1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 #include <trace/hooks/ipv4.h>
284
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 long sysctl_tcp_mem[3] __read_mostly;
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290
291 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293
294 #if IS_ENABLED(CONFIG_SMC)
295 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
296 EXPORT_SYMBOL(tcp_have_smc);
297 #endif
298
299 /*
300 * Current number of TCP sockets.
301 */
302 struct percpu_counter tcp_sockets_allocated;
303 EXPORT_SYMBOL(tcp_sockets_allocated);
304
305 /*
306 * TCP splice context
307 */
308 struct tcp_splice_state {
309 struct pipe_inode_info *pipe;
310 size_t len;
311 unsigned int flags;
312 };
313
314 /*
315 * Pressure flag: try to collapse.
316 * Technical note: it is used by multiple contexts non atomically.
317 * All the __sk_mem_schedule() is of this nature: accounting
318 * is strict, actions are advisory and have some latency.
319 */
320 unsigned long tcp_memory_pressure __read_mostly;
321 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
322
323 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
324 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
325
326 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
327
tcp_enter_memory_pressure(struct sock * sk)328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 unsigned long val;
331
332 if (READ_ONCE(tcp_memory_pressure))
333 return;
334 val = jiffies;
335
336 if (!val)
337 val--;
338 if (!cmpxchg(&tcp_memory_pressure, 0, val))
339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
340 }
341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
342
tcp_leave_memory_pressure(struct sock * sk)343 void tcp_leave_memory_pressure(struct sock *sk)
344 {
345 unsigned long val;
346
347 if (!READ_ONCE(tcp_memory_pressure))
348 return;
349 val = xchg(&tcp_memory_pressure, 0);
350 if (val)
351 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
352 jiffies_to_msecs(jiffies - val));
353 }
354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
355
356 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 {
359 u8 res = 0;
360
361 if (seconds > 0) {
362 int period = timeout;
363
364 res = 1;
365 while (seconds > period && res < 255) {
366 res++;
367 timeout <<= 1;
368 if (timeout > rto_max)
369 timeout = rto_max;
370 period += timeout;
371 }
372 }
373 return res;
374 }
375
376 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
378 {
379 int period = 0;
380
381 if (retrans > 0) {
382 period = timeout;
383 while (--retrans) {
384 timeout <<= 1;
385 if (timeout > rto_max)
386 timeout = rto_max;
387 period += timeout;
388 }
389 }
390 return period;
391 }
392
tcp_compute_delivery_rate(const struct tcp_sock * tp)393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
394 {
395 u32 rate = READ_ONCE(tp->rate_delivered);
396 u32 intv = READ_ONCE(tp->rate_interval_us);
397 u64 rate64 = 0;
398
399 if (rate && intv) {
400 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
401 do_div(rate64, intv);
402 }
403 return rate64;
404 }
405
406 /* Address-family independent initialization for a tcp_sock.
407 *
408 * NOTE: A lot of things set to zero explicitly by call to
409 * sk_alloc() so need not be done here.
410 */
tcp_init_sock(struct sock * sk)411 void tcp_init_sock(struct sock *sk)
412 {
413 struct inet_connection_sock *icsk = inet_csk(sk);
414 struct tcp_sock *tp = tcp_sk(sk);
415
416 tp->out_of_order_queue = RB_ROOT;
417 sk->tcp_rtx_queue = RB_ROOT;
418 tcp_init_xmit_timers(sk);
419 INIT_LIST_HEAD(&tp->tsq_node);
420 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
421
422 icsk->icsk_rto = TCP_TIMEOUT_INIT;
423 icsk->icsk_rto_min = TCP_RTO_MIN;
424 icsk->icsk_delack_max = TCP_DELACK_MAX;
425 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
426 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
427
428 /* So many TCP implementations out there (incorrectly) count the
429 * initial SYN frame in their delayed-ACK and congestion control
430 * algorithms that we must have the following bandaid to talk
431 * efficiently to them. -DaveM
432 */
433 tp->snd_cwnd = TCP_INIT_CWND;
434
435 /* There's a bubble in the pipe until at least the first ACK. */
436 tp->app_limited = ~0U;
437 tp->rate_app_limited = 1;
438
439 /* See draft-stevens-tcpca-spec-01 for discussion of the
440 * initialization of these values.
441 */
442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 tp->snd_cwnd_clamp = ~0;
444 tp->mss_cache = TCP_MSS_DEFAULT;
445
446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 tcp_assign_congestion_control(sk);
448
449 tp->tsoffset = 0;
450 tp->rack.reo_wnd_steps = 1;
451
452 sk->sk_write_space = sk_stream_write_space;
453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454
455 icsk->icsk_sync_mss = tcp_sync_mss;
456
457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
459
460 sk_sockets_allocated_inc(sk);
461 sk->sk_route_forced_caps = NETIF_F_GSO;
462 }
463 EXPORT_SYMBOL(tcp_init_sock);
464
tcp_tx_timestamp(struct sock * sk,u16 tsflags)465 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
466 {
467 struct sk_buff *skb = tcp_write_queue_tail(sk);
468
469 if (tsflags && skb) {
470 struct skb_shared_info *shinfo = skb_shinfo(skb);
471 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
472
473 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
474 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
475 tcb->txstamp_ack = 1;
476 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
477 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
478 }
479 }
480
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)481 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
482 int target, struct sock *sk)
483 {
484 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
485
486 if (avail > 0) {
487 if (avail >= target)
488 return true;
489 if (tcp_rmem_pressure(sk))
490 return true;
491 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
492 return true;
493 }
494 if (sk->sk_prot->stream_memory_read)
495 return sk->sk_prot->stream_memory_read(sk);
496 return false;
497 }
498
499 /*
500 * Wait for a TCP event.
501 *
502 * Note that we don't need to lock the socket, as the upper poll layers
503 * take care of normal races (between the test and the event) and we don't
504 * go look at any of the socket buffers directly.
505 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)506 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
507 {
508 __poll_t mask;
509 struct sock *sk = sock->sk;
510 const struct tcp_sock *tp = tcp_sk(sk);
511 u8 shutdown;
512 int state;
513
514 sock_poll_wait(file, sock, wait);
515
516 state = inet_sk_state_load(sk);
517 if (state == TCP_LISTEN)
518 return inet_csk_listen_poll(sk);
519
520 /* Socket is not locked. We are protected from async events
521 * by poll logic and correct handling of state changes
522 * made by other threads is impossible in any case.
523 */
524
525 mask = 0;
526
527 /*
528 * EPOLLHUP is certainly not done right. But poll() doesn't
529 * have a notion of HUP in just one direction, and for a
530 * socket the read side is more interesting.
531 *
532 * Some poll() documentation says that EPOLLHUP is incompatible
533 * with the EPOLLOUT/POLLWR flags, so somebody should check this
534 * all. But careful, it tends to be safer to return too many
535 * bits than too few, and you can easily break real applications
536 * if you don't tell them that something has hung up!
537 *
538 * Check-me.
539 *
540 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
541 * our fs/select.c). It means that after we received EOF,
542 * poll always returns immediately, making impossible poll() on write()
543 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
544 * if and only if shutdown has been made in both directions.
545 * Actually, it is interesting to look how Solaris and DUX
546 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
547 * then we could set it on SND_SHUTDOWN. BTW examples given
548 * in Stevens' books assume exactly this behaviour, it explains
549 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
550 *
551 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
552 * blocking on fresh not-connected or disconnected socket. --ANK
553 */
554 shutdown = READ_ONCE(sk->sk_shutdown);
555 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
556 mask |= EPOLLHUP;
557 if (shutdown & RCV_SHUTDOWN)
558 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
559
560 /* Connected or passive Fast Open socket? */
561 if (state != TCP_SYN_SENT &&
562 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
563 int target = sock_rcvlowat(sk, 0, INT_MAX);
564
565 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
566 !sock_flag(sk, SOCK_URGINLINE) &&
567 tp->urg_data)
568 target++;
569
570 if (tcp_stream_is_readable(tp, target, sk))
571 mask |= EPOLLIN | EPOLLRDNORM;
572
573 if (!(shutdown & SEND_SHUTDOWN)) {
574 if (__sk_stream_is_writeable(sk, 1)) {
575 mask |= EPOLLOUT | EPOLLWRNORM;
576 } else { /* send SIGIO later */
577 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
578 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
579
580 /* Race breaker. If space is freed after
581 * wspace test but before the flags are set,
582 * IO signal will be lost. Memory barrier
583 * pairs with the input side.
584 */
585 smp_mb__after_atomic();
586 if (__sk_stream_is_writeable(sk, 1))
587 mask |= EPOLLOUT | EPOLLWRNORM;
588 }
589 } else
590 mask |= EPOLLOUT | EPOLLWRNORM;
591
592 if (tp->urg_data & TCP_URG_VALID)
593 mask |= EPOLLPRI;
594 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
595 /* Active TCP fastopen socket with defer_connect
596 * Return EPOLLOUT so application can call write()
597 * in order for kernel to generate SYN+data
598 */
599 mask |= EPOLLOUT | EPOLLWRNORM;
600 }
601 /* This barrier is coupled with smp_wmb() in tcp_reset() */
602 smp_rmb();
603 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
604 mask |= EPOLLERR;
605
606 return mask;
607 }
608 EXPORT_SYMBOL(tcp_poll);
609
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)610 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
611 {
612 struct tcp_sock *tp = tcp_sk(sk);
613 int answ;
614 bool slow;
615
616 switch (cmd) {
617 case SIOCINQ:
618 if (sk->sk_state == TCP_LISTEN)
619 return -EINVAL;
620
621 slow = lock_sock_fast(sk);
622 answ = tcp_inq(sk);
623 unlock_sock_fast(sk, slow);
624 break;
625 case SIOCATMARK:
626 answ = tp->urg_data &&
627 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
628 break;
629 case SIOCOUTQ:
630 if (sk->sk_state == TCP_LISTEN)
631 return -EINVAL;
632
633 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 answ = 0;
635 else
636 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
637 break;
638 case SIOCOUTQNSD:
639 if (sk->sk_state == TCP_LISTEN)
640 return -EINVAL;
641
642 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
643 answ = 0;
644 else
645 answ = READ_ONCE(tp->write_seq) -
646 READ_ONCE(tp->snd_nxt);
647 break;
648 default:
649 return -ENOIOCTLCMD;
650 }
651
652 return put_user(answ, (int __user *)arg);
653 }
654 EXPORT_SYMBOL(tcp_ioctl);
655
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)656 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
657 {
658 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
659 tp->pushed_seq = tp->write_seq;
660 }
661
forced_push(const struct tcp_sock * tp)662 static inline bool forced_push(const struct tcp_sock *tp)
663 {
664 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
665 }
666
skb_entail(struct sock * sk,struct sk_buff * skb)667 static void skb_entail(struct sock *sk, struct sk_buff *skb)
668 {
669 struct tcp_sock *tp = tcp_sk(sk);
670 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
671
672 skb->csum = 0;
673 tcb->seq = tcb->end_seq = tp->write_seq;
674 tcb->tcp_flags = TCPHDR_ACK;
675 tcb->sacked = 0;
676 __skb_header_release(skb);
677 tcp_add_write_queue_tail(sk, skb);
678 sk_wmem_queued_add(sk, skb->truesize);
679 sk_mem_charge(sk, skb->truesize);
680 if (tp->nonagle & TCP_NAGLE_PUSH)
681 tp->nonagle &= ~TCP_NAGLE_PUSH;
682
683 tcp_slow_start_after_idle_check(sk);
684 }
685
tcp_mark_urg(struct tcp_sock * tp,int flags)686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
687 {
688 if (flags & MSG_OOB)
689 tp->snd_up = tp->write_seq;
690 }
691
692 /* If a not yet filled skb is pushed, do not send it if
693 * we have data packets in Qdisc or NIC queues :
694 * Because TX completion will happen shortly, it gives a chance
695 * to coalesce future sendmsg() payload into this skb, without
696 * need for a timer, and with no latency trade off.
697 * As packets containing data payload have a bigger truesize
698 * than pure acks (dataless) packets, the last checks prevent
699 * autocorking if we only have an ACK in Qdisc/NIC queues,
700 * or if TX completion was delayed after we processed ACK packet.
701 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
703 int size_goal)
704 {
705 return skb->len < size_goal &&
706 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
707 !tcp_rtx_queue_empty(sk) &&
708 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
709 }
710
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)711 void tcp_push(struct sock *sk, int flags, int mss_now,
712 int nonagle, int size_goal)
713 {
714 struct tcp_sock *tp = tcp_sk(sk);
715 struct sk_buff *skb;
716
717 skb = tcp_write_queue_tail(sk);
718 if (!skb)
719 return;
720 if (!(flags & MSG_MORE) || forced_push(tp))
721 tcp_mark_push(tp, skb);
722
723 tcp_mark_urg(tp, flags);
724
725 if (tcp_should_autocork(sk, skb, size_goal)) {
726
727 /* avoid atomic op if TSQ_THROTTLED bit is already set */
728 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
729 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
730 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
731 smp_mb__after_atomic();
732 }
733 /* It is possible TX completion already happened
734 * before we set TSQ_THROTTLED.
735 */
736 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
737 return;
738 }
739
740 if (flags & MSG_MORE)
741 nonagle = TCP_NAGLE_CORK;
742
743 __tcp_push_pending_frames(sk, mss_now, nonagle);
744 }
745
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)746 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
747 unsigned int offset, size_t len)
748 {
749 struct tcp_splice_state *tss = rd_desc->arg.data;
750 int ret;
751
752 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
753 min(rd_desc->count, len), tss->flags);
754 if (ret > 0)
755 rd_desc->count -= ret;
756 return ret;
757 }
758
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)759 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
760 {
761 /* Store TCP splice context information in read_descriptor_t. */
762 read_descriptor_t rd_desc = {
763 .arg.data = tss,
764 .count = tss->len,
765 };
766
767 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
768 }
769
770 /**
771 * tcp_splice_read - splice data from TCP socket to a pipe
772 * @sock: socket to splice from
773 * @ppos: position (not valid)
774 * @pipe: pipe to splice to
775 * @len: number of bytes to splice
776 * @flags: splice modifier flags
777 *
778 * Description:
779 * Will read pages from given socket and fill them into a pipe.
780 *
781 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)782 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
783 struct pipe_inode_info *pipe, size_t len,
784 unsigned int flags)
785 {
786 struct sock *sk = sock->sk;
787 struct tcp_splice_state tss = {
788 .pipe = pipe,
789 .len = len,
790 .flags = flags,
791 };
792 long timeo;
793 ssize_t spliced;
794 int ret;
795
796 sock_rps_record_flow(sk);
797 /*
798 * We can't seek on a socket input
799 */
800 if (unlikely(*ppos))
801 return -ESPIPE;
802
803 ret = spliced = 0;
804
805 lock_sock(sk);
806
807 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
808 while (tss.len) {
809 ret = __tcp_splice_read(sk, &tss);
810 if (ret < 0)
811 break;
812 else if (!ret) {
813 if (spliced)
814 break;
815 if (sock_flag(sk, SOCK_DONE))
816 break;
817 if (sk->sk_err) {
818 ret = sock_error(sk);
819 break;
820 }
821 if (sk->sk_shutdown & RCV_SHUTDOWN)
822 break;
823 if (sk->sk_state == TCP_CLOSE) {
824 /*
825 * This occurs when user tries to read
826 * from never connected socket.
