define copy_to_stopped_child_used_math(child) \
1615 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1616
1617 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1618 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1619 #define used_math() tsk_used_math(current)
1620
is_percpu_thread(void)1621 static __always_inline bool is_percpu_thread(void)
1622 {
1623 #ifdef CONFIG_SMP
1624 return (current->flags & PF_NO_SETAFFINITY) &&
1625 (current->nr_cpus_allowed == 1);
1626 #else
1627 return true;
1628 #endif
1629 }
1630
1631 /* Per-process atomic flags. */
1632 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1633 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1634 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1635 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1636 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1637 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1638 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1639 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1640
1641 #define TASK_PFA_TEST(name, func) \
1642 static inline bool task_##func(struct task_struct *p) \
1643 { return test_bit(PFA_##name, &p->atomic_flags); }
1644
1645 #define TASK_PFA_SET(name, func) \
1646 static inline void task_set_##func(struct task_struct *p) \
1647 { set_bit(PFA_##name, &p->atomic_flags); }
1648
1649 #define TASK_PFA_CLEAR(name, func) \
1650 static inline void task_clear_##func(struct task_struct *p) \
1651 { clear_bit(PFA_##name, &p->atomic_flags); }
1652
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1653 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1654 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1655
1656 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1657 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1658 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1659
1660 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1661 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1662 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1663
1664 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1665 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1666 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1667
1668 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1669 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1670 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1671
1672 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1673 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1674
1675 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1676 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1677 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1678
1679 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1680 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1681
1682 static inline void
1683 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1684 {
1685 current->flags &= ~flags;
1686 current->flags |= orig_flags & flags;
1687 }
1688
1689 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1690
1691 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
1692 extern bool cpupri_check_rt(void);
1693 #else
cpupri_check_rt(void)1694 static inline bool cpupri_check_rt(void)
1695 {
1696 return false;
1697 }
1698 #endif
1699
1700 extern int task_can_attach(struct task_struct *p);
1701 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1702 extern void dl_bw_free(int cpu, u64 dl_bw);
1703 #ifdef CONFIG_SMP
1704 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1705 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1706 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1707 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1708 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1709 {
1710 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1711 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1712 {
1713 if (!cpumask_test_cpu(0, new_mask))
1714 return -EINVAL;
1715 return 0;
1716 }
1717 #endif
1718
1719 extern int yield_to(struct task_struct *p, bool preempt);
1720 extern void set_user_nice(struct task_struct *p, long nice);
1721 extern int task_prio(const struct task_struct *p);
1722
1723 /**
1724 * task_nice - return the nice value of a given task.
1725 * @p: the task in question.
1726 *
1727 * Return: The nice value [ -20 ... 0 ... 19 ].
1728 */
task_nice(const struct task_struct * p)1729 static inline int task_nice(const struct task_struct *p)
1730 {
1731 return PRIO_TO_NICE((p)->static_prio);
1732 }
1733
1734 extern int can_nice(const struct task_struct *p, const int nice);
1735 extern int task_curr(const struct task_struct *p);
1736 extern int idle_cpu(int cpu);
1737 extern int available_idle_cpu(int cpu);
1738 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1739 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1740 extern void sched_set_fifo(struct task_struct *p);
1741 extern void sched_set_fifo_low(struct task_struct *p);
1742 extern void sched_set_normal(struct task_struct *p, int nice);
1743 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1744 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1745 extern struct task_struct *idle_task(int cpu);
1746
1747 /**
1748 * is_idle_task - is the specified task an idle task?
1749 * @p: the task in question.
1750 *
1751 * Return: 1 if @p is an idle task. 0 otherwise.