827 */
828 ret = -ENOTCONN;
829 break;
830 }
831 if (!timeo) {
832 ret = -EAGAIN;
833 break;
834 }
835 /* if __tcp_splice_read() got nothing while we have
836 * an skb in receive queue, we do not want to loop.
837 * This might happen with URG data.
838 */
839 if (!skb_queue_empty(&sk->sk_receive_queue))
840 break;
841 sk_wait_data(sk, &timeo, NULL);
842 if (signal_pending(current)) {
843 ret = sock_intr_errno(timeo);
844 break;
845 }
846 continue;
847 }
848 tss.len -= ret;
849 spliced += ret;
850
851 if (!timeo)
852 break;
853 release_sock(sk);
854 lock_sock(sk);
855
856 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
857 (sk->sk_shutdown & RCV_SHUTDOWN) ||
858 signal_pending(current))
859 break;
860 }
861
862 release_sock(sk);
863
864 if (spliced)
865 return spliced;
866
867 return ret;
868 }
869 EXPORT_SYMBOL(tcp_splice_read);
870
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)871 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
872 bool force_schedule)
873 {
874 struct sk_buff *skb;
875
876 if (likely(!size)) {
877 skb = sk->sk_tx_skb_cache;
878 if (skb) {
879 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
880 sk->sk_tx_skb_cache = NULL;
881 pskb_trim(skb, 0);
882 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
883 skb_shinfo(skb)->tx_flags = 0;
884 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
885 return skb;
886 }
887 }
888 /* The TCP header must be at least 32-bit aligned. */
889 size = ALIGN(size, 4);
890
891 if (unlikely(tcp_under_memory_pressure(sk)))
892 sk_mem_reclaim_partial(sk);
893
894 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
895 if (likely(skb)) {
896 bool mem_scheduled;
897
898 if (force_schedule) {
899 mem_scheduled = true;
900 sk_forced_mem_schedule(sk, skb->truesize);
901 } else {
902 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
903 }
904 if (likely(mem_scheduled)) {
905 skb_reserve(skb, sk->sk_prot->max_header);
906 /*
907 * Make sure that we have exactly size bytes
908 * available to the caller, no more, no less.
909 */
910 skb->reserved_tailroom = skb->end - skb->tail - size;
911 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
912 return skb;
913 }
914 __kfree_skb(skb);
915 } else {
916 sk->sk_prot->enter_memory_pressure(sk);
917 sk_stream_moderate_sndbuf(sk);
918 }
919 return NULL;
920 }
921
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)922 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
923 int large_allowed)
924 {
925 struct tcp_sock *tp = tcp_sk(sk);
926 u32 new_size_goal, size_goal;
927
928 if (!large_allowed)
929 return mss_now;
930
931 /* Note : tcp_tso_autosize() will eventually split this later */
932 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
933 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
934
935 /* We try hard to avoid divides here */
936 size_goal = tp->gso_segs * mss_now;
937 if (unlikely(new_size_goal < size_goal ||
938 new_size_goal >= size_goal + mss_now)) {
939 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
940 sk->sk_gso_max_segs);
941 size_goal = tp->gso_segs * mss_now;
942 }
943
944 return max(size_goal, mss_now);
945 }
946
tcp_send_mss(struct sock * sk,int * size_goal,int flags)947 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
948 {
949 int mss_now;
950
951 mss_now = tcp_current_mss(sk);
952 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
953
954 return mss_now;
955 }
956
957 /* In some cases, both sendpage() and sendmsg() could have added
958 * an skb to the write queue, but failed adding payload on it.
959 * We need to remove it to consume less memory, but more
960 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
961 * users.
962 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)963 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
964 {
965 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
966 tcp_unlink_write_queue(skb, sk);
967 if (tcp_write_queue_empty(sk))
968 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
969 sk_wmem_free_skb(sk, skb);
970 }
971 }
972
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)973 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
974 size_t size, int flags)
975 {
976 struct tcp_sock *tp = tcp_sk(sk);
977 int mss_now, size_goal;
978 int err;
979 ssize_t copied;
980 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
981
982 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
983 WARN_ONCE(!sendpage_ok(page),
984 "page must not be a Slab one and have page_count > 0"))
985 return -EINVAL;
986
987 /* Wait for a connection to finish. One exception is TCP Fast Open
988 * (passive side) where data is allowed to be sent before a connection
989 * is fully established.
990 */
991 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
992 !tcp_passive_fastopen(sk)) {
993 err = sk_stream_wait_connect(sk, &timeo);
994 if (err != 0)
995 goto out_err;
996 }
997
998 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
999
1000 mss_now = tcp_send_mss(sk, &size_goal, flags);
1001 copied = 0;
1002
1003 err = -EPIPE;
1004 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1005 goto out_err;
1006
1007 while (size > 0) {
1008 struct sk_buff *skb = tcp_write_queue_tail(sk);
1009 int copy, i;
1010 bool can_coalesce;
1011
1012 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1013 !tcp_skb_can_collapse_to(skb)) {
1014 new_segment:
1015 if (!sk_stream_memory_free(sk))
1016 goto wait_for_space;
1017
1018 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1019 tcp_rtx_and_write_queues_empty(sk));
1020 if (!skb)
1021 goto wait_for_space;
1022
1023 #ifdef CONFIG_TLS_DEVICE
1024 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1025 #endif
1026 skb_entail(sk, skb);
1027 copy = size_goal;
1028 }
1029
1030 if (copy > size)
1031 copy = size;
1032
1033 i = skb_shinfo(skb)->nr_frags;
1034 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1035 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1036 tcp_mark_push(tp, skb);
1037 goto new_segment;
1038 }
1039 if (!sk_wmem_schedule(sk, copy))
1040 goto wait_for_space;
1041
1042 if (can_coalesce) {
1043 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1044 } else {
1045 get_page(page);
1046 skb_fill_page_desc(skb, i, page, offset, copy);
1047 }
1048
1049 if (!(flags & MSG_NO_SHARED_FRAGS))
1050 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1051
1052 skb->len += copy;
1053 skb->data_len += copy;
1054 skb->truesize += copy;
1055 sk_wmem_queued_add(sk, copy);
1056 sk_mem_charge(sk, copy);
1057 skb->ip_summed = CHECKSUM_PARTIAL;
1058 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1059 TCP_SKB_CB(skb)->end_seq += copy;
1060 tcp_skb_pcount_set(skb, 0);
1061
1062 if (!copied)
1063 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1064
1065 copied += copy;
1066 offset += copy;
1067 size -= copy;
1068 if (!size)
1069 goto out;
1070
1071 if (skb->len < size_goal || (flags & MSG_OOB))
1072 continue;
1073
1074 if (forced_push(tp)) {
1075 tcp_mark_push(tp, skb);
1076 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1077 } else if (skb == tcp_send_head(sk))
1078 tcp_push_one(sk, mss_now);
1079 continue;
1080
1081 wait_for_space:
1082 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1083 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1084 TCP_NAGLE_PUSH, size_goal);
1085
1086 err = sk_stream_wait_memory(sk, &timeo);
1087 if (err != 0)
1088 goto do_error;
1089
1090 mss_now = tcp_send_mss(sk, &size_goal, flags);
1091 }
1092
1093 out:
1094 if (copied) {
1095 tcp_tx_timestamp(sk, sk->sk_tsflags);
1096 if (!(flags & MSG_SENDPAGE_NOTLAST))
1097 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1098 }
1099 return copied;
1100
1101 do_error:
1102 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1103 if (copied)
1104 goto out;
1105 out_err:
1106 /* make sure we wake any epoll edge trigger waiter */
1107 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1108 sk->sk_write_space(sk);
1109 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1110 }
1111 return sk_stream_error(sk, flags, err);
1112 }
1113 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1114
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1115 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1116 size_t size, int flags)
1117 {
1118 if (!(sk->sk_route_caps & NETIF_F_SG))
1119 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1120
1121 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1122
1123 return do_tcp_sendpages(sk, page, offset, size, flags);
1124 }
1125 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1126
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1127 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1128 size_t size, int flags)
1129 {
1130 int ret;
1131
1132 lock_sock(sk);
1133 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1134 release_sock(sk);
1135
1136 return ret;
1137 }
1138 EXPORT_SYMBOL(tcp_sendpage);
1139
tcp_free_fastopen_req(struct tcp_sock * tp)1140 void tcp_free_fastopen_req(struct tcp_sock *tp)
1141 {
1142 if (tp->fastopen_req) {
1143 kfree(tp->fastopen_req);
1144 tp->fastopen_req = NULL;
1145 }
1146 }
1147
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1148 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1149 int *copied, size_t size,
1150 struct ubuf_info *uarg)
1151 {
1152 struct tcp_sock *tp = tcp_sk(sk);
1153 struct inet_sock *inet = inet_sk(sk);
1154 struct sockaddr *uaddr = msg->msg_name;
1155 int err, flags;
1156
1157 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1158 TFO_CLIENT_ENABLE) ||
1159 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1160 uaddr->sa_family == AF_UNSPEC))
1161 return -EOPNOTSUPP;
1162 if (tp->fastopen_req)
1163 return -EALREADY; /* Another Fast Open is in progress */
1164
1165 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1166 sk->sk_allocation);
1167 if (unlikely(!tp->fastopen_req))
1168 return -ENOBUFS;
1169 tp->fastopen_req->data = msg;
1170 tp->fastopen_req->size = size;
1171 tp->fastopen_req->uarg = uarg;
1172
1173 if (inet->defer_connect) {
1174 err = tcp_connect(sk);
1175 /* Same failure procedure as in tcp_v4/6_connect */
1176 if (err) {
1177 tcp_set_state(sk, TCP_CLOSE);
1178 inet->inet_dport = 0;
1179 sk->sk_route_caps = 0;
1180 }
1181 }
1182 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1183 err = __inet_stream_connect(sk->sk_socket, uaddr,
1184 msg->msg_namelen, flags, 1);
1185 /* fastopen_req could already be freed in __inet_stream_connect
1186 * if the connection times out or gets rst
1187 */
1188 if (tp->fastopen_req) {
1189 *copied = tp->fastopen_req->copied;
1190 tcp_free_fastopen_req(tp);
1191 inet->defer_connect = 0;
1192 }
1193 return err;
1194 }
1195
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1196 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1197 {
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 struct ubuf_info *uarg = NULL;
1200 struct sk_buff *skb;
1201 struct sockcm_cookie sockc;
1202 int flags, err, copied = 0;
1203 int mss_now = 0, size_goal, copied_syn = 0;
1204 int process_backlog = 0;
1205 bool zc = false;
1206 long timeo;
1207
1208 trace_android_rvh_tcp_sendmsg_locked(sk, size);
1209 flags = msg->msg_flags;
1210
1211 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1212 skb = tcp_write_queue_tail(sk);
1213 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1214 if (!uarg) {
1215 err = -ENOBUFS;
1216 goto out_err;
1217 }
1218
1219 zc = sk->sk_route_caps & NETIF_F_SG;
1220 if (!zc)
1221 uarg->zerocopy = 0;
1222 }
1223
1224 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1225 !tp->repair) {
1226 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1227 if (err == -EINPROGRESS && copied_syn > 0)
1228 goto out;
1229 else if (err)
1230 goto out_err;
1231 }
1232
1233 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1234
1235 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1236
1237 /* Wait for a connection to finish. One exception is TCP Fast Open
1238 * (passive side) where data is allowed to be sent before a connection
1239 * is fully established.
1240 */
1241 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1242 !tcp_passive_fastopen(sk)) {
1243 err = sk_stream_wait_connect(sk, &timeo);
1244 if (err != 0)
1245 goto do_error;
1246 }
1247
1248 if (unlikely(tp->repair)) {
1249 if (tp->repair_queue == TCP_RECV_QUEUE) {
1250 copied = tcp_send_rcvq(sk, msg, size);
1251 goto out_nopush;
1252 }
1253
1254 err = -EINVAL;
1255 if (tp->repair_queue == TCP_NO_QUEUE)
1256 goto out_err;
1257
1258 /* 'common' sending to sendq */
1259 }
1260
1261 sockcm_init(&sockc, sk);
1262 if (msg->msg_controllen) {
1263 err = sock_cmsg_send(sk, msg, &sockc);
1264 if (unlikely(err)) {
1265 err = -EINVAL;
1266 goto out_err;
1267 }
1268 }
1269
1270 /* This should be in poll */
1271 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1272
1273 /* Ok commence sending. */
1274 copied = 0;
1275
1276 restart:
1277 mss_now = tcp_send_mss(sk, &size_goal, flags);
1278
1279 err = -EPIPE;
1280 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1281 goto do_error;
1282
1283 while (msg_data_left(msg)) {
1284 int copy = 0;
1285
1286 skb = tcp_write_queue_tail(sk);
1287 if (skb)
1288 copy = size_goal - skb->len;
1289
1290 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1291 bool first_skb;
1292
1293 new_segment:
1294 if (!sk_stream_memory_free(sk))
1295 goto wait_for_space;
1296
1297 if (unlikely(process_backlog >= 16)) {
1298 process_backlog = 0;
1299 if (sk_flush_backlog(sk))
1300 goto restart;
1301 }
1302 first_skb = tcp_rtx_and_write_queues_empty(sk);
1303 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1304 first_skb);
1305 if (!skb)
1306 goto wait_for_space;
1307
1308 process_backlog++;
1309 skb->ip_summed = CHECKSUM_PARTIAL;
1310
1311 skb_entail(sk, skb);
1312 copy = size_goal;
1313
1314 /* All packets are restored as if they have
1315 * already been sent. skb_mstamp_ns isn't set to
1316 * avoid wrong rtt estimation.
1317 */
1318 if (tp->repair)
1319 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1320 }
1321
1322 /* Try to append data to the end of skb. */
1323 if (copy > msg_data_left(msg))
1324 copy = msg_data_left(msg);
1325
1326 /* Where to copy to? */
1327 if (skb_availroom(skb) > 0 && !zc) {
1328 /* We have some space in skb head. Superb! */
1329 copy = min_t(int, copy, skb_availroom(skb));
1330 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1331 if (err)
1332 goto do_fault;
1333 } else if (!zc) {
1334 bool merge = true;
1335 int i = skb_shinfo(skb)->nr_frags;
1336 struct page_frag *pfrag = sk_page_frag(sk);
1337
1338 if (!sk_page_frag_refill(sk, pfrag))
1339 goto wait_for_space;
1340
1341 if (!skb_can_coalesce(skb, i, pfrag->page,
1342 pfrag->offset)) {
1343 if (i >= sysctl_max_skb_frags) {
1344 tcp_mark_push(tp, skb);
1345 goto new_segment;
1346 }
1347 merge = false;
1348 }
1349
1350 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1351
1352 if (!sk_wmem_schedule(sk, copy))
1353 goto wait_for_space;
1354
1355 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1356 pfrag->page,
1357 pfrag->offset,
1358 copy);
1359 if (err)
1360 goto do_error;
1361
1362 /* Update the skb. */
1363 if (merge) {
1364 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1365 } else {
1366 skb_fill_page_desc(skb, i, pfrag->page,
1367 pfrag->offset, copy);
1368 page_ref_inc(pfrag->page);
1369 }
1370 pfrag->offset += copy;
1371 } else {
1372 if (!sk_wmem_schedule(sk, copy))
1373 goto wait_for_space;
1374
1375 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1376 if (err == -EMSGSIZE || err == -EEXIST) {
1377 tcp_mark_push(tp, skb);
1378 goto new_segment;
1379 }
1380 if (err < 0)
1381 goto do_error;
1382 copy = err;
1383 }
1384
1385 if (!copied)
1386 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1387
1388 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1389 TCP_SKB_CB(skb)->end_seq += copy;
1390 tcp_skb_pcount_set(skb, 0);
1391
1392 copied += copy;
1393 if (!msg_data_left(msg)) {
1394 if (unlikely(flags & MSG_EOR))
1395 TCP_SKB_CB(skb)->eor = 1;
1396 goto out;
1397 }
1398
1399 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1400 continue;
1401
1402 if (forced_push(tp)) {
1403 tcp_mark_push(tp, skb);
1404 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1405 } else if (skb == tcp_send_head(sk))
1406 tcp_push_one(sk, mss_now);
1407 continue;
1408
1409 wait_for_space:
1410 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1411 if (copied)
1412 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1413 TCP_NAGLE_PUSH, size_goal);
1414
1415 err = sk_stream_wait_memory(sk, &timeo);
1416 if (err != 0)
1417 goto do_error;
1418
1419 mss_now = tcp_send_mss(sk, &size_goal, flags);
1420 }
1421
1422 out:
1423 if (copied) {
1424 tcp_tx_timestamp(sk, sockc.tsflags);
1425 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1426 }
1427 out_nopush:
1428 sock_zerocopy_put(uarg);
1429 return copied + copied_syn;
1430
1431 do_error:
1432 skb = tcp_write_queue_tail(sk);
1433 do_fault:
1434 tcp_remove_empty_skb(sk, skb);
1435
1436 if (copied + copied_syn)
1437 goto out;
1438 out_err:
1439 sock_zerocopy_put_abort(uarg, true);
1440 err = sk_stream_error(sk, flags, err);
1441 /* make sure we wake any epoll edge trigger waiter */
1442 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1443 sk->sk_write_space(sk);
1444 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1445 }
1446 return err;
1447 }
1448 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1449
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1450 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1451 {
1452 int ret;
1453
1454 lock_sock(sk);
1455 ret = tcp_sendmsg_locked(sk, msg, size);
1456 release_sock(sk);
1457
1458 return ret;
1459 }
1460 EXPORT_SYMBOL(tcp_sendmsg);
1461
1462 /*
1463 * Handle reading urgent data. BSD has very simple semantics for
1464 * this, no blocking and very strange errors 8)
1465 */
1466
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1467 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1468 {
1469 struct tcp_sock *tp = tcp_sk(sk);
1470
1471 /* No URG data to read. */
1472 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1473 tp->urg_data == TCP_URG_READ)
1474 return -EINVAL; /* Yes this is right ! */
1475
1476 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1477 return -ENOTCONN;
1478
1479 if (tp->urg_data & TCP_URG_VALID) {
1480 int err = 0;
1481 char c = tp->urg_data;
1482
1483 if (!(flags & MSG_PEEK))
1484 tp->urg_data = TCP_URG_READ;
1485
1486 /* Read urgent data. */
1487 msg->msg_flags |= MSG_OOB;
1488
1489 if (len > 0) {
1490 if (!(flags & MSG_TRUNC))
1491 err = memcpy_to_msg(msg, &c, 1);
1492 len = 1;
1493 } else
1494 msg->msg_flags |= MSG_TRUNC;
1495
1496 return err ? -EFAULT : len;
1497 }
1498
1499 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1500 return 0;
1501
1502 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1503 * the available implementations agree in this case:
1504 * this call should never block, independent of the
1505 * blocking state of the socket.
1506 * Mike <pall@rz.uni-karlsruhe.de>
1507 */
1508 return -EAGAIN;
1509 }
1510
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1511 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1512 {
1513 struct sk_buff *skb;
1514 int copied = 0, err = 0;
1515
1516 /* XXX -- need to support SO_PEEK_OFF */
1517
1518 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1519 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1520 if (err)
1521 return err;
1522 copied += skb->len;
1523 }
1524
1525 skb_queue_walk(&sk->sk_write_queue, skb) {
1526 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1527 if (err)
1528 break;
1529
1530 copied += skb->len;
1531 }
1532
1533 return err ?: copied;
1534 }
1535
1536 /* Clean up the receive buffer for full frames taken by the user,
1537 * then send an ACK if necessary. COPIED is the number of bytes
1538 * tcp_recvmsg has given to the user so far, it speeds up the
1539 * calculation of whether or not we must ACK for the sake of
1540 * a window update.
1541 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1542 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1543 {
1544 struct tcp_sock *tp = tcp_sk(sk);
1545 bool time_to_ack = false;
1546
1547 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1548
1549 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1550 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1551 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1552
1553 if (inet_csk_ack_scheduled(sk)) {
1554 const struct inet_connection_sock *icsk = inet_csk(sk);
1555
1556 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1557 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1558 /*
1559 * If this read emptied read buffer, we send ACK, if
1560 * connection is not bidirectional, user drained
1561 * receive buffer and there was a small segment
1562 * in queue.
1563 */
1564 (copied > 0 &&
1565 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1566 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1567 !inet_csk_in_pingpong_mode(sk))) &&
1568 !atomic_read(&sk->sk_rmem_alloc)))
1569 time_to_ack = true;
1570 }
1571
1572 /* We send an ACK if we can now advertise a non-zero window
1573 * which has been raised "significantly".
1574 *
1575 * Even if window raised up to infinity, do not send window open ACK
1576 * in states, where we will not receive more. It is useless.
1577 */
1578 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1579 __u32 rcv_window_now = tcp_receive_window(tp);
1580
1581 /* Optimize, __tcp_select_window() is not cheap. */
1582 if (2*rcv_window_now <= tp->window_clamp) {
1583 __u32 new_window = __tcp_select_window(sk);
1584
1585 /* Send ACK now, if this read freed lots of space
1586 * in our buffer. Certainly, new_window is new window.
1587 * We can advertise it now, if it is not less than current one.
1588 * "Lots" means "at least twice" here.
1589 */
1590 if (new_window && new_window >= 2 * rcv_window_now)
1591 time_to_ack = true;
1592 }
1593 }
1594 if (time_to_ack)
1595 tcp_send_ack(sk);
1596 }
1597
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1598 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1599 {
1600 struct sk_buff *skb;
1601 u32 offset;
1602
1603 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1604 offset = seq - TCP_SKB_CB(skb)->seq;
1605 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1606 pr_err_once("%s: found a SYN, please report !\n", __func__);
1607 offset--;
1608 }
1609 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1610 *off = offset;
1611 return skb;
1612 }
1613 /* This looks weird, but this can happen if TCP collapsing
1614 * splitted a fat GRO packet, while we released socket lock
1615 * in skb_splice_bits()
1616 */
1617 sk_eat_skb(sk, skb);
1618 }
1619 return NULL;
1620 }
1621
1622 /*
1623 * This routine provides an alternative to tcp_recvmsg() for routines
1624 * that would like to handle copying from skbuffs directly in 'sendfile'
1625 * fashion.
1626 * Note:
1627 * - It is assumed that the socket was locked by the caller.
1628 * - The routine does not block.
1629 * - At present, there is no support for reading OOB data
1630 * or for 'peeking' the socket using this routine
1631 * (although both would be easy to implement).
1632 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1633 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1634 sk_read_actor_t recv_actor)
1635 {
1636 struct sk_buff *skb;
1637 struct tcp_sock *tp = tcp_sk(sk);
1638 u32 seq = tp->copied_seq;
1639 u32 offset;
1640 int copied = 0;
1641
1642 if (sk->sk_state == TCP_LISTEN)
1643 return -ENOTCONN;
1644 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1645 if (offset < skb->len) {
1646 int used;
1647 size_t len;
1648
1649 len = skb->len - offset;
1650 /* Stop reading if we hit a patch of urgent data */
1651 if (tp->urg_data) {
1652 u32 urg_offset = tp->urg_seq - seq;
1653 if (urg_offset < len)
1654 len = urg_offset;
1655 if (!len)
1656 break;
1657 }
1658 used = recv_actor(desc, skb, offset, len);
1659 if (used <= 0) {
1660 if (!copied)
1661 copied = used;
1662 break;
1663 }
1664 if (WARN_ON_ONCE(used > len))
1665 used = len;
1666 seq += used;
1667 copied += used;
1668 offset += used;
1669
1670 /* If recv_actor drops the lock (e.g. TCP splice
1671 * receive) the skb pointer might be invalid when
1672 * getting here: tcp_collapse might have deleted it
1673 * while aggregating skbs from the socket queue.
1674 */
1675 skb = tcp_recv_skb(sk, seq - 1, &offset);
1676 if (!skb)
1677 break;
1678 /* TCP coalescing might have appended data to the skb.
1679 * Try to splice more frags
1680 */
1681 if (offset + 1 != skb->len)
1682 continue;
1683 }
1684 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1685 sk_eat_skb(sk, skb);
1686 ++seq;
1687 break;
1688 }
1689 sk_eat_skb(sk, skb);
1690 if (!desc->count)
1691 break;
1692 WRITE_ONCE(tp->copied_seq, seq);
1693 }
1694 WRITE_ONCE(tp->copied_seq, seq);
1695
1696 tcp_rcv_space_adjust(sk);
1697
1698 /* Clean up data we have read: This will do ACK frames. */
1699 if (copied > 0) {
1700 tcp_recv_skb(sk, seq, &offset);
1701 tcp_cleanup_rbuf(sk, copied);
1702 }
1703 return copied;
1704 }
1705 EXPORT_SYMBOL(tcp_read_sock);
1706
tcp_peek_len(struct socket * sock)1707 int tcp_peek_len(struct socket *sock)
1708 {
1709 return tcp_inq(sock->sk);
1710 }
1711 EXPORT_SYMBOL(tcp_peek_len);
1712
1713 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1714 int tcp_set_rcvlowat(struct sock *sk, int val)
1715 {
1716 int cap;
1717
1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 cap = sk->sk_rcvbuf >> 1;
1720 else
1721 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1722 val = min(val, cap);
1723 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1724
1725 /* Check if we need to signal EPOLLIN right now */
1726 tcp_data_ready(sk);
1727
1728 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1729 return 0;
1730
1731 val <<= 1;
1732 if (val > sk->sk_rcvbuf) {
1733 WRITE_ONCE(sk->sk_rcvbuf, val);
1734 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1735 }
1736 return 0;
1737 }
1738 EXPORT_SYMBOL(tcp_set_rcvlowat);
1739
1740 #ifdef CONFIG_MMU
1741 static const struct vm_operations_struct tcp_vm_ops = {
1742 };
1743
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1744 int tcp_mmap(struct file *file, struct socket *sock,
1745 struct vm_area_struct *vma)
1746 {
1747 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1748 return -EPERM;
1749 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1750
1751 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1752 vma->vm_flags |= VM_MIXEDMAP;
1753
1754 vma->vm_ops = &tcp_vm_ops;
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(tcp_mmap);
1758
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1759 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1760 u32 *offset_frag)
1761 {
1762 skb_frag_t *frag;
1763
1764 if (unlikely(offset_skb >= skb->len))
1765 return NULL;
1766
1767 offset_skb -= skb_headlen(skb);
1768 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1769 return NULL;
1770
1771 frag = skb_shinfo(skb)->frags;
1772 while (offset_skb) {
1773 if (skb_frag_size(frag) > offset_skb) {
1774 *offset_frag = offset_skb;
1775 return frag;
1776 }
1777 offset_skb -= skb_frag_size(frag);
1778 ++frag;
1779 }
1780 *offset_frag = 0;
1781 return frag;
1782 }
1783
can_map_frag(const skb_frag_t * frag)1784 static bool can_map_frag(const skb_frag_t *frag)
1785 {
1786 struct page *page;
1787
1788 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1789 return false;
1790
1791 page = skb_frag_page(frag);
1792
1793 if (PageCompound(page) || page->mapping)
1794 return false;
1795
1796 return true;
1797 }
1798
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1799 static int find_next_mappable_frag(const skb_frag_t *frag,
1800 int remaining_in_skb)
1801 {
1802 int offset = 0;
1803
1804 if (likely(can_map_frag(frag)))
1805 return 0;
1806
1807 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1808 offset += skb_frag_size(frag);
1809 ++frag;
1810 }
1811 return offset;
1812 }
1813
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1814 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1815 struct sk_buff *skb, u32 copylen,
1816 u32 *offset, u32 *seq)
1817 {
1818 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1819 struct msghdr msg = {};
1820 struct iovec iov;
1821 int err;
1822
1823 if (copy_address != zc->copybuf_address)
1824 return -EINVAL;
1825
1826 err = import_single_range(READ, (void __user *)copy_address,
1827 copylen, &iov, &msg.msg_iter);
1828 if (err)
1829 return err;
1830 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1831 if (err)
1832 return err;
1833 zc->recv_skip_hint -= copylen;
1834 *offset += copylen;
1835 *seq += copylen;
1836 return (__s32)copylen;
1837 }
1838
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1839 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1840 struct sock *sk,
1841 struct sk_buff *skb,
1842 u32 *seq,
1843 s32 copybuf_len)
1844 {
1845 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1846
1847 if (!copylen)
1848 return 0;
1849 /* skb is null if inq < PAGE_SIZE. */
1850 if (skb)
1851 offset = *seq - TCP_SKB_CB(skb)->seq;
1852 else
1853 skb = tcp_recv_skb(sk, *seq, &offset);
1854
1855 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1856 seq);
1857 return zc->copybuf_len < 0 ? 0 : copylen;
1858 }
1859
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1860 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1861 struct page **pages,
1862 unsigned long pages_to_map,
1863 unsigned long *insert_addr,
1864 u32 *length_with_pending,
1865 u32 *seq,
1866 struct tcp_zerocopy_receive *zc)
1867 {
1868 unsigned long pages_remaining = pages_to_map;
1869 int bytes_mapped;
1870 int ret;
1871
1872 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1873 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1874 /* Even if vm_insert_pages fails, it may have partially succeeded in
1875 * mapping (some but not all of the pages).
1876 */
1877 *seq += bytes_mapped;
1878 *insert_addr += bytes_mapped;
1879 if (ret) {
1880 /* But if vm_insert_pages did fail, we have to unroll some state
1881 * we speculatively touched before.