1752 */
is_idle_task(const struct task_struct * p)1753 static __always_inline bool is_idle_task(const struct task_struct *p)
1754 {
1755 return !!(p->flags & PF_IDLE);
1756 }
1757
1758 extern struct task_struct *curr_task(int cpu);
1759 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1760
1761 void yield(void);
1762
1763 union thread_union {
1764 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1765 struct task_struct task;
1766 #endif
1767 #ifndef CONFIG_THREAD_INFO_IN_TASK
1768 struct thread_info thread_info;
1769 #endif
1770 unsigned long stack[THREAD_SIZE/sizeof(long)];
1771 };
1772
1773 #ifndef CONFIG_THREAD_INFO_IN_TASK
1774 extern struct thread_info init_thread_info;
1775 #endif
1776
1777 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1778
1779 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1780 static inline struct thread_info *task_thread_info(struct task_struct *task)
1781 {
1782 return &task->thread_info;
1783 }
1784 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1785 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1786 #endif
1787
1788 /*
1789 * find a task by one of its numerical ids
1790 *
1791 * find_task_by_pid_ns():
1792 * finds a task by its pid in the specified namespace
1793 * find_task_by_vpid():
1794 * finds a task by its virtual pid
1795 *
1796 * see also find_vpid() etc in include/linux/pid.h
1797 */
1798
1799 extern struct task_struct *find_task_by_vpid(pid_t nr);
1800 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1801
1802 /*
1803 * find a task by its virtual pid and get the task struct
1804 */
1805 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1806
1807 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1808 extern int wake_up_process(struct task_struct *tsk);
1809 extern void wake_up_new_task(struct task_struct *tsk);
1810
1811 #ifdef CONFIG_SMP
1812 extern void kick_process(struct task_struct *tsk);
1813 #else
kick_process(struct task_struct * tsk)1814 static inline void kick_process(struct task_struct *tsk) { }
1815 #endif
1816
1817 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1818
set_task_comm(struct task_struct * tsk,const char * from)1819 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1820 {
1821 __set_task_comm(tsk, from, false);
1822 }
1823
1824 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1825 #define get_task_comm(buf, tsk) ({ \
1826 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1827 __get_task_comm(buf, sizeof(buf), tsk); \
1828 })
1829
1830 #ifdef CONFIG_SMP
scheduler_ipi(void)1831 static __always_inline void scheduler_ipi(void)
1832 {
1833 /*
1834 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1835 * TIF_NEED_RESCHED remotely (for the first time) will also send
1836 * this IPI.
1837 */
1838 preempt_fold_need_resched();
1839 }
1840 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1841 #else
scheduler_ipi(void)1842 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)1843 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1844 {
1845 return 1;
1846 }
1847 #endif
1848
1849 /*
1850 * Set thread flags in other task's structures.
1851 * See asm/thread_info.h for TIF_xxxx flags available:
1852 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1853 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1854 {
1855 set_ti_thread_flag(task_thread_info(tsk), flag);
1856 }
1857
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1858 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1859 {
1860 clear_ti_thread_flag(task_thread_info(tsk), flag);
1861 }
1862
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1863 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1864 bool value)
1865 {
1866 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1867 }
1868
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1869 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1870 {
1871 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1872 }
1873
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1874 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1875 {
1876 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1877 }
1878
test_tsk_thread_flag(struct task_struct * tsk,int flag)1879 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1880 {
1881 return test_ti_thread_flag(task_thread_info(tsk), flag);
1882 }
1883
set_tsk_need_resched(struct task_struct * tsk)1884 static inline void set_tsk_need_resched(struct task_struct *tsk)
1885 {
1886 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1887 }
1888
clear_tsk_need_resched(struct task_struct * tsk)1889 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1890 {
1891 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1892 }
1893
test_tsk_need_resched(struct task_struct * tsk)1894 static inline int test_tsk_need_resched(struct task_struct *tsk)
1895 {
1896 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1897 }
1898
1899 /*
1900 * cond_resched() and cond_resched_lock(): latency reduction via
1901 * explicit rescheduling in places that are safe. The return
1902 * value indicates whether a reschedule was done in fact.
1903 * cond_resched_lock() will drop the spinlock before scheduling,
1904 */
1905 #ifndef CONFIG_PREEMPTION
1906 extern int _cond_resched(void);
1907 #else
_cond_resched(void)1908 static inline int _cond_resched(void) { return 0; }
1909 #endif
1910
1911 #define cond_resched() ({ \
1912 ___might_sleep(__FILE__, __LINE__, 0); \
1913 _cond_resched(); \
1914 })
1915
1916 extern int __cond_resched_lock(spinlock_t *lock);
1917
1918 #define cond_resched_lock(lock) ({ \
1919 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1920 __cond_resched_lock(lock); \
1921 })
1922
cond_resched_rcu(void)1923 static inline void cond_resched_rcu(void)
1924 {
1925 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1926 rcu_read_unlock();
1927 cond_resched();
1928 rcu_read_lock();
1929 #endif
1930 }
1931
1932 /*
1933 * Does a critical section need to be broken due to another
1934 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1935 * but a general need for low latency)
1936 */
spin_needbreak(spinlock_t * lock)1937 static inline int spin_needbreak(spinlock_t *lock)
1938 {
1939 #ifdef CONFIG_PREEMPTION
1940 return spin_is_contended(lock);
1941 #else
1942 return 0;
1943 #endif
1944 }
1945
need_resched(void)1946 static __always_inline bool need_resched(void)
1947 {
1948 return unlikely(tif_need_resched());
1949 }
1950
1951 /*
1952 * Wrappers for p->thread_info->cpu access. No-op on UP.