1882 */
1883 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1884 *length_with_pending -= bytes_not_mapped;
1885 zc->recv_skip_hint += bytes_not_mapped;
1886 }
1887 return ret;
1888 }
1889
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1890 static int tcp_zerocopy_receive(struct sock *sk,
1891 struct tcp_zerocopy_receive *zc)
1892 {
1893 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1894 unsigned long address = (unsigned long)zc->address;
1895 s32 copybuf_len = zc->copybuf_len;
1896 struct tcp_sock *tp = tcp_sk(sk);
1897 #define PAGE_BATCH_SIZE 8
1898 struct page *pages[PAGE_BATCH_SIZE];
1899 const skb_frag_t *frags = NULL;
1900 struct vm_area_struct *vma;
1901 struct sk_buff *skb = NULL;
1902 unsigned long pg_idx = 0;
1903 unsigned long curr_addr;
1904 u32 seq = tp->copied_seq;
1905 int inq = tcp_inq(sk);
1906 int ret;
1907
1908 zc->copybuf_len = 0;
1909
1910 if (address & (PAGE_SIZE - 1) || address != zc->address)
1911 return -EINVAL;
1912
1913 if (sk->sk_state == TCP_LISTEN)
1914 return -ENOTCONN;
1915
1916 sock_rps_record_flow(sk);
1917
1918 mmap_read_lock(current->mm);
1919
1920 vma = find_vma(current->mm, address);
1921 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1922 mmap_read_unlock(current->mm);
1923 return -EINVAL;
1924 }
1925 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1926 avail_len = min_t(u32, vma_len, inq);
1927 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1928 if (aligned_len) {
1929 zap_page_range(vma, address, aligned_len);
1930 zc->length = aligned_len;
1931 zc->recv_skip_hint = 0;
1932 } else {
1933 zc->length = avail_len;
1934 zc->recv_skip_hint = avail_len;
1935 }
1936 ret = 0;
1937 curr_addr = address;
1938 while (length + PAGE_SIZE <= zc->length) {
1939 int mappable_offset;
1940
1941 if (zc->recv_skip_hint < PAGE_SIZE) {
1942 u32 offset_frag;
1943
1944 /* If we're here, finish the current batch. */
1945 if (pg_idx) {
1946 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1947 pg_idx,
1948 &curr_addr,
1949 &length,
1950 &seq, zc);
1951 if (ret)
1952 goto out;
1953 pg_idx = 0;
1954 }
1955 if (skb) {
1956 if (zc->recv_skip_hint > 0)
1957 break;
1958 skb = skb->next;
1959 offset = seq - TCP_SKB_CB(skb)->seq;
1960 } else {
1961 skb = tcp_recv_skb(sk, seq, &offset);
1962 }
1963 zc->recv_skip_hint = skb->len - offset;
1964 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1965 if (!frags || offset_frag)
1966 break;
1967 }
1968
1969 mappable_offset = find_next_mappable_frag(frags,
1970 zc->recv_skip_hint);
1971 if (mappable_offset) {
1972 zc->recv_skip_hint = mappable_offset;
1973 break;
1974 }
1975 pages[pg_idx] = skb_frag_page(frags);
1976 pg_idx++;
1977 length += PAGE_SIZE;
1978 zc->recv_skip_hint -= PAGE_SIZE;
1979 frags++;
1980 if (pg_idx == PAGE_BATCH_SIZE) {
1981 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1982 &curr_addr, &length,
1983 &seq, zc);
1984 if (ret)
1985 goto out;
1986 pg_idx = 0;
1987 }
1988 }
1989 if (pg_idx) {
1990 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1991 &curr_addr, &length, &seq,
1992 zc);
1993 }
1994 out:
1995 mmap_read_unlock(current->mm);
1996 /* Try to copy straggler data. */
1997 if (!ret)
1998 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1999 copybuf_len);
2000
2001 if (length + copylen) {
2002 WRITE_ONCE(tp->copied_seq, seq);
2003 tcp_rcv_space_adjust(sk);
2004
2005 /* Clean up data we have read: This will do ACK frames. */
2006 tcp_recv_skb(sk, seq, &offset);
2007 tcp_cleanup_rbuf(sk, length + copylen);
2008 ret = 0;
2009 if (length == zc->length)
2010 zc->recv_skip_hint = 0;
2011 } else {
2012 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2013 ret = -EIO;
2014 }
2015 zc->length = length;
2016 return ret;
2017 }
2018 #endif
2019
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)2020 static void tcp_update_recv_tstamps(struct sk_buff *skb,
2021 struct scm_timestamping_internal *tss)
2022 {
2023 if (skb->tstamp)
2024 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2025 else
2026 tss->ts[0] = (struct timespec64) {0};
2027
2028 if (skb_hwtstamps(skb)->hwtstamp)
2029 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2030 else
2031 tss->ts[2] = (struct timespec64) {0};
2032 }
2033
2034 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2035 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2036 struct scm_timestamping_internal *tss)
2037 {
2038 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2039 bool has_timestamping = false;
2040
2041 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2042 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2043 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2044 if (new_tstamp) {
2045 struct __kernel_timespec kts = {
2046 .tv_sec = tss->ts[0].tv_sec,
2047 .tv_nsec = tss->ts[0].tv_nsec,
2048 };
2049 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2050 sizeof(kts), &kts);
2051 } else {
2052 struct __kernel_old_timespec ts_old = {
2053 .tv_sec = tss->ts[0].tv_sec,
2054 .tv_nsec = tss->ts[0].tv_nsec,
2055 };
2056 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2057 sizeof(ts_old), &ts_old);
2058 }
2059 } else {
2060 if (new_tstamp) {
2061 struct __kernel_sock_timeval stv = {
2062 .tv_sec = tss->ts[0].tv_sec,
2063 .tv_usec = tss->ts[0].tv_nsec / 1000,
2064 };
2065 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2066 sizeof(stv), &stv);
2067 } else {
2068 struct __kernel_old_timeval tv = {
2069 .tv_sec = tss->ts[0].tv_sec,
2070 .tv_usec = tss->ts[0].tv_nsec / 1000,
2071 };
2072 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2073 sizeof(tv), &tv);
2074 }
2075 }
2076 }
2077
2078 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2079 has_timestamping = true;
2080 else
2081 tss->ts[0] = (struct timespec64) {0};
2082 }
2083
2084 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2085 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2086 has_timestamping = true;
2087 else
2088 tss->ts[2] = (struct timespec64) {0};
2089 }
2090
2091 if (has_timestamping) {
2092 tss->ts[1] = (struct timespec64) {0};
2093 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2094 put_cmsg_scm_timestamping64(msg, tss);
2095 else
2096 put_cmsg_scm_timestamping(msg, tss);
2097 }
2098 }
2099
tcp_inq_hint(struct sock * sk)2100 static int tcp_inq_hint(struct sock *sk)
2101 {
2102 const struct tcp_sock *tp = tcp_sk(sk);
2103 u32 copied_seq = READ_ONCE(tp->copied_seq);
2104 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2105 int inq;
2106
2107 inq = rcv_nxt - copied_seq;
2108 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2109 lock_sock(sk);
2110 inq = tp->rcv_nxt - tp->copied_seq;
2111 release_sock(sk);
2112 }
2113 /* After receiving a FIN, tell the user-space to continue reading
2114 * by returning a non-zero inq.
2115 */
2116 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2117 inq = 1;
2118 return inq;
2119 }
2120
2121 /*
2122 * This routine copies from a sock struct into the user buffer.
2123 *
2124 * Technical note: in 2.3 we work on _locked_ socket, so that
2125 * tricks with *seq access order and skb->users are not required.
2126 * Probably, code can be easily improved even more.
2127 */
2128
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2129 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2130 int flags, int *addr_len)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 int copied = 0;
2134 u32 peek_seq;
2135 u32 *seq;
2136 unsigned long used;
2137 int err, inq;
2138 int target; /* Read at least this many bytes */
2139 long timeo;
2140 struct sk_buff *skb, *last;
2141 u32 urg_hole = 0;
2142 struct scm_timestamping_internal tss;
2143 int cmsg_flags;
2144
2145 if (unlikely(flags & MSG_ERRQUEUE))
2146 return inet_recv_error(sk, msg, len, addr_len);
2147 trace_android_rvh_tcp_recvmsg(sk);
2148
2149 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2150 (sk->sk_state == TCP_ESTABLISHED))
2151 sk_busy_loop(sk, nonblock);
2152
2153 lock_sock(sk);
2154
2155 err = -ENOTCONN;
2156 if (sk->sk_state == TCP_LISTEN)
2157 goto out;
2158
2159 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2160 timeo = sock_rcvtimeo(sk, nonblock);
2161
2162 /* Urgent data needs to be handled specially. */
2163 if (flags & MSG_OOB)
2164 goto recv_urg;
2165
2166 if (unlikely(tp->repair)) {
2167 err = -EPERM;
2168 if (!(flags & MSG_PEEK))
2169 goto out;
2170
2171 if (tp->repair_queue == TCP_SEND_QUEUE)
2172 goto recv_sndq;
2173
2174 err = -EINVAL;
2175 if (tp->repair_queue == TCP_NO_QUEUE)
2176 goto out;
2177
2178 /* 'common' recv queue MSG_PEEK-ing */
2179 }
2180
2181 seq = &tp->copied_seq;
2182 if (flags & MSG_PEEK) {
2183 peek_seq = tp->copied_seq;
2184 seq = &peek_seq;
2185 }
2186
2187 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2188
2189 do {
2190 u32 offset;
2191
2192 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2193 if (tp->urg_data && tp->urg_seq == *seq) {
2194 if (copied)
2195 break;
2196 if (signal_pending(current)) {
2197 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2198 break;
2199 }
2200 }
2201
2202 /* Next get a buffer. */
2203
2204 last = skb_peek_tail(&sk->sk_receive_queue);
2205 skb_queue_walk(&sk->sk_receive_queue, skb) {
2206 last = skb;
2207 /* Now that we have two receive queues this
2208 * shouldn't happen.
2209 */
2210 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2211 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2212 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2213 flags))
2214 break;
2215
2216 offset = *seq - TCP_SKB_CB(skb)->seq;
2217 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2218 pr_err_once("%s: found a SYN, please report !\n", __func__);
2219 offset--;
2220 }
2221 if (offset < skb->len)
2222 goto found_ok_skb;
2223 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2224 goto found_fin_ok;
2225 WARN(!(flags & MSG_PEEK),
2226 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2227 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2228 }
2229
2230 /* Well, if we have backlog, try to process it now yet. */
2231
2232 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2233 break;
2234
2235 if (copied) {
2236 if (sk->sk_err ||
2237 sk->sk_state == TCP_CLOSE ||
2238 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2239 !timeo ||
2240 signal_pending(current))
2241 break;
2242 } else {
2243 if (sock_flag(sk, SOCK_DONE))
2244 break;
2245
2246 if (sk->sk_err) {
2247 copied = sock_error(sk);
2248 break;
2249 }
2250
2251 if (sk->sk_shutdown & RCV_SHUTDOWN)
2252 break;
2253
2254 if (sk->sk_state == TCP_CLOSE) {
2255 /* This occurs when user tries to read
2256 * from never connected socket.
2257 */
2258 copied = -ENOTCONN;
2259 break;
2260 }
2261
2262 if (!timeo) {
2263 copied = -EAGAIN;
2264 break;
2265 }
2266
2267 if (signal_pending(current)) {
2268 copied = sock_intr_errno(timeo);
2269 break;
2270 }
2271 }
2272
2273 tcp_cleanup_rbuf(sk, copied);
2274
2275 if (copied >= target) {
2276 /* Do not sleep, just process backlog. */
2277 release_sock(sk);
2278 lock_sock(sk);
2279 } else {
2280 sk_wait_data(sk, &timeo, last);
2281 }
2282
2283 if ((flags & MSG_PEEK) &&
2284 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2285 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2286 current->comm,
2287 task_pid_nr(current));
2288 peek_seq = tp->copied_seq;
2289 }
2290 continue;
2291
2292 found_ok_skb:
2293 /* Ok so how much can we use? */
2294 used = skb->len - offset;
2295 if (len < used)
2296 used = len;
2297
2298 /* Do we have urgent data here? */
2299 if (tp->urg_data) {
2300 u32 urg_offset = tp->urg_seq - *seq;
2301 if (urg_offset < used) {
2302 if (!urg_offset) {
2303 if (!sock_flag(sk, SOCK_URGINLINE)) {
2304 WRITE_ONCE(*seq, *seq + 1);
2305 urg_hole++;
2306 offset++;
2307 used--;
2308 if (!used)
2309 goto skip_copy;
2310 }
2311 } else
2312 used = urg_offset;
2313 }
2314 }
2315
2316 if (!(flags & MSG_TRUNC)) {
2317 err = skb_copy_datagram_msg(skb, offset, msg, used);
2318 if (err) {
2319 /* Exception. Bailout! */
2320 if (!copied)
2321 copied = -EFAULT;
2322 break;
2323 }
2324 }
2325
2326 WRITE_ONCE(*seq, *seq + used);
2327 copied += used;
2328 len -= used;
2329
2330 tcp_rcv_space_adjust(sk);
2331
2332 skip_copy:
2333 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2334 tp->urg_data = 0;
2335 tcp_fast_path_check(sk);
2336 }
2337
2338 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2339 tcp_update_recv_tstamps(skb, &tss);
2340 cmsg_flags |= 2;
2341 }
2342
2343 if (used + offset < skb->len)
2344 continue;
2345
2346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2347 goto found_fin_ok;
2348 if (!(flags & MSG_PEEK))
2349 sk_eat_skb(sk, skb);
2350 continue;
2351
2352 found_fin_ok:
2353 /* Process the FIN. */
2354 WRITE_ONCE(*seq, *seq + 1);
2355 if (!(flags & MSG_PEEK))
2356 sk_eat_skb(sk, skb);
2357 break;
2358 } while (len > 0);
2359
2360 trace_android_rvh_tcp_recvmsg_stat(sk, copied);
2361 /* According to UNIX98, msg_name/msg_namelen are ignored
2362 * on connected socket. I was just happy when found this 8) --ANK
2363 */
2364
2365 /* Clean up data we have read: This will do ACK frames. */
2366 tcp_cleanup_rbuf(sk, copied);
2367
2368 release_sock(sk);
2369
2370 if (cmsg_flags) {
2371 if (cmsg_flags & 2)
2372 tcp_recv_timestamp(msg, sk, &tss);
2373 if (cmsg_flags & 1) {
2374 inq = tcp_inq_hint(sk);
2375 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2376 }
2377 }
2378
2379 return copied;
2380
2381 out:
2382 release_sock(sk);
2383 return err;
2384
2385 recv_urg:
2386 err = tcp_recv_urg(sk, msg, len, flags);
2387 goto out;
2388
2389 recv_sndq:
2390 err = tcp_peek_sndq(sk, msg, len);
2391 goto out;
2392 }
2393 EXPORT_SYMBOL(tcp_recvmsg);
2394
tcp_set_state(struct sock * sk,int state)2395 void tcp_set_state(struct sock *sk, int state)
2396 {
2397 int oldstate = sk->sk_state;
2398
2399 /* We defined a new enum for TCP states that are exported in BPF
2400 * so as not force the internal TCP states to be frozen. The
2401 * following checks will detect if an internal state value ever
2402 * differs from the BPF value. If this ever happens, then we will
2403 * need to remap the internal value to the BPF value before calling
2404 * tcp_call_bpf_2arg.
2405 */
2406 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2407 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2408 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2409 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2410 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2411 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2412 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2413 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2414 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2415 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2416 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2417 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2418 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2419
2420 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2421 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2422
2423 switch (state) {
2424 case TCP_ESTABLISHED:
2425 if (oldstate != TCP_ESTABLISHED)
2426 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2427 break;
2428
2429 case TCP_CLOSE:
2430 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2431 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2432
2433 sk->sk_prot->unhash(sk);
2434 if (inet_csk(sk)->icsk_bind_hash &&
2435 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2436 inet_put_port(sk);
2437 fallthrough;
2438 default:
2439 if (oldstate == TCP_ESTABLISHED)
2440 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2441 }
2442
2443 /* Change state AFTER socket is unhashed to avoid closed
2444 * socket sitting in hash tables.
2445 */
2446 inet_sk_state_store(sk, state);
2447 }
2448 EXPORT_SYMBOL_GPL(tcp_set_state);
2449
2450 /*
2451 * State processing on a close. This implements the state shift for
2452 * sending our FIN frame. Note that we only send a FIN for some
2453 * states. A shutdown() may have already sent the FIN, or we may be
2454 * closed.
2455 */
2456
2457 static const unsigned char new_state[16] = {
2458 /* current state: new state: action: */
2459 [0 /* (Invalid) */] = TCP_CLOSE,
2460 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2461 [TCP_SYN_SENT] = TCP_CLOSE,
2462 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2463 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2464 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2465 [TCP_TIME_WAIT] = TCP_CLOSE,
2466 [TCP_CLOSE] = TCP_CLOSE,
2467 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2468 [TCP_LAST_ACK] = TCP_LAST_ACK,
2469 [TCP_LISTEN] = TCP_CLOSE,
2470 [TCP_CLOSING] = TCP_CLOSING,
2471 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2472 };
2473
tcp_close_state(struct sock * sk)2474 static int tcp_close_state(struct sock *sk)
2475 {
2476 int next = (int)new_state[sk->sk_state];
2477 int ns = next & TCP_STATE_MASK;
2478
2479 tcp_set_state(sk, ns);
2480
2481 return next & TCP_ACTION_FIN;
2482 }
2483
2484 /*
2485 * Shutdown the sending side of a connection. Much like close except
2486 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2487 */
2488
tcp_shutdown(struct sock * sk,int how)2489 void tcp_shutdown(struct sock *sk, int how)
2490 {
2491 /* We need to grab some memory, and put together a FIN,
2492 * and then put it into the queue to be sent.
2493 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2494 */
2495 if (!(how & SEND_SHUTDOWN))
2496 return;
2497
2498 /* If we've already sent a FIN, or it's a closed state, skip this. */
2499 if ((1 << sk->sk_state) &
2500 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2501 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2502 /* Clear out any half completed packets. FIN if needed. */
2503 if (tcp_close_state(sk))
2504 tcp_send_fin(sk);
2505 }
2506 }
2507 EXPORT_SYMBOL(tcp_shutdown);
2508
tcp_check_oom(struct sock * sk,int shift)2509 bool tcp_check_oom(struct sock *sk, int shift)
2510 {
2511 bool too_many_orphans, out_of_socket_memory;
2512
2513 too_many_orphans = tcp_too_many_orphans(sk, shift);
2514 out_of_socket_memory = tcp_out_of_memory(sk);
2515
2516 if (too_many_orphans)
2517 net_info_ratelimited("too many orphaned sockets\n");
2518 if (out_of_socket_memory)
2519 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2520 return too_many_orphans || out_of_socket_memory;
2521 }
2522
__tcp_close(struct sock * sk,long timeout)2523 void __tcp_close(struct sock *sk, long timeout)
2524 {
2525 struct sk_buff *skb;
2526 int data_was_unread = 0;
2527 int state;
2528
2529 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2530
2531 if (sk->sk_state == TCP_LISTEN) {
2532 tcp_set_state(sk, TCP_CLOSE);
2533
2534 /* Special case. */
2535 inet_csk_listen_stop(sk);
2536
2537 goto adjudge_to_death;
2538 }
2539
2540 /* We need to flush the recv. buffs. We do this only on the
2541 * descriptor close, not protocol-sourced closes, because the
2542 * reader process may not have drained the data yet!
2543 */
2544 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2545 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2546
2547 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2548 len--;
2549 data_was_unread += len;
2550 __kfree_skb(skb);
2551 }
2552
2553 sk_mem_reclaim(sk);
2554
2555 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2556 if (sk->sk_state == TCP_CLOSE)
2557 goto adjudge_to_death;
2558
2559 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2560 * data was lost. To witness the awful effects of the old behavior of
2561 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2562 * GET in an FTP client, suspend the process, wait for the client to
2563 * advertise a zero window, then kill -9 the FTP client, wheee...
2564 * Note: timeout is always zero in such a case.
2565 */
2566 if (unlikely(tcp_sk(sk)->repair)) {
2567 sk->sk_prot->disconnect(sk, 0);
2568 } else if (data_was_unread) {
2569 /* Unread data was tossed, zap the connection. */
2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2571 tcp_set_state(sk, TCP_CLOSE);
2572 tcp_send_active_reset(sk, sk->sk_allocation);
2573 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2574 /* Check zero linger _after_ checking for unread data. */
2575 sk->sk_prot->disconnect(sk, 0);
2576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2577 } else if (tcp_close_state(sk)) {
2578 /* We FIN if the application ate all the data before
2579 * zapping the connection.
2580 */
2581
2582 /* RED-PEN. Formally speaking, we have broken TCP state
2583 * machine. State transitions:
2584 *
2585 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2586 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2587 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2588 *
2589 * are legal only when FIN has been sent (i.e. in window),
2590 * rather than queued out of window. Purists blame.
2591 *
2592 * F.e. "RFC state" is ESTABLISHED,
2593 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2594 *
2595 * The visible declinations are that sometimes
2596 * we enter time-wait state, when it is not required really
2597 * (harmless), do not send active resets, when they are
2598 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2599 * they look as CLOSING or LAST_ACK for Linux)
2600 * Probably, I missed some more holelets.
2601 * --ANK
2602 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2603 * in a single packet! (May consider it later but will
2604 * probably need API support or TCP_CORK SYN-ACK until
2605 * data is written and socket is closed.)
2606 */
2607 tcp_send_fin(sk);
2608 }
2609
2610 sk_stream_wait_close(sk, timeout);
2611
2612 adjudge_to_death:
2613 state = sk->sk_state;
2614 sock_hold(sk);
2615 sock_orphan(sk);
2616
2617 local_bh_disable();
2618 bh_lock_sock(sk);
2619 /* remove backlog if any, without releasing ownership. */
2620 __release_sock(sk);
2621
2622 percpu_counter_inc(sk->sk_prot->orphan_count);
2623
2624 /* Have we already been destroyed by a softirq or backlog? */
2625 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2626 goto out;
2627
2628 /* This is a (useful) BSD violating of the RFC. There is a
2629 * problem with TCP as specified in that the other end could
2630 * keep a socket open forever with no application left this end.
2631 * We use a 1 minute timeout (about the same as BSD) then kill
2632 * our end. If they send after that then tough - BUT: long enough
2633 * that we won't make the old 4*rto = almost no time - whoops
2634 * reset mistake.
2635 *
2636 * Nope, it was not mistake. It is really desired behaviour
2637 * f.e. on http servers, when such sockets are useless, but
2638 * consume significant resources. Let's do it with special
2639 * linger2 option. --ANK
2640 */
2641
2642 if (sk->sk_state == TCP_FIN_WAIT2) {
2643 struct tcp_sock *tp = tcp_sk(sk);
2644 if (tp->linger2 < 0) {
2645 tcp_set_state(sk, TCP_CLOSE);
2646 tcp_send_active_reset(sk, GFP_ATOMIC);
2647 __NET_INC_STATS(sock_net(sk),
2648 LINUX_MIB_TCPABORTONLINGER);
2649 } else {
2650 const int tmo = tcp_fin_time(sk);
2651
2652 if (tmo > TCP_TIMEWAIT_LEN) {
2653 inet_csk_reset_keepalive_timer(sk,
2654 tmo - TCP_TIMEWAIT_LEN);
2655 } else {
2656 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2657 goto out;
2658 }
2659 }
2660 }
2661 if (sk->sk_state != TCP_CLOSE) {
2662 sk_mem_reclaim(sk);
2663 if (tcp_check_oom(sk, 0)) {
2664 tcp_set_state(sk, TCP_CLOSE);
2665 tcp_send_active_reset(sk, GFP_ATOMIC);
2666 __NET_INC_STATS(sock_net(sk),
2667 LINUX_MIB_TCPABORTONMEMORY);
2668 } else if (!check_net(sock_net(sk))) {
2669 /* Not possible to send reset; just close */
2670 tcp_set_state(sk, TCP_CLOSE);
2671 }
2672 }
2673
2674 if (sk->sk_state == TCP_CLOSE) {
2675 struct request_sock *req;
2676
2677 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2678 lockdep_sock_is_held(sk));
2679 /* We could get here with a non-NULL req if the socket is
2680 * aborted (e.g., closed with unread data) before 3WHS
2681 * finishes.
2682 */
2683 if (req)
2684 reqsk_fastopen_remove(sk, req, false);
2685 inet_csk_destroy_sock(sk);
2686 }
2687 /* Otherwise, socket is reprieved until protocol close. */
2688
2689 out:
2690 bh_unlock_sock(sk);
2691 local_bh_enable();
2692 }
2693
tcp_close(struct sock * sk,long timeout)2694 void tcp_close(struct sock *sk, long timeout)
2695 {
2696 lock_sock(sk);
2697 __tcp_close(sk, timeout);
2698 release_sock(sk);
2699 sock_put(sk);
2700 }
2701 EXPORT_SYMBOL(tcp_close);
2702
2703 /* These states need RST on ABORT according to RFC793 */
2704
tcp_need_reset(int state)2705 static inline bool tcp_need_reset(int state)
2706 {
2707 return (1 << state) &
2708 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2709 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2710 }
2711
tcp_rtx_queue_purge(struct sock * sk)2712 static void tcp_rtx_queue_purge(struct sock *sk)
2713 {
2714 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2715
2716 tcp_sk(sk)->highest_sack = NULL;
2717 while (p) {
2718 struct sk_buff *skb = rb_to_skb(p);
2719
2720 p = rb_next(p);
2721 /* Since we are deleting whole queue, no need to
2722 * list_del(&skb->tcp_tsorted_anchor)
2723 */
2724 tcp_rtx_queue_unlink(skb, sk);
2725 sk_wmem_free_skb(sk, skb);
2726 }
2727 }
2728
tcp_write_queue_purge(struct sock * sk)2729 void tcp_write_queue_purge(struct sock *sk)
2730 {
2731 struct sk_buff *skb;
2732
2733 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2734 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2735 tcp_skb_tsorted_anchor_cleanup(skb);
2736 sk_wmem_free_skb(sk, skb);
2737 }
2738 tcp_rtx_queue_purge(sk);
2739 skb = sk->sk_tx_skb_cache;
2740 if (skb) {
2741 __kfree_skb(skb);
2742 sk->sk_tx_skb_cache = NULL;
2743 }
2744 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2745 sk_mem_reclaim(sk);
2746 tcp_clear_all_retrans_hints(tcp_sk(sk));
2747 tcp_sk(sk)->packets_out = 0;
2748 inet_csk(sk)->icsk_backoff = 0;
2749 }
2750
tcp_disconnect(struct sock * sk,int flags)2751 int tcp_disconnect(struct sock *sk, int flags)
2752 {
2753 struct inet_sock *inet = inet_sk(sk);
2754 struct inet_connection_sock *icsk = inet_csk(sk);
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 int old_state = sk->sk_state;
2757 u32 seq;
2758
2759 if (old_state != TCP_CLOSE)
2760 tcp_set_state(sk, TCP_CLOSE);
2761
2762 /* ABORT function of RFC793 */
2763 if (old_state == TCP_LISTEN) {
2764 inet_csk_listen_stop(sk);
2765 } else if (unlikely(tp->repair)) {
2766 sk->sk_err = ECONNABORTED;
2767 } else if (tcp_need_reset(old_state) ||
2768 (tp->snd_nxt != tp->write_seq &&
2769 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2770 /* The last check adjusts for discrepancy of Linux wrt. RFC
2771 * states
2772 */
2773 tcp_send_active_reset(sk, gfp_any());
2774 sk->sk_err = ECONNRESET;
2775 } else if (old_state == TCP_SYN_SENT)
2776 sk->sk_err = ECONNRESET;
2777
2778 tcp_clear_xmit_timers(sk);
2779 __skb_queue_purge(&sk->sk_receive_queue);
2780 if (sk->sk_rx_skb_cache) {
2781 __kfree_skb(sk->sk_rx_skb_cache);
2782 sk->sk_rx_skb_cache = NULL;
2783 }
2784 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2785 tp->urg_data = 0;
2786 tcp_write_queue_purge(sk);
2787 tcp_fastopen_active_disable_ofo_check(sk);
2788 skb_rbtree_purge(&tp->out_of_order_queue);
2789
2790 inet->inet_dport = 0;
2791
2792 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2793 inet_reset_saddr(sk);
2794
2795 WRITE_ONCE(sk->sk_shutdown, 0);
2796 sock_reset_flag(sk, SOCK_DONE);
2797 tp->srtt_us = 0;
2798 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2799 tp->rcv_rtt_last_tsecr = 0;
2800
2801 seq = tp->write_seq + tp->max_window + 2;
2802 if (!seq)
2803 seq = 1;
2804 WRITE_ONCE(tp->write_seq, seq);
2805
2806 icsk->icsk_backoff = 0;
2807 icsk->icsk_probes_out = 0;
2808 icsk->icsk_probes_tstamp = 0;
2809 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2810 icsk->icsk_rto_min = TCP_RTO_MIN;
2811 icsk->icsk_delack_max = TCP_DELACK_MAX;
2812 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2813 tp->snd_cwnd = TCP_INIT_CWND;
2814 tp->snd_cwnd_cnt = 0;
2815 tp->is_cwnd_limited = 0;
2816 tp->max_packets_out = 0;
2817 tp->window_clamp = 0;
2818 tp->delivered = 0;
2819 tp->delivered_ce = 0;
2820 if (icsk->icsk_ca_ops->release)
2821 icsk->icsk_ca_ops->release(sk);
2822 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2823 icsk->icsk_ca_initialized = 0;
2824 tcp_set_ca_state(sk, TCP_CA_Open);
2825 tp->is_sack_reneg = 0;
2826 tcp_clear_retrans(tp);
2827 tp->total_retrans = 0;
2828 inet_csk_delack_init(sk);
2829 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2830 * issue in __tcp_select_window()
2831 */
2832 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2833 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2834 __sk_dst_reset(sk);
2835 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2836 tcp_saved_syn_free(tp);
2837 tp->compressed_ack = 0;
2838 tp->segs_in = 0;
2839 tp->segs_out = 0;
2840 tp->bytes_sent = 0;
2841 tp->bytes_acked = 0;
2842 tp->bytes_received = 0;
2843 tp->bytes_retrans = 0;
2844 tp->data_segs_in = 0;
2845 tp->data_segs_out = 0;
2846 tp->duplicate_sack[0].start_seq = 0;
2847 tp->duplicate_sack[0].end_seq = 0;
2848 tp->dsack_dups = 0;
2849 tp->reord_seen = 0;