1953 */
1954 #ifdef CONFIG_SMP
1955
task_cpu(const struct task_struct * p)1956 static inline unsigned int task_cpu(const struct task_struct *p)
1957 {
1958 #ifdef CONFIG_THREAD_INFO_IN_TASK
1959 return READ_ONCE(p->cpu);
1960 #else
1961 return READ_ONCE(task_thread_info(p)->cpu);
1962 #endif
1963 }
1964
1965 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1966
1967 #else
1968
task_cpu(const struct task_struct * p)1969 static inline unsigned int task_cpu(const struct task_struct *p)
1970 {
1971 return 0;
1972 }
1973
set_task_cpu(struct task_struct * p,unsigned int cpu)1974 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1975 {
1976 }
1977
1978 #endif /* CONFIG_SMP */
1979
1980 /*
1981 * In order to reduce various lock holder preemption latencies provide an
1982 * interface to see if a vCPU is currently running or not.
1983 *
1984 * This allows us to terminate optimistic spin loops and block, analogous to
1985 * the native optimistic spin heuristic of testing if the lock owner task is
1986 * running or not.
1987 */
1988 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)1989 static inline bool vcpu_is_preempted(int cpu)
1990 {
1991 return false;
1992 }
1993 #endif
1994
1995 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1996 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1997
1998 #ifndef TASK_SIZE_OF
1999 #define TASK_SIZE_OF(tsk) TASK_SIZE
2000 #endif
2001
2002 #ifdef CONFIG_RSEQ
2003
2004 /*
2005 * Map the event mask on the user-space ABI enum rseq_cs_flags
2006 * for direct mask checks.
2007 */
2008 enum rseq_event_mask_bits {
2009 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2010 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2011 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2012 };
2013
2014 enum rseq_event_mask {
2015 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2016 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2017 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2018 };
2019
rseq_set_notify_resume(struct task_struct * t)2020 static inline void rseq_set_notify_resume(struct task_struct *t)
2021 {
2022 if (t->rseq)
2023 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2024 }
2025
2026 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2027
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2028 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2029 struct pt_regs *regs)
2030 {
2031 if (current->rseq)
2032 __rseq_handle_notify_resume(ksig, regs);
2033 }
2034
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2035 static inline void rseq_signal_deliver(struct ksignal *ksig,
2036 struct pt_regs *regs)
2037 {
2038 preempt_disable();
2039 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2040 preempt_enable();
2041 rseq_handle_notify_resume(ksig, regs);
2042 }
2043
2044 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2045 static inline void rseq_preempt(struct task_struct *t)
2046 {
2047 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2048 rseq_set_notify_resume(t);
2049 }
2050
2051 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2052 static inline void rseq_migrate(struct task_struct *t)
2053 {
2054 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2055 rseq_set_notify_resume(t);
2056 }
2057
2058 /*
2059 * If parent process has a registered restartable sequences area, the
2060 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2061 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2062 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2063 {
2064 if (clone_flags & CLONE_VM) {
2065 t->rseq = NULL;
2066 t->rseq_sig = 0;
2067 t->rseq_event_mask = 0;
2068 } else {
2069 t->rseq = current->rseq;
2070 t->rseq_sig = current->rseq_sig;
2071 t->rseq_event_mask = current->rseq_event_mask;
2072 }
2073 }
2074
rseq_execve(struct task_struct * t)2075 static inline void rseq_execve(struct task_struct *t)
2076 {
2077 t->rseq = NULL;
2078 t->rseq_sig = 0;
2079 t->rseq_event_mask = 0;
2080 }
2081
2082 #else
2083
rseq_set_notify_resume(struct task_struct * t)2084 static inline void rseq_set_notify_resume(struct task_struct *t)
2085 {
2086 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2087 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2088 struct pt_regs *regs)
2089 {
2090 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2091 static inline void rseq_signal_deliver(struct ksignal *ksig,
2092 struct pt_regs *regs)
2093 {
2094 }
rseq_preempt(struct task_struct * t)2095 static inline void rseq_preempt(struct task_struct *t)
2096 {
2097 }
rseq_migrate(struct task_struct * t)2098 static inline void rseq_migrate(struct task_struct *t)
2099 {
2100 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2101 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2102 {
2103 }
rseq_execve(struct task_struct * t)2104 static inline void rseq_execve(struct task_struct *t)
2105 {
2106 }
2107
2108 #endif
2109
2110 #ifdef CONFIG_DEBUG_RSEQ
2111
2112 void rseq_syscall(struct pt_regs *regs);
2113
2114 #else
2115
rseq_syscall(struct pt_regs * regs)2116 static inline void rseq_syscall(struct pt_regs *regs)
2117 {
2118 }
2119
2120 #endif
2121
2122 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2123 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2124 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2125
2126 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2127 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2128 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2129
2130 int sched_trace_rq_cpu(struct rq *rq);
2131 int sched_trace_rq_cpu_capacity(struct rq *rq);
2132 int sched_trace_rq_nr_running(struct rq *rq);
2133
2134 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2135
2136 #endif
2137