2850 tp->retrans_out = 0;
2851 tp->sacked_out = 0;
2852 tp->tlp_high_seq = 0;
2853 tp->last_oow_ack_time = 0;
2854 /* There's a bubble in the pipe until at least the first ACK. */
2855 tp->app_limited = ~0U;
2856 tp->rate_app_limited = 1;
2857 tp->rack.mstamp = 0;
2858 tp->rack.advanced = 0;
2859 tp->rack.reo_wnd_steps = 1;
2860 tp->rack.last_delivered = 0;
2861 tp->rack.reo_wnd_persist = 0;
2862 tp->rack.dsack_seen = 0;
2863 tp->syn_data_acked = 0;
2864 tp->rx_opt.saw_tstamp = 0;
2865 tp->rx_opt.dsack = 0;
2866 tp->rx_opt.num_sacks = 0;
2867 tp->rcv_ooopack = 0;
2868
2869
2870 /* Clean up fastopen related fields */
2871 tcp_free_fastopen_req(tp);
2872 inet->defer_connect = 0;
2873 tp->fastopen_client_fail = 0;
2874
2875 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2876
2877 if (sk->sk_frag.page) {
2878 put_page(sk->sk_frag.page);
2879 sk->sk_frag.page = NULL;
2880 sk->sk_frag.offset = 0;
2881 }
2882
2883 sk->sk_error_report(sk);
2884 return 0;
2885 }
2886 EXPORT_SYMBOL(tcp_disconnect);
2887
tcp_can_repair_sock(const struct sock * sk)2888 static inline bool tcp_can_repair_sock(const struct sock *sk)
2889 {
2890 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2891 (sk->sk_state != TCP_LISTEN);
2892 }
2893
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2894 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2895 {
2896 struct tcp_repair_window opt;
2897
2898 if (!tp->repair)
2899 return -EPERM;
2900
2901 if (len != sizeof(opt))
2902 return -EINVAL;
2903
2904 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2905 return -EFAULT;
2906
2907 if (opt.max_window < opt.snd_wnd)
2908 return -EINVAL;
2909
2910 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2911 return -EINVAL;
2912
2913 if (after(opt.rcv_wup, tp->rcv_nxt))
2914 return -EINVAL;
2915
2916 tp->snd_wl1 = opt.snd_wl1;
2917 tp->snd_wnd = opt.snd_wnd;
2918 tp->max_window = opt.max_window;
2919
2920 tp->rcv_wnd = opt.rcv_wnd;
2921 tp->rcv_wup = opt.rcv_wup;
2922
2923 return 0;
2924 }
2925
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2926 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2927 unsigned int len)
2928 {
2929 struct tcp_sock *tp = tcp_sk(sk);
2930 struct tcp_repair_opt opt;
2931 size_t offset = 0;
2932
2933 while (len >= sizeof(opt)) {
2934 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2935 return -EFAULT;
2936
2937 offset += sizeof(opt);
2938 len -= sizeof(opt);
2939
2940 switch (opt.opt_code) {
2941 case TCPOPT_MSS:
2942 tp->rx_opt.mss_clamp = opt.opt_val;
2943 tcp_mtup_init(sk);
2944 break;
2945 case TCPOPT_WINDOW:
2946 {
2947 u16 snd_wscale = opt.opt_val & 0xFFFF;
2948 u16 rcv_wscale = opt.opt_val >> 16;
2949
2950 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2951 return -EFBIG;
2952
2953 tp->rx_opt.snd_wscale = snd_wscale;
2954 tp->rx_opt.rcv_wscale = rcv_wscale;
2955 tp->rx_opt.wscale_ok = 1;
2956 }
2957 break;
2958 case TCPOPT_SACK_PERM:
2959 if (opt.opt_val != 0)
2960 return -EINVAL;
2961
2962 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2963 break;
2964 case TCPOPT_TIMESTAMP:
2965 if (opt.opt_val != 0)
2966 return -EINVAL;
2967
2968 tp->rx_opt.tstamp_ok = 1;
2969 break;
2970 }
2971 }
2972
2973 return 0;
2974 }
2975
2976 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2977 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2978
tcp_enable_tx_delay(void)2979 static void tcp_enable_tx_delay(void)
2980 {
2981 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2982 static int __tcp_tx_delay_enabled = 0;
2983
2984 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2985 static_branch_enable(&tcp_tx_delay_enabled);
2986 pr_info("TCP_TX_DELAY enabled\n");
2987 }
2988 }
2989 }
2990
2991 /* When set indicates to always queue non-full frames. Later the user clears
2992 * this option and we transmit any pending partial frames in the queue. This is
2993 * meant to be used alongside sendfile() to get properly filled frames when the
2994 * user (for example) must write out headers with a write() call first and then
2995 * use sendfile to send out the data parts.
2996 *
2997 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2998 * TCP_NODELAY.
2999 */
__tcp_sock_set_cork(struct sock * sk,bool on)3000 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3001 {
3002 struct tcp_sock *tp = tcp_sk(sk);
3003
3004 if (on) {
3005 tp->nonagle |= TCP_NAGLE_CORK;
3006 } else {
3007 tp->nonagle &= ~TCP_NAGLE_CORK;
3008 if (tp->nonagle & TCP_NAGLE_OFF)
3009 tp->nonagle |= TCP_NAGLE_PUSH;
3010 tcp_push_pending_frames(sk);
3011 }
3012 }
3013
tcp_sock_set_cork(struct sock * sk,bool on)3014 void tcp_sock_set_cork(struct sock *sk, bool on)
3015 {
3016 lock_sock(sk);
3017 __tcp_sock_set_cork(sk, on);
3018 release_sock(sk);
3019 }
3020 EXPORT_SYMBOL(tcp_sock_set_cork);
3021
3022 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3023 * remembered, but it is not activated until cork is cleared.
3024 *
3025 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3026 * even TCP_CORK for currently queued segments.
3027 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3028 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3029 {
3030 if (on) {
3031 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3032 tcp_push_pending_frames(sk);
3033 } else {
3034 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3035 }
3036 }
3037
tcp_sock_set_nodelay(struct sock * sk)3038 void tcp_sock_set_nodelay(struct sock *sk)
3039 {
3040 lock_sock(sk);
3041 __tcp_sock_set_nodelay(sk, true);
3042 release_sock(sk);
3043 }
3044 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3045
__tcp_sock_set_quickack(struct sock * sk,int val)3046 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3047 {
3048 if (!val) {
3049 inet_csk_enter_pingpong_mode(sk);
3050 return;
3051 }
3052
3053 inet_csk_exit_pingpong_mode(sk);
3054 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3055 inet_csk_ack_scheduled(sk)) {
3056 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3057 tcp_cleanup_rbuf(sk, 1);
3058 if (!(val & 1))
3059 inet_csk_enter_pingpong_mode(sk);
3060 }
3061 }
3062
tcp_sock_set_quickack(struct sock * sk,int val)3063 void tcp_sock_set_quickack(struct sock *sk, int val)
3064 {
3065 lock_sock(sk);
3066 __tcp_sock_set_quickack(sk, val);
3067 release_sock(sk);
3068 }
3069 EXPORT_SYMBOL(tcp_sock_set_quickack);
3070
tcp_sock_set_syncnt(struct sock * sk,int val)3071 int tcp_sock_set_syncnt(struct sock *sk, int val)
3072 {
3073 if (val < 1 || val > MAX_TCP_SYNCNT)
3074 return -EINVAL;
3075
3076 lock_sock(sk);
3077 inet_csk(sk)->icsk_syn_retries = val;
3078 release_sock(sk);
3079 return 0;
3080 }
3081 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3082
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3083 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3084 {
3085 lock_sock(sk);
3086 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3087 release_sock(sk);
3088 }
3089 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3090
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3091 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3092 {
3093 struct tcp_sock *tp = tcp_sk(sk);
3094
3095 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3096 return -EINVAL;
3097
3098 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3099 WRITE_ONCE(tp->keepalive_time, val * HZ);
3100 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3101 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3102 u32 elapsed = keepalive_time_elapsed(tp);
3103
3104 if (tp->keepalive_time > elapsed)
3105 elapsed = tp->keepalive_time - elapsed;
3106 else
3107 elapsed = 0;
3108 inet_csk_reset_keepalive_timer(sk, elapsed);
3109 }
3110
3111 return 0;
3112 }
3113
tcp_sock_set_keepidle(struct sock * sk,int val)3114 int tcp_sock_set_keepidle(struct sock *sk, int val)
3115 {
3116 int err;
3117
3118 lock_sock(sk);
3119 err = tcp_sock_set_keepidle_locked(sk, val);
3120 release_sock(sk);
3121 return err;
3122 }
3123 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3124
tcp_sock_set_keepintvl(struct sock * sk,int val)3125 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3126 {
3127 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3128 return -EINVAL;
3129
3130 lock_sock(sk);
3131 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3132 release_sock(sk);
3133 return 0;
3134 }
3135 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3136
tcp_sock_set_keepcnt(struct sock * sk,int val)3137 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3138 {
3139 if (val < 1 || val > MAX_TCP_KEEPCNT)
3140 return -EINVAL;
3141
3142 lock_sock(sk);
3143 /* Paired with READ_ONCE() in keepalive_probes() */
3144 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3145 release_sock(sk);
3146 return 0;
3147 }
3148 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3149
3150 /*
3151 * Socket option code for TCP.
3152 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3153 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3154 sockptr_t optval, unsigned int optlen)
3155 {
3156 struct tcp_sock *tp = tcp_sk(sk);
3157 struct inet_connection_sock *icsk = inet_csk(sk);
3158 struct net *net = sock_net(sk);
3159 int val;
3160 int err = 0;
3161
3162 /* These are data/string values, all the others are ints */
3163 switch (optname) {
3164 case TCP_CONGESTION: {
3165 char name[TCP_CA_NAME_MAX];
3166
3167 if (optlen < 1)
3168 return -EINVAL;
3169
3170 val = strncpy_from_sockptr(name, optval,
3171 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3172 if (val < 0)
3173 return -EFAULT;
3174 name[val] = 0;
3175
3176 lock_sock(sk);
3177 err = tcp_set_congestion_control(sk, name, true,
3178 ns_capable(sock_net(sk)->user_ns,
3179 CAP_NET_ADMIN));
3180 release_sock(sk);
3181 return err;
3182 }
3183 case TCP_ULP: {
3184 char name[TCP_ULP_NAME_MAX];
3185
3186 if (optlen < 1)
3187 return -EINVAL;
3188
3189 val = strncpy_from_sockptr(name, optval,
3190 min_t(long, TCP_ULP_NAME_MAX - 1,
3191 optlen));
3192 if (val < 0)
3193 return -EFAULT;
3194 name[val] = 0;
3195
3196 lock_sock(sk);
3197 err = tcp_set_ulp(sk, name);
3198 release_sock(sk);
3199 return err;
3200 }
3201 case TCP_FASTOPEN_KEY: {
3202 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3203 __u8 *backup_key = NULL;
3204
3205 /* Allow a backup key as well to facilitate key rotation
3206 * First key is the active one.
3207 */
3208 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3209 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3210 return -EINVAL;
3211
3212 if (copy_from_sockptr(key, optval, optlen))
3213 return -EFAULT;
3214
3215 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3216 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3217
3218 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3219 }
3220 default:
3221 /* fallthru */
3222 break;
3223 }
3224
3225 if (optlen < sizeof(int))
3226 return -EINVAL;
3227
3228 if (copy_from_sockptr(&val, optval, sizeof(val)))
3229 return -EFAULT;
3230
3231 lock_sock(sk);
3232
3233 switch (optname) {
3234 case TCP_MAXSEG:
3235 /* Values greater than interface MTU won't take effect. However
3236 * at the point when this call is done we typically don't yet
3237 * know which interface is going to be used
3238 */
3239 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3240 err = -EINVAL;
3241 break;
3242 }
3243 tp->rx_opt.user_mss = val;
3244 break;
3245
3246 case TCP_NODELAY:
3247 __tcp_sock_set_nodelay(sk, val);
3248 break;
3249
3250 case TCP_THIN_LINEAR_TIMEOUTS:
3251 if (val < 0 || val > 1)
3252 err = -EINVAL;
3253 else
3254 tp->thin_lto = val;
3255 break;
3256
3257 case TCP_THIN_DUPACK:
3258 if (val < 0 || val > 1)
3259 err = -EINVAL;
3260 break;
3261
3262 case TCP_REPAIR:
3263 if (!tcp_can_repair_sock(sk))
3264 err = -EPERM;
3265 else if (val == TCP_REPAIR_ON) {
3266 tp->repair = 1;
3267 sk->sk_reuse = SK_FORCE_REUSE;
3268 tp->repair_queue = TCP_NO_QUEUE;
3269 } else if (val == TCP_REPAIR_OFF) {
3270 tp->repair = 0;
3271 sk->sk_reuse = SK_NO_REUSE;
3272 tcp_send_window_probe(sk);
3273 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3274 tp->repair = 0;
3275 sk->sk_reuse = SK_NO_REUSE;
3276 } else
3277 err = -EINVAL;
3278
3279 break;
3280
3281 case TCP_REPAIR_QUEUE:
3282 if (!tp->repair)
3283 err = -EPERM;
3284 else if ((unsigned int)val < TCP_QUEUES_NR)
3285 tp->repair_queue = val;
3286 else
3287 err = -EINVAL;
3288 break;
3289
3290 case TCP_QUEUE_SEQ:
3291 if (sk->sk_state != TCP_CLOSE) {
3292 err = -EPERM;
3293 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3294 if (!tcp_rtx_queue_empty(sk))
3295 err = -EPERM;
3296 else
3297 WRITE_ONCE(tp->write_seq, val);
3298 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3299 if (tp->rcv_nxt != tp->copied_seq) {
3300 err = -EPERM;
3301 } else {
3302 WRITE_ONCE(tp->rcv_nxt, val);
3303 WRITE_ONCE(tp->copied_seq, val);
3304 }
3305 } else {
3306 err = -EINVAL;
3307 }
3308 break;
3309
3310 case TCP_REPAIR_OPTIONS:
3311 if (!tp->repair)
3312 err = -EINVAL;
3313 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3314 err = tcp_repair_options_est(sk, optval, optlen);
3315 else
3316 err = -EPERM;
3317 break;
3318
3319 case TCP_CORK:
3320 __tcp_sock_set_cork(sk, val);
3321 break;
3322
3323 case TCP_KEEPIDLE:
3324 err = tcp_sock_set_keepidle_locked(sk, val);
3325 break;
3326 case TCP_KEEPINTVL:
3327 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3328 err = -EINVAL;
3329 else
3330 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3331 break;
3332 case TCP_KEEPCNT:
3333 if (val < 1 || val > MAX_TCP_KEEPCNT)
3334 err = -EINVAL;
3335 else
3336 WRITE_ONCE(tp->keepalive_probes, val);
3337 break;
3338 case TCP_SYNCNT:
3339 if (val < 1 || val > MAX_TCP_SYNCNT)
3340 err = -EINVAL;
3341 else
3342 icsk->icsk_syn_retries = val;
3343 break;
3344
3345 case TCP_SAVE_SYN:
3346 /* 0: disable, 1: enable, 2: start from ether_header */
3347 if (val < 0 || val > 2)
3348 err = -EINVAL;
3349 else
3350 tp->save_syn = val;
3351 break;
3352
3353 case TCP_LINGER2:
3354 if (val < 0)
3355 WRITE_ONCE(tp->linger2, -1);
3356 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3357 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3358 else
3359 WRITE_ONCE(tp->linger2, val * HZ);
3360 break;
3361
3362 case TCP_DEFER_ACCEPT:
3363 /* Translate value in seconds to number of retransmits */
3364 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3365 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3366 TCP_RTO_MAX / HZ));
3367 break;
3368
3369 case TCP_WINDOW_CLAMP:
3370 if (!val) {
3371 if (sk->sk_state != TCP_CLOSE) {
3372 err = -EINVAL;
3373 break;
3374 }
3375 tp->window_clamp = 0;
3376 } else
3377 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3378 SOCK_MIN_RCVBUF / 2 : val;
3379 break;
3380
3381 case TCP_QUICKACK:
3382 __tcp_sock_set_quickack(sk, val);
3383 break;
3384
3385 #ifdef CONFIG_TCP_MD5SIG
3386 case TCP_MD5SIG:
3387 case TCP_MD5SIG_EXT:
3388 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3389 break;
3390 #endif
3391 case TCP_USER_TIMEOUT:
3392 /* Cap the max time in ms TCP will retry or probe the window
3393 * before giving up and aborting (ETIMEDOUT) a connection.
3394 */
3395 if (val < 0)
3396 err = -EINVAL;
3397 else
3398 WRITE_ONCE(icsk->icsk_user_timeout, val);
3399 break;
3400
3401 case TCP_FASTOPEN:
3402 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3403 TCPF_LISTEN))) {
3404 tcp_fastopen_init_key_once(net);
3405
3406 fastopen_queue_tune(sk, val);
3407 } else {
3408 err = -EINVAL;
3409 }
3410 break;
3411 case TCP_FASTOPEN_CONNECT:
3412 if (val > 1 || val < 0) {
3413 err = -EINVAL;
3414 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3415 TFO_CLIENT_ENABLE) {
3416 if (sk->sk_state == TCP_CLOSE)
3417 tp->fastopen_connect = val;
3418 else
3419 err = -EINVAL;
3420 } else {
3421 err = -EOPNOTSUPP;
3422 }
3423 break;
3424 case TCP_FASTOPEN_NO_COOKIE:
3425 if (val > 1 || val < 0)
3426 err = -EINVAL;
3427 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3428 err = -EINVAL;
3429 else
3430 tp->fastopen_no_cookie = val;
3431 break;
3432 case TCP_TIMESTAMP:
3433 if (!tp->repair)
3434 err = -EPERM;
3435 else
3436 tp->tsoffset = val - tcp_time_stamp_raw();
3437 break;
3438 case TCP_REPAIR_WINDOW:
3439 err = tcp_repair_set_window(tp, optval, optlen);
3440 break;
3441 case TCP_NOTSENT_LOWAT:
3442 WRITE_ONCE(tp->notsent_lowat, val);
3443 sk->sk_write_space(sk);
3444 break;
3445 case TCP_INQ:
3446 if (val > 1 || val < 0)
3447 err = -EINVAL;
3448 else
3449 tp->recvmsg_inq = val;
3450 break;
3451 case TCP_TX_DELAY:
3452 if (val)
3453 tcp_enable_tx_delay();
3454 WRITE_ONCE(tp->tcp_tx_delay, val);
3455 break;
3456 default:
3457 err = -ENOPROTOOPT;
3458 break;
3459 }
3460
3461 release_sock(sk);
3462 return err;
3463 }
3464
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3465 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3466 unsigned int optlen)
3467 {
3468 const struct inet_connection_sock *icsk = inet_csk(sk);
3469
3470 if (level != SOL_TCP)
3471 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3472 optval, optlen);
3473 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3474 }
3475 EXPORT_SYMBOL(tcp_setsockopt);
3476
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3477 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3478 struct tcp_info *info)
3479 {
3480 u64 stats[__TCP_CHRONO_MAX], total = 0;
3481 enum tcp_chrono i;
3482
3483 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3484 stats[i] = tp->chrono_stat[i - 1];
3485 if (i == tp->chrono_type)
3486 stats[i] += tcp_jiffies32 - tp->chrono_start;
3487 stats[i] *= USEC_PER_SEC / HZ;
3488 total += stats[i];
3489 }
3490
3491 info->tcpi_busy_time = total;
3492 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3493 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3494 }
3495
3496 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3497 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3498 {
3499 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3500 const struct inet_connection_sock *icsk = inet_csk(sk);
3501 unsigned long rate;
3502 u32 now;
3503 u64 rate64;
3504 bool slow;
3505
3506 memset(info, 0, sizeof(*info));
3507 if (sk->sk_type != SOCK_STREAM)
3508 return;
3509
3510 info->tcpi_state = inet_sk_state_load(sk);
3511
3512 /* Report meaningful fields for all TCP states, including listeners */
3513 rate = READ_ONCE(sk->sk_pacing_rate);
3514 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3515 info->tcpi_pacing_rate = rate64;
3516
3517 rate = READ_ONCE(sk->sk_max_pacing_rate);
3518 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3519 info->tcpi_max_pacing_rate = rate64;
3520
3521 info->tcpi_reordering = tp->reordering;
3522 info->tcpi_snd_cwnd = tp->snd_cwnd;
3523
3524 if (info->tcpi_state == TCP_LISTEN) {
3525 /* listeners aliased fields :
3526 * tcpi_unacked -> Number of children ready for accept()
3527 * tcpi_sacked -> max backlog
3528 */
3529 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3530 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3531 return;
3532 }
3533
3534 slow = lock_sock_fast(sk);
3535
3536 info->tcpi_ca_state = icsk->icsk_ca_state;
3537 info->tcpi_retransmits = icsk->icsk_retransmits;
3538 info->tcpi_probes = icsk->icsk_probes_out;
3539 info->tcpi_backoff = icsk->icsk_backoff;
3540
3541 if (tp->rx_opt.tstamp_ok)
3542 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3543 if (tcp_is_sack(tp))
3544 info->tcpi_options |= TCPI_OPT_SACK;
3545 if (tp->rx_opt.wscale_ok) {
3546 info->tcpi_options |= TCPI_OPT_WSCALE;
3547 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3548 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3549 }
3550
3551 if (tp->ecn_flags & TCP_ECN_OK)
3552 info->tcpi_options |= TCPI_OPT_ECN;
3553 if (tp->ecn_flags & TCP_ECN_SEEN)
3554 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3555 if (tp->syn_data_acked)
3556 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3557
3558 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3559 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3560 info->tcpi_snd_mss = tp->mss_cache;
3561 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3562
3563 info->tcpi_unacked = tp->packets_out;
3564 info->tcpi_sacked = tp->sacked_out;
3565
3566 info->tcpi_lost = tp->lost_out;
3567 info->tcpi_retrans = tp->retrans_out;
3568
3569 now = tcp_jiffies32;
3570 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3571 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3572 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3573
3574 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3575 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3576 info->tcpi_rtt = tp->srtt_us >> 3;
3577 info->tcpi_rttvar = tp->mdev_us >> 2;
3578 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3579 info->tcpi_advmss = tp->advmss;
3580
3581 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3582 info->tcpi_rcv_space = tp->rcvq_space.space;
3583
3584 info->tcpi_total_retrans = tp->total_retrans;
3585
3586 info->tcpi_bytes_acked = tp->bytes_acked;
3587 info->tcpi_bytes_received = tp->bytes_received;
3588 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3589 tcp_get_info_chrono_stats(tp, info);
3590
3591 info->tcpi_segs_out = tp->segs_out;
3592 info->tcpi_segs_in = tp->segs_in;
3593
3594 info->tcpi_min_rtt = tcp_min_rtt(tp);
3595 info->tcpi_data_segs_in = tp->data_segs_in;
3596 info->tcpi_data_segs_out = tp->data_segs_out;
3597
3598 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3599 rate64 = tcp_compute_delivery_rate(tp);
3600 if (rate64)
3601 info->tcpi_delivery_rate = rate64;
3602 info->tcpi_delivered = tp->delivered;
3603 info->tcpi_delivered_ce = tp->delivered_ce;
3604 info->tcpi_bytes_sent = tp->bytes_sent;
3605 info->tcpi_bytes_retrans = tp->bytes_retrans;
3606 info->tcpi_dsack_dups = tp->dsack_dups;
3607 info->tcpi_reord_seen = tp->reord_seen;
3608 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3609 info->tcpi_snd_wnd = tp->snd_wnd;
3610 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3611 unlock_sock_fast(sk, slow);
3612 }
3613 EXPORT_SYMBOL_GPL(tcp_get_info);
3614
tcp_opt_stats_get_size(void)3615 static size_t tcp_opt_stats_get_size(void)
3616 {
3617 return
3618 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3619 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3620 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3621 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3622 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3623 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3624 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3625 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3626 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3627 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3628 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3629 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3630 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3631 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3632 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3633 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3634 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3635 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3636 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3637 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3638 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3639 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3640 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3641 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3642 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3643 0;
3644 }
3645
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3646 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3647 const struct sk_buff *orig_skb)
3648 {
3649 const struct tcp_sock *tp = tcp_sk(sk);
3650 struct sk_buff *stats;
3651 struct tcp_info info;
3652 unsigned long rate;
3653 u64 rate64;
3654
3655 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3656 if (!stats)
3657 return NULL;
3658
3659 tcp_get_info_chrono_stats(tp, &info);
3660 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3661 info.tcpi_busy_time, TCP_NLA_PAD);
3662 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3663 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3664 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3665 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3666 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3667 tp->data_segs_out, TCP_NLA_PAD);
3668 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3669 tp->total_retrans, TCP_NLA_PAD);
3670
3671 rate = READ_ONCE(sk->sk_pacing_rate);
3672 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3673 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3674
3675 rate64 = tcp_compute_delivery_rate(tp);
3676 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3677
3678 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3679 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3680 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3681
3682 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3683 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3684 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3685 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3686 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3687
3688 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3689 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3690
3691 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3692 TCP_NLA_PAD);
3693 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3694 TCP_NLA_PAD);
3695 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3696 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3697 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3698 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3699 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3700 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3701 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3702 TCP_NLA_PAD);
3703
3704 return stats;
3705 }
3706
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3707 static int do_tcp_getsockopt(struct sock *sk, int level,
3708 int optname, char __user *optval, int __user *optlen)
3709 {
3710 struct inet_connection_sock *icsk = inet_csk(sk);
3711 struct tcp_sock *tp = tcp_sk(sk);
3712 struct net *net = sock_net(sk);
3713 int val, len;
3714
3715 if (get_user(len, optlen))
3716 return -EFAULT;
3717
3718 len = min_t(unsigned int, len, sizeof(int));
3719
3720 if (len < 0)
3721 return -EINVAL;
3722
3723 switch (optname) {
3724 case TCP_MAXSEG:
3725 val = tp->mss_cache;
3726 if (tp->rx_opt.user_mss &&
3727 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3728 val = tp->rx_opt.user_mss;
3729 if (tp->repair)
3730 val = tp->rx_opt.mss_clamp;
3731 break;
3732 case TCP_NODELAY:
3733 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3734 break;
3735 case TCP_CORK:
3736 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3737 break;
3738 case TCP_KEEPIDLE:
3739 val = keepalive_time_when(tp) / HZ;
3740 break;
3741 case TCP_KEEPINTVL:
3742 val = keepalive_intvl_when(tp) / HZ;
3743 break;
3744 case TCP_KEEPCNT:
3745 val = keepalive_probes(tp);
3746 break;
3747 case TCP_SYNCNT:
3748 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3749 break;
3750 case TCP_LINGER2:
3751 val = READ_ONCE(tp->linger2);
3752 if (val >= 0)
3753 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3754 break;
3755 case TCP_DEFER_ACCEPT:
3756 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3757 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3758 TCP_RTO_MAX / HZ);
3759 break;
3760 case TCP_WINDOW_CLAMP:
3761 val = tp->window_clamp;
3762 break;
3763 case TCP_INFO: {
3764 struct tcp_info info;
3765
3766 if (get_user(len, optlen))
3767 return -EFAULT;
3768
3769 tcp_get_info(sk, &info);
3770
3771 len = min_t(unsigned int, len, sizeof(info));
3772 if (put_user(len, optlen))
3773 return -EFAULT;
3774 if (copy_to_user(optval, &info, len))
3775 return -EFAULT;
3776 return 0;
3777 }
3778 case TCP_CC_INFO: {
3779 const struct tcp_congestion_ops *ca_ops;
3780 union tcp_cc_info info;
3781 size_t sz = 0;
3782 int attr;
3783
3784 if (get_user(len, optlen))
3785 return -EFAULT;
3786
3787 ca_ops = icsk->icsk_ca_ops;
3788 if (ca_ops && ca_ops->get_info)
3789 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3790
3791 len = min_t(unsigned int, len, sz);
3792 if (put_user(len, optlen))
3793 return -EFAULT;
3794 if (copy_to_user(optval, &info, len))
3795 return -EFAULT;
3796 return 0;
3797 }
3798 case TCP_QUICKACK:
3799 val = !inet_csk_in_pingpong_mode(sk);
3800 break;
3801
3802 case TCP_CONGESTION:
3803 if (get_user(len, optlen))
3804 return -EFAULT;
3805 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3806 if (put_user(len, optlen))
3807 return -EFAULT;
3808 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3809 return -EFAULT;
3810 return 0;
3811
3812 case TCP_ULP:
3813 if (get_user(len, optlen))
3814 return -EFAULT;
3815 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3816 if (!icsk->icsk_ulp_ops) {
3817 if (put_user(0, optlen))
3818 return -EFAULT;
3819 return 0;
3820 }
3821 if (put_user(len, optlen))
3822 return -EFAULT;
3823 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3824 return -EFAULT;
3825 return 0;
3826
3827 case TCP_FASTOPEN_KEY: {
3828 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3829 unsigned int key_len;
3830
3831 if (get_user(len, optlen))
3832 return -EFAULT;
3833
3834 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3835 TCP_FASTOPEN_KEY_LENGTH;
3836 len = min_t(unsigned int, len, key_len);
3837 if (put_user(len, optlen))
3838 return -EFAULT;
3839 if (copy_to_user(optval, key, len))
3840 return -EFAULT;
3841 return 0;
3842 }
3843 case TCP_THIN_LINEAR_TIMEOUTS:
3844 val = tp->thin_lto;
3845 break;
3846
3847 case TCP_THIN_DUPACK:
3848 val = 0;
3849 break;
3850
3851 case TCP_REPAIR:
3852 val = tp->repair;
3853 break;
3854
3855 case TCP_REPAIR_QUEUE:
3856 if (tp->repair)
3857 val = tp->repair_queue;
3858 else
3859 return -EINVAL;
3860 break;
3861
3862 case TCP_REPAIR_WINDOW: {
3863 struct tcp_repair_window opt;
3864
3865 if (get_user(len, optlen))
3866 return -EFAULT;
3867
3868 if (len != sizeof(opt))
3869 return -EINVAL;
3870
3871 if (!tp->repair)
3872 return -EPERM;
3873
3874 opt.snd_wl1 = tp->snd_wl1;
3875 opt.snd_wnd = tp->snd_wnd;
3876 opt.max_window = tp->max_window;
3877 opt.rcv_wnd = tp->rcv_wnd;
3878 opt.rcv_wup = tp->rcv_wup;
3879
3880 if (copy_to_user(optval, &opt, len))
3881 return -EFAULT;
3882 return 0;
3883 }
3884 case TCP_QUEUE_SEQ:
3885 if (tp->repair_queue == TCP_SEND_QUEUE)
3886 val = tp->write_seq;
3887 else if (tp->repair_queue == TCP_RECV_QUEUE)
3888 val = tp->rcv_nxt;
3889 else
3890 return -EINVAL;
3891 break;
3892
3893 case TCP_USER_TIMEOUT:
3894 val = READ_ONCE(icsk->icsk_user_timeout);
3895 break;
3896
3897 case TCP_FASTOPEN:
3898 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3899 break;
3900
3901 case TCP_FASTOPEN_CONNECT:
3902 val = tp->fastopen_connect;
3903 break;
3904
3905 case TCP_FASTOPEN_NO_COOKIE:
3906 val = tp->fastopen_no_cookie;
3907 break;
3908
3909 case TCP_TX_DELAY:
3910 val = READ_ONCE(tp->tcp_tx_delay);
3911 break;
3912
3913 case TCP_TIMESTAMP:
3914 val = tcp_time_stamp_raw() + tp->tsoffset;
3915 break;
3916 case TCP_NOTSENT_LOWAT:
3917 val = READ_ONCE(tp->notsent_lowat);
3918 break;
3919 case TCP_INQ:
3920 val = tp->recvmsg_inq;
3921 break;
3922 case TCP_SAVE_SYN:
3923 val = tp->save_syn;
3924 break;
3925 case TCP_SAVED_SYN: {
3926 if (get_user(len, optlen))
3927 return -EFAULT;
3928
3929 lock_sock(sk);
3930 if (tp->saved_syn) {
3931 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3932 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3933 optlen)) {
3934 release_sock(sk);
3935 return -EFAULT;
3936 }
3937 release_sock(sk);
3938 return -EINVAL;
3939 }
3940 len = tcp_saved_syn_len(tp->saved_syn);
3941 if (put_user(len, optlen)) {
3942 release_sock(sk);
3943 return -EFAULT;
3944 }
3945 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3946 release_sock(sk);
3947 return -EFAULT;
3948 }
3949 tcp_saved_syn_free(tp);
3950 release_sock(sk);
3951 } else {
3952 release_sock(sk);
3953 len = 0;
3954 if (put_user(len, optlen))
3955 return -EFAULT;
3956 }
3957 return 0;
3958 }
3959 #ifdef CONFIG_MMU
3960 case TCP_ZEROCOPY_RECEIVE: {
3961 struct tcp_zerocopy_receive zc = {};
3962 int err;
3963
3964 if (get_user(len, optlen))
3965 return -EFAULT;
3966 if (len < 0 ||
3967 len < offsetofend(struct tcp_zerocopy_receive, length))
3968 return -EINVAL;
3969 if (len > sizeof(zc)) {
3970 len = sizeof(zc);
3971 if (put_user(len, optlen))
3972 return -EFAULT;
3973 }
3974 if (copy_from_user(&zc, optval, len))
3975 return -EFAULT;
3976 lock_sock(sk);
3977 err = tcp_zerocopy_receive(sk, &zc);
3978 release_sock(sk);
3979 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3980 goto zerocopy_rcv_sk_err;
3981 switch (len) {
3982 case offsetofend(struct tcp_zerocopy_receive, err):
3983 goto zerocopy_rcv_sk_err;
3984 case offsetofend(struct tcp_zerocopy_receive, inq):
3985 goto zerocopy_rcv_inq;
3986 case offsetofend(struct tcp_zerocopy_receive, length):
3987 default:
3988 goto zerocopy_rcv_out;
3989 }
3990 zerocopy_rcv_sk_err:
3991 if (!err)
3992 zc.err = sock_error(sk);
3993 zerocopy_rcv_inq:
3994 zc.inq = tcp_inq_hint(sk);
3995 zerocopy_rcv_out:
3996 if (!err && copy_to_user(optval, &zc, len))
3997 err = -EFAULT;
3998 return err;
3999 }
4000 #endif
4001 default:
4002 return -ENOPROTOOPT;
4003 }
4004
4005 if (put_user(len, optlen))
4006 return -EFAULT;
4007 if (copy_to_user(optval, &val, len))
4008 return -EFAULT;
4009 return 0;
4010 }
4011
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4012 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4013 int __user *optlen)
4014 {
4015 struct inet_connection_sock *icsk = inet_csk(sk);
4016
4017 if (level != SOL_TCP)
4018 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4019 optval, optlen);
4020 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4021 }
4022 EXPORT_SYMBOL(tcp_getsockopt);
4023
4024 #ifdef CONFIG_TCP_MD5SIG
4025 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4026 static DEFINE_MUTEX(tcp_md5sig_mutex);
4027 static bool tcp_md5sig_pool_populated = false;
4028
__tcp_alloc_md5sig_pool(void)4029 static void __tcp_alloc_md5sig_pool(void)
4030 {
4031 struct crypto_ahash *hash;
4032 int cpu;
4033
4034 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4035 if (IS_ERR(hash))
4036 return;
4037
4038 for_each_possible_cpu(cpu) {
4039 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4040 struct ahash_request *req;
4041
4042 if (!scratch) {
4043 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4044 sizeof(struct tcphdr),
4045 GFP_KERNEL,
4046 cpu_to_node(cpu));
4047 if (!scratch)
4048 return;
4049 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4050 }
4051 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4052 continue;
4053
4054 req = ahash_request_alloc(hash, GFP_KERNEL);
4055 if (!req)
4056 return;
4057
4058 ahash_request_set_callback(req, 0, NULL, NULL);
4059
4060 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4061 }
4062 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4063 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4064 */
4065 smp_wmb();
4066 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4067 * and tcp_get_md5sig_pool().
4068 */
4069 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4070 }
4071
tcp_alloc_md5sig_pool(void)4072 bool tcp_alloc_md5sig_pool(void)
4073 {
4074 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4075 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4076 mutex_lock(&tcp_md5sig_mutex);
4077
4078 if (!tcp_md5sig_pool_populated) {
4079 __tcp_alloc_md5sig_pool();
4080 if (tcp_md5sig_pool_populated)
4081 static_branch_inc(&tcp_md5_needed);
4082 }
4083
4084 mutex_unlock(&tcp_md5sig_mutex);
4085 }
4086 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4087 return READ_ONCE(tcp_md5sig_pool_populated);
4088 }
4089 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4090
4091
4092 /**
4093 * tcp_get_md5sig_pool - get md5sig_pool for this user
4094 *
4095 * We use percpu structure, so if we succeed, we exit with preemption
4096 * and BH disabled, to make sure another thread or softirq handling
4097 * wont try to get same context.
4098 */
tcp_get_md5sig_pool(void)4099 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4100 {
4101 local_bh_disable();
4102
4103 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4104 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4105 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4106 smp_rmb();
4107 return this_cpu_ptr(&tcp_md5sig_pool);
4108 }
4109 local_bh_enable();
4110 return NULL;
4111 }
4112 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4113
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4114 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4115 const struct sk_buff *skb, unsigned int header_len)
4116 {
4117 struct scatterlist sg;
4118 const struct tcphdr *tp = tcp_hdr(skb);
4119 struct ahash_request *req = hp->md5_req;
4120 unsigned int i;
4121 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4122 skb_headlen(skb) - header_len : 0;
4123 const struct skb_shared_info *shi = skb_shinfo(skb);
4124 struct sk_buff *frag_iter;
4125
4126 sg_init_table(&sg, 1);
4127
4128 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4129 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4130 if (crypto_ahash_update(req))
4131 return 1;
4132
4133 for (i = 0; i < shi->nr_frags; ++i) {
4134 const skb_frag_t *f = &shi->frags[i];
4135 unsigned int offset = skb_frag_off(f);
4136 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4137
4138 sg_set_page(&sg, page, skb_frag_size(f),
4139 offset_in_page(offset));
4140 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4141 if (crypto_ahash_update(req))
4142 return 1;
4143 }
4144
4145 skb_walk_frags(skb, frag_iter)
4146 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4147 return 1;
4148
4149 return 0;
4150 }
4151 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4152
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4153 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4154 {
4155 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4156 struct scatterlist sg;
4157
4158 sg_init_one(&sg, key->key, keylen);
4159 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4160
4161 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4162 return data_race(crypto_ahash_update(hp->md5_req));
4163 }
4164 EXPORT_SYMBOL(tcp_md5_hash_key);
4165
4166 #endif
4167
tcp_done(struct sock * sk)4168 void tcp_done(struct sock *sk)
4169 {
4170 struct request_sock *req;
4171
4172 /* We might be called with a new socket, after
4173 * inet_csk_prepare_forced_close() has been called
4174 * so we can not use lockdep_sock_is_held(sk)
4175 */
4176 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4177
4178 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4179 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4180
4181 tcp_set_state(sk, TCP_CLOSE);
4182 tcp_clear_xmit_timers(sk);
4183 if (req)
4184 reqsk_fastopen_remove(sk, req, false);
4185
4186 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4187
4188 if (!sock_flag(sk, SOCK_DEAD))
4189 sk->sk_state_change(sk);
4190 else
4191 inet_csk_destroy_sock(sk);
4192 }
4193 EXPORT_SYMBOL_GPL(tcp_done);
4194
tcp_abort(struct sock * sk,int err)4195 int tcp_abort(struct sock *sk, int err)
4196 {
4197 if (!sk_fullsock(sk)) {
4198 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4199 struct request_sock *req = inet_reqsk(sk);
4200
4201 local_bh_disable();
4202 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4203 local_bh_enable();
4204 return 0;
4205 }
4206 return -EOPNOTSUPP;
4207 }
4208
4209 /* Don't race with userspace socket closes such as tcp_close. */
4210 lock_sock(sk);
4211
4212 if (sk->sk_state == TCP_LISTEN) {
4213 tcp_set_state(sk, TCP_CLOSE);
4214 inet_csk_listen_stop(sk);
4215 }
4216
4217 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4218 local_bh_disable();
4219 bh_lock_sock(sk);
4220
4221 if (!sock_flag(sk, SOCK_DEAD)) {
4222 sk->sk_err = err;
4223 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4224 smp_wmb();
4225 sk->sk_error_report(sk);
4226 if (tcp_need_reset(sk->sk_state))
4227 tcp_send_active_reset(sk, GFP_ATOMIC);
4228 tcp_done(sk);
4229 }
4230
4231 bh_unlock_sock(sk);
4232 local_bh_enable();
4233 tcp_write_queue_purge(sk);
4234 release_sock(sk);
4235 return 0;
4236 }
4237 EXPORT_SYMBOL_GPL(tcp_abort);
4238
4239 extern struct tcp_congestion_ops tcp_reno;
4240
4241 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4242 static int __init set_thash_entries(char *str)
4243 {
4244 ssize_t ret;
4245
4246 if (!str)
4247 return 0;
4248
4249 ret = kstrtoul(str, 0, &thash_entries);
4250 if (ret)
4251 return 0;
4252
4253 return 1;
4254 }
4255 __setup("thash_entries=", set_thash_entries);
4256
tcp_init_mem(void)4257 static void __init tcp_init_mem(void)
4258 {
4259 unsigned long limit = nr_free_buffer_pages() / 16;
4260
4261 limit = max(limit, 128UL);
4262 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4263 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4264 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4265 }
4266
tcp_init(void)4267 void __init tcp_init(void)
4268 {
4269 int max_rshare, max_wshare, cnt;
4270 unsigned long limit;
4271 unsigned int i;
4272
4273 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4274 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4275 sizeof_field(struct sk_buff, cb));
4276
4277 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4278 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4279 inet_hashinfo_init(&tcp_hashinfo);
4280 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4281 thash_entries, 21, /* one slot per 2 MB*/
4282 0, 64 * 1024);
4283 tcp_hashinfo.bind_bucket_cachep =
4284 kmem_cache_create("tcp_bind_bucket",
4285 sizeof(struct inet_bind_bucket), 0,
4286 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4287
4288 /* Size and allocate the main established and bind bucket
4289 * hash tables.
4290 *
4291 * The methodology is similar to that of the buffer cache.
4292 */
4293 tcp_hashinfo.ehash =
4294 alloc_large_system_hash("TCP established",
4295 sizeof(struct inet_ehash_bucket),
4296 thash_entries,
4297 17, /* one slot per 128 KB of memory */
4298 0,
4299 NULL,
4300 &tcp_hashinfo.ehash_mask,
4301 0,
4302 thash_entries ? 0 : 512 * 1024);
4303 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4304 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4305
4306 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4307 panic("TCP: failed to alloc ehash_locks");
4308 tcp_hashinfo.bhash =
4309 alloc_large_system_hash("TCP bind",
4310 sizeof(struct inet_bind_hashbucket),
4311 tcp_hashinfo.ehash_mask + 1,
4312 17, /* one slot per 128 KB of memory */
4313 0,
4314 &tcp_hashinfo.bhash_size,
4315 NULL,
4316 0,
4317 64 * 1024);
4318 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4319 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4320 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4321 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4322 }
4323
4324
4325 cnt = tcp_hashinfo.ehash_mask + 1;
4326 sysctl_tcp_max_orphans = cnt / 2;
4327
4328 tcp_init_mem();
4329 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4330 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4331 max_wshare = min(4UL*1024*1024, limit);
4332 max_rshare = min(6UL*1024*1024, limit);
4333
4334 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4335 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4336 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4337
4338 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4339 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4340 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4341
4342 pr_info("Hash tables configured (established %u bind %u)\n",
4343 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4344
4345 tcp_v4_init();
4346 tcp_metrics_init();
4347 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4348 tcp_tasklet_init();
4349 mptcp_init();
4350 }
4351